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Abstract
We disenss our proposal that the infrared structure of N = 4 gluon amplitucdes at
strong coupling ¢an be fully extracted from a local consideration near cusps. This
is consistent with field theory and correctly reproduces the infrared divergences
of the four-glion amplitude at strong coupling calculated recently by Alday and
Maldacena.

1 Introduction

In the recent paper [1], Alday and Maldacena made a substantial progress in applying
ideas of the AdS/CFT correspondence (2] to study scattering amplitudes of gluons at
strong coupling. One of the crucial ingredients of [1] is dimensional regularization on the
gravity dual side. The importance of it is motivated by the fact that many field theory re-
sults on gluon amplitudes have been obtained in dimensional regularization scheme and it
is necessary to use the same regularization if one intends to provide an unambiguous com-
parison between the gravity and field theory sides. In particular, Alday in Maldacena [1]
computed the four-glnon amplitude at strong coupling and found a perfect agreement, with
the infrared structure in field theory. In addition, they also found an agreement with the
conjecture of Bern, Dixon and Smirnov [3] (see also an earlier paper [4]) regarding the
all-loop iterative structure of gluon amplitudes. Furthermore, the analysis of [1] made
a prediction for the strong coupling behavior of the cusp anomalous dimension. Their
result agreed with [5], [6] where the same behavior was established by different methods.

It is well-known that in field theory, gluon amplitudes have to satisfy several consis-
tency conditions such as unitarity cuts, infrared behavior, collinear and soft gluon limits.
It is very interesting to understand what they are translated on the AdS side to. The
simplest limit that one can consider is the infrared divergences. In field theory they arise
from a very special set of Feynman diagrams. This makes them summable to all orders
in perturbation theory [3,7-9]. This suggests that on the AdS side the infrared structure
also arises from some very special minimal worldsheets whose study does not require the
complete answer for the n-gluon amplitude. In [10] it was proposed that the infrared be-
havior can be completely derived from the worldsheet whose boundary is momenta of two
neighboring glions meeting at a cusp. We show that this is consistent with the infrared
structure on the field theory side. When applied to the case of four glions, this proposal
gives the same answer as the infrared divergent contribution to the four-glnon amplitude
found in [1].

2 Infrared Behavior in N’ =4 Super Yang-Mills Theory

The infrared behavior of the gluon amplitudes in A" = 4 Super Yang-Mills Theory is
known to all orders in perturbation theory and has a nice exponential structure [3,7-9]. In
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our review below, we will follow section IV of [3]. We will assume that we have performed
the color decomposition and study the leading-color partial amplitudes. First, let us
define

A (6)
A#Lree .
In this equation, A% and AL ( €) are the tree-level and L-loop n-gluon amplitudes respec-

tively. The dependence on ¢ indicates that M is evaluated in dimensional regularization.
Furthermore, let us define

M{P(e) = 1)

=1+ ZaLM(L @)

L=1

where
a= \dme™")7¢, (3)

A is the t’Hooft coupling and +y is the Euler constant. For any neighboring pair of gluons
1,7+ 1 with momenta k; and k;;; we introduce

siir1 = (ki + kie1)?, i=1,...,m, Spnp1 = Sat. (4)
The leading-color all-loop infrared behavior of M,(¢) can be expressed as follows
2 A
In My (€) ~ Y a'fO(e) I (le). (5)
=1

Here f,(,l)(e) represents the infrared behavior at one loop and has the following additive
structure

n
fél)(f) = er(l.l)(si,i+11 €), (6)
=1
where . ) .
O e) = -2 ()
n (S si+1y 6) 262 —Biere (7)

The function f)(¢) has a perturbative expansion in €
O = fO+ fPe+ e+ ... ()

The leading term fél) is known to coincide, up to a constant, with the cusp anomalous
dimension ",
f(l) 1 (l) (9)

Substituting f,(Ll)(e) into eq. (5) we obtain that the right hand side has the following
functional dependence

In My ( e)N—ZF( ( S:H)(,e) (10)

for some function F' which goes to zero for finite negative € as s;;1, goes to zero. To find
another implication of the general infrared behavior (5) let us consider the terms of order
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€®. It follows from egs. (6), (7) and (8) that up to an additive constant In M, (¢) contains
the the terms of the form

In M, (€)]eo ~ ——f }:1 2(

= Siitl

)——g /\)Zh](—‘nw-l) (1)

where . -
Ay =4 M =S a0 (12)
= =1

is the all-loop cusp anomalous dimension and

_ i - 40
22 — 8re Z . (13)

Note that the definition of g()) depends on the infrared scale . As we change u, u — px,
we have

g(A) = g(A) + 2f(A) Ink. (14)
On the other hand, the coefficient in front of the In (—_—s’%) term is always the cusp
anomalous dimension.

3 Infrared Behavior and Cusps in AdS

In [1], Alday and Maldacena developed an approach to study the strong coupling limit
of N' = 4 gluon amplitudes using string theory in AdS space. As explained in [1], scat-
tering of open string states happens at large proper AdS momenta. Therefore, similarly
to the flat space case [11], the scattering amplitude to the leading order is determined by

the appropriate classical solution

A~ el (15)
where S is the action evaluated on the classical solution, which is just the area of the
worldsheet. The prefactor was determined in [12]. Furthermore, similarly to the flat
space case [11], A depends only on the momenta of the scattered particles and not on
any other additional data like the helicity structure. All information about the momenta
is encoded in the boundary conditions. To describe it, it is convenient to use the T-dual
coordinates [13] (see [1] for details). In this coordinates, the metric is also AdS

kn—l kZ

Figure 1: The boundary of the worldsheet of the n-gluon amplitude. For simplicity, we
removed the factors of 27 multiplying each ;.
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o dy,dy + dr?
= IR O

ds? w=0,...,3, (16)

where IR is the radius of AdS space. The boundary conditions are imposed at » = 0. In the
T-dual coordinates the fact that a state has momentum A” translates into the statement
that it has a winding

Ayt = 2mk". ; (17)
Then, the boundary conditions are such that as » — 0 the worldsheet describing the
n-particle amplitude ends on the vectors 27kY, ..., 2wk%. The ordering of the vectors

correspois to the particular color ordered amplitude. From momentum conservation it
follows that the above vectors form a closed loop.

Since A = 4 gluon amplitudes are infrared divergent they have to be vegulated. In
order to be able to compare the string and field theory results, one has to use the same
regularization scheme. The most convenient is to use dimensional regularization. The
regulated AdS metric looks as follows [1]

dyj + dr®
ds* = \/epAp <ﬂ;2+%7> ) (18)

where
)\HZG e, 3
Ap =t e————u =2%7*I'(2 + ¢),
D ( T cp T )
D=4—2e. (19)
The parametrization of A\p in terms of the IR scale y is chosen to match the field theory
side. In notation (18), the worldsheet action becomes

s«v—/ﬁ 7NN

Figure 2: The graphical representation of the infrared divergences. Each cusp represents
the boundary of the minimal worldsheet.

VA L~
= V2oto / £, (20)

where L.—¢ is the Lagrangian evaluated at ¢ = 0, that is using the metric (16) where the
AdS radius is set to unity.

Let us now consider the boundary of the worldsheet corresponding to the n-gluon
amplitude as in Figure 1. The boundary consists of n vectors 2wk}, ..., 2mk". We will
denote by C, the cusp where the vectors 2rk!" and 27k{, | meet. In this note, we propose
that the infrared behavior of the n-gluon amplitude at strong coupling is fully captured
by the local behavior of the worldsheet near the 7 cusps. To be more precise, we propose
that the infrared divergences have the structure as in Figure 2. That is, !

n
In My, ~ iSui(€) = > iSiza(e). (21)

=1

) In eq. (21), it does not matter whether we write In A, or In M, since the differcnce between them,
In A!7e¢ ig independent of A and, thus, is subleading at strong coupling.
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The summation is over all the pairs of neighboring gluons or, equivalently, over all cusps.
The i-th term in the right hand sides in eq. (21) and in Figure 2 represents the area S; ;4 (¢)
of the minimal worldsheet whose boundary is just the two vectors 27k{* and 2nk!, . As a
trivial consistency check, we note that eq. (21) has the same additive structure as eqgs. (5),
(6) on the field theory side.

Since eq. (21) and Figure 2 have an additive structure, it is sufficient to single out
only one cusp C; and consider the problem of finding a minimal worldsheet which ends on
the vectors 2rk! and 27k!' . We want to point out that our calculation is universal and
does not depend on global structure of the amplitude. Without loss of gencrality, we can
assume that the worldsheet is located in the subspace parametrized by (yg, ¥y, ¥z, 1) and
set y3 = 0. 2 It is convenient to introduce the light-cone coordinates in the (yo, %) plane

Y-=Y% — Y, Y+ =Yoo+ . (22)

We need to find a solution that turns into two intersecting lines whose directions are
specified by k; and k;4; as r — 0. We can choose the coordinate system in such a way
that one of the vectors, say k;, is located in the (y_,y;) plane. Moreover, we can chose
k; to lie along the y, direction. We parametrize it as

27T]Ci =2 (0, 1, 0) (23)

in the (y_, ¥+, y2) coordinates. The parameter z; is arbitrary as long as it is non-zero and
finite. Similarly, we parametrize the vector k;,; as

27rki+l = 22(a1 17 \/6)1 (24)

where « is the tangent of the angle between the lines when they are projected to the
(y-,y4+) plane and 25, like 2, is an arbitrary non-zero finite parameter.From egs. (23)
and (24) it follows that

(27)28i 4541 = —02123. (25)

The solution to all orders in e with the appropriate boundary conditions was found in [10]

to be
(Y- y+) = V1 +e/2\/§\/y_(y+ = éy-), Y2(Y-ry4) = %y—- (26)

To continue, it is convenient to change the variables from (y_,y,) to (Y_,Y}) so that the
(Y_,Y;) components of 2rk; and 27k;;; become (0,1) and (1,0). The transformation is

the following
y.=anY_, y,.=zY,+2Y_. (27)

In these new variables we get

r(Y_,Yy) = 1+ €/2V2/Y_Yi\/—(2m)2sii01,  12(Y_,Yy) = VazY.. (28)

Substituting egs. (27), (28) into the action (20), we obtain

: Vipep  Vl+e ) _ep [ dY_dY,
$Si(9) = =2 e e [ e @)

%In principle, one can choose a coordinate system in which two light-like vectors lie in a two-planc.
The choice of the coordinate system is a matter of convenience. The physical conclusions studied below
are, of course, independent of this choice.
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Assuming that ¢ < 0 and performing the integral, we find that

wwiite
iSiiri(€) = _E_Q%T (_:”‘J' Cle)y (30)

Ole) — NGV V1I+e
() =37 (4me=1)e/2 (1 + ¢/2)1+e/2”
Eq. (30) represents our final answer for S; ;11(¢) to all orders in e. Note that it depends
only on the kinematic invariant s;;4; and not scparately on «, z; and zp. Furthermore,
note that eq. (30) is consistent with the general properties of the infrared behavior of
N = 4 gluon amplitudes reviewed in the previous section. It is of the form (10), where

the function F (/\ (——‘L)e s e) is given by

—Sii+1

) ) .

To compare eq. (30) with eq. (11) on the field theory side we have to expand C(e) to
the linear order in €. Up to a constant, this yields the following e-independent term in

where C(¢) is given by

(31)

iSi+1(€)
_% FO) In? (T«;MQH) ~ Jo)n (j§:> , (33)
where
sy =2 (34)
and
o) = L1 ~n2) (35)

Since the general structure of the infrared divergences implies that the coefficient at

In® _—s‘% is the cusp anomalous dimension, we find that it behaves as v/ A at strong

coupling which is in agreement with [1,5,6].

As the last consistency check, let us compare (30) with the infrared divergent con-
tribution to the strong coupling limit of the four-gluon amplitude which was obtain by
Alday and Maldacena in [1]. In the case of the four-gluon amplitude we have only two
independent kinematic invariants which are usually denoted by s and ¢,

S =813 =83, t=Sa3=541. (36)
As the result, eq. (21) becomes
Saiv(€) = 255(€) + 2Si(¢), (37)
where S;(¢) is given by

1VA [ op 1V 2 § 5
SR AN = e S N Y o 38
€2 2r \[ (—s)¢ € 47r( n2) (—s)e +OLE) 58]
and S;(e) is given by the similar expression with s replaced with ¢. Quite remarkably,

eqgs. (37) and (38) exactly coincide with the infrared behavior of the four-gluon amplitude
computed in [1] which represents a non-trivial check of our proposal.

154(€) =

292



Acknowledgements

The author is very grateful to Freddy Cachazo, Juan Maldacena and Arkady Tseytlin
for helpful discussions. The work at the Perimeter Institute is supported by in part by the
Government of Canada through NSERC and by the Province of Ontario through MRI.

References

[1] L. F. Alday and J. Maldacena, “Gluon scattering amplitudes at strong coupling,”
arXiv:0705.0303.

[2] J. M. Maldacena, “The Large N Limit of Superconformal Field Theories and Su-
pergravity,” Adv.Theor.Math.Phys. 2 (1998) 231-252; Int.J.Theor.Phys. 38 (1999)
1113-1133 [arXiv:hep-th/9711200].

[3} Z. Bern, L. J. Dixon and V. A. Smirnov, “Iteration of Planar Amplitudes in Maxi-
mally Supersymmetric Yang-Mills Theory at Three Loops and Beyond,” Phys.Rev.
D72 (2005) 085001 [arXiv:hep-th/0505205).

[4] C. Anastasiou, Z. Bern, L. Dixon and D. A. Kosower, “Planar Amplitudes in Max-
imally Supersymmetric Yang-Mills Theory,” Phys.Rev.Lett. 91 (2003) 251602 [hep-
th/0309040].

[5] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “A semi-classical limit of
the gauge/string correspondence,” Nucl.Phys. B636 (2002) 99-114 [arXiv:hep-
th/0204051].

[6) M. Kruczenski, “A note on twist two operators in N=4 SYM and Wilson loops in
Minkowski signature,” JHEP 0212 (2002) 024 [arXiv:hep-th/0210115].

[7] L. Magnea and G. Sterman, “Analytic continuation of the Sudakov form-factor in
QCD,” Phys.Rev.D42:4222-4227,1990.

[8] S. Catani, “The Singular Behaviour of QCD Amplitudes at Two-loop Order,”
Phys.Lett. B427 (1998) 161-171 [arXiv:hep-ph/9802439)].

[9] G.Sterman and M. E. Tejeda- Yeomans, “Multi-loop Amplitudes and Resummation,”
Phys.Lett. B552 (2003) 48-56 [arXiv:hep-ph/0210130).

[10] E. 1. Buchbinder, “Infrared Limit of Gluon Amplitudes at Strong Coupling,”
[arXiv:0706.2015].

[11] D. J. Gross and P. F. Mende, “ The High-Energy Behavior of String Scattering
Amplitudes,” Phys.Lett.B197 (1987) 129.

[12] S. Abel, S. Forste and V. V. Khoze, “Scattering amplitudes in strongly coupled N=4
SYM from semiclassical strings in AdS,” [arXiv:0705.2113).

[13] R. Kallosh and A. A. Tseytlin, “Simplifying superstring action on AdSs x §5,” JHEP
9810 (1998) 016 [arXiv:hep-th/9808088].

293



