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Introduction

Consider a bunch (or just a single electron) that is moving along with a
betatron oscillation in one plane - - say z - - in some Achromat. If the next
Achromat is rolled with respect to the first one, the bunch will have a different
betatron oscillation in the z-coordinate, and, in addition, an oscillation will be

introduced in the y-coordinate. This note calculates these effects.

Basic Relations

In each Achromat, I describe the betatron oscillations in a “local” coordi-
nate system - - in which z is in the “horizontal” symmetry plane, and y is at
right-angles to it. In the ideal Achromat, the oscillations in the two planes are

uncoupled and can be described by

z(s) = az\/Pz(s) cos [$z(s) + o, (1)

y(s) = “y\/ﬂy(s) cos [Py(s) + By (2)
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where s is the distance from the start of the Achromat, a, and a, are constants
in the Achromat, and §; ard f, are the usual betatron functions. The phases
¢z and ¢, are the betatron phase advance from the beginning of the Achromat
and @, and ®, are the initial phases of the bunch oscillations - - at the start of
the Achromat. Inasmuch as the ideal Achromat has a phase advance of 61, &,
and @, are also the phases at the exit of the Achromat.

Effect of a Roll

Now suppose that in Achromat-1 there is a betatron oscillation in z only
and described by a,; and &,y (a,; is zero). And, suppose that Achromat-2 (the
next one) is “rolled”by the angle § with respect to Achromat-1. By that I mean
that the zz-axis at the entrance to Achromat-2 is rotated by the angle § with
respect to the z;-axis at the exit of Achromat-1 - - with # taken as positive for
a rotation toward y;. This rotation gives rise to a modified betatron oscillation

in Achromat-2.

I will give here just the results for the modified oscillations and leave their
calculation to an Appendix. The amplitudes a,5 and ay2 and the phases ®,,

and ®,2 on entering Achromat-2 are

;2 = Gz cos 0 (3)
a2 = Ma,; |sin 6} (4)
QxZ . ¢:l:l (5)
S\
tan ,» = tan &,; — B (6)

in which g} = df,/ds = —df,/ds is the value at the entrance to an Achromat,



and the “magnification factor” M is given by
M = [1-26 sin ®,; cos ®,; + ﬂ'z cos? @,,]!/? (7)

I should emphasize that this result applies only to the case that a roll occurs
between two regular F- and D- magnets of the Arcs (where By = B and By =
—B2)-

Since there is no change in ®, across the roll, we no longer need the subscripts
1 and 2 on ®,. Note that the evaluation of 5 with Eq. (6) leéves an ambiguity
of 180 deg. This ambiguity is resolved by satisfying Eq. (A5) (in the Appendix)

and has been done in the Figures given below.

For the SLC Arcs, B; = 5.30 at the entrance to an F-type Achromat (one
that begins with a focussing magnet), and B; = —5.30 at the entrance to a

D-type Achromat (one that begins with a defocussing magnet).

I show in the attached Figures M and ®,2 as a function of &, for both an
F-Type Achromat and a D-type Achromat. (One gets from one type to the
other simply by reversing the scales of both &, and ®,2.) The curves given
apply to a positive roll angle 4. If 9 is negative, the oscillation y is reversed;
that is, @, changes by +180°. In the North Arc, Achromats.1 through 7 are
F-type, and Achromats 9 through 23 are D-type. In the South Ar\c, the opposite
is true (except for Achromat 3 which does not exist). The following comments

are in order:

a) The change in the z-oscillation is as one might suspect. It is as if the
oscillation were “projected” onto the new z-direction with no change in
phase.

b) The new y-oscillation is not just the projection of an z1-motion onto the

y2-direction as one might have guessed, although such a projection would

correspond to the term a,; sin # that does appear in ay2. There is, however,



the additional factor M. Also, the new y-phase may be quite different from
the original z-phase. You will also note that the yalue of M depends on the
phage with which the oscillation arrives at the roll. (For the ideal Achromat,
the phase advance ¢ is 3x 2x, so that @ is both the starting and ending
phase.) The maximum value of M is 5.48, and the minimum is the inverse
of that, 0.182. Then, for a roll angle of, say 10 deg., the y-oscillation can
be just as large as the x-oscillation! Notice also that the phase ®,; prefers

strongly to be near +90° or —90°.

c) There is no “conservation of oscillation energies.” That is, (a2 + a2) is not
conserved in a roll. We see that “longitudinal energy” can be thrown into

“fransverse energy” at a roll.

d) The transformation from one Achromat to the next is linear, so if we have
oscillations in both z and y in Achromat-1, we can use the results here to find
the oscillations produced in Achromat-2 by each component, treated sepa-
rately, and then add the two contributions. (For an oscillation initially in y,
there are relations corresponding to Eqs. (3) to (6), with son\le adjustments

of sign.)

e) It is amusing to note that even the average of M over all phases ®, is not 1,

but, rather,

) = (14 Bz ®

General Case

It is, of course, possible to work out the general result for the rotation of a
transport system at an arbitrary location in these terms. It is probably not very
interesting, so I give only the result - - which can be obtained by the method

use in the Appendix. Equations (3) and (5) do not change, but Eqs. (6) and



(7) become

' 12 13
W—ﬂ”+[ (l+ )—-ﬂ—"(l—ﬂTz’z)—sz]coszQxl

+ (8, - ﬂ;ﬂ’) sin &, cos ¥, a (9)
tan &5 = ﬂ”(tan o, - _il_) + %fl (10)

¥ % % %k *

W. Weng provided useful discussions and information.

APPENDIX

The results given in the body of this Note are derived as follows:

From Eq. (1) it follows that the slope of the trajectory at any s can be

written as

r = \;i {—sin (¢:+ ®;) + —2-:’- cos (¢ + ®2)} (A1)

We can use this equation together with Eq. (1) to relate the amplitude and
phase of the oscillation at any s to z and z’ there. We get that

= 2t (B - gy (42)
and
tan (¢, + ®;) = — p ‘:" + ﬂ?"‘ (A3)



The extension to y is evident.

Now, consider that z; and z} are given at the exit to Achromat 1. The
corresponding a,; and @, are determined by Eqs. (A2) and \(\A3). The same
z and z| also determine z; and z) and yz and yj the coordinates and slopes

measured with respect to Achromat 2. Indeed, we have

I, = z cos § zh =z cos § (A4)

y = —z; 8in 6 yh = —zjsinb (A5)

The values of f; and £, do not change across the boundary between two
Achromats. And, if we take (as usual) the boundary between Achromats at the
symmetry point between F and D magnets, then it follows that at the boundary

ﬂy B ﬁz ’ ﬂ;= _ﬂ@ \ (AG)
ot!
Using these relations Eqs. (3) and (5) are obtained from Eqs. (A2) and (A3)

by inspection. Since z and z' are changed by the same factor, a will be changed

by that factor also, and ®, will not change at all.

The results for ay2 and ®,2 are different, because ﬁ;, is not equal to f..
Substituting (A5) into (A2) and factoring out sinZ, we get

2 — ain? G . _ By 2
ayy = sin® 0 [m + (\/ﬁ_yzl ;7'/5: z1)°] (A7)

Now we use (A6) to get

"'% ' ﬂ'x 2
\/B;+(ﬂ,zl+2\/ﬁ;z1)] (A8)

a2 = sin? 6]



The quantity in the square brackets differs from a2 only by the sign of ..

Expanding the squared term and comparing a2, to a2, (A2), we see that
a2, = sin? 6 (a2, + 28 z 7| (A9)

Or, putting z and z' in terms of a;; and ®,; we find Eqs. (4) and (7).

Translating Eq. (A3) to y (with ®, = 0 at the beginning of an Achromat)
and then using (A5) and (A6), we get that

ﬂy_!l' + Ez:l = —ﬂzz’ - E!"-' (AIO)

z 2

Comparing this result with (A4) for ®, = 0, we obtain the result of Eq. (5).
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