SINGLE PASS COLLIDER MEMO

CN-355

AUTHOR:

M. Sands

DATE: Feb. 12, 1987

TITLE:

BETATRON OSCILLATIONS AND ROLLED ACHROMATS

Introduction

Consider a bunch (or just a single electron) that is moving along with a betatron oscillation in one plane - - say x - - in some Achromat. If the next Achromat is rolled with respect to the first one, the bunch will have a different betatron oscillation in the x-coordinate, and, in addition, an oscillation will be introduced in the y-coordinate. This note calculates these effects.

Basic Relations

In each Achromat, I describe the betatron oscillations in a "local" coordinate system - - in which x is in the "horizontal" symmetry plane, and y is at right-angles to it. In the ideal Achromat, the oscillations in the two planes are uncoupled and can be described by

$$x(s) = a_x \sqrt{\beta_x(s)} \cos \left[\phi_x(s) + \tilde{\Phi}_x\right] \tag{1}$$

$$y(s) = a_y \sqrt{\beta_y(s)} \cos \left[\phi_y(s) + \Phi_y\right] \tag{2}$$

^{*} Work supported by the Department of Energy contract DE-AC03-76SF00515.

where s is the distance from the start of the Achromat, a_x and a_y are constants in the Achromat, and β_x and β_y are the usual betatron functions. The phases ϕ_x and ϕ_y are the betatron phase advance from the beginning of the Achromat and Φ_x and Φ_y are the initial phases of the bunch oscillations - - at the start of the Achromat. Inasmuch as the ideal Achromat has a phase advance of 6π , Φ_x and Φ_y are also the phases at the exit of the Achromat.

Effect of a Roll

Now suppose that in Achromat-1 there is a betatron oscillation in x only and described by a_{x1} and Φ_{x1} (a_{y1} is zero). And, suppose that Achromat-2 (the next one) is "rolled" by the angle θ with respect to Achromat-1. By that I mean that the x_2 -axis at the entrance to Achromat-2 is rotated by the angle θ with respect to the x_1 -axis at the exit of Achromat-1 - with θ taken as positive for a rotation toward y_1 . This rotation gives rise to a modified betatron oscillation in Achromat-2.

I will give here just the results for the modified oscillations and leave their calculation to an Appendix. The amplitudes a_{x2} and a_{y2} and the phases Φ_{x2} and Φ_{y2} on entering Achromat-2 are

$$a_{x2} = a_{x1} \cos \theta \tag{3}$$

$$a_{y2} = Ma_{x1} |\sin \theta| \tag{4}$$

$$\Phi_{x2} = \Phi_{x1} \tag{5}$$

$$tan \Phi_{y2} = tan \Phi_{x1} - \beta'_x$$
 (6)

in which $\beta_x' = d\beta_x/ds = -d\beta_y/ds$ is the value at the entrance to an Achromat,

and the "magnification factor" M is given by

$$M = [1 - 2\beta_x' \sin \Phi_{x1} \cos \Phi_{x1} + \beta_x^2 \cos^2 \Phi_{x1}]^{1/2}$$
 (7)

I should emphasize that this result applies only to the case that a roll occurs between two regular F- and D- magnets of the Arcs (where $\beta_y = \beta_x$ and $\beta_y' = -\beta_x'$).

Since there is no change in Φ_x across the roll, we no longer need the subscripts 1 and 2 on Φ_x . Note that the evaluation of Φ_{y2} with Eq. (6) leaves an ambiguity of ± 180 deg. This ambiguity is resolved by satisfying Eq. (A5) (in the Appendix) and has been done in the Figures given below.

For the SLC Arcs, $\beta'_x = 5.30$ at the entrance to an F-type Achromat (one that begins with a focussing magnet), and $\beta'_x = -5.30$ at the entrance to a D-type Achromat (one that begins with a defocussing magnet).

I show in the attached Figures M and Φ_{y2} as a function of Φ_x for both an F-Type Achromat and a D-type Achromat. (One gets from one type to the other simply by reversing the scales of both Φ_x and Φ_{y2} .) The curves given apply to a positive roll angle θ . If θ is negative, the oscillation y is reversed; that is, Φ_{y2} changes by $\pm 180^{\circ}$. In the North Arc, Achromats 1 through 7 are F-type, and Achromats 9 through 23 are D-type. In the South Arc, the opposite is true (except for Achromat 3 which does not exist). The following comments are in order:

- a) The change in the x-oscillation is as one might suspect. It is as if the oscillation were "projected" onto the new x-direction with no change in phase.
- b) The new y-oscillation is <u>not</u> just the projection of an x_1 -motion onto the y_2 -direction as one might have guessed, although such a projection would correspond to the term $a_{x1} \sin \theta$ that <u>does</u> appear in a_{y2} . There is, however,

the additional factor M. Also, the new y-phase may be quite different from the original x-phase. You will also note that the value of M depends on the phase with which the oscillation arrives at the roll. (For the ideal Achromat, the phase advance ϕ is $3 \times 2\pi$, so that Φ is both the starting and ending phase.) The maximum value of M is 5.48, and the minimum is the inverse of that, 0.182. Then, for a roll angle of, say 10 deg., the y-oscillation can be just as large as the x-oscillation! Notice also that the phase Φ_{y2} prefers strongly to be near $+90^{\circ}$ or -90° .

- c) There is no "conservation of oscillation energies." That is, $(a_x^2 + a_y^2)$ is not conserved in a roll. We see that "longitudinal energy" can be thrown into "transverse energy" at a roll.
- d) The transformation from one Achromat to the next is linear, so if we have oscillations in both x and y in Achromat-1, we can use the results here to find the oscillations produced in Achromat-2 by each component, treated separately, and then add the two contributions. (For an oscillation initially in y, there are relations corresponding to Eqs. (3) to (6), with some adjustments of sign.)
- e) It is amusing to note that even the <u>average</u> of M over all phases Φ_1 is not 1, but, rather,

$$\langle M \rangle = \left[1 + \frac{\beta \ell_x^2}{2}\right]^{1/2} \tag{8}$$

General Case

It is, of course, possible to work out the general result for the rotation of a transport system at an arbitrary location in these terms. It is probably not very interesting, so I give only the result - - which can be obtained by the method use in the Appendix. Equations (3) and (5) do not change, but Eqs. (6) and

(7) become

$$M^{2} = \frac{\beta_{y}}{\beta_{x}} + \left[\frac{\beta_{x}}{\beta_{y}}\left(1 + \frac{\beta_{y}^{\prime 2}}{4}\right) - \frac{\beta_{y}}{\beta_{x}}\left(1 - \frac{\beta_{x}^{\prime 2}}{4}\right) - \frac{\beta_{x}^{\prime}\beta_{y}^{\prime}}{2}\right] \cos^{2}\Phi_{x1}$$

$$+ (\beta_y' - \frac{\beta_y \beta_x'}{\beta_x}) \sin \Phi_{x1} \cos \Phi_{x1}$$
 (9)

$$\tan \Phi_{y2} = \frac{\beta_y}{\beta_x} (\tan \Phi_{x1} - \frac{\beta_x'}{2}) + \frac{\beta_y'}{2} \qquad (10)$$

W. Weng provided useful discussions and information.

APPENDIX

The results given in the body of this Note are derived as follows:

From Eq. (1) it follows that the slope of the trajectory at any s can be written as

$$x' = \frac{a_x}{\sqrt{\beta_x}} \left\{ -\sin \left(\phi_x + \Phi_x \right) + \frac{\beta_x'}{2} \cos \left(\phi_x + \Phi_x \right) \right\} \tag{A1}$$

We can use this equation together with Eq. (1) to relate the amplitude and phase of the oscillation at any s to x and x' there. We get that

$$a_x^2 = \frac{x^2}{\beta_x} + (\sqrt{\beta_x}x' - \frac{\beta_x'}{2\sqrt{\beta_x}}x)^2$$
 (A2)

and

$$tan (\phi_x + \bar{\Phi}_x) = -\frac{\beta_x x'}{x} + \frac{\beta_x'}{2}$$
 (A3)

The extension to y is evident.

Now, consider that x_1 and x_1' are given at the <u>exit</u> to Achromat 1. The corresponding a_{x1} and Φ_{x1} are determined by Eqs. (A2) and (A3). The same x and x_1' also determine x_2 and x_2' and x_2' and x_2' and x_2' the coordinates and slopes measured with respect to Achromat 2. Indeed, we have

$$x_2 = x_1 \cos \theta \qquad x_2' = x_1' \cos \theta \qquad (A4)$$

$$y_2 = -x_1 \sin \theta \qquad y_2' = -x_1' \sin \theta \qquad (A5)$$

The values of β_x and β_x' do not change across the boundary between two Achromats. And, if we take (as usual) the boundary between Achromats at the symmetry point between F and D magnets, then it follows that at the boundary

$$\beta_{y} = \beta_{x} \quad ; \; \beta'_{y} = -\beta'_{y} \qquad (A6)$$

Using these relations Eqs. (3) and (5) are obtained from Eqs. (A2) and (A3) by inspection. Since x and x' are changed by the same factor, a will be changed by that factor also, and Φ_x will not change at all.

The results for a_{y2} and Φ_{y2} are different, because β'_y is <u>not</u> equal to β'_x . Substituting (A5) into (A2) and factoring out $\sin^2\theta$, we get

$$a_{y2}^2 = \sin^2 \theta \left[\frac{x_1^2}{\sqrt{\beta_y}} + (\sqrt{\beta_y} x_1' - \frac{\beta_y'}{2\sqrt{\beta_y}} x_1)^2 \right]$$
 (A7)

Now we use (A6) to get

$$a_{y2}^2 = \sin^2 \theta \left[\frac{x_1^2}{\sqrt{\beta_x}} + \left(\sqrt{\beta_x} x_1' + \frac{\beta_x'}{2\sqrt{\beta_y}} x_1 \right)^2 \right]$$
 (A8)

The quantity in the square brackets differs from a_x^2 only by the sign of β_x' . Expanding the squared term and comparing a_{y2}^2 to a_{x1}^2 (A2), we see that

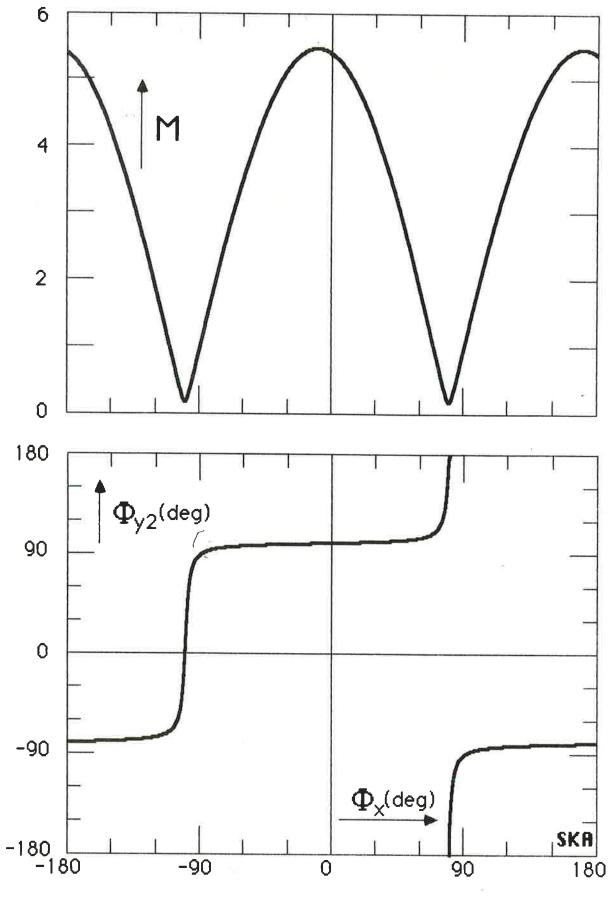
$$a_{y2}^2 = \sin^2 \theta \left[a_{x1}^2 + 2\beta_x' x x' \right]$$
 (A9)

Or, putting x and x' in terms of a_{x1} and Φ_{x1} we find Eqs. (4) and (7).

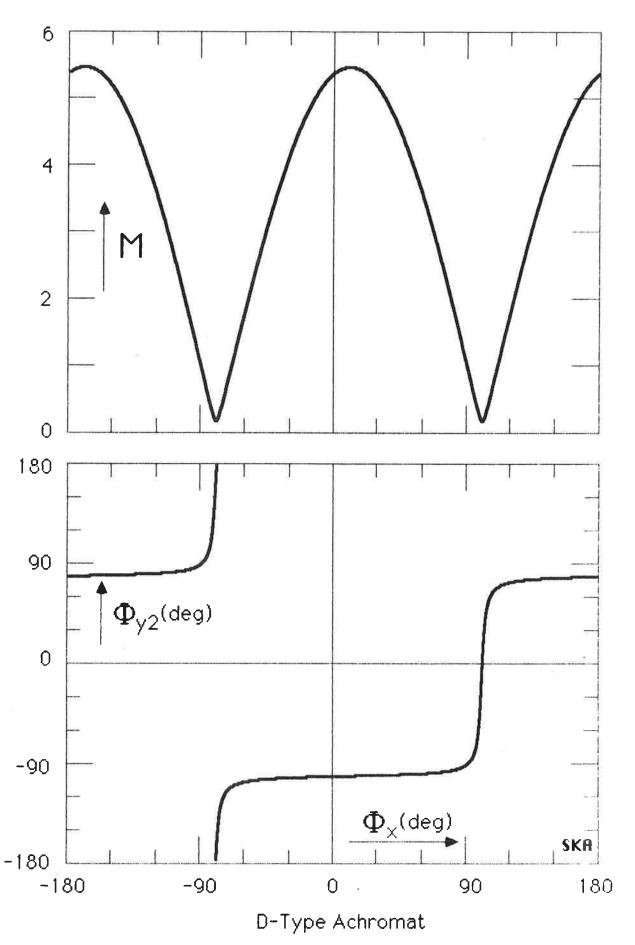
Translating Eq. (A3) to y (with $\Phi_y = 0$ at the beginning of an Achromat) and then using (A5) and (A6), we get that

$$\tan \Phi_y = -\frac{\beta_y y'}{y} + \frac{\beta_y'}{2} = -\frac{\beta_x x'}{x} - \frac{\beta_x'}{2}$$
 (A10)

Comparing this result with (A4) for $\Phi_x = 0$, we obtain the result of Eq. (5).



F-Type Achromat



		2
		2