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We have sorted the SmallGroups library of all the finite groups of order smaller than 2000 to
identify the groups that possess a faithful 3D irreducible representation (“irrep”) and that cannot
be written as the direct product of a smaller group times a cyclic group. Using the computer
algebra system GAP, we have scanned all the 3D irreps of each of these groups to identify those
that are subgroups of SU (3); we have labeled each of these subgroups of SU (3) by using the
extant complete classification of the finite subgroups of SU (3). Turning to the subgroups of
U (3) that are not subgroups of SU (3), we have found the generators of all of them and classified
most of them in series according to their generators and structure.
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1. Introduction

Many high-energy physicists are thrilled by the prospect that the numerical entries of the leptonic
mixing matrix (PMNS (Pontecorvo–Maki–Nakagawa–Sakata) matrix) might be related to some
small (or maybe not so small) finite group. Many specific finite groups have been considered,
such as, for instance, A4 [1]–[11], S4 [12]–[19], S3 [20]–[25], T7 [26]–[30], A5 [31]–[36], �(27)

[37]–[42], the group series �
(
6n2

)
[43,44], the groups � (nϕ) [45], and so on. Most of the finite

groups considered are subgroups of SU (3); these subgroups are especially inviting because a com-
plete classification of them, and their generators, has been known for over a century [46–49]. In
contrast, there is no complete classification of the finite subgroups of U (3),1 though a few series of
these subgroups have been derived in Ref. [50]. At least one finite subgroup of U (3) has already
been utilized in particle physics [51,52].

Although a full theoretical study of each individual group can always be undertaken, for large groups
such a study becomes impractical and it is convenient to have recourse to the computer algebra system
GAP, which is tailored to deal with finite groups and can readily furnish the structure, irreducible
representations (“irreps”), character table, and so on of each of them. GAP is supplemented by the
SmallGroups library, which contains, in particular, all the finite groups of order smaller than 2000.
In that library each finite group has an identifier [o, j], where o ≥ 1 is the order, i.e., the number of
elements, of the group and j ≥ 1 is an integer that distinguishes between the nonisomorphic groups

1In this paper, whenever we use the expression “finite subgroups of U (3)” we usually mean only the
subgroups of U (3) that are not subgroups of SU (3).
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of identical order. For instance, the group with SmallGroups identifier [4, 1] is the cyclic group2

Z4 ∼= {1, i, −1, −i} while the group with SmallGroups identifier [4, 2] is the direct product
of cyclic groups Z2 × Z2 ∼= {(1, 1) , (1, −1) , (−1, 1) , (−1, −1)}; SmallGroups informs us that
there are, in fact, only these two nonisomorphic groups with four elements.ASmallGroups listing
of all the finite groups of order up to 100, together with their structure,3 was published in Ref. [54].
A SmallGroups listing of the finite groups of order up to 512 that have a faithful 3D irrep and
that are not the direct product of a cyclic group and some other group was published in Ref. [50].

However, SmallGroups lists groups of the same order in a way that does not allow one to extract
much information on them. For instance,

◦ the group [12, 3] ∼= A4 is a subgroup of SU (3) and has a 3D faithful irrep;
◦ the groups [12, 1] and [12, 4] ∼= D6 are subgroups of SU (3) but do not possess 3D irreps;
◦ the group [12, 2] ∼= Z12 is a subgroup of U (1) ⊂ U (3);
◦ the group [12, 5] ∼= Z6 × Z2 is a subgroup of U (1) × U (1) but not of U (3).

The first step in this work was to survey the whole SmallGroups list of groups of order smaller
than 2000 in order to identify the ones that

◦ have at least one faithful 3D irreducible representation;
◦ cannot be written as the direct product of a smaller group and a cyclic group.

The second step in this work was to pick each of the groups above and ask GAP to compute the
determinant of each of the matrices in each of its 3D representations. If there is a 3D representation
in which all the matrices have unit determinant, then the group is a subgroup of SU (3); otherwise
the group is not a subgroup of SU (3) but it is a subgroup of U (3)—because every representation of a
finite group is equivalent to a representation through unitary matrices. In this way, we have separated
the subgroups of SU (3) from the subgroups of U (3).

A complete classification of all the finite subgroups of SU (3) has long existed [46–49]. There are
groups (so-called type A) of diagonal matrices, i.e., Abelian groups; they may be written as direct
products of cyclic factors and do not concern us here. Then there are the subgroups of U (2), which
are called type B; their 3D representations are (just like the ones of type A subgroups) reducible
and therefore they do not concern us either. Of interest to us are the type C and type D groups,
which were best characterized in Ref. [55], and also the “exceptional” groups. In this work we give
the SmallGroups identifiers of all the SU (3) subgroups of types C and D, together with their
classification according to Ref. [55], and also the SmallGroups identifiers of the exceptional
subgroups. This is done in Sect. 3.

There is no theoretical classification of all the finite subgroups of U (3). We feel that having a
complete listing of all those subgroups of order less than 2000, together with their generators, may
be a useful step towards achieving such a classification; at the very least, it allows one to get a feeling
for what it might look like. Therefore, in this work we give the SmallGroups identifiers of all
the finite U (3) subgroups, together with their generators. We also partially unite those subgroups in

2 SmallGroups uses Cn to denote the cyclic group of order n, instead of the more usual notation Zn.
SmallGroups uses the notation E(n) for the nth root of unity.

3 SmallGroups informs us about the structure of each group. This is given in terms of direct prod-
ucts (denoted “×”), semidirect products (denoted “�”), or group extensions (denoted “.”). A pedagogical
explanation of these concepts may be found, for instance, in Ref. [53].
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series, namely, in sets of groups that have related generators depending on one, two, or sometimes
three integers. This is done in Sect. 4.

We also give, for every finite subgroup of U (3), the dimensions of all its inequivalent irreps, as
determined by GAP.

In Sect. 2 we explain our procedure. In the appendix we provide tables of all the finite subgroups
of U (3) that have a faithful 3D irrep and are not isomorphic to the direct product of a smaller
group and a cyclic group. We give separate tables for the groups that are subgroups of SU (3) and
for the groups that are not subgroups of SU (3). In these tables, we order the groups according to
their SmallGroups classification, namely, in increasing order first of o and then of j in their [o, j]
identifiers.

2. GAP procedures

GAP [56] is a computer algebra system that provides a programming language, including many
functions that implement algebraic algorithms. It is supplemented by many libraries containing
a large amount of data on algebraic objects. Using GAP, it is possible to study groups and their
representations, display the character tables, find the subgroups of larger groups, identify groups
given through their generating matrices, and so on.
GAP allows access to the SmallGroups library through the SmallGroups package [57]. This

library contains all the finite groups of “small” orders,4 namely, less than a certain upper bound, and
also orders whose prime factorization is small in some sense. The groups are ordered by their orders;
for each of the available orders, a complete list of nonisomorphic groups is given. SmallGroups
contains all the groups of order less than 2000 except order 1024, because there are many thousands
of millions of groups of order 1024. SmallGroups also contains other groups with some specific
orders larger than 2000.

The SmallGroups library has an identification function that returns the SmallGroups identi-
fier of any given group. For each generic group in the library there are effective recognition algorithms
available. To identify encoded and insoluble groups, two approaches are used: one is a general algo-
rithm to solve the isomorphism problem for p-groups,5 the second one uses the invariants6 of stored
groups [58]. Using these methods, it is possible to identify all the groups in the library, except
for orders 512, 1536, and some orders above 2000. For the identification of groups we use GAP
command

IdGroup(.). (1)

In our work, firstly we scanned the SmallGroups library and extracted therefrom all the groups
with 3D irreps. Using the GAP command

G := SmallGroup([o,j]), (2)

4 The order of a finite group is the number of its elements.
5 A p-group, where p is a prime number, is a group in which each element has a power of p as its order.

That is, for each element g of a p-group, there is a nonnegative integer n such that the product of pn copies of
g, and not less, is equal to the identity element e. (However, the integer n is in general different for different
elements g of the group.)

6 In the SmallGroups library there is a list of distinguishing invariants for all encoded groups except
those of orders 512 and 1536. This list of invariants is compressed. It provides an efficient approach to identify
any encoded group in the library.
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one lets G denote the group with identifer [o, j] in the SmallGroups library. The command

NumberSmallGroups(o) (3)

allows one to find out how many groups there are for a chosen order o and thus automates the
scanning of library. For a given group G, GAP offers the possibility to calculate the irreps by using
the command

repG := IrreducibleRepresentations(G). (4)

It is possible to display all the irreps by using the GAP command

Display(CharacterTable(G)) (5)

too; however, the labeling of the irreps may differ from the labeling received through the command

IrreducibleRepresentations(G). (6)

It is convenient to select all the 3D irreps by using the command

repG3 := Filtered(repG,x–>Length(Identity(G)ˆx) = 3). (7)

One may select all the elements of a given group G through the command

elG := Elements(G). (8)

Then, the command

elGlist := List(elG,x–>xˆrepG3[i]), (9)

where the integer i parameterizes the loop, allows one to list all the elements of the chosen irrep. We
have selected the groups from the SmallGroups library that have at least one faithful7 3D irrep.
Then, by using the GAP command that gives the structure of a group, namely,

StructureDescription(G), (10)

we have discarded the groups that are direct products with a cyclic group.
There are 10 494 213 groups of order 512 and 408 641 062 groups of order 1536. However, the

groups of order 512 do not possess 3D irreps because 512 cannot be divided by three; therefore, we
did not need to consider them. On the other hand, the number of groups of order 1536 is too large
for all of them to be scanned in the way described above. Therefore, we have used the conjecture in
Ref. [59] that both nilpotent groups and groups with a normal Sylow 3-subgroup8 do not have 3D
faithful irreps. Utilizing the command

SmallGroupsInformation(o) (11)

7 In order to identify the faithful irreps, we have compared all the matrices in each irrep. If different elements
of the group are represented by different matrices in the irrep, then the irrep is faithful.

8 These two concepts of group theory have been explained in Ref. [60].
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one obtains information about the arrangement of the groups of a given order. Using this information,
we have determined the scanning range of groups of order 1536. To check whether the group is
nilpotent, the command

IsNilpotentGroup(G) (12)

may be used, while

NilpotencyClassOfGroup(G) (13)

gives the nilpotency class of the group G. The Sylow 3-subgroups of a group G may be found by
typing the command

SylowSubgroup(G,3). (14)

We have found that only four groups of order 1536 have faithful 3D irreps and cannot be written as
the direct product of a smaller group and a cyclic group.

For groups that have faithful 3D irreps, we asked GAP to compute the determinant of each of the
matrices in each of its 3D representations. This was done through the command

DeterminantMat(elGlist[i]). (15)

If there is a 3D representation in which all the matrices have unit determinant, then the group is a
subgroup of SU (3); if there is no such representation, then the group is not a subgroup of SU (3),
but it is a subgroup of U (3) because it has a 3D representation and because all the representations
of finite groups are equivalent to representations through unitary matrices.

We have used different methods in order to classify the groups in the lists of subgroups of U (3)

and SU (3). One of the methods is the analysis of the generators of the 3D irreps. The command

genG := GeneratorsOfGroup(G) (16)

returns a list of generators of the group G. The generators of the 3D irreps may be listed through the
command

List(genG,x->xˆrepG3[i]). (17)

By looking at these lists we have tried to find regularities in the generators. Another strategy was
looking at the structures of the groups and sorting groups with analogous structures.

When one has some generators, say three matrices M1, M2, and M3, a group G may be generated
through the command

G := Group([M1,M2,M3]). (18)

Afterwards this group may be identified by finding its order, using the command

Order(G), (19)

5/45
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/5/053A03/3852553/GAP-listing-of-the-finite-subgroups-of-U-3-of
by CERN - European Organization for Nuclear Research user
on 03 October 2017



PTEP 2017, 053A03 D. Jurčiukonis and L. Lavoura

or by counting the elements of the group through

Size(elG). (20)

Afterwards one may discover the SmallGroups identifier of G by using the command

IdGroup(G). (21)

The identification of some groups with large order may require a long computational time; therefore,
some hints about the group classification may be acquired by analyzing the group structure—using
the command (10)—or by comparing the traces of the group matrices, determined through the
command

List(elG,x–>Trace(x)). (22)

3. Finite subgroups of SU (3)

In this section we give the generators and the SmallGroups identifiers of all the finite subgroups
of SU (3) that

◦ have a faithful 3D irrep,
◦ cannot be written as the direct product of a smaller group and a cyclic group,
◦ have less than 2000 elements.

3.1. Generators

We firstly define a few 3 × 3 matrices that act as generators of the various SU (3) subgroups. All
these matrices have, of course, unit determinant.

The matrices

E ≡
⎛
⎜⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎠, (23a)

I ≡
⎛
⎜⎝

0 0 −1
0 −1 0

−1 0 0

⎞
⎟⎠ (23b)

are especially useful. Let n ≥ 1 be an integer. Then,

Ln ≡ diag
(
1, ν, ν−1) , where ν = exp (2iπ/n). (24)

Let n ≥ 1 and k ≥ 1 be integers. We define

Bn,k ≡ diag
(
ν, νk , ν−1−k

)
, where ν = exp (2iπ/n). (25)

Let n ≥ 1 and r ≥ 1 be integers. We define

Gn,r ≡ diag
(
1, ν−r , νr) , where ν = exp (2iπ/n), (26)

i.e., Gn,r = (Ln)
−r .
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Table 1. The SmallGroups identifiers of the groups �
(
3n2

)
with order smaller than 2000.

n 2 3 4 5
identifier [12, 3] [27, 3] [48, 3] [75, 2]

n 6 7 8 9
identifier [108, 22] [147, 5] [192, 3] [243, 26]

n 10 11 12 13
identifier [300, 43] [363, 2] [432, 103] [507, 5]

n 14 15 16 17
identifier [588, 60] [675, 12] [768, 1083 477] [867, 2]

n 18 19 20 21
identifier [972, 122] [1083, 5] [1200, 384] [1323, 43]

n 22 23 24 25
identifier [1452, 34] [1587, 2] [1728, 1291] [1875, 16]

Table 2. The SmallGroups identifiers of the groups �
(
6n2

)
with order smaller than 2000.

n 2 3 4 5
identifier [24, 12] [54, 8] [96, 64] [150, 5]

n 6 7 8 9
identifier [216, 95] [294, 7] [384, 568] [486, 61]

n 10 11 12 13
identifier [600, 179] [726, 5] [864, 701] [1014, 7]

n 14 15 16 17
identifier [1176, 243] [1350, 46] [1536, 408 544 632] [1734, 5]

n 18
identifier [1944, 849]

3.2. The groups �
(
3n2

)
and �

(
6n2

)
For n ≥ 1, the groups �

(
3n2

)
have structure (Zn × Zn)�Z3 and order 3n2;9 the groups �

(
6n2

)
have

structure [(Zn × Zn) � Z3]�Z2 and order 6n2. The group �
(
3n2

)
is generated by the matrices E and

Ln; the group �
(
6n2

)
is generated by the matrices E, I , and Ln. The SmallGroups identifiers of

the groups �
(
3n2

)
of order smaller than 2000 are given in Table 1;10 the SmallGroups identifiers

of the groups �
(
6n2

)
of order smaller than 2000 are given in Table 2.11

The group �
(
3 × 22

)
is isomorphic to A4, the group of even permutations of four objects, and

also to the symmetry group of the regular tetrahedron. The group �
(
6 × 22

)
is isomorphic to S4,

the group of all the permutations of four objects, and also to the symmetry group of the cube and of
the regular octahedron.

9 We adopt the convention that Z1 is the trivial group, i.e., the group that has only one element, namely, the
identity element e.

10 The group �
(
3 × 12

) ∼= Z3
∼= [3, 1] is not included in Table 1 because it is a cyclic group.

11 The group �
(
6 × 12

) ∼= S3
∼= [6, 1] is not included in Table 2 because its 3D representations are reducible.
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Table 3. The lowest values of r, and the corresponding values of k and l, that produce groups C(k)

rl,l with order
3rl2 < 2000.

r 3 7 13 19 21 31 37
k 1 2 3 7 4 5 10
l 3, 6, 9, 12 1 to 9 1 to 7 1 to 5 3 1 to 4 1 to 4

r 39 43 49 57 61 67 73
k 16 6 18 7 13 29 8
l 3 1, 2, 3 1, 2, 3 3 1, 2, 3 1, 2, 3 1, 2, 3

r 79 91 97 103 109 127 133
k 23 9, 16 35 46 45 19 11, 30
l 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2

r 139 151 157 163 169 181
k 42 32 12 58 22 48
l 1, 2 1, 2 1, 2 1, 2 1 1

When n cannot be divided by three, the group �
(
3n2

)
has three singlet irreps and

(
n2 − 1

)/
3

triplet irreps; when n is a multiple of three, �
(
3n2

)
has nine inequivalent singlet irreps and n2/3 − 1

inequivalent triplet irreps. The group �
(
6n2

)
has [43,44,46–49,61], for any n ≥ 2, two inequivalent

singlet irreps and 2(n − 1) inequivalent triplet irreps. When n is not a multiple of three, �
(
6n2

)
has

one doublet irrep and (n − 1)(n − 2)/6 6D irreps; when n is a multiple of three, �
(
6n2

)
has four

inequivalent doublet irreps and n(n − 3)/6 6D irreps.

3.3. The groups C(k)

n,l

We use the notation of Ref. [55]. The groups C(k)
n,l have structure (Zn × Zl) � Z3 and order 3nl. The

integer l is positive. The integer n may be written n = rl, where r is another positive integer. The
integer r may be either

(1) a product of prime numbers p1, p2, . . . that are of the form pj = 6ij + 1, where the numbers ij are
integers, or

(2) three times a product of prime numbers as in Eq. (1).

In case (1), l may be any positive integer; in case (2), l must be a multiple of three. The integer k is
a function of r defined by 1 + k + k2 = 0 mod r and k ≤ (r − 1)

/
2. For most values of r there

is only one possible k , but for some r more than one (usually two) k are possible. The values of r,
k , and l that produce groups C(k)

n,l with order smaller than 2000 are given in Tables 3 and 4. There

is a very large number of groups C(k)
n,l of order smaller than 2000; therefore, we opt for giving their

SmallGroups identifiers only in the appendix.
The generators of C(k)

n,l are the matrices E in Eq. (23a), Bn,k in Eq. (25), and Gn,r in Eq. (26), where
r = n/l.12

The groups C(k)
n,l only have singlet and triplet irreps. The number of inequivalent singlet irreps is

three when l cannot be divided by three and nine when l is a multiple of three.

12 For almost all the groups C(k)

n,l of order smaller than 2000, the third generator Gn,r is not really needed,
i.e., one may generate the group by using solely E and Bn,k .
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Table 4. Continuation of Table 3: other values of r and k that produce groups C(k)

r,1 with order 3r < 2000. (For
the values of r in this table, only l = 1 produces group orders smaller than 2000.)

r 193 199 211 217 223 229
k 84 92 14 25, 67 39 94

r 241 247 259 271 277 283
k 15 68, 87 100, 121 28 116 44

r 301 307 313 331 337 343
k 79, 135 17 98 31 128 18

r 349 361 367 373 379 397
k 122 68 83 88 51 34

r 403 409 421 427 433 439
k 87, 191 53 20 74, 135 198 171

r 457 463 469 481 487 499
k 133 21 37, 163 100, 211 232 139

r 511 523 541 547 553 559
k 81, 137 60 129 40 23, 102 165, 178

r 571 577 589 601 607 613
k 109 213 87, 273 24 210 65

r 619 631 637 643 661
k 252 43 165, 263 177 296

3.4. The groups D(1)

3l,l

We continue to use the notation of Ref. [55]. For an integer l that is a multiple of three, the groups
D(1)

3l,l have structure [(Z3l × Zl) � Z3] � Z2 and order 18l2. They are generated by the matrices E,

I , and B3l,1 = diag
(
ν, ν, ν−2

)
for ν = exp

[
2iπ

/
(3l)

]
. There are only three groups D(1)

3l,l of order
smaller than 2000:

D(1)
9,3

∼= [162, 14] , (27a)

D(1)
18,6

∼= [648, 259] , (27b)

D(1)
27,9

∼= [1458, 659] . (27c)

The groups D(1)
3l,l have six inequivalent singlets and three inequivalent doublets for any value of l.

In addition, they have 6(l − 1) inequivalent triplet irreps and l(l − 3)/2 + 1 inequivalent six-plets.

3.5. The exceptional subgroups of SU (3)

The groups �
(
3n2

)
and C(k)

n,l form the class C of finite subgroups of SU (3). The groups �
(
6n2

)
and

D(1)
3l,l form the class D of finite subgroups of SU (3). Both classes C and D contain infinite numbers of

subgroups. Besides these infinite classes of subgroups, SU (3) has six “exceptional” subgroups;13,14

their SmallGroups identifiers are given in Table 5. The generators of the exceptional subgroups

13 The groups � (36 × 1), � (72 × 1), � (216 × 1), and � (360 × 1) are subgroups of PSU (3), i.e., of
SU (3) divided by its Z3 center. They are not subgroups of SU (3).

14 The group � (60) is in fact a subgroup of SO(3), i.e., it may be represented through real 3 × 3 matrices.
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Table 5.The SmallGroups identifiers of the exceptional subgroups of SU (3).

� (60) � (36 × 3) � (168) � (72 × 3) � (216 × 3) � (360 × 3)

[60, 5] [108, 15] [168, 42] [216, 88] [648, 532] [1080, 260]

Table 6. The number of inequivalent p-dimensional irreducible representations of the exceptional subgroups
of SU (3).

group p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

� (60) 1 0 2 1 1 0
� (36 × 3) 4 0 8 2 0 0
� (168) 1 0 2 0 0 1

� (72 × 3) 4 1 8 0 0 2
� (216 × 3) 3 3 7 0 0 6
� (360 × 3) 1 0 4 0 2 2

group p = 7 p = 8 p = 9 p = 10 p = 15

� (60) 0 0 0 0 0
� (36 × 3) 0 0 0 0 0
� (168) 1 1 0 0 0

� (72 × 3) 0 1 0 0 0
� (216 × 3) 0 3 2 0 0
� (360 × 3) 0 2 3 1 2

are given, for instance, in Ref. [50] and references therein.
The group � (60) is isomorphic to A5, the group of even permutations of five objects, and to

the symmetry group of the regular icosahedron and regular dodecahedron. The group � (168) is
isomorphic to the projective special linear group PSL (2, 7) and also to the general linear group
GL (3, 2).

The number of inequivalent p-dimensional irreps of the exceptional finite subgroups of SU (3) is
given in Table 6 [62].

4. Finite subgroups of U (3)

In this section we give the generators and the SmallGroups identifiers of all the finite subgroups
of U (3) that

◦ are not subgroups of SU (3),
◦ have a faithful 3D irrep,
◦ cannot be written as the direct product of a smaller group and a cyclic group,
◦ have less than 2000 elements.

For most groups, we also give the numbers of inequivalent irreps of each dimension.
There is at present no mathematical classification of the finite subgroups of U (3). Therefore, we

will just classify the various subgroups that we have found using the SmallGroups library and
GAP, by constructing “series” of subgroups that have generators, structures, and numbers of irreps
related among themselves. Unfortunately, there is some degree of ambiguity in this task, since any
group may always be generated by different sets of generators. It is moreover often found that groups
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Table 7. The lowest possible values of r and the corresponding values of k .

r 7 13 19 31 37 43 49 61 67
k 2 3 7 5 10 6 18 13 29

r 73 79 91 97 103 109 127 133 139
k 8 23 9, 16 35 46 45 19 11, 30 42

r 151 157 163 169 181 193 199 211 217
k 32 12 58 22 48 84 92 14 25, 67

with related generators end up having quite different structures. Still, we hope to be able to shed
some light on the possible types of subgroups of U (3).

4.1. The generators

We firstly define some 3 × 3 matrices that often appear as generators of the U (3) subgroups.
Let

◦ r be a product of prime numbers p1, p2, . . . that are of the form pj = 6ij + 1, where the numbers
ij are integers;

◦ k be an integer that is a function of r defined by 1 + k + k2 = 0 mod r and k ≤ (r − 1)
/

2. For
most values of r there is only one possible k , but for some r more than one k is possible.

The lowest r and the corresponding k are given in Table 7. In this section, whenever we let r and k
denote a pair of integers, we will be referring to one of the pairs in Table 7. The matrix

Br,k = diag
(
ρ, ρk , ρ−1−k

)
, where ρ = exp (2iπ/r), (28)

appears as generator of many U (3) subgroups. Notice that Br,k ∈ SU (3).
We use the definition of Ln in Eq. (24). Notice that Ln ∈ SU (3). The matrix

L2 = diag (1, −1, −1) (29)

is especially useful. We will also encounter

L3 = diag
(
1, ω, ω2) , where ω = exp (2iπ/3). (30)

Let m be an integer. We define

Em ≡
⎛
⎜⎝

0 μ 0
0 0 μ

μ 0 0

⎞
⎟⎠ , (31a)

Zm ≡
⎛
⎜⎝

0 0 μ

1 0 0
0 1 0

⎞
⎟⎠ , (31b)

T1(m) ≡ diag
(
1, μ, μ2) , (31c)

T2(m) ≡ diag
(
1, μ2, μ

)
, where μ = exp

[
2iπ

/ (
3m)]

. (31d)
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The matrix E ≡ E0 in Eq. (23a) is especially useful. Both E0 and E1 have unit determinant, but
Em /∈ SU (3) for m > 1.

Let m and j be integers. We define

Fm,j ≡
⎛
⎜⎝

0 0 −ξ

0 −ξ 0
−ξ 0 0

⎞
⎟⎠ , where ξ = exp

[
2iπ

/ (
3m2j)]

. (32)

Notice that Fm,j /∈ SU (3) for m ≥ 2 or j ≥ 1. The matrix I ≡ F0,0 in Eq. (23b) has already been
useful; also useful is

I ′ ≡ F0,1 =
⎛
⎜⎝

0 0 1
0 1 0
1 0 0

⎞
⎟⎠ = −I . (33)

Let ω = exp (2iπ/3) and μ = exp
[
2iπ

/
(3m)

]
. We define

X1(m) ≡ diag
(
μω, μω, μω2) , (34a)

X2(m) ≡ diag
(
μω2, μω2, μω

)
, (34b)

Y1(m) ≡ diag
(
μ, μω, μω2) , (34c)

Y2(m) ≡ diag
(
μ, μω2, μω

)
, (34d)

X3(m) = Y3(m) ≡ diag (μ, μ, μ) . (34e)

Let ω = exp (2iπ/3). We define

K ≡ −i√
3

⎛
⎜⎝

1 1 1
1 ω ω2

1 ω2 ω

⎞
⎟⎠ . (35)

Notice that K ∈ SU (3). Furthermore, let ξ = exp
[
2iπ

/ (
3m2j

)]
. We define

Qm,j ≡ −iξ√
3

⎛
⎜⎝

1 ω2 ω2

ω2 ω2 1
1 ω 1

⎞
⎟⎠ . (36)

Notice that det Qm,j = ξ3 �= 1 in general.

4.2. The series of groups discovered by Ludl

Ludl [50] has proved the existence of the following series of finite subgroups of U (3).

Groups T (k)
r (m) The group T (k)

r (m), where m is an integer larger than 1,15 has structure Zr � Z3m

and order 3mr. The groups T (k)
r (m) of order smaller than 2000 are given in Table 8. Each of these

groups has two generators, which may be chosen to be Br,k in Eq. (28) and Em in Eq. (31a).
The groups T (k)

r (m) have 3m inequivalent singlet irreps; all the remaining irreps of these groups
are triplets.

15 If m = 1, then T (k)
r (1) ∼= C(k)

r,1 is a subgroup of SU (3).
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Table 8. The SmallGroups identifiers of the groups T (k)
r (m) with order smaller than 2000.

T (k)
r (m) T (2)

7 (2) T (2)

7 (3) T (2)

7 (4) T (2)

7 (5) T (3)

13 (2)

identifier [63, 1] [189, 1] [567, 1] [1701, 68] [117, 1]

T (k)
r (m) T (3)

13 (3) T (3)

13 (4) T (7)

19 (2) T (7)

19 (3) T (7)

19 (4)

identifier [351, 1] [1053, 16] [171, 1] [513, 1] [1539, 16]

T (k)
r (m) T (5)

31 (2) T (5)

31 (3) T (10)

37 (2) T (10)

37 (3) T (6)

43 (2)

identifier [279, 1] [837, 1] [333, 1] [999, 1] [387, 1]

T (k)
r (m) T (6)

43 (3) T (18)

49 (2) T (18)

49 (3) T (13)

61 (2) T (13)

61 (3)

identifier [1161, 6] [441, 1] [1323, 1] [549, 1] [1647, 6]

T (k)
r (m) T (29)

67 (2) T (29)

67 (3) T (8)

73 (2) T (8)

73 (3) T (23)

79 (2)

identifier [603, 1] [1809, 6] [657, 1] [1971, 6] [711, 1]

T (k)
r (m) T (9)

91 (2) T (16)

91 (2) T (35)

97 (2) T (46)

103 (2) T (45)

109 (2)

identifier [819, 4] [819, 3] [873, 1] [927, 1] [981, 1]

T (k)
r (m) T (19)

127 (2) T (11)

133 (2) T (30)

133 (2) T (42)

139 (2) T (32)

151 (2)

identifier [1143, 1] [1197, 3] [1197, 4] [1251, 1] [1359, 1]

T (k)
r (m) T (12)

157 (2) T (58)

163 (2) T (22)

169 (2) T (48)

181 (2) T (84)

193 (2)

identifier [1413, 1] [1467, 1] [1521, 1] [1629, 1] [1737, 1]

T (k)
r (m) T (92)

199 (2) T (14)

211 (2) T (25)

217 (2) T (67)

217 (2)

identifier [1791, 1] [1899, 1] [1953, 3] [1953, 4]

Table 9. The SmallGroups identifiers of the groups �
(
3n2, m

)
with order smaller than 2000.

n, m 2, 2 2, 3 2, 4 2, 5
identifier [36, 3] [108, 3] [324, 3] [972, 3]

n, m 4, 2 4, 3 4, 4 5, 2 5, 3
identifier [144, 3] [432, 3] [1296, 3] [225, 3] [675, 5]

n, m 7, 2 7, 3 8, 2 8, 3 10, 2
identifier [441, 7] [1323, 14] [576, 3] [1728, 3] [900, 66]

n, m 11, 2 13, 2 14, 2
identifier [1089, 3] [1521, 7] [1764, 91]

Groups �
(
3n2, m

)
The group �

(
3n2, m

)
, where the integer n cannot be divided by 3 and m > 1,16

has structure (Zn × Zn) � Z3m and order 3mn2. The groups �
(
3n2, m

)
of order less than 2000 are

listed in Table 9. The group �
(
3n2, m

)
is generated by the matrices Ln in Eq. (24) and Em in Eq. (31a).

The groups �
(
3n2, m

)
have 3m inequivalent singlet irreps; all the remaining irreps of these groups

are triplets.

Groups S4(j) The group S4(j), where j > 1,17 has structure A4 � Z2j and order 3 × 2j+2.18 There
are six groups S4(j) of order smaller than 2000; they are given in Table 10. The group S4(j) is

16 If m = 1, then �
(
3n2, 1

) ∼= �
(
3n2

)
is a subgroup of SU (3).

17 The group S4(1) ∼= �
(
6 × 22

)
is a subgroup of SU (3).

18 The group A4 has structure (Z2 × Z2) � Z3.
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Table 10. The SmallGroups identifiers of the groups S4(j) with order smaller than 2000.

j 2 3 4
identifier [48, 30] [96, 65] [192, 186]

j 5 6 7
identifier [384, 581] [768, 1085 351] [1536, 408 544 687]

Table 11. The SmallGroups identifiers of the groups �
(
6n2, j

)
with order smaller than 2000.

n, j 3, 2 3, 3 3, 4
identifier [108, 11] [216, 17] [432, 33]

n, j 3, 5 3, 6 4, 2
identifier [864, 69] [1728, 185] [192, 182]

n, j 4, 3 4, 4 4, 5
identifier [384, 571] [768, 1085 333] [1536, 408 544 678]

n, j 5, 2 5, 3 5, 4
identifier [300, 13] [600, 45] [1200, 183]

n, j 6, 2 6, 3 6, 4
identifier [432, 260] [864, 703] [1728, 2855]

n, j 7, 2 7, 3 8, 2
identifier [588, 16] [1176, 57] [768, 1085 335]

n, j 8, 3 9, 2 9, 3
identifier [1536, 408 544 641] [972, 64] [1944, 70]

n, j 10, 2 11, 2 12, 2
identifier [1200, 682] [1452, 11] [1728, 2847]

generated by the matrices E in Eq. (23a), L2 in Eq. (29), and −F0,j, where Fm,j is given in Eq. (32).
The group S4(j) has 2j inequivalent singlet irreps, 2j−1 inequivalent doublet irreps, 2j inequivalent

triplet irreps, and no other irreps.

Groups �
(
6n2, j

)
The group �

(
6n2, j

)
, where19 n > 1 and j > 1,20 has structure

[(Zn × Zn) � Z3] � Z2j and order 3 × 2jn2. But, for n = 2, �
(
6n2, j

) = S4(j); therefore, we
only need to take into account n ≥ 3; there are then the 24 groups �

(
6n2, j

)
with order less than

2000 given in Table 11. The generators of �
(
6n2, j

)
are the matrices E in Eq. (23a), Ln in Eq. (24),

and −F0,j. It is clear that �
(
6n2, j

)
is just a generalization of S4(j) for n > 2.

The groups �
(
6n2, j

)
have 2j inequivalent singlet irreps and 2j(n−1) inequivalent triplet irreps for

any value of n. When n cannot be divided by three, these groups have, in addition, 2j−1 doublet irreps;
when n is a multiple of three, the number of inequivalent doublet irreps is 2j+1. All the remaining
irreps of these groups are six-plets.

19 In Ludl’s paper the existence of �
(
6n2, j

)
has been proved for integers n not divisible by 3. We have

verified, though, that �
(
6n2, j

)
exists for every n > 1, at least when 3 × 2jn2 < 2000.

20 The groups �
(
6n2, 1

) ∼= �
(
6n2

)
are subgroups of SU (3).
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Table 12. SmallGroups identifiers of the groups �′ (6n2, m, j
)

with order smaller than 2000.

n, m, j 3, 2, 1 3, 2, 2 3, 2, 3 3, 2, 4
identifier [162, 44] [324, 102] [648, 244] [1296, 647]

n, m, j 3, 3, 1 3, 3, 2 3, 3, 3 3, 4, 1
identifier [486, 164] [972, 348] [1944, 746] [1458, 1354]

n, m, j 6, 2, 1 6, 2, 2 6, 3, 1 9, 2, 1
identifier [648, 563] [1296, 2113] [1944, 2415] [1458, 1371]

Table 13. SmallGroups identifiers of the groups L(k)
r (n, m) with order smaller than 2000.

L(k)
r (n, m) L(2)

7 (2, 2) L(2)

7 (2, 3) L(2)

7 (4, 2) L(2)

7 (5, 2)

identifier [252, 11] [756, 11] [1008, 57] [1575, 7]

L(k)
r (n, m) L(3)

13 (2, 2) L(3)

13 (2, 3) L(3)

13 (4, 2) L(7)

19 (2, 2)

identifier [468, 14] [1404, 14] [1872, 60] [684, 11]

L(k)
r (n, m) L(5)

31 (2, 2) L(10)

37 (2, 2) L(6)

43 (2, 2) L(18)

49 (2, 2)

identifier [1116, 11] [1332, 14] [1548, 11] [1764, 11]

Groups �′ (6n2, m, j
)

These groups, where n can be divided by 3, m ≥ 2,21 and j ≥ 1, have
structure22

[(
Z3m−1n × Zn

)
� Z3

]
� Z2j and order 3m2jn2. There are 12 groups with order less than

2000 in Table 12. The generators of �′ (6n2, m, j
)

are the matrices E in Eq. (23a), Ln in Eq. (24), and
−Fm,j in Eq. (32).

The groups �′ (6n2, m, j
)

have 3m−12j inequivalent singlet irreps and 3m−12j+1 inequivalent
doublet irreps. There are also (n − 1) 3m−12j inequivalent triplets; the remaining irreps are six-plets.

4.3. New series of groups that we have discovered

Ludl [50] derived the existence of the series of groups in the previous subsection by applying
mathematical theorems that he demonstrated. We have discovered some further series of groups
through a careful inspection of the list of all the finite subgroups of U (3) of order smaller than
2000 that we have produced, together with some guesswork. Clearly, since there are no theorems
supporting our method, we cannot be sure that our series of groups extend to groups of order larger
than 2000. Still, the series of groups in this subsection seem to us to be on firm standing, since they
are quite large and display no exceptions up to group order 2000.

Groups L(k)
r (n, m) For an integer n that cannot be divided by 3 and for m > 1, these are groups with

structure (Zrn × Zn)�Z3m and order 3mrn2. While the groups T (k)
r (m) are generated by the matrices

Br,k and Em, and the groups �
(
3n2, m

)
are generated by the matrices Ln and Em, the groups L(k)

r (n, m)

are generated by all three matrices Br,k , Ln, and Em. Thus, the groups L(k)
r (n, m) simultaneously

generalize T (k)
r (m) = L(k)

r (1, m) and �
(
3n2, m

) = L(0)
1 (n, m). The groups L(k)

r (n, m) of order
smaller than 2000 are listed in Table 13.

21 The groups �′ (6n2, 1, j
)

are the same as the groups �
(
6n2, j

)
.

22 The exception is �′ (6 × 92, 2, 1
)
, which has structure [(Z9 × Z9 × Z3) � Z3] � Z2 instead of

[(Z27 × Z9) � Z3] � Z2.
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Table 14. The SmallGroups identifiers of the groups P(k)
r (m), Q(k)

r (m), and Q(k)′
r (m) with order smaller

than 2000.
(k)
r (m)

(2)

7 (2)
(3)

13 (2)
(7)

19 (2)
(5)

31 (2)
(10)

37 (2)

P(k)
r (m) [189, 7] [351, 7] [513, 8] [837, 7] [999, 8]

Q(k)
r (m) [189, 4] [351, 4] [513, 5] [837, 5] [999, 6]

Q(k)′
r (m) [189, 5] [351, 5] [513, 6] [837, 4] [999, 5]

(k)
r (m)

(6)

43 (2)
(18)

49 (2)
(13)

61 (2)
(29)

67 (2)
(8)

73 (2)

P(k)
r (m) [1161, 12] [1323, 7] [1647, 17] [1809, 17] [1971, 17]

Q(k)
r (m) [1161, 10] [1323, 4] [1647, 10] [1809, 10] [1971, 11]

Q(k)′
r (m) [1161, 11] [1323, 5] [1647, 11] [1809, 11] [1971, 10]

(k)
r (m)

(2)

7 (3)
(3)

13 (3)
(7)

19 (3)
(2)

7 (4)

P(k)
r (m) [567, 7] [1053, 27] [1539, 27] [1701, 128]

Q(k)
r (m) [567, 4] [1053, 26] [1539, 26] [1701, 127]

Q(k)′
r (m) [567, 5] [1053, 25] [1539, 25] [1701, 126]

The groups L(k)
r (n, m) have 3m inequivalent singlets; the remaining irreps are triplets.

Groups P(k)
r (m), Q(k)

r (m), and Q(k)′
r (m) These groups exist for integer m > 1 and have order

3m+1r. The groups P(k)
r (m) have structure (Zr × Z3m) � Z3; the groups Q(k)

r (m) and Q(k)′
r (m) have

structure Z3mr �Z3. The groups of order smaller than 2000 are listed in Table 14. The group P(k)
r (m)

is generated by Br,k together with L3 and Zm−1. The groups Q(k)
r (m) and Q(k)′

r (m) are generated by
the matrices Br,k and E together with Y1(m) for Q(k)

r (m) or Y2(m) for Q(k)′
r (m).

The groups P(k)
r (m), Q(k)

r (m), and Q(k)′
r (m) have 3m inequivalent singlets; all their remaining irreps

are triplets.

Groups X (n) There are several groups that have a 3D irrep where all the matrices are of one of
the following types [50]:

R (n, a, b, c) ≡
⎛
⎜⎝

0 0 νa

νb 0 0
0 νc 0

⎞
⎟⎠ , (37a)

V (n, a, b, c) ≡
⎛
⎜⎝

0 νa 0
0 0 νb

νc 0 0

⎞
⎟⎠ , (37b)

W (n, a, b, c) ≡
⎛
⎜⎝

νa 0 0
0 νb 0
0 0 νc

⎞
⎟⎠ , (37c)

where ν = exp (2iπ/n). We call them “groups RVW”. The groups X (n) are groups RVW where

◦ n is a multiple of 3,
◦ the matrices R (n, a, b, c) have a + b + c = (n/3) mod n,
◦ the matrices V (n, a, b, c) have a + b + c = (2n/3) mod n,
◦ the matrices W (n, a, b, c) have a + b + c = 0 mod n.
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Table 15. The SmallGroups identifiers of the groups X (n) with order smaller than 2000.

n 3 6 9 12
identifier [27, 4] [108, 21] [243, 27] [432, 102]

n 15 18 21 24
identifier [675, 11] [972, 123] [1323, 42] [1728, 1290]

Table 16. The SmallGroups identifiers of the groups S(k)
r (m), S(k)′

r (m), Y (k)
r (m), and V (k)

r (m) with order
smaller than 2000.

S(2)

7 (2) S(3)

13 (2) S(7)

19 (2) S(2)

7 (3)

[567, 36] [1053, 47] [1539, 47] [1701, 240]

S(2)′
7 (2) S(3)′

13 (2) S(7)′
19 (2) S(2)′

7 (3)

[567, 12] [1053, 32] [1539, 32] [1701, 115]

Y (2)

7 (2) Y (3)

13 (2) Y (7)

19 (2) Y (2)

7 (3)

[567, 23] [1053, 29] [1539, 29] [1701, 261]

V (2)

7 (2) V (3)

13 (2) V (7)

19 (2) V (2)

7 (3)

[567, 14] [1053, 37] [1539, 37] [1701, 138]

The groups X (n) have order 3n2; the identifiers of the groups of order less than 2000 are shown in
Table 15. The structure of X (n) is

[(
Zn/3 × Zn/3

)
� Z9

]
� Z3 provided n is not a multiple of 9;

otherwise it is more complicated. The groups X (n) are generated by the matrices Ln in Eq. (24) and
Z1 in Eq. (31b).

The groups X (n) have nine inequivalent singlets; their remaining irreps are all triplets.

4.4. Tentative series of groups

We have found a few more series of groups through inspection of the list of the finite subgroups
of U (3) of order less than 2000. However, these series have few groups each and we can hardly
ascertain whether and how they extend to groups of order larger than 2000.

Groups S (k)
r (m), S (k)′

r (m), Y (k)
r (m), and V (k)

r (m) These groups exist for m ≥ 2. The groups
S(k)

r (m) and S(k)′
r (m) have structure (Z3mr × Z3) � Z3; the groups Y (k)

r (m) have structure(
Z3m−1r × Z3 × Z3

)
� Z3; the groups V (k)

r (m) have structure Zr �

[(
Z3m−1 × Z3

)
. (Z3 × Z3)

]
;

they all have order 3m+2r. The generators are the matrices Br,k in Eq. (28), together with

◦ E in Eq. (23a), L3 in Eq. (30), and X3(m) in Eq. (34e) for S(k)
r (m);

◦ E, L3, and X1(m) in Eq. (34a) for S(k)′
r (m);

◦ E, X1(m − 1), and X3(m − 1) for Y (k)
r (m);

◦ X2(2) in Eq. (34b), Z1 in Eq. (31b), and L3m−1 for V (k)
r (m).

The groups S(k)
r (m), S(k)′

r (m), Y (k)
r (m), and V (k)

r (m) of order less than 2000 are shown in Table 16.
The groups S(k)

r (m) have 3m+1 inequivalent singlets. The groups S(k)′
r (m) and Y (k)

r (m) have 3m

inequivalent singlets. The groups V (k)
r (m) have nine inequivalent singlets. All the remaining irreps

of all these groups are triplets.
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Table 17. The SmallGroups identifiers of the groups M (k)
r , M (k)′

r , and J (k)
r with order smaller than 2000.

M (2)

7 M (2)′
7 J (2)

7 M (3)

13 M (3)′
13 J (3)

13

[756, 113] [756, 114] [756, 116] [1404, 137] [1404, 138] [1404, 140]

Table 18. SmallGroups identifiers of the groups W (n, m) with order smaller than 2000.

n, m 1, 2 1, 3 1, 4 1, 5
identifier [27, 4] [81, 6] [243, 24] [729, 94]

n, m 2, 2 2, 3 2, 4 4, 2
identifier [108, 19] [324, 43] [972, 117] [432, 100]

n, m 4, 3 5, 2 7, 2 8, 2
identifier [1296, 220] [675, 9] [1323, 40] [1728, 1286]

Groups M (k)
r , M (k)′

r , and J (k)
r These groups have order 108r. The groups M (k)

r and M (k)′
r have

structure (Z18r × Z2)� Z3; the groups J (k)
r have structure [(Z2r × Z2) � Z9] � Z3. The generators

are the matrices Br,k in Eq. (28) and L2 in Eq. (29) together with

◦ E in Eq. (23a) and Y1(2) in Eq. (34c) for M (k)
r ,

◦ E and Y2(2) in Eq. (34d) for M (k)′
r ,

◦ L3 in Eq. (30) and Z1 in Eq. (31b) for J (k)
r .

The groups M (k)
r , M (k)′

r , and J (k)
r of order less than 2000 are shown in Table 17.

Each of the groups M (k)
r , M (k)′

r , and J (k)
r has nine inequivalent singlets. All the remaining irreps

of these groups are triplets.

Groups W (n, m) The groups W (n, m), where n cannot be divided by 3 and m > 1, are generated by
the matrices E in Eq. (23a), Ln in Eq. (24), and Y1(m) in Eq. (34c). They have structure (Z3mn × Zn)�

Z3 and order 3m+1n2. The groups W (n, m) with order smaller than 2000 are listed in Table 18.
Each of the groups W (n, m) has 3m inequivalent singlets; the remaining irreps of these groups are

triplets.

Groups Z (n, m), Z ′ (n, m), and Z ′′ (n, m) These groups, where n is a multiple of 3 and m > 1,
have structure23

(
Z3m−1n × Zn

)
� Z3 and order 3mn2. The groups with order smaller than 2000 are

listed in Table 19. The generators of Z (n, m) are just the same as those of W (n, m), namely, E,
Ln, and Y1(m), the only difference being that for Z (n, m) the integer n is a multiple of 3 while for
W (n, m) the integer n cannot be divided by 3. The groups Z ′ (n, m) are generated by the matrices E,
Ln, and X1(m). The groups Z ′′ (n, m) are generated by the matrices E, Ln, and X2(m). Notice that,
for m = 2, Z ′′ (n, m) is generated by matrices with unit determinant and therefore it is a subgroup of
SU (3).

Each of the groups Z (n, m) and Z ′′ (n, m) has 3m+1 inequivalent singlets. The groups Z ′ (n, m)

have 3m inequivalent singlets. All the remaining irreps of all these groups are triplets.

23 An exception are the groups Z (9, 2) and Z ′ (9, 2), which happen to be isomorphic and are of the form
(Z9 × Z9 × Z3) � Z3 instead of (Z27 × Z9) � Z3.
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Table 19. SmallGroups identifiers of the groups Z (n, m), Z ′ (n, m), and Z ′′ (n, m) with order smaller
than 2000.

n, m 3, 2 6, 2 9, 2 12, 2
Z (n, m) [81, 14] [324, 128] [729, 397] [1296, 1499]
Z ′ (n, m) [81, 8] [324, 49] [729, 397] [1296, 227]
Z ′′ (n, m) C(1)

9,3 C(1)

18,6 �
(
3 × 92

)
C(1)

36,12

n, m 3, 3 6, 3 3, 4
Z (n, m) [243, 50] [972, 520] [729, 393]
Z ′ (n, m) [243, 20] [972, 152] [729, 64]
Z ′′ (n, m) [243, 19] [972, 153] [729, 63]

Table 20. The SmallGroups identifiers of the groups Z (n, m, j) and Z ′ (n, m, j) with order smaller
than 2000.

n, m, j 3, 2, 1 3, 2, 2 3, 2, 3 3, 2, 4
Z (n, m, j) [162, 12] [324, 15] [648, 21] [1296, 37]
Z ′ (n, m, j) D(1)

9,3 [324, 17] [648, 23] [1296, 39]

n, m, j 3, 3, 1 3, 3, 2 3, 3, 3 3, 4, 1
Z (n, m, j) [486, 28] [972, 31] [1944, 37] [1458, 618]
Z ′ (n, m, j) [486, 26] [972, 29] [1944, 35] [1458, 615]

n, m, j 6, 2, 1 6, 2, 2 6, 3, 1
Z (n, m, j) [648, 260] [1296, 689] [1944, 833]
Z ′ (n, m, j) D(1)

18,6 [1296, 688] [1944, 832]

Groups Z (n, m, j) and Z ′ (n, m, j) These groups, where

◦ n is a multiple of 3,
◦ m > 1,
◦ j is an integer,

have order 3m2jn2. The groups Z (n, m, j) and Z ′ (n, m, j) with order smaller than 2000 are shown
in Table 20.24 The groups Z (n, m, j) and Z ′ (n, m, j) are generated by the same matrices as the
groups Z ′ (n, m) and Z ′′ (n, m), respectively, with the addition of the further generator −F1,j, where
Fm,j is given in Eq. (32). Notice that there are no groups Z ′ (n, 2, 1) in Table 20, because all the
matrices generating Z ′ (n, 2, 1), namely, E, Ln, X2(2), and −F1,1, have unit determinant and therefore
Z ′ (n, 2, 1) is a subgroup of SU (3).

The groups Z (n, m, j) and Z ′ (n, m, j) have the same numbers of irreps of each dimension: 3m−1 2j

inequivalent singlet irreps, 3m−1 2j−1 inequivalent doublet irreps, (n − 1) 3m−1 2j triplet irreps, and
(n − 1) (n − 2) 3m−2 2j−2 six-plet irreps.

Groups H (n, m, j) When we use generators E, Ln, X1(2), and −Fm,j with m > 1, we
obtain groups that we call H (n, m, j), listed in Table 21. The groups H (n, m, 1) have structure

24 The group Z (9, 2, 1) is isomorphic to the group �′ (6 × 92, 2, 1
)

and we omit it from Table 20, since it
has numbers of irreps quite inconsistent with those of the other groups Z (n, m, j).
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Table 21. The SmallGroups identifiers of the groups H (n, m, j) of order smaller than 2000.

n, m, j 3, 2, 1 3, 2, 2 3, 2, 3 3, 3, 1 6, 2, 1
identifier [486, 125] [972, 309] [1944, 707] [1458, 1095] [1944, 2363]

Table 22. The SmallGroups identifiers of the groups G (m, j) with order smaller than 2000.

m, j 1, 2 2, 2 1, 3 2, 3 1, 4
identifier [324, 13] [972, 309] [648, 19] [1944, 707] [1296, 35]

[(
Z3m−1n × Zn × Z3

)
� Z3

]
� Z2 and order 3m+1 × 2n2. The groups H (n, m, j) with j > 1 are

described in the paragraph on groups G (m, j) below.
The groups H (n, m, j) have exactly the same number of inequivalent irreps of each dimension as

the groups Z (n, m + 1, j) and Z ′ (n, m + 1, j).

Groups Y (m, j) The groups Y (m, j), where m ≥ 2 and j ≥ 1, have structure[(
Z2j × Z2j

)
� Z3m+1

]
�Z3 and order 3m+2 4j. There are only three groups Y (m, j) of order smaller

than 2000:

Y (2, 1) ∼= [324, 45] , (38a)

Y (3, 1) ∼= [972, 147] , (38b)

Y (2, 2) ∼= [1296, 222] . (38c)

The groups Y (m, j) are generated by L3 in Eq. (30), L2j in Eq. (24), and Zm in Eq. (31b).
The groups Y (m, j) only have singlet and triplet irreps: 3m+1 inequivalent singlets and 3m 4j −3m−1

inequivalent triplets.

Groups G (m, j) and [1296, 699] The groups G (m, j), where m ≥ 1 and j ≥ 2, have structure{
[(Z3m × Z3) � Z3] � Z2j

}
�Z3 and order 3m+3 2j. The groups G (m, j) of order smaller than 2000

are shown in Table 22. (Notice that the groups [972, 309] and [1944, 707] appear in Table 21 too.)
The groups G (m, j) are generated by the matrices E, −Fm,j, where Fm,j is given in Eq. (32), and
diag (1, 1, ω). For m = 1 and j = 2 one may add a fourth generator L2, given in Eq. (29), to obtain
the group [1296, 699], which has structure {[(Z6 × Z6) � Z3] � Z4} � Z3.

The groups G (m, j) have exactly the same number of inequivalent irreps of each dimension as the
groups Z (3, m + 1, j) and Z ′ (3, m + 1, j).

Groups Y (j) and Ỹ (j) The groups Y (j) have order 81×4j and structure
(
Z3×2j × Z3×2j × Z3

)
�

Z3. There are three groups Y (j) with order smaller than 2000:

[81, 7] with j = 0, (39a)

[324, 60] with j = 1, (39b)

[1296, 237] with j = 2. (39c)
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The group Y (0) coincides with the group �(81) or �
(
3 × 33

)
of Refs. [51,52]. The generators of

Y (j) are the matrix E of Eq. (23a) together with the matrix

diag
(
ξ , ξ , ξ2) , where ξ = exp

[
2iπ

/ (
3 × 2j)]

. (40)

The groups Ỹ (j) have structure
[(

Z3×2j × Z3×2j × Z3
)

� Z3
]

� Z2 and order 162 × 4j. There are
two groups Ỹ (j) with order smaller than 2000:

[162, 10] with j = 0, (41a)

[648, 266] with j = 1. (41b)

The generators of Ỹ (j) are those of Y (j) together with the additional matrix I ′ in Eq. (33).
The groups Y (j) have nine inequivalent singlet irreps; all their remaining irreps are triplets. The

groups Ỹ (j) have six singlet and three doublet irreps; their remaining irreps are 12 triplets and one
six-plet for Ỹ (0), 30 triplets and ten six-plets for Ỹ (1).

Groups U (n, m, j) The groups U (n, m, j), where n is a multiple of 3, m > 1, and 1 < j ≤ m,
have structure

(
Z3m−1n × Zn × Z3

)
� Z3 and order 3m+1n2. We have found the following groups

U (n, m, j) with order smaller than 2000:

[243, 55] with n = 3, m = 2, j = 2, (42a)

[729, 86] with n = 3, m = 3, j = 2, (42b)

[729, 284] with n = 3, m = 3, j = 3, (42c)

[972, 550] with n = 6, m = 2, j = 2. (42d)

The generators of U (n, m, j) are the matrix E together with

diag
(
ν, ν, ν2) , where ν = exp (2iπ / n), (43)

and

μ T1(m − j + 1), where μ = exp
[
2iπ

/ (
3m)]

. (44)

Notice that, when j = m, which happens in three out of the four groups U (n, m, j) in Eqs. (42), the
matrix (44) reduces to the matrix Y1(m) in Eq. (34c).

The groups U (n, m, j) possess 3j+1 inequivalent singlet irreps; all their remaining irreps are triplets.

Groups L(m)and [1701, 102] The groups L(m)have order 3m+3 and structure
(
Z3m+1 � Z3

)
�Z3.

They are generated by the matrices X1(2), Zm, and L3. There are the following groups L(m) of order
smaller than 2000:

L(2) ∼= [243, 16] , (45a)

L(3) ∼= [729, 62] . (45b)

Adding the matrix B7,2 to the matrices Z2, X1(2), and L3 generates a group with structure
[(Z7 � Z27) � Z3] � Z3 and SmallGroups identifier [1701, 102].

The groups L(m) have 3m+1 singlet irreps; their other irreps are triplets.
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Groups V (j) The groups V (j) have order 81 × 4j and structure

(
Z2j × Z2j

)
� {Z3 . [(Z3 × Z3) � Z3] = (Z3 × Z3) . (Z3 × Z3)} . (46)

There are three groups V (j) with order smaller than 2000:

V (0) ∼= [81, 10] , (47a)

V (1) ∼= [324, 51] , (47b)

V (2) ∼= [1296, 226] . (47c)

The generators of V (j) are the matrices Z1, X2(2), and L2j .
The groups V (j) have nine singlet irreps. All their other irreps are triplets.

Groups D(j) The groups D(j) have structure
(
Z9×2j × Z9×2j

)
� Z3 and order 243 × 4j. They are

generated by the matrices E2, L2j , and T1(2). There are two groups of order smaller than 2000:

D(0) ∼= [243, 25] , (48a)

D(1) ∼= [972, 121] . (48b)

Both these groups have nine inequivalent singlets; their other irreps are triplets.

Groups J (m) The groups J (m) have structure Z3m . [(Z9 × Z3) � Z3] and order 81 × 3m. They
are generated by the matrices Zm and L9. There are two groups of order smaller than 2000:

J (1) ∼= [243, 27] , (49a)

J (2) ∼= [729, 80] . (49b)

Notice that J (1) coincides with X (9) in Table 15. The groups J (m) have 3m+1 singlets; their other
irreps are triplets.

4.5. The generators of a few more groups

In this subsection we collect a few more groups together with their generators.

Three groups of order 729 Both groups [729, 97] and [729, 98] have structure (Z27 × Z9) � Z3.
Group [729, 96] has the more complicated structure Z3 . [(Z9 × Z9) � Z3]. They are generated by
the matrix Z1 together with

μ̂ diag
(
μ̃2, ω, ω

)
for [729, 96] , (50a)

μ̂ diag (ω, ωμ̃, ωμ̃) for [729, 97] , (50b)

μ̂ diag
(
ω2, ωμ̃, ωμ̃

)
for [729, 98] , (50c)

where ω = exp (2iπ/3), μ̃ = exp (2iπ/9), and μ̂ = exp (2iπ/27).
Each of these three groups of order 729 possesses nine singlet and 80 triplet irreps.

A group of order 972 The group [972, 170] is generated by the matrices L2, Z2, and diag (1, 1, ω).
It has structure {[(Z2 × Z2) � Z27] � Z3} � Z3.
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Two groups of order 1458 The groups [1458, 663] and [1458, 666] have structure
[(Z27 × Z9) � Z3]�Z2. They are generated by the matrices E, L3, I , and (50b) for group [1458, 663],
(50c) for group [1458, 666].25 Each of these groups has six singlets, three doublets, 48 triplets, and
28 six-plets.

Three groups of order 1701 The groups withSmallGroups identifiers [1701, 112], [1701, 130],
and [1701, 131] have structure (Z7×3m × Z3n) � Z3, where m = 3 and n = 1 for [1701, 112] and
m = n = 2 for [1701, 130] and [1701, 131]. They are generated by the matrices B7,2, E, X2(m), and

T1(n) for [1701, 112] and [1701, 130] , (51a)

T2(n) for [1701, 131] . (51b)

4.6. Other finite subgroups of U (3)

It is clear from the forms of the generators of the groups of matrices in Sects. 4.2–4.5 that those
groups are formed by matrices that are all of one of the forms R (n, a, b, c), V (n, a, b, c), W (n, a, b, c)
in Eqs. (37), or, possibly, also of the forms [50]

S (n, a, b, c) ≡
⎛
⎜⎝

νa 0 0
0 0 νb

0 νc 0

⎞
⎟⎠ , (52a)

T (n, a, b, c) ≡
⎛
⎜⎝

0 0 νa

0 νb 0
νc 0 0

⎞
⎟⎠ , (52b)

U (n, a, b, c) ≡
⎛
⎜⎝

0 νa 0
νb 0 0
0 0 νc

⎞
⎟⎠ , (52c)

where ν = exp (2iπ/n), for some value of n. It can also be seen that groups RVW only have singlet
and triplet irreps, while groups that include matrices of types (52) also have doublet and six-plet
irreps; no group in Sects. 4.2–4.5 has irreps of any other dimension. There are, however, finite
subgroups of U (3) that possess no 3D faithful irrep consisting solely of matrices of the forms (37)
and (52). Those groups have irreps of dimensions other than just one, two, three, and six; they are
analogous to the exceptional subgroups of SU (3). We present in this section the U (3) subgroups of
that type that have order smaller that 2000.

Groups 
 (m, j) and 
̂ (m, j) The groups 
 (m, j), where m ≥ 1 and j ≥ 2, have structure
[(Z3m × Z3) � Z3] � Z2j and order 3m+2 2j. They are generated by the matrices E in Eq. (23a)
and iQm,j, where Qm,j is the matrix in Eq. (36). The groups 
 (m, j) of order smaller than 2000 are
shown in Table 23. Notice that, since det

(
iQm,j

) = −i exp
[
2iπ

/ (
3m−12j

)]
, the group 
 (1, 2) ∼=

[108, 15] ∼= � (36 × 3) is a subgroup of SU (3).
The groups 
̂ (m, j) have structure

{
[(Z3m × Z3) � Z3] � Z2j

}
� Z2 and order 3m+2 2j+1. The

generators of 
̂ (m, j) are the same as the generators of 
 (m, j) together with the additional matrix

25 Using Eq. (50a) leads to the group [1458, 659] ∼= D(1)

27,9, which is a subgroup of SU (3).

23/45
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/5/053A03/3852553/GAP-listing-of-the-finite-subgroups-of-U-3-of
by CERN - European Organization for Nuclear Research user
on 03 October 2017



PTEP 2017, 053A03 D. Jurčiukonis and L. Lavoura

Table 23. The SmallGroups identifiers of the groups 
 (m, j) with order smaller than 2000.

m, j 1, 2 1, 3 1, 4 1, 5 1, 6
identifier � (36 × 3) [216, 25] [432, 57] [864, 194] [1728, 953]

m, j 2, 2 2, 3 2, 4 3, 2 3, 3
identifier [324, 111] [648, 352] [1296, 1239] [972, 411] [1944, 1123]

Table 24. The SmallGroups identifiers of the groups 
̂ (m, j) with order smaller than 2000.

m, j 1, 3 1, 4 1, 5 2, 3
identifier [432, 273] [864, 737] [1728, 2929] [1296, 2203]

Table 25. The SmallGroups identifiers of the groups � (m, j) with order smaller than 2000.

m, j 1, 2 1, 3 1, 4 2, 2
identifier [432, 239] [864, 675] [1728, 2785] [1296, 1995]

I ′ in Eq. (33). The groups 
̂ (m, j) of order smaller than 2000 are shown in Table 24. Notice that
the groups 
̂ (m, 2) have structure {[(Z3m × Z3) � Z3] � Z4}× Z2; these groups may be written as
direct products of Z2 and smaller groups, hence they are not included in Table 24.

The groups 
 (m, j) possess 3m−12j inequivalent singlet irreps, 3m−12j+1 inequivalent triplet irreps,
and 3m−12j−1 inequivalent quadruplet irreps. The groups 
̂ (m, j) have twice as many irreps of each
dimension as the groups 
 (m, j).

Groups � (m, j) The groups � (m, j), where m ≥ 1 and j ≥ 2, have structure
{[(Z3m × Z3) � Z3] � Z4}�Z2j and order 3m+2 2j+2. They are generated by the matrices E, K , and
Qm,j. The groups � (m, j) of order smaller than 2000 are shown in Table 25.

The groups � (m, j) have 3m−12j+1 singlet irreps, 3m−12j−1 doublet irreps, 3m−12j+2 triplet irreps,
3m−12j six-plet irreps, and 3m−12j−1 eight-plet irreps.

Groups �(m) These groups have structure [(Z3m × Z3) � Z3] � Q8, where Q8 is the quaternion
group. Since Q8 has eight elements, the order of �(m) is 72 × 3m. The generators of �(m) are E,
K , and either Qm,1 or Qm,0. Since det Qm,0 = exp

[
2iπ

/ (
3m−1

)]
, the group �(1) is a subgroup

of SU (3). Notice that the groups �(m) have the same generators as hypothetical groups � (m, 1)

would have had; but they have a slightly different structure. There are three groups �(m) of order
smaller than 2000:

�(1) ∼= � (72 × 3) , (53a)

�(2) ∼= [648, 551] , (53b)

�(3) ∼= [1944, 2333] . (53c)

The groups �(m) have as many inequivalent irreps of each dimension as groups � (m, 1).

Groups ϒ(m) and ϒ ′(m) These groups have structure

{[(Z3 × Z3) � Z3] � Q8} . Z3m−1 = Z3m−1 . {[(Z3 × Z3) � Q8] � Z3} (54)
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and order 72 × 3m. The generators are E, Q0,0, and X1(m) for ϒ(m) or X2(m) for ϒ ′(m). There are
the following groups of order smaller than 2000:

ϒ(2) ∼= [648, 531] , (55a)

ϒ(3) ∼= [1944, 2293] , (55b)

ϒ ′(2) ∼= � (216 × 3) , (55c)

ϒ ′(3) ∼= [1944, 2294] . (55d)

Notice that all three generators of ϒ ′(2) have unit determinant and therefore ϒ ′(2) is a subgroup of
SU (3).

The groups ϒ(m) and ϒ ′(m) have 3m−1 singlets, 3m−1 doublets, 7 × 3m−2 triplets, 2 × 3m−1

six-plets, 3m−1 eight-plets, and 2 × 3m−2 nine-plets.

Groups �(m) These groups have structure {[(Z3m × Z3) � Z3] � Q8}�Z3 and order 72×3m+1.
They are generated by the matrices Qm,0 and Z1. There are the following groups of order smaller
than 2000:

�(1) ∼= [648, 533] , (56a)

�(2) ∼= [1944, 3448] . (56b)

The groups �(m) have exactly as many inequivalent irreps of each dimension as the groups ϒ(m+1)

and ϒ ′(m + 1).

5. Conclusion

In this paper we have used the SmallGroups library to search for all the finite subgroups of U (3)

of order less than 2000 that have a faithful 3D irreducible representation and that cannot be written
as the direct product of some smaller group and a cyclic group. We have found that there are three
types of finite subgroups of U (3):

◦ Groups that have a 3D representation consisting solely of matrices of the forms (37) for some
value of n. Those groups only have singlet and triplet irreducible representations.

◦ Groups that have a 3D representation consisting solely of matrices of the forms (37) and (52)
for some value of n. Those groups only have singlet, doublet, triplet, and six-plet irreducible
representations.

◦ Groups that do not have a 3D representation consisting solely of matrices of the forms (37)
and (52). Those groups have irreducible representations of other dimensions, such as, for
instance, four-plets, eight-plets, or nine-plets. Their generators include matrices Qm,j and possi-
bly K in Eqs. (35), (36). These groups include as special cases the exceptional SU (3) subgroups
� (36 × 3), � (72 × 3), and � (216 × 3).26

We were able to group most finite subgroups of U (3) in many series depending on one, two, or
sometimes three integers; the groups in each series have related generators and related numbers of
irreps of each dimension. Unfortunately, many of these series have very few groups and we do not

26 It seems likely to us that the SU (3) subgroup � (360 × 3) is also a special case of a series of U (3)

subgroups; the other groups of that series, though, surely have order larger than 2000.
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know whether and how they extend to groups of order higher than 2000. It is possible (and it would
be desirable) that some of these series may be further unified among themselves.
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Appendix. Full tables

In this appendix we present tables of all the groups of order smaller than 2000 that have a faithful
3D irrep and that cannot be written as the direct product of some smaller group and a cyclic group.
The groups are ordered according to increasing values of firstly o and then j in their SmallGroups
identifier [o, j]. Tables A1–A7 show the groups that are subgroups of SU (3); Tables A8–A18 show
the groups that are not subgroups of SU (3).

Table A1. The finite subgroups of SU (3). Part 1: groups with order through 201.

Identifier Classification

[12, 3] �
(
3 × 22

)
[21, 1] C(2)

7,1

[24, 12] �
(
6 × 22

)
[27, 3] �

(
3 × 32

)
[39, 1] C(3)

13,1

[48, 3] �
(
3 × 42

)
[54, 8] �

(
6 × 32

)
[57, 1] C(7)

19,1

[60, 5] � (60)

[75, 2] �
(
3 × 52

)
[81, 9] C(1)

9,3

[84, 11] C(2)

14,2

[93, 1] C(5)

31,1

[96, 64] �
(
6 × 42

)
[108, 15] � (36 × 3)

[108, 22] �
(
3 × 62

)
[111, 1] C(10)

37,1

[129, 1] C(6)

43,1

[147, 1] C(18)

49,1

[147, 5] �
(
3 × 72

)
[150, 5] �

(
6 × 52

)
[156, 14] C(3)

26,2

[162, 14] D(1)

9,3

[168, 42] � (168)

[183, 1] C(13)

61,1

[189, 8] C(2)

21,3

[192, 3] �
(
3 × 82

)
[201, 1] C(29)

67,1
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Table A2. The finite subgroups of SU (3). Part 2: groups with 216 ≤ order ≤ 486.

Identifier Classification

[216, 88] � (72 × 3)

[216, 95] �
(
6 × 62

)

[219, 1] C(8)

73,1

[228, 11] C(7)

38,2

[237, 1] C(23)

79,1

[243, 26] �
(
3 × 92

)

[273, 3] C(16)

91,1

[273, 4] C(9)

91,1

[291, 1] C(35)

97,1

[294, 7] �
(
6 × 72

)

[300, 43] �
(
3 × 102

)

[309, 1] C(46)

103,1

[324, 50] C(1)

18,6

[327, 1] C(45)

109,1

[336, 57] C(2)

28,4

[351, 8] C(3)

39,3

[363, 2] �
(
3 × 112

)

[372, 11] C(5)

62,2

[381, 1] C(19)

127,1

[384, 568] �
(
6 × 82

)

[399, 3] C(11)

133,1

[399, 4] C(30)

133,1

[417, 1] C(42)

139,1

[432, 103] �
(
3 × 122

)

[444, 14] C(10)

74,2

[453, 1] C(32)

151,1

[471, 1] C(12)

157,1

[486, 61] �
(
6 × 92

)
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Table A3. The finite subgroups of SU (3). Part 3: groups with 489 ≤ order ≤ 756.

Identifier Classification

[489, 1] C(58)

163,1

[507, 1] C(22)

169,1

[507, 5] �
(
3 × 132

)

[513, 9] C(7)

57,3

[516, 11] C(6)

86,2

[525, 5] C(2)

35,5

[543, 1] C(48)

181,1

[567, 13] C(4)

63,3

[579, 1] C(84)

193,1

[588, 11] C(18)

98,2

[588, 60] �
(
3 × 142

)

[597, 1] C(92)

199,1

[600, 179] �
(
6 × 102

)

[624, 60] C(3)

52,4

[633, 1] C(14)

211,1

[648, 259] D(1)

18,6

[648, 532] � (216 × 3)

[651, 3] C(25)

217,1

[651, 4] C(67)

217,1

[669, 1] C(39)

223,1

[675, 12] �
(
3 × 152

)

[687, 1] C(94)

229,1

[723, 1] C(15)

241,1

[726, 5] �
(
6 × 112

)

[729, 95] C(1)

27,9

[732, 14] C(13)

122,2

[741, 3] C(87)

247,1

[741, 4] C(68)

247,1

[756, 117] C(2)

42,6
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Table A4. The finite subgroups of SU (3). Part 4: groups with 768 ≤ order ≤ 1080.

Identifier Classification

[768, 1083 477] �
(
3 × 162

)

[777, 3] C(121)

259,1

[777, 4] C(100)

259,1

[804, 11] C(29)

134,2

[813, 1] C(28)

271,1

[831, 1] C(116)

277,1

[837, 8] C(5)

93,3

[849, 1] C(44)

283,1

[864, 701] �
(
6 × 122

)

[867, 2] �
(
3 × 172

)

[876, 14] C(8)

146,2

[903, 5] C(135)

301,1

[903, 6] C(79)

301,1

[912, 57] C(7)

76,4

[921, 1] C(17)

307,1

[939, 1] C(98)

313,1

[948, 11] C(23)

158,2

[972, 122] �
(
3 × 182

)

[975, 5] C(3)

65,5

[993, 1] C(31)

331,1

[999, 9] C(10)

111,3

[1011, 1] C(128)

337,1

[1014, 7] �
(
6 × 132

)

[1029, 6] C(18)

343,1

[1029, 9] C(2)

49,7

[1047, 1] C(122)

349,1

[1053, 35] C(16)

117,3

[1080, 260] � (360 × 3)
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Table A5. The finite subgroups of SU (3). Part 5: groups with 1083 ≤ order ≤ 1389.

Identifier Classification

[1083, 1] C(68)

361,1

[1083, 5] �
(
3 × 192

)

[1092, 68] C(9)

182,2

[1092, 69] C(16)

182,2

[1101, 1] C(83)

367,1

[1119, 1] C(88)

373,1

[1137, 1] C(51)

379,1

[1161, 9] C(6)

129,3

[1164, 14] C(35)

194,2

[1176, 243] �
(
6 × 142

)

[1191, 1] C(34)

397,1

[1200, 384] �
(
3 × 202

)

[1209, 3] C(87)

403,1

[1209, 4] C(191)

403,1

[1227, 1] C(53)

409,1

[1236, 11] C(46)

206,2

[1263, 1] C(20)

421,1

[1281, 3] C(135)

427,1

[1281, 4] C(74)

427,1

[1296, 228] C(1)

36,12

[1299, 1] C(198)

433,1

[1308, 14] C(45)

218,2

[1317, 1] C(171)

439,1

[1323, 8] C(18)

147,3

[1323, 43] �
(
3 × 212

)

[1344, 393] C(2)

56,8

[1350, 46] �
(
6 × 152

)

[1371, 1] C(133)

457,1

[1389, 1] C(21)

463,1
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Table A6. The finite subgroups of SU (3). Part 6: groups with 1404 ≤ order ≤ 1701.

Identifer Classification

[1404, 141] C(3)

78,6

[1407, 3] C(163)

469,1

[1407, 4] C(37)

469,1

[1425, 5] C(7)

95,5

[1443, 3] C(100)

481,1

[1443, 4] C(211)

481,1

[1452, 34] �
(
3 × 222

)

[1458, 659] D(1)

27,9

[1461, 1] C(232)

487,1

[1488, 57] C(5)

124,4

[1497, 1] C(139)

499,1

[1524, 11] C(19)

254,2

[1533, 3] C(137)

511,1

[1533, 4] C(81)

511,1

[1536, 408 544 632] �
(
6 × 162

)

[1539, 35] C(7)

171,3

[1569, 1] C(60)

523,1

[1587, 2] �
(
3 × 232

)

[1596, 55] C(11)

266,2

[1596, 56] C(30)

266,2

[1623, 1] C(129)

541,1

[1641, 1] C(40)

547,1

[1647, 9] C(13)

183,3

[1659, 3] C(23)

553,1

[1659, 4] C(102)

553,1

[1668, 11] C(42)

278,2

[1677, 3] C(165)

559,1

[1677, 4] C(178)

559,1

[1701, 135] C(2)

63,9
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Table A7. The finite subgroups of SU (3). Part 7: groups with 1713 ≤ order < 2000.

Identifier Classification

[1713, 1] C(109)

571,1

[1728, 1291] �
(
3 × 242

)

[1731, 1] C(213)

577,1

[1734, 5] �
(
6 × 172

)

[1767, 3] C(87)

589,1

[1767, 4] C(273)

589,1

[1776, 60] C(10)

148,4

[1803, 1] C(24)

601,1

[1809, 9] C(29)

201,3

[1812, 11] C(32)

302,2

[1821, 1] C(210)

607,1

[1839, 1] C(65)

613,1

[1857, 1] C(252)

619,1

[1875, 16] �
(
3 × 252

)

[1884, 14] C(12)

314,2

[1893, 1] C(43)

631,1

[1911, 3] C(165)

637,1

[1911, 4] C(263)

637,1

[1911, 14] C(3)

91,7

[1929, 1] C(177)

643,1

[1944, 849] �
(
6 × 182

)

[1956, 11] C(58)

326,2

[1971, 9] C(8)

219,3

[1983, 1] C(296)

661,1
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Table A8. The finite subgroups of U (3). Part 1: groups with order ≤ 225.

Identifier Classification

[27, 4] X (3), W (1, 2)

[36, 3] �
(
3 × 22, 2

)

[48, 30] S4(2)

[63, 1] T (2)

7 (2)

[81, 6] W (1, 3)

[81, 7] Y (0), �
(
3 × 33

)

[81, 8] Z ′ (3, 2)

[81, 10] V (0)

[81, 14] Z (3, 2)

[96, 65] S4(3)

[108, 3] �
(
3 × 22, 3

)

[108, 11] �
(
6 × 32, 2

)

[108, 19] W (2, 2)

[108, 21] X (6)

[117, 1] T (3)

13 (2)

[144, 3] �
(
3 × 42, 2

)

[162, 10] Ỹ (0)

[162, 12] Z (3, 2, 1)

[162, 44] �′ (6 × 32, 2, 1
)

[171, 1] T (7)

19 (2)

[189, 1] T (2)

7 (3)

[189, 4] Q(2)

7 (2)

[189, 5] Q(2)′
7 (2)

[189, 7] P(2)

7 (2)

[192, 182] �
(
6 × 42, 2

)

[192, 186] S4(4)

[216, 17] �
(
6 × 32, 3

)

[216, 25] 
 (1, 3)

[225, 3] �
(
3 × 52, 2

)
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Table A9. The finite subgroups of U (3). Part 2: groups with 243 ≤ order ≤ 384.

Identifier Classification

[243, 16] L(2)

[243, 19] Z ′′ (3, 3)

[243, 20] Z ′ (3, 3)

[243, 24] W (1, 4)

[243, 25] D (0)

[243, 27] X (9), J (1)

[243, 50] Z (3, 3)

[243, 55] U (3, 2, 2)

[252, 11] L(2)

7 (2, 2)

[279, 1] T (5)

31 (2)

[300, 13] �
(
6 × 52, 2

)

[324, 3] �
(
3 × 22, 4

)

[324, 13] G (1, 2)

[324, 15] Z (3, 2, 2)

[324, 17] Z ′ (3, 2, 2)

[324, 43] W (2, 3)

[324, 45] Y (2, 1)

[324, 49] Z ′ (6, 2)

[324, 51] V (1)

[324, 60] Y (1)

[324, 102] �′ (6 × 32, 2, 2
)

[324, 111] 
 (2, 2)

[324, 128] Z (6, 2)

[333, 1] T (10)

37 (2)

[351, 1] T (3)

13 (3)

[351, 4] Q(3)

13 (2)

[351, 5] Q(3)′
13 (2)

[351, 7] P(3)

13 (2)

[384, 571] �
(
6 × 42, 3

)

[384, 581] S4(5)
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Table A10. The finite subgroups of U (3). Part 3: groups with 387 ≤ order ≤ 576.

Identifier Classification

[387, 1] T (6)

43 (2)

[432, 3] �
(
3 × 42, 3

)

[432, 33] �
(
6 × 32, 4

)

[432, 57] 
 (1, 4)

[432, 100] W (4, 2)

[432, 102] X (12)

[432, 239] � (1, 2)

[432, 260] �
(
6 × 62, 2

)

[432, 273] 
̂ (1, 3)

[441, 1] T (18)

49 (2)

[441, 7] �
(
3 × 72, 2

)

[468, 14] L(3)

13 (2, 2)

[486, 26] Z ′ (3, 3, 1)

[486, 28] Z (3, 3, 1)

[486, 125] H (3, 2, 1)

[486, 164] �′ (6 × 32, 3, 1
)

[513, 1] T (7)

19 (3)

[513, 5] Q(7)

19 (2)

[513, 6] Q(7)′
19 (2)

[513, 8] P(7)

19 (2)

[549, 1] T (13)

61 (2)

[567, 1] T (2)

7 (4)

[567, 4] Q(2)

7 (3)

[567, 5] Q(2)′
7 (3)

[567, 7] P(2)

7 (3)

[567, 12] S(2)′
7 (2)

[567, 14] V (2)

7 (2)

[567, 23] Y (2)

7 (2)

[567, 36] S(2)

7 (2)

[576, 3] �
(
3 × 82, 2

)
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Table A11. The finite subgroups of U (3). Part 4: groups with 588 ≤ order ≤ 729.

Identifier Classification

[588, 16] �
(
6 × 72, 2

)

[600, 45] �
(
6 × 52, 3

)

[603, 1] T (29)

67 (2)

[648, 19] G (1, 3)

[648, 21] Z (3, 2, 3)

[648, 23] Z ′ (3, 2, 3)

[648, 244] �′ (6 × 32, 2, 3
)

[648, 260] Z (6, 2, 1)

[648, 266] Ỹ (1)

[648, 352] 
 (2, 3)

[648, 531] ϒ(2)

[648, 533] �(1)

[648, 551] �(2)

[648, 563] �′ (6 × 62, 2, 1
)

[657, 1] T (8)

73 (2)

[675, 5] �
(
3 × 52, 3

)

[675, 9] W (5, 2)

[675, 11] X (15)

[684, 11] L(7)

19 (2, 2)

[711, 1] T (23)

79 (2)

[729, 62] L(3)

[729, 63] Z ′′ (3, 4)

[729, 64] Z ′ (3, 4)

[729, 80] J (2)

[729, 86] U (3, 3, 2)

[729, 94] W (1, 5)

[729, 96] see Sect. 4.5

[729, 97] see Sect. 4.5

[729, 98] see Sect. 4.5

[729, 284] U (3, 3, 3)
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Table A12. The finite subgroups of U (3). Part 5: groups with 729 ≤ order ≤ 972.

Identifier Classification

[729, 393] Z (3, 4)

[729, 397] Z (9, 2)

[756, 11] L(2)

7 (2, 3)

[756, 113] M (2)

7

[756, 114] M (2)′
7

[756, 116] J (2)

7

[768, 1085 333] �
(
6 × 42, 4

)

[768, 1085 335] �
(
6 × 82, 2

)

[768, 1085 351] S4(6)

[819, 3] T (16)

91 (2)

[819, 4] T (9)

91 (2)

[837, 1] T (5)

31 (3)

[837, 4] Q(5)′
31 (2)

[837, 5] Q(5)

31 (2)

[837, 7] P(5)

31 (2)

[864, 69] �
(
6 × 32, 5

)

[864, 194] 
 (1, 5)

[864, 675] � (1, 3)

[864, 703] �
(
6 × 62, 3

)

[864, 737] 
̂ (1, 4)

[873, 1] T (35)

97 (2)

[900, 66] �
(
3 × 102, 2

)

[927, 1] T (46)

103 (2)

[972, 3] �
(
3 × 22, 5

)

[972, 29] Z ′ (3, 3, 2)

[972, 31] Z (3, 3, 2)

[972, 64] �
(
6 × 92, 2

)

[972, 117] W (2, 4)

[972, 121] D(1)
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Table A13. The finite subgroups of U (3). Part 6: groups with 972 ≤ order ≤ 1143.

Identifier Classification

[972, 123] X (18)

[972, 147] Y (3, 1)

[972, 152] Z ′ (6, 3)

[972, 153] Z ′′ (6, 3)

[972, 170] see Sect. 4.5

[972, 309] H (3, 2, 2) , G (2, 2)

[972, 348] �′ (6 × 32, 3, 2
)

[972, 411] 
 (3, 2)

[972, 520] Z (6, 3)

[972, 550] U (6, 2, 2)

[981, 1] T (45)

109 (2)

[999, 1] T (10)

37 (3)

[999, 5] Q(10)′
37 (2)

[999, 6] Q(10)

37 (2)

[999, 8] P(10)

37 (2)

[1008, 57] L(2)

7 (4, 2)

[1053, 16] T (3)

13 (4)

[1053, 25] Q(3)′
13 (3)

[1053, 26] Q(3)

13 (3)

[1053, 27] P(3)

13 (3)

[1053, 29] Y (3)

13 (2)

[1053, 32] S(3)′
13 (2)

[1053, 37] V (3)

13 (2)

[1053, 47] S(3)

13 (2)

[1089, 3] �
(
3 × 112, 2

)

[1116, 11] L(5)

31 (2, 2)

[1143, 1] T (19)

127 (2)
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Table A14. The finite subgroups of U (3). Part 7: groups with 1161 ≤ order ≤ 1296.

Identifier Classification

[1161, 6] T (6)

43 (3)

[1161, 10] Q(6)

43 (2)

[1161, 11] Q(6)′
43 (2)

[1161, 12] P(6)

43 (2)

[1176, 57] �
(
6 × 72, 3

)

[1197, 3] T (11)

133 (2)

[1197, 4] T (30)

133 (2)

[1200, 183] �
(
6 × 52, 4

)

[1200, 682] �
(
6 × 102, 2

)

[1251, 1] T (42)

139 (2)

[1296, 3] �
(
3 × 42, 4

)

[1296, 35] G (1, 4)

[1296, 37] Z (3, 2, 4)

[1296, 39] Z ′ (3, 2, 4)

[1296, 220] W (4, 3)

[1296, 222] Y (2, 2)

[1296, 226] V (2)

[1296, 227] Z ′ (12, 2)

[1296, 237] Y (2)

[1296, 647] �′ (6 × 32, 2, 4
)

[1296, 688] Z ′ (6, 2, 2)

[1296, 689] Z (6, 2, 2)

[1296, 699] see Sect. 4.4

[1296, 1239] 
 (2, 4)

[1296, 1499] Z (12, 2)

[1296, 1995] � (2, 2)

[1296, 2113] �′ (6 × 62, 2, 2
)

[1296, 2203] 
̂ (2, 3)
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Table A15. The finite subgroups of U (3). Part 8: groups with 1323 ≤ order ≤ 1536.

Identifier Classification

[1323, 1] T (18)

49 (3)

[1323, 4] Q(18)

49 (2)

[1323, 5] Q(18)′
49 (2)

[1323, 7] P(18)

49 (2)

[1323, 14] �
(
3 × 72, 3

)

[1323, 40] W (7, 2)

[1323, 42] X (21)

[1332, 14] L(10)

37 (2, 2)

[1359, 1] T (32)

151 (2)

[1404, 14] L(3)

13 (2, 3)

[1404, 137] M (3)

13

[1404, 138] M (3)′
13

[1404, 140] J (3)

13

[1413, 1] T (12)

157 (2)

[1452, 11] �
(
6 × 112, 2

)

[1458, 615] Z ′ (3, 4, 1)

[1458, 618] Z (3, 4, 1)

[1458, 663] see Sect. 4.5

[1458, 666] see Sect. 4.5

[1458, 1095] H (3, 3, 1)

[1458, 1354] �′ (6 × 32, 4, 1
)

[1458, 1371] �′ (6 × 92, 2, 1
)

[1467, 1] T (58)

163 (2)

[1521, 1] T (22)

169 (2)

[1521, 7] �
(
3 × 132, 2

)

[1536, 408 544 641] �
(
6 × 82, 3

)

[1536, 408 544 678] �
(
6 × 42, 5

)

[1536, 408 544 687] S4(7)
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Table A16. The finite subgroups of U (3). Part 9: groups with 1539 ≤ order ≤ 1701.

Identifier Classification

[1539, 16] T (7)

19 (4)

[1539, 25] Q(7)′
19 (3)

[1539, 26] Q(7)

19 (3)

[1539, 27] P(7)

19 (3)

[1539, 29] Y (7)

19 (2)

[1539, 32] S(7)′
19 (2)

[1539, 37] V (7)

19 (2)

[1539, 47] S(7)

19 (2)

[1548, 11] L(6)

43 (2, 2)

[1575, 7] L(2)

7 (5, 2)

[1629, 1] T (48)

181 (2)

[1647, 6] T (13)

61 (3)

[1647, 10] Q(13)

61 (2)

[1647, 11] Q(13)′
61 (2)

[1647, 12] P(13)

61 (2)

[1701, 68] T (2)

7 (5)

[1701, 102] see Sect. 4.4

[1701, 112] see Sect. 4.5

[1701, 115] S(2)′
7 (3)

[1701, 126] Q(2)′
7 (4)

[1701, 127] Q(2)

7 (4)

[1701, 128] P(2)

7 (4)

[1701, 130] see Sect. 4.5

[1701, 131] see Sect. 4.5

[1701, 138] V (2)

7 (3)

[1701, 240] S(2)

7 (3)

[1701, 261] Y (2)

7 (3)
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Table A17. The finite subgroups of U (3). Part 10: groups with 1728 ≤ order ≤ 1944.

Identifier Classification

[1728, 3] �
(
3 × 82, 3

)

[1728, 185] �
(
6 × 32, 6

)

[1728, 953] 
 (1, 6)

[1728, 1286] W (8, 2)

[1728, 1290] X (24)

[1728, 2785] � (1, 4)

[1728, 2847] �
(
6 × 122, 2

)

[1728, 2855] �
(
6 × 62, 4

)

[1728, 2929] 
̂ (1, 5)

[1737, 1] T (84)

193 (2)

[1764, 11] L(18)

49 (2, 2)

[1764, 91] �
(
3 × 142, 2

)

[1791, 1] T (92)

199 (2)

[1809, 6] T (29)

67 (3)

[1809, 10] Q(29)

67 (2)

[1809, 11] Q(29)′
67 (2)

[1809, 12] P(29)

67 (2)

[1872, 60] L(3)

13 (4, 2)

[1899, 1] T (14)

211 (2)

[1944, 35] Z ′ (3, 3, 3)

[1944, 37] Z (3, 3, 3)

[1944, 70] �
(
6 × 92, 3

)

[1944, 707] H (3, 2, 3) , G (2, 3)

[1944, 746] �′ (6 × 32, 3, 3
)

[1944, 832] Z ′ (6, 3, 1)

[1944, 833] Z (6, 3, 1)

[1944, 1123] 
 (3, 3)

42/45
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/5/053A03/3852553/GAP-listing-of-the-finite-subgroups-of-U-3-of
by CERN - European Organization for Nuclear Research user
on 03 October 2017



PTEP 2017, 053A03 D. Jurčiukonis and L. Lavoura

Table A18. The finite subgroups of U (3). Part 11: groups with 1944 ≤ order < 2000.

Identifier Classification

[1944, 2293] ϒ(3)

[1944, 2294] ϒ ′(3)

[1944, 2333] �(3)

[1944, 2363] H (6, 2, 1)

[1944, 2415] �′ (6 × 62, 3, 1
)

[1944, 3448] �(2)

[1953, 3] T (25)

217 (2)

[1953, 4] T (67)

217 (2)

[1971, 6] T (8)

73 (3)

[1971, 10] Q(8)′
73 (2)

[1971, 11] Q(8)

73 (2)

[1971, 12] P(8)

73 (2)
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