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Abstract	

Nucleons	 at	 short	 distance	 experience	 a	 very	 strong	 short-range	 interaction,	
generating	an	extremely	high-momentum	tail	 to	 the	nuclear	wavefunction.	The	
latter	extends	far	beyond	the	Fermi	momentum,	kF,	of	the	nucleus.	The	creation	
of	 such	 a	 high-momentum	 tail,	 due	 to	 a	 strong	 short-range	 interaction,	 is	 a	
universal	 feature	of	 two-component	Fermi	systems.	As	nucleons	are	composite	
objects,	 their	 internal	 structure	 may	 well	 be	 modified	 when	 the	 distance	
between	 them	 is	 smaller	 than	 their	 radii	 and	 there	 is	 a	 substantial	 overlap	
between	their	quark	distributions.		

While	 studied	 theoretically	 for	 many	 years,	 it	 is	 only	 recently,	 with	 the	
development	 of	 high-energy	 high-luminosity	 electron	 and	 proton	 accelerators,	
that	 experiments	 were	 able	 to	 start	 resolving	 this	 short-distance,	 high-
momentum,	 structure	 of	 nuclei.	 Results	 from	 such	 experiments	 are	
revolutionizing	our	understanding	of	nuclei	and	the	role	played	by	Short-Range	
Correlated	 (SRC)	 nucleon	 pairs	 in	 various	 nuclear	 systems	 and	 astrophysical	
processes.	

This	work	focuses	on	studies	of	SRC	pairs	 in	heavy	atomic	nuclei.	 It	consists	of	
two	main	parts:	(1)	experimental	study	of	SRC	pairs	in	medium	and	heavy	nuclei	
and	(2)	phenomenological	study	of	the	effect	of	SRC	on	Deep	Inelastic	Scattering	
(DIS),	 Nuclei,	 Nuclear	 Matter,	 Neutron	 Stars,	 and	 on	 contact	 interactions	 in	
strongly	interacting	Fermi	systems.	

The	experimental	part	of	this	thesis	reports	results	from	measurements	of	one-	
and	 two-proton	knockout,	A(e,e’p)	and	A(e,e’pp),	 from	12C,	 27Al,	 56Fe,	and	 208Pb	
using	the	CEBAF	Large	Acceptance	Spectrometer	(CLAS)	at	the	Thomas	Jefferson	
National	 Accelerator	 Facility	 (TJNAF).	 The	 measurements	 were	 performed	 at	
kinematics	dominated	by	scattering	off	SRC	pairs	(Bjorken	scaling	variable	xB	>	
1.2,	 large	 momentum	 transfer	 squared	 1.5	 <	 Q2	 <	 3.5	 (GeV/c)2	 and	 missing	
momentum	|Pmiss|	>	300	MeV/c).	The	results	of	these	measurements	include	the	
first	direct	identification	of	SRC	pairs	in	nuclei	heavier	than	12C,	the	extraction	of	
the	relative	number	of	proton-proton	 to	proton-neutron	pairs	 in	 the	measured	
nuclei,	and	a	study	of	the	nuclear	transparency	of	proton	knockout	in	the	hard-
breakup	of	SRC	pairs.	

The	 phenomenological	 part	 deals	 with	 the	 implications	 of	 the	 experimental	
results	 on	 a	 wide	 range	 of	 systems.	 It	 includes	 the	 correlation	 between	 the	
amount	 of	 SRC	 pairs	 in	 nuclei	 and	 the	 strength	 of	 the	 EMC	 effect	 (ratio	 of	 the	
inelastic	structure	function	of	nucleons	bound	in	nuclei	to	deuteron)	in	different	
nuclei	 and	 the	 extraction	 of	 the	 IMC	 effect	 (ratio	 of	 the	 inelastic	 structure	
function	of	nucleons	bound	in	deuterium	to	a	free	proton-neutron	pair).	The	IMC	
was	used	to	extract	the	free-neutron	structure	function	which	in	turn	improved	
our	knowledge	of	the	large-x	d/u	ratio	of	the	proton.	Data	on	the	number	of	SRC	
pairs	as	a	function	of	nuclear	mass	A	allow	us	to	extract	the	quantum	numbers	of	
mean-field	 nucleons	 subject	 to	 correlations.	 In	 addition,	we	 study	 the	 effect	 of	
SRC	 pairs	 on	 the	 kinetic	 energy	 of	 symmetric	 nuclear	 matter,	 the	 nuclear	
symmetry	 energy,	 and	 the	 neutron	 star	 equation	 of	 state.	 Lastly,	 the	 possible	
universality	 of	 contact	 interactions	 in	 strongly	 interacting	 Fermi	 systems	 is	
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discussed	in	the	case	of	SRC	in	nuclei.	

The	 results	 presented	 in	 this	 work	 have	 wide	 ranging	 implications	 on	 our	
understanding	 of	 the	 structure	 and	 energy	 sharing	 mechanisms	 in	 heavy	
imbalanced	 nuclear	 systems	 and	 also	 inspired	 the	 development	 of	 three	 new	
follow-up	 experiments	 recently	 approved	 to	 run	 at	 TJNAF	 after	 its	 12	 GeV	
upgrade.	
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1. Introduction	
	

1.1. Short-Range	Correlations	in	Nuclei:	From	Mean-
Field	to	Many-Body	Dynamics	

	
“What	 holds	 the	 nucleons	 of	 the	 atom	 together?	 In	 the	 past	
quarter	 century	 physicists	 have	 devoted	 a	 huge	 amount	 of	
experimental	 and	mental	 labor	 to	 this	 problem,	 probably	more	
man	hours	than	have	been	given	to	any	other	scientific	question	
in	 the	 history	 of	 mankind”	 (Hans	 Bethe,	 Scientific	 American	
1953)	

	
The	atomic	nucleus	was	first	discovered	in	1911,	when	Rutherford,	Geiger,	and	
Marsden	scattered	 ‘alpha	particles’	off	 a	 thin	gold	 film	and	observed	backward	
scattering,	consistent	with	the	existence	of	heavy	point-like	objects	[1-4].	Several	
years	 later,	 in	 1932,	 Chadwick	discovered	 the	neutron	 and	 the	 field	 of	 nuclear	
physics	was	born	 [5].	A	main	goal	of	nuclear	physics	 research	was,	and	still	 is,	
the	understanding	of	 the	nature of the interactions	between	nucleons	 (nucleon-
nucleon	 interaction)	 and	 how	 these	 interactions	 make	 up	 atomic	 nuclei	 and	
determine	their	properties.	

From	 a	 theoretical	 point	 of	 view,	 neglecting	 possible	 contributions	 from	 non-
nucleonic	degrees	of	freedom,	a	full	description	of	atomic-nuclei	can	be	achieved	
by	solving	the	many-body	problem,	defined	by	the	Hamiltonian:	
Eq.	1.1	

	,	

where	T	 is	 the	 kinetic	 energy	 term	and	v2body	 and	v3body	 are	 the	 two	 and	 three	
nucleon	potentials.	The	two-body	potential	is	traditionally	extracted	from	fits	to	
phase-shifts	extracted	from	nucleon-nucleon	(NN)	scattering	measurements.	The	
three-body	potential	is	usually	chosen	such	that	a	full	calculation	for	light-nuclei	
will	yield	the	experimentally-measured	binding	energies.	

Using	state-of-the-art	Monte-Carlo	techniques,	one	can	now	solve	the	many-body	
problem	 for	 systems	 containing	 up	 to	 12	 nucleons	 (i.e.	 up	 to	 12C)	 [6],	 and	 for	
infinite	nuclear	matter	[7,8].	While	these	achievements	are	 impressive,	 it	 is	not	
clear	 that	 similar	 calculations	 for	 heavier	 nuclei	 will	 be	 feasible	 in	 the	 near	
future.	In	addition,	the	accuracy	of	these	calculations	is	inherently	limited	by	our	
knowledge	of	the	input	nuclear	potentials.		

For	 these	 and	 other	 reasons,	 effective	 nuclear	 theories	 are	 constantly	 being	
developed.	From	the	commonly	used	Free	Fermi	Gas	(FFG)	model	[9,10],	through	
the	 highly	 successful	 nuclear	 shell	model	 [11,12],	 to	modern	 chiral	 expansion-
based	theories	[13-16],	effective	theories	are	and	have	always	been	useful	tools	
in	nuclear	physics	research.		

The	nuclear	shell	model	was	 the	 first	 successful	effective	description	of	atomic	
nuclei.	 Formulated	 in	1949	by	M.	Mayer	 and	 J.	 Jensen	 (1963	Nobel	Prize),	 this	

H = T + v2body i, j( )
i< j

A

∑ + v3body i, j,k( )
i< j<k

A

∑ + ...
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model	successfully	predicts	various	 low-energy,	static	properties	of	nuclei	such	
as	spins,	parities,	ground	state	energies,	excitation	spectra,	and	more.	The	model	
approximates	 the	nucleus	as	a	 collection	of	 independent	nucleons,	obeying	 the	
Pauli	exclusion	principle,	moving	under	the	influence	of	an	attractive	mean	field	
created	 by	 all	 the	 other	 nucleons.	 Neutrons	 and	 protons	 are	 assumed	 to	 have	
independently-defined	shell	model	states.	Under	this	approximation,	the	nuclear	
Hamiltonian	for	protons	and	neutrons	can	be	written	as:	
Eq.	1.2	

 

H = T + Vmean-field i( )
i=1

A

∑
≡HShell-model

! "## $##
+ v2body i, j( )

i< j

A

∑ + v3body i, j,k( )
i< j<k

A

∑ + ...
⎡

⎣
⎢

⎤

⎦
⎥ − Vmean-field i( )

i=1

A

∑
≡HResidual

! "########## $##########

   = HShell-model + HResidual

	,	

where	Vmean-field	is	the	effective	mean-field	term.	In	the	mean-field	approximation,	
the	 residual	 many-body	 interaction,	 HResidual,	 is	 neglected.	 Neglecting	 HResidual	
drastically	 simplifies	 the	 problem	 allowing,	 in	 certain	 cases,	 for	 analytical	
solutions.	

The	 historical	 success	 of	 the	 nuclear	 shell	 model	 lays	 in	 its	 ability	 to	 predict	
many	 bulk	 properties	 of	 nuclei.	 Electron	 scattering	 proton	 knockout	
measurements	 A(e,e’p)	 in	 the	 early	 1980s	 [17]	 showed	 that	 the	 energy	 and	
momentum	 distributions	 of	 bound	 protons	 matched	 shell	 model	 orbital	
predictions.	However,	the	cross-sections	for	valence	proton	knockout	turned	out	
to	be	only	about	60	to	70%	of	that	expected	for	electron	scattering	from	bound	
protons	 (see	 Fig.	 1-1)	 [18].	 These	 “spectroscopic	 factors”	 showed	 a	 consistent	
depletion	 in	 the	 shell	 occupancy	 over	 a	 wide	 range	 of	 light	 to	 heavy	 nuclei,	
indicating	that	only	60-70%	of	the	nucleons	 in	the	nucleus	can	be	described	as	
independent	 particles	moving	 in	 the	mean-field	 of	 the	 nucleus.	 The	 remaining	
30-40%	 has	 to	 be	 part	 of	 higher	 order	 configurations.	 As	 the	 mean-field	
approximation	is	a	single-body	approximation,	the	next	logical	step	is	to	look	for	
two-body	correlations.	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Fig	 1-1:	 Spectroscopic	 factors	 for	various	
nuclei,	 extracted	 by	 comparing	 A(e,e’p)	
valence	knockout	 cross-sections	 to	mean-
field	theory.	See	Ref.	[18]	for	details.	
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Unlike	the	mean-field	approximation,	where	effective	average	potentials	can	be	
used,	 two-body	correlations	depend	directly	on	 the	details	of	 the	NN	potential.	
Fig.	1-2	shows	the	radial	dependence	of	the	central	part	NN	potential,	extracted	
by	 three	different	 groups,	 and,	 for	 one	 extraction,	 the	 contribution	of	 different	
spin/isospin	 dependent	 interactions.	 While	 all	 extractions	 are	 experimentally	
valid	 (i.e.,	 equally	 good	 fits	 (χ 2 ≈1) 	to	 the	 NN	 scattering	 phase	 shifts),	
considerable	 quantitative	 differences	 are	 evident.	 Currently,	 there	 are	 many	
commonly	used	NN	potentials	 available,	with	numerous	phase	 shift	 equivalent	
potentials	[13-16,19-29].	

One	 of	 the	main	 differences	 among	 these	NN	 potentials	 is	 their	 description	 of	
short	distance	behavior.	This	is	due	to	the	fact	that	potential	descriptions	of	NN	
scattering	data	are	 far	more	complicated	above	 the	 inelastic	 threshold	(i.e.,	 the	
pion	production	threshold).	Thus	NN	potentials	are	typically	fit	to	scattering	data	
up	to	350	MeV	and	are	therefore	not	well	constrained	at	short	distances	or	high	
momentum.	Despite	 this	 short	 distance	 uncertainty,	 Fig.	 1-2	 shows	 two	 short-
range	features	common	to	all	NN	potentials:	(1)	a	strong	repulsive	core	at	very	
short	distances,	and	(2)	overall	dominance	of	the	central	part	of	the	interaction,	
except	 for	 where	 it	 shifts	 from	 attractive	 to	 repulsive	 (at	 ~0.7	 fm)	 and	 thus	
crosses	 zero.	 In	 this	 region,	 short-range	 spin/isospin	 dependent	 interactions	
dominate.		

The	repulsive	core	and	the	short-range	spin/isospin	dependent	interactions	are	
expected	to	create	pairs	of	Short-Range	Correlated	(SRC)	nucleons	in	the	nuclear	
ground	state:	pairs	of	nucleons	with	high	relative	momentum	and	low	center-of-
mass	momentum,	where	high	 and	 low	are	 relative	 to	 the	Fermi	momentum	of	
the	 nucleus	 (kF	 ~	 250	 MeV/c	 for	 medium	 and	 heavy	 nuclei).	 This	 definition	
implies	that	the	 interaction	between	the	nucleons	of	 the	SRC	pair	 is	dominated	
by	the	short	distance	part	of	the	NN	interaction,	and	is	therefore	less	sensitive	to	
the	many-body	effects	of	the	nuclear	medium.	Thus,	SRC	pairs	can	be	thought	of	
as	naturally-occurring	short	range	fluctuations	in	the	ground	state	of	the	nucleus.	
By	 studying	 the	 abundance	 and	 detailed	 characteristics	 of	 SRC	 pairs,	 we	 can	
study	the	NN	potential	at	short	distances	and	its	effect	on	the	many-body	nuclear	
medium.	

	
Fig	 1-2:	 (left)	 The	 radial	 dependence	 of	 the	 central	 part	 of	 three	 different	 nucleon-nucleon	
potentials:	 RSC	 [26],	 Bonn	 [27,28],	 and	AV18	 [29].	 (right)	 The	 central,	 isospin,	 spin,	 and	 spin-
isospin	components	of	the	AV18	potential.	
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Experimental	SRC	studies	were	conducted	at	SLAC	(Stanford	Linear	Accelerator	
Center),	 BNL	 (Brookhaven	 National	 Lab),	 and	 more	 recently	 at	 JLab	 (Thomas	
Jefferson	Laboratory).		

Inclusive	 electron	 scattering	 measurements,	 performed	 in	 kinematics	
corresponding	 to	 large	 four-momentum	 transfer,	  Q

2 = q
! 2

−ω 2 >1.5 	GeV2/c2	
[where	 q

!
	and	ω 	are	 respectively	 the	 three-momentum	 and	 energy	 transferred	

to	the	nucleus],	and	Bjorken	scaling	parameter	 xB =Q
2 / 2mN ⋅ω( ) >1 	[where	mN	

is	the	nucleon	mass]	showed	scaling	of	the	cross-section	ratio	of	nuclei	relative	
to	deuterium	as	a	function	of	xB	for	1.5	<	xB	<	2.	This	scaling	indicates	that	in	all	
nuclei	the	nucleon	momentum	distribution	above	the	Fermi	level	(i.e.	k	>	kF)	has	
the	same	shape	as	in	deuterium	and	that	~20%	of	the	nucleons	in	medium	and	
heavy	nuclei	have	momentum	greater	than	kF	[30-32].	

Exclusive	measurements	of	electron-	and	proton-induced	two-nucleon	knockout	
reactions,	 (e,e’pN)	 and	 (p,2pn),	 on	 12C	 and	 4He	 allowed	 the	 first	 direct	
observation	 of	 two-nucleon	 (2N)	 SRC	 pairs	 [33-37].	 In	 these	 experiments,	
performed	 at	 high-duty	 cycle,	 high-energy,	 high	 intensity	 accelerators,	 high-
energy	 electrons	 or	 protons	 scattered	 off	 a	 proton	 with	 large	 missing	
momentum,	 !pmiss =

!q − !pp > 300 	MeV/c	 [where	 !pp is	 the	 measured	 knockout	
proton	 momentum],	 knocking	 it	 out	 of	 the	 nucleus,	 and	 looked	 for	 recoil	
nucleons	 emitted	parallel	 to	 the	missing	momentum.	They	 found	 that	 all	 high-
momentum	 protons	 in	 the	 nucleus	 had	 a	 correlated	 nucleon	 partner,	 i.e.	
originated	from	2N-SRC	pairs	[16].	They	found	that	this	correlated	partner	was	
almost	always	a	neutron,	 showing	 the	dominance	of	neutron-proton	(np)	pairs	
[34,36,37].	 Additional	 analysis	 allowed	 reconstructing	 the	 pair	 in	 the	 ground	
state	of	the	nucleus	and	studying	their	characteristics	(see	section	1.3	for	further	
details).	

The	 observed	 np-SRC	 dominance	 came	 as	 a	 surprise	 and	 highlighted	 the	
important	role	played	by	the	tensor	part	of	the	NN	interaction	at	short	distances	
[38-40].	 The	 tensor	 interaction	 acts	 only	 on	 NN	 pairs	 in	 spin	 (S)	 isospin	 (T)	
states	ST	=	11	and	10.	In	light	nuclei	it	is	difficult	to	create	odd-l	pairs,	therefore	
tensor	 interactions	 can	 only	 act	 on	 np	 pairs	 in	 a	 l=0	 ST=10	 state.	However,	 in	
heavy	nuclei	one	can	create	odd-l	pairs,	giving	rise	to	the	appearance	of	ST	=	11	
proton-proton	 and	 neutron-neutron	 pairs,	 washing	 out	 the	 expected	 np-SRC	
dominance.	Therefore,	the	isospin	structure	of	2N-SRC	pairs	in	heavy	nuclei	is	an	
open	question	with	direct	 implications	for	the	effect	of	correlations	on	massive	
nuclear	systems	such	as	neutron	stars	[41,42].	
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1.2. Scope	of	This	Work	

This	work	 presents	 a	 study	 of	 2N-SRC	pairs	 in	medium	 and	 heavy	 nuclei	 (12C,	
27Al,	 56Fe,	 and	 208Pb),	 and	 their	 effect	 on	 various	 aspects	 of	 Deep	 Inelastic	
Scattering	(DIS),	nuclei,	nuclear	matter,	neutron	stars	and	contact	interactions	in	
strongly	interacting	Fermi	systems.	This	dissertation	is	based	on	a	collection	of	
papers	published	in	peer-reviewed	journals	and	is	structured	as	follows:		

Chapter	1	is	the	introduction.	It	presents	the	motivation	for	studying	2N-SRC	as	
part	 of	 the	 quest	 to	 understand	 many-body	 effects	 in	 the	 nuclear	 medium	
(section	 1.1),	 followed	 by	 a	 review	 paper	 that	 provide	 a	 more	 detailed	
introduction	 to	 this	work	 (section	 1.3).	 In-between,	we	 present	 the	 scope	 and	
layout	of	this	dissertation	(section	1.2).	

The	review	paper	reviews	previous	theoretical	and	experimental	studies	of	SRC	
pairs	 in	nuclei,	deep-inelastic	structure	of	bound	nucleons	(i.e.	 the	EMC	effect),	
and	the	connection	between	the	two.	It	also	includes	a	new	analysis	of	the	EMC	
effect	in	terms	of	the	Bjorken	scaling	variable	for	nuclei,	xA,	and	a	theoretical	test	
of	the	ability	to	explain	the	EMC	effect,	using	global	modification	of	mean-field	/	
SRC	nucleons	in	nuclei.	

Chapter	2	contains	information	on	the	experimental	setup	and	analysis	methods	
used	 in	 the	 study	of	 the	A(e,e’p)	 and	A(e,e’pp)	 reactions	 in	medium	and	heavy	
nuclei	(12C,	27Al,	56Fe,	and	208Pb).	The	data	used	in	the	analysis	were	taken	from	
the	EG2	experiment	 that	 ran	 in	2004	at	Hall	B	of	 Jefferson-Lab	using	 the	CLAS	
spectrometer.	 The	 analysis	 is	 focused	 on	 kinematics	 that	 is	 dominated	 by	
scattering	off	SRC	pairs	and	was	done	as	part	of	 the	JLab	data	mining	 initiative	
[43].		

This	chapter	was	previously	published	as	the	supplementary	materials	of	Hen	et	
al.	(CLAS	Collaboration),	Science	346,	614	(2014).	

Chapter	3	presents	the	results	 from	the	analysis	described	in	chapter	2.	These	
results	 include:	(1)	measurements	of	A(e,e’p)/12C(e,e’p)	cross-section	ratios	 for	
the	extraction	of	nuclear	transparency	ratios	for	protons	knockout	off	a	SRC	pair,	
and	 (2)	 measurements	 of	 A(e,e’pp)/12C(e,e’pp)	 cross-section	 ratios	 for	 the	
extraction	of	the	relative	number	of	proton-proton	to	proton-neutron	SRC	pairs.	

Chapter	4	discusses	the	implications	of	SRC	on	different	topics	in	Deep	Inelastic	
Scattering	(DIS),	nuclei,	nuclear	matter,	neutron	stars	and	contact	interactions	in	
strongly	 interacting	 Fermi	 systems.	 Special	 emphasis	 is	 put	 on	 the	 specific	
implications	of	the	observation	that	even	in	heavy,	asymmetric	nuclei,	SRC	pairs	
are	predominantly	neutron-proton	(np)	pairs	(see	chapter	3.1).			

Chapter	5	presents	a	summary	of	the	work	and	its	main	conclusions.	

Appendix	A	contains	a	new	database	of	EMC	measurements,	extracted	using	the	
Bjorken	 scaling	 variable	 for	 nuclei,	 xA.	 This	 appendix	 is	 part	 of	 the	publication	
presented	in	section	1.3.		
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Appendix	B	contains	a	short	description	of	three	future	experiments,	developed	
as	part	of	 this	work,	 that	will	 study	 the	dependence	of	 the	proton	and	neutron	
inelastic	 structure	 function	 on	 its	 virtuality,	 and	 the	 energy-sharing	 between	
protons	and	neutrons	in	the	A=3	system.	These	experiments	were	all	approved	
by	 the	Program Advisory Committee (PAC) of	 Jefferson	Lab	and	are	expected	 to	
run	in	the	coming	years	as	part	of	the	12	GeV	program	of	JLab.	

Appendix	C	contains	a	paper	discussing	the	new	insight	gained	into	the	origin	of	
the	 EMC	 by	 the	 observation	 of	 the	 EMC/SRC	 correlation.	 This	 paper	 was	 the	
cover	paper	of	the	May-2013	edition	of	the	CERN	Courier	magazine.	
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Recent developments in understanding the influence of the nucleus on deep-inelastic
structure functions, the EMC effect, are reviewed. A new data base which expresses
ratios of structure functions in terms of the Bjorken variable xA = AQ2/(2MAq0)
is presented. Information about two-nucleon short-range correlations (SRC) from ex-
periments is also discussed and the remarkable linear relation between SRC and the
EMC effect is reviewed. A convolution model that relates the underlying source of the
EMC effect to modification of either the mean-field nucleons or SRC nucleons is pre-
sented. It is shown that both approaches are equally successful in describing the current
EMC data.

Keywords: EMC; SRC; 2N-SRC; high momentum nucleons.

1. Introduction

Basic models of nuclear physics describe the nucleus as a collection of free nucleons
moving nonrelativistically under the influence of the sum of two-nucleon forces,
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which can be treated approximately as a mean field. In this picture, in the rest frame
of the nucleon, the partonic structure functions of bound and free nucleons should
be identical. Therefore, it was generally expected that, except for nucleon Fermi
motion effects, Deep Inelastic Scattering (DIS) experiments which are sensitive
to the partonic structure function of the nucleon would give the same result for
all nuclei.

Instead, the measurements show a reduction in the structure function of nucleons
bound in nuclei relative to nucleons bound in deuterium — the EMC effect. Since
its discovery, over 30 years ago, a large experimental and theoretical effort has
been put into understanding the origin of the effect. While theorists have had
no difficulty in creating models that qualitatively reproduce nuclear DIS data by
itself, there is no generally accepted model. This is because the models are either
not consistent with or do not attempt to explain other nuclear phenomena. The use
of most modern models shows that while traditional nuclear effects such as binding
and Fermi motion contribute to the EMC effect, modification of the bound nucleon
structure is also required.

Studies of the effects of the many-body nucleon–nucleon interaction on the struc-
ture of the nucleus predict the existence of Short-Range Correlated (SRC) pairs.
These are pairs of nucleons at short distance whose wave functions strongly over-
lap, giving them large relative momentum and low center of mass (CM) momentum,
where high and low is relative to the Fermi momentum (kF ) of the nucleus. Recent
studies show that the magnitude of the EMC effect in any nucleus is linearly related
to the number of two-nucleon SRC pairs in that nucleus. The observation of this
phenomenological relationship raises a question of whether the medium modifica-
tion of the nucleon structure is related to the nuclear mean field or to the SRC
pairs. The answer to this question will give new insight regarding the origin of the
EMC effect.

Sections 2 and 3 review the EMC and SRC research history, respectively.
Section 2.3 presents a new formalism to correct the measured EMC data for the
difference in the definition of the Bjorken scaling variable for different nuclei (the
corrected EMC data is presented in Appendix A). Section 4 presents the EMC–
SRC correlation, its implications, and a simple convolution model which compares
treatments of the EMC effect based on nucleon modification occurring in SRC pairs
with that based on nucleon modification occurring due to the mean field. Section 5
summarizes the paper.

2. The Nuclear EMC Effect

2.1. Historical overview

Unpolarized inclusive lepton scattering depends on two independent variables that
can be chosen as the negative of the square of the transferred four-momentum,
Q2 = −q2 and the Bjorken scaling variable for a proton xp = Q2/(2mpω), —
commonly noted as xB — wheremp is the proton mass and ω the transferred energy
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in the proton rest frame. In DIS, the momentum transfer is large (Q2 > 2 (GeV/c)2)
and the invariant mass of the transferred photon plus the target nucleon is greater
than the masses of individual nucleon resonances, W > 2 GeV. This allows a
measurement of the proton’s inelastic structure function, F p

2 (xp, Q2), which gives
the weighted average of the proton quark distribution function:

F p
2 (xp, Q

2) = xp

∑

q

e2q · (q
p(xp) + q̄p(xp)) , (1)

where qp(xp) and q̄p(xp) are the proton’s quark and anti-quark distribution, func-
tions, respectively, eq is the electric charge of the quark, and the sum runs over
q — the different proton quark flavors (i.e., u, d and s). The neutron inelas-
tic structure function, Fn

2 (xp, Q2), is given by substituting in Eq. (1) the proton
quark distributions by that of the neutron. The latter can be expressed using the
proton distribution, assuming isospin (charge) symmetry (i.e., un(xp) = dp(xp),
dn(xp) = up(xp) etc.).

In the early 1980s, CERN’s European Muon Collaboration (EMC) measured
the per-nucleon DIS cross-section for scattering unpolarized muons from deu-
terium and iron nuclei and extracted the ratio of their structure functions1 (i.e.,
FFe
2 (xp, Q2)/F d

2 (xp, Q2)). The latter are the average bound nucleon structure func-
tion in 56Fe and Deuterium. For xp ≤ 0.5 ∼ 0.7, where nucleon Fermi motion
effects are negligible, they expected to measure a ratio of unity, indicating that the
structure function of deeply bound (i.e., 56Fe) and loosely bound (i.e., Deuterium)
nucleons is identical. This would allow them to increase the experimental luminosity
by using a denser target material such as iron, while still being sensitive to the free
nucleon structure function. Instead, they discovered that the per-nucleon DIS cross-
section ratio, which equals the structure function ratio, decreased from about 1 at
xp ≈ 0.3 to as little as 0.8 at xp ≈ 0.7 (see Fig. 1). This unexpected result instantly
became known as the EMC effect. The existence of the EMC effect was soon ver-
ified by analysis of existing target end-cap data from Stanford Linear Accelerator
Center (SLAC),2,3 and later by measurements at SLAC4 and the BCDMS and NMC
collaborations.5–7

A later experiment performed at SLAC showed that the EMC effect has the
same qualitative behavior for all nuclei, differing only in the value of the ratio
at the minimum.8 It also showed that the EMC effect is independent of Q2 for
2 ≤ Q2 ≤ 40 (GeV/c)2 and that the depth of the minimum at xp ≈ 0.7 grows with
nuclear mass. The growth seemed to increase with the average nuclear density8

and this became a generally accepted feature of the EMC effect (see Ref. 9 and
references therein).

As theorists provided several different, simple, explanations of the effect (see
discussion in Sec. 2.2), an independent experimental test of these explanations was
needed.10 This came from Fermi National Accelerator Lab in the form of Drell–
Yan measurements.11 These experiments compared µ+–µ− production from q–q̄
annihilation in proton–proton and proton–nucleus collisions. In the kinematic range
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Fig. 1. Measurements of DIS cross-section ratio of gold relative to deuterium as a function of
Bjorken-xp from SLAC. The solid black line is the expected ratio taking into account only Fermi
motion of nucleons in Gold. (Figure reprinted from Ref. 14. Copyright (2002) by the American
Physical Society.)

Fig. 2. The strength of the EMC effect, defined as the slope of the per nucleon DIS cross-section
ratio for 0.3 ≤ x ≤ 0.7, shown as a function of the scaled nuclear density for light nuclei. (Figure
reprinted from Ref. 12. Copyright (2009) by the American Physical Society.)

covered by the measurement, they observed that the nuclear to proton ratio was
consistent with unity. As this experiment was sensitive mainly to the nuclear sea
quarks, the result pointed to the EMC effect being due to a change in the valence
quark distributions.

It was not until 2009 that the simple nuclear density dependence of the EMC
effect was challenged with new data.12 A high precision measurement on light nu-
clei, including 3He, 4He, 9Be and 12C, showed that the effect was not related to
the average nuclear density. The most significant outlier was 9Be which has a low
average nuclear density, similar to that of 3He, and a large EMC effect, similar
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to that of 4He and 12C (see Fig. 2). This anomaly was consistent with variational
Monte Carlo calculations which show that local, high density configurations occur
in nuclei.13 These calculations describe 9Be as a collection of two alpha clusters
and an orbiting neutron. In this picture, 9Be has a low average density and a much
higher local density similar to that of 4He. Thus, the phenomenological explanation
of the EMC effect shifted, based on the new data, from an average density effect to
a local density effect.

2.2. Theory status

In QCD, the nucleon structure function, F2(x,Q2), gives the weighted probability
for finding a parton (quark) in the nucleon that carries a fraction x of the total
nucleon momentum. The different partons contribute with a weight equal to the
square of their electric charge. The primary theory interpretation of the reduction of
the nuclear structure function in the valence quark region was simple.9,15–19 Quarks
in nuclei carry less momentum than quarks in nucleons and, as the uncertainty
principle implies, move throughout a larger confinement volume. This notion gave
rise to a host of models: bound nucleons are larger than free ones; quarks in nuclei
move in 6-quark or 9-quark or even 3A quark bags.20–22 But more conventional
explanations such as the influence of nuclear binding or enhancement of pion cloud
effects were successful in reproducing some of the nuclear DIS data.23–27 And one
could combine various different models.10,28 This led to a plethora of models that
reproduced the data, causing one of the present authors to write that EMC means
Everyone’s Model is Cool.29 It is interesting to note that none of the earliest models
were concerned with the role of two nucleon correlations, except as relating to
6-quark bags.

The initial excitement tapered off as nuclear DIS became more understood,
the experimental data became more precise, and the need to include the effects of
nuclear shadowing was acknowledged.30 Indeed some of the more extreme models
were ruled out by a failure to match well-known nuclear phenomenology. Moreover,
inconsistency with the baryon and momentum sum rules led to the downfall of many
models.31 Some models predicted an enhanced nuclear sea, but others did not. As
results from Drell–Yan measurements were published, none of the existing models
survived the challenge of providing an accurate description of both the EMC and
Drell–Yan data sets — a challenge that remains to this day.

It is now understood that conventional nuclear binding effects can account for
the EMC effect up to values of xp ≈ 0.5 or so14,32–35 but fail at larger values.
Therefore, the effects of the nuclear modification of the nucleon structure function
must be included. Currently viable models of nucleon modification include (a) the
quark meson coupling model in which quarks in nucleons (either bags or eigenstates
of the NJL model)36,37 exchange mesons with quarks in other nucleons, (b) the
chiral quark soliton model in which quarks in nucleons also exchange mesons with
other nucleons,38 and (c) the suppression of point-like-configurations of the nucleon
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by the nuclear medium.39,40 A successful phenomenology that includes the effects
of shadowing, binding, pion enhancement and a medium-modification of the quark
structure function can be fitted to the extant data.41

A modern model which incorporates the influence of nucleon–nucleon corre-
lations in a manner consistent with nuclear physics knowledge to describe both
nuclear DIS and Drell–Yan data does not yet exist.

2.3. EMC data analysis

Following the EMC collaboration, other experiments measured the ratios of per-
nucleon DIS cross-sections for nuclei and the deuteron at equal values of Q2 and
xp = Q2/2mpω. In these kinematical conditions, the DIS cross-section ratio for
nuclei A1 and A2 is given by42

σA1

σA2

=
FA1

2 (xp, Q2)

FA2

2 (xp, Q2)
·

[

1 + 2
1 + ω2/Q2

RA1
− 1

tan2
θ

2

]

[

1 + 2
1 + ω2/Q2

RA2
− 1

tan2
θ

2

] , (2)

where θ is the lepton scattering angle and RA = σA
L /σ

A
T is the ratio of the longi-

tudinal to transverse cross-section for nucleus A. Assuming RA independent of A,
the cross-section ratio of Eq. (2) is reduced to the F2 structure function ratio.

Recently, Frankfurt and Strikman (FS) pointed out that the structure func-
tions of nucleons bound in nuclei should be extracted in the reference frame of the
nucleus.34 This is done by using the xA scaling variable, defined as

xA =
Q2

2q · PA/A
=

AQ2

2ωmA
= xp ·

Amp

mA
, (3)

where q and PA are the four-momentum vectors of the virtual photon and target
nucleus respectively, and mA is the mass of the target nucleus. Note that, for the
same values of Q2 and ω, xA differs from xp by the ratio of the bound nucleon mass
to the free mass. Therefore, a cross-section measured at Q2 and ω on nucleus A will
depend on the nucleon structure function evaluated at xA rather than at xp.

This means that the standard EMC cross-section ratio at the same Q2 and ω
(and hence the same xp) is actually proportional to the nucleon structure function
in nucleus A evaluated at parton momentum fraction xA = AQ2/2mAω divided
by the nucleon structure function in deuterium evaluated at parton momentum
fraction xd = 2Q2/2mdω. For symmetric nuclei this is

2

A

σA
DIS(xp, Q2)

σd
DIS(xp, Q2)

=
FA
2 (xA, Q2)

F d
2 (xd, Q2)

, (4)

where σA

DIS

σd
DIS

is the DIS cross-section ratio measured at the same (Q2,ω, xp), and

FA

2
(xA,Q2)

Fd
2
(xd,Q2)

is the ratio of structure functions at the same (Q2,ω) but different x.
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Fig. 3. (Color online) Example of the effect of the xA correction to the data. The black points are
the original Seely data plotted as a function of xp. The red points are the corrected data, plotted
as a function of xA. Dashed lines are linear fits to the two data sets. The difference between the
slope of the two fits is about 20%.

Since we want to compare the structure functions at the same parton momentum
fractions, we want to correct this using

FA
2 (xA, Q2)

F d
2 (xd, Q2)

=
FA
2 (xA, Q2)

F d
2 (xA, Q2)

·
F d
2 (xA, Q2)

F d
2 (xd, Q2)

(5)

and

FA
2 (xA, Q2)

F d
2 (xA, Q2)

=
σA
DIS(xp, Q2)

σd
DIS(xp, Q2)

·
F d
2 (xd, Q2)

F d
2 (xA, Q2)

, (6)

where FA

2 (xA,Q2)
Fd

2
(xA,Q2)

is the ratio of structure functions in the different nuclei evaluated

at the same parton momentum fraction (i.e., the quantity we wish to extract),

and Fd

2 (xA,Q2)
Fd

2
(xd,Q2)

is a correction factor. This correction factor can be evaluated using

well-known parametrizations of the deuteron structure function.43,44

Figure 3 shows the effect of the correction factor of Eq. (6) on the measured
DIS cross-section ratio for 12C relative to deuterium from recent Jefferson Lab
measurements. As can be seen, the xA correction reduces the size of the EMC effect
(i.e., its slope). It replaces part of the model-dependent binding energy corrections
with a systematic, transparent and model-independent correction.

For asymmetric nuclei (N ̸= Z), following Aubert et al. and Bodek et al.,1–3 an
additional isoscalar correction factor (RISO) is applied to the measured cross-section
ratio, making it related to a hypothetical nucleus with equal number of protons and
neutrons (N = Z = A/2):

σA
DIS(xA, Q2)ISO

σd
DIS(xA, Q2)ISO

=
σA
DIS(xA, Q2)

σd
DIS(xA, Q2)

· RISO(xA) , (7)
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with RISO(xA) defined as:

RISO(xA) =
A

2

F p
2 (xA, Q2) + Fn

2 (xA, Q2)

Z · F p
2 (xA, Q2) +N · Fn

2 (xA, Q2)
=

A

2

1 +Rnp(xA, Q2)

Z +N · Rnp(xA, Q2)
, (8)

where F p
2 (xA, Q2) and Fn

2 (xA, Q2) are the free proton and neutron structure

functions, and Rnp(xA, Q2) = Fn
2 (xA, Q2)/F p

2 (xA, Q2). The free neutron struc-
ture function used in this correction is usually extracted from world data on DIS
scattering off deuterium and the proton, corrected for the Fermi motion of protons
and neutrons in deuterium (i.e., smearing effect), see Refs. 45 and 46 for details.

Using the isoscalar correction for asymmetric nuclei and the description of the
measured cross-section ratios in terms of FA

2 and F d
2 (Eq. (5)), we extract the

structure function ratio of nucleons bound in nuclei relative to deuterium as:

FA
2 (xA, Q2)

F d
2 (xA, Q2)

=
2

A

σA
DIS(xp, Q2)

σd
DIS(xp, Q2)

·
F d
2 (xd, Q2)

F d
2 (xA, Q2)

·RISO(xA)

=
2

A

σA
DIS(xp, Q2)ISO

σd
DIS(xp, Q2)ISO

·
F d
2 (xd, Q2)

F d
2 (xA, Q2)

·
RISO(xA)

RISO(xp)
. (9)

Appendix A presents the EMC ratios, extracted as a function of xA for
0.3 ! xA ! 0.7, for all nuclei measured at SLAC12 and Jefferson Lab (JLab).8

The isoscalar correction applied is identical for both data sets, making them more
consistent.

3. High Momentum Nucleons in Nuclei

This section describes nucleon–nucleon (or “two-nucleon”) correlations. A corre-
lated two-nucleon pair is one where the two-nucleon density is significantly different
from the product of two single-nucleon densities. Both tensor and central forces can
produce SRC.

3.1. Theoretical need for high momentum nucleons in nuclei

The strong interactions between nucleons in nuclei are dominated by two and three
nucleon terms. Therefore, the fact that nucleons in nuclei are correlated is self-
evident. There is no fundamental one-body potential in the nucleus, unlike the
one-body Coulomb potential in atomic physics. The fundamental question of nu-
clear physics was: how does the very successful shell model of the nucleus emerge
in spite of the strong short-ranged interactions between nucleons? An answer was
provided early on by Brueckner and Goldstone, see the review by Bethe.47 The
strong two-nucleon interactions encoded by the potential V , constructed to repro-
duce experimentally measured scattering observables and believed to include strong
repulsion at short distance and attraction at longer ranges, are summed to form
the T -matrix of scattering theory and the G-matrix for bound states. The operator
G is obtained from T by modifying the propagator to include the effects of the
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Pauli principle and to use the appropriate self-consistent (single) nucleon energies.
The G-matrix is considerably weaker than V , and can therefore be used in pertur-
bation theory. One forms the nuclear mean field U throughout the Hartree–Fock
method employing the G-matrix, and the first approximation to the wave func-
tion is the anti-symmetrized product of single particle wave functions engendered
by U . However, the complete nuclear wave function is obtained in a perturbative
hole-line expansion that includes two-particle — two-hole excitations and other
excitations which incorporate correlations. Later work formulated a relativistic ver-
sion of Brueckner theory in which the Dirac equation replaces the Schrödinger
equation.48,49 There is also a light front version.50,51

The Brueckner theory approach described above presumes that the two-nucleon
potential contains strong short-distance repulsion. Early attempts to construct soft
potentials lacking the strong repulsion that also reproduce scattering data did not
succeed in obtaining interactions that could be used perturbatively in the nuclear
bound state problem.47 In modern times, the use of effective field theory provides
a low-energy version of QCD, guided by chiral symmetry, in which one obtains
the potential as an expansion in powers of (Q/Λχ) where Q is a generic external
momentum (nucleon momentum) and Λχ is the chiral symmetry breaking scale of
about 1 GeV. See the review in Ref. 52. In such theories the short distance interac-
tion can be treated as a contact interaction, modified by the inclusion of a cutoff,
and the longer ranged interactions are accounted for by one and two pion exchange
interactions. The softness (involving low-momentum) or hardness (involving higher
momentum) of the potential is determined by the value of the cutoff. For sufficiently
soft potentials nuclear matter can be treated using perturbation theory in terms
of the two and three nucleon chiral interactions. Nevertheless, two-nucleon correla-
tions occur, primarily as a result of the second iteration of the one pion exchange
potential.

Another approach uses renormalization group methods to generate a soft NN

potential from a hard interaction either by integrating out high momentum com-
ponents (in the case of Vlow-K), or by using the similarity renormalization group.53

Then one obtains a potential that is mainly restricted to small values of momentum.
This potential is perturbative in the sense that the Born series for scattering con-
verges and perturbation theory can be applied to the nuclear bound state problem.
However, once again the second-order term in the potential generates correlations.

The renormalization group can be used to eliminate matrix elements of the
nucleon–nucleon potential connecting low and high relative momentum states. Such
a procedure simplifies the computations of nuclear binding energies and spectra, and
would also lead to wave functions without high-momentum components and truly
SRCs. However, it would be necessary to consistently transform all other operators.
For high-momentum transfer reactions, the renormalization group changes a known
simple probe, described by a single-nucleon operator into a complicated probe de-
scribable by unknown (in practice) A-nucleon operators. This prevents the analysis
of any high momentum transfer experiment.
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To summarize, there are two basic approaches to fundamental nuclear structure
— perturbation in the G-matrix or perturbation in the potential. In either case
there will be two-nucleon correlations. Theoretically, the key remaining question
concerns the quantity and range of the correlations.

3.2. SRC measurements

Experimentalists at electron scattering facilities such as SACLAY and NIKHEF
observed the need for high momentum components in nuclei, not from direct obser-
vation, but rather from a dramatic lack of cross-section in A(e, e′p)A–1 valence shell
knock-out experiments where the independent particle models overestimated the
measured cross-sections.54 Since the shell model accurately predicts energy levels
and spins, this reduced the range of possible explanations. The most straightforward
explanation was that the “missing nucleons” were in nucleon–nucleon correlations.
When the electron scattered from a nucleon in a correlated pair, its partner was
also ejected from the nucleus. This shifted strength from excitation energies typical
of valence states to much higher excitation energies.

Many experiments were done at these facilities to probe for more direct evidence
of correlations; but as history would show, the necessary kinematic requirements,
xB > 1 and Q2 > 1 (GeV/c)2, were practically inaccessible. Thus most of the early
experiments ended up being studies of reaction mechanisms such as meson-exchange
currents (MECs) and final-state interactions.

With the availability of continuous, high intensity, high momentum proton and
electron beams, identifying SRCs in Quasi-Elastic (QE) scattering off nuclei became
feasible. In this section, we review results from measurements of inclusive QE (e, e′)
cross-section ratios and exclusive, triple-coincidence, (e, e′pN) and (p, 2pn), large
momentum transfer (hard), reactions performed at SLAC, Brookhaven National
Lab (BNL) and more recently at JLab.

3.2.1. Inclusive SRC measurements

In inclusive scattering of unpolarized particles from an unpolarized target, there
are only two independent kinematical variables. In the case of inclusive QE electron
scattering these are normally chosen to be Q2 and xp. In the Plain Wave Impulse
Approximation (PWIA) it is assumed that the virtual photon is fully absorbed on a
single nucleon, which leaves the nucleus without rescattering, leaving the remaining
A − 1 nuclear system unperturbed. Energy and momentum conservation for such
a reaction define a minimum value for the component of the initial momentum of
the scattered nucleon in the direction of the virtual photon as a function of Q2 and
xp.55 At xp = 1, for all Q2 values, the minimum value of this momentum component
equals zero. As one increases or decreases xp at fixed Q2, its value increases. At
moderate values of Q2 (∼ 2−4 GeV/c2) and xp ≥ 1.4−1.5 (≤∼ 0.6), this minimum
value is larger than the Fermi momentum (kF ) of the nucleus, and the reaction is
dominated by scattering from high momentum (≥ kF ) nucleons in the nucleus. At
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these Q2 values and xp < 1, the virtual photon carries a large amount of energy
compared to its momentum and the reaction, while sensitive to high momentum
nucleons, has large inelastic contributions from ∆ production and MECs. On the
other hand, for the same Q2 values and xp > 1, the virtual photon transfers a small
amount of energy compared to its momentum, inelastic processes are suppressed,
and the reaction is more directly sensitive to the nature of the high momentum tail
of the nuclear wave function.56,57 In both cases, large values of Q2 suppress MEC
contributions.58,59

Inclusive electron scattering cross-section ratios for nucleus A relative to deu-
terium and to 3He were measured at SLAC and later at Hall-B and Hall-C of
JLab.55,60–62 Figure 4 shows the xp dependence of the per nucleon cross-section
ratio of nuclei relative to 3He measured at Hall-B. As can be seen, for xp values
which correspond to scattering off high momentum (≥ kF ) nucleons in the nucleus
(i.e., 1.5 ≤ xp ≤ 2 and xp ≥ 2.25) the cross-section ratio scales (i.e., does not
depend on xp). The contribution of Final State Interactions (FSI) to the measured

Fig. 4. Per nucleon QE inclusive (e, e′) scattering cross-section ratios for nuclei relative to 3He
plotted as a function of xp. Two plateaus are observed for 1.5 ≤ xp ≤ 2 and xp ≥ 2.25. The
magnitude of these plateaus are labeled as a2 and a3, respectively. In the SRC model of the high
momentum tail of the nuclear wave function, they are taken as a measure of the relative amount
of 2N and 3N SRC pairs in the measured nuclei. See text for more details. (Figure reprinted from
Ref. 61. Copyright (2006) by the American Physical Society.)
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cross-sections are expected to rapidly decrease as a function of Q2. Calculations of
FSI in inclusive scattering at large Q2 and xp ≥ 1 show they are largely confined
to within the nucleons of the initial-state SRC pair.56 The contribution of FSI of
this kind will cancel in the cross-section ratio of two nuclei. This is supported by
the small observed Q2 dependence of the cross-section scaling plateau. This scaling
reflects the scaling of the high momentum tail of the nuclear wave function and is
usually interpreted using SRC model.60,63 The latter states that the high momen-
tum tail of the nuclear wave function is dominated by correlated, multi-nucleon,
configurations. Due to their strong interaction at short distances, the structure of
these configurations is independent of the surrounding nuclear environment, re-
sulting in the same shape of the high momentum tail in all nuclei (i.e., scaling).
Different nuclei have different amounts of SRC clusters. In this model, the observed
scaling of the per-nucleon cross-section ratios for 1.5 ≤ xp ≤ 2 and xp ≥ 2.25 are
indicative of scattering off two-nucleon (2N) and three-nucleon (3N) SRC configu-
rations, respectively. The scaling factors, noted as a2 and a3 are then a measure of
the relative amount of 2N and 3N SRC, respectively, in the measured nuclei.

3.2.2. Exclusive (p, 2pn) and (e, e′pN) measurements

Inclusive measurements alone do not prove that high momentum nucleons are a
result of initial-state SRC pairs. To study the contribution of 2N-SRC pairs to the
high momentum tail of the nuclear wave function exclusive two-nucleon-knockout
experiments were done. The concept behind such experiments is that, in the PWIA,
in the absence of FSI, when a nucleon that is part of a 2N-SRC pair is knocked
out of the nucleus, in order to conserve momentum, its correlated partner nucleon
has to recoil with momentum that is equal in size and opposite in direction to
the initial momentum of the knocked-out nucleon. This back-to-back correlation
between the initial momentum of the knocked-out nucleon and the momentum
of the recoil nucleon, both above the Fermi sea level kF , is a clear signature for
scattering off a 2N-SRC configuration. Due to CM motion of the 2N-SRC pair with
respect to the residual A − 2 nuclear system, this correlation will not be exactly
back-to-back. The measured angular correlation can be used to extract the c.m.
momentum distribution of the pair. If the 2N-SRC model is correct, the nucleons
in the pair will have large relative momentum (≥ kF ) and small c.m. momentum
(≤ kF ).

Two nucleon knockout experiments, measuring the 12C(p, 2pn) and 12C(e, e′pN)
reactions, were done at BNL and JLab, respectively.64–67 These experiments scat-
tered protons and electrons off high initial momentum (300 ≤ Pinitial ≤ 600 MeV/c)
protons in 12C and looked for the emission of a correlated recoil nucleon. In the
absence of FSI, the initial momentum of the struck nucleon equals the missing mo-
mentum of the 12C(e, e′p) and 12C(p, 2p) reactions. FSI will make this relationship
more approximate. For simplicity, we will ignore FSI The JLab measurement was
sensitive to both proton and neutron recoils but the BNL measurement was only
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Fig. 5. Distributions of the relative angle (γ) between the reconstructed initial momentum of
the knockout proton and the recoil nucleon. Top: Results for proton induced proton–neutron pair
knockout (i.e., 12C(p, 2pn)) measurements from BNL, shown and a function of: (a) the momentum
of the recoil neutron, (b) for events with recoiling neutron with momentum greater than the
Fermi momentum, and (c) for events with recoiling neutron with momentum lower than the
Fermi momentum. These results show a clear transition from an isotropic distribution to a back-
to-back correlated distribution as the recoil neutron momentum reaches the Fermi momentum
of 12C. Bottom: Results for electron induced proton–proton pair knockout (i.e., 12C(e, e′pp))
measurements from JLab, shown for events in which the initial momentum of the knockout proton,
|p− q|, equals ∼ 500 MeV/c. (Figures reprinted from Refs. 64–66. Copyright (2003, 2006, 2007)
by the American Physical Society.)

sensitive to recoiling neutrons. These experiments were performed at large momen-
tum transfer (Q2 ≈ 2 GeV/c2) where competing effects such a MECs and Isobar
Contributions (IC) are suppressed and FSI are mainly confined to be between the
nucleons of the pair. The main results of these experiments are shown in Figs. 5
and 6. Figure 5 shows the distribution of the cosine of the opening angle between
the initial momentum of the knocked-out proton and the recoil nucleon. The c.m.
motion of the pairs in both cases was found to be consistent with a gaussian in each
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direction, with σ = 143±17 (BNL) and σ = 136±20 (JLab). The BNL results show
a clear threshold around the Fermi momentum where recoiling neutrons above this
momentum show a clear angular correlation, and those below it do not. Figure 6
shows the ratio of single nucleon knockout events to two nucleon knockout events,
corrected for finite acceptance effects, as a function of the initial momentum of
the knocked-out proton. As can be seen, within statistical uncertainties, all single
proton knockout events were accompanied by the emission of a recoil nucleon. The
ratio of proton recoil to neutron recoil was found to be approximately 1:20.67 This
is a clear evidence of the importance of the tensor part of the nucleon–nucleon
interaction at these momentum scales.68,69

The effect of these measurements on our understanding of the short distance
nuclear structure is illustrated by the pie chart shown in Fig. 6. From the inclu-
sive cross-section ratio measurements and from A(e, e′p) measurements we know
that in medium and heavy nuclei (i.e., A ≥ 12) ∼ 75–80% of the nucleons are
“Mean-Field” nucleons, whereas ∼ 20–25% have momentum greater than the Fermi
momentum of the nucleus. Combined with results from exclusive two-nucleon
knockout measurements we know that these high momentum nucleons are dom-
inated by 2N -SRC pairs, which are in turn dominated by neutron-proton pairs.

Fig. 6. The ratio of 12C(e, e′pN) double knockout events to 12C(e, e′p) single knockout events,
shown as a function of the reconstructed initial (missing) momentum of the knocked-out proton
from the 12C(e, e′p) reaction. Triangles and circles mark 12C(e, e′pn) and 12C(e, e′pp) events, re-
spectively. The square shows the 12C(e, e′pp)/12C(e, e′pn) ratio. A clear dominance of 12C(e, e′pn)
events is observed, evidence of the tensor nature of the nucleon–nucleon interaction in the
measured momentum range. The pie chart on the right illustrates our understanding of the struc-
ture of 12C, composed of 80% mean-field nucleons and 20% SRC pairs, where the latter is composed
of ∼ 90% np-SRC pairs and 5% pp and nn SRC pairs each. (Figure reprinted with permission
from American Association for Advancement in Science.)67
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4. SRC and the EMC Effect

4.1. The EMC SRC correlation

Analysis of world data on inclusive DIS and QE scattering cross-section ratios
showed that the magnitude of the EMC effect in nucleus A is linearly related to the
probability that a nucleon in that nucleus is part of a 2N -SRC pair, see Fig. 7.70,71

Here we used the xA corrected EMC data-base shown in Appendix A and defined
the magnitude of the EMC effect, following Ref. 12, as the slope of the ratio of the
per-nucleon DIS cross-section of nucleus A relative to deuterium, dREMC/dx, in
the region 0.35 ≤ xA ≤ 0.7. The probability that a nucleon belongs to an SRC pair
is characterized by the SRC scale factor, a2(A/d), the ratio in the plateau region
(Q2 ≥ 1.5 (GeV/c)2 and xp ≥ 1.5) of the per-nucleon QE (e, e′) cross-sections for
nucleus A and deuterium.

The EMC effect correlates imperfectly with other A-dependent quantities (see
Refs. 12 and 72 and references therein). In general, nuclei with A ≥ 4 fall on one
straight line but deuterium and 3He do not. This is true when the EMC effect is
plotted versus A, A−1/3, or the average nuclear separation energy. When plotting
the EMC effect versus average nuclear density, 9Be is a clear outlier. This indicates
that the excellent correlation with the SRC scale factor is not just a trivial by-
product of their mutual A dependence.

The correlation between the EMC effect and the SRC scale factor is robust.71

It applies to both new SRC data sets of Egiyan et al.61 and Fomin et al.62 The
quality of the correlation also does not depend on the corrections applied to the
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Fig. 7. The slope of the EMC effect (REMC, ratio of nuclear to deuteron cross-section) for
0.35 ≤ xA ≤ 0.7 plotted versus a2(A/d), the SRC scale factor (the relative probability that a
nucleon belongs to an SRC NN pair) for a variety of nuclei.71 The fit parameter, a = −0.084±0.004
is the intercept of the line constrained to pass through the deuteron (and is therefore also the
negative of the slope of that line).
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SRC data. These corrections include isoscalar cross-section corrections, CM mo-
tion corrections and isoscalar pair-counting corrections. The isoscalar correction to
the SRC scale factors accounts for the different elementary electron–neutron and
electron–proton cross-sections. This has a negligible effect on the fit quality and
the extracted fit parameter. Fomin et al. did not apply this correction, arguing that
SRC are dominated by np pairs. Fomin et al. argued that the SRC scale factors
measured the relative probability of finding a high-momentum nucleon in nucleus
A relative to deuterium and that these scale factors needed to be corrected for cm
motion of the pair in order to determine the relative probability that a nucleon in
nucleus A belongs to an SRC pair. As shown in Refs. 71 and 72, including the pair
c.m. motion correction improves the EMC–SRC correlation only slightly.

This EMC–SRC correlation gives new insight into the origin of the EMC effect.
Many different explanations of the EMC effect have been proposed since 1983. After
accounting for the standard nuclear effects of binding energy and Fermi motion,
explanations for the EMC effect fall into two general categories, those that require
modifications of mean-field nucleons and those that require modifications of high-
momentum nucleons. The linear correlation between the strength of the EMC effect
and the SRC scale factors indicates that possible modifications of nucleon structure
occurs in nucleons belonging to SRC pairs. This implies that the EMC effect, like
SRC, is a short-distance, high virtuality, and high density phenomenon.

Additionally, one can use the EMC–SRC correlation as a phenomenological tool
to constrain the deuteron IMC effect,a and thus extract the free neutron structure
function. Following Weinstein et al.70 we can extrapolate the linear fit to the EMC–
SRC correlation to the limit of a2(A/d) → 0. If the EMC effect and the SRC scale
factor both stem from the same cause, then both will vanish at the same point. The
value a2(A/d) → 0 is the limit of free nucleons with no SRC. The extrapolation to
the y-axis gives dREMC/dx = −0.070 ± 0.004. Since the EMC effect is linear for
0.3 ≤ xA ≤ 0.7 for all nuclei with A > 2, we assume that the EMC effect is also
linear in this region for the free proton plus neutron. This gives the EMC effect for
the free proton plus neutron:

σd

σp + σn
= 1− a(xp − b) for 0.3 ≤ xp ≤ 0.7 ,

where σd and σp are the measured DIS cross-sections for the deuteron and free
proton, σn is the free neutron DIS cross-section that we want to extract, a =
|dREMC| = 0.070± 0.004 and b = 0.34± 0.02 is the average value of xp, where the
EMC ratio is unity.b This implies that σd/(σp + σn) decreases linearly from 1 to
0.97 as xp increases from 0.3 to 0.7. We can then use this relationship to extract
the free neutron cross-section in this xp range. Incorporating this free neutron DIS

aThe deuteron In Medium Correction (IMC) effect was first introduced in Ref. 70 and refers to
the difference between the DIS cross-section for the deuteron and the sum of the cross-sections
for a free proton and neutron.
bWhile the xA correction does not change much the slope of the EMC–SRC correlation, the b
parameter extracted here, while consistent within errors, is larger than that reported in Ref. 70.
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cross-section into the global QCD analysis,73 one can better constrain the d/u ratio
at xp → 1 to be equal to 0.23± 0.09 at the 90% confidence level.74

The uncertainty quoted above is the uncertainty due to the data and the fit.
It does not include the uncertainty of corrections to the data. As stated above,
if we include the correction for the cm motion of the correlated pair, then the
fit parameter increases by 25% and so does the free proton plus neutron EMC
effect. Arrington et al. claim that if we also consider including the isospin pair
counting correction and alternative fitting methods, then the range of fits expands
to 0.59 ≤ a ≤ 1.04. The effect of these uncertainties on the extraction of the free
neutron structure function and the d/u ratio at large xp are discussed in Ref. 75.

4.2. Mean-field versus SRC contributions to the EMC effect

We want to know whether the linear relation between the EMC slope and the
SRC plateau parameter a2(A/d) is more than a coincidence. Any of the nuclear
models discussed in Sec. 3.1 has correlations that would yield a value of a2(A/d)
roughly consistent with the measured values. None of these models incorporate
quark modifications of nuclear structure. Therefore existence of NN correlations
is not a sufficient condition for the EMC effect to occur. The key questions are
whether the quarks confined in the two nucleons in an SRC pair have different
distribution functions than those of two free nucleons. Thus the minimum input
necessary to test the existence of a relation between SRC and EMC is a model of
a modified two-nucleon structure function consistent with a good nuclear model
of SRC and with the EMC data. Here we make a first attempt at providing a
link between SRC and EMC, by seeing if a modified two-nucleon structure function
associated with the SRC can be used to describe DIS on nuclei. We also consider the
other possibility, that medium modifications associated with the mean-field aspect
of nuclei can describe nuclear DIS.

The treatment of FS31 is very useful for such an aim, because the nuclear struc-
ture information needed to compute DIS is encoded in only three integrals that can
be evaluated reliably. FS derive a convolution formula

1

A
FA
2 (xA, Q

2) =

∫ A

0
αρA(α)F

N
2 (xA/α, Q

2)dα , (10)

where α ≡ Ak·q
pA·q is the fraction of the plus component of the nucleon momen-

tum, with k the struck nucleon initial momentum and pA = (mA, 0) is the nu-
cleus four-momentum. ρA(α) is the probability that a nucleon in the nucleus
carries momentum fraction α and FN

2 is the free nucleon structure function (FN
2 =

1
2 (F

p
2 + Fn

2 )).
Specifically ρ(α) is computed from the nonrelativistic structure function,

SA,NR(k)

ρA(α) =

∫

d4kSA,NR(k)δ

(

α−
k0 + k3

mN

)

, (11)
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where

SA,NR(k,E) ≡ ⟨A|a†kδ(E −H)ak|A⟩ . (12)

The function ρ(α) is narrowly peaked about unity, so FS expand the nucleon struc-
ture function appearing in Eq. (10) about α = 1 to find

1

A
FA
2 (xA) ≈ FN

2 (xA)I1(A) + xAF
′N
2 I2(A) +

[

xAF
′N
2 +

1

2
x2
AF

′′N
2

]

I3(A) , (13)

where for simplicity we neglect the Q2 term in the structure function notation. The
integrals In(A) are given by

In(A) ≡

∫

ρA(α)α(1 − α)n−1dα, n = 1, 2, 3 . (14)

Note that I1(A) = 1, which is the normalization condition.
FS proceed (see also Ref. 32) by isolating the leading relativistic corrections of

order ϵA/m and k2/m2 and then using the Koltun sum rule76 to find

nA(k) ≡ ⟨A|a†kak|A⟩, I1(A) =

∫

d3knA(k) , (15)

I2(A) =

∫

d3knA(k)

(

2ϵA/m+
A− 4

A− 1
k2/6m2

)

≡
2ϵA
m

+
A− 4

A− 1

〈

k2

6m2

〉

, (16)

I3(A) =

∫

d3knA(k)k
2/3m2 =

〈

k2

3m2

〉

. (17)

FS used the above formalism to show that a nucleons-only model without modified
structure functions could not reproduce DIS data.

To proceed with the calculation, we need a model of nA(k). The model of Ciofi
degli Atti and Simula63 is ideal for our purposes. This is based on a realistic nuclear
calculation of the spectral function that leads to nuclear densities that yield quali-
tative agreement with quasi elastic electron scattering. The model yields reasonably
good agreement with the plateau values a2(A/d). Furthermore, the contributions of
the mean-field and correlation terms are enumerated in terms of the intermediate-
state energy E appearing in the spectral function of Eq. (12). This association with
continuum energies, E, above about 20 MeV with SRC is approximate but suffi-
ciently accurate for the present schematic calculation. The spectral function leads
to the momentum probability nA(k) such that

nA(k) = n(0)
A (k) + n(1)

A (k) , (18)

where the superscript 0 refers to that obtained from low energy terms dominated
by the nuclear mean field and the superscript 1 refers to high energy terms (above
the continuum threshold) dominated by the effects of nucleon–nucleon correlations.
Ciofi degli Atti and Simula provide functional forms for nA(k) for several different
nuclei. This separation using the excitation energy is not exactly the same as a
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separation in terms of relative momentum but is qualitatively reasonable. With
this separation, terms involving correlations have about 20% of the probability.

Using Eq. (18) one can obtain the separate contributions to In(A) as In(A) =
I(0)n (A) + I(1)n (A).

We next proceed by assuming that nucleons in high energy excited states
(correlated nucleons) have a different structure function F̃2N (x) than free ones
F2N (x). Thus we make the replacements

I1(A)F2 → I(0)1 (A)FN
2 + I(1)1 (A)F̃N

2 = I(0+1)
1 (A)FN

2 + I(1)1 (A)∆F2N , etc , (19)

where

∆FN
2 (xA) = F̃N

2 (xA)− FN
2 (xA) . (20)

An alternate version in which the medium modification is associated with the mean-
field components of the density can be obtained by using

I1(A)F
N
2 → I(0)1 (A)F̃N

2 + I(1)1 (A) = I1(A)F
N
2 + I(0)1 (A)∆FN

2 , etc . (21)

A condition on ∆FN
2 derived from the baryon sum rule is that

∫ 2
0 dxA

∆FN

2 (xA)
xA

= 0.
This means that ∆FN

2 must pass through 0 at some value of xA.
The analysis proceeds by calculating Eq. (13) with the supplement of Eq. (19)

(Eq. (21) for the case of Mean-Field modification), assuming ∆FN
2 (xA) is a second-

order polynomial in xA. The parameters of ∆FN
2 (xA) are fitted to the xA corrected

EMC data (see Appendix A) for all nuclei for which momentum distributions are
available (i.e., 4He, 12C, 40Ca, 56Fe, and 197Au). Note that the functional form of
∆FN

2 (xA) is assumed to be universal independent of A.
The results of the fits for individual nuclei are shown in Fig. 9 (Fig. 11 for the

case of Mean-Field modification). The description of the data is very good for all

x
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

N 2
 / 

F
N 2F∆

0.05

0.1

0.15

0.2

0.25

0.3

([1]* (x-[0])+[2]*(x-[0]) 2̂)/((1./56)*(5./9)*1.094*sqrt(x )*(26* 2* (1-x) 3̂+30*(9./8)* (1-x) 4̂)+(11./9)* 0.1857*(1-x)^ 7)

Fig. 8. The ratio of the modification term, ∆FN
2 to the free nucleon structure function, FN

2 .
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Fig. 9. (Color online) The ratios of free to bound structure functions for various nuclei, extracted
in the nucleus reference frame as detailed in Eq. (9). The dashed line is the result of a linear fit to
the data. The solid red line is the result of the medium-modification fit, assuming anA-independent
modification to SRC nucleons.
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x
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

N 2
 / 

F
N 2F∆

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

([1]* (x-[0])+[2]*(x- [0]) 2̂)/((1./56)*(5./9)*1.094*sqrt(x )*(26* 2* (1-x) 3̂+30*(9./8)*(1-x) 4̂)+(11./9)* 0.1857*(1-x)^ 7)

Fig. 10. Same as Fig. 8, assuming universal modification to Mean-Field nucleons. It is assumed
that deuterium has no Mean-Field component, see text for details.

nuclei with a χ2 per degree of freedom of ≈ 1 for both the SRC and Mean-Field
fits. These results were obtained using the parametrization of Ref. 21 for the free-
nucleon structure function, FN

2 . The modified-to-free structure function ratio is
shown in Fig. 8 (Fig. 10 for the case of Mean-Field modification).

The present results show that a model incorporating either universal modifica-
tion of Mean-Field nucleons or modification of nucleons in SRC pairs can explain
the EMC effect. As expected, the required medium modification of Mean-Field
nucleons is on the order of a few percent while that of SRC nucleons is a few tens
of percent. This model does not prove or disprove that the underlying cause of the
EMC effect is the unique association with SRC. Note that 9Be was not included in
the model calculations since a 9Be spectral function was not available. Note also
that this model does not separate valence and sea quark distributions and therefore
cannot make predictions about the Drell–Yan data.

Further experiments are needed to determine whether the Mean-Field or SRC
nucleons are modified by the nuclear medium. For example, quasi-elastic electron
scattering would be sensitive to the former but not the latter.

5. Summary

We have reviewed recent data showing that the detailed A dependence of the EMC
effect provides important hints in understanding the origin of that effect. The EMC
effect seems to depend on local density rather than the average density. We present
the EMC ratio data (the ratio of nuclear to deuterium structure functions) in terms
of an improved Bjorken variable xA = AQ2/(2MAq0) (see Appendix A). We review
SRC data and discuss the linear relation between the EMC effect and SRC. We
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Fig. 11. Same as Fig. 9, assuming universal modification to Mean-Field nucleons. It is assumed
that deuterium has no Mean-Field component, see text for details.
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Materials and Methods 
1. Calculations of <Tp> and <Tn> 

1.1. Light nuclei (A<12) 
Recently, state-of-the-art calculations of single-nucleon momentum distributions for a 
variety of light nuclei in the range of A = 2 - 12 became available (26). These are many-
body variational Monte Carlo calculations (VMC) using the phenomenological AV18 
two-nucleon and Urbana-X three-nucleon potentials (AV18+UX). By integrating these 
single-nucleon momentum distributions one can obtain the average proton and neutron 
kinetic energy for the different nuclei: 
Eq. S1 

Tp n( ) = np n( ) k( ) ⋅ k
2

2m∫ ⋅d3k  , 

where np(n)(k) is the VMC calculated proton (or neutron) momentum distribution 
normalized according to: np n( ) k( )∫ ⋅d 3k = 1 .  

Table S1 lists the average proton and neutron kinetic energy for a variety of light nuclei 
as calculated using Eq. S1 and the VMC momentum distributions of (26). As can be seen, 
the average kinetic energy of the minority nucleons is larger than that of the majority 
nucleons in asymmetric nuclei, and this effect increases with the nuclear asymmetry. This 
non-trivial result can be naturally explained by the dominance of neutron-proton pairs in 
the high momentum tail of the nuclear momentum distribution. Model calculations within 
the np-SRC dominance model for heavier nuclei are presented below. 
 

Table S1: The proton and neutron average kinetic energies as extracted from VMC 
single-nucleon momentum distribution calculations (26). As can be seen, the average 
kinetic energy of the minority nucleons is larger than that of the majority nucleons. This 
difference increases with the nuclear asymmetry 

Nucleus Asymmetry 
(N-Z) / A 

<Tp> <Tn> <Tp>/<Tn> 

8He* 0.50 30.13 18.60 1.62 
6He* 0.33 27.66 19.60 1.41 
9Li 0.33 31.39 24.91 1.26 
3He -0.33 14.71 19.35 0.76 
3H 0.33 19.61 14.96 1.31 
8Li 0.25 28.95 23.98 1.21 

10Be 0.20 30.20 25.95 1.16 
7Li 0.14 26.88 24.54 1.09 
9Be 0.11 29.82 27.09 1.10 
11B 0.09 33.40 31.75 1.05 

*Neutron Halo 
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1.2. Heavy nuclei (A>12) 
The average momentum distribution of nucleons in nuclei is given by the weighted sum 
of proton and neutron contributions: 
Eq. S2 

nA k( ) = 1
A

Z ⋅np k( )+ N ⋅nn k( )⎡⎣ ⎤⎦,  

where np(k) and nn(k) are the proton and neutron momentum distributions, Z and N are 
the number of protons and neutrons in the nucleus, and A = Z+N is the nucleus mass 
number.  

To study the effect of observed np-SRC dominance in heavy asymmetric nuclei (Fig. 1 in 
the main paper), we propose a simple model for the proton and neutron momentum 
distributions. This model describes the proton and neutron momentum distribution as two 
independent nucleon distributions up to a transition momentum, near the nuclear Fermi 
sea level, and a high momentum tail above it. The momentum distribution below the 
transition momentum is taken from mean-field nuclear wave-function calculations (40-
42).  

The high momentum tail must satisfy two experimental criteria: 1. the per-nucleon 
amount of high momentum nucleons in nucleus A relative to deuterium should equal 
a2(A/d), a scaling factor extracted from inclusive (e,e’) cross-section measurements at 
xB>1.5 (10,11), and 2. The absolute amount of high-momentum protons and neutrons 
should be equal for all nuclei (see Fig. 1 and 3 in the main paper). The resulting proton 
and neutron momentum distributions are given by (25): 
Eq. S3 

 np k( ) =
η ⋅np

M .F . k( )................................................. k < k0
A
2Z

⋅a2 A / d( ) ⋅nd k( )............. k > k0
,

⎧

⎨
⎪

⎩
⎪

 
where npM.F.(k) is the mean field proton momentum distribution in nucleus A, nd(k) is the 
deuteron momentum distribution, a2(A/d) is the experimentally determined per-nucleon 
probability of finding a high-momentum nucleon in nucleus A relative to deuterium 
(10,11,43), k0 is a transition momentum, and η is a normalization factor chosen such that 

4π np n( ) k( )k2 dk
0

∞

∫ =1 . The neutron momentum distribution is obtained by replacing 

npM.F.(k) with nnM.F.(k)  and Z with N in Eq. S3. 

Using Eq. S1 and the momentum distributions of Eq. S3 we calculate the average proton 
and neutron kinetic energies in C, Al, Fe and Pb. The calculation is done using three 
different models for the mean-field momentum distribution: Ciofi and Simula (40), 
Woods-Saxon (41), and Serot-Walecka (42), nd(k) is taken from the Argonne V18 NN 
potential (44), a2(A/d) is taken from column 6 of Table-I of Ref. (43) based on inclusive 
A(e,e’) scattering measurements at xB>1.5 (10,11); k0 is chosen to be equal to 300 MeV/c. 
As a sensitivity study we also consider a transition around the Fermi sea level (k0 = kF), 
which is below our experimental sensitivity limit. This correspond to k0 = 221, 260, 260, 
and 260 (280) MeV/c for C, Al, Fe, and for protons (neutrons) in Pb respectively (45). 
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The different proton and neutron Fermi momenta in Pb is due to its large neutron excess, 
which increases the average neutron density. 

The resulting proton and neutron average kinetic energies for C, Al, Fe, and Pb, 
calculated using the proposed np-dominance model, are shown in Fig. S1, and listed in 
Tables S2 and S3. The uncertainties in the calculations are due to the difference in the 
results obtained using the different input parameters described above (i.e. mean-field 
momentum distributions, k0 transition momenta). The experimental uncertainties in the 
extraction of a2(A/d) are taken as 10% to include the effect of different corrections. 

 

 

Fig. S1: The average proton and neutron kinetic energy calculated within the np-
dominance model described by Eq. S3. See text for details. 
 
 

Table S2: The average proton kinetic energy calculated within the np-dominance model, 
using the momentum distribution defined in Eq. S3, and three different mean-field 
momentum distributions and two different Mean-Field to SRC transition momentum. 

Model 
 
 
<Tp> 

Wood-Saxon Serot-Walecka Ciofi and Simula 

k0 = 300 
MeV/c k0 = kF k0 = 300 

MeV/c k0 = kF k0 = 300 
MeV/c k0 = kF 

C 33.2±1.7 32.8±2.0 35.1±1.7 33.5±2.0 33.6±1.7 33.1±2.0 
Al 36.7±1.9 36.7±2.1 38.3±1.9 37.9±2.0 N/A N/A 
Fe 38.0±1.9 38.1±2.1 38.7±2.0 38.6±2.1 35.2±2.0 36.3±2.2 
Pb 41.9±2.3 42.4±2.5 42.0±2.3 42.5±2.5 41.7±2.3 42.2±2.5 
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Table S3: Same as Table S2 for neutrons. 
Model 

 
 
<Tn> 

Wood-Saxon Serot-Walecka Ciofi and Simula 

k0 = 300 
MeV/c k0 = kF k0 = 300 

MeV/c k0 = kF k0 = 300 
MeV/c k0 = kF 

C 33.2±1.7 32.8±2.0 35.1±1.7 33.5±2.0 33.6±1.7 33.1±2.0 
Al 36.6±1.9 36.7±2.1 36.9±1.7 36.3±1.9 N/A N/A 
Fe 35.3±1.7 35.2±1.8 36.0±1.7 35.7±1.8 32.5±1.7 33.3±1.9 
Pb 34.0±1.5 34.9±1.8 34.1±1.5 34.2±1.7 33.8±1.5 33.8±1.9 

 
 
2. CLAS Detector 
The measurement described in this paper was carried out using the CEBAF Large 
Acceptance Spectrometer (CLAS) (20), located in Hall-B of the Thomas Jefferson 
National Accelerator Facility (TJNAF) in Newport News, Virginia. 

CLAS is a magnetic spectrometer optimized for coincidence measurements of nuclear 
reactions with multi-particle final states. It operates with incident electron and photon 
beams at luminosities up to ∼ 1034 cm−2s−1. CLAS uses a toroidal magnetic field, 
generated by six flat super-conducting coils, and six identically instrumented detection 
sectors. These sectors are each based on three main detection sub-systems (see Fig. 2 and 
S2): 

1. Charged-particle tracking system composed of three regions of drift chambers 
(DC), consisting of 34 layers of drift cells.  The Region 1, 2, and 3 drift chambers 
are positioned between the target and the magnetic field region, in the magnetic 
field region, and after the magnetic field region, respectively. 

2. Time-Of-Flight (TOF) measurement system consisting of an array of 336 plastic 
scintillation counters, 

3. Electron/pion separation system using a set of gas threshold Cherenkov counters 
(CC) and segmented electromagnetic calorimeters (EC) divided into inner and 
outer super-layers. 

The combination of the information obtained from all detector subsystems allows for 
high-momentum particle identification and momentum reconstruction. Details on the 
particle identification scheme of CLAS are given in the following sections. The 
momentum of charged particles is extracted from the measured curvature of their 
trajectories due to the influence of the toroidal magnetic field, as determined by the DC 
system. 

The active charged particle detection region of CLAS covers about 70% of the full 4π 
solid angle. The azimuthal acceptance is maximal at polar angle of 90 degrees and 
decreases at forward and backward angles. The polar angle acceptance for hadrons such 
as protons ranges from about 8o to 140o. The polar acceptance for scattered electrons is 
limited by the coverage of the CC and EC sub-systems that extend up to 45o. 
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Fig. S2: A 3D-representation (left) and a cross-sectional image (right) of CLAS. See text 
for details. 
 
 
3.  Particle Identification 

3.1.  Electron Identification 
Electron candidates are all negatively charged tracks (determined by the CLAS tracking 
system) with good hits in the Time-Of-Flight (TOF) system, Electro-Magnetic 
Calorimeter (EC) and Cerenkov Counter (CC). Additional cuts are applied to the CC and 
EC to better define the acceptance and separate electrons from pions. The cuts applied 
are: 

• The reconstructed electron track passed through the target region. 
• The reconstructed hit position is within the EC fiducial limits, ensuring full 

containment of the electromagnetic shower, see Fig. S3. 
• More than 2.5 photo-electrons are produced in the CC, see Fig. S4. 
• More than a specified amount of energy is deposited in the inner parts of the EC, 

see Fig. S5. 
• The total energy deposited in the inner plus outer parts of the EC, divided by the 

particle momentum, exceeds a specified value, see Fig. S6. 
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Fig. S3: Fiducial region of the CLAS Electro-Magnetic Calorimeter for electron 
candidates, which pass the initial vertex cut. The axis values marks the hit location along 
the face of the EC. Black: All events. Red: After applying the fiducial cuts. Green: After 
applying the fiducial cuts and demanding xB > 1. The effect of the fiducial cuts on all the 
inner and outer edges of the EC (Red vs. Black points) is clear. 
 
 
 

 

Fig. S4: CC photo-electron detection distribution for electron candidates which pass the 
initial vertex cut and EC fiducial cuts. Black: All events. Blue: xB > 1 events (with an 
arbitrary scale factor). The peak at small values is associated with negative pions with 
momentum p < 2.8 GeV/c. The applied cut of #photo-electrons > 2.5 is shown in red. 
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Fig. S5: Energy deposited in the inner vs. outer parts of the EC. Events shown are 
electron candidates that pass the initial vertex cut, the EC fiducial cuts, and the CC photo-
electron cut. The peak at low energy deposited in the inner layer of the EC is associated 
with pions. The ECin energy cut is marked by the red line. 
 
 
 

        

Fig. S6: Momentum normalized energy deposited in the inner vs. outer parts of the EC 
for all events (left) and for xB>1 events (right). Top: Events shown are electron 
candidates that pass the initial vertex, EC fiducial, CC photo-electrons, and ECin energy 
cuts. The electron band can be seen stretching from the upper left to the lower right 
corners of the plots.  Bottom: Events that pass the mentioned cuts and the additional cut 
on (ECin + ECout)/p. 
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3.2. Proton Identification 
Two detection systems are used for proton identification: the wire-chamber based 
tracking system, and the scintillator-counter based Time-Of-Flight (TOF) system. 

Protons are identified by comparing the reconstructed momentum of positively charged 
particles, as measured by the tracking system, with their measured flight time. The 
difference between the measured TOF and that calculated using the reconstructed 
momentum and path-length, assuming the particle is a proton, is known as the “corrected 
TOF”. If the measured particle is a proton, then the corrected TOF will equal zero within 
the measurement resolution. Fig. S7 shows the corrected TOF distribution vs. momentum 
for a random sample of positively charged particles.  

For each of 50 bins in proton momentum, the corrected TOF was histogrammed and 
fitted with a Gaussian function. In order to extract a continuous parameterization, we fit 
the ±2σ values to a polynomial function of the momentum up to 2.8 GeV/c. Particles are 
identified as protons if their corrected TOF is within ±2σ of the mean as determined by 
this polynomial function, see Fig. S7. 

Fig. S8 shows the energy deposited in the TOF counters vs. momentum for protons 
selected using the procedure described above. The observed energy deposit profile is 
characteristic of protons and is evidence for the quality of the proton identification. 

 

         

Fig. S7: Corrected TOF vs. momentum for a randomly chosen sample of positively 
charged particles. Left: the full proton momentum acceptance of CLAS. Right: For the 
higher momentum region alone. The protons should be centered at Corrected TOF = 0. 
The black squares mark the  ±2σ limits for each bin for identifying protons, centered at 
Corrected TOF = 0. The red lines show the polynomial fit to the black squares, used to 
select protons for further analysis. See text for more details. 
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Fig. S8: Energy deposited in the TOF counters vs. momentum for identified protons. 
 
 
 
4. Target setup and vertex reconstruction 
The CLAS-EG2 run period used a specially designed double target, consisting of a 2 cm 
long liquid deuterium cryo-target followed by a solid-target (46). The cryo-target and the 
solid-target were separated by 4 cm and were both kept simultaneously in the beam-line. 
A special control system allowed changing between six different solid targets (thin and 
thick Al, Sn, C, Fe, and Pb, all in natural abundance) during the experiment, see Fig. S9. 
This double target setup was meant to allow a precise comparison of scattering off 
medium and heavy nuclei relative to deuterium for Hadronization and Color 
Transparency studies. Table S4 lists the physical characteristics of the different solid 
targets. The density of the solid targets was chosen to be about the same as the deuterium 
target, except the Pb target due to background considerations. The main data collected 
during the experiment was for a target configuration of deuterium + C, Fe, and Pb. The 
data analyzed here is for scattering from the solid targets alone and also includes data 
from Al runs with an empty cryo-target cell. 

Electrons and protons scattering from the solid target were selected using vertex cuts. 
Figs S10 and S11 show the reconstructed vertex distribution of electrons and protons as 
detected in different sectors of CLAS. The red lines mark the regions used to define the 
cryo-target and the solid-target. The small bump observed between the solid and cryo-
target target is due to a reference foil placed 2 cm downstream the cryo-target. The vertex 
distributions shown are corrected for beam misalignment effects that add a systematic 
(sector dependent) angular dependence to the reconstructed vertex. As can be seen, the 
corrected vertex distributions from all sectors agree for the different target locations. Fig 
S10 also shows agreement between the reconstructed vertex for all events and for xB>1 
events alone. The latter corresponds to higher electron momenta and smaller scattering 
angles. 

Fig S12 shows the vertex reconstruction resolution extracted from a Gaussian fit to the 
corrected vertex distribution in the solid target region. The effect of the scattering angle 
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on the resolution is removed by multiplying the observed resolution with the sine of the 
particle scattering angle. This is equivalent to extracting the resolution at 90o. The 
observed decrease in the resolution at low momentum is due to multiple scattering. As 
can be seen, even at the smallest electron and proton momentum and scattering angles 
(15o and 20o respectively), the vertex resolution is good enough to separate the targets 
which are 4 cm apart. 

 

 

 

Fig. S9: The EG2 target. The red square shows the center of the LD2 target cell. The blue 
square shows the solid target. The red arrow marks the approximate beam direction. As 
can be seen, the beam passes throughout both targets simultaneously. 
 
 

Table S4: The physical characteristics of the different solid targets used during the EG2 
run period. Note that all targets are natural isotopic abundance 

Target Radius 
[cm] 

Thickness 
[mm] 

Thickness 
[g/cm2] 

Radiation 
Length 

C 0.15 1.72 0.300 0.009 
Al (thin) 0.15 1.5x10-3 ~0 ~0 
Al thick 0.15 0.58 0.156 0.007 

Fe 0.15 0.4 0.315 0.023 
Sn 0.15 0.31 0.228 0.026 
Pb 0.15 0.14 0.159 0.025 
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Fig. S10: The corrected electron vertex distribution for each sector separately (solid 
colored lines) and for all sectors combined (dashed black line). All distributions are 
normalized to the same number of events. The solid red lines show the software cut 
defining the region of the solid and liquid targets. The small bump in between the two 
targets is due to a reference foil placed 2 cm downstream the cryo-target. 
 
 

 

Fig. S11: Same as Fig S12 for protons. 
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Fig. S12: Vertex reconstruction resolution for electrons and protons as a function of their 
momentum. The effect of the scattering angle on the resolution was removed by 
multiplying the vertex distribution by sin(θ). The red line is a fit to the resolution as a 
function of the momentum. 
 
 
 
5.  Event Selection and Characterization 

5.1. Selection of A(e,e’p) events 
To identify events where the electron scattered from a pn- or pp- SRC pair in the nuclear 
ground state, one must work in a kinematic regime in which competing processes are 
suppressed. Such processes include: Meson Exchange Currents (MEC), Isobar 
Configurations (IC), and Final State Interactions (FSI). Fig S13 shows the different 
Feynman diagrams associated with these reaction channels. In the figure, the bottom left 
diagram describes FSI between the nucleons in the SRC pair and bottom Right diagram 
describes FSI with the A-2 system. Notice that the FSI within the SRC pair conserve its 
nucleonic composition and c.m. momentum. In what follows (except if mentioned 
otherwise) FSI refers to the process described in the bottom right diagram. 

The amplitude of the MEC diagram decreases faster then the SRC one by a factor of 
1/Q2. Additionally, for a given value of four-momentum transfer Q2, IC are suppressed in 
the xB = Q2/(2mpω) > 1 region. An added advantage of measuring at large-Q2 is that the 
struck (leading) proton has high momentum (|Plead| > 1 GeV/c), and one can use the 
Glauber approximation to evaluate the contribution of FSI.  

To simultaneously minimize both FSI and IC, we choose xB>1, large-Q2, anti-parallel 
kinematics, in which the initial momentum of the struck proton is directed opposite (anti-
parallel) to the virtual photon (i.e., to the transferred momentum). In such kinematics, 
after absorbing the virtual photon, the struck proton is emitted in the same direction as the 
virtual photon, but with smaller momentum. See (47,13) and references within. 

We used the following cuts to select A(e,e’p) events that are dominated by scattering off 
2N-SRC pairs (9,48): 
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1. xB >  1.2, 
2.  300 <  |


Pmiss |  <1000  MeV/c, 

3. θpq < 25o, 
4.  0.62 <  |


P | / | q |  < 0.96 and 

5. mmiss < 1.1 GeV/c2, 
where  


Pmiss =


P − q  is the initial (missing) momentum of the leading proton and 

 mmiss
2 = [(q,ω )+ (


0,md )− (


P,Ep )]

2 is the missing mass of the reaction assuming scattering 
off a stationary nucleon pair. md is the deuteron mass and Ep is the proton final energy, 

 
Ep =


P2 +mp

2 . Cuts (2-5), and mainly cut (1), together with the CLAS acceptance are 
sufficient to obtain large Q2, i.e. largely > 1.5 GeV/c2, with a small tail extending down to 
~1.3 GeV/c2 (see Fig. S15). Cut (2) selects scattering off high initial-momentum protons 
(21). Cuts (3) and (4) are used to select the leading protons of the reaction (see details 
below) and cut (5) is used to further suppress pion production and isobar contribution. 

Protons knocked out of the nucleus with high momentum and a small angle with respect 
to the momentum transfer vector,  

q , are more likely to be the ones struck by the virtual 
photon. Fig. S16 shows the relative angle between the virtual photon and the detected 
proton (θpq) vs. the ratio between the detected proton momentum and the momentum 
transfer,  |


P | / | q | . This plot includes only A(e,e’p) events that pass the kinematical cuts 

described above (xB > 1.2 and  300 <  |

Pmiss |  <1000 MeV/c). To select these struck (i.e., 

leading) protons, we cut on θpq < 25o and  0.62 <  |

P | / | q |  < 0.96 . 
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Fig. S13: Feynman diagrams of the different possible reaction channels, leading to a two-
nucleon final state. The γ *  indicates the virtual photon that carries the momentum and 
energy transferred from the electron to the proton.  The double line indicates an excited 
state of the proton, the dashed line indicates a meson, and the ellipse indicates an 
interaction between two nucleons.  See text for details. The difference between the two 
FSI diagrams shown is that one entails FSI between the nucleons of the pair  (left 
diagram) and the other FSI of uncorrelated nucleons (right diagram). 
 

 
Fig. S14: The relative angle between the detected proton and the momentum transfer 

q  
vs. the ratio of the detected proton momentum and the momentum transfer,  |


P | / | q | . 

Only C(e,e′p) events with xB > 1.2 and 300 ≤ |Pmiss| ≤ 1000 MeV/c are shown. The red 
box shows the cut applied to select leading protons. 
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Fig. S15: xB and Q2 distributions for the selected C(e,e’pp) events (solid black) and 
C(e,e’p) (dashed red) events, normalized according to the number of C(e,e’pp) events. 
Within statistical uncertainties the distributions agree and the detection of the additional, 
recoil, proton in the C(e,e’pp) case does not bias the distribution. 
 
 

      

Fig. S16: Same as Fig. S15 for the momentum and angle distribution of the leading 
proton. 
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5.2.  Selection of A(e,e’pp) events 
A(e,e′pp) events are defined as A(e,e’p) events with an additional “recoil” proton 
detected with momentum  |


Precoil | > 350  MeV/c, the threshold for efficient proton 

detection in the CLAS. There were no A(e,e’pp) events in which both protons passed the 
leading proton selection cuts described above. 

 
5.3.  Characterization of the A(e,e’p) and A(e,e’pp) events 

The kinematical distributions for C(e,e’p) and C(e,e’pp) events that pass the event-
selection cuts described above are shown below (Fig S15 to S18). Equivalent 
distributions were obtained for the other nuclei, see section 2.4.4. 
 
The missing energy distributions presented in Fig S20 are defined as: 
Eq. S4 

Emiss =ω − KEp
lead − KEA−1

E2miss =ω − KEp
lead − KEp

recoil − KEA−2

, 

where ω is the energy transferred by the virtual photon, KEp
lead  and KEp

recoil  are the 
measured leading and recoil proton kinetic energies, and KEA−1  and KEA−2  are the 
reconstructed (small) kinetic energies of the undetected recoiling ( A −1 ) and ( A − 2 ) 
nuclei. 

Fig. S19 shows the angular distribution of the recoil proton relative to the missing 
momentum of the leading proton. The data show a strong backward peak. In the absence 
of FSI, this angle equals the opening angle of the two protons in the initial state. To 
ensure that this distribution is due to the measured reaction and not to the CLAS 
acceptance and our event selection cuts, we also examine the opening angle distribution 
of two protons from mixed events, i.e. the opening angle distribution of events where the 
leading and recoil proton are taken from two different events that pass the cuts. This 
distribution is shown by the dashed line in Fig. S19. As can be seen, the data is far more 
backward-peaked than the mixed-events. We note that a mixed-event sample in which 
events were only mixed within the same electron kinematics bin (xB and Q2) gave the 
same result, for each bin separately, as the full mixing shown here. 

This distribution is a strong signature for pp-SRC pairs (49), providing the first 
observation of pp-SRC pair knockout from nuclei heavier than carbon. In the absence of 
FSI, the width of the distribution is due to the center-of-mass motion of the pp-SRC pairs. 
This motion is predicted to depend only weakly on A (40,49).  FSI, which increase 
strongly with A, would broaden this backwards peak. The width of the backwards peak is 
similar for all nuclei.  This is consistent with the weak A dependence of the pp-SRC c.m. 
momentum distribution and it is inconsistent with FSI. We note that the c.m. momentum 
reconstruction resolution was estimated from exclusive d(e,e’ppπ-) measurements to be 
about 20 MeV/c. This has a negligible effect of ~2% on the measured width of the c.m. 
momentum distribution. 
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Fig. S20 shows the opening angle of the recoil proton,  

Precoil  and the momentum transfer, 

 
q . This distribution peaks between 30o and 50o. Knockout of the leading proton followed 
by a collision (FSI) with the second proton would produce a peak at around 70o – 90o 
(depending on q). This is further evidence that the two protons came from knockout of 
one proton and emission of its correlated partner, rather than from knockout of one 
proton followed by final state rescattering.  

To fully characterize the kinematics of the measured reaction, Fig S21 shows the angular 
distribution of the missing momentum of the leading proton and the momentum transfer 
vector. As can be seen, this distribution also peaks at large backward angles (~150o), 
evidence of the anti-parallel nature of our kinematics. 

 

 

Fig. S17: Same as Fig. S15 for the missing momentum distribution. Note that in the case 
of 12C(e,e’pp), the missing momentum shown is calculated in the same way as that of the 
12C(e,e’p) reaction, and is calculated using the leading proton of the event: 

 
!pmiss =

!pleading −
!q . See text for details. 
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Fig. S18: Missing energy distribution for C(e,e’p) (left) and C(e,e’pp) (right) events. The 
non-physical tail at Emiss < 0 is due to the experimental resolution. 
 

 

Fig. S19: The distribution of the cosine of the recoil proton angle relative to the missing 
momentum of the leading proton for C. The insert shows the distribution for other nuclei 
(Al, Fe, and Pb). The dashed red line is the distribution of the random phase-space 
extracted from mixed-events. See text for details. 
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Fig. S20: The relative angle of the momentum transfer vector and the recoil proton. See 
text for details. 
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Fig. S21: The relative angle of the momentum transfer vector and the missing momentum 
of the leading proton. See text for details. 
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5.4.  Kinematical distribution from different targets 
Fig S22 to S26 show the electron (xB, Q2) and proton (θp, |P|) kinematics for (e,e’p) and 
(e,e’pp) events from C (Black), Al (Red), Fe (Green), and Pb (Blue). Within statistical 
uncertainties the kinematical distributions for all targets are consistent. 

 

   

Fig. S22: The electron kinematics (xB and Q2) for A(e,e’p) events from all measured 
nuclei: C (Black), Al (Red), Fe (Green), and Pb (Blue), normalized to the same number 
of events. 

 
 

    

Fig. S23: The leading proton kinematics (|P| and θ) for A(e,e’p) events from all measured 
nuclei: C (Black), Al (Red), Fe (Green), and Pb (Blue). 
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Fig. S24: The electron kinematics (xB and Q2) for A(e,e’pp) events from all measured 
nuclei: C (Black), Al (Red), Fe (Green), and Pb (Blue). 
 
 

    

Fig. S25: The leading proton kinematics (|P| and θ) for A(e,e’pp) events from all 
measured nuclei: C (Black), Al (Red), Fe (Green), and Pb (Blue). 
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Fig. S26: The recoil proton kinematics (|P| and θ) for A(e,e’pp) events from all measured 
nuclei: C (Black), Al (Red), Fe (Green), and Pb (Blue). 
 
 

6. Analysis and Results  
6.1. Extraction of the cross section double-ratio  

The extraction of the A(e,e’p)/C(e,e’p) and A(e,e’pp)/C(e,e’pp) cross-section ratios and 
the [A(e,e’p)/C(e,e’p) ] / [ A(e,e’pp)/C(e,e’pp) ] cross-section double-ratio from the 
measured yields (number of events), requires three corrections: 

1. Detector acceptance corrections, 
2. Radiative corrections, 
3. Overall normalization corrections for target density and accumulated beam 

charge. 
Acceptance correction. As the momentum density for all target nuclei has the same shape 
at high momentum (10,11), and because during the experiment all solid targets were held 
in the same location, the detector instantaneous rate was kept constant, and the 
kinematics of the measured events from all target nuclei are identical (see Figs S22 – 
S26), detector acceptance effects cancel in each of the A(e,e’p)/C(e,e’p) and 
A(e,e’pp)/C(e,e’pp) cross section ratios. 

Radiative corrections. Due to the large acceptance of CLAS, radiative effects affect 
mainly the electron kinematics. Such corrections were previously calculated (21) for the 
extraction of the A(e,e’p)/C(e,e’p) cross section ratio. As the electron kinematics are the 
same for the A(e,e’p) and A(e,e’pp) reactions (see Fig S15), the same corrections are 
used in the extraction of the A(e,e’pp)/C(e,e’pp) cross-section ratio and therefore cancel 
in the extraction of the A(e,e’p)/C(e,e’p) / A(e,e’pp)/C(e,e’pp) cross-section double-ratio. 

Target density and beam charge corrections. The A(e,e’p) and A(e,e’pp) reactions were 
measured simultaneously and therefore the target density and accumulated beam charge 
cancels in the double-ratio. 
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Summary: 
1. Extraction of the A(e,e’p)/C(e,e’p) and A(e,e’pp)/C(e,e’pp) cross-section ratios 

requires radiative corrections and normalization corrections, accounting for the 
target density and accumulated beam charge. The latter was measured by a 
Faraday Cup downstream of the beam line.  

2. The extraction of the A(e,e’p)/C(e,e’p) / A(e,e’pp)/C(e,e’pp) cross-section 
double-ratio does not require any corrections as these cancel in the double ratio. 
Therefore the cross-section double ratio equals the measured yield double ratio. 

 
Fig. S27 shows the A dependence of the measured A(e,e’p)/C(e,e’p) (21) and 
A(e,e’pp)/C(e,e’pp) cross section ratio. The inclusive A(e,e’)/C(e,e’) cross section ratio, 
measured at large-Q2 and xB>1.5 (11), is also shown for completeness. The latter was not 
measured for Fe/C and Pb/C but instead for Cu/C and Au/C. We also show absolute cross 
section ratios, instead of per-nucleon ratios reported in Ref. (11). The measured ratios are 
listed in Table S5. The uncertainty on the (e,e’p) cross-section ratio includes statistical 
uncertainty and cut sensitivity uncertainty as detailed in Ref. (21). The uncertainty on the 
(e,e’pp) cross-section ratio is dominated by statistics but also includes 4% systematical 
uncertainty mainly due to momentum corrections. 

Fig. S28 (Table S6) shows (lists) the missing momentum dependence of the A/C 
(e,e’p)/(e,e’pp) cross section double ratio. We note that for both single- and double-
proton final state the missing momentum is obtained from the (e,e’p) reaction using the 
leading proton of the event. The errors shown are statistical alone. The dashed red line 
shows the result of a fit to a constant. As can be seen, within statistical uncertainties, the 
cross section double ratio is independent of the missing momentum over the range of 
~300 to 900 MeV/c. We note that a linear fit did not yield an improved agreement with 
the data and results in a slope parameter consistent with zero. 

 
Fig. S27: The A dependence of the measured (e,e’), (e,e’p) and (e,e’pp) cross section 
ratios for nuclei relative to Carbon. The (e,e’) ratios are taken from (8). The lines are fit 
to a power law in the form of σA/σC ∝(A/12)α which result in α = 1.03±0.01 for (e,e’), 
0.72±0.02 for (e,e’p), and 0.52±0.03 for (e,e’pp). 
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Fig. S28: The missing momentum dependence of the A/C (e,e’p)/(e,e’pp) double ratio. 
The dashed red lines are the result of a fit to a constant. Errors shown are statistical only. 
 
 

Table S5: The measured (e,e’), (e,e’p) and (e,e’pp) cross section ratio for nuclei relative 
to Carbon. See text for details. 

A C Al Fe Pb 
 

A(e,e’) / C(e,e’) (11) 
 

1 
 

N/A 
 

5.13 ± 0.25 
[Cu/C] 

17.7 ± 0.9  
[Au/C] 

A(e,e’p) / C(e,e’p) 1 1.9 ± 0.08 3.0 ± 0.2 7.2 ± 0.8 
A(e,e’pp)/C(e,e’pp) 1 1.8 ± 0.2 2.4 ± 0.2 3.8 ± 0.6 
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Table S6: The missing momentum dependence of the A/C (e,e’p)/(e,e’pp) double ratio. 
Momentum values listed represent bin centers, which are each ±25 MeV/c wide. See text 
for details. 

pmiss Al/C Fe/C Pb/C 
325 1.38 ± 0.37 2.02 ± 0.54 X 
375 1.03 ± 0.27 0.65 ± 0.17 4.93 ± 1.30 
425 1.51 ± 0.23 2.50 ± 0.38 1.40 ± 0.22 
475 0.84 ± 0.11 1.51 ± 0.19 6.18 ± 0.82 
525 1.23 ± 0.14 1.73 ± 0.19 2.32 ± 0.27 
575 1.02 ± 0.13 1.07 ± 0.13 1.70 ± 0.22 
625 0.69 ± 0.09 1.30 ± 0.17 1.61 ± 0.22 
675 1.14 ± 0.17 1.37 ± 0.18 1.53 ± 0.22 
725 1.48 ± 0.24 1.34 ± 0.19 2.28 ± 0.38 
775 2.22 ± 0.51 1.02 ± 0.22 1.85 ± 0.44 
825 0.82 ± 0.22 1.54 ± 0.35 1.91 ± 0.49 
875 0.81 ± 0.32 1.16 ± 0.37 3.88 ± 1.58 

 

 

6.2. Glauber Calculations 
To extract information on the characteristics of SRCs in nuclei, the measured cross 
section must be corrected for Final-State Interaction (FSI) effects. These include Nuclear 
Transparency and Single Charge Exchange (SCX). 

Nuclear Transparency (T) is the probability that a knocked out proton escapes the nucleus 
without further interaction. 

Single-Charge Exchange is the probability that a struck neutron elastically scatters off a 
proton on its way out of the nucleus, leading to the detection of the proton in the final 
state. 

These probabilities are calculated within a Glauber approximation according to (22), 
using effective cross-sections, as described below. 

 
6.2.1.  A(e,e’p) 

Within the Glauber approximation the probability that a proton escapes the nucleus 
without further interaction is given by: 
Eq. S5 

Tp =
1
A

ρ r( )exp −σ eff ρ r( )z
^
dl∫{ }∫ d3r,

 
where A is the nuclear mass number, ρ r( )  is the nuclear density distribution function, 
and σ eff  is the effective nucleon-nucleon cross section. We use the same procedure as in 
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Ref. (50), but following (21,23) we use world data on (e,e’p) nuclear transparency with 
no SRC corrections applied. Therefore, the resulting effective cross sections obtained for 
leading and recoil protons with final momenta in the range of 1 – 2 GeV/c and ~600 
MeV/c are 37 ± 7 mb and 22 ± 5 mb respectively, slightly different from the values 
shown in Table III of Ref. (50). The uncertainty of the effective cross sections was 
chosen to equal 20%, which ensures full reproduction within uncertainties of the world-
data transparency measurements on all measured nuclei. These uncertainties are larger 
than the 10-15% uncertainties quoted in Ref. (50). 

The calculated nuclear transparencies for single-nucleon knockout from C, Al, Fe, and Pb 
are listed in Table S7. The uncertainty of the calculated transparency is due to the 
uncertainty in the effective nucleon-nucleon cross section used in the calculation (see 
above). 

Table S7: The calculated nuclear transparency and SCX probabilities. The calculations 
were performed within a Glauber approximation using effective cross sections. The 
uncertainty of the calculations represents a 1σ uncertainty resulting from an assumed 
20% uncertainty on the transparency cross-sections and 100% on the SCX cross-section. 

A C Al Fe Pb 
Tp 0.53 ± 0.05 0.43 ± 0.05 0.34 ± 0.04 0.22 ± 0.03 
Trecoil 0.65 ± 0.05 0.56 ± 0.06 0.47 ± 0.06 0.33 ± 0.05 
Tpp 0.44 ± 0.04 0.35 ± 0.04 0.26 ± 0.03 0.16 ± 0.02 
PSCX 0.02 ± 0.02 0.03 ± 0.03 0.04 ± 0.04 0.07 ± 0.06 

 
 
 

6.2.2.  A(e,e’pp) 
Similarly to Eq. S5, the nuclear transparency for two-proton knockout reactions is given 
by: 
Eq. S6 

Tpp =
1
A

ρ r( )exp −σ eff
leading ρ r( )z

^
dl∫{ }exp −σ eff

recoil ρ r( )n
^
dl∫{ }d 3r∫ ,

 
where σ eff

leading  and σ eff
recoil  are effective nucleon-nucleon cross sections for high and low 

momentum protons.  This takes into account the spatial correlation of the two outgoing 
protons. 
The combined nuclear transparencies for both the leading and recoil protons (Tpp) 
emerging from C, Al, Fe, and Pb are also listed in Table S7. As expected, the conditioned 
transparency for two-nucleon knockout is larger than that for the independent knockout 
of two nucleons, i.e. Tpp < Tp1 × Tp2. The uncertainty on the calculated transparency is 
due to the uncertainty in the effective nucleon-nucleon cross sections used in the 
calculation. 
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6.2.3.  Single Charge Exchange 
The SCX probability is defined as PSCX = 1−TSCX  where TSCX is defined by Eq. S5 and is 
calculated using a cross section of 1±1 mb (24). As there are no modern measurements of 
the SCX cross section available we apply a large uncertainty of 100% on its value. 
The calculated SCX probabilities for neutron knockout from C, Al, Fe, and Pb are also 
listed in Table S7.  
 
 

6.3. Extraction of np/pp SRC pairs ratio 
6.3.1. Formalism 

In the kinematics of this measurement, assuming scattering off 2N-SRC pairs (9,48) with 
no FSI, the A(e,e’p) and A(e,e’pp) cross sections can be expressed as a function of the 
number of NN-SRC pairs in the nucleus and the electron-proton cross section: 
Eq. S7 

A e,e ' pp( )∝ # ppA ⋅2σ p

A e,e ' p( )∝ # ppA ⋅2σ p + #npA ⋅σ p

,

 
where #ppA and #npA are the number of proton-proton and proton-neutron pairs in 
nucleus A and σ p  is the electron-proton cross section.  

Taking FSI effects into account requires correcting Eq. S7 for the probability that the 
proton(s) in the reaction escape the nucleus (their nuclear transparency) and/or undergo 
Single-Charge Exchange (SCX). Written in terms of these quantities the cross sections 
are given by: 
Eq. S8 

A e,e ' pp( )∝ # ppA ⋅2σ p ⋅Tpp
A + #npA ⋅σ n ⋅PSCX

A Trecoil
A

                 = # ppA ⋅2σ p ⋅ Tpp
A + 1

2
#npA
# ppA

⋅σ n

σ p

⋅PSCX
A Trecoil

A⎛

⎝⎜
⎞

⎠⎟

A e,e ' p( )∝ # ppA ⋅2σ p ⋅Tp
A + #npA ⋅ σ p ⋅Tp

A +σ n ⋅PSCX
A( )+ #nnA ⋅2σ n ⋅PSCX

A

               = # ppA ⋅2σ p ⋅ Tp
A + 1
2
#npA
# ppA

⋅ Tp
A + σ n

σ p

⋅PSCX
A⎛

⎝⎜
⎞

⎠⎟
+ #nnA
ppA

⋅σ n

σ p

⋅PSCX
A

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,   

where Tp  Trecoil( )  is the leading (recoil) proton transparency, Tpp  is the joint two-proton 
transparency and PSCX  is the probability that a struck neutron undergo SCX and be 
detected as a proton (see Table S7). σ n  is the electron-neutron cross section.   
 
Within the formalism of Eq. S8, the measured (e,e’p)/(e,e’pp) double cross section ratio 
for nucleus A relative to Carbon, R, is given by: 
Eq. S9 
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A e,e ' p( )
A e,e ' pp( )
C e,e ' p( )
C e,e ' pp( )

=

A e,e ' p( )
C e,e ' p( )
A e,e ' pp( )
C e,e ' pp( )

=

Tp
A + 1
2
#npA
# ppA

⋅ Tp
A + σ n

σ p

⋅PSCX
A⎛

⎝⎜
⎞

⎠⎟
+ #nnA
ppA

⋅σ n

σ p

⋅PSCX
A

Tp
C + 1

2
#npC
# ppC

⋅ Tp
C + σ n

σ p

⋅PSCX
C⎛

⎝⎜
⎞

⎠⎟
+ #nnC
ppC

⋅σ n

σ p

⋅PSCX
C

Tpp
A + 1

2
#npA
# ppA

⋅σ n

σ p

⋅PSCX
A Trecoil

A

Tpp
C + 1

2
#npC
# ppC

⋅σ n

σ p

⋅PSCX
C Trecoil

C

.  

 
Using Eq. S9 one can express the double ratio of np/pp SRC pairs in nucleus A to Carbon 
as in terms of the measured cross section double ratio R: 
Eq. S10 

#npA
# ppA

= 2

−R ⋅ #nnC
ppC

⋅ σ n

σ p

⋅PSCX
C ⋅Tpp

A − R ⋅Tp
C ⋅Tpp

A + #nnA
ppA

⋅ σ n

σ p

⋅PSCX
A ⋅Tpp

C +Tp
A ⋅Tpp

C +

1
2
#npC
# ppC

−R ⋅Tpp
A ⋅ σ n

σ p

⋅PSCX
C +Tp

C⎛

⎝⎜
⎞

⎠⎟
+ σ n

σ p

⋅PSCX
C ⋅Trecoil

C ⋅ #nnA
ppA

⋅ σ n

σ p

⋅PSCX
A +Tp

A⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

σ n

σ p

⋅PSCX
A

−Tpp
C + RTrecoil

A #nnC
ppC

+ 1
2
#npC
# ppC

⎛
⎝⎜

⎞
⎠⎟
σ n

σ p

⋅PSCX
C +Tp

C + 1
2
#npC
# ppC

Tp
C⎛

⎝⎜
⎞

⎠⎟

− 1
2
#npC
# ppC
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C

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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−

Tp
A Tpp

C + 1
2
#npC
# ppC

σ n

σ p

⋅PSCX
C ⋅Trecoil

C⎛

⎝⎜
⎞

⎠⎟
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⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
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⎥

,  

 

The np/pp SRC pair ratio in Carbon was previously measured as 18±5 (9). The nuclear 
transparencies and SCX probabilities were calculated within a Glauber approximation 
and are given in Table S7. Isospin symmetry implies that the nn/pp ratio equals unity in 
symmetric nuclei. However it is unknown for asymmetric nuclei. Because the final result 
is largely insensitive to the contribution from the nn pairs to the measured cross section, 
we will vary the nn/pp ratio in asymmetric nuclei from one to five times the 
combinatorial value of N(N-1)/Z(Z-1). 

We extract the fraction of np- and pp-SRC pairs of the sum of pp- and np-SRC pairs : 
Eq. S11 

#np
#np + # pp

= 1
1+ # pp / #np

,

# pp
#np + # pp

= 1
1+ #np / # pp

,
 

for Al, Fe, and Pb. These are listed in Table S8. The extraction was done using the 
nuclear transparency and SCX correction factors listed in Table S7, the measured A/C 
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(e,e’pp)/(e,e’p) cross section double ratios listed in Table S5, an electron-proton to 
electron-neutron cross-section ratio of 2.5±0.5 (51) and a nn/pp ratio equal to its 
combinatorial value of N(N-1) / Z(Z-1). 
The uncertainties listed in Table S5 represent a 68% confidence level resulting from 
uncertainties in the input parameters presented above (see next section for details). In the 
paper we also show the 95% confidence level of the extraction fractions. In the analysis 
presented above we assumed that 100 ±15%  of the A(e,e’p) strength originates from 
scattering off 2N-SRC pairs as measured in Ref. (9). This uncertainty was also taken into 
account and is included in the final results shown in Fig. 3 of the paper and Table S5. 
 
 

6.3.2. Uncertainty estimate using Monte-Carlo calculations 
To estimate the uncertainty on the extracted np- and pp- SRC pairs fractions resulting 
from the uncertainty on the input parameters, we calculate its Probability Density 
Function (PDF). The PDF results from repeated calculations of the np- and pp-SRC pair 
fractions using randomly generated input parameters. The latter are raffled from Gaussian 
distributions centered on the ‘known’ values of each input parameter, with a width equal 
to its uncertainty. These include all parameters used in Eq. S9 and S10 and the measured 
cross-section double ratio, see discussion after Eq. S10. 

Fig. S29 and S30 show the resulting PDFs of the extracted np- and pp-SRC pairs 
fractions in Al, Fe, and Pb, respectively. The solid lines show the median values of the 
PDF distributions and the fine and coarse dashed lines show the 68% and 95% 
confidence regions around the median, respectively.  

 

Table S8: The extracted fraction of np-SRC and pp-SRC pairs of the sum of pp and np 
pairs in different nuclei. See text for details. 

Nuclei C Al Fe Pb 
#np/(#np+#pp) 0.947−0.014

+0.014  0.949−0.033
+0.022  0.959−0.031

+0.023  0.984−0.033
+0.036  

#pp/(#np+#pp) 0.052−0.014
+0.014  0.051−0.022

+0.033   0.041−0.023
+0.031  0.014−0.034

+0.035  
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Fig. S29: The PDF distribution of the fraction of np-SRC pairs of the sum of pp and np 
pairs in Pb (top Right), Fe (top left), and Al (bottom left). The solid red line marks the 
median value while the fine and coarse dashed red lines mark the regions of 68% and 
95% confidence level, respectively. See text for details. 
 

      

 
Fig. S30: Same as Fig S29, for the fraction of pp-SRC pairs. 
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The atomic nucleus is composed of two different kinds of fermions: protons and neutrons.
If the protons and neutrons did not interact, the Pauli exclusion principle would force the
majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy
electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even
in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated
high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater
probability than neutrons to have momentum greater than the Fermi momentum. This finding
has implications ranging from nuclear few-body systems to neutron stars and may also be
observable experimentally in two-spin–state, ultracold atomic gas systems.

M
any-body systems composed of interacting
fermions are common in nature, ranging
from high-temperature superconductors
and Fermi liquids to atomic nuclei, quark
matter, and neutron stars. Particularly

intriguing are systems that include a short-
range interaction that is strong between unlike
fermions and weak between the same type of
fermions. Recent theoretical advances show that
even though the underlying interaction can be
very different, these systems share several uni-
versal features (1–4). In all of these systems, this
interaction creates short-range–correlated (SRC)
pairs of unlike fermions with a large relative mo-
mentum (krel > kF) and a small center-of-mass
momentum (ktot < kF), where kF is the Fermi
momentum of the system. This pushes fermions
from low momenta (k < kF, where k is the fer-

mion momentum) to high momenta (k > kF),
creating a “high-momentum tail.”
In atomic nuclei, SRC pairs have been studied

using many different reactions, including pick-
up, stripping, and electron and proton scattering.
The results of these studies highlighted the im-
portance of correlations in nuclei, which lead to a
high-momentum tail and decreased occupancy
of low-lying nuclear states (5–13).
Recent experimental studies of balanced (sym-

metric) interacting Fermi systems, with an equal
number of fermions of the two kinds, confirmed
these predictions of a high-momentum tail pop-
ulated almost exclusively by pairs of unlike fer-
mions (8–11, 14–16). These experimentswere carried
out using very different Fermi systems: protons
and neutrons in atomic nuclei and two-spin–state,
ultracold atomic gases. These systems span more

than 15 orders of magnitude in Fermi energy
from 106 to 10−9 eV and exhibit different short-
range interactions [predominantly a strong ten-
sor interaction in the nuclear systems (8, 9, 17, 18)
and a tunable Feshbach resonance in the atomic
system (14, 15)]. For cold atoms, Tan (1–3) showed
that the momentum density decreases as C/k4

for large k. The scale factor, C, is known as Tan’s
contact and describes many properties of the
system (4). Similar pairing of nucleons in nuclei
with k > kF was also predicted in (19).
In this work, we extend these previous studies

to imbalanced (asymmetric) nuclear systems,with
unequal numbers of the different fermions.When
there is no interaction, the Pauli exclusion prin-
ciple pushes the majority fermions (usually neu-
trons) to a higher averagemomentum. Including
a short-range interaction introduces a new uni-
versal feature: the probability for a fermion to have
momentum k> kF is greater for theminority than
for themajority fermions. This is because the short-
range interaction populates the high-momentum
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tail with equal numbers of majority and minority
fermions, thereby leaving a larger fraction of majo-
rity fermions in low-momentumstates (k< kF) (see
Fig. 1). In neutron-rich nuclei, this increases the
average protonmomentumandmay even result in
protons having higher average momentum than
neutrons, inverting the momentum sharing in im-
balanced nuclei from that in noninteracting sys-
tems. Theoretically, this can happen because of
the tensor part of the nucleon-nucleon interac-
tion, which creates predominantly spin-1, isospin-
0 neutron-proton (np) SRC pairs (17, 18).

Here we identify SRC pairs in the high-
momentum tail of nuclei heavier than carbonwith
more neutrons (N) than protons (Z) (i.e., N > Z).
The data show the universal nature of SRC pairs,
which even in lead (N/Z = 126/82) are still pre-
dominantly np pairs. This np-pair dominance
causes a greater fraction of protons than neutrons
to have high momentum in neutron-rich nuclei.
The data presented here were collected in 2004

in Hall B of the Thomas Jefferson National Ac-
celerator Facility using a 5.014-GeV electron beam
incident on 12C, 27Al, 56Fe, and 208Pb targets. We

measured electron-induced two-proton knockout
reactions (Fig. 2). The CEBAF Large Acceptance
Spectrometer (CLAS) (20) was used to detect the
scattered electron and emitted protons. CLAS uses
a toroidal magnetic field and six independent
sets of drift chambers, time-of-flight scintillation
counters, Cerenkov counters, and electromag-
netic calorimeters for charged-particle identifi-
cation and trajectory reconstruction (Fig. 2) (16).
We selected events in which the electron in-

teracts with a single fast proton from an SRC pair
in the nucleus (9, 16) by requiring a large four-
momentumtransferQ2 ¼ q→2−ðw=cÞ2 > 1:5 GeV2/c2

[where q→ and w are the three-momentum and
energy, respectively, transferred to the nucleus
and c is the speed of light] and Bjorken scaling
parameter xB ¼ Q2=ð2mN ⋅ wÞ > 1:2 (wheremN

is the nucleonmass). To ensure selection of events
in which the knocked-out proton belonged to
an SRC pair, we further required missing mo-
mentum 300 < jp→missj < 600 MeV/c, where
p→miss ¼ p→p − q→ with p→p the measured proton
momentum. We suppressed contributions from
inelastic excitations of the struck nucleon by lim-
iting the reconstructed missing mass of the two-
nucleon systemmmiss < 1.1 GeV/c2. In each event,
the leading proton that absorbed the transferred
momentum was identified by requiring that its
momentum p→p is within 25° of q→ and that
jp→pj=jq

→j ≥ 0:6 (16, 21).
When a second proton was detected with mo-

mentum greater than 350 MeV/c, it was emitted
almost diametrically opposite to p→miss (see fig. S19).
The observed backward-peaked angular distribu-
tions are very similar for all four measured

SCIENCE sciencemag.org 31 OCTOBER 2014 • VOL 346 ISSUE 6209 615

Fig. 2. Illustration of the CLAS detector with
a reconstructed two-proton knockout event.
For clarity, not all CLAS detectors and sectors
are shown.The inset shows the reaction in which
an incident electron scatters fromaproton-proton
pair via the exchange of a virtual photon. The
human figure is shown for scale.

Fig. 1. Schematic
representation
of the momentum
distribution, n(k), of
two-component
imbalanced Fermi
systems. Red and blue
dashed lines show the
noninteracting system,
whereas the solid
lines show the effect of
including a short-range
interaction between
different fermions.
Such interactions create
a high-momentum tail
(k > kF, where kF is the
Fermi momentum of
the system). This is
analogous to a dance
party with a majority of girls, where boy-girl interactions will make the average boy dance more than the
average girl.
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nuclei. This backward peak is a strong signature
of SRC pairs, indicating that the two emitted
protons were largely back-to-back in the initial
state, having a large relative momentum and a
small center-of-mass momentum (8, 9). This is a
direct observation of proton-proton (pp) SRC
pairs in a nucleus heavier than 12C.
Electron scattering fromhigh–missing-momentum

protons is dominated by scattering from protons
in SRC pairs (9). The measured single-proton
knockout (e,e′p) cross section (where e denotes
the incoming electron, e′ the measured scattered
electron, and p the measured knocked-out pro-
ton) is sensitive to the number of pp and np SRC
pairs in the nucleus, whereas the two-proton
knockout (e,e′pp) cross section is only sensitive to
the number of pp-SRC pairs. Very few of the
single-proton knockout events also contained a
second proton; therefore, there are very few
pp pairs, and the knocked-out protons predom-
inantly originated from np pairs.
To quantify this, we extracted the [A(e,e′pp)/

A(e,e′p)]/[12C(e,e′pp)/12C(e,e′p)] cross-section dou-
ble ratio for nucleus A relative to 12C. The double
ratio is sensitive to the ratio of np-to-pp SRC
pairs in the two nuclei (16). Previous measure-
ments have shown that in 12C nearly every high-
momentum proton (k > 300 MeV/c > kF) has a
correlated partner nucleon, with np pairs out-
numbering pp pairs by a factor of ~20 (8, 9).
To estimate the effects of final-state interac-

tions (reinteraction of the outgoing nucleons in
the nucleus), we calculated attenuation factors
for the outgoing protons and the probability of
the electron scattering from a neutron in an np
pair, followed by a neutron-proton single-charge
exchange (SCX) reaction leading to two outgoing
protons. These correction factors are calculated
as in (9) using the Glauber approximation (22)
with effective cross sections that reproduce pre-
viously measured proton transparencies (23), and
using themeasured SCX cross section of (24).We
extracted the cross-section ratios and deduced the
relative pair fractions from the measured yields
following (21); see (16) for details.
Figure 3 shows the extracted fractions of np

and pp SRC pairs from the sum of pp and np
pairs in nuclei, including all statistical, systematic,
and model uncertainties. Our measurements are
not sensitive to neutron-neutron SRC pairs. How-
ever, by a simple combinatoric argument, even in
208Pb these would be only (N/Z)2 ~ 2 times the
number of pp pairs. Thus, np-SRC pairs domi-
nate in all measured nuclei, including neutron-
rich imbalanced ones.

The observed dominance of np-over-pp pairs
implies that even in heavy nuclei, SRC pairs are
dominantly in a spin-triplet state (spin 1, isospin
0), a consequence of the tensor part of the nucleon-
nucleon interaction (17, 18). It also implies that
there are as many high-momentum protons as
neutrons (Fig. 1) so that the fraction of protons
above the Fermi momentum is greater than that
of neutrons in neutron-rich nuclei (25).
In light imbalanced nuclei (A≤ 12), variational

Monte Carlo calculations (26) show that this re-
sults in a greater average momentum for the
minority component (see table S1). The minority
component can also have a greater average mo-
mentum in heavy nuclei if the Fermimomenta of
protons and neutrons are not too dissimilar. For
heavy nuclei, an np-dominance toy model that
quantitatively describes the features of the mo-
mentum distribution shown in Fig. 1 shows that
in imbalanced nuclei, the average proton kinetic
energy is greater than that of the neutron, up to
~20% in 208Pb (16).
The observed np-dominance of SRC pairs in

heavy imbalanced nuclei may have wide-ranging
implications. Neutrino scattering from two nu-
cleon currents and SRC pairs is important for the
analysis of neutrino-nucleus reactions, which are
used to study the nature of the electro-weak in-
teraction (27–29). In particle physics, the distribu-
tion of quarks in these high-momentum nucleons
in SRC pairs might be modified from that of free
nucleons (30, 31). Because each proton has a
greater probability to be in a SRC pair than a
neutron and the proton has two u quarks for
each d quark, the u-quark distribution modifica-
tion could be greater than that of the d quarks
(19, 30). This could explain the difference be-
tween the weak mixing angle measured on an
iron target by the NuTeV experiment and that of
the Standard Model of particle physics (32–34).
In astrophysics, the nuclear symmetry energy

is important for various systems, including neu-
tron stars, the neutronization of matter in core-
collapse supernovae, and r-process nucleosynthesis
(35). The decomposition of the symmetry energy
at saturation density (r0 ≈ 0.17 fm−3, the max-
imum density of normal nuclei) into its kinetic
and potential parts and its value at supranuclear
densities (r > r0) are notwell constrained, largely
because of the uncertainties in the tensor com-
ponent of the nucleon-nucleon interaction (36–39).
Although at supranuclear densities other effects
are relevant, the inclusion of high-momentum
tails, dominated by tensor-force–induced np-SRC
pairs, can notably soften the nuclear symmetry

energy (36–39). Our measurements of np-SRC
pair dominance in heavy imbalanced nuclei can
help constrain the nuclear aspects of these cal-
culations at saturation density.
Based on our results in the nuclear system, we

suggest extending the previous measurements of
Tan’s contact in balanced ultracold atomic gases
to imbalanced systems in which the number of
atoms in the two spin states is different. The
large experimental flexibility of these systems will
allow observing dependence of the momentum-
sharing inversion on the asymmetry, density,
and strength of the short-range interaction.
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Fig. 3. The extracted
fractions of np (top)
and pp (bottom) SRC
pairs from the sum of
pp and np pairs in
nuclei.The green and
yellow bands reflect
68 and 95% confidence
levels (CLs), respec-
tively (9). np-SRC pairs dominate over pp-SRC pairs in all measured nuclei.
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VOLCANOLOGY

A large magmatic sill complex
beneath the Toba caldera
K. Jaxybulatov,1,2,3 N. M. Shapiro,3* I. Koulakov,1,2

A. Mordret,3 M. Landès,3 C. Sens-Schönfelder4

An understanding of the formation of large magmatic reservoirs is a key issue for the
evaluation of possible strong volcanic eruptions in the future.We estimated the size and level
of maturity of one of the largest volcanic reservoirs, based on radial seismic anisotropy.
We used ambient-noise seismic tomography below the Toba caldera (in northern Sumatra)
to observe the anisotropy that we interpret as the expression of a fine-scale layering
caused by the presence of many partially molten sills in the crust below 7 kilometers.This
result demonstrates that the magmatic reservoirs of present (non-eroded) supervolcanoes
can be formed as large sill complexes and supports the concept of the long-term
incremental evolution of magma bodies that lead to the largest volcanic eruptions.

T
he size and type of a volcanic eruption
depend on the processes that occur in the
magmatic reservoirs in Earth’s crust. In
particular, the largest eruptions require the
building of extended pools of viscous gas-

richmagmawithin the crust (1–3). In the present
study, we investigated the magmatic system that
produced one of the strongest eruptions in the
Quaternary: the Toba event that occurred 74,000
years ago in northern Sumatra, Indonesia (Fig. 1),
and emitted at least 2800 cubic kilometers of
volcanicmaterial (4). This catastrophe is believed
to have affected the global climate and to have
had a strong impact on the biosphere (4, 5). The
eventwas preceded during the previous 2million
years by at least four other eruptions in nearby
locations thathadvolcano explosivity indices above
7 (4). The generation of this exceptional sequence
of eruptions could be possible with the existence
of a very large magma reservoir in the crust that
formed over a long period of time (>1 million
years) (6). Considering the relatively short period
of time that has passed since themain Toba event,
the structures that were responsible for the for-
mation and functioning of this reservoir are ex-
pected to be well preserved in the Sumatra crust
to date. Combined with previous geophysical in-
vestigations, the new data presented here pro-

vide us with information about the structure of
the Toba volcano-magmatic complex and help us
to better understand the internal structure and

ascentmechanismof largemagmavolumes through
the crust before their super-eruptions.
Geological observations of eroded and exposed

past volcanoes and geodynamic models indicate
that volcano-magmatic reservoirs evolve over
long periods of time and grow in small increments,
with the formation of dykes or sills (2, 3, 7–9).
However, the exact mechanisms involved in the
ascent and emplacement of the magma in the
crust beneath active volcanoes are not yet com-
pletely understood, mainly because of the lack of
detailed informationabout the structures of volcano-
magmatic complexes below volcanoes in their
most productive phase. Large-scale images of zones
affected by melts can be obtained with magneto-
telluricmethods (10) andwith seismic tomography
(11). Some signatures of large crustal intrusions
can also be detected by receiver functions (12).
However, the individual dykes or sills withinmag-
matic complexes that have metric or decametric
thicknesses (7) cannot be deduced from geophys-
ical imaging alone, and as layered intrusions, their
interpretation requires additional geological in-
formation (13).
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Fig. 1. Topographic map of the Lake Toba region. Blue triangles, locations of the seismic stations;
black line, profile for cross sections shown in Fig. 3; red circles, locations where 1D inversion is
illustrated in figs. S6 and S8. (Inset) Location of the Lake Toba region within northern Sumatra.
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Nuclear transparency, T p(A), is a measure of the average probability for a struck proton to escape
the nucleus without significant re-interaction. Previously, nuclear transparencies were extracted for
quasi-elastic A(e, e′ p) knockout of protons with momentum below the Fermi momentum, where the
spectral functions are well known. In this Letter we extract a novel observable, the transparency
ratio, T p(A)/T p(12C), for knockout of high-missing-momentum protons from the breakup of short-
range correlated pairs (2N-SRC) in Al, Fe and Pb nuclei relative to C. The ratios were measured at
momentum transfer Q 2 ! 1.5 (GeV/c)2 and xB ! 1.2 where the reaction is expected to be dominated
by electron scattering from 2N-SRC. The transparency ratios of the knocked-out protons coming from
2N-SRC breakup are 20–30% lower than those of previous results for low missing momentum. They agree
with Glauber calculations and agree with renormalization of the previously published transparencies as
proposed by recent theoretical investigations. The new transparencies scale as A−1/3, which is consistent
with dominance of scattering from nucleons at the nuclear surface.

© 2013 Elsevier B.V. All rights reserved.

Nuclear transparency, T (A), is defined as the ratio of the cross
section per nucleon for a process on a bound nucleon in the
nucleus to that from a free nucleon. Conventionally, for protons,
T p(A) has been extracted as the ratio of the measured A(e, e′p)
quasi-elastic (QE) cross section to the calculated Plane-Wave Im-
pulse Approximation (PWIA) cross section, which does not in-
clude Final State Interactions (FSI). The experimental cross sections
are typically integrated over proton missing momenta below the
Fermi momentum (|Pmiss| ! kF ≈ 250 MeV/c), and missing en-
ergy, Emiss , below 80 MeV corresponding to knockout of mean-field
protons [1–4]. ( P⃗miss = q⃗ − P⃗ p and Emiss = ω − T p , where q⃗ and ω
are the momentum and energy transfer of the virtual photon and
P p and T p are the momentum and kinetic energy of the outgoing
proton, respectively.) For a recent review, see [5].

Two-nucleon short-range correlations (2N-SRC) are pairs of nu-
cleons with high momentum ( p⃗1, p⃗2) that balance each other. The
pair has high relative momentum ( p⃗rel = p⃗1−p⃗2

2 ) and low center of
mass momentum ( p⃗c.m. = p⃗1 + p⃗2), where high and low is relative
to the Fermi momentum. 2N-SRC consist mainly of neutron–proton
pairs and dominate the tail (|P | " kF ) of the nuclear momentum
distribution for all nuclei [6–16].

* Corresponding author.
E-mail address: or.chen@mail.huji.ac.il (O. Hen).

1 Current address: INFN, Sezione di Genova, 16146 Genova, Italy.
2 Current address: Institut de Physique Nucléaire ORSAY, Orsay, France.
3 Current address: University of Virginia, Charlottesville, VA 22901, United States.
4 Current address: Universita’ di Roma Tor Vergata, 00133 Rome, Italy.

For the extraction of nuclear transparency from the A(e, e′p)
quasi-elastic data, the 2N-SRC are an obstacle since they remove
a fraction of the single-particle strength beyond the missing mo-
mentum and energy integration range. This removed strength is
difficult to accurately ascertain and therefore introduces uncer-
tainty to the absolute value of T p(A). Published experimental
data, following [1], used large correction factors (1.11 ± 0.03,
1.22 ± 0.06, and 1.28 ± 0.10, for 12C, 56Fe, and 197Au, respectively).
These are larger than indicated by more recent calculations [17,18].
This is believed to be the main reason for the discrepancy be-
tween the measured T p(A) transparencies and calculations using
the Glauber approximation to describe the FSI of the outgoing
struck proton with the residual nucleus [17,18].

In this Letter we avoid the necessity of using hybrid measured-
to-calculated ratios and bypass the uncertainty due to the 2N-SRC
correction factors. We present the transparency ratios of T p(A)/
T p(12C), where A stands for 27Al, 56Fe, and 208Pb. These ratios
are determined for high-missing-momentum protons knocked out
from the breakup of two-nucleon short-range correlated pairs.

The data presented here were collected as part of the EG2 run
period that took place in 2004 in Hall B of the Thomas Jeffer-
son National Accelerator Facility (Jefferson Lab), using a 5.014 GeV
unpolarized electron beam and the CEBAF Large Acceptance Spec-
trometer (CLAS) [19]. The analysis was carried out as part of the
Jefferson Lab Hall B Data-Mining project [20].

CLAS uses a toroidal magnetic field (with electrons bending
towards the beam line) and six independent sets of drift cham-
bers, time-of-flight (TOF) scintillation counters, Cherenkov counters
(CC), and electro–magnetic calorimeters (EC) for charged particle
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identification and trajectory reconstruction. The polar angular ac-
ceptance is 8◦ < θ < 140◦ and the azimuthal angular acceptance is
50% at small polar angles, increasing to 80% at larger polar angles.

We identified electrons and rejected pions by requiring that
negative particles produced more than 2.5 photo-electrons in
the Cherenkov counter. Additional electron/pion separation was
achieved by demanding a correlation between the energy de-
posited in the inner and outer parts of the EC divided by the
momentum of the particle [19]. The total energy deposited by
electrons in the calorimeter was closely correlated with the elec-
tron momentum over the full momentum range. This indicates the
electrons are identified cleanly. We applied fiducial cuts on the an-
gle and momentum of the electrons to avoid regions with steeply
varying acceptance close to the magnetic coils of CLAS.

Protons in CLAS were identified by requiring that the differ-
ence between the measured time-of-flight of positively charged
particles and that calculated from their measured momentum and
the proton mass be less than two standard deviations. This cut
clearly separates protons from pions/kaons up to p = 2.8 GeV/c.
Due to statistical limitations, we only show data for protons up to
2.4 GeV/c.

The kinetic energy of the incoming electron and emerging elec-
tron and proton were corrected event-by-event for coulomb dis-
tortions using the Effective Momentum Approximation (EMA) [21].
Following [13] we assume an effective electric potential equal to
75% of the potential produced by unscreened Z charges at the nu-
cleus center. This amounts to a 3, 5, 10 and 20 MeV correction for
12C, 27Al, 56Fe and 208Pb, respectively.

The EG2 run period used a specially designed target setup, con-
sisting of an approximately 2-cm LD2 cryotarget followed by one
of six independently-insertable solid targets ranging in thickness
from 0.16 to 0.38 g/cm2 (thin and thick Al, Sn, C, Fe, and Pb, all
in natural isotopic abundance) [22]. The LD2 target cell and the
solid targets were separated by about 4 cm. We selected events
with particles scattering from the solid targets by reconstructing
the intersections of their trajectories with the beam line. The ver-
tex reconstruction resolution for both electrons and protons was
sufficient to unambiguously separate particles originating in the
cryotarget and the solid target.

Cross section ratios for scattering off the solid targets are de-
fined as the yield ratio, normalized according to the number of
scatterers in the target and the integrated luminosity accumulated
for each target during the experiment. Because all solid targets
were located at the same location along the beam line and be-
cause the A(e, e′p) missing energy and missing momentum distri-
butions for the different targets were similar, the detector accep-
tance effects on the ratios of yields from different solid targets are
negligible in comparison to our statistical and other systematic un-
certainties.

To identify semi-exclusive A(e, e′p) events dominated by scat-
tering off 2N-SRC pairs, one must choose kinematics in which
competing processes are suppressed. Table 1 lists the cuts applied
and the ranges over which those cuts were varied to determine
the systematic uncertainty. Q 2 and ω are the four-momentum and
energy transfer of the virtual photon, xB = Q 2

2mNω is the Bjorken

scaling variable, and mN is the nucleon mass. P⃗miss = q⃗ − P⃗ p is the
missing momentum which, in the Plane-Wave Impulse Approxi-
mation (PWIA), equals the initial momentum of the proton before
it absorbed the virtual photon. mmiss is the reconstructed missing
mass for the (e, e′p)X reaction assuming scattering off a station-
ary nucleon pair. θpq is the angle between the outgoing proton and
the virtual photon in the lab frame.

The cut on xB is lower than used in inclusive scattering, but the
additional cut on Pmiss ensures the selection of events dominated

Table 1
The (e, e′ p) event selection cuts. Also shown is the sensitivity of the transparency
ratios to variations in the cuts.

Cut Cuts sensitivity

Range Al/C Fe/C Pb/C

xB ! 1.2 ±0.05 1.4% 3.2% 0.4%
300 " | P⃗miss|" 600 MeV/c ±25 MeV/c* 2.0% 1.8% 2.6%
θpq " 25◦ ±5◦** 0.6% 0.3% 0.2%

|| P⃗ p |/|q⃗| − 0.79| " 0.17 ±0.05**

mmiss " 1100 MeV/c2 ±50 MeV/c2 0.5% 1.1% 3.3%

* The geometric mean of all combinations of 300+25 MeV/c and 600±25 MeV/c
variations are presented.

** Both leading proton cuts were varied together as shown by the dashed squares
in Fig. 1.

Fig. 1. (Color online) The relative angle between the detected proton and the mo-
mentum transfer vector q⃗ versus the ratio of the detected proton momentum
and the momentum transfer (|p⃗p |/|q⃗|). Only 12C(e, e′ p) events with xB ! 1.2 and
300 " |Pmiss| " 1000 MeV/c are shown. The solid/dashed boxes (red online) show
the cuts applied to select leading protons. See Table 1 for details.

by scattering off 2N-SRC pairs, as shown by previous experiments
[6,7]. The cut on mmiss suppresses the contribution of # excitations
and meson production. The cuts on | P⃗ p|/|q⃗| and θpq select the
struck leading proton (see Fig. 1). At most one proton per event
passed these cuts, even for events with more than one detected
proton. These cuts combined with the CLAS acceptance result in
a momentum transfer distribution that ranges from approximately
1.5 to 3.5 (GeV/c)2 (see Fig. 2).

At these kinematics (Q 2 > 1.5 (GeV/c)2, xB > 1.2, and miss-
ing momentum 300 ! Pmiss ! 600 MeV/c) the nucleon momentum
distribution for any given nucleus scales as the number of 2N-SRC
pairs in that nucleus times a common momentum distribution.
This interpretation is strongly supported by both experimental
[6–13] and theoretical investigations [14–16]. The A(e, e′p) cross
section in the Plane-Wave Impulse Approximation (PWIA) equals
a kinematic factor times the elementary electron–proton elastic
cross section times the probability of finding a proton at that miss-
ing energy and missing momentum. Under these assumptions, the
PWIA cross section ratio for scattering off high-momentum pro-
tons from two different nuclei will equal the ratio of the number
of pN-SRC pairs in the two nuclei (since the other factors all can-
cel in the ratio). Since the PWIA cross section does not include the
effects of nucleon rescattering as they exit the nucleus, we there-
fore define the proton transparency ratio of any two nuclei in this
kinematical regime as the ratio of their measured cross sections
scaled by the product of the number of pN-SRC pairs:
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Fig. 2. Q 2 distribution for the selected (e, e′ p) event sample.

T p(A1)

T p(A2)
= σA1(e,e′ p)/(N A1

np + 2N A1
pp )

σA2(e,e′ p)/(N A2
np + 2N A2

pp )
, (1)

where σA(e,e′ p) is the measured quasi-elastic scattering cross sec-
tion for nucleus A, and N A

np and N A
pp are the average number of np

and pp SRC pairs in nucleus A. (The factor of 2 multiplying N A
pp

reflects the fact that the electron can scatter from either proton in
a pp pair.)

Under minimal assumptions (see Appendix A for details), this
simplifies to

T p(A1)

T p(A2)
= 1

a2(A1/A2)
· σA1(e,e′ p)/A1

σA2(e,e′ p)/A2
, (2)

where a2(A1/A2) is the relative number of 2N-SRC pairs per nu-
cleon in nuclei A1 and A2. This is exact for isospin symmetric
nuclei and should be valid to better than 5% even for asymmet-
ric nuclei such as lead. The ratios a2(A1/A2) are taken from a
compilation of world data on (e, e′) cross section ratios at large
Q 2 and xB > 1 including different theoretical corrections [24]. The
values used are: a2(

27Al/12C) = a2(
56Fe/12C) = 1.100 ± 0.055 and

a2(
208Pb/12C) = 1.080 ± 0.054. These values are the average of the

high precision data of [13], with three different sets of theoretical
corrections as presented in Table I, columns 4–6 of Ref. [24]. Notice
that the corrections due to the center-of-mass motion of the pair,
and their uncertainties, are relevant for the ratios to deuterium and
are negligible in the ratio of A/12C. To be conservative, the uncer-
tainty of a2(A1/A2) was taken to be that of column 6 of Ref. [24].
Notice that for all nuclei with A " 12, a2(A1/A2) is close to unity.
This means that all of these nuclei have about the same number
of 2N-SRC pairs per nucleon. From the measured inclusive data we
know this probability is about 20% to 25% for A " 12 [11,12].

The transparency ratios of protons from 2N-SRC pairs for 27Al,
56Fe, and 208Pb relative to 12C, as extracted from the semi-inclusive
A(e, e′p) cross sections in SRC-dominated kinematics (xB " 1.2,
Q 2 " 1.5 (GeV/c)2, and Pmiss " 0.3 GeV/c), using Eq. (2), are
shown in Fig. 3 as a function of the outgoing proton momentum

Fig. 3. The measured transparency ratios for various nuclei with respect to carbon of protons from 2N-SRC pairs (full circles), extracted using Eq. (2), shown as a function
of the outgoing proton momentum. The horizontal error bars represent the integration region (bin widths). The solid line is the average transparency and the values are
shown. The normalization uncertainty is dominated by the uncertainties in the SRC scaling factors (see text for details). Also shown for comparison are the world data for
transparency ratios for mean-field proton knockout from Refs. [1–4] (empty circles), extending up to a proton momenta of 5 GeV/c. Note that Ref. [2] did not report results
for Fe and Pb; we show their results for Ni and Ta instead. The results from Refs. [1,3] and also [4] in the bottom panel are for Au rather than Pb. Over the momentum
range covered by this experiment, the transparency ratios of protons from 2N-SRC are lower than those of mean-field protons by 20–30%. Glauber calculations are shown
as dashed lines [23] and dash-dotted lines [5,18]. For figure clarity we omitted the world data for mean-field transparencies without the SRC renormalization which can be
found in [5].
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Fig. 4. (Color online) The A-dependence of the nuclear transparency extracted by
fitting the SRC transparency ratios (filled circles) and the mean-field transparency
ratios [4] (open circles) to Aα . The solid line is a constant fit to the world data
(red online) and the dashed lines show the ±1σ limits. The dashed-dot line is the
Glauber result (blue online) of [23]. The insert shows the A-dependence of the SRC
transparency ratio with the fits to the data (solid line) and to the Glauber result
(dashed line) on a log–log scale. The transparency ratios used are average values
shown in Fig. 3, where the statistical and normalization uncertainties were added
linearly. The horizontal error bars indicate the bin width.

(which should determine the probability for re-interacting). The
errors shown are statistical only. The A(e, e′p) cross section ra-
tios were corrected for radiative effects [25] in the same way as
was done in [11,12]. The radiative correction to the transparency
ratios was found to equal ≈ 7% for all ratios, with a negligi-
ble contribution to the total systematic uncertainty. The extracted
transparency ratios are independent of the proton momentum for
1.0 ! P p ! 2.4 GeV/c for each of the three nuclei. The average
proton transparency, T p(A/C), equals 0.776 ± 0.019 ± 0.043 for Al,
0.579 ± 0.010 ± 0.036 for Fe and 0.385 ± 0.010 ± 0.034 for Pb.
The first uncertainty is statistical and the second is systematic. The
systematic uncertainty includes the uncertainty in a2(A1/A2) (5%),
the sensitivity to cuts (see Table 1), and the uncertainty of 5% in
the np-dominance assumption for the 208Pb/12C case. The uncer-
tainty on the integrated luminosity is negligible. The systematic
uncertainty is independent of the proton momentum.

These transparency ratios indicate that a high-momentum pro-
ton from an SRC pair in iron is only about 60% as likely to escape
the nucleus as a similar proton in carbon. This probability ratio for
lead is 40%. These ratios are 20–30% lower than the correspond-
ing published ratios for mean-field protons [1–4]. Recent theo-
retical studies [17,18] claim that the published mean-field proton
transparencies are too high because the PWIA calculations incor-
rectly included a correction factor that overestimated the effect
of 2N-SRC and therefore underestimated the number of available
mean-field protons. This same conclusion was reached from trans-
port calculations [26]. Our measured proton transparency ratios
support this claim.

Following [1–4], the A-dependence of the measured trans-
parency ratios was studied by fitting it to ( A

12 )α (see Fig. 4). Our
extracted value of α = −0.34 ± 0.02 is considerably lower than the
average mean-field value of α = −0.22 ± 0.01 [4] and is consistent
with the Glauber result of α = −0.322 ± 0.007. The observation of
α ≈ −1/3 is consistent with the T (A) ∝ 1/r attenuation expecta-
tion of Ref. [17], where r is the nuclear radius, indicating that the
reaction is dominated by scattering off the nuclear surface.

In summary, we measured semi-inclusive A(e, e′p) cross sec-
tion ratios for 27Al, 56Fe and 208Pb nuclei relative to 12C at Q 2 "
1.5 GeV/c2, xB " 1.2 and 300 ! Pmiss ! 600 MeV/c where knock-
out of protons from 2N-SRC should dominate. We used these cross

section ratios to extract the transparency ratios for protons from
the 2N-SRC breakup. The proton transparency ratios are indepen-
dent of proton momentum and are 20–30% lower than the trans-
parency ratios of mean-field proton knockout. This difference is
consistent with the proposed renormalization of the mean-field
transparencies to properly account for the effects of correlated
nucleons [17,18]. See Ref. [5] for a comparison of the Glauber
calculations to the data, with and without the SRC correction fac-
tors.

The A-dependence of our measured transparency ratios are
steeper than that of mean-field protons [4] and consistent with
Glauber calculations. This A-dependence is consistent with a sim-
ple picture of proton knockout from the nuclear surface, i.e., that
protons knocked out from the nuclear volume rescatter.
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Appendix A

Inclusive A(e, e′) scattering cross section ratios for nuclei A rel-
ative to deuterium at Q 2 > 1.5 (GeV/c)2 are independent of xB
(scale) for 1.5 ! xB ! 1.9 [10–13]. The scaling factor (the value
of this cross section ratio), denoted as a2(A/d), is typically inter-
preted as a measure of the number of 2N-SRC pairs per nucleon
in nucleus A relative to d [14–16]. When we take the ratio of
a2(A1/d) and a2(A2/d), this gives us a2(A1/A2), the relative num-
ber of 2N-SRC pairs per nucleon in nuclei A1 and A2. In this
appendix we will relate this measured quantity to the values N A1

Np
used in Eq. (1).

In this kinematic region we can assume that the electron scat-
tering cross section from the nucleus is approximately equal to
the incoherent sum of electron scattering from the constituent
nucleons and therefore is proportional to the number of nucle-
ons times the electron–nucleon cross section. Since at xB " 1.5,
inclusive electron scattering from nuclei is only sensitive to high-
momentum nucleons, this gives

a2(A1/A2)

= (N A1
np · (σep + σen) + 2N A1

pp · σep + 2N A1
nn · σen)/A1

(N A2
np · (σep + σen) + 2N A2

pp · σep + 2N A2
nn · σen)/A2

, (3)

where σeN is the off-shell electron–nucleon elastic scattering cross
section and N A

nn is the number of neutron–neutron SRC pairs in
nucleus A. (For np pairs, the electron can scatter from either the
proton or the neutron, so the relevant cross section is σep + σen
and similarly for nn and pp pairs.)
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For isospin symmetric nuclei, we can assume that Nnn = N pp
and therefore Eq. (3) simplifies to

a2(A1/A2) = (σep + σen) · (N A1
np + 2N A1

pp )/A1

(σep + σen) · (N A2
np + 2N A2

pp )/A2

= 1/A1

1/A2
· (N A1

np + 2N A1
pp )

(N A2
np + 2N A2

pp )
, (4)

which can be inserted directly in Eq. (1).
Even for non-isospin symmetric nuclei Eq. (4) is reasonably ac-

curate because there are about 20 times more np-SRC than pp-
or nn-SRC pairs (Nnp ≈ 20 × N pp, Nnn) [6–9]. If we use the mea-
sured value of Nnp/N pp = 18 ± 3 [7] and assume that NPb

nn/NPb
pp =

1262/822 = 2.5, then Eq. (4) is valid to about 5%.
Therefore we can rewrite Eq. (1) as

T p(A1)

T p(A2)
= 1

a2(A1/A2)
· σA1(e,e′ p)/A1

σA2(e,e′ p)/A2
. (5)

This is exact for isospin symmetric nuclei and should be valid to
better than 5% even for asymmetric nuclei such as lead.
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This Letter shows quantitatively that the magnitude of the EMC effect measured in electron deep

inelastic scattering at intermediate xB, 0:35 ! xB ! 0:7, is linearly related to the short range correlation

(SRC) scale factor obtained from electron inclusive scattering at xB " 1. The observed phenomenological

relationship is used to extract the ratio of the deuteron to the free pn pair cross sections and Fn
2=F

p
2 , the

ratio of the free neutron to free proton structure functions. We speculate that the observed correlation is

because both the EMC effect and SRC are dominated by the high virtuality (high momentum) nucleons in

the nucleus.

DOI: 10.1103/PhysRevLett.106.052301 PACS numbers: 25.30.Fj, 13.60.Hb, 21.30.#x

Inclusive electron scattering, Aðe; e0Þ, is a valuable tool
for studying nuclei. By selecting specific kinematic con-
ditions, especially the four-momentum and energy trans-
fers, Q2 and !, one can focus on different aspects of the
nucleus. Elastic scattering has been used to measure the
nuclear charge distribution. Deep inelastic scattering at
Q2 > 2 GeV2, and 0:35 ! xB ! 0:7 (xB ¼ Q2=2m!,
where m is the nucleon mass) is sensitive to the nuclear
quark distributions. Inelastic scattering at Q2 > 1:4 GeV2

and xB > 1:5 is sensitive to nucleon-nucleon short range
correlations (SRCs) in the nucleus. This Letter will explore
the relationship between deep inelastic and large-xB in-
elastic scattering.

The per-nucleon electron deep inelastic scattering (DIS)
cross sections of nuclei with A " 3 are smaller than those
of deuterium at Q2 " 2 GeV2, and moderate xB, 0:35 !
xB ! 0:7. This effect, known as the EMC effect, has been
measured for a wide range of nuclei [1–7]. There is no
generally accepted explanation of the EMC effect. In gen-
eral, proposed explanations need to include both nuclear
structure effects (momentum distributions and binding
energy) and modification of the bound nucleon structure
due to the nuclear medium. Comprehensive reviews of the
EMC effect can be found in [8–11] and references therein.
Recent high-precision data on light nuclei [7] suggest that
it is a local density effect and not a bulk property of the
nuclear medium.

The per-nucleon electron inelastic scattering cross sec-
tions of nuclei with A " 3 are greater than those of deute-
rium for Q2 > 1:4 GeV2 and large xB, 1:5 ! xB ! 2. The
cross section ratio for two different nuclei (e.g., carbon and
helium) shows a plateau when plotted as a function of xB
(i.e., it is independent of xB). This was first observed at
SLAC [12] and subsequently at Jefferson Laboratory
[13,14]. The plateau indicates that the nucleon momentum
distributions of different nuclei for high momentum, p "
pthresh ¼ 0:275 GeV=c, are similar in shape and differ only

in magnitude. The ratio (in the plateau region) of the
per-nucleon inclusive (e, e0) cross sections for two nuclei is
then the ratio of the probabilities to find high-momentum
nucleons in those two nuclei [15,16].
These high-momentum nucleons were shown recently in

hadronic [17,18] and leptonic [19,20] two-nucleon knock-
out experiments to be almost entirely due to central and
tensor nucleon-nucleon short range correlations (SRCs)
[21–24]. SRCs occur between pairs of nucleons with
high relative momentum and low center of mass momen-
tum, where low and high are relative to the Fermi momen-
tum in heavy nuclei. Thus, we will call the ratio of cross
sections in the plateau region the ‘‘SRC scale factor.’’
This Letter will show quantitatively that the magnitude

of the EMC effect in nucleus A is linearly related to the
SRC scale factor of that nucleus relative to deuterium. This
idea was suggested by Higinbotham et al. [25].
We characterize the strength of the EMC effect for

nucleus A following Ref. [7], as the slope of the ratio of
the per-nucleon deep inelastic electron scattering cross
sections of nucleus A relative to deuterium, dREMC=dx,
in the region 0:35 ! xB ! 0:7. This slope is proportional
to the value of the cross section ratio at x ' 0:5, but is
unaffected by overall normalization uncertainties that
merely raise or lower all of the data points together. For
3He, 4He, 9Be and 12Cwe use the published slopes from [7]
measured at 3 ! Q2 ! 6 GeV2. We also fit the ratios,
measured in Ref. [3], as a function of xB for 0:36 ! xB !
0:68. The results are averages over all measured Q2

(i.e., Q2 ¼ 2, 5 and 10 GeV2 for xB < 0:6 and Q2 ¼ 5
and 10 GeV2 for larger xB). The results from the two
measurements for 4He and 12C are consistent and we use
the weighted average of the two. See Table I. The uncer-
tainties are not meant to take into account possible effects
of the antishadowing region at xB ' 0:15 and the Fermi
motion region at xB > 0:75 extending into the region of
interest.
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The SRC scale factors determined from the isospin-
corrected per-nucleon ratio of the inclusive (e, e0) cross
sections on nucleus A and 3He, a2ðA=3HeÞ ¼ ð3=AÞ
½!AðQ2; xBÞ=!3HeðQ2; xBÞ) are listed in Table II using data

from [14].Weused the ratio of deuterium to 3He determined
in Ref. [14] primarily from the calculated ratio of their
momentum distributions above the scaling threshold
(pthresh ¼ 0:275* 0:025 GeV=c). We combined the statis-
tical and systematic uncertainties in quadrature to give the
total uncertainties shown in the table. The SRC scale factors
for nucleus A relative to deuterium, a2ðA=dÞ, are calculated
from the second column.

The value of the SRC scale factors was shown to be Q2

independent for 1:5 ! Q2 ! 2:5 GeV2 [13] and more re-
cently for 1:5 ! Q2 ! 5 GeV2 [26]. Similarly, the EMC
effect was shown to beQ2 independent for SLAC, BCDMS
and NMC data for 2 ! Q2 ! 40 GeV2 [3]. This Q2 inde-
pendence allows us to compare these quantities in their
different measured ranges.

Figure 1 shows the EMC slopes versus the SRC scale
factors. The two values are strongly linearly correlated,

# dREMC=dx ¼ ½a2ðA=dÞ # 1) + ð0:079* 0:006Þ: (1)

This implies that both stem from the same underlying
nuclear physics, such as high local density or large nucleon
virtuality (v ¼ P2 #m2 where P is the four-momentum).
This striking correlation means that we can predict the

SRC scale factors for a wide range of nuclei from Be to Au
using the linear relationship from Eq. (1) and the measured
EMC slopes (see Table II). Note that 9Be is a particularly
interesting nucleus because of its cluster structure and
because its EMC slope is much larger than that expected
from a simple dependence on average nuclear density [7].
The EMC slopes and hence the predicted SRC scale factors
may saturate for heavy nuclei but better data are needed to
establish the exact A dependence.
This correlation between the EMC slopes and the SRC

scale factors also allows us to extract significant informa-
tion about the deuteron itself. Because of the lack of a free
neutron target, the EMC measurements used the deuteron
as an approximation to a free proton and neutron system
and measured the ratio of inclusive DIS on nuclei to that of

TABLE II. The SRC scale factors for nucleus A with respect to
3He and to deuterium. The third column is calculated from the
second. The resulting uncertainties are slightly overestimated
since the uncertainty in the d=3He ratio of about 5% is added to
all of the other ratios. The predicted values (fourth column) are
calculated from the values in Table I and Eq. (1).

Measured Measured Predicted
Nucleus a2ðA=3HeÞ a2ðA=dÞ a2ðA=dÞ
Deuteron 0:508* 0:025 1
3He 1 1:97* 0:10
4He 1:93* 0:14 3:80* 0:34
12C 2:41* 0:17 4:75* 0:41
56Fe 2:83* 0:18 5:58* 0:45
9Be 4:08* 0:60
27Al 5:13* 0:55
40Ca 5:44* 0:70
108Ag 7:29* 0:83
197Au 6:19* 0:65
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FIG. 1. The EMC slopes versus the SRC scale factors. The
uncertainties include both statistical and systematic errors added
in quadrature. The fit parameter is the intercept of the line and
also the negative of the slope of the line.

TABLE I. The measured EMC slopes dREMC=dx for 0:35 ! xB ! 0:7.

dREMC=dx dREMC=dx dREMC=dx
Nucleus (Ref. [7]) (Ref. [3]) (combined)

Deuteron 0
3He #0:070* 0:029 #0:070* 0:029
4He #0:199* 0:029 #0:191* 0:061 #0:197* 0:026
9Be #0:271* 0:029 #0:207* 0:037 #0:243* 0:023
12C #0:280* 0:029 #0:318* 0:040 #0:292* 0:023
27Al #0:325* 0:034 #0:325* 0:034
40Ca #0:350* 0:047 #0:350* 0:047
56Fe #0:388* 0:032 #0:388* 0:032
108Ag #0:496* 0:051 #0:496* 0:051
197Au #0:409* 0:039 #0:409* 0:039
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the deuteron. This seems like a reasonable approximation
since the deuteron is loosely bound (' 2 MeV) and the
average distance between the nucleons is large (' 2 fm).
But the deuteron is not a free system; the pion tensor force
binds the two nucleons even if weakly.

To quantify the effects of the binding of nucleons in
deuterium, we define the in-medium correction (IMC)
effect as the ratio of the DIS cross section per nucleon
bound in a nucleus relative to the free (unbound) pn pair
cross section (as opposed to the EMC effect which uses the
ratio to deuterium).

The deuteron IMC effect can be extracted from the data
in Fig. 1. If the IMC effect and the SRC scale factor both
stem from the same cause, then the IMC effect and the SRC
scale factor will both vanish at the same point. The value
a2ðA=dÞ ¼ 0 is the limit of free nucleons with no SRC.
Extrapolating the best fit line in Fig. 1 to a2ðA=dÞ ¼ 0
gives an intercept of dREMC=dx ¼ #0:079* 0:006. The
difference between this value and the deuteron EMC slope
of 0 is the deuteron IMC slope:

!!!!!!!!
dRIMCðdÞ

dx

!!!!!!!!¼ 0:079* 0:006: (2)

This slope is the same size as the EMC slope measured for
the ratio of 3He to deuterium [7]. It is slightly smaller than
the deuterium IMC slope of ' 0:10 derived in [3] assum-
ing that the EMC effect is proportional to the average
nuclear density and the slope of 0.098 deduced by
Frankfurt and Strikman based on the relative virtuality of
nucleons in iron and deuterium [16] and the iron EMC
slope [3].

The IMC effect for nucleus A is then just the difference
between the measured EMC effect and the value
dREMC=dx ¼ #0:079* 0:006. Thus

!!!!!!!!
dRIMCðAÞ

dx

!!!!!!!!¼
!!!!!!!!
dREMCðAÞ

dx

!!!!!!!!meas
þ0:079*0:006: (3)

This is true when the slopes are small compared to one.
The free neutron cross section can be obtained from the

measured deuteron and proton cross sections using the
observed phenomenological relationship presented in
Fig. 1 to determine the nuclear corrections. Since the
EMC effect is linear for 0:3 ! xB ! 0:7, we have

!d

!pþ!n
¼1#aðxB#bÞ for 0:3!xB!0:7; (4)

where !d and !p are the measured DIS cross sections for
the deuteron and free proton, !n is the free neutron
DIS cross section that we want to extract, a ¼
jdRIMCðdÞ=dxj ¼ 0:079* 0:006 and b ¼ 0:31* 0:04 is
the average value of xB where the EMC ratio is unity
[i.e., where the per-nucleon cross sections are equal
!AðxBÞ=A ¼ !dðxBÞ=2] as determined in Refs. [3,7] and
taking into account the quoted normalization uncertainties.

Our results imply that !d=ð!p þ !nÞ decreases linearly
from 1 to 0.97 over the range 0:3 ! xB ! 0:7. [More

precisely, that it decreases by 0:031* 0:004 where the
uncertainty is due to the fit uncertainties in Eq. (3).] This
depletion [see Eq. (4)] is similar in size to the depletion
calculated by Melnitchouk using the weak binding ap-
proximation smearing function with target mass correc-
tions and an off-shell correction [27]. However, the
distribution in xB is very different. Melnitchouk’s calcu-
lated ratio reaches its minimum of 0.97 at xB ' 0:5 and
increases rapidly, crossing 1 at xB ' 0:7.
If the structure function F2 is proportional to the DIS

cross section [i.e., if the ratio of the longitudinal to trans-
verse cross sections is the same for n, p and d (see
discussion in [8])], then the free neutron structure function,
Fn
2ðxB;Q2Þ, can also be deduced from the measured deu-

teron and proton structure functions:

Fn
2 ðxB;Q2Þ ¼ 2Fd

2 ðxB;Q2Þ # ½1# aðxB # bÞ)Fp
2 ðxB;Q2Þ

½1# aðxB # bÞ)
(5)

which leads to

Fn
2ðxB;Q2Þ

Fp
2 ðxB;Q2Þ ¼

2
Fd
2 ðxB;Q2Þ

Fp
2 ðxB;Q2Þ # ½1# aðxB # bÞ)

½1# aðxB # bÞ) : (6)

This is only valid for 0:35 ! xB ! 0:7.
Figure 2 shows the ratio of Fn

2=F
p
2 extracted in this work

using the IMC-based correction and the Q2 ¼ 12 GeV2

ratio Fd
2=F

p
2 from Ref. [28]. Note that the ratio Fd

2=F
p
2 is

Q2 independent from 6 ! Q2 ! 20 GeV2 for 0:4 ! xB !
0:7 [28]. The dominant uncertainty in this extraction is the
uncertainty in the measured Fp

2 =F
d
2 . The IMC-based cor-

rection increases the extracted free neutron structure func-
tion (relative to that extracted using the deuteron

Bx
0.3 0.4 0.5 0.6 0.7

p2
 / 

F
n2F

0.4

0.5

0.6

IMC Corrected
(This Work)

Fermi motion
corrected

FIG. 2. The ratio of neutron to proton structure functions,
Fn
2 ðxB;Q2Þ=Fp

2 ðxB;Q2Þ as extracted from the measured deuteron
and proton structure functions, Fd

2 and Fp
2 . The filled symbols

show Fn
2=F

p
2 extracted in this work from the deuteron in-medium

correction (IMC) ratio and the world data for Fd
2=F

p
2 at

Q2 ¼ 12 GeV2 [28]. The open symbols show Fn
2=F

p
2 extracted

from the same data correcting only for nucleon motion in
deuterium using a relativistic deuteron momentum density [28].
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momentum density [28]) by an amount that increases with
xB. Thus, the IMC-based Fn

2 strongly favors model-based
extractions of Fn

2 that include nucleon modification in the
deuteron [29].

The IMC-based Fn
2 appears to be constant or slightly

increasing in the range from 0:6 ! xB ! 0:7. The d=u ratio
is simply related to the ratio of Fn

2=F
p
2 in the deep inelastic

limit, x2 - Q2=4m2 [28], d=u ¼ ð4Fn
2=F

p
2 # 1Þ=ð4#

Fn
2=F

p
n Þ. While it is quite hazardous to extrapolate from

our limited xB range all the way to xB ¼ 1, these results
appear to disfavor models of the proton with d=u ratios of
0 at xB ¼ 1 (see [29] and references therein).

By using the deuteron IMC slope, these results take into
account both the nuclear corrections as well as any possible
changes to the internal structure of the neutron in the
deuteron. Note that this assumes either that the EMC and
F2 data are taken at the same Q2 or that they are Q2

independent for 6 ! Q2 ! 12 GeV2. The fact that the
measured EMC ratios for nuclei with A " 3 decrease
linearly with increasing xB for 0:35 ! xB ! 0:7 indicates
that Fermi smearing is not significant in this range.

We now speculate as to the physical reason for the EMC-
SRC relation presented above. Assuming that the IMC/
EMC effect is due to a difference in the quark distributions
in bound and free nucleons, these differences could occur
predominantly in either mean field nucleons or in nucleons
affected by SRC.

According to Ref. [30], the IMC/EMC effect is mainly
associated with nucleons at high virtuality. These nucleons,
like the nucleons affected by SRC, have larger momenta
and a denser local environment than that of the other
nucleons in the nucleus. Therefore, they should exhibit
the largest changes in their internal structure.

The linear correlation between the strength of the EMC
and the SRC in nuclei, shown in Fig. 1, indicates that
possible modifications of the quark distributions occur in
nucleons affected by SRC. This also predicts a larger EMC
effect in higher density nuclear systems such as neutron
stars. This correlation may also help us to understand the
difficult to quantify nucleon modification (off-shell effects)
that must occur when two nucleons are close together.

To summarize, we have found a striking linear correla-
tion between the EMC slope measured in deep inelastic
electron scattering and the short range correlations scale
factor measured in inelastic scattering. The SRC are asso-
ciated with large nucleon momenta and the EMC effect is
associated with modified nucleon structure. This correla-
tion allows us to extract the free neutron structure function
model-independently and to place constraints on large xB
parton distribution functions. Knowledge of these parton
distribution functions is important for searches for new
physics in collider experiments [31] and for neutrino os-
cillation experiments.
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New data strengthen the connection between short range correlations and the EMC effect
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Recently published measurements of the two-nucleon short range correlation (NN -SRC) scaling factors,
a2(A/d), strengthen the previously observed correlation between the magnitude of the EMC effect measured
in electron deep inelastic scattering at 0.35 ! xB ! 0.7 and the SRC scaling factor measured at xB " 1. The
new results improve precision and include previously unmeasured nuclei. The measurements of a2(A/d) for 9Be
and 197Au agree with published predictions based on the EMC-SRC correlation. This Brief Report examines
the effects of the new data and of different corrections to the data on the slope and quality of the EMC-SRC
correlation, the size of the extracted deuteron in-medium correction effect, and the free-neutron structure function.
The results show that the linear EMC-SRC correlation is robust and that the slope of the correlation is insensitive
to most combinations of corrections examined in this work. This strengthens the interpretation that both NN -SRC
and the EMC effect are related to high-momentum nucleons in the nucleus.

DOI: 10.1103/PhysRevC.85.047301 PACS number(s): 25.30.Fj, 13.60.Hb, 21.30.−x

Introduction. The per-nucleon lepton deep inelastic scatter-
ing (DIS) cross sections of heavy nuclei are less than those of
deuterium at moderate to large four-momentum transfer, Q2 "
2 (GeV/c)2, and 0.35 ! xB ! 0.7 (xB = Q2/2mν, where ν
is the energy transfer and m is the proton mass). This
“EMC effect” was discovered in 1982 by the European
Muon Collaboration in the cross-section ratios of iron to
deuterium [1] and confirmed by many measurements on a
range of nuclei [2–7]. The latest data [7] show that for
light nuclei the EMC effect does not increase monotonically
with increasing average nuclear density. Although there is no
generally accepted explanation of the EMC effect, proposed
explanations generally need to include both nuclear structure
effects (momentum distributions and binding energy) and
modification of the bound nucleon structure.

A recent paper showed a strong correlation between the
magnitude of the EMC effect and the short range correlation
(SRC) scaling factor [8]. Because the per-nucleon cross-
section ratios of nuclei to deuterium for 0.35 ! xB ! 0.7
decrease approximately linearly with xB , in this range of xB

the EMC effect can be quantified by the slope of this ratio,
dREMC/dxB [7]. The SRC scaling factor, a2(A/d), equals the
ratio of the per-nucleon inclusive electron scattering cross
section for nucleus A to deuterium at Q2 > 1.4 (GeV/c)2

and 1.5 ! xB < 2. In this range of xB , the cross-section ratio
is constant [9–12]. The constancy of the ratio in this range
of xB is attributed to high-momentum components of the
nuclear wave function. These high-momentum components
have been shown to be almost entirely due to central and
tensor nucleon-nucleon short range correlations [13–17].

This correlation between the magnitude of the EMC
effect measured at 0.35 ! xB ! 0.7 and the SRC scale factor
measured at 1.5 ! xB < 2 was used to phenomenologically
determine the ratio of the DIS cross section for a proton and
neutron bound in deuterium to the DIS cross section for free
(unbound) pn pair and thus to determine the free-neutron cross
section for 0.35 ! xB ! 0.7. The free-neutron cross section
was then used to determine the ratio of the neutron to proton

structure function, Fn
2 /F

p
2 , and hence the ratio of d/u in this

range of xB .
Recently, high-precision measurements of the per-nucleon

inclusive electron scattering cross-section ratio for different
nuclei relative to deuterium at Q2 ∼ 2.7 (GeV/c)2 and 1 <
xB < 2 were published [18], covering more nuclei at greater
precision than previous measurements. These ratios also show
scaling behavior for xB > 1.5. These new data allow us to
reexamine the observed linear correlation between the strength
of the EMC effect and the SRC scaling factor [8]. The
analysis of the new data also includes various corrections to
the measured cross-section ratios that were not included in
previous analyses [11,12].

In this Brief Report we examine the consistency of the old
and new data and the effects of different corrections to the
cross-section ratios and therefore on the slope of the EMC-
SRC correlation. We also examine the effects of these on the
ratio of the bound to free pn DIS cross sections and on the
free-neutron structure function [19].

The new data. New measurements by Fomin et al. [18]
of the SRC scaling factor a2(A/d) have about four times
smaller uncertainties than previous ones by Egiyan et al.
[11,12]. They also include two nuclei, 9Be and 197Au, for
which the SRC scaling factors were previously predicted
based on their measured EMC effect [3,7] and the linear
EMC-SRC correlation [8]. 9Be is of particular interest due to
the anomalous density dependence of its EMC effect (its EMC
effect is larger than that of 4He although its average density
is much smaller) [7]. It therefore presents a challenging test
for the prediction made in Ref. [8] and for the validity of the
EMC-SRC correlation in general.

The different measurements have different corrections
applied to their results. Both sets of measurements applied
radiative corrections to their measured cross-section ratios.
Egiyan et al. [11,12] also applied isoscalar corrections
to correct for differences in the per-nucleon cross-section
ratio for asymmetric nuclei due to the difference between
the elementary electron-proton and electron-neutron cross
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TABLE I. A comparison of SRC scaling factors, a2(A/d), extracted from different data sets with different corrections. Column 2 shows the
scaling factors from Egiyan et al. [12]. Column 3 shows the prediction of Ref. [8] based on the EMC data of Refs. [3,7]. Columns 4 through 6
show the data of Fomin et al. [18] with different corrections. Column 4 shows the data with the same corrections used by Egiyan et al., column
5 shows the data as published, and column 6 shows the data excluding their correction for the c.m. motion of the SRC pair. Column 7 shows
the results from SLAC [10]. Column 8 shows the slopes of the EMC effect from Refs. [3,7] as cited in Ref. [8]. See the text for more details.

Nucleus Egiyan et al. EMC-SRC Fomin et al. [18] Fomin et al. Fomin et al. [18] SLAC [10]a EMC slope [8]
[12] prediction [8] (analysis as in [18] (excluding the c.m. dREMC/dx

Ref. [12]) motion correction)

3He 1.97 ± 0.10b 1.87 ± 0.06 1.93 ± 0.10 2.13 ± 0.04 1.7 ± 0.3 −0.070 ± 0.029
4He 3.80 ± 0.34 3.64 ± 0.07 3.02 ± 0.17 3.60 ± 0.10 3.3 ± 0.5 −0.197 ± 0.026
9Be 4.08 ± 0.60 4.15 ± 0.09 3.37 ± 0.17 3.91 ± 0.12 −0.243 ± 0.023
12C 4.75 ± 0.41 4.81 ± 0.10 4.00 ± 0.24 4.75 ± 0.16 5.0 ± 0.5 −0.292 ± 0.023
56Fe(63Cu) 5.58 ± 0.45 5.29 ± 0.12 4.33 ± 0.28 5.21 ± 0.20 5.2 ± 0.9 −0.388 ± 0.032
197Au 6.19 ± 0.65 5.29 ± 0.16 4.26 ± 0.29 5.16 ± 0.22 4.8 ± 0.7 −0.409 ± 0.039
EMC-SRC slope a 0.079 ± 0.006 0.082 ± 0.004 0.106 ± 0.006 0.084 ± 0.004
σ (n+p)

σd
|xB=0.7 1.032 ± 0.004 1.033 ± 0.004 1.043 ± 0.005 1.034 ± 0.004

χ 2/ndf 0.7688/3 4.742/5 4.078/5 4.895/5

aThe SLAC ratios [10] used cross sections from different experiments at different kinematics. They interpolated the deuterium cross sections to
the kinematics of the cross sections measured for heavier nuclei and have larger uncertainties than the later measurements. They are included
here for completeness.
bThe 3He SRC scaling factor in column 2 from Ref. [12] was determined primarily from the calculated ratio of the 3He and d momentum
distribution above the scaling threshold (pthresh = 0.275 ± 0.025 GeV/c).

sections. Fomin et al. [18] did not apply the isoscalar
correction but did apply corrections for the nuclear Coulomb
field, inelastic contributions, and SRC-pair center-of-mass
motion. Inspired by results of exclusive 12C(p, ppn) and
12C(e, e′pN ) measurements, which showed that two-nucleon
(NN )-SRC pairs are dominated by neutron-proton pairs (∼18
times more neutron-proton than proton-proton pairs were
observed) [13–17], Fomin et al. assumed that at xB > 1.4,
electrons scatter mainly off neutron-proton pairs and therefore
isoscalar corrections are unnecessary. The largest correction
made by Fomin et al. is a correction for enhancement of the
cross-section ratio (and therefore of the SRC scaling factors)
due to the SRC-pair center of mass (c.m.) motion for A > 2.
The c.m. correction is defined as the ratio of the convolution
of the pair c.m. motion and deuteron momentum distributions
to the deuteron momentum distribution. This ratio was cal-
culated in Ref. [18] for 56Fe using the SRC-pair momentum
distributions of Ciofi degli Atti and Simula [20]. It was then
scaled to other nuclei based on the A dependence of the
pair motion. Because of the uncertainties in the calculation,
including its xB and A dependence, they applied an uncertainty
equal to 30–50 % of the calculated correction.

Table I lists the per-nucleon cross-section ratios for all
nuclei measured by Fomin et al. The second column shows
the ratios measured by Egiyan et al. that were used in the
original EMC-SRC analysis [8]. Fomin et al. measured 63Cu,
which was not measured by Egiyan et al.; we assume the SRC
scaling factor of 63Cu to be the same as that of 56Fe. The values
of 9Be and 197Au in the third column are those predicted by
Ref. [8] based on their measured EMC effect and the linear
EMC-SRC correlation. The fourth column shows the Fomin
et al. results, analyzed in the same manner as the Egiyan
et al. data (i.e., including radiative and isoscalar corrections
only). The fifth column shows the Fomin et al. results as

published (i.e., including inelastic, radiative, Coulomb, and
center of mass motion corrections). The sixth column shows
the as-published Fomin et al. results with the center of mass
motion correction removed (i.e., including inelastic, radiative,
and Coulomb corrections). Comparing the second and fourth
columns, one can see that the measured values of a2(A/d) from
the two measurements agree within uncertainty when analyzed
with the same corrections (radiative and isoscalar corrections
only). Applying the radiative, Coulomb field, and inelastic
(but not the isoscalar) corrections changes the measured scale
factors by about 10%. Applying the SRC-pair center-of-mass
motion correction decreases the ratios by 10–20 %. The last
column of Table I shows the magnitude of the EMC effect for
the different nuclei as measured by Refs. [3,7] and averaged
by Ref. [8].

The EMC-SRC correlation. The quality of the correlation
between the magnitude of the EMC effect and the newly
measured SRC scaling factors, a2(A/d), is shown in Fig. 1.
Because of the large uncertainties of the SRC-pair center-of-
mass motion correction, Fig. 1 shows the data of Fomin et al. as
published but without that correction. Figure 1 also shows the
results of a one-parameter fit to the EMC slopes as a function
of the SRC scaling factors. Because the point for the deuteron
is fixed at dREMC/dx = 0 and a2(A/d) = 1, the fitted slope is
also the negative of the intercept of the line.

To test the robustness of the EMC-SRC correlation, we
made a series of one-parameter linear fits to the EMC slopes
(Table I, column 8) as a function of the different SRC scaling
factors shown in Table I. The χ2 per degree of freedom for each
of these fits was approximately 1, indicating an excellent fit.
In addition, the values of a2(A/d) predicted for 9Be and 197Au
by Ref. [8] agree within uncertainties with the new values
measured by Fomin et al. with the radiative and isoscalar
corrections from Ref. [12].
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FIG. 1. (Color online) The slope of the EMC effect for 0.35 !
xB ! 0.7 plotted vs a2(A/d), the SRC scaling factor (the relative
amount of NN -SRC pairs), in a variety of nuclei. The uncertainties
include both statistical and systematic uncertainties added in quadra-
ture. The values of a2(A/d) are taken from Fomin et al. [18] as
published except for the SRC-pair center-of-mass motion corrections.
The fit parameter, a = −0.084 ± 0.004, is the intercept of the line
and also the negative of the slope of the line.

Following Ref. [8], the value a2(A/d) = 0 corresponds to
the limit of free nucleons with no SRC. If we extrapolate the
linear fit to this point, this should give us the EMC ratio for
a free (unbound) pn pair to the deuteron, the so-called in-
medium correction (IMC) effect. The IMC effect then equals
the negative of the fitted EMC-SRC slope. This value ranges
from |dRIMC/dx| = 0.079 ± 0.006 to 0.084 ± 0.004 for the
different data sets with the different corrections (excluding the
c.m. motion correction). If we include the SRC-pair center-
of-mass motion correction, then the linear fit is still excellent.
However, the slope and hence the intercept increases by about
20% to 0.106 ± 0.006.

Since the EMC effect is linear for 0.3 ! xB ! 0.7, we have
(also following Ref. [8])

σd

σp + σn

= 1 − a(xB − b),

where σd and σp are the measured DIS deuteron and proton
cross sections, σn is the unmeasured free-neutron cross section,
a = |dRIMC/dx| ≈ 0.08, and b = 0.31 ± 0.04 is the average
value of xB where the EMC effect is unity (i.e., where the per-
nucleon cross sections are equal). Evaluating this at xB = 0.7
gives the ratio of the free pn cross section to the bound pn

(deuteron) cross section, which ranges from 1.032 ± 0.004 to
1.034 ± 0.004 for the different data sets and corrections (again
excluding the c.m. motion correction). If we include the c.m.
motion correction, then this ratio changes to 1.043 ± 0.005.

The agreement of the slope of the EMC-SRC correlation,
and therefore of the deuteron IMC effect at xB = 0.7, among
all combinations of data sets and corrections is a clear
indication of the robustness of the EMC-SRC correlation. This
also indicates that the deuteron IMC effect and the free-neutron
structure function extracted in Ref. [8] and used in Ref. [19] do
not change due to the new data and/or analysis. If the center-
of-mass motion correction is included, then the linearity of the
EMC-SRC relation improves slightly and the deuteron IMC
effect increases by about 20% to dRIMC/dx = 0.106 ± 0.006.

Conclusions and outlook. New higher-precision data [18]
strengthen the phenomenological correlation between the
strength of the EMC effect and the relative amount of SRC-
correlated NN pairs in a nucleus [8]. The new measurements
are consistent with the SRC scaling factors for 9Be and 197Au
that were predicted based on this EMC-SRC correlation.
Different corrections for the SRC cross-section ratio were
examined and all were shown to be consistent with a linear
correlation between the strength of the EMC effect and the
relative amount of SRC-correlated NN pairs in nuclei. The
linearity of the EMC-SRC correlation, regardless of the exact
corrections considered, is a clear indication of the robustness
of the EMC-SRC correlation. This strengthens the speculation
presented in Ref. [8] that both the EMC effect and the NN -
SRC originate from high-momentum nucleons in the nucleus.

More data are required to further map out and understand
this correlation. Several experiments approved to run as
part of the 12 GeV program at Jefferson Lab will measure
both the SRC scaling factors and the EMC effect at high
precision over a wide range of light and heavy nuclei [21–23].
Another experiment [24] will search for medium modification
of the structure function of deeply bound, high-momentum
nucleons. This will be done by performing DIS scattering
off high-momentum nucleons in deuterium and tagging the
partner (high-momentum) recoil nucleon. The results of this
experiment will allow comparison of the structure function of
free and bound nucleons and gain insight on the connection of
the EMC effect to high-momentum nucleons in the nucleus.
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Recently the ratio of neutron to proton structure functions Fn
2=F

p
2 was extracted from a phenomeno-

logical correlation between the strength of the nuclear EMC effect and inclusive electron–nucleus cross

section ratios at x > 1. Within conventional models of nuclear smearing, this ‘‘in-medium correction’’

(IMC) extraction constrains the size of nuclear effects in the deuteron structure functions, from which the

neutron structure function Fn
2 is usually extracted. The IMC data determine the resulting proton d=u quark

distribution ratio, extrapolated to x ¼ 1, to be 0:23" 0:09with a 90% confidence level. This is well below

the SU(6) symmetry limit of 1=2 and significantly above the scalar diquark dominance limit of 0.

DOI: 10.1103/PhysRevD.84.117501 PACS numbers: 12.38.#t, 13.60.#r, 24.85.+p

I. INTRODUCTION

Currently, uncertainties in parton distribution functions
(PDFs) at large parton momentum fractions x represent one
of the main impediments to the determination of the lon-
gitudinal structure of the nucleon in terms of its fundamen-
tal constituents. The large-x region provides a unique
opportunity for studying the flavor and spin dynamics of
quarks in the nucleon, with the d=u quark distribution
ratio, in particular, being very sensitive to different mecha-
nisms of spin-flavor symmetry breaking [1,2]. Knowledge
of PDFs at large x is also important for several other
reasons, such as the reliable calculation of QCD back-
grounds in new physics searches at hadron colliders espe-
cially at large rapidities, as well as in neutrino oscillation
experiments.

The systematics of uncertainties in parton distributions
at large x has been the focus of recent dedicated global
QCD analyses by the CTEQ-Jefferson Lab (CJ)
Collaboration [3,4], which investigated the sensitivity of
PDFs to different treatments of nuclear corrections in deep-
inelastic scattering (DIS) from deuterium. While proton
DIS data place strong constraints on the u-quark distribu-
tion, neutron structure functions are needed in order to also
determine the d-quark PDF. The absence of free neutron
targets, however, means that deuterium DIS data must be
used to infer information about the structure of the free
neutron.

Uncertainties in the nuclear corrections in the deuteron,
such as those associated with nucleon off-shell effects and
the large-momentum components of the deuteron wave
function, give rise to significant uncertainties in the result-
ing d=u ratio for x * 0:5 [4]. This prevents drawing any
firm conclusions about the x ! 1 behavior of d=u pre-
dicted in various nonperturbative and perturbative models,
which range from 0 in models with scalar diquark domi-
nance [5–7] to $ 0:2 in models with admixtures of axial-
vector diquarks [8] or those based on helicity conservation

[9], and up to 0.5 in models with SU(6) spin-flavor sym-
metry [10].
A recent analysis of the strength of the EMC effect in

nuclei and data on inclusive electron-nucleus scattering at
x > 1 proposed a phenomenological, theory-independent,
determination of the neutron to proton structure function
ratio Fn

2=F
p
2 , known as the ‘‘in-medium correction’’ (IMC)

extraction [11]. The IMC analysis is based on the observed
correlation between the strength of the nuclear EMC effect
at intermediate x (x $ 0:3–0:7) and the number of short
range correlated nucleon-nucleon pairs in light, medium,
and heavy nuclei, which is then extrapolated to a free
nucleon.
In this report we combine the phenomenology of these

two approaches and illustrate how the IMC-extracted neu-
tron structure function can, in principle, limit the range of
parameters describing nuclear corrections in the deuteron,
thereby significantly reducing the uncertainties in the re-
sulting d=u ratio at large x. As we shall see, the IMC
analysis favors values of d=u at the upper end of the
uncertainty band obtained in the CJ global QCD fit [4],
indicating the presence of significant nucleon off-shell
corrections in the deuteron structure function.

II. NUCLEAR EFFECTS IN THE DEUTERON

In the conventional description of DIS from the deuteron
at x % 0, the scattering is assumed to take place incoher-
ently from individual nucleons in the deuterium nucleus
[12]. In the weak binding approximation (WBA), the deu-
teron structure function can be written as a convolution of
the bound nucleon structure functions FN

2 and a momentum
distribution function of nucleons in the deuteron (also
known as the ‘‘smearing function’’) [13–15].
In Ref. [14], Kulagin and Petti used a simple quark

spectral model to obtain a physically motivated parametri-
zation of the nucleon off-shell corrections (see also
Refs. [13,16–18]). The off-shell corrections were
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estimated by integrating the quark-nucleon spectral func-
tion over quark virtualities up to some high-momentum
scale ! that depends on the nucleon off-shell mass p2 ¼
p2
0 # p2 ! M2, where p0 ¼ Md #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
is the nu-

cleon energy and p its momentum, with M and Md the
nucleon and deuteron masses. Taking ! to be inversely
proportional to the quark confinement radius R in the
nucleon, its dependence on p2 can be related to the change
in the size of the nucleon in the nuclear medium (‘‘nucleon
swelling’’). The change of scale !R and nucleon virtuality
can be conveniently parametrized in terms of a single
parameter ", given by [14]

" ¼ @!2

@ logp2

""""""""p2¼M2
¼ #2

!R

R

!p2

M2 ; (1)

where !p2 is the average nucleon virtuality (p2 #M2) in
the deuteron.

The parameter " was chosen in Ref. [4] to reproduce the
phenomenological values of the change of confinement
radius from the study of the nuclear EMC effect in the
Q2-rescaling model [19], !R=R ¼ 1:5%–1:8%. This was
somewhat smaller than the nuclear-averaged value of
!R=R $ 9% obtained by fitting the off-shell correction
to ratios of nuclear structure functions for a range of nuclei
[14]. While it is generally accepted that some off-shell
corrections to the convolution approximation are needed
in order to describe nuclear structure functions at large x
[20], their magnitude varies considerably between different
models [14,17,18,21–23], and on the definition of the
smearing function. (In fact, in some approaches such as
the light-front [24–26] explicit off-mass-shell corrections
do not appear at all, their effects instead being subsumed
by higher Fock state components or contact interactions).

In the present analysis we treat " as a free parameter,
allowing it to be determined by the IMC extraction data for
a given virtuality !p2. The latter is computed from several
modern deuteron wave functions which give high-
precision fits to nucleon-nucleon scattering data, namely,
the CD-Bonn [27], AV18 [28], and the relativistic WJC-1
and WJC-2 wave functions [29], yielding values of the
nucleon virtuality of !p2=M2 ¼ #3:7%, #4:5%, #6:2%,
and #4:9%, respectively. (The older Paris deuteron wave
function [30] gives a value !p2=M2 ¼ #4:3%, similar to
the AV18 model). This ‘‘modified Kulagin-Petti’’ (mKP)
parametrization of the off-shell corrections (1) allows a
wide range of models to be assessed in terms of a single
parameter, the nucleon swelling !R=R, for a given deu-
teron wave function.

III. IMC CONSTRAINTS ON THE d=u RATIO

In Fig. 1 the ratio of neutron to proton structure
functions Fn

2=F
p
2 at Q2 ¼ 12 GeV2 is shown for various

deuteron wave functions and swelling levels !R=R, rang-
ing from 0% to 3%, in increments of 0.3%, using the WBA
smearing function and the mKP off-shell model. For each
combination of wave function and swelling parameters, the
structure functions are computed from the CJ global next-
to-leading order QCD fit of PDFs as described in Ref. [4],
using a flexible parametrization for the d-quark PDF,
which allows finite d=u values as x ! 1. Each of the fitted
PDF sets represented by the curves in Fig. 1 give a similar
quality fit to the global data base used in Ref. [4] by
allowing the changes in the nuclear corrections to the
deuteron Fd

2 structure function to be compensated by cor-
responding changes in the d-quark PDF (inducing a similar
change in the calculated neutron Fn

2 ). The curves are
compared with the Fn

2=F
p
2 ratios obtained from the IMC

extraction over the range 0:35 & x & 0:7.
To constrain the nuclear correction uncertainty in

Fn
2=F

p
2 , we calculate the #2 of the IMC data for each

deuteron wave function and swelling combination. This
is shown in Fig. 2 as a function of the nucleon swelling
!R=R for the different deuteron wave functions. Note that
the wave function determines not only the average nucleon
virtuality !p2 in the deuteron, but also the amount of
binding and Fermi motion in the smearing function
[4,15]. For the choice of confidence level (C. L.), we treat
the deuteron wave function as a (discrete) parameter and
consider a 90% C. L. for two free parameters, correspond-
ing to an increase in #2 of 4.61 above the minimum [31].
With this C. L. the IMC extraction constrains the swelling
levels to the range !R=R ¼ 0:2%–1:4%, with a preference
for the CD-Bonn, AV18, and WJC-2 wave functions. The
minimum #2 occurs for the CD-Bonn model at !R=R ¼
0:9%. The minimum #2 for the WJC-1 wave function at
!R=R $ 1:5% lies outside of the 90% C. L. and is disfa-
vored by the IMC data.

x
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 2 p
 / 

F
 2 n F

0.3

0.4

0.5

0.6

0.7
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WJC-2

WJC-1

IMC extraction

FIG. 1 (color online). Neutron to proton structure function
ratio Fn

2=F
p
2 from the CJ global QCD fit [4] assuming different

deuteron wave functions: CD-Bonn (red), AV18 (black), WJC-1
(green) and WJC-2 (blue). The curves correspond to different
nucleon swelling levels, !R=R, ranging from 0% (lowest curves)
to 3% (highest curves) in steps of 0.3%. The IMC data (squares)
[11] and the fits are at a fixed Q2 ¼ 12 GeV2.
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The implications of these constraints for the d=u ratio in
the limit x ! 1 are illustrated in Fig. 2 , where the #2 is
shown as a function of the limiting d=u value of each PDF
fit. The IMC extraction yields a d=u limiting value of
0:23" 0:09 at the 90% C. L. (at the 99% C. L., using a
#2 increase of 9.21, the uncertainty would increase to
"0:13). These results strongly disfavor the SU(6) value
d=u ¼ 1=2 as well as the d=u ! 0 limit predicted in
models with scalar diquark dominance. Furthermore,
global PDF analyses often assume the same functional x
dependence for both u and d quark distributions, forcing
the d=u ratio to approach either zero or infinity in the
x ! 1 limit. The results shown in Fig. 2, however, suggest
that a more flexible parametrization for the d=u ratio,
which allows finite x ! 1 limits, may be more realistic [4].

The resulting uncertainty bands on the d=u ratio are
shown in Fig. 3, including the full theoretical uncertainty
from the CJ global fit [4] and the 90% C. L. extracted from
the IMC constraints. Even though the IMC extraction only
covers an x range of $ 0:35–0:7, it nevertheless imposes a
tight constraint on the d=u parton distributions ratio for
x ! 1.

IV. SUMMARY

Within a global PDF analysis we have studied the con-
straints imposed by the theory-independent IMC-extracted
Fn
2 structure function data on nuclear corrections in deute-

rium. These phenomenologically extracted data strongly
support the presence of off-shell modifications of nucleons
in the deuteron, and constrain their magnitude to a more
limited range than in the recent CJ global QCD analysis
without the IMC data [4]. The IMC data also disfavor
deuterium wave functions with very ‘‘hard’’ momentum
distributions, such as for the WJC-1 nucleon-nucleon po-
tential [29], which produce a shallow EMC ratio Fd

2=F
N
2 at

intermediate and large x [4,15].
While the u-quark PDF is well constrained by the proton

DIS data, the lack of a free neutron target makes the
d-quark distribution very sensitive to the assumptions
used to calculate the nuclear correction in the deuteron.
The use of the IMC-extracted neutron structure function
directly constrains the d-quark PDF for x & 0:7 and indi-
rectly for x ! 1. We find the d=u ratio in the limit x ! 1 to
be 0:23" 0:09 at the 90% confidence level, in agreement
with models predicting intermediate values of d=u between
the SU(6) symmetry and scalar diquark dominance
limits [8,9].
Of course, these conclusions strongly depend on the

assumptions underlying the IMC extraction of Fn
2 [11].

Some of these are being tested through the study of DIS
events with a tagged high-momentum proton recoil at
Jefferson Lab [32] and will be the subject of a similar
experiment at the future 12 GeV upgraded facility [33].
The ultimate arbiter, however, will be data on free or nearly
free neutron targets, such as from the BoNuS experiment
[34] at Jefferson Lab that collected DIS data up to x $ 0:6,
or its future 12 GeVextension [35] that will reach x $ 0:8.
Further avenues to direct experimental constraints on d=u
at large x include the 12 GeV MARATHON experiment
[36] at Jefferson Lab on DIS from the 3He3H mirror nuclei
and the parity-violating DIS program on a hydrogen
target [37], as well as the measurement of W boson
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FIG. 2 (color online). Total #2 for fits of the calculated Fn
2=F

p
2 ratios in Fig. 1 to the IMC extraction data [11] for various deuteron

wave functions (CD-Bonn-circles, AV18-squares, WJC-2-inverted triangles, WJC-1-triangles), as a function of the swelling level
!R=R (left) and the d=u ratio in the x ! 1 limit (right). The 90% confidence levels are indicated by the shaded (yellow) box, and the
minimum #2 values by the vertical dashed line.

FIG. 3 (color online). d=u ratio at Q2 ¼ 12 GeV2 with the full
theoretical uncertainty from Ref. [4] (black) and with the IMC
constraint at the 90% C. L. (red).
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asymmetries at large rapidities in p "p collisions at the
Tevatron or in pp scattering at RHIC and the LHC [4,38].
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Extracting the mass dependence and quantum numbers of short-range correlated pairs
from A(e,e′ p) and A(e,e′ pp) scattering
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The nuclear mass dependence of the number of short-range correlated (SRC) proton-proton (pp) and proton-
neutron (pn) pairs in nuclei is a sensitive probe of the dynamics of short-range pairs in the ground state of atomic
nuclei. This work presents an analysis of electroinduced single-proton and two-proton knockout measurements
off 12C, 27Al, 56Fe, and 208Pb in kinematics dominated by scattering off SRC pairs. The nuclear mass dependence
of the observed A(e,e′pp)/12C(e,e′pp) cross-section ratios and the extracted number of pp- and pn-SRC pairs are
much softer than the mass dependence of the total number of possible pairs. This is in agreement with a physical
picture of SRC affecting predominantly nucleon-nucleon pairs in a nodeless relative-S state of the mean-field
basis.

DOI: 10.1103/PhysRevC.92.024604 PACS number(s): 25.30.Rw, 25.30.Fj, 24.10.−i

I. INTRODUCTION

The nuclear momentum distribution (NMD) is often quoted
as being composed of two separate parts [1–3]. Below the
Fermi momentum (kF ≈ 250 MeV/c) single nucleons move
as independent particles in a mean field created by their mutual
interactions. Above the Fermi momentum (k > kF ) nucleons
predominantly belong to short-range correlated (SRC) pairs
with high relative and low center-of-mass (c.m.) momenta,
where high and low are relative to the Fermi momentum
[4–8]. In addition to its intrinsic interest, the NMD and its
division into mean-field and correlated parts is relevant to
two-component Fermi systems [9], neutrino physics [10,11],
and the symmetry energy of nuclear matter [12].

The mean-field and long-range aspects of nuclear dynamics
have been studied extensively since the dawn of nuclear
physics. The effect of long-range correlations on the NMDs is
limited to momenta which do not extend far beyond kF [13].
Study of the short-range aspects of nuclear dynamics has
blossomed with the growing availability of high-energy high-
intensity electron and proton accelerators. Recent experiments
confirm the predictions that SRC pairs dominate the high-
momentum tails (k > kF ) of the NMDs [4–7], accounting
for 20–25 % of the NMD probability density [14–17]. These
high-momentum tails have approximately the same shape for
all nuclei [2,3,9,14–18], differing only by scale factors which
can be interpreted as a measure of the relative number of
SRC pairs in the different nuclei. In this work, we aim at
understanding the underlying dynamics which give rise to this
universal behavior of the high-momentum tail.

An intuitive picture describing the dynamics of nuclei
including SRCs is that of independent bound nucleons moving
in the nucleus, occasionally getting sufficiently close to each
other to temporarily fluctuate into SRC-induced nucleon-
nucleon pairs. This picture can be formally implemented in
a framework in which one shifts the complexity of the nuclear
SRC from the wave functions to the operators by calculating
independent-particle model (IPM) Slater determinant wave

functions and acting on them with correlation operators to
include the effect of SRCs [18–20]. The observed number
of proton-proton (pp) and proton-neutron (pn) SRC pairs in
various nuclei can then be used to constrain the amount and
the quantum numbers of the initial-state IPM nucleon-nucleon
(SRC-prone) pairs that can fluctuate dynamically into SRC
pairs through the action of correlation operators.

In this paper, we will extract the relative number of pp-SRC
and pn-SRC pairs in different nuclei from measurements of
electroinduced two-proton and one-proton knockout cross-
section ratios for medium and heavy nuclei (27Al, 56Fe, and
208Pb) relative to 12C in kinematics dominated by scattering
off SRC pairs [8,21]. In these kinematics in the plane-wave
approximation A(e,e′pp) cross sections are proportional to
the number of pp pairs in the nucleus and A(e,e′p) cross
sections are proportional to twice the number of pp pairs plus
the number of pn pairs (2pp + pn). Therefore, after correcting
the measured cross sections for rescattering of the outgoing
nucleons from the residual nucleus (final state interactions
or FSIs), the relative number of pp and pn pairs will be
extracted from measurements of A(e,e′pp)/12C(e,e′pp) and
A(e,e′p)/12C(e,e′p) cross-section ratios [8].

We will then compare the A(e,e′pp)/12C(e,e′pp) cross-
section ratios and the extracted number of pp and pn pairs to
factorized calculations using different models of nucleon pairs
in order to deduce the quantum numbers of the IPM SRC-
prone pairs. We will provide strong evidence that the relative
quantum numbers of the majority of the SRC-susceptible pairs
are 1S0(1) for pp and 3S1(0) for pn. Hereby, we used the notation
2J+1LS(T ) to identify the pair’s quantum state (T is the total
isospin).

This paper is structured as follows. The one- and two-proton
knockout experiments analyzed in this paper are described
in Sec. II. In Sec. III we introduce the model to calculate
the FSI-corrected two-nucleon knockout cross-section ratios.
Results and discussions are presented in Sec. IV. Section V
contains the concluding remarks.
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II. EXPERIMENT

The one- and two-proton knockout measurements analyzed
in this paper were described in [8] and its supplemental
information. They were carried out using the CEBAF Large
Acceptance Spectrometer (CLAS) [22], located in Hall-B of
the Thomas Jefferson National Accelerator Facility (Jefferson
Lab) in Newport News, Virginia. The data were collected in
2004 using a 5.014 GeV electron beam incident on 12C, 27Al,
56Fe, and 208Pb targets. The scattered electron and knocked out
proton(s) were measured with CLAS. We selected A(e,e′p)
events in which the electron interacts with a single fast proton
from a SRC nucleon-nucleon pair in the nucleus by requiring
large four-momentum transfer (Q2 > 1.5 GeV2), Bjorken
scaling parameter xB = Q2

2mN ω
> 1.2, and missing momentum

300 < |p⃗miss| < 600 MeV/c. The four-momentum transfer
Q2 = q⃗ · q⃗ − (ω

c
)2 where q⃗ and ω are the three-momentum

and energy transferred to the nucleus respectively; mN is the
nucleon mass; the missing momentum p⃗miss = p⃗p − q⃗, and
p⃗p is the knockout proton three-momentum. We also required
that the knockout proton was detected within a cone of 25◦

of the momentum transfer q⃗ and that it carried at least 60%
of its momentum (i.e., |p⃗p |

|q⃗| ! 0.6). To suppress contributions
from inelastic excitations of the struck nucleon we limited
the reconstructed missing mass of the two-nucleon system
mmiss < 1.1 GeV/c2.

The A(e,e′pp) event sample contains all A(e,e′p) events in
which a second, recoil, proton was detected with momentum
greater than 350 MeV/c. Figure 1 shows the distribution of
the cosine of the angle between the initial momentum of the
knockout proton and the recoil proton for these events [8].
The recoil proton is emitted almost diametrically opposite to
the missing-momentum direction. The observed backward-
peaked angular distributions are very similar for all nuclei

FIG. 1. (Color online) Distribution (in arbitrary units) of the
cosine of the angle γ between the missing momentum of the leading
proton and the recoil proton for 12C (dark blue long-dashed line),
27Al (red dotted line), 56Fe (purple solid line), and 208Pb (blue dashed
line). The black dashed line shows the distribution of the random
phase-space extracted from mixed events.

and are not due to acceptance effects as shown by the angular
distribution of mixed events. These distributions are a signature
of scattering on a nucleon in a SRC pair, indicating that
the two emitted protons were largely back-to-back in the
initial state, having large relative momentum and small c.m.
momentum [6,23]. Further evidence of scattering on a SRC
nucleon pair is that the recoil proton was emitted at forward
angles (i.e., angles in the range 20◦–60◦ with respect to q⃗).

The A(e,e′p)/12C(e,e′p) and A(e,e′pp)/12C(e,e′pp)
cross-section ratios are obtained from the ratio of the measured
number of events, normalized by the incident integrated
electron flux and the nuclear density of each target. During
the experiment all solid targets were held in the same location,
the detector instantaneous rate was kept constant, and the
kinematics of the measured events from all target nuclei
were almost identical [8,21]. Therefore detector acceptance
effects cancel almost entirely in the A(e,e′pp)/C(e,e′pp)
cross-section ratios. Due to the large acceptance of CLAS,
radiative effects affect mainly the electron kinematics. These
corrections were calculated in Ref. [21] for the extraction
of the A(e,e′p)/C(e,e′p) cross-section ratio. As the electron
kinematics is the same for the A(e,e′p) and A(e,e′pp)
reactions, the same corrections are used here to extract the
A(e,e′pp)/C(e,e′pp) cross-section ratios. See Ref. [8] for
additional details.

III. FSI AND CROSS-SECTION MODEL

To extract the underlying relative number of pp and pn
SRC pairs in nuclei from the measured cross-section ratios,
we must correct the data for FSI effects [8]. Alternatively,
in order to compare the measured ratios to calculations, we
must correct either the data or the calculation for FSI effects.
The two dominant contributions are (1) attenuation of the
outgoing nucleon(s) upon traversing the residual A − 1 or
A − 2 nucleus, and (2) rescattering of a neutron into a proton
[i.e., single charge-exchange (SCX)]. SCX can lead to a pp
final state which originates from a pn pair.

The effect of FSIs of the ejected pair with the remaining
A − 2 spectators was computed in a relativistic multiple-
scattering Glauber approximation (RMSGA) [24,25]. The
RMSGA is a multiple-scattering formalism based on the
eikonal approximation with spin-independent NN interactions.
We have included both the elastic and the SCX rescattering
of the outgoing nucleons with the A − 2 spectators. The
three parameters entering in the RMSGA model are taken
from NN scattering data and yield an excellent description
of the world’s A(e,e′p) transparency data [25]. In this work
no free parameters are tuned to model the FSI effects in the
A(e,e′p) and A(e,e′pp) data under study. The RMSGA yields
attenuation coefficients that are similar to the power-law results
obtained in nuclear transparency measurements [21]. For those
reasons, we estimate the systematic uncertainty related to the
FSI calculation as small.

The SCX probabilities are calculated in a semiclassical ap-
proximation. The probability of charge-exchange re-scattering
for a nucleon with initial IPM quantum numbers α which
is brought in a continuum state at the coordinate r⃗ is
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modeled by

P
α(β)
CX (r⃗ ) = 1 − exp

[
−σCX(s)

∫ +∞

z

dz′ραβ (z′)
]

. (1)

The z axis is chosen along the direction of propagation of
the nucleon with initial quantum numbers α. The quantum
numbers of the correlated partner in the SRC pair are denoted
with β. The ραβ is the IPM one-body density of the residual
nucleus available for SCX reactions. The ραβ is determined as
the IPM density of the target nucleus, minus the contribution
from the single-particle orbitals α and β. Obviously, for an
ejected proton (neutron) only the neutron (proton) density of
the residual nucleus affects SCX reactions. σCX(s) in Eq. (1),
with s the total c.m. energy squared of the two nucleons
involved in the SCX [26], can be extracted from elastic
proton-neutron scattering data [27].

As outlined in Refs. [23,28], in the spectator approximation
it is possible to factorize the A(e,e′pN ) cross section in
kinematics probing short-range correlated pairs as

d8σ [A(e,e′pN )]

d2'e′ d3P⃗12 d3k⃗12
= KepN σepN (k⃗12)FpN(D)

A (P⃗12) , (2)

where 'e′ is the solid angle of the scattered electron, and k⃗12

and P⃗12 are the relative and c.m. momenta of the nucleon pair
that absorbed the virtual photon. The KepN is a kinematic factor
and σepN (k⃗12) is the cross section for virtual-photon absorption
on a correlated pN pair. The F

pN(D)
A (P⃗12) is the distorted

two-body c.m. momentum distribution of the correlated pN
pair. In the limit of vanishing FSIs, it is the conditional
c.m. momentum distribution of a pN pair with relative Sn=0

quantum numbers. Distortions of F
pN(D)
A (P⃗12) due to FSI

are calculated in the RMSGA. The factorized cross-section
expression of Eq. (2) hinges on the validity of the zero-range
approximation (ZRA), which amounts to putting the relative
pair coordinate r⃗12 to zero. The ZRA works as a projection
operator for selecting the very-short-range components of the
IPM relative pair wave functions.

The probability for charge-exchange reactions in pN
knockout is calculated on an event per event basis, using
the SRC pair probability density F

pN(D)
A (R⃗12) in the ZRA

corrected for FSI. With the aid of the factorized cross-section
expression of Eq. (2), the phase-space integrated A(e,e′pN )
to 12C(e,e′pN ) cross-section ratios can be approximately
expressed as integrals over distorted c.m. momentum distri-
butions,

σ [A(e,e′pN )]
σ [12C(e,e′pN )]

≈
∫

d2'e′ d3k⃗12KepN σepN (k⃗12)
∫

d3P⃗12F
pN(D)
A (P⃗12)

∫
d2'e′ d3k⃗12KepN σepN (k⃗12)

∫
d3P⃗12F

pN(D)
C (P⃗12)

=
∫

d3P⃗12F
pN(D)
A (P⃗12)

∫
d3P⃗12F

pN(D)
C (P⃗12)

. (3)

In the absence of FSI, the integrated c.m. momentum distri-
butions

∫
d3P⃗12F

pN(D)
A (P⃗12) equal the total number of SRC-

prone pN pairs in the nucleus A. Hence, the cross-section

ratios of Eq. (3) provide access to the relative number of
SRC pN pairs up to corrections stemming from FSI. We
have evaluated the ratios of the distorted c.m. momentum
distributions of Eq. (3) over the phase space covered in
the experiment. Given the almost 4π phase space and the
high computational requirement of multidimensional FSI
calculations, we use an importance-sampling approach. The
major effect on the c.m. momentum distribution F

pN(D)
A (P⃗12)

when including FSIs is an overall attenuation; the shape is
almost unaffected [23]. Motivated by this, we used the c.m.
momentum distributions without FSI as the sampling distri-
bution for the importance sampling in the FSI calculations.
When convergence is reached, the computed impact of FSI is
extrapolated to the whole phase space.

IV. RESULTS AND DISCUSSIONS

Figure 2 shows the measured uncorrected σ [A(e,e′pp)]
σ [12C(e,e′pp)]

cross-section ratios compared with the ZRA reaction-model
calculation with and without RMSGA FSI corrections. The
first striking observation is that the measured cross-section
ratios increase very slowly with A (e.g., the Pb/C ratio is
only 3.8 ± 0.5). For contrast, combinatorial scaling based on
the number of pp pairs leads to a ratio of over 200. The
ZRA-RMSGA calculations agree well with the measured data,
yielding a Pb/C ratio of 4.96+0.11

−0.14. The ZRA and ZRA-RMSGA
calculations assume that only pairs with a finite probability
density at relative coordinate zero contribute to the cross
section. This is consistent with assuming that only IPM pairs
in a nodeless relative-S state (i.e., Sn=0) contribute.

Figure 3 shows the number of pp- and pn-SRC pairs in
various nuclei relative to carbon extracted from the measured
A(e,e′pp)/C(e,e′pp) and A(e,e′p)/C(e,e′p) cross-section
ratios following the method outlined in Ref. [8] with RMSGA
corrections for FSI and SCX. The extracted number of pp pairs
are very sensitive to SCX. If the virtual photon is absorbed on
a pn pair and the neutron subsequently undergoes a single
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′ p
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ZRA-RMSGA

FIG. 2. (Color online) The mass dependence of the A(e,
e′pp)/12C(e,e′pp) cross-section ratios. The points show the mea-
sured, FSI-uncorrected, cross-section ratios. The lower orange band
and upper grey line denote ZRA reaction-model calculations for
12C, 27Al, 56Fe, and 208Pb based on Eq. (3) with and without FSI
corrections respectively. The width of the ZRA-RMSGA band reflects
the maximum possible effect of SCX.
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FIG. 3. (Color online) Mass dependence of the number of pp (top
panel) and pn (bottom panel) SRC pairs of nucleus A relative to 12C.
Data (small black circles with error bars) are extracted from the
measured CLAS A(e,e′p) and A(e,e′pp) cross-section ratios [8,21]
after correcting for FSI. Error bars include the estimated uncertainty
on the cross-section ratios and the FSI corrections. The green squares
correspond with unconditional counting of the pp pairs, i.e., [Z(Z −
1)/30 in the upper panel] and pn pairs (ZN/36 in the bottom panel)
for the nuclei 12C, 16O, 27Al, 40Ca, 48Ca, 56Fe, 63Cu, 108Ag, and
208Pb. The yellow diamonds are the ratios obtained by counting IPM
pairs in a relative S and P state. The blue triangles count IPM Sn=0

pairs. The solid line denotes the result of a reaction-model calculation
for scattering from close-proximity pairs [Eq. (3)] which takes full
account of the experimental phase space. This calculation does not
include FSI corrections because these are applied to the data, see text
for details.

charge-exchange reaction with a proton, two protons will be
detected in the final state. These events must be subtracted
in order to extract the number of pp-SRC pairs. Since the
contribution from these pn pairs to the pp final state is
comparable to the number of initial pp pairs, this leads to
a large uncertainty in the number of pp pairs, especially for
heavy nuclei.

Figure 3 also shows the expected number of pp and pn SRC
pairs relative to carbon for different quantum numbers of the
IPM pairs that can dynamically form SRC pairs through the
action of correlation operators. These include (a) all possible
NN pairs (i.e., Z(Z − 1)/(6 × 5) and ZN/(6 × 6) for pp and
pn pairs respectively), (b) pairs in a nodeless relative-S state
(i.e., Sn=0), and (c) L " 1 pairs (i.e., both S and P state pairs).
Those Sn=0 pairs are characterized by the (n = 0,L = 0)
quantum numbers for their relative orbital motion. Of all
possible states for the pairs, the Sn=0 pairs have the highest
probability for the two nucleons in the pair to approach each
other closely. Close-proximity IPM pn pairs in a 3S1(0) state

TABLE I. Relative number of SRC pp and pn pairs calculated
using Sn=0 counting and the ZRA reaction model compared to the
extracted values from the measured A(e,e′p) and A(e,e′pp) ratios
after correcting for FSI effects. The error includes the uncertainties
in the cross-section ratios and FSI calculations.

pp pn

Sn=0 ZRA Expt. Sn=0 ZRA Expt.

27Al / 12C 3.10 2.89 2.47+0.55
−0.67 2.99 2.52 2.99+0.26

−0.22
56Fe / 12C 8.60 5.89 3.98+0.99

−1.19 7.72 4.82 6.03+0.60
−0.51

208Pb / 12C 45.29 17.44 7.73+5.92
−7.23 37.62 18.80 24.87+3.89

−3.42

are highly susceptible to the tensor correlation operator that
creates SRC pairs in a spin-triplet state with predominantly
deuteron-like quantum numbers (L = 0,2; T = 0; S = 1).

We determine the number of pairs in each case using
an IPM harmonic-oscillator basis and performing a standard
transformation to relative and center-of-mass coordinates as
detailed in Ref. [29]. The relative number of pairs are displayed
in Fig. 3 and listed in Table I. As can be seen, both (a) the naive
combinatorial assumption and (c) the calculations that include
IPM S and P pair contributions both drastically overestimate
the increase in the number of pairs with A. The ZRA and
Sn=0 pair counting calculations are in fair agreement with the
extracted number of pp and pn pairs.

As both the ZRA and the Sn=0 pair counting methods project
IPM states onto close-range pairs, we expect the two methods
to produce a similar mass dependence of the number of SRC
pairs. The ZRA predicts a somewhat softer mass dependence
(∝ A1.01±0.02 vs A1.12±0.02). This can be explained by the fact
that the ZRA is a more restrictive projection on close-proximity
pairs than the Sn=0 counting which accounts also for r⃗12 ̸= 0
contributions.

The observed agreement with the experimental data
indicates that correlation operators acting on IPM Sn=0 pairs
are responsible for the largest fraction of the high-momentum
nucleons in nuclei. This gives further support to the assumption
that the number of IPM pairs with quantum numbers Sn=0 is a
good proxy for the number of correlated pairs in any nucleus
A [18,29,30]. This is also consistent with an analysis of the
cross section of the ground-state to ground-state transition in
high-resolution 16O(e,e′pp)14C measurements [31,32] which
provided evidence for the 1S0(1) dominance in SRC-prone pp
pairs.

V. CONCLUSIONS

We have extracted the relative number of pn and pp
SRC correlated pairs in nucleus A relative to carbon from
previously published measured A(e,e′pp)/C(e,e′pp) and
A(e,e′p)/C(e,e′p) cross-section ratios corrected for final
state interactions. The relative number of pn and pp pairs
increases much more slowly with A than expected from simple
combinatorics.

We calculated the cross section in a framework which shifts
the complexity of the nuclear SRC from the wave functions to
the operators by calculating independent-particle model (IPM)
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Slater determinant wave functions and acting on them with
correlation operators to include the effect of SRCs [18–20].
The uncorrected A(e,e′pp)/C(e,e′pp) cross-section ratios are
consistent with a zero range approximation (ZRA) calculation
that includes the effects of FSI.

Due to factorization, the ratio of calculated cross sections
is approximately equal to the ratio of the distorted c.m.
momentum distributions. In the absence of FSI, the integrated
c.m. momentum distribution equals the total number of SRC-
prone pairs in that nucleus. We compared three choices of
SRC-prone pairs to the data: (a) all pairs, (b) pairs in a nodeless
relative-S state (Sn=0), and (c) L " 1 pairs (i.e., both S and P ).

We found that the soft mass dependence of the measured
A(e,e′pp) cross-section ratios agrees with scattering from
highly selective close-proximity pairs (i.e., only IPM relative
Sn=0 pairs). The mass dependence of the extracted ratios
of the number of short-range correlated pp and pn pairs
provides additional support for this conclusion. All these
results consistently hint at a physical picture whereby the
aggregated effect of SRC in the nuclear wave function is
determined to a large extent by mass-independent correlation
operators on Sn=0 pairs. This provides additional evidence
for the scale separation between the mean-field and SRC

dynamics that has, for example, been used in calculations of
NMD of Refs. [18–20]. Among other things, these conclusions
are likely to affect the models used to estimate the effect
of correlated pairs on neutrino-nucleus cross sections [33]
and studies of the nuclear equation-of-state in conditions of
increased density, i.e., enhanced sensitivity of SRC [34].
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The nuclear symmetry energy (Esym(ρ)) is a vital ingredient of our understanding of many processes, from
heavy-ion collisions to neutron stars structure. While the total nuclear symmetry energy at nuclear saturation
density (ρ0) is relatively well determined, its value at supranuclear densities is not. The latter can be better
constrained by separately examining its kinetic and potential terms and their density dependencies. The kinetic
term of the symmetry energy, Ekin

sym(ρ0), equals the difference in the per-nucleon kinetic energy between pure
neutron matter (PNM) and symmetric nuclear matter (SNM), often calculated using a simple Fermi gas model.
However, experiments show that tensor force induced short-range correlations (SRC) between proton-neutron
pairs shift nucleons to high momentum in SNM, where there are equal numbers of neutrons and protons, but have
almost no effect in PNM. We present an approximate analytical expression for Ekin

sym(ρ0) of correlated nucleonic
matter. In our model, Ekin

sym(ρ0) = −10 MeV, which differs significantly from +12.5 MeV for the widely-used
free Fermi gas model. This result is consistent with our analysis of recent data on the free proton-to-neutron ratios
measured in intermediate energy nucleus-nucleus collisions as well as with microscopic many-body calculations,
and previous phenomenological extractions. We then use our calculated Ekin

sym(ρ) in combination with the known
total symmetry energy and its density dependence at saturation density to constrain the value and density
dependence of the potential part and to extrapolate the total symmetry energy to supranuclear densities.

DOI: 10.1103/PhysRevC.91.025803 PACS number(s): 21.65.Ef, 21.30.Fe, 24.10.Lx, 25.60.−t

The nuclear symmetry energy Esym(ρ), where ρ is the
nuclear density, is related to the difference in the energy per
nucleon of pure neutron matter (PNM) and symmetric nuclear
matter (SNM). It determines many nuclear and astrophysical
properties, such as the cooling of proto-neutron stars [1], the
mass-radius relations of neutron stars [2], properties of nuclei
involved in r-process nucleosynthesis [3], and heavy-ion
collisions [4–6].

Much effort is being invested in improving our knowledge
of Esym(ρ). In particular, several major radioactive beam facil-
ities being built around the world have all listed constraining
the symmetry energy as one of their major science drivers;
see, e.g., Ref. [7]. Moreover, observations of neutron stars from
current missions such as the Chandra X-ray and XMM-Newton
observatories and upcoming missions such as the Neutron
Star Interior Composition Explorer (NICER) [8] will provide
high-precision data to allow us to infer more accurately neutron
star radii, which are very sensitive to the symmetry energy
[9–12].

Significant progress has been made in recent years in
constraining Esym(ρ), especially around ρ ≈ ρ0, the saturation
density, using data from both terrestrial laboratory experiments
and astrophysical observations [13–18]. Recent surveys of
model analyses of world data found that the mean values
of the symmetry energy and its density dependence at ρ0
are consistent with 29 ! Esym(ρ0) ! 33 MeV and 40 ! L =
3ρ

∂Esym(ρ)
∂ρ

|ρ0 ! 60 MeV [19,20]. However, the decomposition
of the symmetry energy into its kinetic and potential parts and

*or.chen@mail.huji.ac.il

its behavior at both subsaturation (ρ < ρ0) and suprasaturation
(ρ > ρ0) densities are still poorly known.

A common method to improving our knowledge of the total
symmetry energy, Esym(ρ), is to separate it into its potential
(Epot

sym(ρ)) and kinetic (Ekin
sym(ρ)) parts,

Esym(ρ) = Ekin
sym(ρ) + Epot

sym(ρ) (1)

and probing them separately [6,12,18]. The kinetic part of the
symmetry energy, Ekin

sym(ρ), can be readily calculated from the
nuclear momentum distribution. The much less understood
potential part can then be calculated as E

pot
sym(ρ) = Esym(ρ) −

Ekin
sym(ρ).
This separation is valuable for several reasons. As Ekin

sym(ρ)
and E

pot
sym(ρ) have different density dependencies (typically

parameterized as Ekin
sym(ρ0)( ρ

ρ0
)α and E

pot
sym(ρ)( ρ

ρ0
)γ ) the total

symmetry energy can be more reliably extrapolated to higher
densities by extrapolating its kinetic and potential parts
separately. Second, knowledge of E

pot
sym(ρ) is important for

constraining key parameters in calculations of the symmetry
energy, such as three-body forces [21] and high-order chiral
effective interactions [22]. These improved models then
allow extrapolation of E

pot
sym(ρ) to suprasaturation densities

with improved accuracy [18,23–25]. Third, knowing Ekin
sym(ρ)

and E
pot
sym(ρ) separately is required to describe heavy-ion

reactions and describe the isovector dynamical observables.
For example, the density dependence of Esym(ρ) as extracted
from heavy-ion collisions depends on models of Ekin

sym(ρ) [26].
The kinetic part is often approximated in a nonrelativistic

free Fermi gas model [6,12] as the per-nucleon difference
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between the kinetic energy of pure neutron matter at a density
ρ and the kinetic energy of symmetric nuclear matter where
the protons and neutrons each have density ρ/2:

Ekin
sym(ρ)|FG = (2

2
3 − 1) 3

5EF (ρ) ≈ 12.5MeV(ρ/ρ0)2/3, (2)

where EF (ρ) is the Fermi energy at density ρ.
However, short-range correlations (SRC) due to the tensor

force acting predominantly between neutron-proton pairs
significantly increase the average momentum and hence the
kinetic energy in SNM but have almost no effect in PNM.
They thus reduce significantly the kinetic symmetry energy,
possibly even to negative values. This has been shown recently
in both phenomenological models [27] and microscopic
many-body theories [28–31]. For a given symmetry energy,
Esym(ρ), the SRC-induced decrease of Ekin

sym(ρ) increases
E

pot
sym(ρ) beyond its Fermi gas model limit of E

pot
sym(ρ0) =

Esym(ρ0) − Ekin
sym(ρ0)|FG ≈ 19.1 MeV at saturation density.

This is important for transport model simulations of heavy-ion
collisions [4–6,32,33].

In this paper we provide a phenomenological analytical
expression for the kinetic symmetry energy of correlated
nucleonic matter based on calculations of nuclear momentum
distributions and on data at saturation density (ρ0) from
inclusive (e,e′) and exclusive (e,e′pN ) scattering experiments
at the Thomas Jefferson National Accelerator Facility (JLab)
[34–38]. We give credence to our model by comparing
to a transport model analysis of nucleon emission data in
intermediate energy heavy-ion collisions [40,41] and to many-
body theoretical calculations of nuclei and nuclear matter
[28–31,41,42]. Last we use the known values of the total
symmetry energy, Esym(ρ0), and its density dependence, L,
at saturation density to extract the total symmetry energy at
supranuclear densities and to constrain the value and density
dependence of the potential part of the symmetry energy.

It has long been known that the tensor-force-induced
SRC leads to a high-momentum tail in the single-nucleon
momentum distribution around 300–600 MeV/c [43,44]. This
high-momentum tail scales; i.e., its shape is almost identical
for all nuclei from deuteron to infinite nuclear matter. See,
e.g. Refs. [42,45,46]. This is shown by the constancy of
the ratio of the per-nucleon inclusive (e,e′) cross sections
for nucleus A to the deuteron, a2(A), for Bjorken scaling
parameter xB between about 1.5 and 1.9 [34–36,47]. The ratio
of the momentum distribution in nucleus A to the deuteron
for 300 ! k ! 600 MeV/c is just the cross-sectional ratio
a2(A). Extrapolation of the measured a2(A) to infinite SNM
using three different techniques [48–50] yields an average
value of a2(∞) = 7 ± 1. The uncertainty in the extrapolation
represents about 50% of the difference between a2(A) ≈ 5 for
heavy nuclei and a2(∞) = 7 for SNM.

Exclusive two-nucleon knockout experiments
[37,38,51–53] show that, for 300 ! k ! 600 MeV/c,
proton knockout is accompanied by a recoil second nucleon
and that second nucleon is predominantly a neutron, i.e., that
np-SRC pairs dominate over pp pairs by a factor of about
20. For recent reviews, see Refs. [54,55]. This implies that
correlations are about 20 times smaller in PNM than in SNM.
Since the integral of the deuteron momentum distribution

from 300 to 600 MeV/c is about 4% [56] and a2(∞) = 7 ± 1,
the probability of finding a high-momentum nucleon in SNM
is about 25% and in PNM is about 1–2%.

The deuteron momentum distribution, nd (k), decreases
as 1/k4 for 300 ! k ! 600 MeV/c [57]. Since the nuclear
momentum distribution, nA(k), in that range is predominantly
due to np-SRC pairs and since it is proportional to the deuteron
distribution, we can write that nA(k/kF )(k/kF )4 = Rda2(A),
where Rd = 0.64 ± 0.10 is extracted from the deuteron mo-
mentum distribution and kF is the Fermi momentum [57]. At
higher momenta, the momentum distribution n(k) drops much
more rapidly.

This is supported by “exact” variational Monte Carlo
(VMC) momentum distributions calculated [41] for 4He and
10B, which decrease as k−4 for np pairs with small-pair center-
of-mass momentum for nucleon momenta 1.2 < k/kF < 3 to
within about 10%.

We therefore model n(k) for SNM with a depleted Fermi
gas region and a correlated high-momentum tail:

nSRC
SNM(k) =

⎧
⎨

⎩

A0 k < kF

C∞/k4 kF < k < λk0
F

0 k > λk0
F

, (3)

where C∞ = Rda2(∞)kF ≡ c0kF is the phenomenological
height factor [57], c0 = 4.16 ± 0.95, k0

F is the Fermi momen-
tum at ρ0, and λ ≈ 2.75 ± 0.25 is the high-momentum cutoff
obtained from the momentum distribution of the deuteron [57].
A0 is a constant given by

A0 = 3π2

(
k0
F

)3

ρ0

ρ

{

1 −
[

1 − 1
λ

(
ρ

ρ0

)1/3
]

c0

π2

}

, (4)

determined by the normalization

4π

(2π )3

∫ λk0
F

0
nSRC

SNM(k)k2dk ≡ 0.5. (5)

Based on the JLab data [38], fewer than 2% of neutrons belong
to nn-SRC pairs. We thus use the free Fermi gas model for
PNM and include the 2% upper limit for correlated neutrons
in our estimate of the uncertainty band. In what follows we
refer to this as the correlated Fermi gas (CFG) model.

The per-nucleon kinetic energy of nuclei and of symmetric
nuclear matter can then be calculated from the momentum
distribution using

Ekin = 4π

(2π )3

∫ ∞

0

!2k2

2m
n(k)k2dk. (6)

Figure 1 shows the resulting kinetic energy for finite nuclei,
calculated within the CFG model using a2(A) = 5 ± 0.3 and
shown as a function of λ. The CFG kinetic energy is much
larger than that of the uncorrelated Fermi gas. It agrees with the
kinetic energies from many-body nuclear calculations for 12C,
16O, 40Ca, 56Fe, and 208Pb [42] and from VMC calculations
for 12C [41].

Figure 2 shows the average nucleon kinetic energy for
SNM, Ekin

SNM(ρ0) calculated at saturation density and shown
as a function of λ. The CFG calculation is done using
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FIG. 1. (Color online) The per-nucleon kinetic energy calculated
using the correlated Fermi gas (CFG) model (diagonal red [gray]
band) for atomic nuclei from 12C to 208Pb. The calculated kinetic
energy is shown as a function of λ, the high-momentum tail cutoff
parameter. The vertical blue (gray) band shows the constraints on λ

from the deuteron momentum distribution. The red band reflects the
model uncertainties. Also shown are the results from the uncorrelated
Fermi gas model (dashed purple [gray] line) and a horizontal black
band spanning the results from many-body nuclear calculations for
various nuclei from 12C to 208Pb [42] and from exact variational Monte
Carlo (VMC) calculations for 12C [41].

a2(∞) = 7 ± 1 and Rd = 0.64 ± 0.10 and is compared with
the free Fermi gas model and the predictions of several
microscopic models [28,30,31]. The error band on the CFG
results combines estimated uncertainties in Rd and a2(∞). The
self-consistent Green’s function (SCGF) calculations of the
kinetic energy of symmetric nuclear matter, Ekin

SNM(ρ0) [30,31],
agree with our CFG calculation (Fig. 2).

FIG. 2. (Color online) The per-nucleon kinetic energy for sym-
metric nuclear matter calculated using the correlated Fermi gas (CFG)
model (diagonal red [gray] band). The calculated kinetic energy is
shown as a function of λ, the high-momentum tail cutoff parameter.
The vertical blue (gray) band shows the constraints on λ from the
deuteron momentum distribution. The red band reflects the model
uncertainties. Also shown are the results from the uncorrelated
Fermi gas model (dashed purple [gray, bottom] line), the Brueckner-
Hartree-Fock (BHF) model using the AV-18 interaction [28], and the
self-consistent Green’s function (SCGF) approach using the CDBonn,
N3LO, and AV18 nucleon-nucleon interactions [30,31].

FIG. 3. (Color online) The per-nucleon kinetic symmetry energy
at saturation density, Ekin

sym(ρ0), calculated using the correlated Fermi
gas model (diagonal red [gray] band) as a function of λ, the high-
momentum tail cutoff parameter. The dashed purple (gray, top) line
shows the results of the uncorrelated Fermi gas model. The horizontal
green (gray) band shows the results from transport model analyses of
Sn+Sn collisions described in the text. Also shown for comparison
are the results from microscopic calculations: Brueckner-Hartree-
Fock (BHF) [28], Fermi hypernetted chain (FHNC) [29], and the
self-consistent Green’s gunction (SCGF) using the CDBonn, N3LO,
Nij1, and AV18 nucleon-nucleon interactions [30,31].

Almost all phenomenological and microscopic many-body
theories lead to equations of state (EOS) of asymmetric nucle-
onic matter that vary quadratically with the isospin-asymmetry
δ = (ρn − ρp)/(ρn + ρp) according to the so-called empirical
parabolic law E(ρ,δ) = E(ρ,δ = 0) + Esym(ρ)δ2 + O(δ4).
The coefficient of the δ4 term at ρ0 has been found to be
less than 1 MeV [33]. The symmetry energy can thus be
calculated equally accurately from either the energy difference
between PNM and SNM, i.e., Esym(ρ) = E(ρ,1) − E(ρ,0), or
the curvature Esym(ρ) = 1

2
∂2E(ρ,δ)

∂δ2 at any δ.
However, it has never been tested whether the empirical

parabolic law is valid separately for the kinetic and potential
parts of the EOS. While the free Fermi gas kinetic energy
satisfies the parabolic law, models that include SRC may not
[58]. To be consistent and compare with the free Fermi gas
model and microscopic many-body theories, we will define
the kinetic symmetry energy of correlated nucleonic matter
as Ekin

sym(ρ) = Ekin
PNM(ρ) − Ekin

SNM(ρ). We add a SRC correction
term to the Fermi gas symmetry energy to get the full kinetic
symmetry energy:

Ekin
sym(ρ) = Ekin

sym(ρ)|FG − (Ekin
sym(ρ), (7)

where the SRC correction term is

(Ekin
sym ≡ E0

F

π2
c0

[

λ

(
ρ

ρ0

)1/3

− 8
5

(
ρ

ρ0

)2/3

+ 3
5

1
λ

(
ρ

ρ0

)]

.

(8)

As one expects, the SRC correction increases with both the
height (c0 = C∞/kF = Rda2(∞)) and width (λ) of the high-
momentum tail in SNM.

Figure 3 shows the kinetic symmetry energy, Ekin
sym(ρ0),

calculated at saturation density assuming a free Fermi gas
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model for PNM and shown as a function of λ. The error
band on the CFG results combines estimated uncertainties in
Rd,a2(∞) and the amount of SRC in PNM (<2%). Within the
uncertainty range of the parameter λ = 2.75 ± 0.25, Ekin

sym(ρ0)
is found to be −10 ± 7.5 MeV, much less than the free Fermi
gas result of ≈ +12.5 MeV. The microscopic many-body
theories yield results that are significantly smaller than the
free Fermi gas prediction but significantly larger than our
CFG model. Despite the agreement between our CFG model
and the SCGF calculations of the kinetic energy of symmetric
nuclear matter, Ekin

SNM(ρ0) [30,31], the SCGF symmetry energy,
Ekin

sym(ρ0) = Ekin
PNM(ρ0) − Ekin

SNM(ρ0), is significantly larger than
our model’s. This is because the SCGF calculations include
about 10% correlations in PNM.

To further validate our CFG model, we perform a transport
model analysis of nucleon emission data in intermediate
energy heavy-ion collisions. The dynamics of heavy-ion
collisions around the Fermi energy are sensitive to the density
dependence of the nuclear symmetry energy around ρ0 [32,33].
Specifically, the ratio of free neutrons to protons emitted
in heavy-ion collisions was found to be sensitive to the
symmetry energy [4]. This ratio has been measured recently in
124Sn + 124Sn and 112Sn + 112Sn reactions at Ebeam/A = 50
and 120 MeV at MSU [40] with improved precision as
compared to earlier measurements [39]. The data are given
for the double ratio of neutrons to protons in 124Sn + 124Sn to
112Sn + 112Sn reactions to reduce systematic errors associated
with neutron detection.

Using the Isospin-dependent Boltzmann-Uehling-
Uhlenbeck (IBUU) transport model [33], analysis of this
double ratio was done by introducing two parameters, η and
γ , to describe the potential symmetry energy:

Epot
sym(ρ) =

[
Esym(ρ0) − ηEkin

sym(ρ0)
∣∣
FG

]
(ρ/ρ0)γ . (9)

Without considering the momentum dependence of nuclear
potentials, the corresponding symmetry potential is then

V n/p
sym (ρ,δ) =

[
Esym(ρ0) − ηEkin

sym(ρ0)
∣∣
FG

]
(ρ/ρ0)γ

× [±2δ + (γ − 1)δ2]. (10)

The 2δ term dominates. The ± sign is due to the fact that
neutrons and protons feel repulsive and attractive symmetry
potentials respectively.

We varied η and γ on a large two-dimensional (2D) fine
lattice to minimize the χ2 between the model calculations
and the MSU data at both beam energies. We then performed
a covariance analysis to find the uncertainties of η and γ
corresponding to a ±1σ error band using the method reviewed
recently in Refs. [59,60]. We used an impact parameter of 3 fm,
consistent with that estimated for the data [61]. Free nucleons
are identified as those with local densities less than ρ0/8 at the
time of their final freeze-out from the reaction. Calculations
using a phase-space coalescence model lead to similar results
within the error band [26].

Figure 4 shows the double free neutron-proton ratios
in the two 124 and 112 Sn+Sn reactions at Ebeam/A =
50 MeV/nucleon [40]. The calculations (red band) shown

FIG. 4. (Color online) The calculated double ratio of free
neutron-protons in the two reactions in comparison with the MSU
data for transversely emitted nucleons in the angular range of
70◦ ! θcms ! 110◦ [40]. The bands represent 1σ uncertainty of the
calculations.

used the optimized parameters η0 = −0.30 (1 ± 18.53%)
that corresponds to Ekin

sym(ρ0) = −(3.8 ± 0.7) MeV and
γ0 = 0.80 (1 ± 5.98%) with a χ2

0 = 8. This value of Ekin
sym(ρ0)

was determined without considering the momentum depen-
dence of the symmetry potential known to decrease somewhat
the free neutron-proton ratio [62]. It thus represents an upper
bound on the kinetic symmetry energy used to reproduce the
MSU data within the IBUU model. For comparison, results
with a χ2 = 21 using Ekin

sym(ρ0)|FG = 12.5 MeV and γ = 0.8
are also shown. Calculations with Ekin

sym(ρ0)|FG and other values
of γ between 0.4 and 1 leads to even higher χ2 values.

The value of Ekin
sym(ρ0) determined from the IBUU transport

analysis of the neutron to proton ratios in Sn+Sn collisions
is consistent with that calculated using our CFG model (see
Fig. 3).

We now turn to extracting the total symmetry energy at
supra-nuclear densities and the density dependence of its
potential part using the CFG model. We use the general
form of the total symmetry energy given by Eq. (1), with the
CFG corrections to the kinetic energy term given by Eq. (7)
and (8). As detailed above, by comparing the CFG model
results to the known values of the total symmetry energy
(Esym(ρ0) = 31.0 ± 1(1σ ) MeV [19]) we can extract the value
of the potential part of the symmetry energy at saturation
density: E

pot
sym(ρ0) = Esym(ρ0) − Ekin

sym(ρ0). Simillarly, using
the known density dependence of the total symmetry energy at
saturation density (L = 50 ± 5(1σ ) MeV [19]) we can extract
the density dependence of the potential part of the symmetry
energy:

γ =
1
3L − dEkin

sym(ρ)
dρ

∣∣
ρ0

Esym(ρ0) − Ekin
sym(ρ0)

.

Our results are summarized in Table I where we list
the value of γ extracted using the CFG model. This is
compared with free fermi gas model results (i.e. α = 2/3)
assuming different values for the kinetic symmetry energy (i.e.
Ekin

sym(ρ0) = −10, 0, 12.5, 17 MeV), and with recent analyses
of heavy ion collisions [6] and neutron star data [12], which
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TABLE I. Density dependence parameter, γ , of the potential part
of the symmetry energy extracted within the Correlated Fermi Gas
(CFG) and Free Fermi Gas (FG) models, assuming a total symmetry
energy of Esym(ρ0) = 31 MeV. Also shown are the value of γ and
its 1σ and 2σ confidence intervals, extracted from analysis of heavy
ion collision data [6] and neutron stars observations [12], assuming a
Free FG model. The assumed value of the kinetic symmetry energy
at saturation density used in each extraction is also listed.

Ekin
sym(ρ0) γ

[MeV] ±1σ (2σ )

CFG −10 ± 3 0.25 ± 0.05

−10 ± 3 0.58 ± 0.05
0 0.55 ± 0.06FG 12.5 0.48 ± 0.10
17 0.41 ± 0.13

Tsang et al. [6] 12.5 0.7+0.1(0.35)
−0.2(0.3)

Steiner et al. [12] 17.0 0.3+0.1(0.5)
−0.1(0.3)

also assume a free fermi gas model (i.e. α = 2/3). As can
be seen, even within the FG model, the value of γ varies
significantly depending on the value of the kinetic symmetry
energy. Furthermore, CFG and FG results for the same kinetic
symmetry energy also differ due to the density dependence of
the SRC correction term [Eq. (8)]. The value of γ obtained
from the neutron star analysis of Ref. [12] is very similar to
that of the CFG model.

Figure 5 shows the density dependence of the kinetic,
potential and total symmetry energy obtained using both the
CFG and FG models. While the two models differ significantly
in the values and density dependences of their kinetic and
potential parts, their total symmetry energies are almost
identical.

To summarize, we provide an analytical expression for a
kinetic symmetry energy of correlated nucleonic matter at ρ =
ρ0, using the dominance of short-range correlated neutron-
proton pairs at high momentum observed in electron scattering
data. Our model yields Ekin

sym(ρ0) = −10 ± 7.5 MeV, signifi-
cantly lower than Ekin

sym(ρ0) = +12.5 MeV of the widely-used
free Fermi gas model. This result is consistent with our analysis
of recent data on the free proton-to-neutron ratios measured
in intermediate energy nucleus-nucleus collisions as well as

FIG. 5. (Color online) The density dependence of the kinetic,
potential and total symmetry energy extracted using the CFG and
FG models. See text for details.

with microscopic many-body calculations, and previous phe-
nomenological extractions. We also extract the density depen-
dence of E

pot
sym(ρ) and Esym(ρ) from our model of E

pot
sym(ρ)

together with the value of the total symmetry energy and
its density dependence at saturation density. While the total
symmetry energy exacted using different models is consistent,
its separation into kinetic and potential parts is not.
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Background: The nuclear symmetry energy is one of the fundamental ingredients in determining
the equation of state (EOS) of neutron stars. Recent terrestrial experiments constrain both its
value and slope at nuclear saturation density (⇢0 = 0.17 nucleons/fm3), however, its high-density
extrapolation is unknown. Assuming a Free Fermi-gas (FFG) model for the kinetic symmetry
energy, the high-density extrapolation depends on a single parameter - the density dependence of
the potential symmetry energy. Recently, a new Correlated Fermi-gas (CFG) model was proposed,
which includes the e↵ect of short-range correlated, high-momentum, nucleons in nuclear matter.
Using constrains obtained at saturation density, the CFG model was shown to obtain a soft density
dependences for the symmetry potential.

Purpose: Examine the ability of the FFG and CFG models to describe neutron stars observables
that are directly sensitive to the symmetry energy at high-density. Specifically, the ability of the
CFG model, with its soft density dependences for the symmetry potential, to support a two solar-
mass neutron star.

Methods: Using Bayesian analysis of neutron stars observables, we use the CFG and FFG models
to describe the symmetry energy and examine the resulting parameters in the neutron star EOS
and the density dependence of the potential symmetry energy.

Results: We find that both models can describe the data and support a two solar-mass NS. The
obtained density dependence for the potential part of the symmetry energy is very di↵erent between
the two models, but has a small e↵ect on the NS EOS.

Conclusions: While sensitive to the high-density values of the symmetry energy, neutron stars
observables alone are not enough to distinguish between the CFG and FFG models. This indicated
that the NS EOS, obtain from Bayesian analysis of neutron stars observables, that is of vast intreats
for astrophysics, is robust and is not sensitive to the exact nuclear model used for the kinetic term
of the nuclear symmetry energy.

PACS numbers:

INTRODUCTION:

Determining the equation of state (EOS) of dense nu-
clear matter, such as that found in neutron stars (NS),
has been a long-sought goal of nuclear physics. The
EOS encapsulates the energy-density relation of cold and
dense nuclear matter and is therefore a fundamental
property of quantum chromodynamics. While consid-
erable progress had been made in theoretical studies of
nuclear and neutron matter at high densities [1–3], ex-
perimental constraints from terrestrial experiments and
astrophysical observations are still sparse.

One of the largest uncertainties in the NS EOS is the
density dependence of the nuclear symmetry energy [4].
This describes the change in the energy of nuclear matter
as one replaces a proton with a neutron. The symme-
try energy is constrained by terrestrial measurements up
to nuclear saturation density, ⇢0 (= 0.17 nucleons/fm3

⇡ 160 MeV/fm3) [5–12]. Specifically at saturation den-
sity, the value and slope of the symmetry energy were
recently determined to about 2 MeV and 20 MeV respec-
tively [5, 6]. The symmetry energy behavior at supra-

nuclear densities, required for the description of NS, is
not well known.
A common method used to simplify the extraction of

the density dependence of the symmetry energy is to split
the symmetry energy into kinetic and potential parts
and study them separately [13]. The kinetic term is
usually determined analytically using a zero-temperature
Free-Fermi Gas (FFG) model, which fully determines the
value at saturation density and the density dependence
to supra-nuclear densities. Combined with the known
total symmetry energy at saturation density, this de-
termines the potential symmetry energy at saturation
density, leaving its density dependence as the only un-
known [13, 14].
While the analytical FFG model is simple and easy

to use, we know that it fails to describe many rele-
vant properties of nuclear systems. In particular, mi-
croscopic calculations have shown that the FFG model
underestimates the kinetic energy carried by nucleons
in nuclei and nuclear matter [1, 15–19]. Results from
recent electron-scattering experiments indicate that 20
- 25 % of nucleons in medium and heavy nuclei have
momentum greater than the Fermi momentum [20–22].
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These high-momentum nucleons dominate the kinetic
energy of nucleons in nuclei and are predominantly in
the form of neutron-proton (np) short-range correlated
(SRC) pairs [23–28]. These SRC pairs are pairs of nucle-
ons with large relative momentum and small center-of-
mass momentum, where large and small are relative to
the Fermi momentum. Omitting these SRC pairs in the
FFG model cause an underestimate of the kinetic energy
carried by nucleons in nuclei [29].

The e↵ect of np-SRC pairs on the nuclear symme-
try energy was recently investigated using the Corre-
lated Fermi-Gas (CFG) model [29]. This model describe
the momentum distribution of nucleons in symmetric
nuclear-matter by:

nSRC

SNM

(k) =

8
<

:

A0 k < k
F

C1/k4 k
F

< k < �k0
F

,
0 k > �k0

F

(1)

where A0 stands for a depleted Fermi gas distribution
that extends up to k

F

. Above the Fermi momentum
the momentum distribution is assumed to be dominated
by np-SRC pairs who’s momentum distribution is given
by C1/k4 [30] that extends from k

F

to a constant cut-
o↵ given by �k0

F

, where k0
F

is the Fermi-momentum of
symmetric nuclear matter at saturation density. All con-
stants in Eq. 1 (i.e. C1 and �) are extracted from data,
see Ref. [29] for details.

The kinetic symmetry energy calculated using the FFG
and the CFG models showed a very large di↵erence in the
kinetic symmetry [29]. While the total symmetry energy
at supra-nuclear density was almost unchanged, the sat-
uration value and density dependence of the potential
symmetry energy changed significantly. Intermediate en-
ergy heavy-ion collision experiments are directly sensitive
to the potential symmetry energy. Incorporating np-SRC
pairs into the transport codes used to interpret these col-
lisions should have a large impact on the extracted den-
sity dependence of the potential symmetry energy.

This work examines the sensitivity of the NS EOS, ex-
tracted from Bayesian analysis of NS mass and radius
observations [14], to the inclusion of np-SRC using the
CFG model. This is a complementary and independent
approach to the previous use of terrestrial observations
at saturation density and has a larger sensitivity to the
high-density behavior of the symmetry energy. We start
with a short overview of NS observables, EOS parame-
terizations, and Bayesian analysis used to constrain free
parameters in the NS EOS. We then discuss our results
with emphasis on similarities and di↵erences in the NS
EOS obtained using the FFG and CFG models. We high-
light the robustness of the resulting EOS and discuss the
di↵erences in the extracted potential symmetry energy.

BAYESIAN ANALYSIS OF NS OBSERVABLES
AND THE NS EOS:

Bayesian analysis allows constraining the NS EOS
by performing a global fit of NS EOS to NS mass-
radius extractions, taking into account external con-
straints from terrestrial measurements, astrophysical ob-
servations (e.g., observation of a two solar-mass NS) and
physical limitations such as causality (i.e., speed of sound
 speed of light), and hydrodynamical stability [14, 31].

The NS observations used in the analysis presented
here include high precision mass extractions from Pulsar-
timing measurements, simultaneous mass-radius extrac-
tions from photospheric radius expansion (PRE) X-ray
burst measurements, and thermal spectra measurement
of low-mass X-ray Binaries (LMXB), see Ref. [31] for de-
tails.

The parameterization of the NS EOS is divided into
three energy-density regions: low ( 15 MeV/fm3),
medium (15 to ⇡ 350 MeV/fm3), and high (⇡ 350
MeV/fm3). The low energy-density region describes
the NS crust and its functional form is assumed to be
well constrained. The high energy-density region is pa-
rameterized by a one or two polytropes. The medium
energy-density region has a physically motivated func-
tional form, with two fit parameters (Incompressibility,
K, and Skewness, K) and the density dependent symme-
try energy. See Ref. [14] for details.

As described in the introduction, the total symmetry

FIG. 1: (color online) The probability distribution of the ex-
tracted potential symmetry energy density dependence pa-
rameter � (detailed in Eq. 3), obtained from a Bayesian anal-
ysis of NS observations using the CFG, FFG12.5, and FFG17.0

models for the kinetic symmetry energy. The inner and outer
shaded region mark the 1- and 2-� limits of each distribution,
see text for details.
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FIG. 2: The extracted mass-radius (left) and pressure energy-density (right) relations for the CFG model. The results for the
FFG models are almost identical.

energy is generally given by:

E
sym

(⇢/⇢0) = Ekin

sym

(⇢/⇢0) + Epot

sym

(⇢/⇢0), (2)

where Ekin

sym

(⇢/⇢0) and Epot

sym

(⇢/⇢0) are the kinetic and
potential parts of the total symmetry energy. At nuclear
saturation density the total symmetry energy, S

v

, and
its slope, L, are well constrained by terrestrial measure-
ments [5, 6]. The kinetic term can be analytically calcu-
lated assuming a FFG or CFG model, and the potential
symmetry energy at saturation energy is calculated as:
S
pot

= S
v

� S
kin

, where S
kin

is the kinetic symmetry
energy at saturation density. The density dependence of
the potential symmetry energy is parameterized as:

Epot

sym

(⇢/⇢0) = S
pot

· (⇢/⇢0)�

= (S
v

� S
kin

) · (⇢/⇢0)� , (3)

where, assuming knowledge of S
kin

, � is the only un-
known.

To constrain the NS EOS in a self-consistent way, we
follow Steiner et al. [14] and perform a Bayesian analysis
of all available NS observations and terrestrial measure-
ments, using the FFG or the CFG models to express the
kinetic symmetry energy at saturation and the density
dependence. There are two FFG models used in the lit-
erature with S

kin

= 12.5 and 17.0 MeV. We examine
both options and refer to them as FFG12.5 and FFG17.0

respectively.

BAYESIAN ANALYSIS RESULTS:

We start by examining the details of the potential sym-
metry energy. Fig. 1 shows the density dependence of the
symmetry energy for the three models. As can be seen,
this variable is very sensitive to the choice of the kinetic
symmetry energy model. The CFG kinetic symmetry

energy is significantly lower than that of the FFG at sat-
uration density. Because the total symmetry energy and
its slope are fixed at saturation density, this increases
the potential symmetry energy at ⇢0 and drastically de-
creases its density dependence, �.

We note that the results shown in Fig. 1 for the
FFG17.0 model di↵er from the once previously obtained
from a similar Bayesian analysis using the FFG17.0

model [14]. This di↵erence is due to the inclusion of
additional observables in the analysis described here and
changes in the fit parameter phase-space limitations. Un-
like previous works, the results obtained using the FFG
models are consistent with that extracted from heavy-ion
analysis using the FFG12.5 model [13].

The dramatically di↵erent potential symmetry energy
and density dependence obtained using the CFG and
FFG models does not appear to have a large e↵ect on the
bulk properties of the resulting NS EOS. Fig. 2 shows the
EOS obtained from the Bayesian analysis using the CFG
model, which is the same as obtained using the FFG12.5

and FFG17.0 models. Notice that despite the soft den-
sity dependence of the potential symmetry energy the
resulting CFG EOS supports a two solar-mass NS. Fig. 3
shows the extracted energy per nucleon as a function of
the baryonic density for the CFG and FFG12.5 models
(results for the FFG17.0 model are practically identical
to the FFG12.5 model). The FFG results here are also
very similar to the CFG model, although the latter yields
a slightly larger energy. Both models are consistent with
the empirical value of E/A = 16 MeV at saturation den-
sity.

The almost identical EOS and energy-density relations
for the CFG, FFG12.5 and FFG17.0 models (as shown in
Figs. 1 and 2) support the robustness of the Bayesian
analysis and indicates that it is insensitive to the exact
nuclear model used for the kinetic term of the nuclear
symmetry energy. This is not surprising, since these are
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FIG. 3: (color online) The extracted energy per particle as a function of the baryonic density for the CFG (left) and FFG12.5
(right) models. The horizontal and vertical black lines mark the empirical value of 16 MeV at saturation density..

bulk properties of nuclear matter, which depends on the
sum of the kinetic and potential symmetry energies which
is the same for both the CFG and FFG models.

The bulk properties of NS are robust and largely in-
sensitive to the choice of the kinetic symmetry energy
model. However, it is desired to know (1) which model
captures the nuclear dynamics better and (2) are there
other observables that can di↵erentiate between them?
Recent calculations done using a Relativistic Mean-Field
(RMF) model for the symmetry potential obtained very
di↵erent results for the nuclear incompressibility when
calculated using the CFG and FFG models. The result
of the CFG model was consistent with recent experimen-
tal constraints. Another test suggested was to analyze
pion production and isospin di↵usion observables mea-
sured in intermedium-energy heavy-ion collisions. These
experiments are directly sensitive to the symmetry poten-
tial but traditional analyzed using the FFG model alone.
By incorporating SRCs into transport models one could
preform a more details test.

SUMMARY:

The kinetic part of the nuclear symmetry energy can
be parametrized using two models: CFG and FFG.
These models di↵er based on their treatment of short-
range high-momentum pairs of nucleons in nuclei. Using
Bayesian analysis of neutron stars observables, we exam-
ined the ability of the CFG and FFG models to describe
the data and examined the resulting parameters in the
neutron star EOS and the density dependence of the po-
tential symmetry energy. We find that both models can
describe the data and support a two solar-mass NS. The
obtained density dependence for the potential part of the
symmetry energy is very di↵erent between the two mod-

els, but has a small e↵ect on the NS EOS.

While sensitive to the high-density values of the sym-
metry energy, neutron stars observables alone are not
enough to distinguish between the CFG and FFGmodels.
This indicated that the NS EOS, obtain from Bayesian
analysis of neutron stars observables, that is of vast in-
treats for astrophysics, is robust and is not sensitive to
the exact nuclear model used for the kinetic term of the
nuclear symmetry energy.
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Background: The high-momentum distribution of atoms in two spin-state ultracold atomic gases with strong
short-range interactions between atoms with different spins, which can be described by using Tan’s contact,
are dominated by short-range pairs of different fermions and decreases as k−4. In atomic nuclei the momentum
distribution of nucleons above the Fermi momentum (k > kF ≈ 250 MeV/c) is also dominated by short-range-
correlated different-fermion (neutron-proton) pairs.
Purpose: Compare high-momentum unlike-fermion momentum distributions in atomic and nuclear systems.
Methods: We show that, for k > kF MeV/c, nuclear momentum distributions are proportional to that of the
deuteron. We then examine the deuteron momentum distributions derived from a wide variety of modern nucleon-
nucleon potentials that are consistent with NN -scattering data.
Results: The high-momentum tail of the deuteron momentum distribution, and hence of the nuclear momentum
distributions, appears to decrease as k−4. This behavior is shown to arise from the effects of the tensor part of
the nucleon-nucleon potential. In addition, when the dimensionless interaction strength for the atomic system is
chosen to be similar to that of atomic nuclei, the probability for finding a short-range different-fermion pair in
both systems is the same.
Conclusions: Although nuclei do not satisfy all of the conditions for Tan’s contact, the observed similarity of the
magnitude and k−4 shape of nuclear and atomic momentum distributions is remarkable because these systems
differ by about 20 orders of magnitude in density. This similarity may lead to a greater understanding of nuclei
and the density dependence of nuclear systems.

DOI: 10.1103/PhysRevC.92.045205 PACS number(s): 21.65.−f, 21.30.−x, 03.75.Ss, 67.85.−d

I. INTRODUCTION

Interacting many-body fermionic systems are abundant in
nature. In noninteracting Fermi systems at zero temperature,
the maximum momentum of any fermion in the system is
the Fermi momentum, kF . Independent fermions moving in a
mean-field potential have only a small probability to have k >
kF . However, an additional short-range interaction between
fermions creates a significant high-momentum tail. In this
work we discuss two very different systems, each composed
of two dominant kinds of fermions: protons and neutrons in
atomic nuclei and two spin-state ultracold atomic gases. While
these systems differ by more than 20 orders of magnitude
in density, and the fermion-fermion interactions are very
different, both exhibit a strong short-range interaction between
unlike fermions creating short-range-correlated (SRC) pairs of
unlike fermions that dominate the high-momentum tail.

The momentum distribution of a dilute two-component
atomic Fermi gas with contact interactions is known to exhibit
a C/k4 tail for k > kF , where C is the contact as defined
by Tan [1–12]. The value of C depends on the strength of
interaction between the two components, as parametrized by
a, the scattering length. Here we will show that, although
nuclei do not fulfill the stringent conditions of Tan’s relations,

*or.chen@mail.huji.ac.il

their momentum distribution is remarkably similar to that of
ultracold Fermi gases with the same dimensionless interaction
strength (kF a)−1. The similarity is in both its functional scaling
and the spectral weight of the tail.

While this remarkable similarity may be accidental, it is
plausible that Fermi systems with a complicated noncontact
interaction may still posses universal properties on scales much
larger than the scale of the interaction. This approach might
lead to greater insight into nuclear pair correlations as well as
the behavior of the density dependence of nuclear systems.

This paper is structured as follows: we review our
knowledge of nucleon-nucleon pair correlations in nuclei,
emphasizing that (1) the momentum distribution of nucleons
in nuclei at k > kF is dominated by proton-neutron (np) pairs
and (2) the momentum distribution of nucleons in medium
to heavy nuclei is proportional to that of deuterons at high
momenta. We then show that (3) the momentum distribution
of nucleons in the deuteron and hence in all nuclei decreases
approximately as k−4 at high momenta, which (4) can be
understood from the short distance structure of correlations.
This k−4 distribution is (5) the same momentum distribution as
for the previously measured atoms in ultracold two-spin-state
atomic gases with a contact interaction. We also show that (6)
the pair-correlation probability for unlike fermions (i.e., the
magnitude of the momentum distribution at high momentum)
is the same for nuclei and for atomic systems when the
dimensionless interaction strength of the atomic system is

0556-2813/2015/92(4)/045205(7) 045205-1 ©2015 American Physical Society
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chosen to be the same as for nuclei. We then explore (7) the
applicability of the conditions of Tan’s theory to atomic nuclei.
We discuss soft and hard nucleon-nucleon interactions in the
Appendix.

Previous papers explored the nuclear momentum distri-
bution as well as relationships between atomic and nuclear
systems. Amado and Woloshyn [13] showed that the nuclear
momentum distribution n(k) ∝ [k−2v(k)]2 where v(k) is the
Fourier transform of the nucleon-nucleon potential. This
decreases as k−4 if v(k) is momentum independent. Sartor and
Mahaux found a more complicated form for the momentum
distribution at k > kF for a dilute Fermi gas [14,15], although
their momentum distribution also decreases approximately
as k−4 for large momenta. Studies of the 3He Fermi liquid
might also be relevant to this topic [16]. Carlson et al.
compared quantum monte carlo approaches to neutron matter
and atomic physics [17]. Özen and Zinner [18] proposed
creating a two-component cold Fermi gas closely analogous
to nuclear systems. Zinner and Jensen [19,20] explored the
differences and similarities between nuclei and cold atomic
gases. They point out that, “as the contact parameters are
expected to be universal, they should be the same for a nuclear
system in the limit of large scattering length.” This work builds
on these studies and examines quantitatively the connections
and similarities between two-component atomic and nuclear
systems. Our analysis is different than that of recent work that
relates the nuclear contact to the Levinger constant [21].

II. SHORT-RANGE CORRELATIONS IN NUCLEI

Atomic nuclei are among the most common many-body
Fermi systems. Analysis of electron-nucleus scattering [22]
confirmed that medium and heavy nuclei, with atomic weight
A ! 12, exhibit the properties of a degenerate system with
a characteristic Fermi momentum, kF ≈ 250 MeV/c. How-
ever, experiments also show that nuclei are not completely
described by the independent-particle approximation and that,
as expected [23,24], two-particle correlations are a leading
correction [25–31]. Nuclei are composed of protons and
neutrons with up and down spins, which can create six different
types of nucleon pairs. However, isospin invariance reduces the
types of independent pairs to four: spin-singlet proton-proton
(pp), neutron-neutron (nn), and proton-neutron (pn) pairs and
spin-triplet pn pairs. Isospin symmetry further implies that
all three types of spin-singlet pairs are similar to each other,
reducing the types of pairs to two: spin singlet and spin triplet.
These pairs have either even or odd values of the orbital angular
momentum L according to the generalized Pauli principle,
(−1)L+S+T = −1.

Experiments show that short-range-correlated nucleon-
nucleon pairs account for approximately all of the high-
momentum, k > kF , nucleons in nuclei and about 20%–25%
of all the nucleons in nuclei [25–31]. They also show that
short-range np pairs dominate over pp pairs with a ratio
np/pp = 18 ± 5 [29–31], even in heavy asymmetric nuclei
such as lead [32]. As np pairs include contributions from both
spin-singlet and spin-triplet pairs whereas pp pairs are entirely
spin singlet, the observed np/pp ratio implies that spin-triplet
np pairs account for 85% ± 3% of all pairs with spin-singlet

isospin-triplet pp, nn, and np pairs contributing 5% ± 1%
each for a total of 15% ± 3% spin-singlet pairs. This is due to
the dominant tensor interaction (which acts only in spin-triplet
states) between nucleons at relative momenta between 300 and
600 MeV/c [33–35]. Corrections due to correlations among
three nucleons or more are small [23,26] and appear only for
nucleon momenta greater than about 800 MeV/c.

III. NUCLEAR-MOMENTUM DISTRIBUTIONS

Because of the observed dominance of np pairs in SRCs
we can use the independent-pair approximation [36] to write
the momentum density at k > kF for heavier nuclei as

nA(k) = a2(A)nd (k), (1)

where nA(k) and nd (k) are the high-momentum parts of
the nucleon-momentum distribution for a nucleus of atomic
number A and deuterium, respectively, and the factor a2(A)
is independent of k and is the probability of finding a
high-momentum pair in nucleus A relative to deuterium.

This simple picture was validated experimentally by mea-
surements of the ratios of per-nucleon inclusive electron
scattering cross sections for nuclei of atomic number A
relative to deuterium at four-momentum transfer squared,
Q2 = q⃗ 2 − ω2 > 1.5 GeV2 and Bjorken scaling parameter
1.5 < x < 1.9 where x = Q2/(2mω), q⃗ and ω are the three-
momentum and energy transferred to the nucleus, respectively,
and m is the nucleon mass. Cross sections in this kinematic
region are sensitive to the integral of the nucleon momentum
distribution from a threshold momentum to infinity where
kthresh = kthresh(Q2,x) depends on x and Q2 [37]. These cross-
section ratios are independent of x for 1.5 " x " 1.9 and
1.5 " Q2 " 3 GeV2 [25–28], showing that the momentum
distributions have similar shapes for approximately kF " k #
3kF (275 ± 25 " k # 700 MeV/c) validating Eq. (1). The
value of the ratio gives the proportionality constant for the
different nuclei:

a2(A) = σA/A

σd/2
. (2)

IV. DEUTERON MOMENTUM DISTRIBUTIONS

Since the momentum distributions of all nuclei at high
momentum are proportional to that of the deuteron for about
kF " k " 3kF , we now examine the deuteron momentum
distribution. We will show that the nucleon momentum
distribution for deuterium, and hence for all nuclei, decreases
approximately as k−4 for the momentum range 1.3 kF " k "
2.5 kF . (In anticipation of the coming discussion of heavy
nuclei, we use kF = 250 MeV/c, the typical Fermi momentum
for medium and heavy nuclei.)

In order to study the range of possible deuteron-momentum
distributions, we considered ten modern nucleon-nucleon
(NN ) potentials that are consistent with the nucleon-nucleon
scattering world data set, the Nijmegen 1, 2, and 3 [38],
AV18 [39], CD Bonn [40], wjc1 and 2 [41], IIB [42], and
n3lo500 and n3lo600 [43] nucleon-nucleon interactions.

The chiral effective-field theory (χEFT) N3LO poten-
tials [43] have an explicit momentum cutoff of the form
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exp[−(p/$)n] where n = 4, 6, or 8 and $ = 500 or 600 MeV.
While we use the N3LO potentials with 500 and 600 MeV
cutoffs, the χEFT neutron-proton phase shifts differ dramati-
cally in some partial waves (especially at higher energy) as the
cutoff is varied from 0.7 to 1.5 GeV or as the expansion order is
increased from N3LO to N4LO [44]. In addition, “the N2LO,
N3LO, and N4LO contributions are all about of the same size,
thus raising some concern about the convergence of the chiral
expansion for the NN potential” [45]. The N5LO contribution
is much smaller, indicating convergence [45]. It is unclear how
these convergence issues affect the ability of N3LO potentials
to describe the high-momentum tail of the deuteron. However,
high-precision deuteron-momentum distributions are not yet
available for higher-order χEFT.

There is also some disagreement over the utility of bare
interactions versus soft phase-equivalent interactions. This is
discussed in detail in the Appendix.

The momentum distribution of a nucleon bound in deu-
terium, nd (k), was calculated by using each of the modern
nucleon-nucleon potentials. The proton and neutron momen-
tum distributions in the deuteron are equal, np(k/kF ) =
nn(k/kF ) = nd (k/kF ), and are normalized so that

1

(2π )3

∫ ∞

0
n(k/kF )d3(k/kF ) = 1

2
. (3)

We can see the k−4 dependence of the momentum
distribution clearly in Fig. 1(a), which shows the scaled
dimensionless momentum distribution, (k/kF )4nd (k/kF ), for
a nucleon bound in deuterium for each of these potentials [43].
We observe k−4 scaling in seven of the ten different realistic
models, all showing that the ratio

Rd = (k/kF )4nd (k/kF ) = 0.64 ± 0.10 (4)

for 1.3 " k/kF " 2.5 is constant within about 15%, as shown
by the red dashed line and uncertainty band in Fig. 1(a). Note
that k−4 changes by a factor of 14 in this range and even the
outlying potentials only differ by at most a factor of two from
the average.

The experimental reduced d(e,e′p) cross sections for
1.3 kF " k " 2.5 kF also appear to scale as k−4 and provide
more evidence for the scaling of the momentum distribution.
Figure 1(a) also shows the measured d(e,e′p) scaled reduced
cross sections, (k/kF )4σred(k/kF ), for proton knockout by
electron scattering from deuterium in two kinematics where
the effects of rescattering of the knocked-out proton (final-state
interactions or FSIs) are expected to be small [46]. The two
kinematics are for the angle between the undetected neutron
and the momentum transfer, θnq = 35◦ and 45◦. If the electron
interacts directly with an on-shell proton and the proton does
not rescatter as it leaves the nucleus, then the reduced cross
section equals the momentum distribution. Corrections for
these effects are model dependent and are on the order of
30% to 40% (see Ref. [46] and references therein). These
effects should be significantly smaller for θnq = 35◦ than for
45◦. The momentum dependence of these effects should also
be significantly smaller.

We fit these momentum distributions by nd (k) ∝ k−α

for 1.3kF " k " 2.5kF [except for N3LO500 and N3LO600

FIG. 1. (Color online) The scaled momentum distribution,
k′4n(k′) where k′ = k/kF , for (a) deuteron and (b) atomic systems.
(a) The curves show the scaled proton-momentum distribution
for the deuteron calculated from the Nijmegen 1, 2, and 3 [38],
AV18 [39], CD Bonn [40], wjc1 and 2 [41], IIB [42], and n3lo500
and n3lo600 [43] nucleon-nucleon interactions. The dashed red line is
the average of eight of the calculated momentum distributions for k !
1.3kF . The red band shows the ±15% uncertainty. The points show the
scaled reduced cross sections (using the right-hand y axis), k′4σred(k′),
for electron-induced proton knockout from deuterium, d(e,e′p), at
θnq = 35◦ (filled circles) and at θnq = 45◦ (open circles) [46]. The
curves and points are plotted in units of kF = 250 MeV/c, the
typical Fermi momentum for medium and heavy nuclei. This choice
of kF affects the normalization but not the observed k−4 scaling.
(b) The points show the measured momentum distribution of 40K
atoms in a symmetric two-spin-state ultracold gas with a short-range
interaction between the different spin states [5]. The dimensionless
interaction strength (kF a)−1 = −0.08 ± 0.04. The Fermi momentum
is kF ≈ 1.6 eV/c.

which we fit up to their cutoffs of 500 MeV/c (2kF ) and
600 MeV/c (2.4kF ), respectively]. We varied the lower and
upper fitting bounds by ±0.1kF and ±0.2kF , respectively,
to determine the uncertainty in the exponent α (see Fig. 2).
We observe k−4 scaling in seven of the ten different realistic
models of the nucleon-momentum distribution in deuterium.

This scaling behavior arises from the sum of the S and D
wave contributions to the density. Due to the tensor interaction,
the high-momentum tail is predominantly produced by J =
1, S- and D-wave np nucleon pairs (T = 0,S = 1,L = 0,2
or 3S1 −3 D1) [47]. For larger momenta, k > 2.5kF , the
momentum distribution falls more rapidly with k. However,
this accounts for less than 1% of the fermions in the
system [26]. The momentum distribution of pp pairs does not
scale, since there is a minimum in the momentum distribution
at k/kF ≈ 1.6.

In agreement with the np-pair-dominance model, exact
calculations of the 12C-momentum distribution by using the
AV18 potential also show k−4 scaling [35]. Rios, Polls, and
Dickhoff calculated the momentum distribution for infinite
symmetric nuclear matter using a self-consistent Green’s
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FIG. 2. (Color online) The power α obtained by fitting the mo-
mentum distribution of the nucleon in deuterium to the form: nd (k) ∝
k−α over 1.3kF " k " 2.5kF for the nucleon-nucleon interactions of
Fig. 1. The momentum distributions from n3lo500 and n3lo600 are
sharply regulated (forced to decrease rapidly) at around 500 (k = 2kF )
and 600 MeV/c (k/kF = 2.4kF ), respectively, so we restricted the
upper limit of their fit ranges to 2.0kF and 2.4kF . The uncertainty of
the nuclear momentum distribution exponent comes predominantly
from varying the lower and upper bounds of the fitting range by
±0.1kF and ±0.2kF respectively. The red band is the average α

(±2σ ) obtained from the deuteron distributions, excluding the two
outlier wave functions: CDBonn and WJC1. Also shown is the result
of the power-law fits for the momentum distributions of a nucleon in
12C [35] and an atom in an ultracold two-spin-state 40K gas [5].

function (SCGF) approach for the AV18, CDBonn and
N3LO500 interactions [48,49]. They show that the N3LO500
potential fails to reproduce the measured deuteron-momentum
distributions. Their AV18 and CDBonn nuclear-matter-
momentum distributions decrease with approximately the
same exponent α as do the AV18 and CDBonn deuteron-
momentum distributions shown in Fig. 2.

Based on the inclusive A(e,e′) cross-section ratios dis-
cussed above, the np-pair dominance model, and the calcula-
tions of nuclear- and nuclear-matter-momentum distributions,
we conclude that the momentum distributions of all nuclei
decrease approximately as k−4.

V. UNDERSTANDING THE k−4 SCALING

This scaling should not be surprising. Colle et al. [50] found
that the nuclear-mass dependence of the number of SRC pp
and pn pairs in nuclei can be described by tensor operators
acting on NN pairs in a nodeless relative S state of the
mean-field basis [47,51]. This very-short-range behavior of the
correlated part of the NN interaction leads to k−4 momentum
dependence at high momentum, as is shown next.

This k−4 behavior can be understood to arise from the
importance of the one-pion-exchange (OPE) contribution
to the tensor potential VT , acting in second order. The
Schrödinger equation for the spin-one two-nucleon system,
which involves S- and D-state components, can be ex-
pressed as an equation involving the S state only by using

(−B − H0)|(D⟩ = VT |(S⟩, where B is the binding energy of
the system and H0 is the Hamiltonian excluding the tensor
potential. Thus, one obtains an effective S-state potential:
V00 = VT (−B − H0)−1VT , where VT connects the S and D
states. The intermediate Hamiltonian H0 is dominated by the
effects of the centrifugal barrier and can be approximated by
the kinetic-energy operator. This second-order term is large
because it contains an isospin factor (τ⃗1 · τ⃗2)2 = 9, and because
S2

12 = 8 − 2S12. Evaluation of the S-state potential, neglecting
the small effects of the central potential in the intermediate D
state, yields

V00(k,k′) ≈ −M
16f 4

µ4π4

∫
p2pdp

MB + p2
I02(k,p)I20(p,k′), (5)

where M is the nucleon mass, f 2 ≈ 0.08 is the coupling
constant, µ is the pion mass, and ILL′ are Fourier transforms
of the OPE tensor potential,

I02(p,k) = I20(p,k) = k2Q2(z) + p2Q0(z)
2pk

− Q1(z),

with z ≡ (p2 + k2 + µ2)/(2pk), and Qi are Legendre func-
tions of the second kind. The important property is that
limp→∞ I02(p,k) = 1 − (k2 + µ2)/p2 + · · · . Thus, the inte-
grand of Eq. (5) is dominated by large values of p and
diverges unless there is a cutoff. This means that V00(k′,k)
is approximately a constant, independent of k and k′. This
is the signature of a short-range interaction. As discussed in
the Introduction, this is the necessary and sufficient condition
to obtain an asymptotic two-nucleon wave function ∼1/k2

and a momentum density n(k) ∼ 1/k4. Potentials that do not
yield this behavior either have a very weak tensor force or a
momentum cutoff at low momenta.

VI. COMPARING NUCLEAR AND ATOMIC
HIGH-MOMENTUM TAILS

Figure 1(b) shows the k−4 scaling of 40K atoms. Note the
remarkable similarity between the data depicted in Figs. 1(a)
and 1(b). The nuclear-momentum distributions have the same
k−4 dependence as the momentum distribution measured for
two spin-state ultracold 40K atoms of Ref. [5] and as Tan’s
predictions.

VII. NUCLEAR- AND ATOMIC-PAIR-CORRELATION
PROBABILITIES

After establishing the similarity in k−4 scaling of the
momentum-distribution tail of the nuclear and cold atom
systems, we now compare the spectral weight contained in
these tails. Similar to atomic gases, we define the normalized
dimensionless scaling coefficient per particle as

C

kF A
≡ (k/kF )4n(k/kF ) (6)

at high momentum, where A is the number of fermions in
the system and n(k/kF ) is the dimensionless scaled fermion
momentum distribution in units of kF , normalized according
to Eq. (3). C/(kF A) is a measure of the per particle number of
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TABLE I. The scaling coefficient extracted for different nuclei.
a2(A) is the ratio of the per nucleon inclusive (e,e′) cross sections for
nucleus A relative to deuterium for Q2 > 1.5 (GeV/c)2 and 1.5 "
x " 1.9 [28] [see Eq. (1)]. C is defined by Eq. (7).

Nucleus a2(A) C/(kF A)

12C 4.75 ± 0.16 3.04 ± 0.49
56Fe 5.21 ± 0.20 3.33 ± 0.54
197Au 5.16 ± 0.22 3.30 ± 0.53

short-range-correlated pairs. For nuclei,

C

kF A
= a2(A)Rd, (7)

where C/(kF A), for nuclei, is the sum of all four possible
coefficients, dominated by spin-triplet np pairs, and the ratios
a2(A) are taken from Ref. [28] (see Table I).

Figure 3 shows the nuclear coefficients from Table I and
the scaled atomic contact as extracted from measurements of
the momentum distribution of trapped two-spin-state mixtures
of ultracold 40K [5] and 6Li [6] atomic gases as a function of
the dimensionless interaction strength (akF )−1. The ultracold
atomic gas measurements span a wide range of interaction
strengths near unitary, in the BCS-BEC crossover regime. In
the nuclear case, all medium and heavy nuclei are in the unitary
regime where |kF a|−1 ≪ 1, using the typical nuclear Fermi
momentum, kF = 250 MeV/c =1.27 fm−1 [22] and the 3S1
neutron-proton scattering length, a = 5.42 fm [52]. As can
be seen, when the dimensionless interaction strength is the
same, the scaled atomic contact and the nuclear coefficient
agree remarkably well. The integral of the k−4 tail of the
momentum density is about 0.2. Thus, each fermion has a
≈20% probability of belonging to a high-momentum different-
fermion pair in both the atomic and nuclear systems.

FIG. 3. (Color online) The magenta inverted and blue upright
triangles show the scaled contact plotted versus (kF a)−1, the inverse
of the product of the scattering length and Fermi momentum, as
extracted from measurements of ultracold two-spin-state atomic
systems at finite temperature [5,6]. The red squares show the
equivalent coefficient extracted from atomic nuclei (see Table I),
which are essentially at zero temperature. The dashed and solid lines
show the theoretical predictions of Refs. [8] and [53], respectively,
for atomic systems at zero temperature.

This agreement between the shape and magnitude of
the momentum distributions between such wildly disparate
systems is remarkable. We now look for the underlying reasons
for this agreement.

VIII. POSSIBLE CONNECTIONS TO TAN’S CONTACT

Tan [1–3] and later others [4] showed that a short-range
interaction between two different fermion types leads to a
high-momentum tail that falls as k−4 (where k is the fermion
momentum), and derived a series of universal relations that
relate the contact (i.e., the number of short-range-correlated
pairs) to various thermodynamic properties of the system
such as the total energy and pressure. These were recently
validated experimentally in ultracold two-spin-state atomic gas
systems [5,6] (see Ref. [4] for a review).

Tan obtained relations for dilute systems with scattering
length a and interfermion distance d, which are much larger
than the range of the interaction, r0: a ≫ r0 and d ≫ r0. In
such systems the k−4 scaling of the momentum distribution is
only expected for ka ≫ 1 and kr0 ≪ 1.

As we have shown, atomic nuclei exhibit some of the
same key properties as cold atomic Fermi systems. They are
characterized by a Fermi momentum kF , and have a strong
short-range interaction between (spin-triplet) unlike fermions.
The nuclear momentum distributions also fall as k−4 for
300 " k " 600 MeV/c.

However, unlike systems of atoms, atomic nuclei are self-
bound. The nucleon-nucleon force provides both the long-
range interactions that cause atomic nuclei to resemble Fermi
gases and the short-range interaction between fermions. The
binding interaction arises in part from the iterated effects of the
long-distance one-pion-exchange potential and has a range of
about rbind

0 ≈ !/(mπc) ≈ 1.4 fm, where mπ = 140 MeV/c2

is the pion mass. The range of the short-range part of the
nucleon-nucleon interaction responsible for the spin-triplet pn
pairs in the high-momentum tail is less well defined. The NN -
pairs in a nodeless relative S state [50] are at much closer
distances than typical nucleons. Similarly, the second-order
action of the tensor interaction described in Eq. (5) also must
have an effective range much shorter than the long-distance
pion exchange that binds the nucleus. Quantitatively, various
tensor correlation functions shown in Ref. [54] peak at an
internucleon distance of about 1 fm, so we estimate that r0 ≈ 1
fm.

The typical distance between same-type nucleons in nuclei
is d = (ρ0/2)−1/3 ≈ 2.3 fm, where ρ0 ≈ 0.17 nucleons/fm3 is
the saturation nuclear density. The nucleon-nucleon scattering
length in the 3S1 channel is 5.424 ± 0.003 fm [52].

Therefore, for nuclei, both the interaction length and the
internucleon distance are greater, but not much greater, than the
range of the short-distance interaction (i.e., a ≈ 5.4 fm > d ≈
2 fm > r0 ≈ 1 fm). Other required conditions for 1/k4 scaling
are k ≫ 1/a ≈ 40 MeV/c and k ≪ 1/r0 ≈ 200 MeV/c for
r0 ≈ 1 fm. As can be seen in Fig. 1(a), scaling occurs for
300 " k " 600 MeV/c, much greater than the lower limit of
40 MeV/c. However, k is definitely not much less (or even
less) than the upper limit of 200 MeV/c.
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The required kinematic conditions discussed above are
sufficient, but perhaps not necessary. The scaling of quark
distributions measured in deep inelastic electron scattering was
observed at momentum transfers much below that expected.
This is referred to as “precocious scaling” [55]. Additionally
the 1/k4 tail in ultracold Fermi gases was experimentally
observed to start at a much lower momentum than pre-
dicted [5,56].

Our extraction is different than a recent work by Weiss,
Bazak, and Barnea [21] that relates the nuclear contact term
to the Levinger constant. They attempt to extract it from
photodisintegration data, which are driven by the electric-
dipole operator that operates on neutron-proton pairs. Pho-
todisintegration is not a measure of the ground-state nucleon
momentum density. Furthermore their analysis is restricted
to photon energies below 140 MeV, which corresponds to
wavelengths λ ! 2π!c/E = 8.8 fm which sample the entire
nucleus and are not short-range. Also, these photon energies
correspond to nucleon momenta less than about 340 MeV/c
(≈1.35kF ). This is below the k−4 scaling region shown in
Fig. 1 above. Their average contact (singlet plus triplet over
two) equals our triplet contact alone, so that their total contact
is double ours and also double that of an atomic system with
the same value of kF a.

IX. SUMMARY

We have shown that the momentum distribution of nucleons
in nuclei for k > kF is dominated by spin-triplet pn pairs
and falls approximately as k−4. This is very similar to the
momentum distribution of two-spin-state ultracold atomic
gases with a strong short-range interaction between atoms
in the different spin states. Remarkably, despite a 20-order-
of-magnitude difference in density, when both systems have
the same dimensionless interaction strength (kF a)−1, and the
magnitudes of the momentum distributions are also equal,
indicating that fermions in the two systems have equal
probabilities to belong to correlated pairs.

This leads to the question of whether this agreement
between atomic and nuclear systems at remarkably different
length, energy, and momentum scales is accidental or has a
deeper reason. If the agreement has a deeper reason, then
perhaps relations like Tan’s can be developed for atomic nuclei
and a better extrapolation to supra-dense nuclear systems may
be possible.
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APPENDIX: SOFT AND HARD N N INTERACTIONS

Nuclear theory must describe a broad range of phe-
nomena from low energies to high energies and from low
momentum transfer to high momentum transfer. Therefore
one must contend with the fact that the general baryon-
baryon interaction includes matrix elements that connect low
relative momenta to high relative momenta. These terms
can be handled by using so-called soft NN potentials and
by generating soft phase-equivalent effective interactions
obtained from the bare interactions by means of unitary
transformations [57–63].

Calculations of low-energy and low-momentum processes
are indeed simplified by using soft interactions, and it is reason-
able to obtain such interactions using a unitary transformation.
A consistent application of this idea involves transforming the
Hamiltonian and all other operators, especially including the
currents that account for interactions with external probes [63].
Such transformation are known to convert single-nucleon
operators into multinucleon operators. The effect on long-
range operators such as the radius or electromagnetic transition
operators is small [62,63]. However, the effect on short-range
or high-momentum observables is large [63].

To posit the soft interaction to be the fundamental bare
interaction is to deny the reality of high-momentum-transfer
processes. Therefore, the fundamental bare interaction must
allow high-momentum-transfer processes.

In particular, consider that two-body densities in coordinate
space have a correlation “hole” near r = 0. By transforming
only the Hamiltonian and not the two-body density, these
correlation holes disappear [63]. Similarly, these Hamiltonian-
only transformations dramatically reduce the high-momentum
part of the momentum density.

As an example, consider coherent neutrino-nuclear inter-
actions [64–66]. The neutrino interacts weakly and the cross
section is proportional to the square of the elastic nuclear form
factor. Following Ref. [66] we note that the neutrino-nucleus
elastic-scattering cross section dσ/d, is [67,68]

dσ

d,
= G2

16π2
k2(1 + cosθ )F 2(Q2) (A1)

for a neutrino of energy k scattering at angle θ , and G is
the Fermi coupling constant. The ground-state elastic form
factor F (Q2) at momentum transfer Q, Q2 = 2k2(1 − cosθ ),
is the matrix element of the single-nucleon operator eiq·ri ,
for a nucleon i weighted by the weak charge of the proton
or neutron. One could ideally contemplate probing the high-
momentum components of nuclear wave functions by using
neutrino-nuclear interactions. Now imagine that one wished
to describe the nuclear wave function by using soft interac-
tions. The necessary unitary transformation would transform
the simple single-nucleon operator eiq·ri into a complicated
multibody operator, which would ruin the simplicity of using
the neutrino as a probe.

If one wishes to use simple probes to investigate high-
momentum aspects of nucleon structure, it is necessary to start
with a theory involving bare interactions, which are necessarily
hard interactions.
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5. Summary	and	Conclusions	
	
From	 atomic	 nuclei	 to	 neutron	 stars,	 nuclear	 systems	 lay	 at	 the	 heart	 of	 our	
universe.	The	strong,	non-perturbative	nature	of	nuclear	interactions	makes	the	
theoretical	 description	 of	 many-body	 nuclear	 systems	 a	 challenge.	 Effective	
nuclear	models	successfully	describe	many	bulk	properties	of	nuclear	systems;	
however,	full	understanding	of	nuclear	dynamics	requires	a	detailed	description	
of	 the	 short-range	 structure	 of	 nuclei.	 As	 of	 today,	 the	 latter	 still	 represents	 a	
considerable	challenge	for	both	experimental	and	theoretical	research.	

Recent	 measurements	 of	 2N-SRC	 pairs	 in	 4He	 and	 12C	 showed	 that	 high-
momentum	nucleons	 in	nuclei	are	predominantly	due	 to	2N-SRC	pairs	 [33-37].	
These	pairs	are	predominantly	np-	rather	than	pp-	or	nn-SRC	pairs	[36,37].	This	
np-SRC	pair	dominance	indicates	the	important	role	played	by	the	tensor	part	of	
the	 nucleon-nucleon	 interaction	 at	 short	 distances	 [38-40].	 Based	 on	 these	
results	 the	 possible	 effect	 of	 SRC	 pairs	 on	 heavier	 nuclear	 systems	 such	 as	
neutron	stars	was	examined	[41,42].	However,	due	 to	 the	possible	existence	of	
odd-l	pairs	 in	heavy	nuclear	systems,	whether	np-SRC	pairs	would	dominate	 in	
these	systems	was	not	clear.	

The	first	part	of	this	work	(chapters	2	and	3)	extends	previous	exclusive	studies	
of	2N-SRC	pairs	 to	heavy	atomic	nuclei.	This	was	done	by	measuring	one-	 and	
two-nucleon	 knockout	 processes,	 A(e,e’p)	 and	 A(e,e’pp),	 off	 12C,	 27Al,	 56Fe,	 and	
208Pb,	in	kinematics	dominated	by	scattering	off	2N-SRC	pairs	(xB	>	1.2,	large-Q2,	
|Pmiss|	>	300	MeV/c).	The	analysis	includes	identification	and	characterization	of	
pp-SRC	 events	 in	 all	 measured	 nuclei,	 and	 extraction	 of	 single	 and	 double	
nucleon	knockout	cross-section	ratios	for	nuclei	relative	to	12C.		
These	measurements	yielded:	

1. A	first	direct	observation	of	pp-SRC	pairs	 in	nuclei	heavier	than	12C	
using	exclusive	reactions.	
The	 use	 of	 hard	 exclusive	 reactions	 is	 the	 most	 successful	 tool	 for	
studying	 the	 detailed	 structure	 of	 SRC	 pairs	 in	 nuclei	 [34,44].	 These	
studies	allow	extracting	the	detailed	c.m.	motion	of	the	pairs,	their	isospin	
structure	 and	 more	 [34-37].	 Previous	 studies	 of	 exclusive	 reactions	
focused	on	medium	and	light	symmetric	nuclei	(12C	and	4He)	where,	in	the	
measured	kinematics,	 the	 effects	 of	 FSI	 are	 thought	 to	be	under	 control	
[35,45].	Extending	these	measurements	to	heavy	nuclei	is	highly	desirable	
as	 they	allow	 the	exploration	of	 the	 role	played	by	SRC	 in	 a	 true	many-
body,	 asymmetric,	 nuclear	 environment.	 By	 observing	 for	 the	 first	 time	
pp-SRC	 pairs	 in	 heavy	 nuclei,	 and	 comparing	 their	 characteristics	 to	
medium	 nuclei	 (12C),	 we	 showed	 experimentally	 the	 validity	 of	 hard	
exclusive	measurements	in	resolving	the	detailed	short-range	structure	of	
heavy	nuclei.	
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2. Extraction	of	the	ratio	of	np-	to	pp-SRC	pairs	in	heavy	nuclei.	
The	 relative	number	of	np-	 to	pp-SRC	pairs	 in	 the	measured	nuclei	was	
extracted	 using	 the	 single-to-double	 nucleon	 knockout	 cross-section	
ratios	 for	 different	 nuclei	 relative	 to	 12C.	 The	 extracted	 np/pp	 ratios	
showed,	 for	 the	 first	 time,	 the	 persistence	 of	 np-SRC	 pair	 dominance	 in	
heavy	asymmetric	atomic	nuclei.	
This	observation	also	indicates	a	new	universal	feature	of	two-component	
Fermi	 systems	 with	 a	 short-range	 interaction	 that	 is	 strong	 between	
different	 fermions	 and	 weak	 between	 fermions	 of	 the	 same	 type:	 the	
probability	 of	 finding	 a	 high-momentum	 fermion	 is	 higher	 for	 the	
minority	 species	 (protons)	 than	 the	 majority	 species	 (neutrons).	 This	
indicates	 that	 SRC	 can	 potentially	 invert	 the	 energy	 sharing	 between	
protons	and	neutrons	in	heavy	nuclei,	giving	the	protons	a	larger	average	
kinetic	energy	[46].	
	

3. Extraction	of	nuclear	transparency	ratios	for	proton	knockout	from	
the	hard	breakup	of	2N-SRC	pairs.		
Previous	 transparency	 measurements	 focused	 on	 quasielastic	 proton	
knockout from	the	mean-field	protons	 in	the	nucleus	(i.e.	xB	≈	1,	high-Q2,	
low-Pmiss	 kinematics)	 [47-49].	 Compared	 to	 Glauber	 calculations,	 these	
measurements	 showed	 a	 Q2	 independent,	 ~20%	 deviation	 for	 heavy	
nuclei	[50].	Theoretical	analysis	indicated	that	the	observed	deviation	can	
be	 explained	 by	 over-correction	 for	missing	mean-field	 strength	 due	 to	
2N-SRC	 contamination	 in	 the	 previous	 measurements	 [51].	 The	
transparency	 extraction	 reported	 in	 this	 work	 was	 done	 in	 different	
kinematics	 (large-xB,	 large-Q2	 high-Pmiss	 kinematics),	 where	 one	 focuses	
on	SRC	pairs	instead	of	correcting	for	them.	This	new	method	allows	one	
to	 perform	 a	 largely	 theory-independent	 analysis.	 The	 resulting	
transparency	 ratios	 agreed	 with	 Glauber	 calculations,	 supporting	 the	
proposed	 ‘over-correction’	explanation	for	 the	observed	deviation	of	 the	
mean-field	measurements	from	the	Glauber	calculations.	

The	second	part	of	this	work	(chapter	4)	uses	the	experimental	results	reported	
in	chapter	3	to	perform	a	phenomenological	study	of	SRC	effects	(specifically	np-
SRC	dominance)	on	a	variety	of	systems:	

1. Deep-Inelastic	scattering	off	bound	nucleons.	
Measurements	 of	 the	 per-nucleon	 DIS	 cross-section	 ratio	 for	 nuclei	
relative	to	deuterium	were	first	reported	by	the	EMC	collaboration	in	the	
early	80s	 [52].	Contrary	 to	expectations,	 the	observed	xB	dependence	of	
the	measured	per	nucleon	cross	section	ratio	is	different	from	unity	over	
a	wide	range	of	xB.	This	became	known	as	the	‘EMC	Effect’.	Comparing	the	
EMC	 measurements	 with	 theoretical	 calculations	 showed	 large	
disagreement,	especially	for	0.3	<	xB	<	0.7	[53].	This	indicated	the	possible	
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existence	of	unknown	nuclear	effects.	While	over	1000	theoretical	papers	
have	tried	to	explain	the	origin	of	the	EMC	effect,	as	of	today	there	is	still	
no	 widely	 accepted	 explanation.	 Considering	 all	 available	 experimental	
constraints,	it	seems	very	unlikely	that	the	EMC	effect	could	be	explained	
without	 introducing	 modifications	 to	 the	 structure	 function	 of	 bound	
nucleons	in	nuclei.	Detailed	measurements	of	the	EMC	effect	in	a	variety	
of	nuclei	 show	 that	 the	 strength	of	 the	effect	 grows	with	A	 [54,55].	The	
strength	is	defined	as	the	slope	of	the	per	nucleon	cross-section	ratio	for	
0.3	 <	 xB	 <	 0.7.	 Attempts	 to	 find	 a	 nuclear	 variable	 (binding	 energy	 /	
density	 etc.)	 for	 which	 this	 dependence	 is	 regular	 have	 been	 largely	
unsuccessful	 until	 now.	Our	observation	 that	 the	magnitude	of	 the	EMC	
effect	 is	 linearly	 proportional	 to	 the	 number	 of	 2N-SRC	 pairs	 over	 the	
entire	periodic	table	(from	3He	to	197Au)	constitutes	the	first	identification	
of	 such	 a	 variable.	 This	 is	 known	 as	 the	 EMC/SRC	 correlation	 and	
indicates	that	both	the	EMC	effect	and	SRC	might	have	the	same	common	
origin	–	high	momentum	nucleons	in	nuclei.	Applying	different	theoretical	
corrections	 to	 the	 experimental	 data	 showed	 that	 the	 EMC/SRC	
correlation	 is	 robust,	 supporting	 the	 physical	 interpretation	 of	 this	
correlation.	Inspired	by	the	fact	that	the	strong	short-range	interaction	of	
SRC	 pairs	 implies	 that	 their	 structure	 does	 not	 depend	 on	 the	 detailed	
nuclear	structure,	we	demonstrated	 that	one	can	 fully	describe	 the	EMC	
data	 for	 all	 measured	 nuclei	 using	 a	 theoretical	 model	 which	 includes	
global,	nucleus	independent,	modification	of	SRC	/	mean-field	nucleons.	
	

2. Free	neutron	structure	and	the	large-xB	d/u	ratio	of	the	proton.	
The	partonic	structure	of	the	neutron	is	of	vast	interest	for	understanding	
SU(6)	 symmetry-breaking	 mechanisms	 in	 QCD	 [56].	 Assuming	 isospin	
symmetry,	 the	 proton-to-neutron	 structure	 function	 ratio	 at	 high-xB	
(where	 valence	 quarks	 dominate	 the	 structure	 function)	 is	 directly	
related	 to	 the	 d/u	 ratio	 of	 the	 proton	 [56].	 Extracting	 the	 structure	
function	of	the	neutron	from	DIS	cross-section	measurements	requires	a	
free	neutron	target.	The	short	lifetime	and	neutral	charge	of	the	neutron	
makes	 this	 unpractical.	 To	 overcome	 this	 limitation,	 many	 analyses	
approximate	the	deuteron	as	a	free	proton	plus	neutron	pair,	and	extract	
the	neutron	DIS	cross-section	by	subtracting	the	proton	DIS	cross-section	
from	 that	 of	 the	 deuteron	DIS	 [57].	One	 should	 note	 that	more	modern	
extractions	also	 include	a	model-dependent	correction	 for	Fermi	motion	
effects	 in	 the	 deuteron	 [58].	 However,	 even	 after	 correcting	 for	 Fermi	
motion	 effects	 one	 cannot	 be	 sure	 that	 the	 deuteron	 does	 not	 have	 an	
EMC-like	effect,	referred	to	in	this	work	as	the	IMC	effect.	By	extrapolating	
the	 EMC-SRC	 correlation	 to	 the	 limit	 of	 no	 correlations	 (a2	→	 0),	 we	
extracted	the	magnitude	of	the	IMC	effect,	 i.e.	 the	slope	of	the	DIS	cross-
section	ratio	for	the	deuteron	relative	to	a	free	proton-neutron	pair.	Using	
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measured	 proton	 and	 deuteron	 DIS	 cross	 sections	 this	 allowed	 the	
extraction	of	 the	 free	neutron	DIS	cross-section	and	the	ratio	of	 the	 free	
proton-to-neutron	DIS	cross-section.	Using	 the	extracted,	 IMC	corrected,	
proton-to-neutron	 DIS	 cross-section,	 we	 constrained	 theoretical	models	
for	the	off-shell	structure	of	nucleons	bound	in	deuterium	used	in	a	global	
QCD	 analysis	 by	 the	 CTEQ-JLab	 collaboration.	 This	 allowed	 us	 to	
strengthen	the	constraint	on	the	d/u	ratio	as	xB	->	1.	
	

3. Pairing	 mechanisms	 in	 nuclei	 and	 the	 quantum	 numbers	 of	 SRC	
nucleon	pairs.	
The	underlying	pairing	mechanism	that	is	responsible	for	the	creation	of	
2N-SRC	 pairs	 is	 highly	 model-dependent	 and	 is	 currently	 not	 well	
understood.	By	examining	the	A-dependence	of	the	a2	scaling	parameter	
(i.e.	 the	 total	 number	 of	 high-momentum	 nucleons	 in	 nuclei	 relative	 to	
deuterium)	one	can	see	that	simple	combinatorial	considerations	do	not	
apply,	 showcasing	 the	 need	 for	 a	 much	 more	 selective	 mechanism.	 To	
gain	further	experimental	insight	into	this	process,	we	used	the	measured	
A(e,e’p)	and	A(e,e’pp)	cross-sections	ratios	to	extract	the	relative	number	
of	 pp-	 and	 np-SRC	 pairs	 in	 nuclei	 relative	 to	 12C.	 The	 results	 indicate	 a	
very	 soft	 A-dependence	 for	 both	 the	 number	 of	 pp-	 and	 np-SRC	 pairs.	
Obtaining	separately	the	scaling	of	the	relative	number	of	pp-	and	np-SRC	
pairs	 allows	 detailed	 comparison	 to	 theoretical	 calculations.	 One	 such	
comparison	to	the	calculations	of	Ryckebusch	et	al.	[59]	is	shown	as	part	
of	 this	 work.	 This	 model	 assumes	 that	 correlation	 operators	 acting	 on	
mean-field	wave	functions	can	describe	the	formation	of	2N-SRC	pairs.	By	
restricting	the	action	of	the	correlation	operators	to	mean-field	pairs	with	
specific	 relative	quantum	numbers,	 one	 can	obtain	different	 predictions	
for	the	scaling	of	the	number	of	np-	and	pp-SRC	pairs	in	nuclei.	The	result	
of	 this	 comparison	 indicates	 that	 only	 when	 considering	 2N	 pairs	 in	 a	
node-less	 relative	 S-state,	 could	 the	 soft	 A-dependence	 of	 the	 data	 be	
reproduced.	 This	 is	 a	 clear	 indication	 of	 the	 selectivity	 of	 the	 2N-SRC	
pairing	mechanism.	
	

4. The	nuclear	symmetry	energy	and	neutron	stars	equation	of	state.	
Understanding	 the	equation	of	 state	of	high-density	asymmetric	nuclear	
matter	 is	 crucial	 for	 describing	 many	 astrophysical	 phenomena,	 from	
core-collapse	 supernova	 to	 neutron	 stars	 mergers,	 gravitational	 wave	
emission,	 r-process	 nuclear	 synthesis,	 and	 more	 [60].	 The	 nuclear	
symmetry	 energy,	 which	 describes	 the	 change	 in	 the	 energy	 of	 nuclear	
systems	 as	 a	 proton	 is	 replaced	 with	 a	 neutron,	 is	 one	 of	 the	 main	
unknowns	 in	 this	 equation	of	 state	 [61].	 Focusing	on	 the	kinetic	part	of	
this	 energy,	 previous	 works	 assumed	 a	 free	 Fermi	 gas	 model,	 which	
neglects	 correlations.	 Taking	 into	 account	 the	 observed	 np-SRC	
dominance,	this	work	proposes	a	new	Correlated	Fermi	Gas	(CFG)	model	
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which	includes	the	effect	of	np-SRC	pairs	in	the	description	of	symmetric	
nuclear	matter.	We	observed	a	negative	kinetic	symmetry	energy,	which	
is	 also	 supported	 by	 transport	 analysis	 of	 medium-energy	 heavy	 ion	
collisions.	Combined	with	data	 from	other	 terrestrial	measurements,	we	
observed	 a	 very	 soft	 density	 dependence	 for	 the	 potential	 symmetry	
energy.	When	the	CFG	model	was	incorporated	into	Bayesian	analysis	of	
neutron	 stars	 observables,	 this	 picture	 persisted,	 indicating	 that	 the	
inclusion	of	correlations	softens	the	density	dependence	of	the	potential	
symmetry	energy,	but	still	allow	neutron	stars	with	mass	that	 is	greater	
than	two	times	the	solar	mass.	
	

5. Contact	interactions	in	strongly	interacting	Fermi	systems.	
Dilute	 two-component	 Fermi	 systems	 with	 a	 short-range	 interaction	
between	 the	 different	 components	 can	 be	 described	 using	 universal	
relations	[62].	The	short-range	interaction	creates	different	Fermion	pairs	
with	high	relative	momentum	and	low	center-of-mass	momentum,	where	
high	and	 low	are	 relative	 to	 the	Fermi	momentum	of	 the	 system.	These	
pairs	 create	 a	 high-momentum	 tail	 to	 the	 one	 body	 momentum	
distribution	 that	 drops	 as	C/k4,	where	C	 is	 a	 scaling	 constant	 known	as	
the	‘Contact’.	The	contact	measures	the	number	of	pairs	and	depends	on	
the	strength	of	the	short-range	interaction	[62].	
While	the	extent	to	which	one	can	describe	atomic	nuclei	as	‘dilute’	Fermi	
system	is	unclear,	our	analysis	of	the	high-momentum,	np-SRC	dominated	
tail	 of	 the	 nuclear	 momentum	 distribution	 shows	 similar	 behavior.	 By	
analyzing	 10	 different	 nucleon-nucleon	 interactions	 and	 using	 the	
experimentally	 extracted	 scaling	 of	 high-momentum	 tails	 in	 nuclear	
momentum	distribution,	we	observe	strong	 indications	that	C/k4	scaling	
exists	in	nuclei.	This	is	understood	as	a	result	of	the	second	order	effect	of	
the	 tensor	part	of	 the	nucleon-nucleon	 interaction.	When	comparing	the	
momentum	 distribution	 of	 nuclear	 and	 atomic	 systems	 with	 the	 same	
dimensionless	interaction	strength,	the	same	value	of	C	is	observed.	This	
result	is	fascinating	and	surprising	as	the	atomic	and	nuclear	systems	are	
dominated	by	very	different	 interactions	and	differ	by	over	20	orders	of	
magnitude	in	density.	

The	experimental	results	and	phenomenological	analyses	detailed	above	lay	the	
groundwork	 for	 the	 development	 of	 an	 experimental	 program	 that	 will	 study	
energy	 sharing	 in	 imbalanced	 nuclear	 systems	 and	 the	 dependence	 of	 bound	
nucleon	 structure	 functions	 on	 virtuality	 (see	 appendix-B	 for	 details).	 This	
program	currently	consists	of	three	approved	experiments	that	should	run	in	the	
next	few	years	at	Jefferson	Lab. 
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Table A.2. Same as Table A.1, for 9Be.

x F
9Be
2 /F d

2 (x) ∆F
9Be
2 /F d

2 (x) xA F
9Be
2 /F d

2 (xA) ∆F
9Be
2 /F d

2 (xA)

0.36 0.993 0.014 0.362 1.007 0.014
0.40 0.957 0.009 0.402 0.972 0.009
0.44 0.980 0.014 0.443 0.997 0.014
0.48 0.951 0.011 0.483 0.968 0.011
0.52 0.955 0.011 0.523 0.979 0.011
0.56 0.945 0.011 0.563 0.967 0.011
0.60 0.928 0.010 0.604 0.955 0.010
0.64 0.917 0.011 0.644 0.947 0.011
0.68 0.912 0.013 0.684 0.935 0.013

Table A.3. Same as Table A.1, for 12C.

x F
12C
2 /F d

2 (x) ∆F
12C
2 /F d

2 (x) xA F
12C
2 /F d

2 (xA) ∆F
12C
2 /F d

2 (xA)

0.36 0.987 0.017 0.362 0.995 0.017
0.40 0.974 0.011 0.403 0.983 0.011
0.44 0.975 0.018 0.443 0.986 0.018
0.48 0.953 0.014 0.483 0.963 0.014
0.52 0.926 0.012 0.523 0.945 0.012
0.56 0.924 0.010 0.564 0.940 0.010
0.60 0.905 0.009 0.604 0.928 0.009
0.64 0.903 0.010 0.644 0.930 0.010
0.68 0.888 0.012 0.685 0.909 0.012

Table A.4. Same as Table A.1, for 27Al.

x F
27Al
2 /F d

2 (x) ∆F
27Al
2 /F d

2 (x) xA F
27Al
2 /F d

2 (xA) ∆F
27Al
2 /F d

2 (xA)

0.36 0.993 0.013 0.362 1.005 0.013
0.40 0.966 0.009 0.403 0.977 0.009
0.44 0.959 0.012 0.443 0.973 0.012
0.48 0.934 0.010 0.483 0.948 0.010
0.52 0.926 0.010 0.524 0.950 0.010
0.56 0.923 0.009 0.564 0.944 0.009
0.60 0.906 0.009 0.604 0.934 0.009
0.64 0.892 0.009 0.645 0.923 0.009
0.68 0.876 0.011 0.685 0.900 0.011
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Table A.5. Same as Table A.1, for 40Ca.

x F
40Ca
2 /F d

2 (x) ∆F
40Ca
2 /F d

2 (x) xA F
40Ca
2 /F d

2 (xA) ∆F
40Ca
2 /F d

2 (xA)

0.36 1.004 0.021 0.363 1.013 0.021
0.40 0.966 0.012 0.403 0.975 0.012
0.44 0.960 0.019 0.443 0.972 0.019
0.48 0.954 0.014 0.484 0.966 0.014
0.52 0.912 0.013 0.524 0.934 0.013
0.56 0.915 0.012 0.564 0.933 0.012
0.60 0.904 0.011 0.605 0.930 0.011
0.64 0.895 0.012 0.645 0.925 0.012
0.68 0.870 0.015 0.685 0.893 0.015

Table A.6. Same as Table A.1, for 56Fe.

x F
56Fe
2 /F d

2 (x) ∆F
56Fe
2 /F d

2 (x) xA F
56Fe
2 /F d

2 (xA) ∆F
56Fe
2 /F d

2 (xA)

0.36 0.972 0.012 0.363 0.986 0.012
0.40 0.955 0.009 0.403 0.970 0.009
0.44 0.940 0.012 0.443 0.957 0.012
0.48 0.917 0.009 0.484 0.934 0.009
0.52 0.904 0.009 0.524 0.931 0.009
0.56 0.893 0.009 0.564 0.916 0.009
0.60 0.869 0.008 0.605 0.899 0.008
0.64 0.860 0.009 0.645 0.894 0.009
0.68 0.852 0.010 0.685 0.879 0.010

Table A.7. Same as Table A.1, for 108Ag.

x F
108Ag
2 /F d

2 (x) ∆F
108Ag
2 /F d

2 (x) xA F
108Ag
2 /F d

2 (xA) ∆F
108Ag
2 /F d

2 (xA)

0.36 1.012 0.023 0.363 1.031 0.023
0.40 0.968 0.013 0.403 0.988 0.013
0.44 0.957 0.021 0.443 0.979 0.021
0.48 0.926 0.015 0.484 0.948 0.015
0.52 0.897 0.014 0.524 0.928 0.014
0.56 0.891 0.013 0.564 0.918 0.013
0.60 0.881 0.012 0.605 0.915 0.012
0.64 0.842 0.013 0.645 0.878 0.013
0.68 0.842 0.016 0.685 0.871 0.016
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Table A.8. Same as Table A.1, for 197Au.

x F
197Au
2 /F d

2 (x) ∆F
197Au
2 /F d

2 (x) xA F
197Au
2 /F d

2 (xA) ∆F
197Au
2 /F d

2 (xA)

0.36 0.956 0.014 0.362 0.979 0.014
0.40 0.930 0.010 0.403 0.953 0.010
0.44 0.931 0.014 0.443 0.957 0.014
0.48 0.914 0.011 0.483 0.939 0.011
0.52 0.892 0.011 0.524 0.926 0.011
0.56 0.881 0.011 0.564 0.911 0.011
0.60 0.837 0.010 0.604 0.871 0.010
0.64 0.846 0.011 0.644 0.884 0.011
0.68 0.829 0.013 0.685 0.859 0.013

Table A.9. EMC data for 3He from JLab. The left side of the table shows the original as published
data from Ref. 12. The right side is the same data, corrected for the definition of xA according to
Eq. (9).

x F
3He
2 /F d

2 (x) ∆F
3He
2 /F d

2 (x) xA F
3He
2 /F d

2 (xA) ∆F
3He
2 /F d

2 (xA)

0.325 0.9774 0.011453 0.325 0.970073 0.0113672
0.350 0.9763 0.0113158 0.350 0.968431 0.0112246
0.375 0.9796 0.0113219 0.375 0.971228 0.0112251
0.400 0.9684 0.0107239 0.400 0.959746 0.0106281
0.425 0.9725 0.0114144 0.425 0.963504 0.0113089
0.450 0.9713 0.0112523 0.450 0.961924 0.0111437
0.475 0.9696 0.0108533 0.476 0.960588 0.0107524
0.500 0.9629 0.0114935 0.501 0.95354 0.0113818
0.525 0.9599 0.0112036 0.526 0.949848 0.0110863
0.550 0.964 0.0118444 0.551 0.955055 0.0117345
0.575 0.9653 0.0113391 0.576 0.955923 0.0112289
0.600 0.9644 0.0109817 0.601 0.954435 0.0108683
0.625 0.949 0.0118153 0.626 0.94051 0.0117096
0.650 0.9611 0.0115051 0.651 0.951985 0.0113959
0.675 0.9562 0.0116562 0.676 0.945647 0.0115276
0.700 0.9479 0.0125035 0.701 0.938561 0.0123803
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Table A.10. Same as Table A.9, for 4He.

x F
4He
2 /F d

2 (x) ∆F
4He
2 /F d

2 (x) xA F
4He
2 /F d

2 (xA) ∆F
4He
2 /F d

2 (xA)

0.325 1.011 0.0116698 0.327 1.01653 0.0117336
0.350 0.9998 0.0114398 0.352 1.00644 0.0115158
0.375 0.9996 0.0114471 0.377 1.00753 0.0115379
0.400 0.9784 0.0108174 0.402 0.987558 0.0109187
0.425 0.9727 0.0114294 0.427 0.983079 0.0115513
0.450 0.9724 0.0112776 0.453 0.98331 0.0114042
0.475 0.9688 0.0108597 0.478 0.983158 0.0110206
0.500 0.9695 0.0115953 0.503 0.984013 0.0117688
0.525 0.9613 0.0112505 0.528 0.975085 0.0114118
0.550 0.955 0.0117935 0.553 0.973823 0.0120259
0.575 0.9542 0.0112231 0.578 0.973198 0.0114466
0.600 0.9491 0.0107922 0.604 0.966896 0.0109946
0.625 0.9361 0.0115938 0.629 0.960513 0.0118962
0.650 0.9389 0.0111987 0.654 0.961687 0.0114705
0.675 0.9315 0.0113139 0.679 0.949143 0.0115282
0.700 0.9238 0.0121262 0.704 0.947597 0.0124385

Table A.11. Same as Table A.9, for 9Be.

x F
9Be
2 /F d

2 (x) ∆F
9Be
2 /F d

2 (x) xA F
9Be
2 /F d

2 (xA) ∆F
9Be
2 /F d

2 (xA)

0.325 1.027 0.0134537 0.327 1.03628 0.0135753
0.350 1.018 0.0131816 0.352 1.02794 0.0133104
0.375 1.014 0.0130497 0.377 1.02575 0.0132009
0.400 0.9977 0.0124262 0.402 1.0112 0.0125944
0.425 0.9907 0.0127738 0.427 1.00495 0.0129575
0.450 0.9821 0.0124847 0.452 0.997484 0.0126803
0.475 0.9745 0.0120235 0.477 0.992554 0.0122463
0.500 0.9709 0.012429 0.503 0.989694 0.0126696
0.525 0.9567 0.0119992 0.528 0.974422 0.0122215
0.550 0.9538 0.0123411 0.553 0.976809 0.0126388
0.575 0.9469 0.0118303 0.578 0.969655 0.0121146
0.600 0.9403 0.0114402 0.603 0.961711 0.0117006
0.625 0.9459 0.0122301 0.628 0.974281 0.0125971
0.650 0.9322 0.0116412 0.653 0.958901 0.0119747
0.675 0.9269 0.0116589 0.679 0.948751 0.0119338
0.700 0.9201 0.0122438 0.704 0.947675 0.0126108
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Table A.12. Same as Table A.9, for 12C.

x F
12C
2 /F d

2 (x) ∆F
12C
2 /F d

2 (x) xA F
12C
2 /F d

2 (xA) ∆F
12C
2 /F d

2 (xA)

0.325 1.015 0.0123864 0.327 1.0211 0.0124609
0.350 1.011 0.0122230 0.352 1.01838 0.0123122
0.375 1.003 0.0120969 0.377 1.01175 0.0122024
0.400 0.9859 0.0115927 0.403 0.996045 0.011712
0.425 0.9798 0.0119255 0.428 0.991303 0.0120655
0.450 0.9743 0.0117119 0.453 0.986333 0.0118566
0.475 0.9617 0.0113265 0.478 0.977356 0.0115109
0.500 0.9553 0.0117368 0.503 0.971005 0.0119297
0.525 0.9485 0.0114379 0.528 0.963524 0.0116191
0.550 0.9401 0.0117128 0.554 0.960463 0.0119665
0.575 0.938 0.0113657 0.579 0.958495 0.0116141
0.600 0.9274 0.0110039 0.604 0.946495 0.0112305
0.625 0.9291 0.0119147 0.629 0.955914 0.0122586
0.650 0.9191 0.0113583 0.654 0.943392 0.0116585
0.675 0.9162 0.0114603 0.680 0.93512 0.011697
0.700 0.9107 0.0121902 0.705 0.936063 0.0125297
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Appendix-B:	12	GeV	Experiments	at	Jefferson	Lab	
	
The results described in this dissertation led us to propose three new experiments. 
These experiments were all reviewed by the Jefferson-Lab program advisory 
committee and approved for running as part of the 12 GeV program of JLab. This 
appendix describes the general concept of each experiment and the expected results. 
Full details are given in the proposals [63-65]. 

 

E14-011: “Proton and Neutron Momentum Distributions in A=3 
Asymmetric Nuclei” (spokespersons: O. Hen, L. Weinstein, S. Gilad, and W. Boeglin) 

This experiment will to utilize the planned 3H target in Hall A of JLab to measure the 
quasielastic 3H(e,e′p) and 3He(e,e’p) reactions. The scattered electron and knockout 
proton will be detected using the two Hall A High Resolution Spectrometers (HRSs). 
The measurement will be done in large-Q2 high-xB kinematics that suppresses final 
state interactions (FSI) [66], covering a missing momentum range up to 450 MeV/c.  
It is scheduled to take take data in early 2017. 

The measured data will be used to extract: (a) the proton momentum distributions of 
both 3He and 3H, which will help constrain detailed calculations of the A = 3 system, 
(b) the ratio of 3He(e,e′p)/3H(e, e′p) cross sections where the residual affect of FSI 
will mostly cancel, and (c) the average kinetic energy of protons in the two nuclei as a 
function of the maximum cutoff momentum.  

In the simplest picture, one would expect that at low missing momentum the 
3He(e,e′p)/3H(e, e′p) cross sections ratio would equal two (simple nucleon counting). 
At larger missing momentum (300 ≤ pmiss ≤ 500 MeV/c) this ratio should decrease to 
one, due to the dominance of short-range np-SRC pairs (and to the fact that there are 
two np pairs in both 3He and 3H). However, taking into account the full effect of np-
SRC dominance, the fraction of high-momentum protons in 3He should be smaller 
than that in 3H, which should increase the low-Pmiss ratio to above two. This 
measurement will confirm these values and will map out the transition region where 
the ratio changes from above two to one. Theoretical predictions for the measured 
quantities and the expected experimental accuracy are shown in Fig. B.1. 

The importance of this measurement stems from the rare availability of a 3H target 
and from the fact that the A = 3 system is the simplest system of mirror nuclei for 
which precise calculations of the (e,e′p) reaction exist. These data will offer a direct 
test of these calculations. 
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Fig. B.1: The expected results from E14-011. 
Bottom left: The expected reduced cross-section 
for 3H and 3He calculated with and without Final-
State Interactions (FSI). Top left: The expected 
3He(e,e’p)/3H(e,e’p) cross-section ratio compared 
to various theoretical predictions. Top right: The 
expected ratio of the average kinetic energy of 
protons in 3H and 3He as a function of the 
integration limit. See details in [63]. 

 

 

E11-107:   “In Medium Neutron Structure functions, SRC, and the EMC 
effect” (spokespersons: O. Hen, L. Weinstein, S. Gilad, and S. Wood) 
E11-003A: “In Medium Proton Structure functions, SRC, and the EMC 
effect” (spokespersons: O. Hen, L. Weinstein, E. Piasetzky, and H. Hakobyan) 

These experiments will measure semi-inclusive deep inelastic scattering (DIS) off the 
deuteron by “tagging” the DIS scattering with high-momentum recoiling protons 
(E11-107) or neutrons (E11-003A) emitted at a large angle relative to the momentum 
transfer. 

While the EMC effect has been observed many times, there is no generally accepted 
explanation of its origin. Many theoretical models predict that the EMC effect is due 
to the modification of the nucleon structure functions in the nuclear medium and that 
this modification increases with nucleon virtuality. In addition, the recently observed 
correlation between the strength of the EMC effect and the amount of 2N-SRC pairs 
in nuclei indicates that most of the EMC effect stems from DIS scattering on high-
momentum (i.e., high-virtuality) nucleons in the nucleus. By measuring whether 
nucleon structure is modified in the nucleus and how this modification depends on 
nucleon virtuality, Experiments E11-107 and E11-003A will offer new insight to the 
origin of the EMC-SRC correlation.  
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The proposed measurement will focus on the simplest nuclear system available – the 
deuteron. In the deuteron one can use the d(e,e'Ns)X reaction to perform DIS on one 
nucleon, tagged by a backward-recoiling partner nucleon. In appropriate kinematics 
(large-W, large-Q2 and large-recoil angles relative to the momentum transfer), 
allowed by the 12 GeV upgrade of JLab, the momentum of the recoil nucleon equals 
the initial momentum of the nucleon the electron scattered off. Therefore, the recoil 
tagging technique allows extracting the dependence of the DIS cross-section on the 
nucleon initial momentum / virtuality. 

The proposed observable is the ratio of high x’ to low x’ DIS scattering from a tagged 
partner nucleon in deuterium divided by the same ratio for the untagged scattering. x’ 
= Q2 / 2pµqµ is the equivalent value of Bjorken-x for scattering off a moving nucleon. 
This ratio should be sensitive to the modification of the nucleon structure functions in 
the medium. At low x’ (0.25 < x’ < 0.35), any modification of in-medium nucleon 
structure functions should be small. At high x’ (0.5 < x’ < 0.6) much larger effects are 
expected. Fig. B.2 shows the expected accuracy in the bound-to-free structure 
function extraction as a function of the light cone momentum of the recoil nucleon. 
The results are compared to three different theoretical models. 

E11-107 will run in Hall-C of Jefferson Lab, measuring the d(e,e'ps)X reaction. The 
scattered electrons will be detected by the SHMS and HMS spectrometers, 
simultaneously covering the high and low ranges of x’. A new dedicated Large-
Acceptance Detector (LAD) covering the backward lab angles from 85o to 175o will 
be used to detect the recoiling protons. LAD will be made of 40 plastic scintillators, 
placed 4 meters from the target offering 1 Sr coverage at the backward hemisphere, 
see Fig. B.3. In order to achieve the experimental goals at low cost, LAD will utilize 
the surplus time-of-flight (TOF) counters of the CLAS6 spectrometer that will not be 
used in the upgraded CLAS12 spectrometer. A dedicated scattering chamber with a 
large thin backward window will be constructed to allow the protons to reach the 
LAD.  

E11-003A will run in Hall-B of JLab, measuring the d(e,e'ns)X reaction. The electrons 
will be detected by CLAS12, covering a wide and continuous range of x’. A new 
dedicated Backward Angle Neutron Detector (BAND), covering the backward lab 
angles from 160o to 170o, will be used to detect the recoiling neutrons (Fig. B.4). 
BAND will be placed 3.5 meters from the target. It will be composed of four “rings” 
of plastic scintillators perpendicular to the beam line with an inner radius of 60 cm, 
outer radius of 120 cm, and a total thickness of 24 cm. The experiment will run during 
the CLAS12 deuteron run period (2018). 

The combined data from both experiments will give new insight to medium 
modification mechanisms in nuclei, the EMC effect and its isospin dependence, and 
more. 
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Fig. B.2: Expected sensitivity of the E11-107 (left) and E11-003A (right) experiments to the bound 
neutron (left) and proton (right) structure function modification in deuterium as a function 
of α (the light cone momentum fraction). The simulated data points show the expected statistical (inner 
error bars) and total (outer error bars) uncertainties. The different lines show model calculations for: 
Point Like Configuration (PLC) suppression model (dashed line), rescaling model (dotted line), and 
binding/off-shell model (dot-dashed line) [67].  
 

 

 
 

Fig. B.3: The proposed layout and structure of the LAD detector at Hall C of Jefferson lab. Left: Plan 
view of the layout.  The incoming beam line is shown by the purple horizontal line.  The scattering 
chamber is shown by the light blue circle in the middle toward the top of the figure. The HMS entrance 
is shown in the upper left and the SHMS structure is shown on the left side. There are three sectors of 
LAD in the lab, covering 85o – 175o.  Right: A view from upstream.  The panels of the LAD (on the 
lower left) are shown in yellow with magenta support structures.  The beam line is the thin magenta 
line entering from the bottom, the scattering chamber is the magenta and brown column in the middle 
of the figure, parts of the SHMS structure can be seen on the upper right, and the cryogen service 
infrastructure is on the lower left. For E11-107 we plan to use only the front layer of LAD to detect the 
recoil protons. 
 
 
 

 

F2 p n( )
eff / F2 p n( )
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Fig. B.4: The preliminary design of the experimental setup for CLAS12+BAND.  The left figure 
shows an elevation view of equipment racks (blue outline), light guides and phototubes of the central 
detectors (green and red), and the outside of the solenoid magnet (orange).  Possible locations of the 
BAND detector are shown in solid blue.  The right side shows the cryogenic system and beamline 
(green), the central detectors, light guides and PMTs (gray), and the equipment racks.  The solenoid 
magnet is not shown.  Red arrows indicate the possible BAND locations. 
 

 

150



!
!
Appendix)C:!Popular!Presentation!of!EMC!/!SRC!
Studies!!!

!
“The!EMC!Effect!Still!Puzzles!After!30!Years”,!!
D.#Higinbotham,#G.A.#Millar,#O.#Hen#and#K.#Rith,#CERN#Cour.#53/4,#35#(2013).!

!

151



CERNCOURIER
V O L U M E  5 3   N U M B E R  4   M A Y  2 0 1 3

V O L U M E  5 3    N U M B E R  4   M A Y  2 0 1 3

CERNCOURIER
I N T E R N A T I O N A L  J O U R N A L  O F  H I G H - E N E R G Y  P H Y S I C S

Deep in the nucleus:
a puzzle revisited

ASTROWATCH
Planck reveals an
almost perfect
universe 
p12

IT’S A
HIGGS BOSON

The new particle
is identifi ed p21

The key to fi nding
out if a collision
is head on 
p31

HEAVY IONS

Welcome to the digital edition of the May 2013 issue of CERN Courier.

Last July, the ATLAS and CMS collaborations announced the discovery of 
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EMC effect

Contrary to the stereotype, advances in science are not typically 
about shouting “Eureka!”. Instead, they are about results that make 
a researcher say, “That’s strange”. This is what happened 30 years 
ago when the European Muon collaboration (EMC) at CERN 
looked at the ratio of their data on per-nucleon deep-inelastic muon 
scattering off iron and compared it with that of the much smaller 
nucleus of deuterium. 

The data were plotted as a function of Bjorken-x, which in deep-
inelastic scattering is interpreted as the fraction of the nucleon’s 
momentum carried by the struck quark. The binding energies of 
nucleons in the nucleus are several orders of magnitude smaller 
than the momentum transfers of deep-inelastic scattering, so, 
naively, such a ratio should be unity except for small corrections 
for the Fermi motion of nucleons in the nucleus. What the EMC 
experiment discovered was an unexpected downwards slope to 
WKH�UDWLR��À�JXUH����²�DV�UHYHDOHG�LQ�CERN Courier in November 
1982 and then published in a refereed journal the following March 
(Aubert et al. 1983). 
7KLV�VXUSULVLQJ�UHVXOW�ZDV�FRQÀ�UPHG�E\�PDQ\�JURXSV��FXOPL�

nating with the high-precision electron- and muon-scattering data 
from SLAC (Gomez et al. 1994), Fermilab (Adams et al. 1995) 
and the New Muon collaboration (NMC) at CERN (Amaudruz 
et al. 1995 and Arneodo et al. 1996). Figure 2 shows representative 
data. The conclusions from the combined experimental evidence 
were that: the effect had a universal shape; was independent of the 
squared four-momentum transfer, Q2; increased with nuclear mass 
number A; and scaled with the average nuclear density.

A simple picture
The primary theoretical interpretation of the EMC effect – the 
region x > 0.3 – was simple: quarks in nuclei move throughout 
D�ODUJHU�FRQÀ�QHPHQW�YROXPH�DQG��DV�WKH�XQFHUWDLQW\�SULQFLSOH�
implies, they carry less momentum than quarks in free nucle-
ons. The reduction of the ratio at lower x, named the shadow-
ing region, was attributed either to the hadronic structure of 
the photon or, equivalently, to the overlap in the longitudinal 

Thirty years ago, high-energy muons at 
CERN revealed the fi rst hints of an effect 
that puzzles experimentalists and theorists 
alike to this day. 

Fig. 1. A plot of the EMC data as it appeared in the November 
1982 issue of  CERN Courier. This image nearly derailed the 
highly cited refereed publication (Aubert et al. 1983) because 
the editor argued that the data had already been published.
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Fig. 2. The ratio of the deep-inelastic cross-sections of calcium 
(Ca) to that of deuterium (D) from NMC (solid circles) and SLAC 
(open circles). The downward slope from 0.3 < x < 0.7 and 
subsequent rise from x > 0.7 is a universal characteristic of EMC 
data and has became known as the EMC effect. The reduction of 
the ratio at lower values of x, where valence quarks should no 
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EMC effect

direction of small-x partons from different nuclei. These notions 
gave rise to a host of models: bound nucleons are larger than 
free ones; quarks in nuclei move in quark bags with 6, 9 and 
even up to 3A quarks, where A is the total number of nucleons. 
0RUH�FRQYHQWLRQDO�H[SODQDWLRQV��VXFK�DV�WKH�LQÁ�XHQFH�RI�QXFOHDU�
binding, enhancement of pion-cloud effects and a nuclear pionic 
À�HOG��ZHUH�VXFFHVVIXO�LQ�UHSURGXFLQJ�VRPH�RI�WKH�QXFOHDU�GHHS�
inelastic scattering data.

It was even possible to combine different models to produce new 
ones; this led to a plethora of models that reproduced the data (Gee-
saman et al. 1995), causing one of the authors of this article to write 
that “EMC means Everyone’s Model is Cool”. It is interesting to note 
that none of the earliest models were that concerned with the role of 
two-nucleon correlations, except in relation to six-quark bags.

The initial excitement was tempered as deep-inelastic scattering 
became better understood and the data became more precise. Some 
of the more extreme models were ruled out by their failure to match 
well known nuclear phenomenology. Moreover, inconsistency with 
the baryon-momentum sum rules led to the downfall of many other 
models. Because some of them predicted an enhanced nuclear sea, 
the nuclear Drell-Yan process was suggested as a way to disentan-
gle the various possible models. In this process, a quark from a pro-
ton projectile annihilates with a nuclear antiquark to form a virtual 
photon, which in turn becomes a leptonic pair (Bickerstaff et al. 
1984). The experiment was done and none of the existing models 
provided an accurate description of both sets of data – a challenge 
that remains to this day (Alde et al. 1984).

New data
$�VLJQLÀ�FDQW�VKLIW�LQ�WKH�H[SHULPHQWDO�XQGHUVWDQGLQJ�RI�WKH�(0&�
effect occurred when new data on 9Be became available (Seely 
et al. 2009). These data changed the experimental conclusion that 
the EMC effect follows the average nuclear density and instead 

suggested that the effect follows local nuclear density. In other 
words, even in deep-inelastic kinematics, 9Be seemed to act like 
two alpha particles with a single nearly free neutron, rather than 
OLNH�D�FROOHFWLRQ�RI�QXFOHRQV�ZKRVH�SURSHUWLHV�ZHUH�DOO�PRGLÀ�HG��

This led experimentalists to ask if the x > 1 scaling plateaux 
(CERN Courier November 2005 p37) that have been attributed to 
short-range nucleon–nucleon correlations – a phenomenon that is 
also associated with high local densities (CERN Courier January/
February 2009 p22) – could be related to the EMC effect. Figure 3 
shows the kinematic range of the EMC effect together with the x > 1 
short-range correlation (SRC) region. While the dip at x = 1 has been 
shown to vary rapidly with Q2, the EMC effect and the magnitude of 
the x > 1 plateaux are basically constant within the Q2 range of the 
experimental data. Plotting the slope of the EMC effect, 0.3 < x < 0.7, 

against the magnitude of scal-
ing x > 1 plateaux for all of the 
available data, as shown in 
figure 4, revealed a striking 
correlation (Weinstein et al. 
2011). This phenomenological 
relationship has led to renewed 
interest in understanding how 
strongly correlated nucleons in 
the nucleus may be affecting the 
deep-inelastic results.
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the valence-quark region. In this region, the slope of the EMC 
effect in the region 0.3 < x < 0.7 and the x > 1 plateaux from 
nucleon–nucleon short-range correlation (SRC) can be clearly 
seen. Both the EMC effect and the plateaux are more or less 
independent of Q2��ZKLOH�WKH�GLS�DW�[� ���À�OOV�LQ�DV�42 increases. 

Fig. 4. The slope of the EMC effect, dR/dx for 0.3 < x < 0.7 with 
R = FA

2 /FD
2, versus the magnitude of the observed x > 1 plateaux, 

denoted as a2, for various nuclei. For data that were taken by 
completely different groups, the linearity is striking and has 
caused renewed interest in understanding the cause of both 
effects. The inset drawings illustrate the kinematic difference of 
deep-inelastic EMC-effect scattering and the scattering from a 
correlated pair in x > 1 kinematics.

A signifi cant shift 
in experimental 
understanding 
occurred when 
new data on 9Be 
became available V
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Anniversary
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In February 2013, on nearly the 30th anniversary of the EMC 
publication, experimentalists and theorists came together at a spe-
cial workshop at the University of Washington Institute of Nuclear 
Theory to review understanding of the EMC effect, discuss recent 
advances and plan new experimental and theoretical efforts. In 
particular, an entire series of EMC and SRC experiments are planned 
for the new 12 GeV electron beam at Jefferson Lab and analysis is 
underway of new Drell-Yan experimental data from Fermilab.

A new life
Although the EMC effect is now 30 years old, the recent experi-
mental results have given new life to this old puzzle; no longer is 
Every Model Cool. Understanding the EMC effect implies under-
standing how partons behave in the nuclear medium. It thus has 
far-reaching consequences for not only the extraction of neutron 
information from nuclear targets but also for understanding effects 
such as the NuTeV anomaly (CERN Courier September 2009 p9) or 
the excesses in the neutrino cross-sections observed by the Mini-
BooNe experiment (CERN Courier May 2007 p8).

 O Further reading
For more about the workshop at the University of Washington 
Institute of Nuclear Theory, see www.int.washington.edu/
PROGRAMS/13-52w/.
A Adams et al. 1995 Z. Phys. C  67 403.
D Alde et al. 1990 Phys. Rev. Lett. 64 2479.
P Amaudruz et al. 1995 Nucl. Phys. B441 3.
M Arneodo et al. 1996 Nucl. Phys.  B481 3.
J J Aubert et al. 1983 Phys. Lett. B  123 275.
R Bickerstaff et al. 1984 Phys. Rev. Lett. 53 2532.
D F Geesaman et al. 1995 Ann. Rev. Nucl. Part. Phys. 45 337.
J Gomez et al. 1994 Phys.Rev. D  49 4348.
J Seely et al. 2009 Phys. Rev. Lett. 103 202301.
L Weinstein et al. 2011 Phys. Rev. Lett. 106 052301.

Résumé
L’effet EMC, encore une énigme 30 ans après

Il y a trente ans, les membres de la collaboration EMC 
(Collaboration européenne du muon) au CERN découvraient 
un effet inattendu en rapportant leurs mesures de la diffusion 
profondément inélastique du muon au nombre de nucléons : 
les fonctions de structure étaient différentes s’agissant du fer 
et s’agissant du deutérium, qui est un noyau beaucoup plus 
léger.  En représentant le rapport fer/deutérium en fonction de la 
fraction de l’impulsion du nucléon portée par le quark frappé, 
les expérimentateurs ont découvert une pente descendante 
LQDWWHQGXH���&H�UpVXOWDW�VXUSUHQDQW�D�pWp�FRQÀ�UPp�SDU�GH�QRPEUHX[�
groupes, mais il reste une énigme. Des données récentes sur le 
9Be ont relancé l’intérêt pour cette question, en montrant que des 
corrélations nucléon-nucléon à courte distance pouvaient être liées 
à l’effet EMC.

Douglas Higinbotham, Jefferson Lab, Gerald A Miller, University of 
Washington, Or Hen, Tel Aviv University, and Klaus Rith, University of 
Erlangen-Nürnberg.
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תקציר
 האינטראקציה בין נוקלאונים הקשורים בגרעין האטום נקבעת ברובה על ידי מאפייני הכוח הגרעיני החזק. לאורך

 המאה הקודמת הושקע מאמץ אדיר בחקר תכונותיו של הכוח הגרעיני החזק והאופן בו הוא יוצר גרעינים יציבים וקובע

 את מאפייניהם. למרות מאמץ זה, נצבר ידע מוגבל לגבי אופיו של הכוח הגרעיני החזק במרחקים הקצרים ביחס לגודל

הנוקלאון.

 בשנים האחרונות, עם התפתחותם של מאיצי אלקטרונים ופרוטונים באנרגיה וזרם גבוהים, ניתן היה לחקור לראשונה

 באופן ניסיוני וישיר את המבנה קצר הטווח, גבוה התנע, של הגרעין. תוצאות ממדידות אלו, וחישובים תאורטיים

 משלימים, מראים כי בין נוקלאונים הנמצאים במרחק יחסי קצר יש אינטראקציה קצרת טווח חזקה, היוצרת זנב בעל

 , וממשיך מעבר אליו לתנע גבוה יותר.kFתנע גבוה לפונקציית הגל הגרעינית. זנב זה מתחיל באזור תנע פרמי של הגרעין, 

 2יצירת זנב זה, כתוצאה מאינטראקציות קצרות טווח חזקות, הנו מאפיין אוניברסלי של מערכות פרמיוניות בעלות 

 רכיבים. מכיוון שלנוקלאונים מבנה הפנימי, ישנה אפשרות שמבנה זה משתנה כאשר המרחק בין מרכזיהם קטן

 מהרדיוס שלהם כך שישנה חפיפה גדולה בין התפלגות הקוורקים שלהם. הבנה זו של השפעתה של האינטראקציה

 משנה את תפיסתנו לגבי מבנה הגרעין והתפקיד אותו ממלאים זוגות נוקלאוניםקצרת הטווח של הכוח הגרעיני החזק 

קצרי טווח במערכות גרעיניות ובתהליכים אסטרופיזיקליים. 

 ( חקר1 חלקים עיקריים: )2עבודה זו דנה בזוגות קורלטיביים במרחק קצר בגרעינים כבדים. העבודה מורכבת מ- 

 של זוגות קורלטיביים במרחקים קצרים בגרעיני פחמן, אלומיניום, ברזל ועופרת )ניסיוני
12

C,  
27

Al,  
56

Fe,  
208

Pb.) 

 (,תהליכיDeep-Inelastic Scattering של ההשפעה של זוגות אלו על: פיזור אינלסטי עמוק )פנומנולוגי( חקר 2ו- )

Contactזיווג ומבנה גרעינים, חומר גרעיני, וכוכבי ניטרונים, ואינטראקציות מגע )  Interactionsבמערכות ) 

פרמיונויות בעלות אינטראקציה חזקה.

 בחלק הניסיוני מדווחות תוצאות ממדידת שליפת נוקלאון בודד וזוג נוקלאונים מגרעיני פחמן, אלומיניום, ברזל ועופרת.

CEBAFהמדידות נעשה תוך שימוש בגלאי   Large  Acceptance  Spectrometer(  CLASבמעבדת ג'פרסון ) 

 , ותנע חסר גבוה,1 גדול מ- xBשבארה"ב. הקינמטיקה שנבחרה לניסוי מאופיינת על-ידי מעבר תנע גבוה, פרמטר 

 ונשלטת על ידי פיזור מזוגות קורלטיביים במרחק קצר. התוצאות ממדידות אלו מהוות גילוי ישיר ראשון של קורלציות

 קצרות טווח בגרעינים הכבדים מפחמן, וכוללות קביעה של היחס של מספר הזוגות פרוטון-פרוטון לזוגות פרוטון-ניטרון

בגרעינים שנמדדו, וקביעת השקיפות הגרעינית של גרעינים אלו לפרוטון שנשלף באנרגיה גבוה מפירוק זוג קורלטיבי.

 בחלק הפנומנולוגי מדווחות תוצאות של בחינת השפעת התוצאות הניסיוניות על מגוון רחב של מערכות שונות. מחקר זה

  )יחס פונקצייתEMCכולל את הקשר שבין כמות הזוגות קורלטיביים במרחק קצר בגרעינים והחוזק של אפקט ה- 

 המבנה הלא אלסטית של נוקלאונים הקשורים לגרעין וזה של נוקלאונים הקשורים בדאוטריום( בגרעינים אלו; קביעת

  )יחס פונקציית המבנה הלא אלסטית של נוקלאונים הקשורים בדאוטריום לזוג פרוטון-ניטרוןIMCחוזק אפקט ה- 

 חופשי( וקביעה של פונקציית המבנה של ניטרון חופשי; אילוץ פרמטרים חופשיים במודלים של שינוי במבנה של

  בפרוטון;d/uנוקלאונים המשמשים באנליזות גלובליות של כרומודינאמיקה קוונטית וקביעת חסם על יחס קוורקים 

 בחינה של מנגנוני זיווג של נוקלאונים בגרעין וקביעה של המספרים הקוונטים של זוגות נוקלאונים בגרעין בעלי יכולת

 לעבור למצב של קורלציה קצרת טווח; השפעת זוגות קורלטיביים במרחק קצר על אנרגיה האסימטריה הקינטית של

 חומר גרעיני, אנרגיית האסימטריה הגרעינית, משוואת מצב של כוכבי ניטרונים, ותכונות אוניברסליות של

אינטראקציות מגע במערכות פרמיוניות בעלות אינטראקציה חזקה.

 לתוצאות המוצגות בעבודה זו השלכות רחבות להבנת המבנה ותהליכי חלוקת אנרגיה במערכות גרעיניות אסימטריות

 Jefferson  ניסויים שאושרו לרוץ במעבדת המאיץ 3כבדות, והיוו בסיס לפיתוח תכנית ניסויים עתידית המורכבת מ- 

 ג'יגה אלקטרון-וולט.12שבארה"ב לאחר שדרוג המאיץ של המעבדה לאנרגיה של 
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