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Preface

It is by now a well-established tradition to start off a preface to any book on general
relativity, gravitation, cosmology, and high energy astrophysics by exclaiming how
rapidly the field is expanding (a big bang for relativity !). Nevertheless, this is really
true (as tedious as it may be to hear again). The most exciting point is, we believe,
the real possibility of checking many of the most prominent features of theory by
experiment or observation. Indeed, we may be observing objects for which general
relativity is no longer merely a correction.

This volume contains the invited talks and the panel discussion (on the detection
of gravitational waves) of the Seventh International Conference on General Relativity
and Gravitation (GR7), held in Tel-Aviv, Israel, during 23—28 June 1974. The organiz-
ers attempted to arrange for the presentation of a wide and varied spectrum of topics,
which covers the many aspects of the subjects of the conference.

Since the usefulness of this material depends to a large extent on its freshness, we
decided not to include the many (over 100) contributed papers in order to expedite
publication. We hope that these interesting papers will be published at full length
elsewhere.

It is a pleasure to thank the following for financial contributions which made the
conference possible: Tel-Aviv University, Ben—Gurion University of the Negev,
The Hebrew University of Jerusalem, Technion—Israel Institute of Technology,
The Israel Ministry of Education and Culture, The Israel Ministry of Tourism,
The Israel National Academy of Sciences and Humanities, The Israel Foundation
Trustees, The International Committee on Gravitation, The International Union
of Pure and Applied Physics, and Bank Leumi le-Israel.

Tel—Aviv, G. SHAViv and J. ROSEN
July 1975

vii





Uniqueness and Nonrenormalizability of
Quantum Gravitation*

S. DESERT and P. VAN NIEUWENHUIZEN
Brandeis University

Waltham. Massachusetts 02154, U.S.A.

D. BOULWARE
University of Washington

Seattle, Washington 98195, U.S.A.

ABSTRACT
(1) The principles of Lorentz invariant quantum particle (rather than field) theory, together with qualitative
empirical properties of gravitational forces, imply that the tree graphs describing gravitational interac-
tions are necessarily generated by the Einstein action, at least for frequencies low compared to particle masses
or the inverse Planck length. Consequently, the classical limit of any acceptable quantum gravitational
model must be general relativity.

(2) The ultraviolet divergences of the quantized Einstein field interacting with quantized scalars, spinors,
photons or vector gauge multiplets are all nonrenormaliiable at the one-loop level; the required counter
terms are drastically different from the original actions. We discuss the relevance of these conclusions to
the unification of gravitation and quantum theory.

1. INTRODUCTION

In this report I shall be concerned with two very recent developments in quantum
gravity. These developments represent explicit calculations and conclusions in a
subject which has hitherto been more a “program” than an area of active results.

*Supported in part by the National Science Foundation, Nederlands Ministerie van Onderwijs en Weten-
schappen, and the U.S. Atomic Energy Commission.

TLecture by S. Deser.



2 S. DESER ET AL,

The first is encouraging, the second discouraging, to our search for a consistent
unification of gravitation and quantum theory. I shall summarize them briefly here,
expand on each in separate sections, then attempt to assess prospects and alternatives
in the concluding part. The results were obtained by the author in collaboration with
D. Boulware and with P. van Nieuwenhuizen, respectively.

Special relativistic quantum theory, our most solidly established basis for under-
standing microscopic (rather than cosmological) phenomena, will be our guide in
attempting to understand quantum gravitation. We recall that relativistic quantum
theory can be divided into two different aspects: S-matrix (particle) theory, which
deals with the properties of scattering amplitudes for physical particles of given spin
and mass, and quantum field theory which provides a localized space-time descrip-
tion of interacting systems. In either category, there are two basically different classes
of diagrams: trees and loops. Tree diagrams do not include vacuum fluctuations,
and there is no summation over (arbitrarily high) virtual energies. This class of
diagrams is sufficient for understanding the classical field limit of a quantum theory,
and has no renormalization problems. The latter arise only when one encounters
closed loops—whose presence is required by unitarity. We have recalled these distinc-
tions because our two sets of results will nicely fall into the complementary categories
of relativistic particle theory and low frequency structure on the one hand, and
relativistic field theory in its probing of high frequency behavior through closed
loops on the other.

Whatever the future fate of quantum field theory, the more modest particle de-
scription is the necessary 'extension of quantum mechanics to the special relativistic
domain. One of its basic results is that all forces between particles are themselves
mediated by exchange of quanta of appropriate spins and masses. We shall show that
this principle, together with the observed qualitative structure of macroscopic
gravitational forces, leads to a unique determination of the basic vertices describing
gravitational interactions at wavelengths high compared to particle Compton wave-
lengths. This means in particular that the tree graphs, and so the classical limit of any
acceptable quantum gravity model, are unique. That the interactions can be so com-
pletely determined by quantum principles is beautiful enough; that they must coincide
with those of general relativity in this limit is even more gratifying. From the general
properties of gravitational forces between material systems (including light), namely
that they are long range, static, macroscopic and attractive, we shall show that a
massless spin 2 particle (“graviton”) is primarily responsible. What is more im-
portant, this particle must self-interact: gravitons emit gravitons and do so in a
uniquely defined way. This follows from the fact that gravitons can only couple
consistently to conserved symmetric tensor matrix elements of their sources, while
a conserved tensor can only exist if the graviton content of the sources is included.
(The low momentum transfer form of the “stress tensor” can actually be deduced as a
low energy theorem, and this theorem implies the equivalence principle.) There is
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in fact an infinite chain of n-graviton vertices, all of which are determined uniquely
by the consistency requirements of massless graviton coupling, through terms
quadratic in graviton momenta.

Having determined all possible vertices, one can consider all tree graphs, con—
structed by joining all possible vertex configurations without forming loops (the
latter would require more knowledge than we are willing to assume in this part of the
discussion about the higher momentum behavior of vertices). The result is that all
tree graphs can be generated by an effective action functional, which is none other
than the Einstein action. But the classical limit of any theory is just that of its tree
structure: it is governed by the generating action. Thus classical general relativity
is really a consequence of relativistic quantum particle theory, given the observed
gross character of gravitational forces. There is, then, a very satisfactory harmony
between geometry and quantum mechanics in this common range of application
(or at least aspiration).

Our second set of results is concerned with deeper quantum properties, involving
the extrapolation of the above structure to high frequencies, namely the closed loop
aspects of general relativity considered as a quantum field. We shall quantize the
metric field using the same techniques (covariant quantization, gauge breaking
and compensating ghost fields) which have been so successful in the recent progress
of non-Abelian vector gauge theories. Our interest will focus here on the very high
frequency behavior, that is on the types of divergences encountered at the one loop
level in coupled Einstein-matter systems. Only if the divergences can be removed
by renormalization, are these systems satisfactory at our present (perturbative)
stage of understanding in field theory. Unfortunately, we shall see that all systems
considered to date, which include general relativity coupled to scalars, spinors,
photons, and Yang—Mills multiplets as well as some generalizations of Einstein
theory, are nonrenormalizable (except for the source-free Einstein field itself).
We shall discuss the significance of this discouraging conclusion, along with possible
alternatives and improvements, in the final section.

Throughout our work we assume that gravitation, like all other fundamental
dynamical systems, is subject to quantization. It has sometimes been suggested that
this is not logically necessary either because general relativity is not a basic field or
because it can somehow remain classical in contrast to its sources, or finally, because
its quantum effects are not observable experimentally due to the smallness of the
characteristic Planck length of quantum gravitation. These last resorts appear to us
worse than the disease they would avoid, and we shall not discuss them here. Our
point ofview is that there is an empirical domain, large compared to particle Compton
wavelengths, but small compared to cosmological distances, in which the physical
world is Minkowskian, and the physical processes including gravitation are described
by special relativistic quantum theory.
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2. GRAVITONS: VERTICES AND TREES

The study of relativistic quantum particle theory of gravitation began about a
decade ago with the work of Feynman [1] and Weinberg [2]. Weinberg especially
stressed the strong constraints on the S-matrix describing interaction of massless
particles, which are equivalent to gauge invariance requirements in the more familiar
field-theoretical context. He showed how one could derive, for massless vector
particles, both Maxwell’s equations and conserved currents; that for spin greater
than 2, there is no interesting low frequency theory possible at all (there being no
conserved static quantities corresponding to charge or mass) while for spin 2, the
low frequency form of the interactions implies amongst other things, the equivalence
principle (universality of matter-graviton vertices) for all systems including the
gravitons themselves. Both Feynman and Weinberg asked to what extent such argu-
ments uniquely defined the full gravitational theory, but found the nonlinearities
of the self-interactions too complicated to complete this program. The question
was recently taken up by D. Boulware and myself, and the unique character of the
solution will be the subject of this section; the reader is referred to the paper [3]
for details.

We begin with a rapid review of why the exchanged particle responsible for gravita-
tional forces must have (at least primarily) spin 2. From the general facts that there
are static forces we may exclude S > 2; that they are attractive excludes S = 1;
their macroscopic character excludes half odd integer spin, and because photons
are affected in the same way as massive particles, we can exclude S = 0. Naturally,
there are only upper limits on the possible contribution of the other spins or of
short range (contact) terms but for simplicity we shall assume they are entirely absent
(Brans Dicke theory could be accommodated for example). Another basic requirement
of quantum theory, that only physical (positive probability) quanta exist, excludes
exotic Lorentz invariant theories of gravitation which would require “ghost” be-
havior for the corresponding particles. Empirically, the graviton must obviously have
long range (small mass); in fact, the mass dependence affects light bending discon-
tinuously and one may conclude that the mass is strictly null [4]. We have thus
specified the graviton to be a massless (k2 = 0) spin 2 particle, which therefore has
two helicities (a = i2). The amplitude Ta(k) for its emission by a system can be
written as 7:,(k) = efi“(k) Tuv(p’, p), where efi“ (k) is its transverse-traceless polarization
tensor and the ten quantities 7;”, which depend on the initial and final momenta of
the system, can be taken to be conserved also slightly off shell (k2 7-é 0). We need
not assume that they are the matrix elements <p’ Twig?) of a stress tensor operator;
indeed one can deduce the form of T“, to first order in momentum transfer purely
from conservation. Specifically, one finds for the amplitude Tia-(fl, p) for emission
ofa graviton by a system making a transition between physical states with momentum
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and polarization (p, A) and (p’, ’1’) the following expression [5] (P E p + p’, k E
p — 11’):

Tfi‘flp’, p) = T[fi,—.I(p’)u,-.(p) P“P" + iP‘“5’3}’k.fi;x(p’)S"‘u,-.(p)] + 0(k2) (2-1)
where T is a universal constant, (u, 12) are the initial and final state polarization spinors
or tensors, and S”t is the Lorentz rotation operator for the system in question. The
constant T is determined by correspondence with the Newtonian limit, to be (with
our covariant spinor normalization) T2 = (21:)‘5G, where G is the Newtonian
constant. Note that the first term is just a scalar particle’s stress tensor, while the
second is the usual contribution of spin to the angular momentum. Thus, the equiv-
alence principle is deduced as a low energy theorem: all systems couple in a universal
way (at low enough frequencies) to gravitons through their unique symmetric
conserved stress tensor and with a universal strength T. For our purposes, univer-
sality is the key, because it necessarily leads to graviton-graviton coupling. If gravi-
tons are coupled to any system (and if not there is no gravitation l), they are neces-
sarily coupled to each other. Otherwise put, if a system can emit a graviton, then
every system to which it couples in any way also interacts with gravitons, and that
includes the emitted graviton itself. Diagrammatically, we can deduce the existence
of the basic 3-graviton vertex (Fig. la) from the Newtonian emission (Fig 1b).
This can be done analytically by inserting a soft (small k“) graviton into (1b); con-
sistency forces the presence of the full set of Fig. 2, including V3.

k, ..
Figure 1a Figure 1b

Three-graviton vertex V3 (k1, k2, k3). One-graviton emission by a system,

”NV/v. \-

Figure 2
Two-graviton emission graphs.
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Soft graviton conditions only determine V3 (a la (2.1)), for two gravitons on shell
and the third one soft, however; and it requires a long calculation (including con-
sideration of 4- and 6-point graviton graphs) to obtain the full constraints on V3
for all gravitons off shell. By considering diagrams with more and more scattering
gravitons, one may deduce the necessary existence of new short range vertices
V4, V5, V", involving arbitrarily many gravitons. Our graviton construction
has a parallel, incidentally, in the classical field theory framework in which the in-
finite set of self-interactions of the Einstein equations are deduced by demanding
that the source of the linearized spin 2, m = 0 equations be the stress tensor of the
linearized field and iterating this consistency demand [6]. However, no assumption
about an underlying field is involved in the quantum case.

The constraints on V3 are that it be symmetric in interchange of two gravitons
(bose statistics) and conserved under appropriate contractions with external momen-
ta. The conservation conditions require that V3 be at least quadratic in the momenta,
and the low frequency restrictions on our curiosity made us stick to quadratic
momenta only (this corresponds to second derivatives only in field theory language).
Then, if we express V‘g““”"(k1k2k3) compactly in terms of a functional V3 (h) by
multiplying it with fields hwhwhpo, we can show that the conservation conditions
correspond to an identity of the form

é:VCSVES/(Shuv = ”4:301: a)(D_1h)zfi (22)

where (D‘ 1h),,3 is the linearized Einstein tensor, and A is an operator linear in hW
and in first derivatives, Such identities generalize the Ward identity of electrodynam-
ics, which is related to gauge invariance there. In our case, we are building up the
more complicated covariant conservation identities of general relativity (2.4, 2.5).
The most general solution of this identity is

V3(h) = rjmx) (V/TQR)(3) + ((dx) hh D‘ 1h (2.3)
where the first term is the cubic part in an expansion of the Einstein Lagrangian
if = (\/——gR) T‘2 in powers of Th” E gm — n“. The second term stands for a
sum ofthe type hmtD— 1h)“. These terms can be shown to represent precisely the
freedom of expanding the metric (in classical language) in different variables such as
Tk‘" = g“v — )7”, etc. This freedom is necessary and its presence reassures us as to
the generality of our procedure. Of course, a new arbitrariness of this type will also
occur at each order of V,, . To determine the general n-point vertex, one first establishes
that the sum V(h) of all vertices obeys the more general Ward identity

(MW/(Sly,v = A“’°‘B(h, 6) [(D‘t — 6V/6hafi] (2.4)
How unique are the V(h) and A satisfying (2.4)? One may first show that the same

scattering amplitude results no matter what set of vertices satisfying (2.4) (if there is
any!) is used. But we know one V(h) satisfying them, namely, the nonlinear part of
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the Einstein Lagrangian. For the Bianchi identities,

{€13 E 0 = {4v + 1‘5”?” (2.5)

together with the fact the ’5‘” E (D‘ 1h)“ is identically conserved and that ’5‘” —
{V is just the vertex — 5V/5h readuv:

(MW/(5m, = r:,,[(D-1h)w — 5mm] (2.6)
(This form, though not the functional form of V and (D‘ 1h), is independent of what
choice of h,” is made.) Thus, the Einstein action generates the essentially unique
vertices and one can also show that it yields tree scattering amplitudes with the required
properties. Finally, returning to the original matter—gravitation interactions, one
can establish that the usual minimal gravitational coupling prescription for matter
is also uniquely required up to higher momentum terms.

To summarize, we have shown the following: the quantum tree graphs describing
all graviton scattering amplitudes are generated by the Einstein action, at least to
quadratic order in momenta. Higher momentum dependence would in any case be
negligible in the classical limit, which is thus necessarily governed by general rela-
tivity. This result followed entirely from empirically dictated dominance, in gravita-
tional exchange, of massless spin two quanta together with the principles of S-
matrix particle theory. General relativity is really a consequence of quantum theory!
Note that our considerations began within the empirically well—established frame-
work of Minkowski space for phenomena on scales greater than Compton wave-
lengths and smaller than cosmological distances. Nevertheless, they led us unavoid-
ably to the usual Riemann geometrical interpretation of classical Einstein theory
covariantly coupled to matter, with the equivalence principle as a necessary “lowest
order” consequence of the graviton as mediating particle.

One could continue our particle description into the closed loop domain, which
includes such classical necessities as 2 particle “ladder” exchange diagrams responsi-
ble for Keplerian orbits (together with quantum corrections ~ (h/mc/r)2 or (G h/c3/r2)
to the dominant l/r parts). However, our main interest in closed loops is that dis-
cussed in the next section, namely ultraviolet behavior of the general relativistic
model taken seriously as a quantum field theory at all frequencies.

3. CLOSED LOOPS: NONRENORMALIZABILITY
OF QUANTUM GRAVITATION

It has long been suspected that quantized general relativity, when ripe for calcula-
tions, would exhibit disastrous, nonrenormalizable ultraviolet behavior (at least in
a perturbation expansion, which is the only method currently known). This ex-
pectation was based on the dimensional character of the Einstein constant, which
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is related to the rising momentum dependence of graviton vertices (for example
TM. or V3 both go as P+ 2). The more loops and vertices the higher is the divergence
predicted by simple power counting. Every radiative correction to a given process
would give rise to new divergent counterterms, in contrast to the relatively mild
logarithmic divergence in electrodynamics or Yang—Mills theory, where a finite
number of renormalizations suffice. The horror of nonrenormalizability lies in the
fact that a whole infinity of processes must be fixed experimentally and cannot be
predicted by the theory, rather than just a small number of parameters like mass
and charge. Nonrenormalizable theories are not necessarily inconsistent but they
are not very predictive and one has no a priori idea of their properties.

A discussion of renormalizability would seem to require an advanced stage of
development of the quantum field theory in question, yet quantization of general
relativity has until now been at best a program with no well-defined calculation
rules, let alone specific results. What is the nature of the obstacles to developing
these rules, and how have they been overcome? The one quantization prescription
we can be sure of for a dynamical system is the canonical one, in which there is a
clearcut choice of basic p’s and q’s. While a suitable canonical formulation of classi-
cal general relativity is available, there have been two types of obstacles
to progress in quantum gravity. The first is the apparent ambiguity offactor ordering
in the Einstein action, both in its original form and in the later solution of
its constraints. The second is simply that canonical quantization is nec-
cessarily noncovariant in form with respect to space-time, so that the Feynman
rules and any calculations would be terribly cumbersome. In electrodynamics,
the possibility of canonical quantization provides the reassurance needed to perform
one’s calculations in covariant gauges. Now in an Abelian gauge theory such as
electrodynamics, the equivalence between canonical and covariant gauges and
quantization is well-known and even proved [7] within the context of perturbation
theory. As soon as one gets to a non-Abelian situation such as the Yang—Mills
field, equivalence is not so immediate. In practice, people went ahead, quantized
covariantly and expected equivalence to be established in due course. This has in
fact been accomplished [8], so that covariant rules have been validated also in the
Yang—Mills case. There is one technical addendum to the covariant rules: If one
just writes down the vertices and propagators in some covariant gauge as they appear
in the Lagrangian, then he will obtain absurd closed loop results because wrong
helicity states are also included in these gauges. These unphysical degrees of freedom
(absent in canonical quantization) must be compensated for by introduction of the
famous “ghost” Lagrangian. Ghosts were in fact discovered by Feynman [9] while
performing the earliest loop calculations in quantum gravitation, and were later
fully treated by Faddeev and Popov [10]. In electrodynamics, covariant ghosts are
also present in principle but do not actually contribute clue to the linearity of the
theory. (Photon ghosts do contribute when coupling to gravitation is included.) In
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any case, canonical-covariant equivalence in gravitation is not yet established, but
we will assume that here too it will work, and proceed with covariant quantization.
Even with covariant rules, calculations are still a formidable task, both because of all
the indices and because of the complicated form of the nonlinearities (even V3, let
alone V4, has many terms!) of the Einstein action.

About ten years ago, Feynman [9] and then DeWitt [11] did the first calculations
of gravitational closed loop effects. They computed only the contributions of closed
scalar loops to gravitation—matter processes. But the full classification of divergent
terms even in source-free gravitation was not accomplished until late in 1973, when
the impetus of their advances in vector gauge theories led ’t Hooft and Veltman
[12] to a systematic attack on the problem, using covariant quantization (with
appropriate ghost additions), the background field method and dimensional regulari-
zation. The first two ideas were already used by Feynman and DeWitt, the back-
ground field expansion being an especially apt tool in the gravitational context.
It will be recalled that graviton vertices, such as V3 or graviton emission by matter,
grow as P2. This means that if we insert an extra external graviton into a closed
loop, we do not decrease the degree of divergence since the extra P‘2 propagator
denominator it produces is compensated by the P2 vector numerator. Thus there
are infinitely many divergent diagrams even at one-loop order. External matter
line insertions also tend to proliferate, because the basic closed loop divergence is
quartic (two propagators, two vertices and a d 4p integration) and insertion of say
a pair of external boson lines decreases the divergence by only two powers. For
fermions, one can have up to eight external lines emanating from a divergent diagram!
The existence of “rings” with arbitrarily many external line attachments to a basic
single closed loop is circumvented by the background field method, which recog-
nizes that the external lines are basically classical: To obtain the scattering ampli-
tudes, where the external lines are on shell, one lets the external fields obey the classi-
cal equations (Einstein-matter field equations). Only two powers of the field in the
Lagrangian are truly quantum operators which create and then annihilate the virtual
loop pair at each vertex of the bubble. Thus, we simply expand each field as the sum of
a classical “background” field and a quantum operator, and keep only terms quadratic
in the latter, but with arbitrary nonlinear coefficients in the background fields.
The latter are then evaluated on shell, at the solutions of the field equations. For
example, we write the Einstein action IE 2 K‘Zjdg) in terms of g“, = gm. +
16t and keep only the part (independent of K)

1
1:32) a jdx 52R (gyaguvégafihuvhafi (31)

while, e.g., the Maxwell action I“ is expanded as

19;, =% I[521M(g, F)/(SF2)17+ (521M/6g2) 1m + 2(521M/5g6F)fh] dx (3.2)
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The coefficients are of course pretty messy functions, but ‘I Hooft and Veltman
succeeded in finding an algorithm which expressed the divergent contributions in
terms of these coefficients for actions which have the generic foim

I = [M E] ¢ + Mam + Q32] (33)
including of course the relevant ghost contributions if d) is a gauge field. The use
of dimensional regularization is a simplifying, though not essential, replacement of
the usual momentum cutoff A by a dimensionless (effectively logarithmic) cutoff
parameter 8—1.

To see what happens in the case of pure gravitation at the one-loop level, we do
not even need to perform the algorithm calculation explicitly. It suffices to note that
the counter-Lagrangian, A3, defined as the negative ofthe divergent contributions,
must be an invariant density function of the background metric (since no gauge
choice is made for the latter, only for the quantum field hm), and have the usual dimen-
sion H4 which makes AI 2 j d4xA$ properly dimensionless (h = 1 here). But
since [(2, is tic-independent, we are simply asking for all possible invariants of di-
mension 4, i.e., involving 4 derivatives, which can be constructed out of curvatures:
A37 must be the linear combination

A3 = (V — g/e) [onRfiufi + fiRfiv + yRZ] (3.4)

where at. [3, 3,! are (gauge invariant) numerical coefficients, determined by the al-
gorithms, which were calculated by ’t Hooft and Veltman. (Nonpolynomial ex-
pressions like Riv/R2 cannot occur in perturbation series, while explicit covariant
derivatives could only contribute a total divergence here, and so are irrelevant.)
But we are only interested in the infinities of S-matrix elements, for which the external
gm, obey the on shell conditions Gm(g) = 0. This means both R5,. and R2 vanish,
leaving only the square of the full Riemann or Weyl tensor (its coefficient, a, in-
cidentally is non-vanishing). But here a “miracle” occurs: there is an identity (gen-
eralizing the Gauss—Bonnet formula in two dimensions) which states that
(— g)"1°Zs“""*‘“e‘“""‘"RL1,) R Rl’”) v,l is a total divergence in an even number
n of dimensions (for n = 2, a‘wewRWB = Div is the Gauss—Bonnet formula, while
for n = 4. we have the product of two curvatures). Using the standard expression
of two as as a product of Kronecker 5’s, it follows that, in four dimensions,

jd‘tx VT9025,“, — 4123,, + R2) = 0 (3.5)
so that the 1 term also vanishes on shell and the scattering amplitudes of source-
free gravitation are one-loopfinite (and need no renormalization at all). At the two
loop level. which no one has yet succeeded in calculating, this pleasant state is prob-
ably lost because terms such as Kztr(Rim3) can occur, and would not vanish on
shell.
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The interesting physics, of course, lies in the coupling of general relativity to
matter, which involves both graviton loops, matter loops and mixed contributions.
’t Hooft and Veltman therefore proceeded next to scalar field-graviton coupling,
which could be cast in the general form (3.3). The net result, after setting the back-
ground fields on shell (Gm = —% 7],,(¢),D¢ = O) was that A? did not vanish,
but could be written as

A95” ~ (1/8)\/ —9R,2.v 75 0 (3-6)
(Throughout we deal with massless fields for simplicity. The massive case does not
improve the conclusions.) This counterterm is not only not amenable to absorption
by a coupling constant or field renormalization (g —> Zg) but it involves fourth
derivatives, with all the attendant ghost unpleasantness they bring into our second
derivative world.

At this stage, an optimist would say that there are after all no basic scalar fields
in nature anyway, so perhaps this is an artifact, which will disappear when one
considers more realistic systems such as photons, fermions or vector gauge multi-
plets like the Yang—Mills field itself. In a series of papers [13], P. van Nieuwenhuizen
and I proceeded to calculate the divergences of gravitationally coupled photons and
fermions, and in collaboration with H.-S. Tsao, we evaluated graviton coupling
to an arbitrary semisimple gauge group multiplet as well [14]. The result in each
case was negative: all those models were nonrenormalizable, the only consolation
being that many a priori allowed “bad” counterterms actually vanished, leaving
effectively only one term (which is bad enough!) in the electrodynamics and Yang—
Mills cases. In Einstein—Maxwell theory, for example, one can easily see on di-
mensional and invariance grounds that the general form of A! which depends on
curvature, field strength, and explicit covariant derivatives D, is

A$E+M =(1/s),/ — g[alR,21v + (1s + a3Rfimfi + a4RMT“v + asRFfiv +

+ asR‘mfiFwFafi + a7Tfiv + 618(Ffiv)2 +
+ a9(D,,F‘”)2 + a10(D,Fp,.)2] (3.7)

where '11,, is the Maxwell stress tensor. Explicit calculation, however, yields a5 =
a6 = a8 = alo = 0. Using now the field equation, G“, = —%Tu, and D,,F‘” = 0, we
may combine all terms to the form

A5613+»; = (01/3) \/ — gRfiv (3-8)

where the numerical constant a has the explicit value 137/60. In obtaining the above
results, one has to include a photon ghost contribution, which is nonvanishing, in

contrast to flat space. Even more surprisingly, despite the still greater possibilities
for A3 in the non-Abelian multiplet case, the net result is

Ayn”; = (1/8)\/ - g[61—o(137 + r - 1)Riv — %Cf2F,,,- FM] (39)
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where r is the dimension ofthe gauge group, rC E CabcCabc is the square of the structure
constants, andfis the self—coupling constant ofthe field. For r = 1,f= 0, we regain
the Maxwell result, while the usual Yang—Mills field has r = 3, C = 2. The F2
term is of course also present in flat space, being the usual renormalizable counter-
term.

The background field method and its apparently sweeping results for A37 may
perhaps be put in perspective in terms of more familiar external weak field diagrams
as follows. Consider the basic vacuum polarization diagram, Fig. 3, with two external
graviton lines (tadpoles With one external line and vacuum loops with no external
lines vanish in the dimensional regularization scheme). This yields a divergent term
for AE’ ~ (1/8) I hflv6““"’3hafi, where h denotes an external line and 6 is quartic in
derivatives. Linearized gauge invariance implies that this can be rewritten as a
linear combination, with fixed coefficients, of the two invariants (Rfjv)2 and (RL)2
constructed out of the linearized curvatures. The background field method exploits
the gauge invariance in the external fields1 to predict that if one looked at the arbi-
trary ring diagram of Fig. 4, whose divergent part may be written as A37 ~
(1/3) I h”) h‘“)6m...#2n, then it would correspond to the nth order expansion in h
of the same combination of the full nonlinear curvatures (RM)2 and (R)2. That there
can be no “new” R3, R4, etc., contributions from Fig. 4 (which could not be seen
in Fig. 3) follows by dimension counting. Thus, there really is no “magic” to the
background method which goes beyond the simple perturbative calculation (ghost
loops are always needed in each, of course). When matter is present, the above cor-
respondence still holds, but this time one would separately calculate all possible

Figure 3 Ring diagram with arbitrary number of
Graviton self-energy diagram. external graviton lines.

1External gauge invariance of the one-loop quantum Lagrangians (such as (3.1)) and therefore of the
counter-Lagrangians, can be shown as follows: The Lagrangian is manifestly invariant under combined
transformations of the background and quantum fields. But the transformed quantum fields lead to the
same Feynman rules as the original ones, since they just bear “primed labels." Schematically, we have
g + h —> g’ + h’ —> g’ + it, so that the dependence on g’ is the same as it was on g—this is the required

invariance.
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loops with 2, 4, etc., external matter lines and either one or no external gravitons.
For example, for photon-graviton coupling we could have either type of diagram
of Fig. 5. The self-energy diagram corresponds to terms of the form (6F)2, while
the pictured vertex correction is the first expansion in h of the invariants HRFF
or \/——g(DF)2, but not of, e.g., HFZ, which is dimensionally wrong All higher
external graviton corrections symbolized in Fig. 5c correspond to the same
combination of full invariants ~ \/’—_g(DF)2 and \/—‘g R FF as is determined at
the linearized level by the diagrams with no and one external graviton.

\~,
L: .5,I:

>
2,

NNN'AJL,‘ 9.2“;v div“ Jr

J ”‘2 f 3 ii; “if
s E

(a) (b) (c)
Figure 5 _

(a) Photon self-energy; (b) Example of photon-graviton vertex correction; (c) General ring graph with 2
external photon lines.

One regularity which arises in the various coupled systems is the non-negative
sign of the coefficients of R3, and R2 (before use of field equations). This can be
understood on simple unitarity grounds by noting that j (Riv — airRz) andi repre-
sent respectively spin 2 and 0 states (the former combination is in fact just the square
of the Weyl tensor), so that the internal loop just represents a sum over intermediate
states ofpure spin. One can easily check this also for any partial contribution to such
terms, e.g., from a pure scalar or pure fermion or pure photon loop, and I should
mention that calculations of such individual diagrams have been made by a number
of workers [15], starting with the original pure scalar loop calculation by Feynman
[9] and DeWitt [11]. However, it is only when all diagrams (including mixed loops)
are added up that one can decide on nonrenormalizability, since the on shell field
equations mix up a priori independent terms. The positivity of Rfi, alone is not
sufficient to guarantee nonrenormalizability, since there are also cross terms such as
Rm. T“v and also Ti, (though this point deserves further consideration). Indeed,
part of the interest in performing the Yang—Mills calculation was to see whether the
two new parameters involved (multiplicity r and dimensionless coupling constant
f) could be adjusted in a useful way, as a possible model of compensation amongst
several different matter fields.

It now required a superoptimist to say that perhaps the only really fundamental
matter fields are the spin % fermions, and one should therefore look for renormaliza-
bility of the Dirac—Einstein system. It is a rather difficult place to look, owing to the
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well-known pecularities of spinors, which can only be coupled to vierbeins rather
than directly to the metric. This means that there are now sixteen rather than ten
gravitational variables, that there is a new gauge group, the freedom of local vierbein
rotations, and unlike the scalar and vector cases, covariant derivatives are unavoidable
in the matter Lagrangian. The last fact has the very unfortunate consequence that the
algorithm is no longer applicable, and that direct graph calculations must be per-
formed from scratch. The presence of sixteen variables, all of which must of course be
candidates for quantization, raises an important separate question. Does quantization
of general relativity in its vierbein and metric forms yield the same theory when both
are permissible (i.e., in the absence of spinors)? We found that this is indeed the case,
and that covariant quantization neatly disposes of the six superfluous vierbein
components’ apparent contributions.

The calculation of all divergent contributions to A5.” is a formidable task, and there
is a nightmarish number of possible terms, owing to the richness of the Dirac algebra,
to the already mentioned fact that graphs with as many as eight external fermions
are still divergent, and to the fact that the coupled Einstein—Dirac equations mix
many invariants. Fortunately, there is one subset of divergent graphs which is well
suited for a nonrenormalizability proof. These diagrams yield terms which do not
mix with any others on shell, being unaffected by the field equations, yet whose pres-
ence suffices to establish nonrenormalizability. Further, they are relatively easy to
calculate. We refer here to all divergent graphs with eight external fermions. Such
terms are logarithmically divergent by power counting, and so by dimensions their
A3 contributions are of the form Hi4: AWL-(D), where the 6,- are numerical (Dirac)
matrices, but do not contain derivatives. The field equations, on the other hand,
always contain derivatives of the spinor field, so there is no mixing. (The reason such
nonderivative terms are possible here, in contrast to the massless spin 0 or 1 cases is
that covariant derivatives of 1p in the action break the flat space invariance under
addition of a constant spinor to til.) Let us consider the possible graphs and their
behavior. By continuity of matter lines, the external fermions will attach to the loop
either as seagull (Fig. 6a) or Compton (Fig. 6b) insertions and there will be four
such vertices, denoted by a black dot, in the complete diagram of Fig. 7. Wavy lines

Figure 6a
A seagull fermion-graviton vertex.
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Figure 6b
A Compton vertex insertion.

a;
>5

Figure 7
General eight-fermion loop diagram.

denote vierbein propagators, the fermions are solid directed lines, and we omit any
external vierbein insertions, whose effect will just be to make the final A2 coordinate
invariant, e.g., by adding factors ~ \/——g, but never to produce dimensionally
incorrect terms like Rl/ls. In the actual calculation, one finds the form for the effective
vertex as the sum of Figs. 6a and 6b, and ofcourse, crossing symmetry between vierbein
pairs is also included The logarithmic behavior of the corresponding integral is
clear: each vierbein propagator goes as P”, while each vertex goes as P (for the
seagull this is obvious, since it is part of the elementary fermion stress tensor—graviton
coupling which is linear in P; the Compton insertion consists of two such P vertices
with an intermediate fermion propagator ~ P'1 ). Explicit calculation of the coeffi-
cient of the logarithm reduces to an algebraic trace over the four successive vertex-
propagator units of Fig. 7. The net result has the very simple form [13]

A5? ~ 130/?) K8(AaAb11“")2, Au 5 WWW (3-10)
The counterterm is proportional to the fourth power ofthe axial current A, , contracted
with the local Minkowski metric rm, and fl is a non-vanishing numerical coefficient.
The result (3.10) is sufficient to establish nonrenormalizability of the Dirac—Einstein
system, since these $8 terms in A5,” cannot mix even on shell with those having lower
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powers of 1p (and hence involving derivatives), the field equations GM, ~ fltZDuv),
yDtZ/ = 0 always involving a differentiated t0. These other terms of A5," (which we
have not calculated) may well be separately nonrenormalizable.

One final remark about the spinor case: We have treated the free Dirac field as
defined in the usual second order formalism. As was noted by Weyl [16], however,
a first order formalism would define a minimal coupling differing from ours by an
extra (finite) contact term of the form KZAZ. It is conceivable (the calculation has
not been done) that such a term would lead to cancellation of our us terms, although
this would not necessarily imply renormalizability. In View of the importance of
our conclusions, this open question should be borne in mind.

To summarize this section, the Einstein field coupled to scalars, spinors or vectors
(whether singlets or gauge multiplets) is one-loop nonrenormalizable. If one had
dealt with massive rather than massless fields, additional counterterms would have
appeared, some ofwhich would have been proportional to (1/5) mZR or (1/3) m4 — g,
and could have been absorbed by coupling constant or cosmological constant renor-
malization. Had we used the usual dimensional momentum cutoff, we would have
found such terms also in the massless systems, alongside the basic nonrenormalizable
ones. In either case, there would be no change in our nonrenormalizability con-
clusions.

4. CONCLUSIONS

Our survey of quantum gravitation has brought us to a dilemma. On the one hand,
the principles of relativistic quantum particle theory unambiguously dictate the low
frequency characteristics of gravitons. The vertices and tree graphs are generated by
the classical Einstein action, and whatever the ultimate theory governing high fre-
quencies, it must reduce to Einstein’s in this limit. Thus, quantum gravitation must
necessarily limit to general relativity. On the other hand, when we take this same
general relativity seriously, as a quantum field theory, we find its high energy behavior
unacceptable already at the one loop level. What alternatives are available, and what
prospects can we foresee at this point?

It is quite possible that perturbative renormalizability is too restrictive a criterion
in the case of dimensional coupling and when summed correctly, quantum general
relativity is not only finite but, as has been suggested [17], even cuts offthe divergences
of flat space physics. One argument in favor of this view is that a classical point
particle’s gravitational self-energy in general relativity is more and more divergent
in perturbation expansion, but sums to a finite closed form result [18]. Unfortunately,
we have no reliable nonperturbative techniques available to decide. What about
“improved” theories of gravitation? Are there any reasonable extensions of general
relativity, which lead to better high frequency behavior while maintaining the desired
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low frequency Einstein form (and presumably its gauge invariance as well)? Several
possibilities come to mind.

(a) If the root of the renormalization problem is the dimensionality of the coupling
constant, then the Brans—Dicke theory [19] seems a good candidate, since one of its
aims was in fact to replace K” by a scalar field. Unfortunately, renormalizability is
not achieved just by removing 1c: one can transform theories of the Brans—Dicke
type, by change of variable, to coupled Einstein-scalar systems, which are nonre-
normalizable. It is perhaps conceivable that a more subtle treatment, using ideas of
spontaneous symmetry breaking, would improve matters.

(b) One purely geometric theory in which only dimensionless constants enter is
the class ofWeyl models [20], with actions quadratic in the curvature, like our counter-
terms themselves. One would presumably obtain renormalizability here, since (by
dimensions) A! would have to reproduce the original action, but the price seems too
high. First, it appears difficult to couple massive matter to a Weyl model in a reason-
able way ; one obvious problem is that the metric-source relation looks like V sqb ~
p, with solutions (1) ~ Mr rather than M/r. More drastic is the fact that the field
equations are quartic in derivatives (this is what leads to renormalizability:
propagators ~ P“), with all the attendant ghost problems of high derivative quan-
tum theories. Finally, Weyl theory does not reduce in any straightforward way to
general relativity at low frequencies. There is a possibility (first discussed by DeWitt
[11] and revived in [13]) that a model of the form K_2R + ocw + fiRZ, if treated
in a partly nonperturbative way in K, might be renormalizable and have proper
low frequency behavior. However, it also has ghost problems, associated with the
fourth order structure (p2 + s“)_1 of the propagators.

(0) Perhaps one should look for “improvements” in matter—graviton coupling
by adding non-minimal terms (proportional to curvature) but then higher-derivative
problems reappear.

(d) A more remote generalization is something like 5-dimensional theory [21].
Formally, the theory is one-loop finite, because there is no invariant A3 with di-

mension 5 that can be constructed from the metric or scalar or photon fields. But
how does one eliminate the 5th dimension on the tree level while using its advantages

in the loop?
(6) Another possibility is that an appropriately chosen set of matter fields with

the right mutual interactions will lead to enough compensating divergences, despite
the positive contributions to Riv and the 1/18 free fermion terms. It is difficult to assess

its value at present, but “supersymmetry” ideas might be of interest here.
(i) One very new line of development we have not mentioned is the possible con-

nection between dual models and gauge theories. In the preprint received after this
work was completed, Scherk and Schwarz [22] obtain Brans—Dicke models as
zero-slope limits of certain dual models.

As of now, no model gives definite promise of providing compatibility between
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gravitation and quantum theory within the existing perturbative framework, while
retaining the correct classical features of Einstein theory. On a practical level one
could perhaps learn to live with a nonrenormalizable theory, since its difficulties
are negligible at present experimental frequencies, but we will not really have under-
stood gravitation until we can tame its infinities.
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ABSTRACT
The status of canonical quantization is reviewed. Emphasis is placed on the need for intrinsic coordinates

as a means of defining either the appropriate configuration space for general relativistic observables or,

equivalently, the superspace of Wheeler. Special attention is given to the scalars of the four-dimensional

Riemann tensor, the transverse-traceless decomposition associated with asymptotically flat space-time,

and scalars derived from the three-dimensional Ricci tensor.

1. INTRODUCTION

Twenty-five years ago a paper by Peter Bergmann entitled “Non-Linear Field
Theories” appeared in Physical Review [1] About the same time Paul Dirac was
preparing a series of lectures on Hamiltonian theories [2]. This work inaugurated
the modern attempt to join the principles of quantum theory and of general rela-
tivity [3, 4]. Quantum theory is a general method for describing the intrinsically
uncontrollable and unknowable interactions among physical fields and particles.
General relativity is a theory of space-time which says that geometry is not given
a priori, but rather it is determined by the distribution of matter. Since the behavior
of matter is restricted by quantum theory, the geometry of space-time should like-
wise exhibit quantum restrictions; since matter moves in space-time, its quantum

interactions should similarly be limited by geometry. The unveiling and description
of this mutual relationship is what interested both Bergmann and Dirac.

It is remarkable that so much time has passed and while we have learned a great
deal about general relativity, geometry, space-time structure, topology, and many

others matters, the original problem seems as intractable as it did originally. Perhaps

* Research supported by the National Science Foundation under Grant # GP34641X,

19



20 JOSHUA N. GOLDBERG

the conventional approach to quantum geometrodynamics is, as Pauli said in 1958
[5], a noble effort, but not wild enough. Nonetheless my role is to sketch the present
status of canonical quantization and I shall leave the discussion of wilder schemes
to others [6, 7, 8].

In the past two years there have been two rather remarkable review papers on
the quantum theory of gravity. One is by C. Isham [9] and the other by A. Ashtekar
and R. Geroch [10]. They are different, yet both list the motivation and discuss the
difficulties of various approaches to the quantization program. Together they form
an excellent overall summary. My own review will be narrower in scope.

I shall address the important problem of actually constructing observables using
intrinsic coordinates. While considerable attention has been given to existence
theorems for observables [11—13], there has been less success in actually exhibiting
a non-redundant set [14—16]. Such a non-redundant set would identify a unique
4-geometry. John Wheeler has emphasized the role of “three-geometries” in the
quantized theory as the appropriate configuration space for general relativity [17].
He refers to the space of unique geometries as “superspace”. In terms of an intrinsic
time, a unique 4-geometry is a trajectory in superspace. Therefore, the problems
of finding observables and of defining the properties of superspace are intimately
related.

Among the important topics I shall omit is the work by J. York [18] on a covariant
decomposition of a symmetric tensor and its application to the constraint problem.
There is closely related work by Y. Choquet [19], S. Deser [20] and particularly
by A. Komar [21]. I shall also omit the very interesting work on model quantiza-
tion particularly worked on by a group centered around C. Misner [22]. While
models give us some insight into our long range goals, a reasonable discussion
would be too detailed for the general discussion I have planned.

2. GENERAL DISCUSSION

Before discussing general relativity in detail, let me quickly and loosely describe a
classical system of particles and the transition to quantum mechanics. Then I shall
describe general relativity and the differences which lead to the difficulties in con-
structing a quantum theory for the gravitational field.

Start with a physical system with n degrees of freedom whose dynamical variables
1.5,, (it 2 l. Izt define a configuration space ’2’). There is a Lagrangian Lit-1,5}; \x‘hose
EuleriLagrangc equations describe the time~development of the system. Through
t: Legendre transformation one goes over to. the phase space F with points given
by ‘-:L{x..[lk‘lcl’lk 2 6L 15th.. One can then write the Lagrangian in canonical formn

L= 217q —H(q,p)



CANONICAL QUANTIZATION 21

The Hamiltonian H (q, p) generates the time-development of the system:

, 6H
qt = [4,” H] E 5—

Pk

15k = [pkaH] E —5H/5‘Ik

Given two functions on the phase space F (q, p) and G(q, p), the Poisson bracket
is defined to be

6F 66 5F 6G)[F,G]=Z< —————éqk 517k 51):. 54;.
In particular, the fundamental brackets are

[qka ql] = 51d

Through each point in phase space passes one and only one dynamical trajectory
of the system. Constants of the motion map trajectories onto trajectories by means
of canonical transformations.

For such a classical system, canonical quantization consists of the following
prescription :

1. The symplectic form defining the Poisson brackets defines a commutator
algebra such that

[(110 P1] = ih 5k:

2. The physical state of the system is described by a function 1,0(q) on the con-
figuration space ‘6.

3. The totality of allowable functions w defines a Hilbert space. That is, a scalar
product and, therefore, a norm is defined over the configuration space.

4. The inner product is defined so that the dynamical variables become Hermitian
operators on the Hilbert space.

5. The Hamiltonian becomes the time translation operator for the state vector I/IZ

H¢ = ih Orb/at
In general, with the necessary mathematical care in treating systems with an

infinite number of degrees of freedom, these rules are applicable for the canonical
quantization of a field theory. However, there are three characteristics of general
relativity which come together to create extra difficulty in constructing a conven-

tional field theory:

(1) There is no free field. Gravity is always a field in interaction because of its in-

trinsic non-linearity.

(2) It is a theory of space-time. Components of the metric tensor are the field vari-
ables. Therefore the gravitational field does not act within a geometrical state
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which is impressed on it from outside, but rather the field itself, together with
its sources, creates the geometrical framework within which it is constrained.
At this time it is not clear how this dual role will actually show up in the quantized
theory.

(3) The general covariance of the theory means that the Lagrangian is singular.
Passage to the canonical formalism leads to constraints which implies that
not all of the variables are dynamical.

Strictly from the point of view of carrying out the steps necessary for constructing
a quantum theory, the existence of the constraints and the intrinsic non-linearity
are the main stumbling blocks. One has not been able to solve the constraints
explicitly and, therefore, we do not know an irreducible non-redundant set of
dynamical variables—or observables.

Komar [23] has pointed out that in Lorentz-covariant theories we selectively
carry over to the commutator algebra those classical Poisson brackets which are
related to the space-time symmetry. In general relativity, the space-time symmetry
is precisely what leads to the constraints and presumably that symmetry will be
eliminated when the constraints are satisfied. It is expected that the algebra of
observables will then be independent of representation and therefore can be carried
over unambiguously to the quantum theory. This program requires, however,
having the observables in hand.

Wheeler [24] and DeWitt [25] have leaped over this problem. The constraints
of general relativity generate the coordinate transformations. Three 0f the constraints
generate mappings of the surface x0 = c onto itself. The fourth constraint maps
the surface onto a neighboring surface and may be referred to as the Hamiltonian
constraint. Together all the constraints make up the Hamiltonian of general rela-
tivity. Wheeler and De Witt observe that if one says the magic words “three-geometry”
and defines the configuration space to be the space of three-geometries, then a state
vector wmg) defined over that configuration space will automatically satisfy the
three spatial constraints. The fourth constraint is then to be satisfied as a Schroedinger
equation which Wheeler writes symbolically as

Vzw
(6(3)g) ‘ Rl/I — 0

The success of this program depends on being able to define and to describe
explicitly the configuration space—the superspace mentioned earlier. Much work
has already been done on this problem [26], but much more is needed. Then one
needs to define Wheeler’s symbolic equation so one can study the nature of its
solutions.

As I indicated earlier, a determination of the observables will contribute to a
better understanding of superspace. Therefore, the remainder of this paper will
focus on the observables.
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3. THE CANONICAL FORMALISM

The existence, in a field theory, of a group of transformations which are described
by r arbitrary functions implies that the time development of the field is not uniquely
determined by giving data on an initial surface. There exist transformations which
leave the field unchanged up to and including a space-like surface I = 0, but change
that field arbitrarily thereafter. To accomodate the transformation group, the field
equations cannot determine the propagation of r field components—they may be
chosen arbitrarily. In addition, the r field equations corresponding to these compo-
nents impose restrictions on the initial data for the remaining components. They
are the constraints in the canonical form of the theory.

Dirac [27, 28] has pointed out that the variables which may be chosen arbitrarily
depend on the transformation group off the initial surface, while the remaining
variables only involve the transformation group on the initial surface. Bergmann
has called the latter variables “D—invariant” [29]. Only D-invariant quantities have
an essential role in the dynamics of the field.

In general relativity the fundamental field variables are the components of the
four—dimensional metric tensor (y, v = 0, 1, 2, 3)

ds2 = 4gflvdxudx”

Under an infinitesimal coordinate transformation x“ —+ x“ + 5“,

549;“: = — 65:44n - €€v4gpu — 4gnv,p€p

It is evident that 54g,“ involve 5“ only on the surface x0 = const, whereas 549,10
involved time derivatives and hence require knowledge of the transformation off
the surface. Therefore, the 4g”0 may be chosen arbitrarily; the “gm,l determine the
dynamics of the field; and the field equations G0” = 0 give rise to the constraints.

To emphasize the above separation, the notation below which was introduced
by Arnowitt, Deser, and Misner [30], is commonly used. The signature is chosen

to be —2 and Latin indices range from 1 to 3, whereas Greek indices range from
0 to 3, unless otherwise noted:

4 _<+N2+NSNS N,
g,” Nm gm"

4g” =< +N‘2 N—ZN"
N—ZN'm gmn + N-ZNmNn

time” = 5,".
4

. . . . . K
On the surface x° = c, 2c, gm" IS the negatlve definite 1nduced metrlc, { }

uv
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k
and { } will denote the Christoffel-symbol connections for which 49“ andmn
gm,I are covariant constant, respectively; the appropriate covariant differentiation
will be denoted by a semi-colon (;) or a solidus (/), respectively.

Further, we have the simple relationship

4g = N29
4g = det 4g“v and g = detgm,I

The Riemann tensor is defined by the Ricci identity:

21¢ = 4R5WV“;[P0]

the Ricci tensor by
4R = 4s,uv

and the scalar curvature by
4R = 4guv 4Ruv

These conventions agree with those of Bergmann and are opposite to those of
DeWitt [25] and Arnowitt, Deser, and Misner [30].

The same definitions and signs will apply for the Riemann tensor defined on the
k

3-space 2c in terms of gm,I and { } Of course, in that case the superscript 4mn
is omitted and the indices will be Latin.

As noted above, the spatial metric g,,,,, is D-invariant whereas N and NS (or 4go”)
are not. Hence the latter variables are not dynamical and may be chosen arbitrarily.
In the language of Wheeler [24, 31], N is the lapse, the proper time of a unit x0-
displacement measured along the normal to the surface EC; N5 is the shift so that the
corresponding proper displacement tangent to EC is (—NSNSWZ.

Arnowitt, Deser, and Misner [30] have shown that the Lagrangian has the ca-
nonical form

g=pmngmn,0*N%._Ns$s (1)

pm = \/ —g (9"“9'5 — 9mg”) KS (2)

fr 5 2¢-“g 631” E (1/\/_g)(pmnpmn - %p2) + \/ -9R (3)

Jfls/-QGEE—nnm"/n (4)
where l” is the unit normal to 2c,

19 = N53
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and KW, is the second fundamental form or extrinsic curvature of E
Kmn = - lm;n

= %N(Nm/n+ Nn/m _ 9mm)

(‘5

The field equations are obtained from the action principle

65 = 5 f5,” d4x (5)

by variation of gm", p""‘, N, and NS:

ammo = 2N(\/——g)‘1 (pm — igmp) + Nm/n + NW (6)
1776" = — Dix/:30?” -%.61”"‘R)+%(—g)‘“2 g""‘(p”prs — i102) —

— 2N(—g)‘1’2(p’"'p:'-%pp"‘")+ x/TMNT" — 9“"N7r) +
+ (p"‘"N’)/r — N7r‘p'" — N74)” (7)

3?; = 0 (8)
921 = 0 (9)

Eqs. (8) and (9) contain no time derivatives and are the four constraints per space
point which exist among the variables gm" and p""‘.

The configuration space ‘6 for the dynamical system described by the Lagrangian
density (1) is the space of all negative definite metric tensors gm,,(x) on EC, Riem (EC)
[26]. The phase space F is just the cotangent bundle of ‘6. A point of F is the set
<gmn(x), p’5(x)> of covariant symmetric tensors and contravariant symmetric tensor
densities of weight 1 on 26. However, the constraints 9?; = 0 and Jig = 0 define
a hypersurface f in F to which the trajectories of the dynamical system are confined.
Indeed one can show that initial data on 1—" is propagated by Eqs. (14) and (15) to
remain on F.

It follows from Noether’s identity [29] that

C: ”3% + 5%; }d‘x (10)

generates the transformation of D-invariant quantities for mappings such that

6x” = éLl“ + 6:65

where €(x) and {5(x) are arbitrary functions. Thus the X1 and 3?; form a Lie algebra
of the above transformation [32]. In particular, the Hamiltonian is obtained for
EL = Nand {5: N5:

H=J{N3fl +N‘Jt; }d3x (11)
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Thus we see that the constraints map F onto itself and, indeed, trajectories onto
trajectories. But, because we cannot distinguish between a coordinate mapping (10)
and the Hamiltonian mapping (11), there does not exist a unique trajectory through
each point of 1:. Rather 1—“ divides up into equivalence classes, each one of which
is representative of a whole space-time. The factor space of 1—" by the equivalence
classes is what Bergmann calls the reduced phase space [11, 12].

Points of the reduced phase space are constants of the motion—they are invariant
under all mappings of the form (10). Symbolically the points of the reduced phase
space are 4g, a whole 4—geometry. Unfortunately, however, this argument is not
constructive. It does not suggest an algebra for the variables (observables) in 4g.
Therefore, while the transition to quantum theory can be made merely by writing
‘P(‘4’g) for the state vector, there is no way at this point to give it meaning.

What the argument does tell us, however, is that the dimensionality of the reduced
phase space is four per space point and that is the number of independent observables
to be expected.

4. INTRINSIC COORDINATES

In order to be able to describe the reduced phase space in a meaningful way,
one must have an explicit invariant method for identifying points in space-time.
Variables which depend only on the space—time points, and not on their coordina-
tization, will have vanishing Poisson brackets with the constraints. If not identically
zero themselves, such quantities will be observables [29].

General covariance tells us that the labeling of points in space-time by coordinates
has no physical significance. There is no extrinsic way to locate an event in space-
time. The only way to mark a position is in terms of the matter and geometry of the
world. In an empty space-time, only the geometry is available. It is this property of
general covariance that led Arnowitt, Deser, and Misner [30] to describe general
relativity as “already parametrized”.

The language implies that some of the information carried by the metric tensor
is just that needed to give an invariant prescription for the location of space-time
points. This prescription is what we shall call “intrinsic coordinates”. The search
for a suitable set of intrinsic coordinates has taken different forms. Penrose, for
example, would like to use intersecting light rays or twistors to locate points.
Wheeler’s symbol “‘9 which denotes a unique three-geometry presupposes in an
unspecified way that intrinsic coordinates can be introduced on a space-like hyper-
surface. Likewise, his Schroedinger equation, in some sense, again unspecified,
describes the intrinsic time evolution of the state vector. In what follows I shall
describe three specific and related approaches to the problem.

Bergmann and Komar [16] have suggested using the four scalars derived from
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the Riemann tensor as intrinsic coordinates. The components of the metric tensor
and their canonical momenta in terms of these intrinsically defined coordinates
will then be observables, but a redundant set. It is a redundant set for two reasons.
First of all, there are six components of the metric tensor and six components of
the canonical momenta, thus 12 rather than only four per space point. Secondly,
they are not defined on a hypersurface, but in all space-time. However, the latter
property is no problem for we may define the hypersurface to be x0 = 0, where
x° is the intrinsic time. The variables at other xO-Values are equally good observables
and, in fact, this redundancy shows that the “frozen” formalism is not frozen at all
[16]. In quantum mechanics we want to take expectation values at x0 = to and again
at x0 = II. In this formalism, assuming it could be carried out explicitly, one does
not need a time-development operator because the complete solution is laid out
at once. The reduction from 12 to 4 components per space point, however, is a serious
problem which I shall return to again shortly.

Arnowitt, Deser, and Misner [30] take a different approach to intrinsic coor-
dinates. They begin by assuming space-time to be asymptotically flat. Therefore,
they wish to introduce coordinates which are asymptotically Minkowskian and
they assume this can be done in a manner which is unique up to a Poincare’ trans-
formation. Actually, the group is considerably bigger [33], but that is not a major
concern. They need asymptotic flatness in order to decompose the metric tensor
into transverse-traceless, longitudinal, and trace parts. Several different decomposi-
tions have been suggested, both non-covariant and covariant. What is of interest
here is that the decomposition is used to aid the explicit solution of the constraints.
One wants to solve the constraints for four functions in terms of the remaining
eight. Symbolioally, let me write

“is: 0=>Ills : Ps(gAanAa¢fl)

m = 03¢0 = PO(gA9flAa¢fl)

where gA and n"(A = 1,2) represent the sought for set of observables and the 45“,
which may not be fully identified at this point (p = 0, 1, 2, 3), will be fixed eventually
by coordinate conditions. ADM substitute this solution into the Lagrangian of
Eq. (1), and then consider the change in the action assuming there exists an invariant
transformation. In the usual way [39], 6S = 0 for an invariant transformation
gives constants of the motion which are the generators of the invariant transforma-
tions. The generator takes the form [30]

G = [mm/45g, — 25¢} (12)

By identifying (1)” with the coordinates x“ which are asymptotically Minkowskian
one then finds that the .ZLqA, m) are the densities for the generators of the asymp-
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totic symmetry group. As noted, this group is actually larger than the Poincaré
group. It has the same structure as the BMS group at null infinity [33]. That is,
it contains non-rigid translations.

At this point one has in principle a set of intrinsic coordinates based on an
asymptotic symmetry group. The configuration space is defined by gA(x) and the
commutation relations should be defined by the asymptotic symmetry group.
Given that one is willing to settle for asymptotically flat space, this structure has a
certain appeal. The biggest problems, which remain, are the actual solution of the
constraints and the rigorous demonstration that the coordinate conditions can
indeed be satisfied modulo an asymptotic symmetry group.

I now want to present an attempt which straddles the Bergmann-Komar and
ADM approaches just described. This work was done in part with Fred Klotz [35]
and was inspired originally by John Klauder’s work on positivity conditions in
general relativity [36] and Asher Peres’ paper on canonical quantization [37]
which introduces three scalars as intrinsic coordinates on a three manifold. Peres’
scalars satisfy the harmonic equation in an asymptotically Euclidean space. He uses
Fourier analysis, however, which leads to infinite convolutions in a non-linear
theory. Klotz and I propose to use the three scalars of the Ricci tensor Rm, which
always exist in the generic case. Define intrinsic coordinates [39]

y1 = R, i‘z = RTRi'm y3 = RTRZRLI (13)
The metric

_ 6x' 6x5
‘m’l g” (14)

are invariants with respect to transformations on x0 = c, but in general will depend
on x0. Again we have the problem with redundance. In Peres’ work the harmonic
coordinates plus Fourier analysis eliminates the redundance. Here we eliminate
the redundance by fiat. Choose as new configuration space variables the y’" and the
three diagonal components of the metric (all, g“, Q”) E (gm) from Eqs. (13) and (14).
Consider the canonical transformation

F = [d3x[y’"(gm)7rm + é’"(gm)i3ml

which leads to the equations
5 J" 5—"!

591‘s Ogrs

The spatial constraints take the form [38, 39]

rsP

1/3: —yf';rtm=0
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because the y’" are scalars and the g“ are invariants. In the generic case this implies

1cm = O (15)

The remaining constraint takes the form

2?: =(1/\/Tg>rm"m. + my = 0 (16)
5g“ 6g"

rmn = ' _ ' rs T _(nk gjkg ) égfl. 59,5

The calculation for Fm" is extremely long and not very pretty. Although it can be
carried out, the calculation has not been completed even at the origin of Riemannian
coordinates. Therefore, the structure of Fm" is not known. The idea would be to
solve this constraint, Eq. (16), presumably for \/——g. Following the ADM prescrip—
tion outlined above, one would then substitute Eq. (15) and the solution for (16)
into the Lagrangian of Eq. (1). Variation of the action would now give a generator
corresponding to (12)

G = Jd3x{g"fiA — 9M} (17)

T would define an intrinsic time to go along with the already defined intrinsic spatial
coordinates.

The difficult problem one faces here is not in solving the constraints. That part
is easy. However, given the three diagonal components of the spatial metric in
intrinsic coordinates, we must construct the three off diagonal components. That
must be done through the coordinate conditions

)6” = y'" (18)
where the y’" are the three scalars given in Eq. (13). Thus, once again we are led to
solve partial differential equations and to the dependence on boundary conditions
to which they are subject. There is one major gain, however. For if we can establish
the conditions under which the coordinate conditions, Eq. (18), have unique solu-
tions, we will have gone a long way toward defining the configuration space for the
observables.

5. CONCLUSION

The procedure outlined above for the solution of the constraints by the introduc-
tion of intrinsic coordinates is strictly classical. Nonetheless, we see that the scalars
defining the intrinsic coordinates appear to depend on the dynamical field variables
through the Ricci tensor. While the non-covariant decomposition of ADM [30]
separate the dynamical from non-dynamical parts of the field, the covariant de-



30 JOSHUA N. GOLDBERG

compositions do not. In a guantized theory, then, it is not evident whether the
intrinsic coordinates can be introduced as c-numbers or whether they become
necessarily q-numbers. With the latter possibility one has the interesting conjecture
that even in this conventional approach to a quantized theory points of the space-
time manifold lose their identity. Only their expectation values would be observable.

Unfortunately, we have not yet obtained a complete description of observables
in the classical theory and much less is known about a truly quantized theory.
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ABSTRACT
A review is given of recent observational and theoretical results in cosmology in light of general relativistic
models of the universe.
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1. INTRODUCTION

This paper intends to give a rough overview of the field of modern cosmology,
as it has evolved in the last decade or so, accentuating the connections that exist
between theory and observations in‘this field. We will in general take the “conven-
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tional” path through the jungle of competing theories and interpretations of ob-
servations. (At the same time, we will post road signs large enough—and intelligible
enough—to guide the explorer on the alternate paths.) Thus we will give only the
briefest mention of steady state cosmologies which seem to be cast out on the face
of it by the fact that QSO’s (Schmidt, 1972) and elliptical galaxies (Sandage, 1973)
evolve. Our main emphasis will be on solutions obtained from Einstein’s theory
of gravitation, without cosmological term (except in one section, 2.4 below) in con-
junction with physically reasonable types of matter.

Sec. 2 will restrict itself to fitting observations to an isotropic homogeneous
model. The metric in such a cosmology is

ds2 = —dt2 + 122mm:2 (1.1)
where do2 is the unit 3-spaoe of the appropriate symmetry. Subsequent parts will
reduce the symmetry of the model and look for predictions of new features in the
observations.

2. ISOTROPIC COSMOLOGY

2.1. Classical observational cosmology. The Hubble recession

Observational and theoretical cosmology are as old as the human ability to regard
and remember the plan of the sky and to predict the sunrise. The heavens changed,
but their character did not. This concept of basic unchangingness (stationarity) of
the universe was held until the studies of Hubble (1929), long after the first cos-
mological models of Einstein. In order to obtain static models to correlate with
his world picture, Einstein (1917) had to incorporate the “cosmological” A term,
which (depending on its sign) can retard collapse. It was immediately clear that this
cosmological term has no effect in planetary dynamics. Other models, such as
deSitter’s (1917a, b) had some dynamics, and initially these results were taken to
be weaknesses of the teleology of the theory since Einstein had hoped it would lead
to only a single cosmology. The non-existence of a A = 0 static solution could have
been realized as predicting the Hubble expansion, and the observation of the ex-
pansion would then have taken its place as another classical test of Relativity.

At any rate, Hubble (1929) discovered the redshift of distant galaxies and de-
termined the proportionality constant which bears his name. We forbear presenting
a graph which plots the accepted value of his constant H0 = (R/R)now against the
year the value was published; suffice it to say that since the original publication of
Hubble, H0 ~ 500 km - sec‘ 1 - Mpc' 1, the value has monotonically dropped to that
obtained most recently by Sandage (1972a), H0 ~ 55 km- sec"1 - Mpc'l.

One of the important results is that the Hubble parameter tends to be more or
less isotropic, with a scatter of perhaps 15% over the regions of sky considered by
Hubble (Trendowski, 1971). A complete search over the whole optical sky is im-
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possible since the Milky Way obscures distant galaxies in a large fraction of the sky.
However, this apparent isotropy, coupled with the evidence that the nebulae are

not local (i.e., Milky Way) phenomena, strongly influenced the early designs for
model universes. An appeal to the non-uniqueness of our position in spacetime (and
a desire for mathematical simplicity) led to the universal consideration of cosmologies
that were spatially homogeneous and isotropic.

Take, as your model of the universe, such a run-of—the-mill homogeneous, iso—
tropic model with A = 0, and idealize the matter to a fluid with a known equation
of state (usually p = 0). Then the Einstein equations require only two parameters:
the density p, and Hubble’s constant HO = (R/R)now to specify the model. More
complication enters ifA 7+ 0.

We have mentioned the current best determination of the Hubble constant,
H0 ~ 55 km - sec"1 -Mpc'1. To determine H0, essentially what is found is a red-
shift vs apparent brightness curve for certain galaxies. The lowest order results (for
all cosmological models) gives a luminosity distance

d2 = Hgl[z +%(1— qo)z2 + ...]
The deceleration parameter q0 = (—R'R/RZ)now thus is a coefficient in a higher
order term than is H0.

The difficulty in determining q0 and H0 is that local factors affect the recession
velocity of nearby galaxies, and several steps of inference are required to obtain
the distance yardstick for the very distant galaxies. It has been strongly argued
(deVaucouleurs, 1970) that clustering of galaxies exists on the largest scales that can
be observed optically. Hence, except for determination using the most distant
galaxies, the Hubble and deceleration parameters found may not be those appropriate
to the universe, but only those appropriate to our particular cluster. In particular,
the universe may be quite inhomogeneous, or might be cast into a hierarchical
structure which has a different average density on different scales. Then models
like the isotropic homogeneous ones become very poor indeed. Sandage, Tammann
and Hardy (1972) have shown that the observed clusters do not affect H0. The situa-
tion for determining qO is quite difficult, because we are searching for the derivative
with time (i.e., with distance) of the Hubble parameter. Sandage (1972a, b, 1973) and
Sandage and Hardy (1973) have given a very exhaustive determination of all the
difficulties and corrections necessary to derive the value he has recently published
q0 = 0.96 i 0.4 (p.e.). Evolutionary effects of galaxies as he points out could lower
this to q0 = 0. Moreover, it should be pointed out that Gott, Gunn, Schramm and
Tinsley (1974) suggest that corrections for these evolutionary effects do in fact
shift the result to a small value of qo 2 0.1 (the separation between open and closed
cosmologies in which the pressure is negligible is (10 = 1/2, always assuming A = 0).
Gott et al. (1974) haveother reasons for believing go 2 0.1, since this seems to give
the correct primordial deuterium abundance, and we return to these points shortly.
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2.2. Direct mass measurements and missing mass. The topology of the universe

In the discussion above we passed very briefly over the Hubble determination for
the density of luminous matter, from galaxy counts, which led to estimates of the
order of ~ 10— 3 1 gm - cm' 3. With the currently observed values of Hubble’s constant,
this density is too low (by about a factor of 100) to lead to recollapse of a A = 0
homogeneous-isotropic cosmology.

It is relatively clear that luminous matter does not nearly account for all the matter
in the universe. Most direct evidence for this comes from observations of the dynamics
of clusters of galaxies, where observed masses are usually too low by factors of 10
to 50 to account for the dynamics of the cluster. (Higher factors, up to 100, are as-
sociated with some clusters which have suspicious identification.) The mass de-
termined by such methods is still too low for closure of the universe. However, a
number of alternative methods of hiding the missing mass have been proposed over
the years. These have been discussed to some extent by Gott et a1. (1974), who con-
clude that none of them are likely to lead to a sufficiently high density to close the
universe. The reader should refer for details to their excellent review paper devoted
to just this question.

Figure 2 (after Gott et al., 1974) shows conservative estimates of bounds on the
observables determining the universe (A = 0). The Hubble parameter is bracketed
by 120 km ~ sec‘1 - Mpc‘l > H0 > 30 km - sec‘1 - Mpc‘l. The age of the universe,
to, is calculated assuming that the pressure is currently negligible. The bounds
8 x 109 yrs < to < 18 x 109 yrs arise from considerations of globular cluster evolu-
tion. The deceleration parameter qo is set at q0 < 2, a value two standard deviations
above Sandagés q0 = 0.96. Finally the mass of the universe puts a lower limit on
the deceleration; the parameter Q is twice q0 in a pressureless A = 0 cosmology.
The 9* plotted as vertical lines are estimates based on estimates of mass in galaxies.
It should be noted that deVaucouleurs (1970) has argued that the observed mass
density in galaxies could be just an upper limit, since there is no clear evidence that
the observations reach deep enough to determine the ultimate number density of
galaxies (Fig. 3).

This question of the total mass in the universe relates also to the topology of the
spatial (constant-time) sections of the cosmology. The isotropic homogeneous
models which recollapse have finite-volume space sections with (in the simplest
case) the topology of a 3—sphere, S3. Those that expand with an excess of velocity
in the infinitely dilute state in the far future have in the simplest case the topology
of an (infinite) 3-hyperboloid, H3. The limiting case between the two has the topology
of Euclidean space. Hence knowledge of global properties follows, not surprisingly,
from local observations and assumptions about global symmetry.

The idea that we may be able to determine the global topology of the universe
by measurement has been considered by Dautcourt (1971), Ellis (1971), and Zel’dovich
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Figure 2
Observations of the parameters determining the universe (after Gott, Gunn, Schramm and Tinsley, 1974).
Q is the ratio of observed matter to that for closure of the universe. H0 is Hubble's parameter, qo the de-
celeration parameter, to the age of the model. (2* is the observed mass in galaxies. Any homogeneous-

isotropic model is constrained to lie in the curved-trapezoid in the center ofthe figure.

and Novikov (1967). Zel’dovich and Novikov use parity and CP Violations to argue
that space sections of our universe must be orientable (Geroch, 1967a, has a similar
argument). Ellis has a long discussion based on the homogeneous-isotropic models.
If one assumes that these models represent our universe, then there are a number of
global topologies that are compatible with them in addition to the simplest ones
mentioned above. Since the Friedmann—Robertson—Walker (FRW) models have
3-spaces of constant curvature for t = constant sections, we need only list all such
orientable 3-spaces that allow an FRW metric (such three-spaces are studied in
detail in Wolf, 1967). For k = +1 the possible homogeneous 3-spaces are 1) S3,
2) P3 (real projective 3-space), 3) S3Z,, (n > 2), 4) S3/D3‘1 (m > 2), 5) Sa/T*, 6) S3/0*,
7) S3/I*, Where Z,I is the cyclic group of order n, D; is the binary dihedral group,
and T*, 0*, and I* are the binary tetrahedral, octahedral, and icosahedral groups
respectively. For k = O, the homogeneous spaces are 1) R3, 2) Rlx (cylinder), 3)
R1 x T2, 4) T3. T2 is the 2-torus and T3 the 3-torus. For k = 1 the only homogeneous
3-space is H3, the usual 3-space associated with k = —1 FRW models. Ellis also
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Measured density contained in a sphere of indicated radius. The usual determination of density of galactic
matter corresponds to the deepest observations (after deVaucouleurs, 1970).

lists inhomogeneous and non-orientable examples. The only spaces listed above
that are isotropic are R3, S3, P3, and H3.

As Ellis points out, we cannot exclude inhomogeneous and anisotropic spaces,
because locally they could be the same as the usual FRW models. Even if we take
only the homogeneous spaces, requiring isotropy is probably too stringent. Consider
the k = 0 “cylinder model”,

ds2 = —dt2 + R2(t)[dx2 + dy2 + a2 drpz], a = const, 0 S q) < 21:

It is not strictly isotropic because if we look around the cylinder (if a is small enough)
we see multiple images, while if we look along the axis we do not. However, it is
locally isotropic. The redshift would be isotropic, and the various images of a galaxy
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would be seen at different times in its evolution and might be difficult to identify.
The gross features of this model would be the same as the usual k = 0 isotropic
model, but detailed measurement could distinguish the two. At least the nearby
galaxies are well enough identifiable to put a lower limit on a. It is obvious that all
the k = 0 models listed above are almost isotropic, and the k = +1 models should
be, but some kind of proof of this would be needed.

There are three further areas in which topological questions in general relativity
have touched on cosmology: 1) In the foam geometry of Weyl (1949) and Wheeler
(1962). 2) As a vital element in the proof of general singularity theorems. 3) In the
important theorem that there is no way for the topology of the universe to change in
a non-singular way.

The first two of these subjects we shall not discuss in detail. The first postulates
that on a microscopic scale spacetime is no longer a smooth manifold but is a
sponge-like construct that is “boiling” with changes in geometry and topology.
This idea might help prevent a singularity by changing the behavior of the universe
when it had contracted to the scale of the fluctuating foam, and if it has any validity
at all, it would be most important during the quantum era of the universe near the
singularity. This will be discussed with regard to avoidance of singularity. The second
application is more important, but it will be dealt with in the section on singularity
theorems.

The third subject has been considered by Geroch (1967b) and Kundt (1967),
who‘showed that a 3-space evolving in a four-dimensional manifold that has a
light-cone structure cannot change its topology without some sort of singularity.
The basic theorem is due to Geroch (1967b):

Let M be a compact geometry whose boundary is the disjoint union oftwo compact,
spacelike 3-manz'folds, S and 5’. Suppose M is isochronous (a continuous choice
of the forward light-cone exists) and has no closed time-like curve. Then S and S’
are diffeomorphic and M is topologically S x [0, 1].
Thus a k = 1 universe cannot become a k = —1 universe without some drastic

change occurring. Kundt shows that a universe cannot break up into separate pieces.
In quantum general relativity we might expect that the requirement of isochronicity
might be relaxed and the theorem invalidated. The basic idea, then, is no change of
topology in non-quantum cosmology.

To close this section, we mention that Dautcourt (1971) has discussed the possibility
that we may be able to find out whether the universe is k = O or k = -l_—1 from the
effect of the 3-space metric on the local d’Alembertian.

2.3. Quasar—galaxy associations. Anomalous redshifts
Of all the optically accessible objects of observation, the quasi-stellar objects (QSO’s
or quasars) have the highest observed redshifts. From the beginning there has been
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an attempt to use the galaxy derived Hubble relation to place the quasars at cos-
mological distances. The large amount of energy required from a small region of
space (small because of the short-term variation observed in the radio and optical
flux from them (Hoyle and Burbidge, 1966)) poses theoretical difficulties. As yet there
have been no conclusive results indicating the cosmological nature—or lack of it—
of quasars. There have, however, been some interesting results on the association
between quasars and galaxies. For instance Burbidge et al. (1972) have found a
correlation between certain galaxies and QSO’s, with the angular separation de-
creasing in the appropriate 1/d way for the galaxies with higher redshift. This is
indicative of a cosmological origin; the QSO’s are all at about the same linear separa-
tion from their associated galaxies, and the more distant ones thus have smaller
angular separation from their galaxies. There, however, is no correlation with the
quasar redshift (Fig. 4, after Burbidge, 1973). Further, if larger samples are taken,
the quasar galaxy associations cease to be statistically significant (Burbidge and
O’Dell, 1973 ; Ozemoi, 1972 ; Bahcall et al., 1972).

One of the associations listed by Burbidge et al. (1971) is the galaxy IC 1746
(2 = 0.026) and the QSO PHL 1226 (2 = 0.404). They are separated by 0’.8. Figure 5
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Figure 4
Plot showing angular separation between selected 3C quasars and nearby galaxies. The angular size de-
creases with galaxy redshift as if the quasar-galaxy distance were constant. There is no correlation with

the quasar redshifts in parentheses (after Burbidge, 1973).
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Figure 5
Example ofan association between galaxy IC 1746 (2 = 0.026) and radio-quiet QSO PHL 1226 (2 = 0.404).
The quasar is the second object from the wisp of the galaxy; a non-stellar object is between. On Palamar
sky plates the wisp seems to reach to the QSO and the intermediate object does not appear (photograph

by H. Arp, published in Burbidge et al.. 1971).

shows that the nebulosity of the galaxy extends partway to the QSO. A compact
non-stellar object is placed between the QSO and the galaxy (Fig. 5; photograph by
H. Arp, published in Burbidge et al., 1971).

Kristian (1973) has studied a series of quasars, and within his sample those which
have low redshifts show faint images of what could be background galaxies, while
the larger redshift ones do not. This again suggests a cosmological interpretation.
Stockton (1973) has found that the quasar 4C37.43 (z = 0.37) lies within 11’ of a faint
galaxy. Stockton measured the galactic redshift to be 0.3736.

Such a QSO—galaxy coincidence would be taken as strong evidence that the QSO
is at the distance of the galaxy and both are at the distance indicated by the redshift.
However, the QSO distance problem has caused a restudy of redshifts even for
galaxies, and a number of “anomalous” redshift situations have been found. The
first example discussed by Arp (1969) is that of M51 (Fig. 6). The knot on the end
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Figure 6
The “whirlpool“ galaxy M51. The (apparently connected) knot has 200 km/sec redshift difference from the
main galaxy. Estimated lifetime of the association if this velocity difference is correct is 2 x 108 yrs, ap-

proximately one rotation period of M51 (Lick Observatory photograph).

of the arm has a velocity relative to the large galaxy of 200 km/sec. Although this
is not large as galactic velocities go, the difference is enough to disrupt the system
in 2 x 108 years, approximately one rotation period of the main galaxy. Arp has
published several other interesting associations of this type. In one of them (Arp,
1971), there is an apparently associated small galaxy in the system NGC 7603 which
has a different redshift amounting to about 8100 km/sec (Fig. 7). A second system,
NGC 772 (Arp 1970), has three small apparently associated galaxies. One has the
same redshift as the large galaxy (2450 km/sec), while the other two have redshifts of
20,200 and 19,700 km/sec. Another interesting system (Fig. 8) is Stephan’s quintet

which was also investigated by Arp (1973) (see also Burbidge and Burbidge. 1961).
Here the system appears to be very strongly interacting. Four of the five members
have redshifts of 6417 km/sec while the fifth has 2 = 795 km/sec. Sargent (1968)
has investigated the system W 172 (Fig. 9, from Arp, 1966). There the redshift of
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Figure 7
NGC 7603‘ Redshift of large object is 8800 km/sec, that of smaller comparison is 16,900 km/sec (Arp, 1971).

Figure 8
Stephan‘s quintet. Four of the galaxies lie on an approximately straight line (the central one is double),
They are NGC 7319 (redshift 6700 km sec), NGC 73l8B (redshift 5700 km/sec). NGC 7318A (redshift
6700 km‘ sec) and NGC 7317 (6700 kmflsec), The fifth member, NGC 7320‘ has redshift 800 km "sec (Arp,

1973).
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‘ t

Figure 9
The quintet W 172. The small object second from the north end has the discordant redshift. Starting from
the north, the redshifts (Sargent, 1968) are 16,070 km/sec, 36,880 km/sec, 15.820 km/sec, 15,690 km/sec

and 15,480 km/sec (photograph from Arp, 1966).

all but one of the member galaxies is ~ 16,000 km/sec, while the fifth has redshift
36,880 km/sec.

All of this indicates that for QSO’s at least, the redshift must be suspect as a cos-
mological distance determiner. Additionally, it appears that some intrinsic redshift
mechanism is at work even in galaxies, although (as verified by the consistency of
different measures, Sandage, 1972a,b, 1973, Sandage and Hardy, 1973) for normal
galaxies it does not distort the Hubble relationship.

The cosmological assumption for quasars seems to be held by most workers in
the field, but as pointed out by Burbidge (1973) in an excellent review article, this
assumption is chiefly buttressed by the lack of any definitive evidence excluding it.

In the next section the quasar redshift is assumed cosmological. We shall, after
that section, not mention QSO’s again, and we shall assume that the galactic redshift-
distance relation is a correct cosmological yardstick.
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2.4. Quasars and the cosmological constant A

We have so far assumed that the so-called cosmological constant A has been set equal
to zero. As is well known, choice of nonzero A (of the appropriate sign) leads to a
repulsive interaction, while the other sign leads to an added gravitational attraction.
The expansion equation for the radius R(t) of the universe is modified by this added
constant term whereas terms involving ordinary matter fall off with increasing R
at least as R"3. The A-terms thus are never important near the singularity. We then
must expect that if A is negligible now. it can safely be ignored for retrodiction, and
will enter in a very simple way for prediction in the universe.

One feature of quasar observations is that there seems to be a break in the number
with redshiftsjust over 2 = 2. Very few are seen with larger redshifts (Burbidge and
Burbidge, 1969). It appears that selection effects can have a strong influence in this
question (Sandage, 1972b), although none has been definitely implicated as causing
the cutoff. Further, larger redshifts have been found. so less weight is currently being
given to these observations. They did. nonetheless, lead to several suggestions that
the cosmological constant was not, in fact, negligible for a redshift for z = 2. The
Lemaitre (1927) universe model, which has a A-term, can exhibit a long “resting”
period during which the size of the universe does not change very much. Since red-
shift in a homogeneous isotropic model is a function only of radius:

1 + z = Rf/Ri (2.1)

where Rf is the final (observation time) radius and R, is the initial (emission time)
radius, a resting period with R ~ §m would lead to a lot of quasar redshifts of
order 2, if quasars were formed continuously in time. and if their redshift is cos-
mological.

Now A is a constant while both the matter and curvature terms decrease as the
universe evolves. Hence, subsequent to a restn period, A very quickly becomes
dominant compared to the other terms determining the expansion H0:

3H5 = p + A — 3k/R2 (2.2a)

(where k = + 1 is necessary for a resting period).
A second field equation may be cast in the form (Bondi, 1960)

it) — 340113 = A (22b)
which shows that a positive A is necessary for a resting period to have occurred.
(If A = 50, q0 vanishes from (2.2b). If then 3A = 3k/R2, from (2.2a) the universe
is exactly static. The “resting” period in a continuously expanding Lemaitre universe
requires that these conditions be very closely (but not exactly) met. In particular,
A 2 R; to a very good approximation, for a significant resting period to exist.
An example of a Lemaitre model is in Fig. 10.)
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Lemaitre Universe

Figure 10
Schematic diagram of radius vs. time behavior of a Lemaitre model which exhibits a “resting" phase.

Such models have been called on to explain certain quasar observations.

At present, Sandage’s determination of q0 gives qo 2 1, and it seems very safe to
assume q0 > —1 for the estimate which follows. (Sandage and Hardy, 1973 consider
a ‘10 so negative to be completely excluded by the data.) Further, we have seen that
observations make it extremely unlikely that p /3H5 exceeds unity. Hence

A
—— 1.53%,...w <

From (2.2a) we then have

3k > 1.5< 3k l< k
A < 1.5 — = — __ = _ __

RIZIOW 9 R365! 2 R365!

compared to the value k/RfeSI required for the resting phase.
On the face of it, % is certainly not close enough to the value unity for a resting

period to have taken place. Additionally we have taken estimates in a way which
makes A larger (i.e., in a way which is biased toward producing a resting period).
Nonetheless it can be claimed that slight errors in our estimates could at least make
the condition plausible. (The matter density can also be found to fit roughly into the
correct range.) This evidence, shaky as it is, can be interpreted as saying that A could
have been important around a redshift of 2, although to claim it was important earlier
would contradict the estimates made above.

Another feature of the slowed-down expansion of the Lemaitre model is that
photon circumnavigation of the universe is possible, and it has been suggested that
quasars in roughly opposite directions would show correlation because some of them
are the same quasar seen from two ways around the cosmos (Solheim, 1968a,b).
It appears that this requires a long resting period and the value of A is still constrained
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by the arguments mentioned above. For the remainder of the paper we will return
to the convention

A = 0

2.5. X-ray and y-ray observations and the matter—antimatter ratio of the universe

Prior to this point we have been principally concerned with optical observations
in what might be called the classical manner. These observations perforce do not
reach back too far into the past of the universe. On the other hand, X-ray and y-ray
observations may extend our view. This can be important theoretically in many
ways. For instance, observations indicate that there is an excess positive baryon
number in our regions of the universe. One possibility which has been suggested
by Omnes (l969a,b) is that this is only a local fluctuation in a universe with net
baryon number zero. A fairly elaborate analysis is then performed to demonstrate
the possibility that instabilities lead to large scale separation of the two types of
matter. At lower temperatures (g 1010K) the driving force behind such sepa-
ration is pressure arising from particle-antiparticle annihilations and under some
conditions this can lead to the desired separation. An apparently inescapable
problem, however, arises from the large number of very energetic X-ray and y-rays
this would produce. Jones and Jones (1970), and Steigman (1973) have studied this
problem in view of current X-ray and y-ray observations. They conclude that the
annihilation would lead to unacceptably large fluxes of high energy photons (which
are not observed). Also, Steigman notes that no antimatter cosmic rays have been
found. The conclusion is that matter predominates very strongly over antimatter
for distances out to a large fractiOn ofthe observable universe, so a matter-only model
is the appropriate one. Figure 11, from Longair and Sunyaev (1969), shows all of
the observations of electromagnetic radiation, including X-rays and y-rays.

2.6. 3 K microwave radiation

In 1965, Penzias and Wilson detected excess electromagnetic noise, in a microwave
communications antenna, which corresponded to a sky temperature at a wavelength
of 7.35 cm, of approximately 3 K (Penzias and Wilson, 1965). Since then there have
been many determinations of the microwave background, by direct measurement at
wavelengths between ~50 cm and ~3 mm. Wavelengths longer than 50 cm are
blanketed by radiation from the galaxy; the atmosphere imposes an upper limit of
transmission, although observations above the atmosphere can go to shorter wave-
lengths. For these shorter wavelengths, there are indirect radio observations which
determine the temperature of the microwave background by its effect on the rotation
levels of interstellar radicals. Peebles (1971) estimates that thermalized starlight
would swamp the microwave background for very short wavelengths, i.e., for
2 0.04 cm.
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The measured (solid lines) and predicted (dashed lines) background intensity of the night sky as a function
of frequency (from Longair and Sunyaev, 1969).

Table 2.1 lists some of the observations of the microwave radiation versus wave-
length. These results are also plotted in Fig. 12.

The spectral peak of a 2.7 K blackbody lies at about 0.15 cm, depending on pre-
cisely what function is being measured. Although the results of Muehlner and Weiss

(1970) suggested a high temperature compared to 2.7 K, the subsequent results by
Muehlner and Weiss (1973a,b) were consistent with 2.7 K and identified several
sources of error, from the atmosphere and from the instrumentation. However,
initial rocket flights (Shivanandan, Houck and Harwit, 1968; Pipher, Houck, Jones
and Harwit, 1971) which presumably were free from atmospheric contamination and
which had bandpasses reaching even shorter wavelengths found excessive fluxes.

At present, however, all groups agree the microwave flux is consistent with 2.7 K.
The 1972 rocket experiment of Houck et a1. now shows a flux corresponding to at
most ~4 times that expected for 2.7 K (for a temperature 2 3.7 K). These results are
plotted in Figure 12. Shortward of 0.04 cm have been other measures (Pipher et al.,
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Measurements of the isotropic background in the microwave region. The solid curve is the spectrum of
a 2.7 K blackbody. The solid dots are individual measurements at specific frequencies while the hori—
zontal bars indicate average intensity over the frequency range indicated. The numbers refer to the list

of measurements in Table 2.1.

1971) which place upper bounds on the radiation, consistent with a 2.7 K background.
However it is in this region that radiation from interstellar grains should begin to
dominate the cosmic radiation. Thus the shortward side of the blackbody curve will
probably remain unobserved.

The isotropy of the radio background has also been studied extensively. Some
determinations of the isotropy are listed in Table 2.2.

Figure 13 shows one plot of the isotropy (Wilkinson and Partridge, 1967; see also
Partridge, 1969).

The surprising isotropy of the microwave radiation suggests it is a quite ancient
fossil. Equilibrium with the matter filling the universe (presumably hydrogen) could
be achieved at temperatures only above 3000 K. The 3 K radiation has undergone a
redshift of 1000 since that epoch. Some efforts have been made to suggest reionizing
mechanisms which would allow the radiation to undergo a few scatterings at smaller
redshifts (such as possibly the creation of super massive stars as a preliminary to
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10

11

12

l3

14

15
16
17

18

Wavelength,
cm

50—75
21.2
20.9
20.7

7.35
3.2
3.2

1.58

1.50

0.924

0.856

0.82

0.33

0.33

0.264
0.264
0.264

1 cm — 0.5 cm

1 cm—0.08 cm

1 cm-0.1 cm

1 cm—0.19 cm

1 cm—0.128 cm
1 cm—0.126 cm
1 cm—0.09 cm
1 cm—0.055 cm

Thermodynamic
temperature, K

TABLE 2.1

51

Observations of the Microwave Background Spectrum

3.7 i 1.2
3.2 i 1.0
2.8 i 0.6
2.5 i 0.3
3.1 i 1.0
3.0 i 0.5
2.69 _-l_- 0.16

2.78 + 0.12
— 0.17

2.0 i- 0.8

3.16 i- 0.26
2.56 + 0.17

— 0.22

2.9 i- 0.7

2.46 + 0.40
— 0.44

2.61 i- 0.25

3.2 :l- 0.5
3.7 i 0.7
2.83 -J- 0.15

14 4-02
(s5)

&o+05
(7)

41 +-03
(31)

a42.7 i
0.2

28 i0.2
28 $0.2

<2.7
$3.4

Comments

Large galactic correction

Large atmospheric
correction

Large atmospheric
correction

Interstellar CN
Interstellar CN
Interstellar CN

Ballon radiometer. Tem-
perature in parentheses
is an estimated cor-
rected temperature

Reference

Howell and Shakeshaft (1967)
Penzias and Wilson (1967)
Howell and Shakeshaft (1966)
Pelyushenko and Stankevich (1969)
Penzias and Wilson (1965)
Roll and Wilkinson (1966)
Stokes, Partridge and Wilkinson

(1967)

Stokes, Partridge and Wilkinson
(1967)

Welch, Keachie, Thornton and
Wrixon (1967)

Ewing, Burke and Staelin (1967)

Stokes, Partridge and Wilkinson
(1967)

Puzanov, Salmonovich and
Stankevich (1967)

Boynton, Stokes and Wilkinson
(1968)

Millea, McColl, Pederson and
Vernon (1971)

Field and Hitchcock (1966)
Peimbert (1968)
Bortolot, Clauser and Thaddeus

(1969)
Muehlner and Weiss (1970)

Balloon radiometer. Large Muehlner and Weiss (1973a)
atmospheric correction
shorter than
0.09 cm



52

21 0.04 cm—.13 cm

22

23 0.08 cm—0.6 cm

24

25

Thermodynamic
temperature, K

Wavelength,
CHI

5 + 0.45
— 0.45
+ 0.45
— 1.05
+ 0.8
~ 2.75
+ 22

— 1.3
< 4.74
< 5.43 K
< 8.11 K
+ 0.5
— 20

l cm70.09 Cm 2.5

1 cm—0.075 cm 2.45

1 cmfi.055 cm 2.75

8.3

0.13 cm
0.06 cm
0.036 cm

3.1

0.04—0.15 cm Large flux, ~ 32
times expected
from 2.7 K black-
body; see text
and graphs

0.02 z 0.45 cm
0.07—0.013 cm
0.04—0.13 cm < 3.7 K, ~4 times

flux expected from
2.7 K blackbody
background

Reference

Parijskij and Pyatunia (1970)
Parijskij (1973b)
Conklin (1969)
Carpenter, Gulkis and Sato (1973)
Partridge and Wilkinson (1967)
Partridge and Wilkinson (1967)
Conklin and Bracewell (1967)
Parijskij (1973a)
Boughn, Fram and Partridge (1971)
Penzias, Schraml and Wilson (1969)
Boynton and Partridge (1973)
Epstein (1967)

TABLE 2.1 (cont

Comments

Balloon radiometer

Rocket radiometer

Interstellar CN
InterStellar CH
Interstellar CH +

Rocket radiometer

Rocket radiometer

Rocket radiometer

TABLE 2.2

Waveleng

4 cm
4 cm
3.75 cm
3.56 cm
3.2 cm
3.2 cm
2.8 cm
2.8 cm
0.86 cm
0.35 cm
0.35 cm
0.34 cm
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Reference

Muehlner and Weiss (1973b)

Shivanandan, Houck and Harwit
(1968)

Bortolot, Clauser and Thaddeus
(1969)

Blair, Beery, Edeskuty, Hiebert,
Shipley and Williamson (1971)

Pipher. Houck, Jones and Harwit
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Figure 13
The isotropy of the microwave background. The crosses indicated the difference of the temperature of
the sky from 2.7 K versus hour angle around a small circle of the celestial sphere (after Wilkinson and

Partridge, 1967; see also Partridge, 1969).

galaxy formation, but this idea is difficult to maintain because of the precise isotropy
and the difficulty of adjusting mechanisms to cause the reheating at the correct
epoch.

Nonetheless, it is true that the energy density in a 3 K blackbody flux is approxi-
mately the same as the integrated starlight (so that the microwaves could be fitted
into 'a steady-state model as degraded starlight). Layzer and Hively (1973), for ex-
ample, point out that the radiation could be essentially starlight, thermalized by
dust grains. The inability to observe quasars with large redshifts may then be caused
by the very large dust grain extinctions for distant sources. And the energy density
of the background microwave radiation is also approximately the same as the energy
density of the galactic magnetic field.

The small scale limits on the anisotropy of the background tend to support a
cosmological origin. Boynton and Partridge (1973) point out that the smoothness
of their result can be explained in terms of discrete sources only if the sources are
about as numerous as galaxies, and they have measured M32 and found it does not
seem to be one such source.

An interesting result is that of Carpenter et a1. (1973) who point out that their
result gives a small enough limit to eliminate anisotropy due to galaxies forming
in the recombining plasma. They compare with Peebles and Yu (1970) and conclude
that if the radiation has been free since 2 ~ 1000, the only homogeneous isotropic
model consistent with galaxy formation at recombination and with their result is
a flat scalar-tensor model (Brans and Dicke, 1961). Parijskij (1973a,b) points out that



54 THOMAS B. CRISS ET AL.

the level of results currently being reached requires also that the ~1 Mpc gravita-
tional waves postulated by Rees (1971a) be absent. Although the lack of any galaxy
formation evidence in the anisotropy is troublesome, the simplest picture seems to
have the radiation as described above, a relic of the era 2 ~ 1000.

The X-radiation is isotropic also. Schwartz (1970) puts the variation in flux as
less than 1% on a 24 hour (dipole) basis and less than 4°/O on scales of the order of
280 (in the 0.3—1.6 A band).

3. ANISOTROPIC HOMOGENEOUS COSMOLOGY

The remarkable discovery of the microwave radiation and the early measurements
of its isotropy led very quickly to studies of the behavior of collisionless radiation
in cosmology. Particular interest centered in anisotropic cosmologies because the
background radiation gives infinitely better statistics for the determination of iso-
tropy than does the galactic redshift relation.

We have mentioned above the current determination of isotropy of the 3 K radfa-
tion and of the X-ray background. Theoretical cosmology expanded dramatically
as a result of these observations. Some of the most important papers in this field
have been Belinskii, Lifshitz, and Khalatnikov (1971); Chernin (19723, 1972b);
Chitre (1972a, 1972b); Collins and Stewart (1971); Dicke (1968); Doroshkevish,
Zel’dovich and Novikov (1967a, 1967b); Ellis and MacCallum (1969); Ellis (1971);
Gowdy (1971); Harrison (1967); Hawking (1966a, 1966b, 1966c, 1969) ; Hawking and
Ellis (1968); Hughston (1969); Hughston and Shepley (1970); Jacobs (1967, 1969);
Liang (1971, 1972); MacCallum and Ellis (1970); MacCallum, Stewart, and Schmidt
(1970); Matzner (1969a); Matzner, Shepley, and Warren (1970); Misner (1967a,
1967b, 1968a, 1969a); Novikov (1968); Rees and Sciama (1968); Ryan (1969, 1971a,
1971b); Sachs and Wolfe (1967); Shepley (1969); Stewart (1969); Thorne (1967).

Misner’s (1968a) approach was to introduce the anisotropic generalization of
the “flat” homogeneous isotropic models. These are called type I according to a listing
by Bianchi (1897) of the properties of the symmetries of 3-dimensional spaces. In-
vestigations have often concentrated on this model, and also on type IX, which is the
anisotropic generalization of the closed homogeneous isotropic models, but the
other types have not been ignored. If we represent a homogeneous isotropic model
as an expanding and perhaps recollapsing balloon as in Fig. 14, anisotropic models
are represented by Fig. 15 (non-rotating) or by Fig. 16 (rotating). Collins and Hawking
(1973b) give an excellent survey of cosmological types (they argue that galaxy forma-
tion can occur in only a few subtypes, so that, e.g., we observe the universe to be
nearly isotropic because only such a model could give use to intelligent life in gal-
axies).

In the notation of Misner (1968a) the metrics of such homogeneous but anisotropic
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0
Figure 14

The time evolution of a closed homogeneous, isotropic rfiodel. Each of the spheres is a radius of a three-
sphere space section at a particular time.

Figure 15
The evolution of the T—NUT—M universe. The surfaces represent an elementary volume of fluid in the

model.
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Figure 16
The evolution of a rotating type IX model. The surfaces represent an elementary volume of fluid as in

the T—NUT—M model.

models can be written

d52 = — dt2 + R2 (t) efjfimamam, i = 1, 2, 3 (3.1)

Here the spatial metric has been expressed in a non-holonomic basis

a”) = fgi)(x") dxj (3.2)
The x‘ are some coordinates in the space section of the spacetime. Two frequently
used alternate notations are R = Roe“ = Roe—Q; a = oz(t), Q = Q(t). The advantage
of this notation is that it incorporates the non-Euclidean homogeneity of the model
into the basis, and the metric hence is only a function of time, gij (t). In Eq. (3.1)
the spatial metric has been factored by defining the traceless matrix BU (so that the
matrix exponential eff has unit determinant), thus letting the single function R
define the overall expansion while BU describes the anisotropy. It should be apparent
that ,6”- = 0 leads to a model like the homogeneous isotropic model of Eq. (1.1),
and in fact the expansion equation analogous to Eq. (2.2a) becomes

3(R/R)2 = P 'l' %0ij0tj — 2*R (3-3)

where *R is the 3-space scalar curvature (=6/R2 for the 3-sphere). Here 0U is a
matrix which depends on the rate of change of BU, so this equation demonstrates
that a “shearing” cosmology, one in which the distances are evolving differently in
different directions, has an average Hubble parameter which is increased by the
presence of shear but decreased by the presence of a positive scalar curvature.
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3.1. Observations in an anisotropic cosmology

3.1.1. Anisotropy of the Hubble law
Before continuing a discussion of the dynamics of ,6” in the various possible 3-spaces,
let us indicate how the recent history of ,8”. (since 2 ~ 1000) affects observations now,
in a universe where ai = d):i and *R = 0 (the type I models). This treatment follows
Misner (1968a).

Suppose the metric (15:1 Mr is diagonal. Then dfiij/dt gives the differential rate of
expansion along the principal axes of the metric; the Hubble parameter viewed in
the x1 direction is then calculated to be

H1 = R/R + dfill/dt (3.4)
with similar expressions for the Hubble parameter along the other axes. Since BU-
is traceless, we have

3<H>=H1+H2+H3=3R/R (3.5)

so R/R has the meaning of the average Hubble parameter, as R has the meaning
“the average size of the universe”.

On the other hand, the r.m.s. variation in H is

3<AH>2 = (H2 — Hi)2 + (H3 — H2)2 + (H1 — H3)2 =

dfi 2 dfi 2 dB )2]

= 3 "x + J + l 3.6
[< dt ) < dt dt ( )

so the current rate of shear of the universe determines the minimum spread in this
value of H. It should be noted that this result assumes vanishing velocity of the
observer with respect to the surfaces of homogeneity; otherwise there would be a
“dipole” Doppler shift superimposed on the quadrupole result. This quadrupole
result, with the dipole term added, is found in lowest order in all anisotropic cos-
mologies. As we noted above,

(AHKM
H2

(Trendowski, 1971), which means that shear motions now are hardly affecting the
average expansion Via (3.3) above.

< 10-2 (3.7)

3.1.2. Anisotropy of the microwave background. Rings offire
The aspect of observational cosmology in which the isotropy can be most readily
tested, presumably back to z = 1000, is in the microwave radiation. We assume a
type I background. In such a background it can be shown that three constants of
the motion p, exist for null geodesics, which are related to the physical (3-) momentum
components PJ- by
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Pk = R‘lek‘jfipj (3.8)

Hence the photon energy at any particular epoch is

E2 + PkPk = R"2e;J-2’3pkpj (3.9)

Now the blackbody equilibrium photon distribution is a function only of E/T.
(The same applies to a neutrino distribution with vanishing Fermi energy.) If the
microwave radiation was last scattered and thus isotropic at a redshift z = 1000,
its distribution at that time was a Planck distribution

f(E/T) =f(R61[ei?j”°ptp,-]“2/To) (3-10)
where the subscript 0 refers to the z = 1000 instant. The function f is a Planck dis-
tribution:

f(X) = (6" -1)_1 (3-11)
and (3.10) has been written expressly in terms of the constants of the motion and of
the parameters of the z = 1000 surface.

Since the radiation subsequently travels without scattering, the distribution re-
mains the same function of the constants pi and of the parameters To, R0 and [3t
until it is ultimately detected.

The detecting apparatus responds to Pi or to E. Thus at the detection instant the
distribution is

f(R61[€i?jZB0kj]1/2/To) =f(R61[eézfl°Re€mme§npn]ill/To) (3.12)
If Pi = niE for photons and ni is a direction cosine, T(Q) is defined as

ToRo
HQ) = R(ei2j(fl-flo)ninj)l/2 (3.13)

Hence for any direction we have a blackbody distribution but with an angle de-
pendent temperature given by (3.13). It is apparent that along each axis this tem-
perature is simply given by the total expansion (due to R and e5) along that axis.
Eq. (3.13) shows how to interpolate between the axes.

Assuming (,3 — [30% is small,

_ ToRo
T R

which shows that the lowest order term in this model is given by a quadrupole (12-
hour) distribution on the sky. and AT/T is of the order of the change in [31-]. since
the radiation decoupled. This is schematically shown in Fig. 17.

This type I model includes the flat Robertson—Walker isotropic model, and tends
to it for large I (d/S/dt —> O and B can be rescaled to zero although some residual
anisotropy in the radiation temperature may remain). In more complicated cos-

T (Q) [1 - (I3 - I30); mm] (3-14)
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£1; a: sinze cos2¢

Figure 17
The anisotropy in the temperature of the microwave background in a type I model plotted on the celestial

sphere. A plus indicates a hotter than the average, and a minus colder.

mological models, more complicated (than quadrupole) temperature anisotropy
patterns may occur, and thus may yield some information about the symmetry struc-
ture (hence the topology) of the spatial sections of the universe.

To begin with, there is the possibility of relative motion between the observer
(us) and the source of the microwave radiation. One possibility has the emitting
matter (and hence the radiation in contact with it) at rest in the homogeneous space
slices, and the observer moving through the radiation. The second has the matter
generating the gravitational fields itself moving with respect to the surfaces of homo-
geneity. In either case there will be a dipole (24-hour) term in the temperature
anisotropy. Conklin (1969) and Conklin and Bracewell (1967) have searched for this
effect. As with all anisotropy sweeps this one was over one particular circle in the
sky. Hence this scan could miss the dominant region in a 24-hour pattern. Nonethe-
less Conklin (1969) finds a velocity just at the limits of his detectability which corre—
sponds to ~ 300 km/sec.

An interesting result obtains for the temperature anisotropy in type IX. Here the
spatial sections are distorted spheres, and the absolute value of BU, rather than just
the difference ()9 — 50).]. enters into the anisotropy, because Bu modifies the equation
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of motion for the photons. The result is a distorted quadrupole pattern, shown in
Fig. 18, which looks as if the boundary dividing the areas of higher and lower (than
average) temperature have been twisted (Matzner, 1970, 1971a,b). (This has nothing
to do with rotation, however.)

In type V cosmologies, which are a generalization of the open Friedmann—
Robertson—Walker model, an even more interesting phenomenon occurs. To an
extent it depends on the importance of matter in determining the expansion of the
universe. Matzner (1969a, 1970), Hawking (1969), Collins and Hawking (1973a)
and MacCallum and Ellis (1970) have studied the temperature anisotropy in such
models. Take first the models in which the matter flows normal to the space sections
of the cosmology. Then the effect is that the temperature anisotropy appears only
around a pole of the celestial sphere (a pole picked out by the group symmetry of
the model). The anisotropy is a function of changes in the metric matrix B, and de-
pends on how far in the past )3 was last significantly changing. The more distant the
past, the more the anisotropy is concentrated near the pole. Matzner (1969a, 1970)
assumed a moderate deceleration parameter. In such a case the rate of change of
B drops abruptly at the point where the curvature term begins to dominate the ex-
pansion, and thus the angle 6 into which the anisotropy is crowded, the “Ring of

Type IX

A¢ 2'3147]

df= R d1;

FigurelS
The anisotropy in the temperature of the microwave background in a type IX model plotted on the celestial

sphere. The anisotropy pattern is distorted from a simple quadrupole form.
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Fire” (Wheeler, 1973) is given by the time since this curvature domination began,
and this can be put in terms of the current value of the deceleration parameter, qo.
The table below gives some indication of the opening angle calculated assuming
a decoupling at 2 ~ 1000 (Matzner, 1970; Collins and Hawking, 1973a; see Figs.
19,20).

Figure 19
The anisotropy in the temperature of the microwave background in a type V model plotted on the celestial
sphere. The temperature is uniform except around the “ring of fire” at the angle 0. Around the ring the

temperature varies above and below the average.

r‘ l

T ll dITeype V \\+/

Figure 20
The anisotropy pattern of a type V model in which the matter velocity has non-zero space components.
Temperature is indicated by radius from the center. Near one pole is a “ring of fire” as in Fig. 19, while

at the other is a temperature “spike” arising from a Doppler shift (after Ellis and King, 1974).
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TABLE 3.1

Deceleration parameter qo Diameter of “Ring of Fire”

0.39 4-0C
0.15 9.4
0.1 72
0.02 2.1
0.01 49/
0.005 30’
0.001 3'

If there is relative motion, a 24-hour dipole term will also be present, and will
also be shifted to the pole. Fig. 20 (from Ellis and King, 1974) shows this effect.

Collins and Hawking (1973a) have discussed more complicated models in which
the anisotropy pattern can be even more complicated, e.g., spiral.

This discussion has given nothing to indicate the amplitude of the temperature
anisotropy in the region where it is important (see the section on dissipation of
anisotropy, below). Further, for the small values ofqo the angles into which the anisot—
ropy is squeezed in type V are quite small, and a search for such features would
require a very narrow beam width if the extreme parameter values held. For some
other models (such as the type IX model mentioned above) the anisotropy measure-
ments already made essentially exclude the use of this tool for determining the sym-
metry (hence the topology) of the universe. This is because the antenna scans already
made show that gross features ofthe temperature anisotropy, which covers the whole
sky, are so weak that subtle features such as those mentioned above would be in-
detectable. MacCallum and Ellis (1970) have outlined these and similar results for
the other symmetry types, and for some, such as the type V, mentioned above, they
still hold out the possibility of an anisotropy determination of the spatial topology.

We have so far ignored any discussion of the rotation of the universe. The most
straightforward method of determining this is by considering the proper motion
(or transverse Doppler shifts) of galaxies. By this method Kristian and Sachs (1966)
estimate the rotation as <7 x 10‘11 rad/yr, roughly equal to a transverse velocity
of c at a Hubble distance. On the other hand, in some models, such as the type IX
closed models, rotation can be estimated by noting the connection between rotation
and the dipole term in the microwave anisotropy, which is on the order of 300 km/sec
(Conklin, 1969), and reduces the rotation by a factor of 103 or so (~v/c) over the
Kristian—Sachs estimate (Hawking, 1969). However, an even better limit, 2 x 10'21
rad/yr. can be obtained if the universe is type IX, because the specific form of one of
the Einstein equations relates the rotation to the (very small) quadrupole
anisotropy (Collins and Hawking, 1973a; see also Matzner, Shepley and Warren,
1970)
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3.2. Dynamics of anisotropic models. Hamiltonian cosmology

Because the basis used to express the metric of homogeneous cosmologies can be
adjusted to absorb the symmetry of the space, the metric coefficients are functions
of time only. Hence Einstein’s equations are (coupled) ordinary differential equations.
This fact allows them to be written in the form of single-particle motion inside a
potential in multi-dimensional space, and allows easy visualization of the qualitative
behavior of the solution.

A new calculational tool due to Misner (1969b, 1970) is the use of Hamiltonian
methods in general relativity. It is applicable to some cosmological models. The
direct applicability depends on the vanishing of certain boundary terms in the
derivation of the Hamiltonian variational principle. Those models in which these
terms vanish and the Hamiltonian model works, unmodified, are called Class A.
MacCallum and Taub (1972) have pointed out that the Hamiltonian techniques
do not work straightforwardly in Class B. Ryan (1974) has developed a quasi-
Hamiltonian approach which allows the potential concept to be retained in Class B.
We will briefly display the Hamiltonian analysis for Class A models only.

One begins by writing the Einstein action in the form

1 = (161:)‘1 [[nv‘agu — CON — CiNi] d4x, i,j = 1,2,3 (3.15)

where gij is the metric on a t = constant surface, N and N,- determine goo and gm
respectively, and the 1:” may be thought of as nothing but momenta conjugate to
gij. One must vary this action with respect to 7:” and gij to obtain a set of first order
equations for each of these quantities, and with respect to N and Ni to get

C0 = (detgij)1/2 {R* + (det an)“ [fluff — ”Ufa-J} = 0 (3-16)

CI = —271:|ij = O (3.17)

where R* is the scalar curvature on t = constant surfaces and | means covariant
derivative on t = constant surfaces. If the model contains matter there must be added
a matter Lagrangian to (3.15). This results in nonzero right-hand sides in (3.16),
(3.17) (see below).

We want to apply this to Bianchi-type homogeneous models,

dsz = —dt2 + Rge—zm)ei2jfl(t)o.io-j (3_18)

where BU is a 3 x 3 matrix and the forms of obey do" = Cjkaj /\ 0'" (models where
Cj-l- = 0 are Class A, while if C33,- % 0 they are Class B).

To continue we make the coordinate transformation t» 9(1?) and parametrize
fiij by
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’3 = e‘V’We‘GKIe—d’Kafldemseélkreu/xs

fit: = diagw+ + file—.13. — £13-. —2B+) (3.19)
O, 1, 0 0, 0, 0

K3 = —1, 0, 0 K1 = 0, 0, 1

0, 0, 0 0, —1, 0

Because the Bianchi-type models are homogeneous, we can integrate over the 3-
spaces (artificially closing open models). Doing this, making the proper parametriza-
tion of n”, and assuming C0 = O has been solved, (3.15) becomes

I= Jp+ dB++p_ dB- +p¢d¢+pydlp+p9d9—2n(7rkk)d9 (3.20)

If we define H = 271(7rkk), CO = 0 gives us H as

H2 = 6pijpij — 247r2(detg,-j)R (3.21)
where

3p.)

a3 sinh (2 \/35_)+
3(p¢sin¢ — pwcosesin (b + pecos wsin 9) +

sin 9sinh (3)3+ — file-)

6p” = e—WK36‘9K18—¢K3{
U

+a4

3(p9 sin lysine — p4, cos (p + pl), coswcos 6)

sinBsinh (313+ — firm
a1: diag(1, 1, —2), a2 = diag(\/_, —\/3,0),

0,1,0 0,0,1 0,0,0
a3 = 1, 0, 0 , a4 = 0, 0, 0 , 065 = 0, 0, 1

0,0,0 1,0,0 0,1,0

In general one leaves C = 0 as a constraint on (3.22).
In some cases, such as type IX universes with )3 non-diagonal, it is impossible to

satisfy C‘ = 0. Then we must allow matter and add a matter Lagrangian density
to the integrand of (3.15). Ryan (1972a,b) gives a matter Lagrangian for fluids in
BianChi-type universes with p = (y — 1)p that has 3,“ = N39,, + Mg; and is
valid for Class A models. The addition of such a matter Lagrangian changes (3.16),
(3.17) to

+ a5 }e‘l”‘3e9"‘e‘“"3 (3.22)

C0 + $3. = 0 (3.23)
c" + 3;, = 0 (3.24)

modifying the Hamiltonian (3.21) and the constraint on the momenta, 713- = 0.
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The Hamiltonian (3.21) is the same as that for a particle moving in a five dimen-
sional space. The second term in (3.21) plays the role of a potential, and in general
is Q-dependent (time-dependent). The fact that the potential is time-dependent is
the only departure from an elementary problem in Hamiltonian dynamics. If we
let )3 be diagonal, d) = I]! = 0 = p.) = p9 = pd, = 0, then H2 becomes (in vacuum)

H2 = p1 + p2_ + 36n2R4e‘49(V(B+,f3-) — 1) (3'25)
Figures 21, 22 give a representative equipotential of the potential V for each of the
Bianchi types.

The Hamiltonian description is useful in quantum cosmology (discussed below)
and in qualitative cosmology. In qualitative cosmology one notices that the potentials
V(/3+, [3.) in (3.25) are exponentially steep, and in most cases can be replaced by
infinitely hard walls. Because the potentials are time-dependent, these walls move
in Q-time. One obtains an approximate solution by allowing the point that describes
the universe to bounce around in a moving potential well. Figure 23 shows several
bounces of the universe point in a type IX potential.

Misner (1972) has pointed up the role of superspace in Bianchi-type universes
by rewriting (3.20) as

1 = J“ dfi+ +p_ dB- +p¢d¢ + pd/I +p9d6—pfldQ—9fd/l (3.26)

Class A Cosmologies

Type I Type II
A ,9__ .5 fl-

‘ fi3+ : 34»
No Potentlal \

Type VIII Typo IX
« 5

also Types VI_' and Vllo

Figure 21
The anisotropy potentials for Ellis—MacCallum Class A Bianchi-type models. A representative equipo—
tential is displayed. The other equipotentials are replicas of the given one (from Ryan and Shepley, 1975).
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Class B Cosmologies
Type III Twp-a IV Typo Vl 7 \2 l”' l
‘x' A ‘ i3 i i;

1 t"’
Two VI Typo VII

(Class A if hI-l) (cm: A if h-O)it
Figure 22

The anisotropy potentials for Ellis—MacCallum Class B Bianchi-type models. A representative equipo-
tential is displayed. The other equipotentials are replicas of the given one (from Ryan and Shepley, 1975).

Figure 23
Schematic diagram showing the evolution of the anisotropy parameters (coordinates in the plane) in

an expanding type IX potential (from Ryan and Shepley, 1975).
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thus defining the supertime ,1. The path of the universe in [3+ ,fi_¢,I//,6-space becomes
a “world line” in f3+,fi_¢,|//,0,Q-space. Misner (1972) has found this approach useful
in several applications.

3.3. Damping of anisotropy

We saw in Sec. 3.1 that anisotropic universes can give rise to observable anisotropies,
as in Hubble law and blackbody temperature. However, the universe as observed
is remarkably isotropic. This led several authors (Misner, 1968a; Thorne, 1967) to
consider how the anisotropy may have evolved away by the current epoch.

Misner’s.article (1968a) was designed to demonstrate the inevitability of small
values of AT/Tin any universe which contains normal matter (his mechanism is
damping of anisotropy by means of a “viscosity” due to almost collisional neutrinos
(as the universe passed through a temperature of ~ 101 0 K)). Some of the techniques
making use of potentials can be carried over to this case, even though the system is
dissipative. Misner’s calculations did show that the anisotropy was dissipated.

Three principal objections have been raised against these early calculations.
(i) The viscosity approximation would be inapplicable to more realistic treatments

since the ratio of collision time tC to expansion time texp would be in the range 1—100
in important epochs (Doroshkevich, Zel’dovich, and Novikov (hereafter DZN),
1967b, 1968, 1969; Stewart, 1969).

(ii) Arbitrarily large amounts of dissipation can apparently never occur between
any two fixed epochs in the expansion of the universe (fixed volume ratio) because
of a theorem of Stewart (1969) that the rate of work (heating) done by the tangential
stresses is never greater than one-half of the rate of adiabatic cooling (i.e., cooling due
to the increase in the total volume).

(iii) Only solutions which were collision dominated (fluid) near the singularity
were studied (DZN, 1967b, 1968, 1969; Stewart, 1969; Matzner, 1969b).

Objections (i) and (ii) can be overcome in the sense that (i) intense dissipation is
possible under conditions where tc/texp > 1 even though the viscous approximation
would lead to substantial quantitative errors, and (ii) dissipation as measured by
the rate of entropy generation can proceed arbitrarily rapidly even with no change
in the energy density T00. This does not, however, guarantee small anisotropy at
the current epoch as Misner (1968a) predicted.

The content of objection (iii) 'is as follows. If the universe is sufficiently anisotropic
(and of low enough density now) then for reasonable cross section behavior the matter
in the universe could have been always non-collisional, and dissipative processes
would have to be excluded. The original calculations assumed complete collision
dominance near the singularity so that this objection is fatal to Misner’s argument
(1968a) (see Matzner and Misner, 1972 and Matzner, 1972). Figure 24 shows a
model which starts collision dominated.
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Figure 24
A calculation showing the damping of anisotropy 3+ and the increase in fluid density p, over its adiabatic
value pv at R“ at e'“. The physical process is irreversible due to moderate collision time particles
(“neutrinos”). Here ciztc measures the ratio of collision time tc to the e-folding time for the model, at“.
In this case the matter begins in a collisional state and the collisions keep the physical anisotropy 5+
at a small value, and also heat the matter present sufficiently rapidly that the ratio it: does not increase
dramatically, until essentially all the metric anisotropy (not plotted) has been dissipated. Then the particles
cool, the mean free time becomes long and undamped oscillations are seen in [3+ (after Matzner and

Misner, 1972).

Using a collision time approximation to the Boltzman equation, more accurate
studies of neutrino dissipation have been carried out (Carswell, 1969; Matzner and
Misner 1972; Matzner 1972) for type I cosmologies (taken diagonal for simplicity).
Because the neutrinos can be partly collisionless, they can be blueshifted to have a
much higher average energy than the collision-dominated electrons. Thus DZN
(1967b) point out that the cross section for the process vi —> e+e‘ is much higher
than the cross section for the inverse process. It may be conjectured that because
of this disparity the neutrinos will be removed completely, soon after their mean
free time becomes appreciable. However, this is found not to be the case (Matzner,
1972). The neutrino number stabilizes, at a level much lower than the equilibrium
value, but at such a number that the two processes—neutrino destruction and
production—balance one another. Neutrinos are able to continue to dissipate
anisotropy over many epochs of expansion.
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The physical mechanism by which the dissipation takes place is fairly simple
to describe. When anisotropy is large, so that T00 is negligible in the Einstein
equation

T00 = 30':2 — %BijfiU-, whereo'z = R/R

then there is always one axis along which expansion does not occur. Between colli-
sions, particles moving along this direction suffer blueshifts, not redshifts, even though
there is a net volume expansion which would lower the temperature of any collision-
dominated fluid. Thus the average energy of any long-mean-free-path particle which
has a momentum component along the stationary or contracting axis will be larger
than the average energy of thermalized particles, and collisions between particle
populations with these significantly different average energies will be highly dissi-
pative. If lit/[exp : rc(R /R) is small (viscous regime), then collisions are frequent; but
only small nonthermal particle energies can be acquired between collisions, so the
entropy generated,

1 1)_ (AT)2AS=A ———
Q<T 7?, T7;

is small. Here AQ = AT is the average energy transfer in a collision, and 7], is the
average energy of the blueshifted particle. This situation also obtains in solutions
which are only slightly anisotropic. If the expansion rates are roughly the same in
all directions, then the blueshifted particles have only slightly greater energy than
the collision-dominated (fluid) particles.

The situation is very different if one is willing to discuss large expansion ratios.
For large tc/texp one can then have

AQ = AT: T, > T
SO

AS z AT/T>1
gives a large entropy generated per collision. It is therefore very important not to
neglect collisions completely even if the mean free path is very long, since we there-
fore neglect very dissipative processes. The rare collisions have large effects. Figure 25
shows a system where long mean free paths are still effective in damping anisotropy.

The above picture of streams of “hot” blueshifted nearly collisionless particles
(“neutrinos”) immersed in an expansion-cooled fluid of other, collision-dominated,
particles (“electrons”) shows us how even rare collisions could give dissipation.

Thus we understand how objection (i) is circumvented in the calculations which will
follow.

This same simple picture shows that limits (ii) on the rate of increase of local energy
T00 do not imply limits on the dissipation. One need only imagine that all hot
particles suddenly decide to collide; then entropy is greatly increased and the anisot-
ropy in the momentum disappears without any change in the local energy density
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Figure 25
An example which starts off collisionless, and hence has an initial increase in the physical anisotropy.
During this time the mean free path shortens, and as it nears unity heating begins, and the physical aniso-
tropy begins to decrease. This continues again until the geometrical anisotropy has been almost completely
dissipated at which time the mean free path becomes very long and free mean time oscillations are again

seen (Matzner and Misner, 1972).
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TOO. These arguments and the calculation presented in Fig. 25 are also partial,
but inadequate, answers to point (iii).

Stewart’s form (1969) of the heating rate limit is based on a general stress tensor.
It is derived from the requirement that the spatial stresses be non-negative, and reads

d
— 11103064“) S 2don

This equation exhibits a limit in the rate at which anisotropy can increase the matter
energy density; shear energy density cannot be transformed into the matter energy
density T00 at an arbitrarily high rate. The conclusion is at first sight distressing:
it appears that if the initial anisotropy is sufficiently large, it cannot decay or dissi-
pate away by any particular epoch—such as the present. However, anisotropy
energy density can be stored in a “potential” form, in which it resides in the energy

27
20
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of distortion necessary to change an isotropic distribution of collisionless particles
to the anisotropic form typical of an anisotropic universe. In this stored form it
resides already in T00. It thus exists as potential anisotropy energy which can go
back into the kinetic (shear) motion of the system. The suddenly colliding particles
mentioned above (and more realistic processes involving neutrinos) can degrade
this ordered potential energy to thermal energy with the production of large amounts
of entropy in arbitrarily short times. (This potential due to collisionless particles
acts in exactly the same way as the potentials due to geometrical distortion in the
empty models described above.)

Figure 26 shows an example of a choice of initial conditions which does not lead
to significant dissipation because the system passes too quickly through the moderate
mean-free-path stage. Figures 27 and 28 show the subsequent evolution of such a
free-neutrino model.

The inevitability of dissipation of anisotropy by a given finite epoch has not been

logl0 (p1, e4“)

i-Z I I I I I I I . I . I I I I I l ' I

Figure 26
An example in which heating does not occur, because of a different behavior of the mean free path. The

system passes from collision dominated to free behavior with essentially no heating, and large oscillations
are subsequently seen (Matzner and Misner, 1972).
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Figure 27
Further example of free-neutrino evolution. For large anisotropy, the anisotropy bounce is sharp (as at

or 2 74). For smaller anisotropy, the behavior is a damped oscillation (after Misner, 1968a).

Figure 28
Continuation of previous example showing the small anisotropy behavior with oscillations proportional

to 2”” 0c R‘UZ (after Misner, 1968a}
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demonstrated. Arguments such as the one mentioned above about a high anisotropy
universe with rarely colliding particles indicate, in the words of Misner (1969b), that

“the equations which govem the problem are regular, well-posed differential equa—
tions, so that the simple continuity ofthe solutions asfunctions of the initial conditions
shows that no finite limit on the present anisotropy can result if arbitrary anisotropy
is admitted at some finite initial epoch, whether that be 1014 K, or even higher. The
continuity requires that the differential equations be regular on a finite interval,
and serves to point up the essential contribution which a singularity brings. For
equations which are singular at the initial time (or which set the initial conditions
in the infinite past), an infinite range of initial conditions could evolve into a finite
range of possible present conditions. Thus any argument that some features of the
present universe are independent of most parameters specifying the initial condi—
tions (Misner, I968b) could only succeed if initial conditions are specified at a true
singularity, or in the infinite past, but not at any finite and regular past era”.

Any mechanism which occurs near the singularity must occur in the strongly
quantum first moments of the universe. Zel’dovich (1970, 1971) has discussed effects
which might occur in this highly quantum epoch, and one of the most intriguing
is that of the production of particles.

The intuitive mechanism in particle creation is the very rapid expansion during
the early phases which leads to a gravitational field changing very rapidly, on times
faster than the crossing time for an elementary particle (10— 2 3 sec). Anisotropic models
can have very violently different expansion rates, and the energy associated with
this expansion (or the contraction in some directions) may exceed that available
in isotropic expansion. Hence one could expect rapid particle production in aniso-
tropic models, and in addition could have very rapid dissipation of the anisotropy
during the quantum era of the universe. That particles are created at all in isotropic
models depends on breaking the conformal invariance (e.g., there being a mass
term), so the relevant equation is not conformally invariant in the (conformally
flat) homogeneous isotropic models (Parker, 1972). Although these ideas are very
suggestive, no one has yet succeeded in carrying out a rigorous calculation which
demonstrates the accuracy of the idea, and dissipation of anisotropy is still very
much an unanswered question. We will return to the problem of particle production
per se below, and more references will be found there.

3.4. Mixing

Mixing is the ghost of an idea that failed. It originated in the concept of “chaotic
cosmology” (Misner, 1967a): The universe is as homogeneous and isotropic as it is
now because any universe, no matter how inhomogeneous and anisotropic, will
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settle down to the observed universe by means of natural processes. Misner (1969a)
showed that diagonal type IX universes have possible evolutions in which the dis-
tance around the universe in one direction is very small for a reasonably long time.
In such a case light and even sound (shock) waves could propagate completely
around the universe. He then conjectured that disturbances propagating around the
universe could effectively smooth out condensations and homogenize the universe.
If the evolution of the universe then allows light to circle it in different directions,
inhomogeneities will be smoothed out everywhere. This process is called mixing.

To show the existence of mixing consider a diagonal type IX model,

dsz = —dr2 + RZe-mefijfiaiai, ,3 = diag(fi+ + $543+ — fie, 45+)
The evolution is identical to that of a particle (the universe point) moving in 3+,fl_-
space under the influence of a potential e’4Q(V(/3+, B_) — 1), where V(fl+, fl-)
is shown in Fig. 29. If the universe point enters one of the channels almost directly,
the rapid narrowing of the channel causes an analogue of the magnetic bottle effect;

Figure 29
More detailed view of the potential for type IX cosmologies. “Mixing” can occur if the universe anisotropy

takes on values corresponding to motion up one of the corners of the potential.
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after a number of oscillations the universe point leaves the channel. A typical ex-
cursion into a channel is shown in Fig. 30.

Chitre (1972a) has shown that light can circle the universe within a few of the
oscillations of the universe point shown in Fig. 30. He also showed (Chitre, 1972b)
that sound waves can travel around the universe in roughly the same time. Matzner
and Chitre (1971) have shown that rotation makes little difference in this process.

The results of Misner and of Chitre show that mixing certainly can occur. How-
ever, to use it in chaotic cosmology one must show that no matter what the initial
state of the universe (no matter where on the fi+,fi_-plane the universe starts and
in what direction), that the universe point will enter all the channels before the
present. It is at this stage that the idea breaks down. Doroshkevich, Lukash, and
Novikov (1971) and Chitre (1972a) have shown that mixing in even one direction
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Figure 30
Example of mixing motion in one of the corners of the potential of Fig. 29 (from Moser, Matzner, and

Ryan, 1973).
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occurs for less than 2% of the possible initial configurations of the universe. This
happens because for mixing to occur the universe point has to enter the channel
with the direction of its motion in a very narrow band of angles about the center
of the channel. This band shrinks rapidly near the singularity, and makes it nearly
impossible for mixing to occur. The 2 ‘73 limit considers the entire span ofthe anisot-
ropy dominated epoch. If anisotropy is reduced suddenly by damping processes,
the limit becomes even less than 2 %.

4. INHOMOGENEITIES AND GALAXY FORMATION

4.1. Inhomogeneous cosmological models and their effect on observations

The standard cosmological models reflect the observed homogeneity and isotropy
of the universe on the largest scale. Inhomogeneous models have been investigated
by several authors for four reasons: (1) To describe and explain small-scale inhomo-
geneityigalaxies and cluster of galaxies; (2) To find the effect of inhomogeneity
on observations and refine our knowledge of the homogeneity of the universe;
(3) To provide models for early stages of the universe that may have been inhomo-
geneous (we include models that are purely mathematical exercises in general
relativity); (4) To study galaxy formation. The fourth subject is considered in the
next sect10n.

The first and second reasons are the basis of the Einstein and Straus (1946) “Swiss
cheese" model in which all the mass inside a sphere in an otherwise homogeneous
space is concentrated at the center of the sphere. They demonstrated that the gravi-
tational fields outside the sphere are the same as in a perfectly uniform model so
that these holes may be placed in the space arbitrarily as long as no two regions
overlap. The effect on astronomical observations in a Swiss cheese universe has been
studied by Kantowski (1969) (and previously by Bertotti. 1966 for linearized gravity
and also by Refsdal, 1970). They found that the distance—redshift relation could
in some cases be altered enough to double the apparent value of the deceleration
parameter, qo.

Perhaps the most basic article on observations in inhomogeneous models is that
of Kristian and Sach (1966). They assume only that the Riemann tensor varies slowly
in time and compute series expansions in luminosity distance of such properties
as redshift, angular diameter of galaxies, etc.

Rees and Sciama (1967, 1968) have shown how large scale inhomogeneities indi—
cated by possible quasar clustering would affect the temperature of the background
microwave radiation (Fig. 31). Regions on the scale of 750 Mpc with 5p/p ~ 1
would cause temperature fluctuations of 0.2 to 2% across an angular scale of 200
and should be detectable. Such measurements were undertaken by Wilkinson and
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Figure 31
Illustration of temperature profiles across sherically symmetric cluster with ~ 3 times the background
density. The profiles are drawn for an undecelerated background (I) and an Einstein—de Sitter background

(11) (after Rees and Sciama, 1968).

Partridge (1967) who compared the radiation temperature at 3.2 cm along a circle
8°S. of the celestial equator with the radiation temperature at the north celestial
pole. The largest temperature variation found, 0.016 K, was only a few times the
level of noise (i 0.003 K), and apparently has smoothed out with further observa-
tion (Partridge, 1969). It may be more than coincidence that the variation fell at the
location of a possible quasar cluster suggested by Rees and Sciama (1968) (Fig. 13).

In the section on galaxy formation it is shown that perturbations grow very slowly
from any statistically expected fluctuations, so it is reasonable to study the nature
of structure which may be present at the initial singularity. Belinskii, Lifshitz and
Khalatnikov (1971) have studied “velocity-dominated" solutions by ignoring the
effects of spatial curvature near the big bang. Eardley, Liang, and Sachs (1972) have
used these solutions in irrotational models to invariantly define the metric of a
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three-dimensional manifold identified as the cosmological singularity. Liang (1972)
has extended this analysis to more general universes although it is difficult to define
the singularity manifold for mixmaster-like type IX solutions. Recently, Liang (1975)
has discussed shock formation in the early stages of cosmologies with cylindrical
symmetry.

Irregularities which may be present from early times include gravitational waves.
Gowdy (1971, 1974) has studied closed vacuum spacetimes containing gravitational
radiation. These spacetimes admit two-parameter spacelike isometry groups and
have compact regular spacelike hypersurfaces with topology S3, S1 ® 52, or S’ 6) 5’ ®
S’. The topology is prevented from changing with time by Einstein’s equations in a
manner analogous to classical barrier penetration. The three-torus universe begins
with a singularity and expands forever while the three-handle and three-sphere
solutions expand from a singularity to a maximum volume and then collapse to
a singularity again.

The hierarchical universes of the deVaucouleurs (1970) type are, of course, examples
of inhomogeneous models. A spherically symmetric analogue could have a density
function that looked like a set of descending steps, each step longer and shallower
than the one before. Bonnor (1972) has pointed up this similarity by finding an exact
solution (a special case of the Tolman—Bondi model, see Tolman, 1934; Bondi,
1947) that has this type of density distribution. The Bondi—Tolman models have
also been studied by Callan (1964). Other mathematical models are due to Edelen
(1968) (conformal to the homogeneous isotropic models) and to Ryan (1972b) who
considered space sections that are three-dimensional surfaces of revolution.

4.2. Galaxy formation

It is in the problem of galaxy formation where modern cosmology finds its greatest
troubles. The early calculations of Jeans (1929) were hopeful: Using Newtonian
theory, and assuming a static, uniform, fluid cloud as a starting point, the equation
for perturbations of wavelength 7. can be cast into the form

5: (47TGp — 4730522756
whereé = Ap/p,p = background density, Ap = perturbed density, as = (dp/dp)“2 =
speed of sound, p = pressure. Let 21 be the Jeans’ length:

1] =(flCsZG'1p‘l)l/2
If )t > 2.] the density contrast 6 grows exponentially fast. For large ,1, the time scale
for the exponentially growing disturbance in the Jeans theory becomes asymptotic
t d fi01, e nedby r,=(Gp)'1/2

In an isotropic expanding cosmological model there is a second time scale, the
Hubble time, defined by the inverse of the logarithmic derivative of the cosmic
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“radius” function: TH = R/R

The equation for 6 is modified by to (Peebles, 1971)

5 + 21:;1 5 = (4m,—2 — 4n2c31‘2)6
In general relativity cosmology, however, 1,, is a function of time. Further, when
p is approximately the average cosmic density, p depends on R (for example, in a
dust-filled model p oc R‘s), so that r, is also t-dependent, and 1:J has approximately
the magnitude of 1:H.

As an example, in a dust-filled, isotropic type I model, R 0c t2/3, so that 1,, oc I.
Since p 0c R“, 1, oc t also. It turns out that the growing mode of 5 behaves as
W3 rather than growing exponentially with t. In fact, perturbations in the isotropic
models typically behave like the models themselves (Fig. 32). Each model has two
basic modes of density perturbations, one acting as if the expansion had started at
a slightly later time and the other acting as if the expansion had started with a slightly
lower energy. Pressure modifies this statement, of course, but the power law behavior
of density perturbations is a typical result of calculations (begun by Lifshitz, 1946;
Lifshitz and Khalatnikov, 1963; and continued in many special circumstances
by several others such as Harrison, 1967, 1973).

Type V [2,
/I/ ’

Perturbations in R

Isotropic

Cosmological

Models

Figure 32
Perturbations in homogeneous cosmologies. Elementary density perturbations amount to changing the
initial time or the initial energy. Thus a slightly more bound region in a closed (type IX) model recollapses

before the universe does.
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Let us denote by n the power law index for density contrast perturbations:

(5 = Ap/p oc r"

The index n depends, of course, on the background model, but can be as high as
8/3 in a dust—filled, anisotropic, type I model. It is helpful to bear in mind the dif-
ferences in gravitational perturbations illustrated by Fig 32. In each case a growing
mode exists, the density contrast 5 growing with time. In the type V case, however,
5 grows in spite of the fact that the density itself may be falling because the pertur-
bation is expanding in an unbounded fashion. In the type I and type IX cases, the
perturbation eventually recollapses due to its own gravitational forces. Observation
of galaxies and clusters could be important here, for if a gravitationally distinct
system is found to be expanding, the expansion rate presumably sets a lower bound
on cosmic expansion. In general, it is assumed that when 5 = l, the perturbed region
can act relatively independently of the cosmic background.

Galaxy formation probably took place over a time span of about one galactic
year (108—109 years). This time is roughly the free-fall time for a particle to fall from
one galactic radius to the center of a galaxy. When galaxy formation started, how-
ever, is unknown, and it is also unknown whether galaxies formed before or after
smaller collections of stars. It is also not known whether it were gravitational in-
stabilities which started the formation process or whether non-gravitational in-
stabilities or conditions existing at the initial singularity caused perturbations large
enough to proceed by gravitational collapse.

The cosmic age when radiation decoupled from matter was about 105 years. At
that time the universe was probably quite isotropic (but see Collins and Hawking,
1973b). The horizon length calculated in an exactly isotropic model included
perhaps 1018 M9. The lowering of the effect of radiation pressure caused the com-
puted Jeans length to drop to well below galaxy size (see below). If 5 was then about
1 9/; for a galaxy-sized distribution, 6 would grow to the value 1 in about 108 years
(assuming a power law growth rate of 2‘293 ).

Peebles and Dicke (1968) have pointed out, however, that at decoupling the
Jeans length probably included 105—106 MG, about the size of a globular cluster. If
perturbations at all length scales had existed prior to this time, pressure effects would
have kept them from growing strongly. It may be that such primordial perturbations
would cause globular clusters to form first when the radiation pressure became in-
effective, and that galaxies are made out of these clusters. The attractive feature of
this idea is that globular clusters in real life seem to have fairly standard properties.
How galaxies would form and why galaxies are much more massive has not been
described, though.

The Jeans length at the decoupling epoch could instead imply that primary con-
densations are in the form of superstars (Doroshkevich, Zel’dovich, and Novikov,
1967c), rather than stellar clusters. These superstars would explode, heating their
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environment to perhaps 106 K (if, say, 10‘4 of cosmic matter acted in this way, Rees,
1971b). This heating would be irregular, presumably resulting in perturbations
sufficient to form galaxies by gravitational instability. Further, the high resulting
temperature could result in thermal instabilities with characteristic growth time
comparable with the radiative cooling time (see Field, 1975 and Rees, 1971b).
Such an instability was not effective previously when matter and radiation were
strongly coupled. If the matter is so heated, a region which is slightly compressed
may indeed cool more efficiently than its surroundings and result in instabilities
further enhanced by the irregularity of the heating.

Whether globular clusters, superstars, stars, or galaxies form first, there still
remains the necessity of postulating large perturbations at the decoupling epoch.
To some extent this problem can be alleviated by postulating a highly anisotropic
cosmology before that time.

To see the effect of anisotropy, it is helpful to count the physical modes present
in a metric perturbation tensor (Perko, Matzner and Shepley, 1972). This symmetric
tensor has 10 components, but four components may be set by coordinate conditions.
The remaining six components form a symmetric 3 X 3 tensor which obeys dif-
ferential equations which determine the density and velocity perturbations and the
way they develop in time. The time development equations are six in number and
are second-order. There are therefore 12 initial conditions to be set for each given
wavelength. Four of these numbers are simply functions of the initial orientation
and coordinates of the initial hypersurface (gauge terms). Four more are intensity
and polarization of gravitational waves. Two more are rotation perturbations, and
the remaining two are density-pressure perturbations (including both collapsing
perturbations and if pressure terms are strong, sound waves).

In an isotropic cosmology, gravitational wave perturbations and density per—
turbations are decoupled. When anisotropy is included, as in a general Bianchi
type I model, gravitational wave energy can enhance the growth of a density per-
turbation. If the wave front associated with a Fourier—analyzed perturbation is in
an eigendirection of the anisotropy matrix, one of the two gravitational modes is
free—not coupled to density perturbations. Figure 33 is a computed example in such
a case, pressure postulated to be zero for convenience, showing that the free and the
coupled waves are not strongly different in their development (Perko, 1971).

The coupled wave, however, does strongly affect the density perturbation mode,
as shown in Figs. 34 and 35 (Perko, 1971). In Fig. 34 the perturbation is started by
postulating only an initial gravitational wave. In Fig. 35 the perturbation is started
not with an initial value of 5 but with a small “kick”: an initial value of 5. The figures

give values for the power law index n. In all cases n approaches the isotropic value
2/3 as the universe expands. The gravitational wave provides an effective pressure,
too, causing oscillatory terms in the density even if there is no pressure. The values
of the index are in some cases vastly different from 2/3 at early times. These calcula-
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Figure 33

Comparison of the uncoupled and matter-coupled gravitational waves in a homogeneous anisotropic
cosmology. The point of this graph is that the coupling to the matter does not significantly affect the period

or rate ofdamping of the wave oscillation (from Perko, 1971).
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Figure 34
Example of the behavior of density perturbations in anisotropic cosmologies given only an initial wave
amplitude for the coupled gravitational waves. S < 0 implies the universe is contracting along the direc-
tion of propagation of the (coupled) wave. These directions show the fastest perturbation growth; the
wavelength initially is much greater than the horizon size for those cases. Those waves which propagate
in a direction in which expansion occurs (S > 0) have a strong coupling to the matter as soon as the (long)
horizon size is greater than the wavelength Their average behavior (over several periods) is shown dotted.
The slopes of 6 = Ap/p are indicated; they tend to the isotropic value 2/3 for t > to, when the model

approaches isotropy (after Perko, 1971).
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As Fig. 34, but here the initial conditions have all variables but the time derivative of 6 initially zero
(after Perko, 1971).

tions were for a hypothetical model in which the anisotropy is important only before
t ~ 100 yrs.

Although the law of growth is still only a power law, n can be as high as 8/3. The
index n depends on direction, as does the expansion rate, n being largest in directions
of slow expansion, or initial contraction, and small horizon. (A small horizon corre-
sponds to a later onset of gravitational wave induced oscillations, also.) In mixmaster
models, type IX models, directions of rapid and slow expansion can alternate, and
the effect could be a more rapid growth of perturbations in all directions. This effect
and effects caused by cosmic rotation have yet to be calculated, but Hu and Regge
(1972) have developed a formalism for handling such computations. Further problems,
even in the type I model illustrated, concern the detailed damping effects of pressure,
which at the early times pictured in the figures is high.

The problem of large perturbations thus could be reduced to a problem of smaller,
earlier perturbations. It does not appear likely that purely random perturbations
are sufficient, even so. Non-random mechanisms, such as thermal instabilities, also
appear to be ineffective at these early times, when matter and radiation are strongly
interacting (see Rees, 1971b). At present, therefore, the galaxies we see seem to
be a direct, if confusing, picture of the initial singularity.
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5. SINGULARITIES AND THE ORIGIN OF MATTER

5.1. Helium production. A thermal history of the imiverse, T < 1012 K
Assume a homogeneous isotropic model in which there was a big bang, and assume
the 3 K microwave radiation is a relic of the big bang. This will give us a way of
correlating the temperatures with redshift (R/Rnow). A temperature of 1012 K corre-
sponds to roughly 100 MeV. Hence at the temperature at which this discussion
begins, (thermally produced) heavy particles such as pions and nucleion-antinucleon
pairs have annihilated, and the muons have been almost completely annihilated.
The locality we inhabit in the universe has non-zero net baryon number, and at the
temperature of 1012 K these are present in the form of protons and neutrons.

The other particles present are electrons, neutrinos which we assume non-de-
generate. photons and gravitons (which would have decoupled at much higher tem-
peratures, T~ 1020 K (Matzner, 1968)). The gravitons will be ignored in this history
but will be taken up again below. At a temperature of 1012 K the age of the universe
is of the order of a tenth of a millisecond. The presence of the e’ neutrinos keeps
the protons and neutrons in equilibrium at these high temperatures; the mean free
time If for v + n a p + e’, for instance, is of the order of the expansion time [exp
at a temperature of the order of T ~ 1010 K. The collision rate increases rapidly (as
T5) for higher temperatures, while the expansion rate increases only as T2. Hence
the reaction goes rapidly for T> 1010 K, but the proton-neutron ratio is fixed at the
value given by thermal equilibrium at T~ 1010 K as the reaction is cut off by the
expansion. This gives nn/np ~ 0.2, when the universe was ~1 sec old. In general
n,,,/np : 2‘9“” for thermal equilibrium, with Q 2 (mm — mp). The ratio remains at
this value until the neutrons begin to decay (Peebles, 1971). These observations are
based on an assumption that the neutrinos involved in the reactions are non—de-
generate. This is not an observationally accessible fact. By demanding that the neutrino
energy density be less than that to close the universe, one concludes that the Fermi
level is ~ 0.0075 eV, or about 45 times the energy k'RO ~ 1.9 K. Since the Fermi
level is red-shifted like other energies, degeneracy is maintained as the universe
expands. This cosmological estimate is a more sensitive test than observation of
cosmic rays spectra for instance (Weinberg, 1972). If the current estimates for pri-
mordial helium are correct (see below), an even tighter limit on the neutrino density
is possible. putting the Fermi energy at S 1073 eV since degenerate neutrinos would
affect nucleosynthesis (Wagoner, Fowler and Hoyle, 1967).

The present neutrino temperature TVO is not the same as the present photon tem-
perature. The precise behavior of the neutrinos in this model depends on the still
uncertain details of the behavior of weak interactions. The difference hangs on
whether eve —> eve scattering is possible in addition to reactions like evu —> me. If
only the ti-mediated interaction occurs, the disappearance of u—mesons means that
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both muon and electron neutrinos decouple at a rather high temperature T ~ 101 1 K.
If direct eve interactions are allowed, then the electron neutrinos will be in equilib-
rium with the electron-photon gas down to ~5 x 109 K. (A recent result of Gurr,
Reines and Sobel, 1972 may have some bearing on this subject.) Although this
model is supposedly an isotropic one, we note again that the mechanism first pro—
posed by Misner (1968a) for damping of anisotropy was the neutrino produced irre-
versibility which occurs during this epoch.

Since most of the electron-positron pairs annihilate at temperatures near 5 x 109 K,
electron and muon neutrino densities follow a simple redshift law Toc R‘1 starting
from 1012 K all the way down to the present. The electron-positron annihilation,
when it occurs, dumps almost all the energy of the annihilating pairs into the photon
density. By mode counting at a temperature near 1011 K when the muons have anni-
hilated but electrons have not, one finds an apportionment between the models
(neglecting gravitons) of (this follows Weinberg, 1972):

pt, = pv, = pv, = pv =14c,.
pe" : pe g zpv

n=n=u
The baryon matter is totally negligible in these estimates.

After the temperature has dropped, low enough for the electron-positron anni-
hilation to occur, this balance will be upset. The annihilations occur when the mean
free paths are very short, so the transition can be considered thermodynamically
reversible. Conservation of the specific entropy gives:

(RT-”after/(R’I—y) 2 1-4before —

The neutrinos will remain isolated from this annihilation because of the smallness
of the weak coupling. Subsequent to the electron-positron annihilation the neutrinos
will continue to evolve independently of the photons, and in parallel with them,
down to T, ~ 1.9—2.0 K now.

Because deuterium is bound (though not very strongly) there is a tendency for the
neutrinos and protons to combine to form 2H, as the temperature drops. If all the
neutrons frozen out as estimated above combined to form deuterium, we would
find a mass fraction 2n

= 0.33
n + p

in deuterium, and once this is formed, it very quickly will burn to helium-four,
(with the same mass fraction) which gives a “ball park” agreement with the “normal”
helium abundance ratio ~0.24. As Peebles (1971) points out, the thermodynamic
equilibrium shifts toward deuterium production at T: (0.8—0.9) x 109 K, when the
universe is already old enough (300 seconds) so that the neutrons are beginning to
be lost by free decay. At 109 K the rate is fast enough to allow almost complete
deuterium production, although if the present temperature were higher by a factor
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ten or so (Tmicrowave ~ 30 K) the baryon density near T: 109 K would have
been too low to give much deuterium production.

After the completion of helium formation, the temperature of the universe continues
to drop. Since the hydrogen and helium are ionized the photons remain collisional
and in temperature equilibrium with the matter and the whole assemblage follows
the Toc R‘1 law with the neutrinos at their lower (by factor 1 / 1.4) temperature. This
continues until the hydrogen recombines. Peebles (1968) and Peebles and Yu (1970)
have shown that the ratio of tc/texp for photons goes from 10—4 at T: 5 x 103 K to
~5 at 2 x 103 K. It is thus at this epoch that the photons comprising the microwave
radiation are least scattered in the usual cosmological interpretation. At approxi-
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Thermal history of an isotropic—homogeneous cosmology. The temperature indicated is the photon tem-
perature, the neutrino temperature is a factor ~(l.4)‘I smaller. Electron—positron annihilation causes
the upward kink in the temperature at ~ 1010 K. Helium production occurs near 109 K. The somewhat un—
certain transition from radiation to (baryon) matter dominance occurs in the range 1027104 K, and the
recombination of hydrogen occurs near 2 x 103 K. Subsequent to hydrogen recombination the universe
is transparent. and hence the redshifted photons in the microwave background could have traveled freely

to us since then (after Dicke, Peebles, Roll and Wilkinson, 1965).
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mately this temperature also, the baryon matter finally becomes dominant over the
radiation in determining the overall density (since the radiation energy density 0C R _ 4
while baryon matter density 0c R‘ 3 0C T‘ 3 ). And because of the disappearance of the
drag force due to the radiation, perturbations can grow to give rise eventually to
galaxies (see Sec. 4). Finally, at redshifts no greater than 2—3 (T S 10 K) the cosmo-
logical term may have become important in affecting the overall expansion as may
(perhaps) the spatial curvature. Figure 36 (after Dicke et a1., 1965) summarizes this
conventional thermal history.

A basic aspect of this discussion has been the assumption that the “normal”
helium abundance as observed currently reflects a primordial abundance. Wagoner
(1973) has assembled references which give estimated pregalactic 4He abundance
ratios ~0.22—0.32.

There have been some observations of halo stars (which were presumed not-too-
evolved from their primordial constitution) which showed lower than normal helium
abundances (Greenstein, 1966; Sargent and Searle, 1966). However, recent analysis
has shown that the stars showing low helium abundances are very abnormal in other
ways also, often showing metals heavier than helium with weak helium lines (Sargent

Figure 37
Diagram showing isotopes and reactions considered by Wagoner (1973) for calculation of elemental

abundances.
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and Searle, 1967; Baschek, Sargent and Searle, 1972). Also, Searle and Sargent (1972)
have discovered two dwarf blue galaxies. These are strange systems because they
show a large number of blue, young stars. Either their present rate of star formation
greatly exceeds the average rate in the past, or alternatively they have always produced
very massive (observably blue) stars. In any case the stellar evolution within them
would have been quite different from normal stellar evolution, yet they show a normal
helium abundance. Wagoner (1973) takes these results and attempts to find model
theories which predict such abundances. He takes account of 26 isotopes up to
160 (Fig. 37). He finds that

“Standard big—bang models in which the present baryon density is (1—3) X 10—31
g/cm3 agree best with the probable pregalactic abundances of 2H, 3He and 4He,
if the galactic production of 3He is also assumed negligible”.

Figure 38 shows the evolution of the elements as a function of time and tempera-
ture. Of more interest is Fig. 39 which shows that the deuterium (pregalactic abun-
dance (0.3—5.0) x 10") and 3He (pregalactic abundance S 10‘4) lead to the small
range in current density, at a temperature of 3 K.

Gott et al. (1974) have taken these results as indicating that the universe is open.
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Figure 38
The production of the elements in a standard big bang cosmology for a model with present density

~2 x 10’31 g/cm3 (after Wagoner. 1973).
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Final abundances of the elements as a function of present baryon density. Estimated pregalactic abundance
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1973).

Figure 40 (after Gott et al., 1974) is Fig. 2 with the deuterium estimate included.
The ratio p/pC estimated above is of the order of 5 x 10—2, where pc is the mass
density needed to close the universe. This number is also in close agreement with the
determinations of the density in galaxies. Of course other matter could be distributed
in a way that escapes observation but has enough density to close the universe.
However, Gott et a1. argue that it can be reasonably assured that hidden matter does
not exceed the density to close the universe. This is based on the assumption that any
low temperature mass will be accreted into galaxies (increasing the masses deter-
mined from virial studies) or accreting, giving excessive radiation as they fall into
the galaxies. If the galaxies were not formed by gravitational instability, it is still
possible that substratum of such matter exists. Similarly, a background fluid, e.g.,
neutrinos, must have a high pressure to avoid condensation into the galaxies or
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Figure 40
Figure 2 with additional lines added for correct deuterium abundance, strongly suggesting the universe is

open (Gott, Gunn, Schramm and Tinsley, 1974).

clusters, so cold hydrogen gas seems to be ruled out. Hot hydrogen (T > 108 K) suffi-
cient to close the universe faces the problem of finding energy to give this level of
ionization. As we pointed out above, degenerate neutrinos cannot be excluded on
any other basis than that they would strongly modify the nucleosynthesis, thereby
destroying the agreement with Wagoner’s results (1973). Although the arguments
against a closed universe could each be circumvented by careful selection of initial
conditions, Gott et a1. consider that, taken with the positive criteria a) correct 1H
and 2H production; b) a mean predicted density consistent with (slightly greater
than) current estimates and c) an age of the universe consistent with globular star
cluster ages, (:1) agreement with a value of (10 obtained from observations by applying
evolutionary corrections, the case is strongly in favor of the open types. A careful
reading of their paper indicates that they rely strongly on the primordial deuterium
abundance to fix qo. Since Colgate (1973) has raised the possibility of deuterium
production in supernovae, this point is somewhat weakened. Nonetheless, Gott,
Gunn, Schramm and Tinsley (1974) conclude:

“Loopholes in this reasoning may exist, but if so are primordial and invisible, or
perhaps just black.”
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5.2. T > 1012: ultimate temperature? Particle production
The presentation in the preceding section has been based on physics that occurs at
low enough energies to be completely “known”. Above 10” K there is enough un-
certainty in the behavior of elementary particles that we can postulate two extremes
in the behavior of the equation of state of matter near the singularity. If the number
of elementary particles and resonances increases sufficiently slowly for E 3 100 MeV,
then as the matter is compressed near the singularity, these particles become rela-
tivistic and the equation of state approaches that of a radiation fluid, p = p/3. If
the density of states increases fast enough, however, there may be some ultimate
temperature 7], such that adding energy to the system does not raise the average
kinetic energy, but simply boils out more new particles so the temperature is bounded
by 7;. A possible description of the density of states which produces such an ultimate
temperature has been given by Hagedorn (1970). He fits a formula for the density
of states:

n(m) : Am‘Bexp (g) (5.1)
"I

to the experimental results for parameter values:

B 2 2—4, T"' 2 1.7 x 1012 K (5.2)

Figure 41 displays how the data are an improving fit to this idea. (However, see also
Leung and Wang, 1973, who find a polynomial fit.) This gives an equation of state
(best displayed in a form parametrized by l): for l—> 0, p,p —> oo:

1‘2 I—2
CC —, 0c — 5.3p |1n1| p |1nl|1/2 ( )

as the density tends to infinity near the singularity. The solution for an isotropic-
homogeneous cosmology using this equation of state gives:

R(t) oc {2/3|lnt]1/2 (5.4)

For comparison, the dust (p = 0) models have

R(t) 0C [2/3 (5.5)
while radiation filled models have

R(t) 0C I“ (5.6)

It is not surprising that the soft infinity in the pressure (5.3) gives a behavior nearly
like the p = 0 models. Such behavior would give rise to a “warm” big bang, with
temperatures never rising above 7:" (z 1012 K according to Hagedorn’s fit; see also
Carlitz, Frautschi and Nahm, 1973). None of the discussion in the preceding section
concerning the evolution of the universe for T< 1012 K is affected by this possibility.
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The fitting of elementary particle data to a theoretical mass spectrum, showing better fit to eq. (5.1) as
more data are obtained (after Hagedorn, 1970)

The existence of residual thermal gravitons from the early ages of the universe
depends critically on the existence oftemperatures at least as high as 1020 K (107 GeV),
however. This has been calculated (using linearized theory) as the temperature nec-
essary to bring gravitons into equilibrium with the matter of the universe in a radia-
tion dominated homogeneous isotropic model (Matzner, 1968). The age of the
universe at this temperature is

r~10‘6 cm ~10‘1ésec (5.7)

The radius of the causally connected parts of the universe (1.6., the part within a
horizon) is of this order also; accordingly, the sizes and the energies are not in the
region where fundamental problems of quantum gravity arise since the wavelength
of 107 GeV gravitons, 10‘20 cm, is much larger than the characteristic length
GI/ZhI/Zc‘”2 ~ 10~33 cm. It can be verified that linearized theory is sufficiently
accurate for this calculation.
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As pointed out by Alpher et al. (1953), the number density of the gravitons is

approximately l/n times the total number density, where n is the total number of
modes available to carry the energy. These modes consist of two polarizations for
photons, four for neutrinos, as well as those for mesons, and presumably baryons.
The rest of the energy (not initially in gravitons) eventually ends up in photons
(y) or in neutrinos, so

T. 3 2
7 ~ ,7 (5.8)

7

The number n in this equation is difficult to estimate. If one should count all
possible hadron states with mass less than 107 GeV, then n will be very large and
7:,(now) will be very small. If there exists an ultimate temperature T, < 1020 K, as
suggested above, then gravitons were never in equilibrium with the matter in the
universe, and so there are no thermal relict gravitons. On the other hand, one might
conjecture that the hadrons would decompose, at sufficiently high temperatures,
into quarks, and then 11 will be small, n ~ 14. Whether this idea is valid at tempera-
tures T~ m, is certainly questionable, because the mean free path would be much
smaller than a Compton wavelength. Accepting n ~ 14, however, gives T9 ~ 1.6 K for
the present temperature of blackbody gravitational radiation. As discussed above,
Misner’s analysis (1968a) has shown that this amount of collisionless gravitational
radiation would strongly affect the subsequent dynamics of homogeneous models
with large amounts of anisotropy. The gravitons would behave similarly to the
collisionless neutrinos in modifying the evolution of the anisotropy.

We mentioned above the fact that rapidly changing gravitational fields such as
near a cosmological singularity (big-bang) should give rise to particle production.
There have been investigations of this possibility by Parker (1969, 1972), by Zel’dovich
and Starobinsky (1971), by Parker and Fulling (1973), and also by Berger (1972,
1974a,b) and by Misner (1974). This is not a question of quantum gravity, which
becomes important only on a scale of ~10‘33 cm, but one of quantum fields in a
classical background geometry, and could be important for universe sizes ~ 10‘ 13 cm
and smaller.

The mass of the particles involved is important in considerations of particle pro-
duction if the equations for massless particles are conformally invariant, since no
creation occurs in conformally flat cosmologies, such as the homogeneous isotropic
models we have discussed. If this conformal invariance is broken for the scalar equa-
tions then large estimates for particle production can be obtained in homogeneous
isotropic models (Parker, 1972).

Estimates of the rates involved can be found in the references mentioned but no
one has yet produced a definite number for the particles produced in the universal
experiment. The principal difficulty in a calculational approach to the particle pro-
duction problem is the question of defining the particle. The separation into positive
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and negative energy states required to define particle and antiparticle number is
an explicitly special-relativistic one. It depends on the existence of time translations
in the Poincare group. In a highly curved space this separation is often impossible
and when not, it is ambiguous. In flat space, one has the possibility of basing the
separation into positive and negative frequencies on timelike Killing vectors other
than the usual one. For instance, in two-dimensional Minkowski space, one can
use the generators of the Lorentz transformations which do not move the origin.
The constant time surfaces are lines, while the trajectories of (3, are hyperbolae.
This is a good covering of 1/4 of M2, except for the null cone (and its apex) through
the origin. The particle-antiparticle separation here is different from the usual one.
A moment’s reflection shows that this second frame is accelerated, and one might
expect effects—like particle production—due to the equivalence principle. The
particle-antiparticle separation apparently requires a global Minkowski space to
be invariantly defined.

Because of this difficulty, the results on cosmological particle production have
remained ambiguous. One observes that far enough in the future of a homogeneous
cosmology, say, the geometry changes sufficiently slowly that particles can be de-
fined and the calculated particle production rate tends to zero. Hence the number
of particles existing in the late universe tends to a constant. If one could postulate
initial conditions that no particles at all existed at some early time to in the universe
(and take the limit when to —> 0), one could compute at some late time the number
of particles produced, and could predict the total number of particles to be expected
in a typical universe. (The fact that the net baryon number is zero is a minor irritant
at this stage.) The catch comes because the particle number cannot be defined in
the early evolving model. The technique used by Parker (1969), Zel’dovich and
Starobinsky (1971), and Berger (1972) has been to stop the expansion at some early
point to say the universe was flat and empty before to. At to the initial condition of
particle field defining a vacuum-(in the flat manifold) is imposed, and the solution
is then allowed to evolve. Particle production occurs, and some net number N,0
of particles are produced to limit the final universe. Unfortunately N,0 is far from
independent of to (Nto —> so as to —+ 0), so this method must rely on the ad hoc
choice of an initial time to.

Misner (1974) and Berger (1974a,b) have analyzed this problem in a different
manner, using the solutions of Gowdy (1971, 1974). Gowdy’s solutions are inhomo-
geneous and anisotropic, depending on two variables. For large times, they are
approximately homogeneous and isotropic with (approximately) zero spatial curva-
ture *R, but containing small amounts of gravitational radiation. This radiation
consists of one polarization of radiation traveling in one direction around these
closed models. (These space sections have the topology of a flat 3-torus.) For large
times this radiation has short wavelength compared to the horizon size. If this
cosmology is evolved back toward the singularity, the wavelength becomes longer
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compared to the horizon size, and near the singularity these waves behave like the
anisotropy in one of the homogeneous anisotropic models. That is, near the singu-
larity the model looks, within each causally connected region (within each horizon
size) like a type I (flat 3-space) anisotropic homogeneous cosmology. These models
can be solved exactly classically (Gowdy, 1971). They can also be solved exactly
(up to factor ordering questions) within the truncated quantum mechanics which
suppresses the zero-point motion of the modes which vanish classically due to sym-
metry (Berger, 1974a). This model, from viewpoint adopted by Berger and by Misner,
should be an example of particle (graviton) production, since there is initially only
an empty anisotropic universe, while finally there are gravitons present. Berger first
treated this model using the techniques of Parker (1969) stopping the evolution at
some early time to. As in the treatment of Parker, the final graviton number depends
in an unsatisfactory way on to. In subsequent discussion, Berger (1974b) and Misner
(1974) have argued that this model actually indicates no particle production. First
of all one can classically prescribe the number of gravitons found as t—> 00 by
specifying some particular initial motion of the anisotropy. The quantum analysis
smears out the classical motion very little, and the expectation value of the number
of particles in the final state works out to be the same as the classical result (Berger,
1974b). It thus appears that particle production, at least in this scheme, does not
occur. The particles are always there (present in the initial conditions) but for early
times their associated wavelengths were so much larger than the horizon that they
were unnoticed. At late times they evolve like short wavelength radiation in an almost
flat background. What is produced is not the particle, but the particle-like behavior.
It is obvious that much work remains to be done on this problem, particularly in
looking at models in which the particles being produced are not gravitons.

5.3. Singularities

Perhaps the most profound problem of principle confronting physics today is
the existence and nature of a singularity in cosmology. Early hopes that the singu-
larity of an isotropic model would disappear once the high symmetry of the model
was relaxed proved wrong. The singularity theorems of the mid-1960’s (see Hawking
and Ellis, 1973) showed that symmetry was irrelevant in the proof of singularity.
Yet the dedicated religionists who saw in the existence of a singularity the sign of a
creator have also been disappointed. Although each cosmological model is singular
by being incomplete, incompleteness does not necessarily involve an infinity of a
physical variable, nor does it necessarily prevent extension of the model toward
the past.

A manifold is incomplete if it contains inextendible geodesic segments of finite
affine parameter. For example, Figure 42 illustrates geodesics in the mathematically
non-singular vacuum Taub—NUT—Misner model (Misner and Taub, 1968). No
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Figure 42
Timelike geodesics in T—NUT—M space. Geodesic 1 approaches the Misner border between Taub space
(a type IX spatially homogeneous vacuum model) and NUT space (where the light cone has tipped over).
Geodesic 1 has no unique limit point, since it wraps around the closed spacelike hypersurfaoe in Taub
space infinitely often. Geodesics l and 2 are incomplete, but geodesic 3 and any other geodesic leaving
the model have infinite length. The T—NUT—M has a differentiable metric and is mathematically non-

singular.

geodesic, such as number 3, can leave the model without becoming infinitely long,
yet some geodesic segments cannot be extended because they have a continuum of
limit points. Although geodesics l and 2 are incomplete, the metric itself shows no
discontinuities when the manifold is extended beyond the region where geodesics
end. Incompleteness, however, amounts at least to a physical trouble in the model.
Any timelike or null geodesic may be the path of a real particle, and consequently
it is far from sufficient to postulate that “real” matter may follow only certain geodesics
which are complete.

Each general relativity cosmological model is incomplete if it obeys the following
conditions (Hawking and Ellis, 1973):

1) kak’i2 Z 0 for every non-spacelike vector k“.
2) There exists a compact spacelike 3-surface S.
3) The unit normals to S are everywhere converging (or diverging) on S.

Condition 1 is the “energy condition”, and is valid if the pressure is not too negative
and if the speed of sound is always less than the velocity of light. Condition 3 basically
recognizes the presently observed cosmic expansion Condition 2 may be modified,
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of course, to some more appropriate condition in other circumstances, for example
in a general spatially homogeneous model with a non-compact homogeneous space-
like slice. Parameters of the real universe indicate that any general relativity model
portraying the real universe must be incomplete (Hawking and Ellis, 1968).

The T—NUT—M model mentioned above is incomplete yet non-singular. Later
work (Shepley, 1969; Ellis and King, 1974) has shown that if an infinite density
singularity does occur in a model, this infinity (which represents an undoubted
singularity) and incompleteness of geodesics need not have any relation. Ellis and
King (1974) have described those circumstances in which incompleteness is not
accompanied by a singularity in the matter which fills the model. The title of this
important work Was the Big Bang a Whimper? seems to imply that incomplete geo-
desics in isolation are not important. It is more correct to say that incomplete
geodesics signal a singularity which physically corresponds to a hypothetical test
particle appearing at an infinity of limit points at an instant of time or else dis-
appears from the universe in a finite time.

Thus when any matter is added to the empty T—NUT—M model (with the ex-
ception of quite special magnetic fields), the null hypersurface which acts as an
interface between the “Taub” and “NUT” regions is replaced by a true singularity.
Indeed, in some important classes of models it is possible to show that the density
always does become infinite, so that incompleteness in isolation does not occur.
The spatially homogeneous models with matter velocity normal to the spacelike
invariant hypersurfaces are of such a class. So are all dust-filled type IX models,
rotating or not. However, type V models with matter tilted with respect to the homo-
geneous hypersurfaoes may have isolated incompleteness (Shepley, 1969; Collins,
1974).

What if anything breaks down simply because of incompleteness is unknown.
The Schmidt (1971) method of defining the structure of a singular boundary could
be of some help, since the singular points are mathematically well-described. The
method assigns to a higher dimensional manifold, the bundle of orthonormal frames,
B, a positive-definite metric (see Fig. 43). The bundle’s boundary is in principle
simply defined (though in practice the computation is quite difficult) by limit points
of Cauchy sequences. The same method of going from bundle to manifold (using
the Lorentz group action in the bundle) then is used to define a manifold boundary
as equivalence sets of bundle boundary points. This method is different from an
earlier and simpler technique of Geroch (1967a), but does correct certain deficien-
cies. Geroch’s technique looked only at incomplete geodesics and thus could not
consider all incomplete physical paths (such as segments of paths of bounded accelera-
tion). Sachs (1973) (see Eardley, Liang and Sachs, 1972) has described a method similar
to Schmidt’s using the bundle of unit timelike vectors (the sphere bundle). This
bundle is the smallest manifold on which a positive-definite metric can be defined
from the original indefinite metric. Duncan (1973) (see Duncan and Shepley, 1974,
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The Schmidt—Sachs method of defining sinular points of M is associated a higher-dimensional space B
with positive-definite metric. Schmidt’s technique uses for B the bundle of orthonormal frames. The
association with M is particularly natural, since the association is through the action of the Lorentz group
on B. C1 and C2, incomplete Cauchy sequences, define points on T5 the boundary of B. The boundary
of M is defined by extending the bundle association to TB. Boundary points are defined for each path in

M which is geodesically incomplete or which is a finite timelike path of bounded acceleration.

1975, and also compare Hajicek and Schmidt, 1971) has shown that an equivalence
relation can be defined which makes the Sachs and Schmidt techniques obviously
equivalent, but the original Sachs method of taking equivalence classes of bundle
boundary points was an equivalent technique. Possible non-uniqueness is this general
method’s principle bugaboo.

It would be inappropriate to go into further mathematical details. However, the
sphere bundle is the structure used (although with an indefinite metric) in relativistic
kinetic theory. There is therefore the possibility, as yet only a speculation, that the
Schmidt—Sachs technique may directly yield physical information on the singularity
which at best is almost impossible to discover by other methods.

More esoteric methods of treating incompleteness have also been devised. Miller
and Kruskal (1973) have extended certain incomplete manifolds by dropping the
Hausdorff criterion that two distinct points should be coverable to disjoint open sets.
Figure 44 shows a manifold in coordinates u, v. The dashed lines are orbits of the
isometry group of the metric, which is from a compact, incomplete torus given as
an example by Misner (1963). When the subset of all points {mm/2, int/2, m + n even}
is deleted, the model is geodesically complete. When also points {ma/2, rut/2, m + n
odd} are removed and identifications made, the result is a maximal analytic exten-
sion of Misner’s torus. This extension, however, is non-Hausdorff, and the physical
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Figure 44

The Miller—Kruskal (1973) manifold, M, used to extend a compact incomplete torus T. T was given by
Misner (1963) as a paradigm of an incomplete compact manifold. M minus points {mu/2, mr/Z, such that
m + n is even} is geodesically complete. M minus {mu/2, "TE/2, all integers m, n} with identifications is the
Miller—Kruskal maximal extension of I The extension is non-Hausdorff. The illustrated manifold, in

which the dashed lines define orbits of the isometies defined from the metric of 7: is an possible example of

a structure needed to give a physical interpretation of incompleteness.

implications of the extension or of the manifold illustrated in the figure have not
been given.

In most discussions of cosmic singularities it is assumed that incompleteness is
accompanied by a singularity in a matter parameter, such as an infinity in the density.

The nature of a region near such a singularity in a classical model, that is, the oscil-

latory or non-oscillatory approach to the singularity, is a subject best handled by

the Hamiltonian techniques discussed elsewhere. The question of the horizon size
is also best handled by those methods as is the important question of when the
horizon is large enough to include all cosmic matter.

The physical effects of the singularity itself may be necessary to describe galaxy

formation. The Eardley—Liang—Sachs technique (1972) in velocity-dominated

models describes such structure in the approximation where the curvature of space-
like slices is ignored. The initial singularity hypersurface may be assigned several

structure functions, whose physical significance may only be suggested. For example,

one such function describes an effective cosmic initial time which is position depen-

dent. Of course, no approximation technique can give a definite answer to the singu-

larity problem, but the method may be important in describing conditions just

past singularity.
The question of what and when physics in addition to classical general relativity

becomes important near a singularity is a vital one. In an isotropic model similar

to the real universe the horizon distance becomes equal to the Compton radius of

an elementary particle at about 10‘23 seconds after the initial singularity. Before

this time, presumably the quantum field theoretic properties of particles dominated

classical properties. Parker and Fulling (1973) have shown that the quantum mechan-
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ical properties include an effective oscillating pressure. Figure 45 is a computed
example by Parker and Fulling showing a turn-around in the cosmic radius a(t)
because of momentarily negative terms in the stress-energy tensor when a is less
than the Compton length m‘1 associated with the massive quantum field in their
model. The singularity is thus exorcised by invoking an evanescent violation of the
energy condition of the singularity theorems (see, also, Bekenstein, 1974). When
a is large compared to the Compton length m”, the model is indistinguishable
from a classical model. If such considerations are effective, the chaos of quantum
gravitation, appearing as foam when curvature distance scales reach 10‘33 cm, is
avoided.

\alO)=O.2/m /

<0.5/m 0 0.5/rn

Figure 45
The Parker—Fulling (1973) non-singular model. The radius a(t) is plotted for an isotropic model with
classical metric filled with a quantum field of mass m. Because the quantum field gives rise to a rapidly
oscillating pressure which can become negative, even violating the energy conditions in the singularity
theorems, the radius need never become zero. These effects may become important when a is of the order

of the Compton length m"1 associated with the field.

Finally, there is the question of what the real universe thinks about singularities.
The blackbody radiation shows that any general relativity model of the real universe
must be at least incomplete toward the past (Hawking and Ellis, 1968). Collins and
Hawking (1973a) have shown, however, that present data do not give good limits
on anisotropy near the singularity in many cases. (It is large anisotropy in a type V
model which allows a separation between incompleteness and infinite density, where
presumed quantum mechanical properties are important.) It is thus ever more im-
portant to understand the real cosmos. On the other hand, the real universe may be
singular, it perhaps being necessary to treat cosmic time as an intrinsically positive
quantity (Misner, 1969b).

5.4. Remnants Mini-black holes

Although the subject is not directly connected with the cosmological problem, we
note that Hawking (1974) has recently discussed the production of particles in the
strong field region of black holes. He finds that low mass black holes very quickly
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dissipate their mass in the production of particle—antiparticle pairs. The lifetime
decreases as the inverse third power of mass of the black hole. Hawking estimates
that the smallest black hole which could have survived since the earliest days of the
universe has mass 1015 grams. This means that if a substantial number of small
black holes exist which are the relics of the big bang, they have mass exceeding this
lower bound. Although the arguments of Gott et a1. (1974) tend to exclude a suf-
ficient density of mini-black holes to close the universe, they could have directly
observable consequences if, for instance, near encounters or collisions between the
Earth and such a hole occurred (Jackson and Ryan, 1973).

6. CONCLUSIONS

The explosion of activity in theories of cosmology due to the new data that became
available during the 1960’s has to an extent run its course. Cosmology has gone off
into tangential areas—such as Quantum Cosmology—which is not so much a
means of describing the universe as a model for quantizing General Relativity.
We have seen one great influx of observation. Observations of other types, on effects
at first glance divorced from cosmology—as was the deuterium question which
turns out to put limits on the deceleration parameter—may soon produce another
such burst. Or theoretical breakthroughs such as are possible in the quantized theory
of gravity may be the stimulus for the next rush of work in cosmology. It is afascinat-
ing, magnificient study and we are awed by its beauty and its simplicity that often
hide behind seeming complexity.
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1. INTRODUCTION

In solving a set of nonlinear partial differential equations such as Einstein’s equations,
we have basically three different approaches to take: exact solutions, approximation
schemes, and numerical computation. Despite some personal preferences, most
people would agree that these have been listed in the order of decreasing aesthetic
appeal. I would like to argue that from a practical standpoint as well, seeking exact
solutions offers the best promise over the next few years. Let’s look at the alternatives.

Approximation schemes have been used to considerable advantage in Relativity
in the past, and we have the weak-field, and slow-motion approximations, plus
some others. A serious drawback has always been the lack of a rigorous analysis
of the validity of these schemes. This is not merely a question of mathematical
nit-picking either, because examples exist in related fields such as Fluid Mechanics
of perturbation schemes which are singular or contain subtle surprises. Brill and
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Deser [l] and Fischer and Marsden [2] have recently made some interesting con-
tributions to this problem.

Nevertheless most realistic problems in Relativity lie clearly outside the domain
of any approximation scheme. The large amplitude production of gravitational
waves which accompanies the formation of a neutron star is a prime example.
For problems such as these we can only choose between exact solutions and
numerical analysis. In the long run the latter will probably be the winner, and
Relativity will become an exercise as devoid of intuition as Nuclear Physics.
Presently, however, the application of numerical methods to Einstein’s equations
is still in its infancy. “Regge Calculus” (which analysts in other fields know and
love as the method of finite elements) shows greater promise following the work
of Collins and Williams [3] and Sorkin [4], but is still not quite at the stage where
we can use it for practical calculations. We therefore turn to exact solutions as the
third alternative.

Unfortunately, the study of exact solutions has acquired a rather low reputation
in the past», for which there are several explanations. Most of the known exact
solutions describe situations which are frankly unphysical, and these do have a
tendency to distract attention from the more useful ones. But the situation is also
partially the fault of those of us who work in this field. We toss in null currents,
macroscopic neutrino fields and tachyons for the sake of greater “generality”; we
seem to take delight at the invention of confusing anti-intuitive notation; and when
all is done we leave our newborn metric wobbling on its Vierbein without any visible
means of interpretation.

At this time, when the number of known solutions is rapidly growing, I feel that
an overall survey would be of considerable help. Kramer, Neugebauer and Stephani
[5] gave a lengthy review of solutions in 1972 in German, and a forthcoming paper
by Krasinski [6] will discuss solutions containing perfect fluid. The last survey
previous to this was the well-known work of Jordan, Ehlers and Kundt [7] in 1960,
more than a decade ago. The present paper will not try to be as complete, but will
have two objectives. One is to give a brief summary of all known vacuum solutions
and their interrelationships, referring to the bibliography for further details. The
other is to elaborate on a few of the most important recent developments. I hope
the latter aim will focus more attention in these areas, while the former will help
to reduce the duplication of effort which has been so prevalent in the past.

2. SOLUTIONS WITH KILLING VECTORS

Most of the recent work in exact solutions which has physical relevance falls into
this category. We will consider primarily the case in which the spacetime has two
commuting 2-forming Killing vectors. The metric can then be put into a canonical
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form introduced originally by Lewis:

ds2 =f(dt + wdqo)2 —f’1[e27(dp2 + dzz) + p2 d(p2] (1)

where f, a), y are functions only of p and 2. We regard (p, 2, go) as cylindrical coordi-
nates in a flat space with gradient operator V. The Einstein field equations reduce to

t*Vf+p?fiwWH=0 (»
V'[p'2f2 Vw] =0 (3)

and

n = ipf‘zUfi -f§) — %P_1f2(w,23 - (03)
yz = %pf—2fpfz _ %p_1f2wpwz

The function y (Thorne’s “C-energy”) is determined up to a constant by quadratures
once f, w are known. Should f become negative, we must use this constant to main-
tain the correct Lorentz signature, by replacing

(4)

y—>y+%i1t

Then (p becomes the time coordinate. Otherwise y may be ignored in the process
of finding solutions.

Eq. (3) is the integrability condition for the existence of a “twist potential” 9,
defined by

VQ = p‘1f2e¢ x Va)

where e¢ is a unit vector in the (p direction. We can eliminate a) in favor of Q, to
obtain an alternative pair of field equations equivalent to Eqs. (2), (3):

VU”UW49WM=0
_ (5)V-[f 2vr2]=0

2.1. Wave solutions

Gravitational waves with two Killing vectors can be obtained from this metric
by making a complex coordinate transformation. If we let

t = if

z = if

a) = ia")

the line element becomes

ds2 = f‘leZWf2 — dpz) —f(dz~ + 6)d —f'lp2 (W (6)
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The same field equations now describe Jordan—Ehlers waves [7], which are
cylindrical waves with two degrees of freedom, corresponding to two available
wave polarizations. The more familiar Einstein—Rosen waves are included in them
as the subcase a") = 0. In that case, with

f=él
we find that w is a solution of the ordinary cylindrical wave equation. Note that
stationary solutions and Jordan—Ehlers solutions do not map into one another
(unless an analytic continuation can be made) since both a), C?) are normally required
to be real.

There is also a second complex coordinate transformation possible. If we let

M

=if

=i¢78
‘5

the metric becomes

ds2 =f'1e2"(dt2 — dzz) —f(d;3 + codqb)2 — f‘lf2 dgb2 (7)

The waves are now independent of [3, g2) and propagate along the z-axis. This second
possibility had been noted by Ehlers [7] and Thorne [8]. It has also recently received
attention by P. Szekeres [9], who interprets Eq. (7) as the interaction region of two
colliding plane waves.

To see this we regard [3, {o as Cartesian coordinates and consider the case co = 0
(which amounts to giving all the waves the same linear polarization). Again letting

f=ét
we get a time-dependent analog of the cylindrical-wave equation,

1wn—wi—?n=o (a
Szekeres shows that it is possible to smoothly join this solution to pp waves along
the null boundaries f i z = const (see Fig. 1).

The importance of this result lies in the apparent singularity which occurs at
f = 0. Szekeres asserts that the singularity is physical, and furthermore suggests
that this phenomenon is inevitable for any wave collision treated in the full Einstein
theory! (It does not appear in linearized theory because the time required for the
singularity to develop is inversely proportional to the product of the two wave
amplitudes, which is second order.) Of course if that is true it would have drastic
consequences for the radiation produced by astrophysical sources.

The question as to whether the singularity is physical is slightlyobscured by a
simultaneous coordinate singularity at f = 0, which persists even in the limit of
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PP Wave ’ PP Wave
(A.) I / \ ‘ (A2)

Figure l
Szekeres’ colliding plane waves.

flat space. In that case ((3 is a pseudoangle (see Fig. 2). The surfaces 1? = const bifurcate
at f= 0, and continuation beyond is possible, with f becoming spacelike. When
waves are present, however, we expect the solution of Eq. (8) to have a logarithmic
singularity for small 5,

l/I~A(z)lnf

For fixed 2, the solution will locally approximate a Kasner metric [10], the well-
known example of gravitational collapse which is truly singular.

The other question to be resolved is how general the phenomenon really is. One
suspects that while the assumption of linear polarization is not crucial to the argu-
ment, the assumption of perfectly plane incident waves is. The collision of slowly
diverging waves should be examined to see if the singularity can in that way be
“defocused.”
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2.2. Tomimatsu—Sam solutions

The most important stationary solution to be recently discovered is the Tomimatsu—
Sato (TS) family of metrics [11, 12]. The TS metrics are asymptotically flat with
leading multipole moments

M=m

J=ma

2n2 + 1 2 n2 — 1 3
Q = 3n2 ma + 3712 m

where m, a are arbitrary real parameters and n is a positive integer. The case n = 1
is identical to the Kerr metric.

To best describe them we use the Ernst potential 5 [13, 14], related to the previous
variables by

;_
.

1+
Wf+i§2= (9)M

It is a complexified nonlinear version of the Newtonian potential and obeys the
field equation

(65* - 1)VZCf = 26* VE'VC (10)
The Kerr metric for a < m can be described by the simple linear solution,

€11 = -px+iqy (11)
where

q = a/m

p2+qz=1
and x, y are prolate spheroidal coordinates.

With this as motivation, we look for solutions of the form

w... Ls: 1.p. g1én-l = x—: (13)
It” 1.x: '1'. p. q]

where w", u" are polynomials. We only require

deg (w,,) = deg (u,,) + 1

to insure asymptotic flatness. Tomimatsu and Sato have given what they believe
to be an infinite sequence of such solutions. The next one after Kerr is

5-1: p2(x“ — 1) — 2ipq(x2 — yz) — 42(1- y“)
2 2px<x2 — 1) — 2iqy<1 — yz) (14)
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The complexity of their solutions increases so rapidly for larger values of n, that
complete results have only been given up to n = 4.

The near-field structure of the TS metrics has been analyzed by Glass [15],
Gibbons et a1. [16], and Abramowicz et al. [17]. The functionf = g00 is of the form

f=Aw

where A,B are polynomials. The solution contains a sequence of ergospheres or
surfaces of infinite redshift where A = 0, and a sequence of concentric ring sin—
gularities where B = 0. There are also certain points at which A and B vanish
simultaneously. These points are directional singularities, similar to the ones
occurring in Weyl metrics and studied by Gautreau and Anderson [18], Szekeres
and Morgan [19], and others.

The surface x = +1 where gngw — (gw)2 vanishes was at first thought to be an
event horizon. Gibbons and Russell-Clark showed this not to be the case for n = 2,
because the degenerate metric induced on the surface is Lorentzian. Therefore, it
cannot be a null surface. Tomimatsu and Sato [20] have pointed out, however, that
this happens only when n is even. The surface is singularity-free only for n = 1.

Kinnersley and Kelley [21] discussed the weak-field limit of the TS metrics in
terms of disc models, similar to those previously given by Israel [22] for the Kerr
metric. They also considered the various limits which may be taken as a —> m. They
obtained in this way a new family of exact solutions, which bear the same relation-
ship to TS that Bardeen’s “throat metric” [74] does to Kerr (see Sec. 3.1).

2.3. Transformation theorems

The first theorem by which one exact solution of the field equations may be used to
generate others was discussed by Ehlers [23] in 1957. Since then his methods have
been generalized by many authors. In the past few years transformation theorems
have become a most effective tool for producing new solutions and for understanding
the relationships that exist between old ones. The amount of hidden symmetry
contained in the field equations is startling, and no one yet fully understands the
reason for it.

We will restrict ourselves to the axially symmetric stationary case, although for
many of the results only one Killing vector is required. As we stated previously,
the vacuum field equations can be reduced to two equivalent forms:

V'[f‘1Vf+p‘2f2wVa)]=0 (15)

V-[p_2f2 V60] =0 (16)
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or

V'[f'2(f+QVQ)]=0 (17)

V-[f‘ZVQ]=0 (18)

To begin with, we have a symmetry group g of coordinate transformations which
replace (mp) by linear combinations of themselves. g is isomorphic to SL(2, R)
and also to SO(2, l) and S U(1, 1). It must be possible to rewrite the field equations
in a way which is manifestly covariant under {4. The simplest covariant object
available to us is

(flafzf) E p'1(gm mass) =
= (p'lf, p‘lfw, 9‘1w — pf”) (19)

which transforms like an SO (2, 1) vector with norm

flf3 - (f2)2 = —1
Eq. (16) can be rewritten as

V- [f1 W2 —f2Vf1] = 0
We therefore define another 3-vector,

g = 61-;k W" (20)
and observe that when g is applied, Eq. (16) becomes just one of three conservation
laws,

V'gi=0, i=l,2,3 (21)

Explicitly, the conserved quantities are

g1: 2wf—1 Vf+ Va) + p"2f2a>2 Va) — 2p‘1wVp
g2 = — 2f'1Vf— 2p‘2fw Va) + 2p'1Vp

33 = 10—72 V60

Eq. (21) for i = 2, 3 reproduces the original field equations, and for i = 1 it gives a
new law which follows from them. Invariance under g was studied by Matzner
et a1. [24, 25].

The second version of the field equations, Eqs. (17), (18), has an invariance group
if which is different from 9 but also isomorphic to SL (2, R). One way of generating
9V is to use the following two particular transformations: a gage transformation
on Q,

f->f
Q——>Q+a

(22)
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and the Ehlers transformation [23],

f, ,_
(1 — b + bzf2
Q — b(f2 + 92)

(1 — b9)2 + 19s

f —>

(23)

Physically, the latter is a “duality rotation” for gravity. It sends Schwarzschild mass
into magnetic mass, and when applied to any stationary vacuum solution it leads
to a one-parameter family of physically different solutions.

Although the action of If on f, 9 is nonlinear, it can be linearized by defining
a new set of variables '

(F1,F2,F3)5(f‘1,f‘1§2,f‘1(f2+QZ)) (24)
One can check easily that F" transforms like an 80(2, 1) vector under 1/, with norm

F1F3 — (F2)2 = +1
Then in complete analogy with the treatment for {9, we make the field equations
manifestly covariant under 2? by defining -

G, = sac" VF” (25)

and obtain

V-Ga=0, a=1,2,3 (26)

Explicitly.

G1 =f‘2(2fQVf+ (£22 —f2)VQ)

G2 =f‘2(—2f— ZQVQ)

G3 =f‘2VQ

The original field equations, Eqs. (17), (18), are equivalent to Eq. (26) for a = 2, 3.
For a = 1 we get a new law (not equivalent to Eq. (21) with i = 1). This reformula-
tion of the problem was discussed by Neugebauer and Kramer [26].

The close parallel between the two formulations is not an accident. In fact there
is a mapping

fepU
w=iQ

(27)

which directly transforms one pair of field equations into the other, and maps g
onto if. Eq. (27) itself is nontrivial, and may be used to generate new solutions
provided we can do the necessary analytic continuation from real (0 to real Q!
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An alternative method of linearizing the action of 9? was given by Kinnersley
[27]. By analogy with the Ernst potential we let

u—w
f+i9= (28)u + w

Then we find that the complex 2-spinor

1", = (u, w)

transforms as an SU(1, 1) spinor under 3?. The two sets of linearizing variables
F‘ and 1", are closely related:

1:10:31],F‘ = _r,r, (29)

where 0;“; are the Pauli matrices.
The next logical step is to study the combined actions of g and 3? together. In a

beautiful analysis, Geroch [28, 29] has shown that this leads to an infinite-dimen-
sional symmetry group, acting on an infinite hierarchy of potentials and generating
an infinite number of conservation laws. Although he was not able to write out the
general transformation in a closed form, he speculated that the full group might
suffice to generate all stationary axially symmetric vacuum metrics, starting with
only one!

We will justsketch the results for the case in which electromagnetism is present.
We must then also deal with a complex scalar potential (I) for the Maxwell field.
The field equations are more complicated than Eqs. (15)—( 18) but may still be written
entirely in conservation form. They have an additional symmetry, the Harrison
transformation [30], which can be most simply written as

(I) + b6”
1 — 2b*<I> — cc*é’

(5”
1 — 2b*<1> — cc*é‘

gEf—(Dq>*+iQ

a (30)

and which maps vaccum fields into charged ones. With all'of the commutators
included, the enlarged symmetry group 1” is now an eight-parameter group,
isomorphic to S U(2, l). The sets of linearizing variables must also be enlarged, to
1', = (u, v, w) which forms a triplet representation of SU(2, 1), or to F‘, i = 1, , 8
which is an octet.

Three of the eight parameters in )1” are only gage transformations. The remaining
five provide us with an automatic procedure for generating five-parameter ‘families”
of stationary Einstein—Maxwell solutions from each solution which is known.
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We still have not exhausted the amazing structure hidden in these field equations!
There is a discrete transformation, due originally to Bonnor [31], which maps
stationary vacuum fields into static Einstein— Maxwell ones. Bonnor’s transformation
can be used in either of two forms,

_f2

w on6"
\'5

) II

or else

f = +f2
(i) = 1‘!!!

Eq. (32) lets us keep 1: as the time coordinate, but requires once more an analytic
continuation for success. Bonnor [31], Perjés [32], and Misra et a1. [33] have all
independently applied the transformation to the Kerr metric, where one must
analytically continue the Kerr parameter, a —> ion.

In terms of the linearizing variables, Bonnor’s transformation is quadratic:

(32)

12 = (w*u + u*w)=%(F1— F3)

fi = i(w*u — u*w) = F2 (33)

W (u*u + w*w) = %(F1 + F3)II

In other words, it takes advantage of a unique quadratic mapping of the group
SU(2, 1) into itself via the vector representation.

One other type of transformation should be mentioned, which is quite appealing
but unfortunately has had only limited success. In certain cases the field equations
can be reduced to a form which is translation invariant and (more importantly)
analytic. A complex translation is then possible and leads to some new metrics. I
know, however, of only two cases in which the method has succeeded (see Sec. 2.4).

2.4. Survey of stationary solutions

In Figs. 3, 4 we have given a capsule summary of the known stationary Einstein—
Maxwell solutions, together with indications of how they are related to one another
under generalizations, specializations, and transformations. They are all axially
symmetric except for the ones which have been underlined.

The familiar static Weyl solutions arise from the substitutions
_ 2w

f_e 0%
Q = 0

and the resulting field equation
sII = 0
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Static Vacuum Solutions

Cylinders
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"Extreme" Kerr-Newman
2) Perjés, Israel-Wilson /
3) Cylinder (Datta, Raychaudhuri)

- Figure 3
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Figure 4a
Families of stationary Einstein-Maxwell fields.

Application of the internal symmetry group 9? leads to fields in which f, 9, (I) are
functionally dependent. The Ehlers transformation leads to the stationary vacuum
Papapetrou solutions [34], while the Harrison transformation leads to the static
“charged Weyl” solutions [35]. The general transformation of .1” is a combination
of the two, and leads to a “charged Papapetrou” class of solutions that have recently
been discussed by Bonnor [36]. Particular examples with whole-cylinder symmetry
are the well-known Levi—Civita static cylinders and the charged cylinders of Bonnor
[37] and Witten [38].

We could next look for solutions in which f, a), (I) are the functionally dependent
variables. We let

f = 1190/!)

w = K979 (35)

(13:0
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Families of stationary Einstein—Maxwell fields.

and obtain reduced field equations

gg" — (9)2 = —K‘2
V290 = 0 (36)

Thus (0 again is an arbitrary harmonic function, and the solution for 9%) has one
of three possible forms:

g(¢1)= asinhw + boosh 1,0, a 2 b (37)

900) = all + b (38)
g((0) = a sin (0 + b cos w (39)

In Eq. (37) the restriction on a, b is necessary to keep K real.
Could we not have simply obtained these solutions from the Papapetrou fields

by means of the Kramer—Neugebauer transformation, Eq. (27), which turns Q into
cu? No, we cannot, for two reasons. In the first place this transformation turns the
internal group a? into the coordinate group g, Any fields obtained in that way from
Papapetrou must therefore be equivalent to Weyl by a change of coordinates. The
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second obstacle is the necessary continuation K —> 1K. This is possible only for Eq.
(37), by letting b exceed a. Hence Eq. (37) is equivalent to Weyl and the others are
not. Eq. (38) was discovered by van Stockum [39] and Eq. (39) by Lewis [40].

Van Stockum’s solution written out completely is

ds2 = p110 dt2 — 2p dgo dt — p‘1/2(dp2 + dzz) (40)
and has several points of interest. Note for this metric that t is actually a null coor—
dinate. For w = 0 it reduces, not to flat space, but to the type D static B-metric
(see Sec. 3.1). The van Stockum metric is a nondiverging type 11 solution, with double
principal null vector lying in the t direction. It was more recently rediscovered by
Tiwari and Misra [41]. Hoffman [42] gives a full discussion of all three solutions
of this type. Transformations from 92’ could be applied to the above metrics to get
further solutions, but to my knowledge this has never been carried out. Some par-
ticular charged solutions in which f, a),<I) are functionally dependent have been
given by Datta and Raychaudhuri [43].

The next step is to consider the effect of the Bonnor transformation, Eq. (32).
This can be applied to metrics that are either vacuum or static, and will almost
always lead to solutions which belong to a different “family” under .1”. The Weyl
family is unique, in that it contains both stationary (Papapetrou) solutions and
static (charged Weyl) solutions. What comes as a surprise is that these two solutions
are Bonnor transforms of each other.

The Bonnor transformation does not commute with the coordinate group g, so
even though Eq. (37) above is equivalent to Weyl, it has a nontrivial Bonnor trans-
form. It results in the static electromagnetic solutions discovered by Gautreau and
Hoffman [44] To my knowledge, the transform has not been applied to the other
two cases.

Now let us see what solutions could be obtained by starting from Kerr. The
Harrison transformation leads to the charged Kerr-Newman solution, and the
Ehlers transformation to K—NUT space, completing a “family.” The Bonnor trans-
form leads out of the family to another static Einstein—Maxwell solution of Bonnor
[31], Perjés [32], and Misra [33], mentioned earlier. The five-parameter family
of this solution has also been explored, by Kramer and Neugebauer [45], and by
Esposito and Witten [46]! Tomimatsu—Sato solutions have been charged [47]
and “Bonnorized” [48].

Finally, there is a circumstance we should point out that occurs for certain
“extreme” values of the parameters, say e = m or a = m Consider the Reissner—
Nordstrom solution as a familiar example. The Harrison transformation acts on
the two-dimensional parameter space (e, m) of these solutions, and maps them into
each other. However, it does so hyperbolically. That is, if the new solution produced
is (é, rh), then
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What this means is that the “extreme” solutions form an invariant subfamily under
1”. Analytic continuation is the only way that class can be entered or exited.

The “extreme” case seems to lead to simpler field equations. Extreme charged
Weyl and extreme Kerr—Newman have thereby been successfully generalized to
yield classes of non-axially symmetric solutions [49—52], and extreme TS has been
generalized to allow noninteger values ofn [21].

Most of the remaining solutions [53—58] shown in Fig. 3 stand by themselves
with regard to the symmetry transformations that are presently known. Several
authors have attempted to give classifications for the stationary solutions by various
approaches [59—61].

2.5. Brans—Dicke solutions

Although this paper is devoted to the exact solutions of Einstein’s theory, some
Brans—Dicke solutions have been found recently that are so interesting that they
must be mentioned. It is well known that Brans—Dicke theory is conformally related
to an Einstein theory, in which gravitation is coupled to a massless scalar meson.
The coupling constant is

K = a) + %
where w is the Brans—Dicke parameter. Given an Einstein-scalar solution (gw, Q5),
the Brans—Dicke solution is

guy = e—¢guv (42)

Penney [62] showed that any vacuum Weyl metric f = e” leads to a one-param-
eter family of axially-symmetric Einstein-scalar solutions,

11/ = (1 + KA2)_”2 w
2—1 (43)¢=A(1+KA) ”w

Buchdahl [63] showed that a similar procedure could be carried out on any static
vacuum solution, and he emphasized the relevance to Brans—Dicke theory. Sneddon
and McIntosh [64] then examined the possibility of Ehlers—Harrison transforma-
tions in the presence of this scalar field. They found that (i) did not enter the field
equations for f, 9 at all, only the quadrature for 3). Operations from the group 1/
may therefore be performed on Brans—Dicke solutions also. They have given as an
example the Brans—Dicke~NUT metric.

Of course the Bonnor transformation is also unaffected by (13, and we can use it
to generate a very interesting result. Starting from the Bonner, Perjés, Misra static
solution, we add a scalar field via Eq. (43). We conformally transform this to get a
Brans—Dicke solution. A Bonnor transformation is then all that is required to
produce for us a Brans—Dicke—Kerr metric! This important result also was obtained
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by McIntosh [65]. If the Einstein theory is ever brought tumbling down by the
experimentalists, those of us in exact solutions will have at least one place of refuge.

3. ALGEBRAICALLY SPECIAL FIELDS

Many exact solutions have been found by assuming that the Weyl tensor is al-
gebraically special. The three reduced field equations which result from this assump-
tion were already given by Kerr [66], in the original letter announcing his spinning
mass solution. The present status of the algebraically special vacuum solutions is
shown in Fig. 5, where they are listed by Petrov type, and by whether or not their
rays have divergence and rotation. Solutions which are type I with geodesic rays
have been included, since similar techniques have been used to derive them.

3.1. Nondiverging rays

This class of fields was first studied systematically by Kundt [67]. He gave exhaustive
solutions for types 111 and N, which together comprise the gravitational waves
with plane wave-surfaces. For type N the wave-surfaces must be geodetic, and the
solutions are then known as “plane-fronted” waves. All of Kundt’s waves have two
independent modes of polarization. Correspondingly they contain two amplitude
functions whose time dependence is arbitrary, and whose spatial dependence along
the front is harmonic. This means that in general the waves are inhomogeneous,
and both metric and Riemann tensor may become singular somewhere on the front.
This feature is supposed to be analogous to the electromagnetic TEM waves in
a waveguide, which become singular on the axis, and are therefore realistic solutions
only after a central conductor has been inserted.

The more general of these solutions also contain “twist” r (in Newman—Penrose

Petrov
Type

Nondiverging
P = 0

Nonrotating
P = P

Rotating
P #3

N Complete (l96l) Complete (l967) Equations Only

III Complete “960 Complete (l967) Equations Only

Complete “968) Complete (l968) Complete (I968)

Partial Complete (l962) Nonradiative Only

(Ruled Out) Complete (l962) Stationary Only

Figure 5
Status of algebraically special solutions.
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notation) which causes the direction of the propagation vector to vary steadily in
time, like the beam emitted by a panning searchlight. The type N waves without
twist are the “pp waves.” When a bounded source emits gravitational radiation,
the far-field limit as would be received by a detector is a homogeneous pp wave.
Alternative forms for the pp metric have been given by Rosen [68], by Bondi, Pirani
and Robinson [69], and by Misner, Theme and Wheeler [70], and a detailed
discussion is given in Ehlers and Kundt [71].

The nondiverging type D fields are also completely known The general solution
contains just two arbitrary parameters, and can be written as:

dsz=2dud2—f‘1dx2—fdy2 (44)
where

2amx + l(a2 — x2)
f(x) =fi2a(x + a )

r21 2r2a2f >
d2 = — — — d + d — 45<2a()c2 + a2) (x2 + (12)2 u r ( )

2rx ar
xzel—a2dx+x2 {a2

Here the parameter a is redundant, and may be rescaled to unity. The metric was
first given by Carter [72] and later shown by Kinnersley [73] to exhaust the class.
Bardeen [74] has discussed the role played by this solution as a limiting metric
which is valid in the immediate vicinity of an extreme Kerr throat. Included in this
class of solutions is a trio of metrics which can be obtained from Eq. (44) by per-
forming the singular limit a, l —> 0 in various ways. They are known as the static
B-metrics, and listed in Jordan, Ehlers and Kundt [7].

Nondiverging type 11 fields have not yet been studied in detail. I know of only
one solution, the stationary van Stockum metric (see Sec. 2). It is an example also
of a metric of the generalized Kerr—Schild [91] type, with a static B-metric as its
background space.

dy

3.2. Nonrotating rays

The case in which the rays have divergence but no rotation was treated by Robinson
and Trautman [75] (RT). All solutions of this class are “known,” although some
are much better known than others! The form of the metric is

ds2 = Hdu2 + 2dudr — r2 (10'2
2m 2r

H=——+K+—V2K (46)
r 3m

m+3mK+2KV2K+V4K=O
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where do2 is the line element of an evolving 2-space 2 with Laplacian operator V2
and Gaussian curvature K, and m(u) denotes the mass.

To obtain type N, we put m = 0, K = +1. Then 2 is isometric to a sphere, and
the solutions are determined by the set of all isometric mappings of a sphere into
itself, with arbitrary time dependence. Unfortunately one-to-one mappings yield
a metric which is flat, and consequently for non-trivial solutions the embedding
of 2 must have at least one singular point. This angular singularity prevents the
waves from representing realistic spherical radiation. (However, it should be em-
phasized that this statement applies only to type N, and many RT solutions exist
which do not have angular singularities.)

Type III is much like type N, but with the relaxed condition

V2K=0

This equation has only one solution which can be written down exactly, and it leads
to an infinite (but not exhaustive) class of type III RT solutions discussed by Foster
and Newman [76], Brans [77], and Cahen [78]. To find the remaining solutions
would require numerical analysis which no one has done; however, the equation
makes clear that K itself must have singular points, and hence these fields also cannot
represent realistic waves.

The only type D RT solutions are Schwarzschild, and its two-parameter generali-
zation: the “static C metric” listed in Jordan, Ehlers and Kundt [7]:

ds2 = (x + ,11)_2(Fdz2 — F‘ldy2 — G‘ldx2 — Gdzz)

G(x) = 1 — x2 — 2mAx3 — (32A2x4 (47)

FM = - G(—y)
Kinnersley and Walker [79] discussed its interpretation as the field of a uniformly
accelerating point mass. In general it does have an angular singularity; however,
for the “extreme” charged case e = m it does not. The solution contains both in-
coming and outgoing electromagnetic and gravitational radiation. While runaway
charges are not to be found in the real world, this metric still represents one of the
most realistic radiating solutions we have to date. It also suggests that charged
versions of some other RT solutions may be less singular than the vacuum version.

Type 11 RT solutions are the most general case. Foster and Newman [76] analyze
those which are perturbations of Schwarzschild. They are smooth in the angular
variables, and when analyzed into spherical harmonics, each mode is found to have
an exponentially damped time-dependence. The damping time is of the order of the
unperturbed Schwarzschild mass. This sounds like quite desirable behavior for a
realistic radiating solution, despite the very special time-dependence. However,
several objections have been raised. One is that the exponentials blow up in the
infinite past and there is no way of deciding on the presence of incoming radiation.
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Another is the essential singularity that the perturbation exhibits near the Schwarz-
schild throat. For both of these reasons the RT solutions lie outside the class of
“regular Schwarzschild perturbations” as studied by Regge and Wheeler [80] and
others [81—83].

3.3. Rotating rays

In case the rays have rotation our results are much less complete. To my knowledge,
no exact type III or type N rotating solutions have ever been found! The problem
has been reduced to a very simple set of equations in each case. Kerr’s equations
[66] for type III are

ammo + (6,139) (6mm) = 0
D*D*DQ — DDD*Q* = 0 (48)

where Q and C are complex. For type N, Exton [84] has obtained a similar set of
lower order,

D* 6,,DQ = 0
(49)

D*DQ — DD*Q* = 0

Type D was completely solved by Kinnersley [73], and the results are shown in
Fig. 6. The most general type D vacuum metric, called C—NUT, is stationary and
axially symmetric. It is determined by four arbitrary parameters representing mass,
“magnetic” mass, spin, and acceleration. The type D metrics previously obtained:

Arbitrary
Parameters

4 C-NUT

if \
2 G Kerr NUT

| \ I ’Schwarzschild ”
Figure 6

Type D metrics.
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Kerr, NUT, K—NUT and the C metric, may be gotten by setting one or another of
the parameters to zero. Debever [85] and now Plebanski and Demiariski [86] have
presented the solution in progressively simpler forms. With a slight change of
notation, the Plebanski—Demianski version is

ds2 = (x + y)‘2 {F(dt — x2 dz)2 — F‘l dy2 — 6‘1 dx2 — G(dz + y2 dt)2}

F = (1 + 3c2y2)‘1{(g2 - v — %A) + 21y + 8y2 + 2my3 + (62 + v - %A)y4} (50)
G = (1 + x2y2)_1{—(g2 — v — %A) + 21x — 3x2 + 2c3 — (e2 + y — %A)x4}
This includes the electric and magnetic charge e, g and the cosmological constant
A. The mass parameters are m and l, and s, y are related to the spin and acceleration.
Upon specialization it reduces directly to either the C metric, Eq. (47), or to the
form of K—NUT space given by Carter [72]. We should also mention that Hughston
and Sommers [87] have recently given a short and elegant explanation of the fact
that type D metrics always have two Killing vectors. Type D metrics have also been
discussed by Cahen and Sengier [88].

Rotating type 11 solutions have been vigorously pursued by Robinson and his
co-workers, and the results to date are shown in Fig. 7 (co-workers fell by the way-
side as the generality increasedl). Starting off is the Kerr—Debney [89] solution, a
stationary three-parameter generalization of Kerr. Demianski [90] has indepen-
dently discovered it, and studied some of its curious properties. For example, its
complex divergence has the form

p = — (r + iaP1(6) + ibQ1(0))_l (51)

Arbitrary
Analytic
Functions

3 Robinson- Robinson
|

i
2 Robinson-Robinson-Zund

Kerr-Schild

Arbitrary i
Parameters

3 Kerr- Debney

2 (Kerr)
Figure 7

Known type II metrics.
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where P1 and Q1 are the two kinds of Legendre function. Instead of the familiar
Kerr disc, we find the Kerr—Debney singularity extending along the symmetry
axis, in the form of an infinite spiral staircase. The fact that it is type II is also rather
unusual, because a stationary metric would “normally” be either type I or type D.

The Kerr—Schild (KS) solutions [91] are those whose metric has the form

Q” = 71,, + Hlilv (52)
where I, is a null vector tangent to a shear free geodesic. They are all stationary,
and have angular singularities due to the presence of one harmonic function of solid
angle. In this case the function is the rotation itself. The only case in which the
singularity does not appear is the Kerr metric. A very restricted class of KS metrics
has been studied from a different viewpoint by Schiffer et a1. [92].

The Robinson—Robinson—Zund (RRZ) solutions [93—95] are stationary solu-
tions which generalize Kerr—Schild. They have two harmonic functions of angle,
the added one being the mass aspect which was constant for KS. Further generaliza-
tions were made by the Robinsons to a nonstationary class of metrics [96—98].
The key assumption which leads to RR metrics is that the Riemann tensor must
fall off asymptotically as r‘3. Thus they are all nonradiative. Indeed, they have the
polynomial time-dependence which is typical of nonradiative solutions.

Finally, the type I fields with shearing but geodesic rays have been studied by
similar techniques. Newman and Tamburino [99] found a two-parameter static
solution in this category as well as a nonstatic one. Unti and Rorrence [100] showed
that all others must be asymptotically cylindrical. Kota and Perjes [101] found
the only stationary solution to be a metric with three parameters.

Notes Added in Proof

1. A third accelerating-particle solution was discussed in W. Israel and K. Khan,
“Collinear Particles and Bondi Dipoles in General Relativity,” Nuovo Cim. 33,
331 (1964).

2. Professor Robinson informs me that a twisting type III solution may be obtained
from [96] Eq. (5.18) by setting v = 0. A similar but distinct one is reported in a recent
preprint by A. Held.

3. A twisting type N solution, something that has long eluded us, has now been
found by I. Hauser and submitted for publication.

4. The Islam three-variable solution [57] has been shown to be reducible to the
Schwarzschild solution.
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The Bondi—Metzner—Sachs Group:
Its Complexification and Some Related

Curious Consequences

E. T. NEWMAN

University ofPittsburgh. Pittsburgh, Pennsylvania, U.S.A

The Bondi—Metzner—Sachs (BMS) group is (to my knowledge) the only group in
use in general relativity, which can be considered as a symmetry group in some
sense, and still be applicable to a wide class of physical situations, namely to all
asymptotically flat Einstein or Einstein—Maxwell space—times. Due to the fact that
the BMS group is so similar in structure [1,2] to the Poincare group (both being
the semi-direct product of the homogeneous Lorentz group with an abelian group,
the abelian part being four parameter for the Poincaré group and infinite parameter
for the BMS group) there has been considerable hope that it would play an important
role, either via its representation theory [1,3,4] or through its reduction to the
Poincare group [5, 6] in a quantized version of general relativity or even in particle
physics.

The BMS group first arose [7, 8] as the set of coordinate transformations which
preserved some natural appearing coordinate conditions in the neighborhood of
future null infinity; shortly afterwards it was recognized [1, 9] that the group could
be understood as, in some sense, an approximate symmetry group and satisfied
an asymptotic version of the Killing equation; finally Penrose [10, 11] and from a
slightly different point of view, Winicour [12] gave a precise and clear statement of
the geometric origin of the BMS group and its relation to symmetries.

We will now give a brief and intuitive review of the Penrose version of the BMS
group. (The interested reader should see [11] for the formal statements and proofs.)

The basic entity which we must deal with is future null infinity (or if we had
desired, past null infinity) referred to as J“. 1+ is a three dimensional manifold
(S2 x R) which is the boundary of the conformally compactified asymptotically
flat space-time. Intuitively we can think of J” as the points added to the physical
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space-time by taking the future directed limit alOng each null generator of an arbi-
trary family of retarded null surfaces.

1+ possesses the following properties which can be derived [11] from the assump-
tion that we are dealing with an asymptotically flat solution to the vacuum Einstein
(or Einstein—Maxwell) equation.

(a) f" possesses a degenerate conformal metric with signature (0, +, +) such

that there exists a choice of conformal factor and coordinate system in which the

metric takes the form
4dp d [3

(1 + pmz
with p and fl being the complex stereographic coordinates of the sphere. Intuitively
(1) could be understood as the limit of the physical metric ds in a null coordinate
system divided by the affine length r (along the null rays) as r —+ 00, i.e.,

2

dfi=hmii (3r2

dfi=oaw+ (n

r-wc

If we had chosen a different null coordinate system in (2) this would have induced
a conformal rescaling of 1+.

(b) There further exists, for each choice of conformal factor, a preferred “length”
u along each (null) generator of J“, i.e., along the rays p and [2 const, such that the
ratio of du/dl is invariant under conformal rescalings. By du here we mean the follow-

ing; consider two displacements on J” both leading from a point on one generator
to a second generator, i.e., they both have the same dl but have different positions
on the second generator, the difference being du.

We henceforth adopt this preferred u as the coordinate which labels cuts of f +.
This it when used with the conformal factor and coordinate system associated with

(1) leads to what is referred to as a Bondi-type coordinate system.
The BMS group is now defined as those mappings of J“ —> f + which preserve

both angles defined by the degenerate metric (1) and the ratio du/dl, sometimes [11]
referred to as a null angle. In a Bondi frame one obtains for the mapping

u» u’ = K(u + mm) (3)
,_ap+fi_—, 5—-=1 4pep ”7+5 or B, ()

where oc(p, ,5) is an arbitrary real regular function on the sphere and K is defined
from

dp’dfi’ = 2 dp dfi

U+pWV u+pm2
The homogeneous Lorentz transformations are given by (4) while the infinite

(5)
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parameter abelian group is described by the oc(p, p) and referred to as a super-trans—
lation. (If the a is chosen to have only I = 0 and l = 1 spherical harmonics the BMS
group reduces to the Poincare group. In general there is no canonical way to make
this reduction [5, 6].)

An additional property of 1" which is important for us is the following:
(c) Using a Bondi type coordinate system, there exists (associated with the slicing)

a complex function 0°(u, p, ,5) on 1+, which from the physical space point of view
is a measure of the asymptotic shear of the null cones which intersect J+ at u =
const (0"0 is the Bondi news function). Furthermore under the super-translation
subgroup of the BMS group, namely p’ = p, u’ = u + oc(p, )3) to the new cuts

Iu = const, the asymptotic shear associated with the new cuts becomes

clout/a pa [3) = 00(1’1, _ as p: fi) + 8206 (6)

Two important questions for us are, under what circumstances can we find a’s
or new cuts u’ = const such that 0’0 = 0 and how many such oz’s exist.

In the case of stationary space-times one can show rather easily that there exists
a four parameter family of oc’s, or equivalently a four parameter family of null sur-
faces, such that their asymptotic shear vanishes. We refer to each one of these surfaces
or its intersection with 1+ as a “good” cone or a “good” cut. The set or space of
good cuts is a four dimensional manifold and will be referred to as ifs or stationary
heaven. We remark that in the case of stationary space-times the BMS group can be
reduced to the Poincare group by asking for the subgroup of the BMS transforma-
tions which map the good cuts into themselves. It is thus convenient to think of
the is. (for stationary space-times) as being isometric to Minkowski space. In fact
one can show that for the proper choice of coordinates (x“) on If” starting from
two good cuts a1 = oc(x‘{, p, r3) and a2 = oz(x‘2‘, p, ,5) one has the rather surprising

17]“!t ;:1)(:C2 x1) — —: I;
16“”. (a1 — a2] ‘ )

where d!) is the surface area element on the sphere.
If the stationary space-time were specialized further to Minkowski space then a

“good” cone can be shown to be simply the ordinary light cone from an interior
point and one really has a one-to-one relation between points of f, and Minkowski
space points. In other cases if, is unrelated to actual space-time points.

When we are no longer dealing with stationary metrics but with general asymptoti-
cally flat spaces the situation is much more difficult. First of all there exist, in general,
no cuts of 1" such that a’°(u’, p, ,5) = 0, i.e., there exist no good cones. Though
that appears to end the search for good cones, there is an unusual way out that
leads to some curious results.

We consider the analytic extension of 1+ to a three complex-dimensional mani-
fold ff with the obvious generalizations of the properties (a), (b) and (c).
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Working with a Bondi—type coordinate system and conformal factor we have;
(a’) there exists a degenerate conformal metric (which is complex)

4dp dfi

(1 + 95V
where u, p, and p are three independent complex variables (,5 is not the complex
conjugate of p).

(b/) There exists a preferred complex u along each generator, p and ,5 constant.

(c’) There exists a complex function 0°(u, p, )3) on J: which is the analytic ex-

tension of a°(u, p, ,5) on J“ and which can be viewed as the asymptotic shear of
the null cones (of the analytically extended physical space-time) which intersect

If at u = const (complex).
From (a’) and (b’) we obtain the complex version of the BMS group as the trans-

formations which preserve complex angles and the ratio du/dl, namely

u! = K(u + a(p,fi)) (9)

d12 = 0- duz + (8)

(10)

H
where the variables with tilde are independent of the variables without tilde and
where K is defined from

dp’ dfi’ _ 2 dp dfi

(1 + p’fi’)2 (1 + MW
and a(p, p) is an arbitrary regular complex function on the analytically extended
sphere. (By regular we mean it is expandable in spherical harmonics when p = p)

One then has the generalization of (6) to

0'0(u, Pa fl) = 00(u - a, p, [3) + 5206(1), 5) (12)
where at is now complex.

Though we do not have a rigorous proof, there appears to be little doubt that
there exists a four-complex parameter family of cuts of J: with 0’0 = O, i.e., that
there exists a four-complex dimensional manifold 3f (heaven) of good cones or good

cuts, which is a generalization of the 3%: defined earlier for stationary space-times.
We state without proof the following curious and possibly startling properties

of 3?” :
(i) If one takes two neighboring good cuts a1 = a(z“, p, p) and a2 = a(z“ + dz“, p, ,5)

(with 2“ being the complex labels of the good cuts or points of 3?) and their difference
do: = a2 — (11, then there exists the generalization of (7), namely

dz“dz“ — [L (33] (13)g“ ‘ 16m (dot)2

(11)
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i.e., we have induced on .95” a complex metric (which is non-degenerate) and thus
.9? becomes a complex Riemannian manifold.

(ii) The metric is conformal to a (complex) vacuum solution of the Einstein equa-
tions [13], i.e., g,” = 92;?“ where in satisfies RMQ’M) = 0. It is conceivable that it
will eventually be proven that 6 = 1.

(iii) There does not exist [13] any real four dimensional subspaces of a? given
by 2“ = x“ (x“ real) such that the induced metric (from (13)) is real, except when
.9? is flat. When there is radiation in the physical space-time, the Weyl tensor of
at” is non-vanishing. '

(iv) If lends itself to a natural description of the Penrose theory of asymptotic
twistors [14].

Though we have as yet no clear physical interpretation for if and it might be
nothing more than a mathematical curiosity, there are nevertheless several strong
indications that 3? does have physical significance.

First of all if one believes that twistor theory is of physical importance then due
to the intimate connection between twistors and 3?, it would be highly unlikely
that .2? could be without importance.

Of more immediate interest is the observation that some structures in .9? have
direct geometric meaning in the physical space—time. In particular for every (complex)
curve in If there exists in the space-time a null geodesic congruence, which is asymp—
totically shear free. For many asymptotically flat space-times (e.g., algebraically
special ones) and probably for most, there exists a unique curve in if (which in
some sense can be considered as the complex center of mass [15]) and thus in the
physical space a unique asymptotic shear free congruence. The twist (or curl) of
this congruence can be considered to be a direct measure of the spin angular momen-
tum of the source. If, in addition, there is an asymptotically vanishing Maxwell
field present, it appears likely that a second curve exists in 1/ which can be consid-
ered as the complex center of charge [13]. Though it is not proven, except for the
charged Kerr metric, it seems that if the two complex lines coincide then the gyro-
magnetic ratio of the source will have the Dirac value, i.e., e/mc.

There are several other indications of the possible physical use of .9? and there
even exists a possible physical interpretation for it as a space for asymptotic ob-
servations. They are however still sufficiently tentative and nebulous that it is best
to await their future development before describing them.

The details and proofs of the material presented here will be given in a paper being
prepared with R. Penrose.

Note Added in Proof

The metric g,1v of If does satisfy the vacuum Einstein equations.
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Numerical Integration of Exact Time-Dependent
Einstein Equations with Axial Symmetry*

J. PACHNER
Department of Physics and Astronomy. University of Regina

Regina, Saskatchewan, Canada

ABSTRACT
Numerical integration of exact Einstein equations with axial symmetry is not an easy problem; therefore
the reasons that justify such a diflicult and sometimes tedious research are discussed first.

The solution of the problem of the numerical integration of exact time-dependent Einstein equations
with axial symmetry may be divided into two parts: 1. Analytical part, in which the equations describing
the behavior of a perfect fluid and the corresponding exterior field are reduced to the form suitable for
the computer. 2. Development of the computer programs.

The extent of programming and of running the programs was limited by a very modest research grant.
Therefore only two simple numerical examples illustrate the integration method. Further programming
is needed before the method may be applied for solving astrophysical problems.

The paper is concluded by a brief discussion of an interesting relativistic effect.

INTRODUCTION

Numerical integration of exact Einstein equations with axial symmetry is not an
easy problem; it is therefore appropriate first to mention the reasons that justify
such a difficult and sometimes tedious research.

In the actual Universe one can hardly imagine an astronomical object which ex-
hibits no rotation at all with respect to the background cosmic field. Because of the
conservation of angular momentum, the angular velocity of a first slowly rotating
and collapsing object steadily increases during the contraction and may reach at
its late stages such a high value that the centrifugal acceleration can stop the radial
contraction and revert it to a new expansion (a well-known Newtonian effect).

* Supported in part by the National Research Council of Canada.
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However, since the Einstein field equations are of hyperbolic type, this high radial
acceleration generates also a gravitational radiation that may decisively influence
its axial contraction (a relativistic effect caused not by the non-linearity of Einstein
equations, but by their hyperbolic character; remember the radiation generated
in Maxwell electrodynamics by an accelerated motion of an electric charge).

It is obvious that in such a situation the deviations from spherical symmetry can-
not be considered as small. The applicability of the Penrose theorem [1] on the in-
evitable occurrence of a gravitational collapse is thus seriously restricted in the
actual Universe, because one of the assumptions upon which the theorem is based
is “that the deviations from the above situation” (i.e., from the spherical symmetry)
“are not too great”. The assumption tacitly implies that the self-interaction of a
collapsing object with its own gravitational radiation may be neglected.

The question whether the gravitational wave generated by the radial acceleration
supports the axial contraction or acts in the opposite direction and how strong is
this self-interaction may be decided by analytical methods, but the problem of the
time evolution from a given initial situation can be solved only by a numerical integra-
tion of exact time-dependent Einstein equations with axial symmetry. The tensorial
perturbation calculus [2] presumes a slow rotation which generates merely a weak
gravitational radiation; it cannot be therefore applied in the latter stages of contrac-
tion when the rotation has become fast.

The solution of the problem of the numerical integration of Einstein equations
may be divided into two parts: 1. Analytical part, in which the complete system of
equations describing the behavior of a perfect fluid and the corresponding exterior
field are reduced to the form suitable for the computer. 2. Development of the com-
puter programs.

The integration method is thoroughly described in two larger papers [3, 4]; in
the present communication only its main ideas can be expounded and its applicability
illustrated by two simple numerical examples.

1. ANALYTICAL PART

Part 1 may be subdivided into the following steps:
1.1. The complete system of 13 equations describing the behavior of a perfect

fluid under assumption that all the thermodynamical processes are adiabatic and
no nuclear energy is being released is reduced in a particular system of comoving
coordinates to six Einstein field equations, one equation of continuity, and four
Lichnerowicz initial conditions.

1.2. Without loss of generality the choice of the comoving coordinate system is
restricted by further conditions so that one physical situation with its own past
gravitational history corresponds only to one set of initial data.
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1.3. The field equations are written out in their explicit form.
1.4. The junction conditions and the field equations for the exterior field are

derived.
1.5. Cauchy initial problem is properly formulated.
1.6. Approximate equations for the distance weak field zone are deduced.
1.7. The problem of Lichnerowicz initial conditions is solved.
Each of the steps has its own problems that are to be solved, but the most important

of all is the proper formulation of the Cauchy initial data.
Definitions. The metric is assumed to have the signature +2 and a system of units

is used in which the velocity of light c and the Newtonian constant of gravitation
G equal to 1.

A comma indicates a partial derivative, but where there is no danger of confusion
the comma is omitted. The Riemannian derivative is denoted by a semicolon. Greek
indices run from 1 to 4, Latin indices from 1 to 3.

Let p indicate the pressure, p the proper rest mass density, and a the proper internal
energy per unit mass. The four-velocity will be denoted by u“ = dx“/ds, and the
usual substitution

g = de’t gal,

applied throughout.
The components of the energy momentum tensor of the perfect fluid are defined

by the expression
Tuv = e’fiouuuv + pg”v (1)

in which

e1=1+8+p/p (2)

represents the proper enthalpy per unit mass.

1.1. The complete system of equations

The complete system consists of one equation of state (of any given form in which
the pressure vanishes when the mass density equals to zero)

p = p(p, 8) (3)
of one conservation law of baryon number, which reduces in the case under considera-
tion to the equation of continuity

(—g)‘“2 [pu“(—g)“2],i = 0 (4)
of one normalization equation for the four-velocity

guvu“u” = —l (5)
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of(l + 3) equations ofmotion

T12. = 0 (6)
77-3 = 0 (7)

and of six independent Einstein field equations

Rik = 87:01:. - %Tgik) (8)
The initial conditions for the metric tensor cannot be chosen quite arbitrarily,

but they must satisfy four Lichnerowicz initial conditions [5]

a: a R: — %R5: — surf = 0 (9)
Since the system of 13 equations has to be satisfied by 17 functions, i.e., by 3 quanti-

ties of state, 4 components of the four-velocity, and 10 components of the metric
tensor, four coordinate conditions must now be added. The author succeeded to
reduce the preceding equations to six Einstein equations (8) for six unknown com-
ponents gik and to one algebraic equation

9 = ‘P(XJ)(,¢J44/g)“2 (10)
for the unknown mass density p only in a particular system of comoving coordinates
defined by the (3 + 1) conditions [6, 7]

u‘ = 0 (113)

(a/ax") In [em war/2] = 0 (Mb)
The internal energy a may be considered as a known function, since it is given

by the equation (following from (6))
de/dp = M)2 (12)

expressing the conservation of energy in a perfect fluid at constant entropy, and
four components gfl4 are determined by the formula (resulting from (7))

gu4 = _(Aue—X) (1448—1) = ~uuu4} (13)

A; = Alba): A4 = A4054)

The function ‘P(xj) is given by the initial distribution of the mass density. Under
the coordinate transformation that preserve the coordinate conditions (11a, b),

xi = i‘(x1,x2,x3), f4 = $4064) (14)
the A“ are components of a four-vector whose A, components are determined by
the initial distribution of vorticity.
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1.2. Choice of the coordinate system

With the help of the coordinate transformations (14) it is always possible to reduce
the given coordinate system to a new one in which the direction of the xl-axis coin-
cides at any point with the direction of the vorticity vector (2“ defined by the formula
[8] 9n =%(—g)-1/zswmuau,,,y, em = 11,0 (15)
so that

917m, QZ=Q3=Q4=0 (16)

and in which
A1 = A2 = 0, A3 = A(x2,x3), |A4| =1 (17)

at any moment, and at the initial moment only

912 = g13 = 0 everywhere, (183)
gm = 0 atxl = 0 (18b)

These requirements restrict the coordinate transformations to

i1 = 21(x1), i2 = i2(x2), X3 = 33(x3), i4 = ix“ + const (19)
In the numerical integration the unknown functions 9m are computed at equally

spaced grid points. The exterior field at large distances from the body, or from an
insular system of bodies, generating the field varies in space as well as in time more
smoothly than the interior field. With the help of the transformations (19) the geo-
metrical distances between the grid points may be thus chosen at t = 0 far greater
at the periphery of the integration domain than inside the bodies. This requirement
and the condition that the metric has to be Euclidean in the infinitesimal neighbor-
hood of the xl-axis together with the initial distribution of the mass density and of
the vorticity filaments determine thus uniquely and in the most natural way the
comoving coordinate system.

1.3. Axially symmetric field equations

The components Al and A2 reduce to zero only in the cylindrical coordinates
(z, r, (b, t). It is advantageous to write the metric in the form

ds2 = e2“ dz2 + e” dr2 + (62” — A2e3_2")d¢>2 — 6—21 dt2 + 2U dz dr +

+ 2V dz dqb + 2Wdrd¢ — 2Ae‘2" dd) dt (20)

The unknown functions oz, fi, 11, U, V, Wdepend on 2, r, t, and, in agreement with (17),

A = A(r) (21)
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It is very important to take g33 = (e“ — Aze‘ 27‘), because then Eq. (10) determines
p as an algebraic function of e2“, e2”, e”, U, V, W, but not of x, which depends on the
equation of state and may thus be a complicated function ‘of p.

The metric (20) is Euclidean in the infinitesimal neighborhood around the z-
axis if

17(2, r, t) = 0(2, r, t) + In r (22a)

and
3:0 atr=0 (22b)

The vorticity vector vector 91 is finite at the z-axis if

A = r2a(r) = r2a*ezv‘”, a* = const, v(0) = O (23)
Its square, given by the relation

|Q|2 = 9139195 (24)

is identical with the square of the angular velocity measured (c = 1) by a local
observer.

It has been shown [9] that the field is regular at the z-axis at least at the initial
moment and at its infinitesimal past and future only if

U = ru, V= r21), W= r3w (25)

and if the functions a, ,3, 0', u, v, w, p, v are even functions in r. If the mass exhibits
also a reflection symmetry with respect to the hyperplane z = 0, the functions a,
[3, a, w, p are even functions in 2, while u and v are odd functions in z.

The six independent Einstein field equations (8) may be now expressed as follows

47Ip(eZ - 2p/p) + P
9‘44 = 6211(44 11 (26a)

47rp(e‘ — 217/0) + P
[34.4 = ’ e21k44 22 (26b)

47rp[(e’ — 213/0) + a2r26‘2°‘“(ex + 2p/p)] + P33 -2?” 2 2
ezlk‘“ _ e r a X44

(26c)
0'44 =

“44 = iiiii (26d)e21k44

87tp(e" — 2p/p)v + P
= ’ ezzw— (266)

8775;0(91 — 2P/p)W + P23
e21k44
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The subscripts at the functions or, ,6, a, u, v, w, p, X: v indicate henceforth the partial
derivatives; the comma is omitted. The functions k“v occurring in (26a—f) and in
the functions PM are defined in Appendix A of [3]. They are not tensors; their
superscripts just indicate in which relation they stand to the contravariant com-
ponents of the metric tensors. The functions Pm are defined in Appendix B of [3]
together with the substitutions introduced to simplify the formulas for PM. The
Puv are not tensors; their subscripts just indicate in which relation they stand to the
covariant components of Ricci tensor.

Since the components 9.1. (i # k) vanish at the z—axis as given by Eq. (25), the
field is here regular. In spite of it the functions P,1v contains terms that have an in-
determinate form 0/0 or 00 — 00. Therefore two sets of the functions PM must be
used: one set for the space with r > 0, and the other for the z-axis and denoted by
an asterisk, P* in which the indeterminacy is analytically evaluated.AM

The equation continuity (10) may be reduced to the form

p = \T’Kl/Ze““"“ (27)
The function K is given by the formula in Appendix A of [3]. The function rp de-
pending on the spatial coordinates only is computed by equation (27) from the initial
data of the metric and mass density.

The functions P,” and Pf, and the field equation (26c) contain the derivatives
of the function x. With the help of Eqs. (2), (12), (27), and the field equation (8) with
p = v = 4 they are reduced to expressions containing the derivatives of the mass
density, but neither (p4 /p) nor any second derivative with respect to the time-like
coordinate [3].

Once the equation of state (3) is given and Eq. (12) integrated, the enthalpy e",
the pressure, as well as the functions E and F occurring in the formulas for the deriva-
tives of the function X, may be considered as known functions of the mass density
p. The derivatives of any unknown function occurring in Puv with respect to spatial
coordinates may be expressed, using Lagrange formulas for numerical differentiation,
by the function itself at the given point and its neighborhood [10,4]. If the cross
section (1) = const of the integration domain is divided into a two-dimensional grid
of n equally spaced points where the unknown functions a, [3, a, u, v, w, and p are to
be calculated, the set of six partial differential equations (26a—f) may be now con-
sidered as a set of 611 simultaneous ordinary differential equations and integrated
numerically, using, for instance, the fourth-order Runge—Kutta method. The algebraic
equation (27) determines at each point the seventh unknown function p. However,
in each computation of the right-hand sides of Eqs. (26a—f) all the ki" and all the
derivatives must be evaluated anew and the integration must be carried out for all
6n functions simultaneously.

The finite number n of the grid points is a source of truncation errors in the com-
putation of spatial derivatives. Another source of truncation errors is the integration
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method for ordinary differential equations. The general relativity yields, however,
a sensitive indicator for estimating the total amount of all the errors of the numerical
calculation: If the four components of If; given by Eq. (9) vanish at the initial moment,
then they must vanish also at any moment t 2 O [5]. Due to the numerical errors
the 17; will differ from zero at t 2 0 and this difference may be used as a criterion of
the total amount of errors, for it is highly improbable that the errors could partially
cancel each other in the If; in such a way that the order of magnitude of the If; would
be smaller than the order of magnitude of all the errors.

1.4. The junction conditions and the exterior field

Let 2 be a smooth hypersurface separating the interior field from the exterior field
of the empty space. The hyperspace itself is a part of both subdomains. In the co-
moving coordinates of the interior metric the hypersurface is given by the equation

S(z, r) = 0 (28)

According to Lichnerowicz [5], the junction conditions require the continuity
of the metric tensor and of its normal derivatives across the hypersurface 2 if the
metric is expressed in the admissible coordinates. However, Synge [11] has shown
that even the non-admissible coordinates may be used on both sides of the hyper-
surface 2, providing that they are obtained from the admissible ones by a C1 trans-
formation and that the following four junction conditions are satisfied

(Gliswhnterior = (GZS,v)exlerior at Z (29)

G; being the Einstein tensor. The components gm, are still continuous across 2
(since their transformation law involves only the first derivatives 6561/8)?" ), but their
first normal derivatives gym may now be discontinuous.

If the interior metric is expressed in comoving coordinates, four junction condi-
tions reduce to one condition [3]

p = 0 at 2 (30)

The mass density p varies in time according to Eq. (27). If condition (30) has to
be satisfied at any moment, the pressure in the equation of state (3) must vanish
when the mass density vanishes. Condition (30) reduces then to

‘P(Z,r)=0 atZ , (31)

In the exterior domain the harmonic coordinates, defined by the four coordinate
conditions [12]

(-§)_”2 (5/5?) [QM-Em] = 0 (32)
must be used if the Einstein field equations

R” = 0 (33)
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have to reduce in the distant weak field to the homogeneous wave equations

Elli“v = 0 (34)

in which

W" = 97‘" _ fiuv (35)

denote the deviations of g” from the Minkowskian values r7“. From Eq. (34) it is
obvious that the harmonic coordinates guarantee the metric generated by one or
more bodies forming an insular system to become automatically Minkowskian
at infinity.

The transformation relations from the interior comoving coordinates x“ to the
exterior harmonic coordinates 7c“ follow from the equation [12]

{—n/Z (a/aX“) [l—g)“2 WWW/6%)] = 0 (36)

The six boundary values gi"

£7“ = 9"” (576/ax“) (576,7 3x13 ) (37)

are the source of the gravitational field generated by the object inside the hyper-
surface 2. The remaining components g“ are given by the coordinate conditions
(32).

When one or more bodies forming an insular system are surrounded by empty
space, Eq. (36) and the boundary conditions (37) must be satisfied at the hyper-
surface 2,- of each body if the back-scattering of radiation and the gravitational
interaction (including the gravitational waves) are to be taken into account. It is
obvious that such a difficult boundary value problem hardly can be either solved
analytically or programmed for a computer.

After a thorough examination the author does not see any other approach prac-
ticable than the following one: Let A be a spherical hypersurface where the exterior
field is so weak that the exact field equations (33) may be replaced with a sufficient
accuracy by the approximate ones (34). The body, or the insular system of bodies
moving along the z-axis to preserve the supposed axial symmetry, are assumed not
to be surrounded by the empty space-time, but the whole domain inside A is now
considered as the interior field where the mass density and the metric tensor are
C3 continuous and expressed in the above introduced particular system of comoving
coordinates. The mass density takes very low values outside the bodies and equals
to zero at A. In this way the many body problem is reduced to one body problem and
the boundary between the interior field and the exterior field of the empty space is
shifted to the region where the interior metric differs from the Minkowskian metric
by very small quantities E’" so that Eq. (36) with the background metric reduces
here to the wave equation of Euclidean space with the particular solution
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13? Z = Z, i2 (38)
a: 4:I IIa?

II XI II ‘t O O U: S—
W

y=rsin¢>, i

The harmonic coordinates outside A are thus identical with the Cartesian coordinates.
The transformation from the interior metric to the exterior metric by Eq. (37) becomes
now trivial.

1.5. Cauchy initial data

Because of the transient character of the generation of gravitational waves, the
Cauchy initial data at the entire hypersurface f = const of the empty space never
can be known, for in them the whole past gravitational history of the objects generat-
ing the waves is contained. The 57‘” must, of course, satisfy the Lichnerowicz initial
conditions (9), but this is a minor restriction. An improper choice of the initial values
gt" might imply the presence of gravitational waves generated not by the bodies,
but somewhere at infinity.

However, the Einstein equations are quasilinear hyperbolic differential equations
of second order for the integration of which the Cauchy data at the initial hyper-
surface I = f = 0 must be given. Fortunately, in the weak field zone the field equations
reduce to the homogeneous wave equations for which the classical Huyghens prin-
ciple [13, 14] holds. The principle asserts that sharp signals are transmitted in three-
dimensional space as sharp signals, that is that the solution of the wave equations
describing the propagation of signals emitted at t = 0 depends upon the data at
the boundary of the conoid of dependence, not upon the data inside. The principle
implies that the signals are transmitted only in the direction of the propagation of
waves, but not in the opposite direction, for the propagation towards the source of
radiation would cause reverberation and make the transmission of sharp signals
impossible (this occurs in the space of even number of dimensions).

Consequently, if the space outside A is assumed to be empty and with no gravi-
tational waves incoming from infinity, then the initial data inside A, satisfying the
initial conditions (9), represent the Cauchy initial data which determine the whole
past and future gravitational history of all the bodies inside A. The gravitational
waves propagating towards infinity are to be computed either with the help of the
Huyghens principle from the field at a wave front E lying in the vicinity of A or with
the help of the Fourier transform from the field at A. There exists no back-scattering
at the wave front 3 and, consequently, no back-scattering at the hypersurface A,
because the background metric is here Minkowskian.

If a wave incoming from infinity should be present, then the solution of the field
equations (26a—f) for the interior domain would be determined not only by Cauchy
initial data inside A, but also by a boundary condition at A during the time interval
when the incoming wave was crossing the hypersurface A. Ifthe integral of Eqs. (26a—i)
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is determined by Cauchy initial data inside A only, then this fact implies the absence
of whatever incoming radiation.

1.6. Weak field zone

The field 55:" at A may be expanded into a series of spherical harmonics [3]

ENG, t) = Z Amt) P..(COS 9) (39)
n=0

It can be proved with the help of Fourier transform [3] that the field outside A may
be computed by the equation

li“"(r, 6, t) E (rA/r) Z Afi”(t — [r — rA])P,,(cos 0) =
"=0

= (TA/r)hk”(9,t - [r — W) (40)
This approximate relation may be used only for those wavelengths of Fourier spec-
trum which are much shorter than the radius rA of the hypersurface A, i.e., when

21rrA/J.C > 1 (41)

it being the longest wavelength to which the detector of gravitational waves is sensi-
tive. The weak radiation field (or, at least, its observable part) thus propagates, in
the terminology of Courant and Hilbert [13], as a “relatively undistorted” progressive
wave.

1.7. Lichnerowicz initial conditions

A general solution of this problem is far more difficult than the time evolution
problem of Sec. 1.3. It has been solved analytically for the following three cases:

(i) An ideal fluid with a non-vanishing pressure is rotating. At t = 0, the functions
a, B, a, and the mass density p have just reached their extremum values:

“4:54:04=P4=0 (42)

In addition to u = v = 0 (which represent no restriction of generality) also w = 0
must vanish everywhere as a consequence of p4 = O; we thus have

u = v = w = 0 (43)

The unique solution of Eqs. (9) with p = 1, 2 is

u4 = 0 (44)
The functions v4 and w4 have been chosen as unknown functions that are determined
by Eqs. (9) with p = 3, 4 [3].
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(ii) An incoherent (i.e., pressureless) matter is rotating. The initial conditions are
given by Eqs. (42), as a consequence of which Eqs. (43) and (44) still hold, but the
functions W4 and p have been chosen as unknown functions that are again deter-
mined by Eqs. (9) with p = 3, 4 [9]. This solution is far simpler than the preceding
case.

(iii) An ideal fluid with a non-vanishing pressure does not rotate. At t = 0 the
body, or an insular system of bodies, explode or implode in the radial direction so
that

v4 = W4 = O (45)

and either (14 or [34 is given. The initial conditions (45) together with (43) satisfy
not only the initial condition (9) with p = 3 but also the field equations (26e—f)
at any moment. The functions B4, 144 and 04 or a4, 14.; and 0-4, respectively, have been
chosen as unknown functions that are determined by Eqs. (9) with p = 1, 2, 4 (an un-
published study).

2. DEVELOPMENT OF COMPUTER PROGRAMS

The Whole computer program is divided into a time evolution program and an
initial data program. Since the Lichnerowicz initial conditions do not determine
the initial data uniquely but only restrict their choice, the problem of the admissible
initial data can be solved in different ways. Therefore it is appropriate to keep both
programs apart, not to merge them into one program.

In order to eliminate the occurrence of numbers that are too big or too small a
dimensionless system of units is introduced first.

A part of both programs depends immediately upon the equation of state. This
subroutine can easily be removed from the programs and replaced by a new one
according to the choice of the equation of state.

2.1. Reduction to a dimensionless system of units

The dimensionless system of units is defined by the formulas

”Nam-“(22: r=N“1p:“a ¢>=¢> }
I :(NC)-1pf1,llf 1‘2~*

46
l a pzpié (1*:‘Npi (I ( )

The proper rest mass densities p and pi, the angular velocity an related to a* by
the formula (following from Eqs. (24, (15), and (23))

(u, = ca*e‘2’3"'l" (47)
and the coordinates (z, r, d), r) are measured in (46) and (47) in the c.g.s. system of units.
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The subscript 1' indicates the values at the origin of coordinates at t = 0. The quanti-
ties measured in the dimensionless system of units are denoted by a tilde. The re-
duction coefficient N and its inverse are given by the formulas

N = (47rG/c2)“2 = 3.055 x 10—14(cm/g)1/2, N‘1 = 3.274 x 1013 (g/cm)“2
(48a)

Hence

Nc = 0.9157 x 10‘3(cm3/2/g“2sec), (Nc)_1 = 1.092 x 103(g1/Zsec/cm3/2)

(48b)

In the case of incoherent matter the results of the numerical computation cover
the whole range of densities. In an ideal fluid the numerical results refer only to the
central density p,- at t = 0 which appears in the equation of state. Nevertheless it
is very advantageous to use the dimensionless system of units also in this case.

The reduction of the field equations from Part 1 to the equations with dimen-
sionless quantities can He carried out very easily. After having divided the former by
the constant 47rpi we find that the reduction consists in replacing 41rp by ,5 and con-
sidering then the equations as written throughout in dimensionless quantities. The
results of the numerical computation are converted to the c.g.s. system of units using
the reduction formulas (46) and (47).

2.2. Equation of state

The equation of state is assumed to be given analytically in the form (3). If it is rep-
resented by a set of equations each covering a limited range of the mass density,
the equations must be C 3 continuous also at the end points of their intervals ofvalidity,
because only then the metric tensor remains C3 continuous [5] (for the proper
enthalpy per unit mass e" defined by (2) is related to 9,14 by equation (13)).

After the equation of state has been substituted into Eq. (12) and the integration
carried out, one obtains the relation

8 = s<p) (49)
and with its help

p /p = function of p (50a)
and

e1 = 1 + 8 + p/p = function of p (50b)

E(p) = e"‘(dp/dp) (50c)

F (p) = e“[p(d2p/dpz) — (1 + E) (tip/619)] (59d)

F’(p) = p2(d2E/dp2) - 2F (506)
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In Eqs. (SOa-e) the independent variable p measured in the c.g.s. system of units
is to be replaced by 5 according to Eq. (46). Then five equations constitute now the
exchangeable subroutine of the equation of state. The functions E (p), F (p), and
F’(p) appear in the formulas reducing the derivatives of X to the derivatives of the
mass density.

2.3. Time evolution program

Since the field is axially symmetric around the z-axis and reflection symmetric to
the hyperplane z = O, the integration domain may be restricted to one quadrant of
the hyperplane 45 = const. The integration domain is covered by a two-dimensional
rectangular grid of equally spaced points where the functions a, [3, a, u, v, w, and p
are to be computed as functions of the time-like coordinate t.

The input data are furnished by the initial data program. Since the functions
PM contain the ku‘ and k“ and certain repeatedly occurring products of two or more
quantities, three sets of substitutions are introduced in order to save the computer
time (at the expense of a greater extent of its memory).

Besides the exchangeable subroutine of the equation of state, the time evolution
program consists of

1) the unchangeable set of substitutions I and formulas for the functions ki"
and k“;

2) the Lagrange differentiation formulas which depend upon the chosen number
and arrangement of the grid points in the integration domain;

3) the unchangeable set of substitutions II and III and formulas for the functions
Pika P44: D, Pp, X44;

4) the suitably chosen integration method for the system of simultaneous ordinary
differential equations;

5) the unchangeable set of formulas for the functions PM and I: which are computed
only at the moments when the results of integration are printed;

6) the formulas depending upon the chosen number and arrangement of the grid
points which determine the time dependent coefficients in the series of spherical
harmonics for the exterior field.

Once the number and arrangement of the grid points in the integration domain,
the Lagrange differentiation formulas, and the method of the numerical integration
have been set, the time evolution program is quite general and may easily be adjusted
for any equation of state.

A detailed description of the program, including all the formulas and substitu-
tions, is given in [4].
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2.4. Initial data program

A detailed description of the programs (i) and (ii) of Sec. 1.7 is also given in [4].
The program (i) consists of a large set of input data, of a set of definitions, of an

algebraic part, of the integration of one quasi-linear partial differential equation
of the first order, and of the exchangeable subroutine of the equation of state.

The program (ii) is far simpler, but it can be used only for incoherent matter. It
consists of a small set of input data, of a small algebraic part, and of the integration
of one ordinary differential equation of the first order.

The program (iii) of Sec. 1.7 has not yet been written out, but from its equations
one may expect that it will be more complicated than the program (ii), but certainly
simpler than the program (i).

3. TWO NUMERICAL EXAMPLES

The extent of programming and of running the programs was limited by a very modest
research grant. Therefore only two simple numerical examples are given here. They
show that the applied method really works and how it works, but nevertheless they
also illustrate an interesting relativistic effect. However, further programming is
needed before the method may be used for solving astrophysical problems.

The first computer programs, based upon the integration method described in
[9] and [3], but restricted to the special case of zero pressure in the equation of state,
were elaborated during a few weeks in 1972 by R. Teshima [10]. In these programs
the number of the grid points was very low, n = 15. Figures 1 and 2 show how the
proper rest mass density varies in time in the equatorial plane (solid curves) and
along the axis of rotation (dotted curves). The completely different behavior of the
mass density in Figs. 1 and 2 is caused by the different values of the dimensionless
parameter K2, which equals to 0.36 and 1.44, respectively. The parameter is defined
by the formula

_ 1942
_ 41e1-

2 (51)

in which |Qi| and pi denote the square of the angular velocity and the proper rest
mass density, respectively, at the origin of coordinates at t = 0. The discussion of
this phenomenon is postponed to Part 4.

In order to estimate the stability of the integration method, the integration was
run with increasing time and then run in the opposite direction with decreasing time.
The discrepancies begin to appear in Fig. 1 when t has decreased to 0.125, while in
Fig. 2 no discrepancies appear at all in the integration results with increasing and
decreasing time until i = 0. The applied Runge—Kutta integration method may be
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Figure 1
Relative mass density Mp, in a spherical object of the radius 1? = 0.5. Initial values: a : 70.2F2, B : 0,
a = 70.027, W = i, = [7,, : (r4 : :14 = A = 0, d = 5* : 0.6, x2 = 0.36 (at i : 0 all the vorticity fila-
ments are parallel to the i—axis), n : 15. Solid curves: density in the equatorial plane against k : 8?,
increasing time: 1) f = 0.000; 2) t 2 0.1250; 3) f = 0.2500; 4) i : 0.5000; 5) i = 0.7500; 6) f = 0.8125;
7) i : 0.8671875 (stop because p —» x at the point with 5 : 0.375. f : 0,250). Dotted curves: corre»
sponding densities at the axis of rotation against k : 82‘, increasing time. Broken curves: time decreasing
from f : 0.8125 to 01250; no discrepancies in curves 6e3. Computer time: 715 sec (time increasing from
E : 0.0 to f = 0.8125 and decreasing to 0.1250). Inset: distribution ofthe grid points across the integration

domain.

thus considered as stable during the whole integration. On the other hand, the com—
puter stopped in both cases because the mass density started to increase fast at one
point at the periphery of the integration domain. This point will be discussed in
connection with the new programs.

Unfortunately, in 1973, R. Teshima was not available to modify his programs.
The new programmer, recommended to the author, used Teshima’s time evolution
program as a basis of his programming in which he had (i) to increase the number
of grid points from 15 to 43, (ii) to rewrite the field equations containing new terms
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Figure 2
Relative mass density p/p; in a spherical object of the radius R = 0.5. Initial values: a = —0.1F2, [i = 0,
a = (1.36/3)i2, iv = &4 = B4 = 64 = L74 = 54 = 0, d = Pen“) = 1.2 exp (0.272), K2 = 1.44 (at i = 0 all
the vorticity filaments are parallel to the Z axis), n = 15. Solid curves: density in the equatorial plane against
k = 8?, increasing time: 1)? = 0.000; 2) i = 0.125; 3) i = 0.250; 4) E = 0.375; 5) i = 0.500; 6) i = 0.5625
(stop because p —> 00 at the point with i = 0.250, F = 0.375). Dotted curves: corresponding densities
at the axis of rotation against k = 82, increasing time. No discrepancies at all when time decreasing. Com-
puter time 361 sec (time increasing from f = 0.0 to i = 0.5625 and decreasing to 0.0). Inset: distribution

of the grid points across the integration domain.

involving the pressure and its derivatives, and reduced by the author to a more com-
pact form by introducing the substitutions II and III, and (iii) to enlarge the program
by introducing the computation of the functions 1:. The new time evolution program
was elaborated during three months and tested for the special case of zero pressure
with the help of Teshima’s initial data program (the program (ii) of Sec. 1.7) which
required merely a very slight modification.

The distribution of grid points across the integration domain is shown in Fig. 3.
The integration was run for the same initial data as in Figs. 1 and 2. Its results are
demonstrated in Tables 1a, 1b and 2a, 2b. Tables 1a and 2a show that the initial
data program yields the required accuracy: the error bound of the fourth-order
Runge—Kutta integration method was chosen 10—8; the functions [‘3‘ and I: never
exceed this order of magnitude. Tables 1b and 2b show that the functions I: remain
at a sufficiently low level at and around the center of the integration domain, while
at its periphery they took inadmissibly high values already after a few steps of integra-
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Figure 3
Distribution of 43 grid points across the integration domain.

tion. On the other hand, the numerical values of the functions 0?, B, 5', 11, 17, W, and ,5
differ insignificantly from those demonstrated in Figs. 1 and 2.

The question now arises what is the cause of the fast increase of the functions If;
at the periphery of the integration domain. The roundoff errors and the truncation
errors of the applied Runge—Kutta integration method may be with certainty ex-
cluded, because the integration was stopped after a few steps, and what is more im-
portant, because no discrepancies were found in the numerical results in Figs. 1
and 2 when the integration had been run also with time decreasing from imax = 0.8125
to f = 0.2500 and from Em“ = 0.5625 to f = 0.0, respectively. There exist thus only
two reasons for that increase: the errors are due either to the applied Lagrange
differentiation formula, or to the back-scattering of radiation (the errors of the
differentiation are certainly responsible for the increases of If; at and around the

TABLE 1a
The spatial distribution of the functions &, E, (E, 17, 5, w, of the mass density 5 E RHO, and the functions
I: a 14;; at the initial moment i = 0 within a spherical rotating object of the radius R = 7/16. Initial
values are the same as in Fig. 1. The f—coordinate increases in the horizontal direction from the left to the
right. the f—coordinate increases in the vertical direction downwards. The interval between two equally

spaced grid points h = 1 / 16.

TABLE 1b
The spatial distribution of the functions at f = 0.1875 within a spherical object of the Table 1a.

TABLE 2a
The spatial distribution of the functions 5:, B, 6, :1, 17, W, of the mass density ,5 E RHO, and of the functions
I: E 14/; at the initial moment i = 0 within a spherical rotating object of the radius R = 7/16. Initial
values are the same as in Fig. 2. The F-coordinate increases in the horizontal direction from the left to the
right, the i-coordinate increases in the vertical direction downwards. The interval between two equally

spaced grid points h = 1/16.

TABLE 2b
The spatial distribution of the functions at i = 0.1250 within a spherical object of the Table 2a.
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center of the integration domain). In both cases, when the integration domain was
covered by 15 as well as by 43 grid points, the author computed the spatial deriva-
tives using in the Lagrange differentiation formula all the points in each row and
each column in order to take into account the fact that all the functions were even
functions in r and either even or odd functions in z. However, since the Einstein
field equations are of hyperbolic type, it is plausible that the Lagrange differentiation
formula may give more accurate results if the derivatives are computed from a lesser
number of points. From the standpoint of the numerical analysis the back-scattering
of radiation means that the partial derivatives with respect to the spatial coordinates
at a given point must be computed from the values of the function on both sides of
that point. Both reasons, the errors of the differentiation formula and the back-
scattering, are closely related to each other, but the author believes that the back-
scattering is the primary source of the fast increase of I: at the periphery of the
integration domain. These errors are also responsible for the fast increase of the
mass density at one point at the periphery of the integration domain which stopped
the computer in Figs. 1 and 2. The question what is the source of the fast rise of
If; can be decided by increasing the number of grid points at least to 144 so that the
distribution of the mass density and of the initial values of the metric can be chosen
such that the field at the periphery of the integration domain is as weak as required
in Secs. 1.4 and 1.5 (there is then no back-scattering at the periphery, because the
background metric is here Minkowskian).

The author emphasizes once again that the extent of programming and of running
the programs was limited by the research grant. A further work is needed to find
out the most appropriate Lagrange differentiation formulas and the most appropriate
integration method for the system of ordinary differential equations. However, once
these two problems have been solved, the accuracy of the numerical results will
then be limited mainly by the extent of the computer memory (it determines the
highest number of grid points) and by the speed of computer operations.

One further conclusion can be drawn from Figs. 1 and 2 and Tables 1a, 1b and
23, 2b: The only reliable indicator of the accuracy of the numerical integration of
Einstein equations are the functions 1:. The above mentioned very small difference
in the numerical results when the integration is carried out with time increasing
from t = 0 to rmax and then decreasing from [max to t = 0 cannot be considered as a test
of the reliability of the numerical integration. Therefore the author does not trust
to any numerical integration of Einstein equations when its reliability has not been
proved by the functions It.

The programmer tried to elaborate also the initial data program (i) of Sec. 1.7.
Unfortunately, he was not able within the research grant budget to devise a program
for the numerical integration of the quasilinear partial differential equation of the
first order which would give results with the accuracy required for the time evolution
program.



136 J. PACHNER

The numerical computation of Figs. 1 and 2 and of Tables 1a, 1b and 2a, 2b was
carried out on the computer IBM360—67.

4. A NEW RELATIVISTIC EFFECT

Figure 2 and Tables 2a, 2b demonstrate an interesting relativistic effect discussed
already in [9] and mentioned in [10]. When the angular velocity of the rotating body
is so high that the centrifugal acceleration can stop the radial contraction and revert
it to a new expansion (a well-known Newtonian effect occurring when the parameter
K2, defined by (51), surpasses a certain critical value depending in Newtonian dy-
namics upon the global configuration of the body [15]), then this high radial accel-
eration generates a gravitational wave in the perpendicular, axial, direction (a
relativistic effect caused not by the non-linearity of Einstein equations, but by their
hyperbolic character; remember the radiation generated in Maxwell electrodynamics
by an accelerated motion of an electric charge) which stops the axial contraction
and reverses it to a new expansion.

Figure 2 and Tables 2a, 2b clearly show the decrease of the mass density caused
by the increase of the functions, a, [3, a, i.e., by the increase of the axial and radial
dimensions of the body. When the angular velocity is not high enough to stop the
radial contraction (Fig. 1 and Tables 12]., 1b), then the corresponding gravitational
wave generated in the axial direction by the accelerated radial motion cannot stop
the axial contraction. Of course, Fig. 2 and Tables 2a, 2b must not be considered
as an unambiguous proof that the expansion effect does exist, because the I: take
inadmissibly high values at the periphery of the integration domain, but merely
as an indication that its existence is very plausible.

It seems that Eddington [16] in 1935 was right when he believed that some effect
would be found preventing a star to collapse into a black hole.

Notes Added in Proof

Since the results of numerical integration as described in Part 4 were unsatisfactory,
the author decided to withdraw the manuscript of the paper [4] and to rewrite it
after a thorough investigation of different numerical methods that would give more
reliable results. With respect to the available amount of the research grant the re-
search could be resumed in September 1974 in collaboration with Dr. D. A. Swayne,
a post-doctorate fellow in computer science. The efficiency of the methods was checked
by developing and using a far simpler program for a spherically symmetric collapse
of a relativistic star. The results of this investigation are very encouraging and will
be described elsewhere. They also resulted in the following modifications of the
computer programs for the integration of axially symmetric Einstein equations.
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Sec. 1.7. The unknown functions v4 and w4 were chosen in order to minimize the
numerical errors in the initial data program, but an improper choice of other Cauchy
data occurring in the program gives rise to singularities in the functions v4 and W4.
Therefore another program was developed with a and w4 as unknown functions.

Sec. 2.1. It is more advantageous to map the integration domain on a quadrant
with a unit radius. The reduction formulas (46) are still valid, but the constant p,-
has a slightly different meaning and r3 7E 1 at z = r = i = 0.

Sec. 2.3. It has been found that the Lagrange differentiation formula is responsible
for the majority of truncation and roundoff errors. Therefore the functions that have
to be differentiated are expanded into finite series of Gram orthogonal polynomials,
the numerical data of those functions are smoothed using the least squares technique
in order to diminish the errors of numerical analysis, and then the polynomials are
analytically differentiated [17].

Sec. 3. When the 1: functions surpass a certain critical value, the results of the
numerical integration are no longer reliable. In order to continue the integration,
four elements of the Cauchy data are to be adjusted to satisfy the conditions (9).
When these functions again surpass the critical level, the procedure is repeated. In
this way we obtain a sequence of solutions that do not correspond exactly to the
original initial data, but which nevertheless may be considered as a set of solutions
closely related to the original problem. The advantage of this procedure is that it
permits a continuation of integration for a longer period of time than would be
otherwise possible. The procedure was suggested in [10]; it has been successfully
applied in the spherically symmetric problem, so there is a fair expectation that it
may be adapted also for the axially symmetric case.

Sec. 4. The simultaneous reversion of the radial and axial contraction of a rotating
body into an expansion is caused by the hyperbolic character of Einstein equations
(not by their non-linearity) and by the presence of four Lichnerowicz conditions (9)
restricting the free choice ofCauchy data. The term that corresponds to the centrifugal
acceleration of Newtonian dynamics is coupled through these conditions with the
local Cauchy data determining the axial contraction. The effect will be discussed
thoroughly in the paper [18] that will replace the withdrawn manuscript [4].
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Tests of Theories of Gravity in the
Solar System

JBAN-PAUL RICHARD

Department of Physics and Astronomy, University of Maryland
College Park, Maryland, USA.

1. INTRODUCTION

This paper is essentially a review of recent or forthcoming experiments which test
theories of gravity. The development of space techniques and the improvement of
radar and low temperature techniques has led to an impressive increase of activity
in that area in the last ten years. We have also seen in recent years many new theories
of gravitation and an improved theoretical framework to help analyse and confront
theories and tests. Among all the tests, the Eotvos and the gravitational red-shift
experiments are given special importance as bringing support to the concept of a
metric theory. Recent results on the former are familiar and will not be reviewed
here again. Recent development in gravitational red-shift experiments will be re-
viewed first, and then, light bending, time delay, perihelion advance, gyroscopic
effects and others.

2. GRAVITATIONAL RED SHIFT

The first attempt (Table l) at measuring the time-dilation effect was made by observ-
ing shift of spectral lines originating at the surface of the Sun. The most successful
measurement was the one by Brault (1962). He observed the strong sodium D1
line emitted high in the Sun atmosphere above the highly convective zones. The
shift was measured to be the General Relativity (GR) value i5 %.

A more precise local measurement was made using the Mossbauer nuclear
resonance absorption of the 15 keV line of C057 by Fe”. The latest of a series of
measurements gave the GR value 11% (Pount and Snider, 1965). The possibility

169



170 JEAN-PAUL RICHARD

TABLE 1
Time Dilation Measurements

Accuracy

Performed
Brault (1962) Solar sodium D1 line 5 ‘2;
Pound and Snider (1965) Mossbauer (local) Co57 1 “3/;
Jenkins (1966) GEOS-l satellite (quasilocal) 10 {‘4
Hafele and Keating (1972) Gesium clocks on plane (local) 14 ‘70'

Future
Alley (1975) Cesium and rubidium clocks on

planes (local) 1 3;,
Vessot (1975) Maser on scout rocket (local) 0.002 0/0

Maser on Mercuty—Venus spacecraft
(non-local) 0.1 ‘34;

Clock on high-eccentricity (03)
solar orbit (non-local): 17'106
lst order (~10'8)
2nd order (~10'16)

Pound Tantalum isomer shift 0.02 ‘34

of using the much narrower line of zinc has been reviewed again recently by Pound
and again found to be impractical. The tantalum isomer shift of 6 keV seems however
promising (Pound, 1974). The observed line would be approximately four times
narrower than the Co57 line. Preliminary experiments suggest that a light pipe
could be used to allow a great vertical distance between the emitter and the absorber
without the l/r2 loss of intensity. If so, accuracies of the order of 0.0270 could be
achieved.

It has been suggested quite some time ago (Singer, 1956) that a time standard in
orbit around the Earth be'used to measure the time-dilation effect. The only measure-
ment to date has been reported by Jenkins (1969). He observed the variation in
frequency of a temperature controlled crystal oscillator aboard a GEOS-l NASA
satellite, as the satellite moved from perigee to apogee. The orbit semi-major axis
was 1.26 Earth radii and the eccentricity 0.07. One hundred and two measurements
distributed over four days in 1966 gave a 99% confidence level that the relativistic
variation was there and a best fit of the residuals gave 0.95 i 0.09 times the GR
effect.

The latest measurement of the time-dilation effect was reported in 1972 (Hafele
and Keating, 1972). Four cesium beam clocks were flown around the world once
westward and once eastward on commercial flights. The delays predicted by GR
were respectively —59 and 273' 10‘9 sec, of which ~150- 10—9 was gravitational.
They were observed with an estimated error of $20 10‘9 sec or l4°/o of the gravita-
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tional effect. A similar experiment is being prepared by C. O. Alley where three
cesium and three rubidium clocks will be flown at low speed at an altitude of 20 km
for a few hours. The clocks will be temperature controlled. Laser contact will be
made from ground during the flight to establish in a continuous fashion the marking
of time by the clocks. The stability of the clocks has been determined to be five parts
in 1014 over three hours. The accuracy of the measurement should be close to 1%
of the GR effect which is two parts in 1012.

A rocket probe experiment is being projected for September 1975 by R. Vessot
(1974). In this experiment, a hydrogen maser will be flown aboard a Scout rocket
to an altitude of approximately 3.5 Earth radii. The total flight time will be a few
hours. A maser controlled 2.203 MHz signal will be transmitted to the Earth. The
first order doppler will be measured by a transmitter transponder system and
electronically subtracted from the maser signal on ground, leaving second order
terms only to be analyzed. The stability of the maser will be a few parts in 1015.
The accuracy of the test is expected to be 0.002% of the GR effect assuming that
corrections for atmospheric effects can be accomplished with corresponding ac-
curacy.

More experiments have been proposed. They involve launching highly stable
time standards, masers or rubidium clocks, in orbit around the Earth or around
the Sun. Earth orbits of high eccentricity can provide changes in gravitational
potential of the order of 10‘9 in a few minutes and allow accurate tests with clocks
of modest stability (Richard, 1965). A hydrogen maser in such an eccentric orbit
of mean synchronous velocity could yield a test to 0.001"/0 of the GR effect (Kleppner
et al., 1970). A standard of similar stability around the Sun aboard a Mercury/Venus
spacecraft could yield a test with an accuracy of 0.1 "/0 over a non-uniform region
of the Sun gravitational field (Shapiro, 1971). On a solar orbit of eccentricity 0.3 and
an apohelie of 1 AU, the second order time-dilation effect would be about two
parts in 1016. Such an effect is beyond present technology capability.

3. THE PARAMETRIZED POST NEWTONIAN FORMALISM

The red-shift experiments which have been performed support the hypothesis that
the “real” theory of gravity is a metric theory. A general frame to analyze the ex-
perimental predictions of such theories had been developed (Eddington, 1922;
Robertson, 1962; Schiff, 1962) to cover experiments where spherical symmetry
was an adequate approximation. This framework has been extended recently by
Nordtvedt and Will (Nordtvedt, 1968a, b, 0; Will 1971; Will and Nordtvedt, 1972).
In addition to the familiar parameters [3 and 3) which measure the non-linearity in
the superposition law of gravity and the space curvature produced by unit rest mass,
[31—34 measure the gravity produced by kinetic energy, gravitational energy, internal
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energy and pressure, C and r] measure the anisotropy in the production of gravity
by velocity and stress, A1 and A2 measure the dragging and anisotropy in dragging
of inertial frame by momentum. To each theory correspond a set of value for these
parameters. For theories which conserve angular and linear momentum, a1 = a2 =
a3 = O and the following combinations of the previous parameters are also zero:

C1=C
C2=2fi+2fl2—3y—1

C3=fi3-1
C4=B4-7

Thefunctions
a1=7A1+A2—4y—4

a2=A2+C—1

a3=4f31—2y—2—§

are zero in a theory with no preferred frame effects.
Preferred frame effects include an anisotropy of G which would show as a daily

variation of Q (Will, 1971b). Gravimeter measurements suggest an upper limit to
such an effect. Also, preferred frame effects would include an additional perihelion
advance to which present experimental data impose an upper limit. The experi-
ments impose the following set of limits on presently acceptable values of (£5:

|a1| < 0.2

lazl < 003

|a3| < 2'10—5

A large number of theories have been shown to be in conflict with these results
(Will and Nordtvedt, 1972).

4. LIGHT BENDING

Next to the perihelion advance, the deflection of light rays is the oldest test of GR.
The deflection is maximum (1.75 sec of arc) for rays grazing the solar surface. For
other values of the impact parameter p, it decreases as (Ward, 1970)

R 1 9
A9 = 1.749—0w sec of are

P
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where R0 is the Sun radius and 0 is the angular distance from the Sun to the observed
object as seen by the observer.

The bending of light rays has been observed in the visible and at radio frequencies.
Numerous observations of the effect have been made during solar eclipses. Figure

1 shows the results of many experiments as reexamined by Mikhailov (Mikhailov,
1959). The dispersion of the results is appreciable. No strong conclusion can be
drawn from these results. (They however brought support to the GR value as opposed
to half that value as calculated for a photon falling in the Newtonian field of the Sun.)

The best measurements of the light bending so far have been performed at cm
wavelength using VLBI techniques as suggested by Shapiro (1967). Atmospheric
and solar plasma effects limit the accuracy of these experiments.

The strong nearly point source like radio sources 3C273 and 3C279 have been
observed most often. 3C279 is occulted by the Sun every October and 3C273, 11°
apart, serves as a reference (Fig. 2). The angular separation of the sources is obtained
from the difference in phase in their signals. In such a differential measurement, the
atmospheric effects are greatly reduced but are still important. Figure 3 shows the
fluctuations around the best fit curve in the 1970 NRAO observation of 3C273 and
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Figure 2
VLBI two—antenna configuration for light—bending experiment.

3C279 with a baseline of 2.7 km and a frequency of 8.1 GHZ. The atmospheric
fluctuations can be compared to the relativistic effect which is the difference between
the dashed and solid line. In an effort to reduce even further atmospheric, instrumen-
tal and mechanical phases errors, the NRAO group (Sramek and Fomalon, 1974)
has observed a group of three radio sources. P1306-09, passes within eight solar
radii from the Sun in October. P1245-19 and P1330-02, approximately 12° from
P1306-09 lie on a straight line. Figure 4 shows a significant reduction of noise for
that experiment.

Atmospheric errors could also a priori be reduced by using longer baselines.
In two antennas experiments, observations of each source alternate and phase
have to be extrapolated between each observation. This “phase connection” has an
ambiguity of 27:. In four antenna configurations (Fig. 5) closely located pair of
antennas follow the sources. Phase connections are fewer, and fluctuations in the
rate of the time standards are less important.

At radio frequencies, the electron population of the solar corona acts as a refraction
medium. Its contribution to the relativistic bending and time delay can be important.
It can be calculated from a two parameter expression for the electron density (Van
de Hulst, 1950; Newkirk, 1967):

A B
_ + 7
r6 r2+£Ne(r) =

where r is the distance from the center of the Sun. The equivalent index of refraction
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Phase difference between 3C279 and 3C273 on four different days. Solid line is best fit.

of the medium is then:
41re2Ne (r)

mef2
Where e and me are the charge and mass of the electron and f, the frequency of the
signal observed. The values of A, s and B have been derived at first from corona
scattering observations during solar eclipses. They can also be determined simul-
taneously with the relativity parameters in light bending and time delay experiments.

Because of their dependence in 1 /f2, these effects can also be made negligible
by using very high frequencies (>10GHz). In two-frequencies experiments, the

n2=1
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Phase difference in the October, 1973, P1306—09 experiment on four different days4 Dotted line is best fit.
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VLBI four-antenna configuration for light-bending experiment.
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TABLE 2
Light-bending Experiments

Frequency Baseline
(MHz) (km)

Date Antennas (l + y)/2 Accuracy Reference

1969 2400 21 Goldstone 1.04 0.15 Muhleman et al., 1970
9602 1 Owens Valley 0.99 0.12 Seielstad, 1970

1970 5000 0.7 Mullard 1.14 0.3 Hill, 1971
2700 1.4 R. A. Obser. 1.07 0.17

1970 2695 2.7 NRAO 0.90 0.05
1971 8085 1.9 0.97 0.08 Sramek, 1971, 1972

0.8

1972 8100 845 Haystack-NRAO 0.99 0.03 Shapiro et al., 1974
1973 8085 35 NRAO 1.01 0.08 Sramek and Fomalon, 1974
1974 8085 35 NRAO 0.03 Sramek, 1974

2695

1974 5000 1.4 WRST ~ 0.03 Raimond, 1974
1400 (Netherlands)

V. L.B.I. Light-Bending Experiments

(7+!) = 0,975 i 0.024
1 2
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Figure 6
Statistics of VLBI light-bending experiments.
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relativity and plasma effects can be directly separated. Table 2 lists observations
of the relativistic bending experiments. A weighted fit of these results except for the
long baseline (845 km) result gives 0.957 i 0.04. A weighed fit of all short and long
baseline results gives 0.975 f 0.024 (Fig. 6). The errors given are the weighted average
of the errors indicated by the authors and are consistent with the scattering of the
data. The GR and Brans—Dicke values are also indicated.

5. TIME DELAY

The possibility of measuring a relativistic delay in the propagation of radio signals
was first suggested by Shapiro (Shapiro, 1964; see also Muhleman and Reichly,
1964). The parameter tested here is again 7. The effect for rays passing near the
Sun has a logarithmic dependence on the distance from the center of the Sun which
helps greatly in separating it from orbital effects. For this reason, this measurement
has been conducted during superior conjunctions of planets and probes. The effect
is maximum for rays grazing the solar surface. The increase in the two way travel
time is equivalent to an additional optical path of 72 km. The delays introduced by
the Earth atmosphere are negligible.

Time-delay experiments have been performed by measuring the two way time of
travel of radio signals from Earth to transponders aboard Mariner 6 and 7 space-
crafts in orbit around the Sun. The Mariner transponders operate at a frequency
of 2.2 GHz and can be tracked as close as 1: from the Sun. The time-delay measure-
ments are in themselves consistent at the 3 m level (Muhleman et al., 1971). The
plasma effects have to be modeled in the analysis of measurements close to the Sun.
The errors on that correction are of the order of 800 m near the Sun and 30 m far from
it. These errors impose a limit of approximately 1% to the accuracy with which
the relativistic parameter (1 + 7),? can be determined. The non-gravitational forces
have been more important sources of errors. These accelerations of the spacecraft
are at the level of 10"7 m/secz. Fluctuations of the solar radiation pressure and gas
leakage from attitude control systems account for most of it (Anderson, 1973).
These random fluctuations produce an error in the predicted position of the space-
craft which grows like I3 2 and amounts to ~1 km after 3 months. This limits the
length of the orbital arc which can be usefully processed for relativistic effect to
S ~ 3 months.

The results of the experiments performed during the superior conjunctions of
Mariner 6 and 7 gives (1 + 7)/2 = 1.00 and 1.01 respectively, with a formal error of
1-50/0 and a “realistic” error of 4% (Anderson, 1973).

The time-delay effect has also been observed in the round trip travel time of radio
signals between the Earth and planets. Radar pulses have been bounced off the
surfaces of Mercury, Venus and Mars from Goldstone (430 MHZ) and Haystack
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Figure 7
Statistics of VLBI and time-delay experiments.

(7.8 GHz). Also, 2 GHz measurements have been made with Mariner 9 in orbit
around Mars. In all these cases the non-gravitational forces are not a problem. In
the case of Mariner 9, however, the analysis of long arcs of trajectory requires the
modeling of the gravitational field of Mars. The arecibo data (430 MHz) are taken
far from the Sun (> 15°) and used for orbit determination and plasma calibration.
From the planetary and Mariner 9 data, Shapiro’s result is (1 + y)/2 = 1.00 i 0.02
(Shapiro, 1974). Anderson’s analysis however indicates a high corrolation of 32*
with the plasma effects. Values of y* = (1 + y)/2 from 1.02 to 1.09 appear in the
multiparameter solutions with little changes in rms value of the residuals (Anderson,
1974).

Figure 7 shows simultaneously the results of light-bending and time-delay measure-
ments for (1 + y)/2. A weighted fit of these results (except for those of Anderson for
which “no realistic” errors were suggested) gives (1 + y)/2 = 0.993 i 0.014 where the
error is the weighted average of the errors indicated by the authors. This standard
deviation is consistent with the scattering of the results. This value of (1 + 10/2
agrees with GR but does not support a Brans—Dicke value of 0.93.

6. TIME DELAY—DOPPLER

If a time standard moving towards superior conjunction is observed from Earth,
the relativistic corrections to the optical path in the field of the Sun will produce
an apparent shift of the frequency of the source (Richard, 1966). This effect could
possible be observed if a pulsar is used as such a time standard (Richard, 1968).
The effect would be ~10‘10. It has not been practical yet to measure this effect.
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7. CELESTIAL MECHANICS

7.1. Perihelion advance and solar oblateness

The relativistic time-delay effect is most important in radar measurements per-
formed near superior conjunction of the targets. In the rest of the planetary and
Mariner 9 data and the previously obtained optical data the perihelion advance
is still the most important relativistic orbital effect. Its value depends on the param-
eters B and y

_a+m—mm“”2 * 771—7)—
Where n is the mean angular orbital velocity, m the mass of the Sun, a the semi-major
axis, and e the eccentricity of the orbit. A quadrupole moment of the Sun would
produce an advance of the perihelion a) and a precession of the node Q given by

3 Ja20
‘i’Qz—QQDEW

where J2 is the quadrupole moment and Re the radius of the Sun. Table 3 shows
the two effects for four planets. .

It has not been practical to determine the quadrupole moment of the Sun from the
precession of the nodes of planetary orbits because of the low inclination of these
orbits in the plane normal to the axis of rotation of the Sun. The experiments are
in fact, more sensitive to the different radial dependences of the quadrupole and
relativistic effects.

The radar data to Mercury, Venus, Mars and Mariner 9, together with previous
optical data, have been analyzed by Shapiro (1974) and Anderson (1974). The
results are shown in Table 4. The JPL analysis gives many dissimilar results. Three
of the solutions are shown. The residuals for these three solutions do not differ

TABLE 3
Perihelion (c5) and Node (Q) Precessions

(sec of arc/century)

GR, (:3

Mercury 42.95 —3.4
Venus 8.6 —0.35
Earth 3.84 —0.11
Mars 1.35 —0.03
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TABLE 4
Perihelion Advance and Solar Quadruple Moment

Radar data to Mercury (assumed: fl = 1, J2 = 0) y = 1.02 i 0.002
Venus and Mars [3 = 2.14 J; = 10.8-10'5, y = 1.09
Mariner 9 ranging fi = 2 J2 = 12- 10’5 (y = 1)

(Anderson, 1974)

Radar data alone A, = 0.98 i 0.04 J; = (0.5 i 1.3)- 10—5,
(Shapiro, 1974)

Quadrupole moment J; = (2.7 i— 0.5)- 10'5
Dicke—Goldenberg

Optical oblateness (5 i 0.7)- 10'5

Hill, 1974 Optical oblateness (0.5 i 0.66) - 10'5
Uniformly rotating Sun,

optical oblateness 0.88 ~ 10—5

significantly although the discrepancies between the various solutions are much
larger than the formal errors associated with them. From the radar data alone,
the MIT analysis gave a value for 2.1, = (2 + 2)) — [9/3 which is consistent with
General Relativity.

A measurement of the solar oblateness has also been reported by Hill et a1. (1974)
and Stebbins (1974). The instrument used is a vertical telescope with a single lense
objective of 12 m focal length and 12.5 cm aperture. Mirrors provide altitude and
azimuth coverage. An image of the Sun of coronographic quality is produced at
the focal plane. Stars close to the Sun can also be observed. Four experiments are
projected: the solar oblateness, the bending of light, the time variation of G and the
Earth perihelion advance. The two last measurements are expected to be performed
over a period of ten years.

Figure 8 shows the arrangement for the solar oblateness measurement. Two
narrow slits (one second of arc radial opening) are driven at a frequency a). The
position of each slit is adjusted so that the second harmonic of the signal passing
through it is zero. The distance between the two slits is measured as the “diameter”
of the Sun. Figure 9 shows variations of the measured diameter of the Sun as the
amplitude of the motion of the slits is changed. This is a response to the structure
of the edge of the Sun. If the Sun intensity would vary as a step function at the edge,
the measured diameter of the Sun would be independent of the amplitude of oscilla-
tion of the slits.

The oblateness has been measured for two amplitudes of oscillation of the slits,
6 and 24 arc seconds. The difference in the two measurements reflect the presence



182 JEAN-PAUL RICHARD

/-\Telescope ObjectiveU

Laser Light Detector

Beam Splitter

Slit

If.
Solar Light
Detector

Solar Light// KLoser
Detector

'\___/

Figure 8
Schematic of slit and interferometer arrangement along with the solar-light detection apparatus.

of an excess equatorial brightness:

AI = quator (7‘) _ Ipole (T)

where r is the distance from the center of the Sun. Figure 9 shows how the difference
of the two oblateness measurements varies with time. According to Hill, the high
level of excess equatorial brightness seen in November 1973 could explain a solar
oblateness twice as large as the one observed by Dicke and Goldenberg for the
procedure they used. Figure 10 shows the oblateness measured during the days
where the excess equatorial brightness was low (3 % of its average value). The x-axis
is essentially the time of‘ the day. The sinusoidal term is instrumental. The bias
contains an instrumental bias and the measured oblateness. The result is a visual
oblateness of 10.4 i 12.4 millisecond of arc. A detailed analysis of the various
corrections involved has been given by Hill and Stebbing (1974). This result can be
compared (Table 4) with Shapiro’s result, with the oblateness calculated for a
uniformly rotating Sun, and with the result reported by Dicke and Goldenberg (1967).
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Figure 10
Solar oblateness measurements corrected for atmospheric contribution and best fitted.

7.2. Remark

The separation of orbital relativistic effects due to ,6 and classical effects due to a
solar oblateness would a priori be easier in time delay experiments performed from
Earth to spacecrafts on “quasiradial” orbits such as sections of a grand tour to outer
planets due to the different radial dependence of the two corrections. The relativistic
correction due to B in such experiments could be of the order of 1 km (Richard, 1972).
Observation of such an effect would require “drag-free” probes. Even then, inter-
planetary gravitational noise could limit the accuracy of the experiment.
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7.3. Time variations of G

An experimental limit on the time variation of G can also test theories of gravity.
Two measurements of that quantity have been reported recently (Table 5). The
first one (Shapiro, 1974) is extracted from the radar and optical observations of the
planets. It basically compares the mean angular motions of Mercury with atomic
time. The topography fluctuations limit the accuracy of the result. The second has
been reported by Van Flandern (1974) from observations of the secular acceleration
of the moon. Both results overlap. Continuous collection of radar data should
rapidly improve the former result.

TABLE 5
Time Variations of G

From the secular acceleration of the Moon (Van Flandern. 1974)
Total acceleration deducted from

1955 occultations of stars —83 i 10 sec of arc/cent2

Part due to tidal friction
—from ancient eclipses (Newton)
—newly discovered data on ancient

eclipses (Moller and Stephenson) —41 i 4 sec of arc/cent2
—meridian observations of the Sun.

Moon and planets since 1913
(Oisterwinter, Cohen)

Result: 6/6 = (71.2 : 03-10”0 year"

Radar observations of Mercury
Effect observed G/G = —4 i 8 10'“/year
Corresponding displacement ~ 200 m
Topography fluctuations ~ 1 km

7.4. Orbital equivalence principle

Dicke (1964) and Nordtvedt (1968a) have discussed the possibility that gravitational
binding energy contributes to inertial and passive gravitational mass in a different
way. This effect would be important for a body of planetary size. Nordtvedt (1971)
has considered the implications of such a breakdown of the equivalence principle
in the solar system. Shapiro (1974) reports equivalence at the level of 1 to 0-10/0
from past observations of the Sun—Jupiter—Mars—Earth system.

The effect would also lead to a polarization of the orbit of the Moon. The accuracy
of the laser ranging experiment seems adequate, although the modeling of the lunar
orbit is complex. At present, a fit of 4.5 years of data has been obtained with rms
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residuals of 0.7 m (Williams, 1974). If a Nordtvedt term is introduced, the amplitude
determined in the fit is of 1 m and improves the residuals by 6 to 7 %. This preliminary
result suggests that the value of 67m predicted by Ni’s theory is incorrect. With
improved modeling, residuals are expected to be reduced at the level of 15 cm and the
and the accuracy in the amplitude of the Nordtvedt term correspondingly increased.

8. ANGULAR MOMENTUM PRECESSION

The experiments previously discussed do not involve diagonal components of the
metric at their present level of accuracy. The gyroscope experiment suggested by
Schiff (1960) and developed at Stanford is designed to test for these components
which reflect the effect of the motion of matter on the gravitational field it creates.
In this respect, the gyroscope experiment will explore a new phenomenological
aspect of gravity. Within the context of the PPN formalism, the instantaneous
precession of a gyroscope in orbit around the Earth involves the parameter )2 for the
geodetic part and Al and A2 for the Lense—Thirring part (O’Connell, 1972):

V+1 m 1 I 31'

where r and v are the position and the velocity of the gyroscope, m, a) and I are the
mass, the rotation and the moment of inertia of the Earth. The second term is the
mass-current effect and it is maximized for a polar orbit (Fig. 11). In GR A1 = A2 =
y = 1. The geodetic effect is ~ 7 sec of arc/year and the mass-current effect is ~0.05
sec of arc/year. The design goal is an accuracy of 0.001 sec of arc/year‘

A schematic of the present design of the experiment (Everitt, 1971) is shown in
Fig. 12. A telescope is used to refer the gyro axis to the stars system. The telescope
and the gyro assembly are kept at superfluid helium temperature and are made of
quartz to insure mechanical stability (at 1 m, 0.001 sec of arc corresponds to 50 A).
Two gyroscopes spinning in opposite directions are used for the study of each
effect. In addition a zero G reference mass is included. The London moment asso-
ciated with the rotation of the superconducting surface of the gyro is exactly along
the rotation axis. This moment contributes to the quantized flux through a super-
conducting loop attached to the telescope. Any precession and change in the
orientation of the London moment gives rise to a current which depends on the
inductance of the rest of the closed circuit. Modulation of this inductance will result
in a modulation of this current which is then more easily amplified and detected.

A preliminary experiment is now planned for 1978—1979. It would last for three
months. The orbit would be inclined at 37° and the altitude would be 500 km. The
accuracy goal is 0.1 sec of are for a 20/0 observation of the GR geodetic effect. The
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Figure 11
Spin orientation and precession predicted by GR for the Stanford gyroscope experiment in a 800 km

polar orbit.

Stanford Gyroscope Experiment

Figure 12
Detection system for gyroscope experiment.
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final one year flight in a 800 km polar orbit would follow after final improvements
of the system.

The design goal would allow a measurement of the GR geodetic effect to better
than 0.1 ‘X, and a measurement of the GR mass current effect to a few per cent.

Note Added in Proof

E. B. Fomalont and R. A. Sramek have recently reported the result of their 1974
light-bending experiment using the 35 km N.R.A.O. baseline at 8085 and 2695 Mhz
to observe three colinear sources (Astrophys. J., in press). The observed bending
is 1.015 i 0.011 times the general relativity effect and “virtually excludes” a value of
y < 0.96 or a scalar coupling constant a) < 23. This result is consistent with the
results of previous light-bending and time-delay experiments. The current status of
the analysis of the lunar ranging data collected over the last five years, incorporating
an improved modeling of the lunar librations and the general relativistic accelera-
tions, implies a negligible amplitude for the Nordtvedt term with a systematic error
(at the 70% confidence level) of 30 cm and with the formal statistical error of 5 cm.
Such a result is to be compared with a predicted value of 970/(a) + 2) cm for a scalar-
tensor theory and would also exclude small values of (0.
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The Texas Mauritanian Eclipse Expedition

BRYCE DEWITT
University of Texas. Austin, Texas, U.S.A.

The deflection of light by large masses is one of the most important effects predicted
by currently viable theories of gravity, and an accurate observation of the effect
is of fundamental importance in the determination of which theory is correct. Of
the various alternative methods that have been devised for measuring the deflection
none has as simple a concept or as little dependence on secondary parameters as the
classical method which makes use of photography at optical wavelengths during
a solar eclipse (the deflecting mass being, of course, the sun). Because of its difficulty,
however, this method has often been criticized as being unreliable and insufficiently
accurate for modern needs. Inaccuracies in the older observations stemmed from
a number of problems including an inadequate number of eclipse-field stars, incor-
rect plate processing, failure to use identical optics for eclipse and reference exposures,
failure to use identical optics for eclipse and reference exposures, failure to obtain
night plates with exactly the same instrumental set-up as used for day plates, asym-
metry of star fields, and the unavailability of modern microdensitometric techniques.
Most and probably all of these defects have been overcome in the successful photog-
raphy executed at the 30 June 1973 eclipse.

Advance members of the Texas eclipse team arrived at the oasis of Chinguetti,
Mauritania (lat. 20°N) on 18 May 1973. A semipermanent well—insulated building
was first assembled to house the telescope and to provide a dust-free and thermally
controlled environment in the desert. The building was of plywood and Styrofoam
construction braced with bolted 2 x 4’3. A gasketed movable roof section provided
access to about one hour of sky and 30° of declination. Otherwise the building was
completely caulked and sealed. It was provided with a two-door entrance “air lock”
(to permit entry and egress during sandstorms), a workbench, tool racks, a darkroom,
an evaporative cooler (to provide filtered air and to maintain the telescope typically
at night temperatures), and an air-conditioner (to provide darkroom temperature
control at 68°F).

189
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The telescope itself was assembled as soon as the building was completed. Align-
ment was performed near zenith through the roof and at lower elevation through
removable ports, until there was no detectable stellar drift during a half hour of
running time. The drive was activated by an electronically controlled synchronous
motor run by a 12 V battery source. The motor was mounted on a 4 foot tangent
arm equipped with a high precision screw that allows a 30 minute free run. No manual
guiding was attempted at any time, and examination of the eclipse plates reveals
no trace of tracking error. A preload on the drive was used during the actual eclipse
run.

The anticipated outdoor temperature at mid-eclipse was 85° F. (It turned out,
as a consequence of a morning sandstorm, to be 96°.) Photographic plate focus
runs and adjustments were made with the lens at precisely this temperature. Thermal
invariance was achieved by holding the building at 85C for several hours until equili-
brium was reached and by exposing the hooded lens to the night sky only for brief
periods. At all other times the open ends of the lens hood was covered by several
layers of aluminum foil. A similar aluminum blanket covered the plate end of the
telescope except during exposure runs. The entire telescope tube itself, including
the hood, was wrapped in fiberglass insulation, and the uniformity of its temperature
was monitored by means of thermistors mounted along its length, and on the lens
elements as well.

The lens was a 4—element blue corrected astromet, made by REOSC for Danjon
and never previously used. It had a focal length of 2.1 meters and an 8 inch diameter,
stopped down to 6% inches for image improvement and as insurance against vignetting.
After exhaustive (3 months) tuning and adjustment in Austin, knife edge and other
tests showed excellent quality. The lens was hand-carried to Chinguetti and treated
with gentle loving care en route. Image quality on field plates indicates that the
excellent optics were maintained intact.

At eclipse time rigid temperature control was maintained for 24 hours prior to
second contact. During the night, after reaching thermal equilibrium, the eclipse
plates were prepared for use. Each was provided with a rectangular grid of artificial
star images, or fiducial marks, contact printed from a master plate (prepared with
laser technology by Texas Instruments, Inc.) that was also in thermal equilibrium
with the ambient air. The lattice spacing of the grid was 1 cm and the artificial
images were remarkably uniform and circular, each with a diameter of 50 ,u. The
chief purpose of the grid was to control emulsion creep errors, but it is not difficult
to imagine other uses for the grid in the plate reduction process.

In addition to the grid, each plate was provided with step-tablet wedge patterns
on two opposite corners and in the center, and with small—spot sensitometric scales
on the other two corners. Each pattern was placed about an inch from the nearest
plate edge, to avoid emulsion and development anomalies. The patterns are being
used as sensitometric standards in the plate reduction process, in order to control
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image displacements arising from nonlinear emulsion response and nonuniform
background. The Texas expedition was the first ever to standardize its plates in this
fashion, which should now make it feasible to do meaningful sub—micron densi-
tometry of every important star image.

Atmospheric conditions at eclipse time were, unfortunately, far from ideal.
A sandstorm was raging up until about ten minutes before second contact, at which
time the meteorological effect of the lSO—mile-wide shadow took over and halted
the wind in its tracks. During totality, extinction due to dust in the sky was over
85 ‘70, leading to a loss in the number of star images on the plates by a factor of per-
haps eight or nine, with consequent reduction in the hoped-for statistical precision
by a factor of perhaps as much as three. Nevertheless each plate bears between seventy
and eighty good star images, symmetrically distributed around the sun, a circumstance
favored by the sun’s location in the Milky Way for this particular eclipse. A rotating
sector was used to reduce saturation near the sun so that images of a few ofthe brighter
stars might be secured in the outer coronal region. The corona was not large (quiet
sun year) but there are several prominent streamer images on the plates. It should
be noted that the use of a sector rather than a graded filter eliminated an unnecessary
additional optical element.

Atmospheric dust produced a bright sky, but this problem was admirably met with
the use of fine-grained slow plates (Kodak III-0). The plates are % inch, 12 x 12,
micro-flat, each yielding a 75" x 7.50 field with the Danjon optics. Each was ex-
posed to the eclipse field for 60 seconds and to a comparison field 10° away in decli-
nation (nearly identical in altitude and likewise in the Milky Way) for 30 seconds.
Three plates in all were taken during the 6 darkest minutes of totality, the exposure
sequence being as follows:

Plate 1 : Comparison field, eclipse field.
Plate 2: Eclipse field, comparison field.
Plate 3: Eclipse field, comparison field.

The distribution of comparison field exposures over the period of totality allows
some control over systematic errors arising from temporal changes in temperature,
atmospheric refraction, etc. Moreover, choice of a comparison field at identical
altitude and only 10° away from the eclipse field reduces to a minimum the systematic
errors (that have to be unearthed by the least-squares analysis) arising from changes
in tube and lens flexure and atmospheric refraction. Finally, the star images in a
comparison field 10° away can be adequately corrected for their trace of gravitational
deflection.

The most important and, indeed, indispensable role of the comparison fields is
to fix the plate scale, a quantity that is very difficult to disentangle from the gravita-
tional shift in a least squares analysis. The presence of a comparison field on each
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plate allows one to determine, with much greater precision, the gravitational de-
flection by direct measurement of the night-time plates against the eclipse plates.
The telescope was constructed to register all plates identically with the lens. During
exposure each micro-flat plate rested against steel buttons at the back of the telescope,
independent of the plateholder. Plate-to-plate differences should reflect only secular
changes.

After eclipse day the building was sealed and placed under guard, with the telescope
left in exactly the final eclipse position (except that the tangent drive was returned
to the position it had at the beginning of the eclipse run). The building was reopened
by a second team headed by David S. Evans, which included, for continuity, Drs.
Jones and Sy from June. They found everything in perfect order, and the guard on
duty, upon arrival 6 November. Generators, refrigerators, air-conditioners and
telescope tracking system all worked and first observations were attempted through
clouds on 7 November. Last observations were taken the night of 16 November.
Several nights in this interval, including that when the moon was centered in the
eclipse field were lost due to overcast sky and even rain. The first observations of im-
portance were made after the housing interior was maintained for 48 hours at its
temperature of mid-eclipse, 85°. For the last two nights the temperature was that of
current outside ambient, 75°. The key series of observations at each temperature
precisely duplicated the hour angle and time sequence of the eclipse exposures,
with the addition of three extra eclipse-reference exposures (three extra plates):
one before and two after the eclipse matching series. Contrary to preliminary fears,
seeing appears to have been excellent, even on the plates taken when the air inside
the building was considerably warmer than that outside. As in June, the change of
temperature by 10c required a change of focal setting, in order to obtain well-focussed
images, by 3 millimeters. In all, 33 plates were exposed, including many exposures
of starfields, such as Pleiades, for calibration purposes. Processing of the plates was
carried out effectively as in June, and the disassembly of equipment was not under-
taken until the last plate was seen to be good. New plates, coated in October, were
used almost exclusively, but at least 18 plates were available from June, and tested
on-site. They showed observably higher fog levels, and almost a stellar magnitude
more sensitivity. As in June, the new plates were almost literally hand-carried to the
site.

The lens was hand-carried to Austin, so as to be available for further tests. The
balance ofthe equipment was seen onto a truck to Dakar.

The June plates have been copied and the originals are consigned to Burton Jones
at the Royal Greenwich Observatory, along with four of the comparison plates.
He has measured these as intensively as possible with Herstmonceux machines,
a Zeiss-Abbe comparator and the GALAXY automatic-centered machine. These
preliminary reduction efforts should provide preliminary values of the gravitational
shift. It is assumed that a detailed microdensitometric study of every star image
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will eventually be necessary for the final reduction. This, with detailed photoelectric
studies of all the stars—required for understanding the variation of refraction effects
over the large field—will be carried out at Texas. The large amounts of digital data
of these several studies will be handled straightforwardly, though expensively,
by available computers. If necessary. the lens can be set up for further photography.

The members of the Texas eclipse expedition were:

R. ALLEN BRUNE, JR. Engineering and procurement
CHARLES L. COBB lst field team
BRYCE S. DEWITT Principal investigator; leader of lst field team
CE’CILE DEWITT-MORETTE lst field team; liaison
DAVID S. EVANS Leader of 2nd field team
JOHNNIE E. FLOYD Engineering; telescope design
BURTON F. JONES lst and 2nd field teams; astrometry and data reduction
RAYMOND V. LAZENBY Photography
MAURICE MARIN Optics; engineering
RICHARD A. MATZNER 1st field team; photography and réseau research
ALFRED H. MIKESELL Principal coordinator; 2nd field team
MARJORIE R. MIKESELL 2nd field team
RICHARD I. MITCHELL lst field team; optics; thennometry
MICHAEL P. RYAN Photography and réseau research
HARLAN J. SMITH Principal invistigator
ALASSANE SY lst and 2nd field teams; liaison
CHARLES D. THOMPSON Engineering; housing design

The team also included the secretarial, fiscal, engineering and maintenance staffs
of the Department of Astronomy and Center for Relativity of the University of
Texas. Important help and advice came from associates at Princeton University:
David T. Wilkinson and Phillipe Crane who devised a plate rocker and experimented
with artificial star images and Robert Dicke who provided a wide range of advice
and encouragement. Dr. Robert S. Harrington of the US. Naval Observatory
checked the team’s astrometric concepts and preliminary test plates. Drs. Sy and
Jones were able to participate because of the kindness of the University of Orléans
and Royal Greenwich Observatory, respectively.

Direct financial support, additional to that assessed against various departments
of the University of Texas, came from several sources. Of key importance was a
grant from the Research Corporation, New York, of sufficient size to appoint staff
specifically for the project and maintain it for the preliminary chores so essential
to such an endeavor. The largest part of the direct cost was met with a grant from the
National Science Foundation. The very important help of the European team-
members, concerning the peculiar needs of locating in Africa on two occasions,
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was possible only because of sizable grants from NATO, Brussels, and the National
Geographic Society, Washington. Much of the special research in photographic
technique was assisted by a grant from the Dean’s Office, the University of Texas.

Of primary significance to the undertaking was the logistic support of the National
Science Foundation, under the direction of Ronald LaCount. In particular the
project feels its debt to the NCAR staff under George W. Curtis and Nelder Medrud,
Jr., who saw that its fifty packages weighing close to six tons all arrived on time and
in perfect order.

The expedition is also extremely grateful to the Government of the Islamic Re-
public of Mauritania, which made arrangements for the observatory guard and did
its utmost in many other ways to assist the project.

Special acknowledgement is due Professor R. Michard, director of the Paris
Observatory, and Professor Jean Texereau, for making available the astrometric
telescope. Many manufacturers supplied special consideration to the needs of a
hastily assembled expedition whose goal was the ultimate in astrometric precision.
Of these particular mention must be made of the Eastman Kodak Company whose
Special Photographic Products and Research Divisions stood by at all stages of the
endeavor. Mr. Edward J. Hahn, on behalf of Kodak, reflected the Company’s deep
concern in pure science, regardless of immediate financial return. Scientists of six
American observatories have provided freely out of their experience, and sometimes
of their material assets, as called upon. The whole venture represented an amazing
expression of confidence and cooperation on the part of so many people, that those
of us who manipulated the telescope in Chinguetti can only feel most humbly grateful
to them.

Note Added in Proof

Since this talk was given the plate analysis and data reduction have been completed.
The analysis reveals that there was much more “noise” on the plates than we had
hoped, resulting directly from the bad atmospheric conditions at eclipse time. Both
the GALAXY measurements and the microdensitometric studies confirm this. In
consequence many of our special precautions and innovations (e.g., artificial grid
and sensitometric standards) have proved irrelevant. The final result of our measure-
ments is 3» = .95 i .11 where 7 = 1.0 corresponds to Einstein‘s prediction.
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1. INTRODUCTION

This report is a telegraphically brief summary of a subject that will be discussed
rather more thoroughly in a forthcoming review (Eardley and Press, 1975). The
first word of my title means simply: processes whose immediate observational
significance is not so compelling as to lead to their inclusion in the excellent review
by M. J. Rees elsewhere in this volume. Accordingly, some rather speculative results
can be included here. Another useful recent review is that of Bardeen (1974).

2. UNIQUENESS OF THE KERR SOLUTION

Half of the story lies in the Cosmic Censorship Hypothesis of Penrose (1969, 1973).
Does realistic collapse always produce a black hole (with an event horizon) rather
than a naked singularity (with regions of infinite curvature visible from infinity)?
The past three years seem to have brought little progress in answering this question.
It is not known just how “realistically” the bulk properties of matter must be modeled
for the hypothesis to have a chance of being true; for example, matter whose sound
velocity goes to zero at high densities can exhibit “shell-crossing” type singularities
whose origin is essentially Newtonian, but which technically violate the letter of
the hypothesis (Yodiz et al., 1973).

Almost as useful as a rigorous proof of the hypothesis would be a collection of
numerical examples of realistic collapse events, showing that horizons do (or do

* Supported in part by the National Science Foundation grants GP-36687X, GP—40682,
1' Present address: Princeton University, Princeton, New Jersey, USA.
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not!) in fact form. One such effort in progress is the collision of two black holes by
Smarr (1974). The problem of collapse ofa spheroidal gas cloud may also be studied
by Smarr and Ostriker (unpublished).

The other half of the story is as follows: assuming that a horizon forms, and
assuming that at late times the exterior region becomes asymptotically stationary,
what black hole states are available? Certainly, as a number of people have stressed,
the Kerr solution is not unique, because the generic collapse may be left with a disc
of orbiting matter whose gravitation effect on the central black hole might be
important.

Even restricting attention to the vacuum case, the Kerr solution has not been
known to be unique. Carter’s (1973) famous result shows that such solutions must
come in discrete families, each family allowing an infinite range of masscs and
angular momenta. Is the Kerr family in fact the only one? Some recent work by
Demianski and independently by Arkuszewski (unpublished) sought to prove that
the final state must be of Petrov type D (two pairs of degenerate principal null direc-
tions). Kerr uniqueness would then follow from Kinnersley‘s (1969) catalog of all
type D solutions.

Unfortunately, the proofs contain technical errors. Even more recently, Robinson
(1975) has offered a direct proof of Kerr uniqueness, within the Carter formalism.
which may be the last word on this interesting mathematical problem.

3. STABILITY OF THE KERR SOLUTION

The astrophysical significance of the Kerr stability problem has been discussed
elsewhere (Press and Teukolsky, 1973). The method for solving the problem has
been numerical integration of the remarkable Teukolsky (1973) equation for per-
turbations of the Kerr background Here let me first mention some recent technical
advances: the decoupled variablas for which the Teukolsky equation completely
separates are related to the Newman—Penrose (1962) curvature components 1,00 or
$4. The equation in 1110 allows the physical flux of ingoing radiation to be read off
by inspection, and the equation in 114 treats outgoing radiation likewise, but it had
been a bit of a sticky problem to get both fluxes out of one equation. Starobinsky
and Churilov (1973) first discovered how to do this at radial infinity. Their method
was extended to arbitrary radius by Teukolsky (see Teukolsky and Press (1974)).
In another line of attack, Wald (1973) has shown that not only the radiation fluxes,
but also the entire perturbed metric (except for two constants of integration corre-
sponding to mass and angular momentum) can be reconstructed from the single
Teukolsky variable. And very recently Chrzanowski (1974) has taken steps towards
giving a constructive procedure for computing the metric coefficients thus deter-
mined.
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The question of stability is answered by searching for a pole in the “superradiance
function” of wave frequency. Such a pole in this function, the ratio of scattered wave
energy to incoming energy, in the upper half complex frequency plane (growing
modes) corresponds to an outgoing wave which can support itself with no ingoing
wave, hence an instability. Numerical work (Press and Teukolsky, 1973; Teukolsky
and Press, 1974) shows no such pole: the maximum superradiant amplification for
real-frequencies is 138% for gravitational waves, and is 4.4% for electromagnetic
waves. The sufficiency of looking for poles only for real frequencies (marginal in-
stabilities) but for all values of the hole’s specific angular momentum a has been
shown by Wilkins and Hartle (1974). By purely analytic techniques Friedman and
Schutz (1974), and independently Teukolsky, have proved that there are no axisym-
metric instabilities. A general analytic proof of stability, complementing the numerical
results, is still lacking.

Although charged black holes are probably not astrophysically plausible, some
theoretical work bears mentioning here. In the zero angular momentum (Reissner—
Nordstrom) case, the spherical symmetry guarantees separability of the coupled
gravitational and electromagnetic perturbations into spherical harmonics. But until
recently it has been thought impossible to decouple the electromagnetic and
gravitational wave modes. Indeed, coupled equations—which by their nature allow
parametric conversion of electromagnetic waves to gravitational waves near the
hole—have been studied by Zerilli (1974) and others. Now Moncrief (1974a, 1974b)
has found certain perturbation combinations for which the equations do decouple;
in a sense these are the natural eigenmodes of the parametric wave conversion.
Moncrief has gone on to prove that the Reissner—Nordstrom hole is stable. This
result has one peripheral but novel interpretation: a Reissner—Nordstrom black
hole initially unperturbed and at rest is not subject to the self-acceleration catas-
trophe which has burdened the point-charge solutions of classical electromagnetism.
Seen in perturbation order, a self-accelerating black hole would have unstable
outgoing wave solutions carrying off linear momentum; these do not exist.

Proving that a black hole is stable in vacuo does not prove that it is stable in an
astrophysical environment. An example is the “black-hole bomb” (Press and Teu-
kolsky, 1972): surround a rotating black hole by a distant spherical mirror with a
small porthole in it. An electromagnetic wave inside which is alternately scattered
superradiantly from the hole and reflected back from the mirror will grow in ampli-
tude exponentially in time. The radiation escaping through the porthole to infinity
also grows exponentially. In this example the reflecting (i.e., conducting) mirror
has changed the nature of the problem’s boundary conditions and has introduced
a growing mode where none previously was present. The mirror configuration
here is artificial; but it is not impossible that more natural configurations also lead
to instabilities. D. M. Eardley (unpublished) has suggested that a hole surrounded
by a thin, conducting-plasma, orbiting disc of accreting matter (cf. Pringle and
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Rees, 1972; Shakura and Sunyaev, 1973; Novikov and Thome, 1973) would be an
interesting configuration to study. Can the disc, acting as a sort of ground plane
(like the Earth does for radio waves S 1 MHz) “impedance match” an unstable
growing wave out to radial infinity?

4. QUANTUM PROCESSES NEAR A HOLE

Zel’dovich (1971, 1972) and Starobinsky (1973) first noted that the existence of
classical wave amplification by a rotating black hole implies that the hole must
also be a spontaneous emitter of quanta. Furthermore, the lowest modes, with
wavelengths of order the size of the hole GM/c2, are classically amplified by an
amount of order unity and this means that the spontaneous emission proceeds about
as rapidly as the phase space allows:

Luminosity ~ (energy per quantum) (probability per phase space) (phase space)

~ (hw) (1) (60)
Putting to ~ c3/GM,

, M02 3 G2 < M
Decay time ~

3

m) lOlOyearS (1)
Luminosity ~ hc“ ~

Notice that Eq. (1) also says that a hole of one Planck mass ((hc/G)”2 ~ 10—5 g)
decays in one Planck time ((hG/cs)“2 ~ 10—43 sec) by the emission of about one
quantum, and the results scale up from there.

Complementary to this “dimensional” work have been the attempts of Unruh
(1974), Parker and Fulling (1974) and others to arrive at a consistent formalism
for the detailed computation of quantum fields in a curved space background.
Recently, important contributions have been made by Hawking (1974, 1975),
who proposes that not only rotating holes, but also nonrotating holes (which have
no classically amplified wave modes) “evaporate” by quantum emission at a rate
comparable to Eq. (1).

Hawking’s calculation considers not a hole which has existed to the infinite past,
but one which was formed at some finite time by a spherical collapse. At very late
times there are outgoing null geodesics just “peeling off” from outside the horizon.
Following one of these backwards, we find in general that it goes through the
dynamical region of collapse and out to past null infinity (before the collapse).
Now go forwards along this ray, this time keeping track of its quantum occupation
number: zero (vacuum state) when it came into the collapse; but the strong field
region of collapse mixes up the definition of creation and annihilation operators
and the occupation number becomes nonzero. At late times, when the ray peels
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off to infinity, it carries a spectrum of quanta which, according to Hawking, is
independent of the details of the collapse and depends only on the “surface gravity”
K (derived from the mass and angular momentum) of the hole. The spectrum is
essentially that of a blackbody, with temperature kT= inc/27: ~ 10_6(MO/M) °K.
These striking conclusions will bear considerable further investigation.

5. WHITE HOLES

White holes are naked singularities which expell matter into the universe. In the
context of a big bang cosmology, they are “delayed cores,” pieces of the initial
singularity whose expansion begins much later than the average universe. They
have occasionally been put forward as quasar models.

The trend of recent thought is towards disbelieving that white holes are possible
in a realistic cosmology. Zel’dovich (1974) has argued that the delay of a white hole
is strongly limited by a quantum process: pair creation in the strong gravitational
field of the singularity is supposed to result in a large mass-loss rate and corre-
spondingly short lifetime. However, some parts of this argument are not yet well
substantiated (cf. Novikov, 1973).

Eardley (1974) has recently found a classical mechanism which probably rules
out white holes. Roughly, an infalling test electromagnetic field (e.g., a single photon)
becomes strongly blueshifted as it comes too near the as-yet-unexpanded white
hole singularity. Its gravitational influence is then not negligible, and a detailed
calculation shows that it has the effect of turning the white hole into a black hole:
a horizon forms and the unexpanded core never does expand into the external
universe.

6. HIGHLY NONSPHERICAL OR CHAOTIC COLLAPSE

Here lie the most interesting problems of the future (at present very little is known).
Chaotic collapse is probably the generic case, because it is well known that departures
from spherical symmetry grow unstably in a spherical collapse. Bekenstein (1973)
has argued that since gravitational radiation from many different multipoles will
all be important in a chaotic collapse, the radiation will carry off some net linear
momentum in a random direction. Hence the final black hole may end up moving
at some substantial velocity. Making some assumptions about the relative strengths
of quadrupole and octupole radiation, Bekenstein estimates that a velocity of 1/300
the speed of light might be typical.

M. J. Rees (unpublished) has suggested that the strong waves produced by chaotic
collapse could have another effect: matter immediately outside the collapse might
be accelerated outward by its interaction with the wave. In fact, a simple dimensional
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analysis gives this result: if the characteristic velocities of the inner regions of collapse
are of order c, and if some fraction of order unity of the total mass goes to gravita-
tional waves, then the net changes in velocity imparted to nearby matter by the
interaction of the wave with its chaotic turbulent dissipation is also of order c;
this suggests that matter ejection is not beyond possibility; Teukolsky and I are
presently looking at some details of the process, with some speculative applications
to violent galactic nuclei. This matter ejection mechanism complements the well-
known tidal-force tube-of—toothpaste effect which has previously been discussed
by Wheeler (1971) and others.

The question has now arisen, just what fractional conversion of matter to gravita-
tional waves does occur in a chaotic collapse? In hopes of arousing some substantive
work on this question, let me wildly conjecture an answer.

Start with the known result ofa small particle of mass m falling into a larger black
hole ofmass M (Davis et a1., 1971),

Eradialed : 00104 mcz %
(2)

Scaling this up to equal mass objects, and guessing that the precisely radial infall
of Eq. (2) is not optimal, one gets, say,

E radiated ~ (0.01 to 0.1) MC2 (3)

But this is allowing only “one degree of freedom.” A chaotic collapse ought to have
some larger number of degrees of freedom, all radiating simultaneously. How many?
A guess is that it is determined by the equation of state of the matter; for example,
“clumps” smaller than the Oppenheimer—Volkoff mass limit M04, for a neutron
star (mpmc/Gmfi)”2 ~ 2M0) can support themselves against local collapse. An
estimate of the number N of “independent collapse centers” is then

N ~ M/Mo,V
A little thought now shows that these extra degrees of freedom ought to increase
(3) by a factor ~ In N. Method (i): Collide the collapse centers in pairs, giving (3);
then collide the results in pairs, giving (3) again; this can be done logzN times in
all. Method (ii): Imagine each center falling simultaneously into its nearest neighbor,
into the system of its two nearest neighbors, then three and so on; Eq. (2) gives then
Mc2(l + % + + l/N) ~ MczlnN.

The final conjecture for the gravitational energy radiated by a collapse of mass M
is therefore

Emdmed ~ (0.01 to 0.1) Mc2 In (M/MO_V).

This would correspond to efficiencies of order unity for M 2 106MO.
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Observational Effects of Black Holes
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1. INTRODUCTION

I shall attempt to summarize the evidence—due primarily to X-ray astronomers—
which has led many people during the last year towards the belief that a black hole
has probably been discovered in the system Cygnus X-l, and try to indicate how
future observations of this and similar objects may aid studies of gravitation. Then
I shall make some more speculative comments about the possible existence of
black holes much more massive than stars, or (alternatively) very much less massive
than a star, concentrating on developments which postdate the earlier reviews by
Peebles (1972a) and Bardeen (1974).

2. STELLAR-MASS BLACK HOLES

Peebles (1972a) has summarized the astrophysical arguments which suggest that
up to 10 0/o of the mass of the galactic disc may reside in collapsed stellar remnants of
~ 10M0- Recently Shapiro (1973a,b, 1974) has refined and extended Schwartzman’s
(1971) earlier calculations of accretion by these black holes. The expected angular
momentum of infalling interstellar gas is likely to be so low that the flow is more or
less spherically symmetrical. The radiation would be bremsstrahlung, synchrotron
emission, and y-rays from decay of no resulting from particle collisions. The overall
spectrum of the resulting radiation is hard to predict, mainly because it is uncertain
how the magnetic field behaves, but the typical expected luminosities (which are
more or less the same for Schwarzschild and Kerr black holes) are unpromisingly low.
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However, Schwartzman (private communication) is carrying out a search for such
objects, which he believes should have colours similar to white dwarfs, but be dis-

tinguished by rapid (millisecond) variability.
Zeldovich and Guseynov (1965) suggested that accretion onto a black hole in a bi-

nary system might cause strong X—ray emission. There are two main reasons for this

expectation: (i) A much greater supply of material is available from the companion

star’s atmosphere than from the tenuous interstellar gas surrounding an isolated stel—

lar-mass black hole. (ii) The accreted material would have too much angular momen-

tum to be swallowed by the hole, and would instead form an accretion disc,

guaranteeing efficient conversion of gravitational energy into radiation via viscous

dissipation. The main development since Peebles‘ (1972a) review at GR6 is the

discovery of an objectiCygnus X-1_which seems to answer this description.

The arguments that Cygnus X-l may involve a black hole have been reviewed

elsewhere (see, for example, Giacconi (1974), Rees (1974)). The spectrum and rapid
irregular variability of the X-rays are consistent with an interpretation involving
an accretion disc around a black hole. Recently Rothschild et a1. (1974) have claimed

evidence for variability on time scales as short as a millisecond, but the statistical
significance of their data (Press and Schechter, 1974) is hard to quantify. The X-ray

emission is associated with the companion of HDE 226868. This companion is inferred
to have a mass 2 6M0, which exceeds the limiting mass of a non-rotating white
dwarf or neutron star (assuming general relativity or almost all viable gravitation
theories whose post—Newtonian predictions agree with experiment (Malone and
Wagoner, 1974)). Thus, ifa single compact object is involved, a black hole seems the
only option (unless one invokes a differentially rotating white dwarf or neutron
star, supported largely by centrifugal forcesibut viscosity or dynamical instabilities
may in any case cause such an object to evolve rapidly into a black hole).

But the argument is certainly by no means watertight. For instance, the rapid
variability does not necessarily imply that the whole source is compact—it could be
due to independent flares on different parts of the surface of a larger body. Another
possibility (Fabian, Pringle and Whelan, 1974 ; Bahcall et a1., 1974) is that the compan-
ion ofHDE 226868 is itselfa binary, consisting of an ordinary 5710MO main sequence
star orbited by a neutron star, the latter being the actual X-ray source.

We shall be able to draw firmer conclusions about whether black holes exist
when a larger sample of X-ray binaries has been discovered, but as long as Cygnus
X-l remains unique one cannot exclude “ad hoc” models which do not involve a
black hole. On the other hand, unless one believes that black holes are intrinsically
absurd, the black hole interpretation seems the least contrived and most plausible.
The formation of systems such as Cygnus X-l can then be quite naturally interpreted
in the context of binary star evolution (see, for example, van den Heuvel and de
Loore (1973)), whereas the origin and stability of 3-body systems pose serious prob—
lems; and they certainly raise fewer difficulties than the origin of systems like Her
X-l which are believed to contain neutron stars.
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The discovery of a firm black hole candidate would signify that strong gravitational
fields actually existed. It would also permit—at least in principle—several tests of
rival gravitation theories. Ifthe X-rays from Cygnus X-l are emitted by an “accretion
disc”, it is therefore interesting to consider whether, by detailed observations, one can
diagnose some properties of the metric around the black hole. The theory of accretion
discs has been discussed by many people (e.g., Pringle and Rees, 1972; Shakura and
Sunyaev, 1973; Novikov and Thorne, 1973; Lightman, 1974). If the disc is in a steady
state and its outer radius is very large compared to GM/c2, the luminosity is assumed
to be ~ 8 Fc2, where F is the accretion rate, and e is the binding energy of the inner-
most stable circular orbit (radius rmin). The value of s varies from 6 0/o for a Schwarz-
schild metric (rmin = 6GM/c2) to 42% (r = GM/c2) for a “maximal Kerr” metric
whose angular momentum is aligned with that of the disc.

Bardeen (1970) pointed out that, if the material accreted from the disc carries with it
the specific angular momentum corresponding to the innermost stable orbit, the
angular momentum/mass ratio of the hole secularly increases towards “maximal
Kerr” (a/m = 1). The time scale for this to occur, ~ M/M, would typically be z 108
yrs, which probably greatly exceeds the duration of the mass transfer. Thus the metric,
and consequently the efficiency a, would be determined by how the black hole formed
rather than by what happened to it later. Thorne (1974) has recently modified
Bardeen’s work to take account of the net angular momentum of the radiation from
the disc which falls into the hole, and finds that the limiting value of a/m becomes
~0.998 rather than unity. Although this may seem a minor refinement, the location
of the innermost stable orbit, and therefore a, is very sensitive to a when a/m is close
to unity, and Thorne‘s correction would imply that the limiting efficiency was ~0.3
rather than 0.42. Thorne argues that a black hole is unlikely to form with a/m > 0.998;
but if it did, a/m would initially decrease on a time scale < M/M.

These efficiencies refer to uncharged black holes. A black hole surrounded by
unmagnetised plasma could not acquire a charge Q exceeding ~ GMmp/e (the value
for which the electric and gravitational forces on a test proton are comparable).
The fractional electrostatic contribution to the mass of the hole is then only ~ 10‘“.
A black hole accreting dense rotating magnetised plasma may, however, acquire
a larger charge, because a large electric field then arises in frames that do not move
with the fluid.

The spectrum of the radiation from accretion discs is hard to calculate, even when F,
3 and M are given, because it depends on the density and vertical structure of the
disc, and thus on the very uncertain viscosity. For luminosities ~ 1037 erg sec—1
and masses of 5—10M(D , the radiation is predominantly in the X-ray band, the harder
emission coming predominantly from the inner regions (see the discussions by Shakura
and Sunyaev (1973) and Lightman (1974)). Moreover, we have no independent
estimate of F—even if the efficiency has the minimum value of 6%, the required
accretion rate in Cygnus X-l is far below the mass transfer rates inferred in more
normal binary systems.

min
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Minimum time scale of variability

The period of the innermost stable orbit is 21z(6)3/2 GM/c3 (~ 0.5M/Mo ms) for a
Schwarzschild metric, but only 47rGM/c3(~ 0.06 M/M 0 ms) for “maximal Kerr”.
The minimum epicyclic periods are also close to these values. Since the value of M
can already be pinned down at least to within a factor ~2, this period (if it could
be determined) would tell us something about the metric. It has been argued (Sunyaev,
1973; Bardeen, 1974) that if the disc were irregular this is the minimum time scale
that would be expected in any observed quasi-periodic fluctuations. Although the
existing data show no evidence for any “pulse trains” (and it is easy to think of many
instabilities which could cause rapid but irregular X-ray flickering) improved future
experiments might conceivably reveal periodicities. On the other hand, it is question-
able whether the “innermost stable orbit” retains any precise significance in a realistic
model: the X-ray luminosity of Cygnus X—l is high enough that radiation pressure
forces are comparable with gravity in the inner parts of the disc; there are also in-
stabilities in the inner part of the disc ifthe viscosity has certain forms (Lightman and
Eardley, 1974); also, it is by no means clear that the radiation emitted from within
rmin is necessarily negligible, and this could vary on even shorter time scales.

Deviations from axisymmetry

If the angular momentum of a (Kerr) black hole is oriented obliquely with respect
to that of the accreted material, the disc structure is more complicated (Bardeen and
Petterson, 1974). The orbital planes would precess owing to the Lense—Thirring
effect, with a period ~ (a/M)‘ 1 (c/GM)3/2 times longer than the Keplerian period.
This precession will have no effect at large radii when its time scale is longer than
the infall time scale (ve/v, times the Keplerian period). At smaller radii, precession
would cause the inner part of the disc to align with the holes equatorial plane.

How could this effect be discerned observationally? The X-ray luminosity from a
disc emerges anisotropically, the intensity being greatest in directions perpendicular
to the plane. This effect cannot be detected directly, however, because—even when
Lense—Thirring effect occurs—the disc orientation remains almost fixed in space.
But there are two indirect possibilities: (i) The amount of heating of the companion
star at different orbital phases gives us, in principle, some estimate of the X-ray
emission in directions other than our own line of sight. (ii) If (as is likely) electron
scattering is a dominant cause of X-ray opacity in the disc, the X-rays will be linearly
polarized, with the electric vector being (for an optically thick disc) preferentially in
a direction perpendicular to the plane of the disc. Thus it is in principle possible, by
measuring polarization, to determine the orientation of the disc. The precession
effect mentioned above might cause the hard X-rays (which come from the inner
regions) to have a different polarization direction from the softer X-rays.



OBSERVATIONAL EFFECTS OF BLACK HOLES 207

Consequences of alternative theories of gravitation

In some theories of gravity the equivalence principle is violated for self-gravitating
bodies. The resulting effect (Nordtvedt effect) is being searched for in the orbits of
bodies in the solar system. For a neutron star or black hole, this effect could amount to
several per cent, the Keplerian velocity of a compact object around a binary com-
panion being several per cent different from that of a test particle in a similar orbit.
Possible observable consequences of this in X-ray binaries would include the follow-
ing: (i) Gas streaming from the companion star would have an amount of angular
momentum relative to the compact object which depended on the gravitation theory
adopted. (ii) The orbits of fluid elements in the accretion disc would be ellipsoidal
and not circular. (iii) Masses obtained by dynamical arguments and by stellar atmo-
sphere arguments may be incompatible. Although these all look somewhat unprom-
ising, I mention them because they may stimulate people to think of some “cleaner”
signature of equivalence principle violation which I have overlooked. (See note (1)
added in proof.)

In the next few years we can expect much better X-ray data on known X-ray bi-
naries, and maybe the discovery of many more—HEAO B, planned to be launched
before 1980, should surpass the sensitivity of the UHURU satellite by ~104. De-
tailed observations of X-ray variability (in particular, correlations between the
behavior in different energy bands), and polarization, should yield some under-
standing of the structure and stability of accretion discs.

If the fluid dynamical and radiative aspects of discs were better understood, one
would then have some chance ofusing the X-ray observations to learn something about
strong gravitational fields. But my personal (rather pessimistic) guess is that it will
be a long time before we can determine the magnitude and orientation of the angular
momentum of the putative black hole in Cygnus X-1 or any similar system. To use
such systems to discriminate between different gravitation theories is perhaps an
even more remote goal.

3. MASSIVE BLACK HOLES

Numerous models have been proposed to explain quasars and other manifestations
of “violent activity” in galactic nuclei. A feature common to many of them is that the
estimated duration of the phenomenon is < 1010 years, and that the formation of a
massive black hole seems a likely end result. Massive black holes (“dead” quasars)
might therefore perhaps lurk in the centres of some galaxies. Another independent
motivation for searching for such objects relates to the proposal (Hoyle and Narlikar,
1965; Ryan, 1972) that massive primordial black holes might have constituted the
“seeds” around which elliptical galaxies condensed.

Ifaccretion ofinterstellar gas occurred, these massive holes would develop scaled-up
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version ofthe accretion discs in X-ray binaries, except that the radiation would emerge
not as X-rays but at optical, ultraviolet, or infrared wavelengths (Lynden-Bell and
Rees, 1971). Even if there were no accretion, the gravitational field of a massive
black hole might affect the motion and spatial distribution of the surrounding stars.
The possible existence of massive black holes in elliptical galaxies has been discussed
by Wolfe and Burbidge (1970). The velocity dispersion of stars in the inner regions
sets a fairly firm upper limit of ~101°M® to a hypothetical central dark mass. The
effects on the stellar density distribution are less straightforward because the re-
laxation time in elliptical galaxies is typically > 1010 years—it is not obvious that
the introduction ofa black hole need necessarily cause any extra concentration of stars
in its vicinity. (Peebles (1972a, b) has discussed the analogous situation in globular
clusters—the stellar relaxation time is here S 1010 yrs, and so the absence of a “cusp”
in the light distribution does set limits on a central black hole.)

Black holes outside galaxies might be detectable if their masses were very large. Since
the accretion rate depends on M2, a very massive (Z 1012 Mo) hole would be highly
luminous even if it were surrounded by very tenuous intergalactic gas (Pringle,
Rees, and Pacholczyk, 1973). If such objects were numerous enough to make a major
contribution to the mass of the universe, some should have been detected Via the
gravitational lens effect (Refsdal, 1970; Press and Gunn, 1973).

4. MINI-HOLES

One cannot envisage any plausible astrophysical process, occurring at the present
epoch, which could produce collapsed objects of < 1 M0. But such objects could
conceivably have formed in the very early stages ofthe “big bang” when the primordial
material greatly exceeded nuclear densities. The mass encompassed within the particle
horizon of a Friedmann universe is MH 2 105tsec Mo; and this is itself below a
solar mass throughout the “hadron era” of the standard “hot big bang” cosmology.
There is no reason to believe that the universe was even approximately “Fried-
mannian” in the hadron era—the amplitude of small-scale inhomogeneities, or
curvature fluctuations, could have been so great that some regions promptly recol-
lapsed, forming black holes. (Zeldovich and Novikov conjectured that a primordial
black hole forming in this fashion would accrete so rapaciously from its surroundings
that its mass remained ~ MH 0C t throughout the radiation era, eventually reaching
2 1015MO. Recent work by Carr and Hawking (1974) shows that this conjecture is
incorrect, except under very special initial conditions, and that primordial holes do
not accrete fast enough to grow significantly.) Furthermore, some physicists favour a
“soft” equation of state (i.e., P/p < %CZ) at supernuclear densities. Ifthis were correct,
and the Jeans mass were many orders of magnitude smaller than MH, then initial
inhomogeneities might recollapse before being stabilized by pressure gradients
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even if their amplitude were < 1 when they first came within the horizon. Carr
(1975) has attempted to estimate the mass spectrum of these black holes, for various
assumptions about the equation ofstate and the nature of the primordial fluctuations.

If these mini-holes exist, they could have played a role in the process of galaxy
formation (Meszaros, 1975) because, being almost unaffected by radiation drag and
pressure gradients, they could have started aggregating into clusters as a result of
gravitational instability before the end of the radiation era.

Black holes of very low masses (Schwarzschild radii comparable to elementary
particle dimensions) are of special interest because they are the only ones for which
the particle creation effects recently discussed by Hawking (1974a, b) could be ob-
servationally significant. (See the accompanying article by Press for a summary of this
work.) According to Hawking, a black hole of mass m g radiates like a black body of
temperature T: 1027m‘ 1 °K. The radiation rate is then oc m‘zf (m), wheref(m) is a
function that takes account of the number of species contributing to the radiation. The
predicted temperatures for stellar-mass black holes are so low (~ 10‘6 °K) that the
radiative effects (for which the time scale is 1060 Hubble times) are completely swamped
by accretion. When T < 1010 “K, only zero mass particles contribute to the radiation.
However for higher temperatures (i.e., lower masses), an increasing number of species
can contribute: the radiation rate thus depends on in more steeply than 0C m‘z.
The lifetime is thus a steeper function of m than m3. The only black holes wh‘ose
“evaporation time” is predicted to be S 1010 yrs are those with m S 10” g; and for
these the temperature is unfortunately so high thatf (m) is very uncertain. IfHagedorn’s
hypotheses were correct, I" (m) would tend to infinity as m decreased toward a few
times 1013 g; on most other assumptionsf (m) would increase, but remain finite, as
m decreases. The duration and intensity (and hence the potential detectability) of
the final “explosion” in which a mini-hole effectively annihilates itself is plainly
sensitive to the form off (m). This is, of course, a question primarily in the domain of
particle physics; and it is also unclear how Hawking’s calculations would apply to a
situation where the radiation is mainly being emitted by many different species
whose mass-energy is >kT, and whose thermal velocities are very low. Even if this
difficult question could be settled, it is still uncertain in what form the energy actually
escapes (though it should be feasible to resolve this latter uncertaintly by doing some
calculations). The “exotic” particles would presumably decay, and the hole may be
surrounded by a “photosphere” with effective temperature ~ 0.5 MeV within which
electron-positron pairs provide a large optical depth. The mean energy of the escaping
y-rays might however be > 0.5 MeV if the particles in this “photosphere” were
themselves moving relativistically outwards. (See note (2) added in proof.)

The total energy density in the cosmic X-ray and y-ray background is only 10—8
times the total mass-energy density of an Einstein—de Sitter universe. This sets a
stringent upper limit to the number of black holes exploding at cosmic times 2 109
yrs. One cannot place such straightforward limits on the number of black hole
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explosions at earlier cosmic epochs, because the universe would not then have been
transparent to X-rays and y-rays. In fact any radiation arising from black holes
that decayed in the first ~ 103 yrs of the expansion would have been completely
thermalized, and this perhaps suggests a possible origin for the cosmic black body

radiation. Whether this hypothesis is compatible with the stringent upper limits on
the amount of unthermalized radiation produced at recent epochs depends on two
uncertain factors: the initial mass spectrum of the primordial black holes, and the

dependence of their lifetime on their mass.

Notes Added in Proof

1. D. Eardley has recently emphasized that, in (eg) the Brans—Dicke theory, a binary
system containing a compact component will emit dipole gravitational waves; and
that in consequence, the size of the orbit can shrink much more rapidly than general
relativity predicts. Although unimportant for Hercules X-l and Cygnus X-l, this
effect could be significant for the recently discovered binary pulser(Hu1se and Taylor,
Astrophys. J. Lett. 195, L. 51 (1975) , and for the very short—period binaries that
may be associated with some transient X-ray sources.

2. D. Page has completed a more detailed calculation of the temperature-versus-
mass relation for the radiation by “mini-holes”. He finds that the temperature corre-
sponding to a lifetime of ~ 1010 years is ~ 20 Mev. This is well below the temperature
at which uncertainties about the equation of state become crucial, and implies that
the limits on the gamma-ray background impose firm constraints on the permitted
number and mass spectrum of “mini-holes”. B. Carter and his associates have at-
tempted to estimate the spectrum of the particles emitted by a “mini-hole” during
its final evaporation. If particle creation effects are neglected, one can calculate the
accretion flow onto a “mini-hole” embedded in equilibrium radiation at the tempera-
ture appropriate to its mass. Carter and his colleagues assume that an isolated “mini-
hole” generates a wind which is conjugate to this accretion solution. They find that
for a Hagedorn-type equation of state, there is an effective photosphere which pre-
vents the energy of escaping particles from becoming much more than ~ 100 Mev;
whereas for a “hard" equation of state, the Lorentz-factor of the wind becomes very
large as the hole loses mass, resulting in the production of very energetic particles.
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1. INTRODUCTION

Statistical mechanics is concerned with the relations between fine-grained and
coarse-grained descriptions of physical systems, and in particular with the derivation
of laws governing the gross, macroscopic behaviour of matter and radiation from
microscopic laws which are considered as fundamental. Since the laws governing
the behaviour of particles and fields depend in an essential way on the assumed space-
time structure, the replacement of non-relativistic, Galilean space-time by the flat or
curved pseudo-Riemannian space-times of relativity demands the creation of appro-
priately generalized forms of statistical mechanics. Apart from the question of
principle thus raised, there are now also concrete reasons for interest in special-
and general-relativistic statistical mechanics. In connection with astrophysics one
has to deal, e.g., with relativistic plasmas, with superdense, reacting mixtures of
energetic particles in a rapidly expanding space, and possibly with relativistic star
clusters. The long-standing tradition in general relativity theory to restrict the
description of matter to writing down the stress-energy-momentum tensor of a
perfect fluid has, therefore, to be broken. (This change is clearly visible in the recent
books by Weinberg, Zeldovich and Novikov, and Misner, Thorne and Wheeler.)

* The following text is a considerably extended version of the talk delivered at GR7. Remarks by A. Peres
and H. P. Kfinzle which I gratefully acknowledge have influenced the written version of the review of
predictive, Poincare-invariant particle mechanics in Sec. 2.
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Unfortunately, there is not yet a (special- or general-) relativistic statistical mech-
anics, if by that term one means a consistent theory based on physically reasonable
and mathematically meaningful assumptions and containing some well-established,
significant results. There are, however, various attempts to create such a theory.
Moreover, there is a less ambitious, but now well developed relativistic kinetic
theory, and also a relativistic continuum mechanics, and some progress in these areas
has been made within recent years.

The purpose of this talk is to survey some of these developments and to mention
some problems. I shall not try to push a particular point of view nor give many
formal details, but rather wish to outline the general situation. I have to mention
that my own degree of understanding of some of these matters is anything but perfect,
and consequently the following presentation does not claim to be a complete, balanced
review. Also, the references are not meant to be exhaustive; they are only meant as
representative and are so chosen that they can be used as a guide to further literature.
Therefore, I quote recent reviews rather than original papers if such are available.

2. BRIEF REVIEW OF NON-RELATIVISTIC
STATISTICAL MECHANICS

In non-relativistic classical mechanics most important dynamical systems are
Hamiltonian ones, i.e., the set P of all possible initial states (Cauchy data), called
phase space, is a (finite dimensional) manifold with a symplectic form 2 dpa /\ dq",
and the evolution is given by a Hamiltonian phase flow,

Eh 6h
qa=8—pa> pa:— (1)dq“

Gibbs ensembles (macrostates) are then characterized by a distribution function
f(pa , q“, t), interpreted as a probability density (with respect to the Lebesgue measure
H dpa /\ dq" on P) which evolves according to Liouville’s equation

and expectation values (macroscopic quantities) are obtained as

<g>f = lgfdpdq (3)

In quantum mechanics one has a formally similar structure. Pure states are repre-
sented by rays in a complex Hilbert space, their evolution is given by a Schrodinger
equation. Gibbs ensembles are characterized by statistical operators (density matrices)
F, observables by Hermitean operators G, and Eqs. (2) and (3) are replaced by the
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von Neumann’s equations

6,F = i[F, H] (2’)
and

<G>F = Tr (FG) (3’)
respectively. (For recent accounts of statistical mechanics see, e.g., [1], [2], [3].)

The quantum-statistical formalism can be cast into a pseudoclassical phase-space
language by means of the Weyl— Wigner correspondence (see, e.g., [4], ch. VI, §3 or
[5], appendix). Then (3’) —> (3), whereas (2’) goes over into an equation which has
the form of (2), but with the Poisson bracket replaced by the Moyal bracket which
passes over into the Pb. in the classical limit h —> 0.

On the basis of (2) or (2’) and assumptions about the Hamiltonian (in most cases, a
decomposition h = ho + him, or at least the existence, for a given h, of a simpler
comparison Hamiltonian h0 [6] ), methods have been developed to deduce (general-
ized) master equations and hierarchies for reduced distribution functions (BBGKY,
Klimontovich), and with additional assumptions about the initial distributions f
or F and/or the smallness of correlations, the weakness and range of interactions,
etc., various kinetic equations and techniques for their (approximate) solution have
been worked out. If these are combined with (3) or (3’) for suitably chosen macro-
observables g or G, one obtains macroscopic laws (hydrodynamics, e.g., [6], [7]; in
particular [6] contains an important new way (“subdynamics”) to relate and contrast
the microscopic dynamical description to the macroscopic description, and a general-
ized second law).

The scheme just outlined indicates how, in principle, non-relativistic statistical
mechanics is capable of deriving contracted descriptions from an underlying micro-
scopic theory. It is to be emphasized that the “philosophy” of the theory [1], [2], [3]—
initial information provides f or F at t = 0, (2) or (2’) determines f or F at t > 0,
and (3) or (3’) gives statistical predictions for later observations—rests on the fact
that the initial value problem of the microscopic theories is, again in principle, well
understood.

The phase space P plays two roles: It is the set of all initial states and, therefore,
the sample space carrying all possible probability measures, and it is the container
of all possible histories (integral curves of the vector field

6h 5 6h 5

577“ 67¢” 64“ 0p“
on P) of the dynamical system.

Non-Hamiltonian dynamical systems can, of course, also be subjected to statistical
treatment (see, e.g., [8]), but since many more techniques have been elaborated
within the canonical framework than outside of it (and because it exhibits a close
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correspondence between classical and quantum theories), it is reasonable to use the

canonical formalism whenever it is available.
For a broad survey of the development of statistical mechanics and thermo-

dynamics see, e.g., Landsberg [46].

3. TOWARDS SPECIAL-RELATIVISTIC STATISTICAL MECHANICS

While the general framework outlined in Sec. 2 does not presuppose a particular

space-time structure, its physical importance for relativistic theories depends on

whether realistic models of physical systems in these latter theories can be cast into

Hamiltonian form. Since the meaning of “Hamiltonian” in this connection is far

from obvious (see [9], [10], [11]), I shall first consider the meaning of this term.
Let a particular space-time structure with an associated symmetry group G be

assumed. Also, let a dynamical system S consisting of particles and (or) fields be

given so that a dynamically possible history of S consists of a number of world lines
and (tensor or spinor) fields on space-time X. Let Z be the set of all these histories.

The dynamics of S admits G as an invariance group if and only if G acts, in an obvious

sense, on Z. Assuming the dynamics of S to be deterministic and choosing a frame
of reference 2 in X we may set up a one-to—one correspondence between Z and the
set Z2 of all initial data belonging to ‘the instant I = 0 relative to 2 (see Fig. l for
illustration). g -iransformcri

history

\._, ,/
\‘V' _/ J t

Figure 1. Action of G on Z and 22.
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Clearly the action of G on Z induces an action of G on Zz (which is, in fact, indepen-
dent of the particular frame 2 if only G-equivalent frames are permitted). We call this
action w : G x ZX —> Z: the dynamical action* of G belonging to S. 11/, of course,
depends on the dynamics of S; conversely 11/ determines the dynamics as well as the
transformation properties of the variables specifying the initial data or “states”
under G. Thus, a G—invariant dynamical system can be fully specified by l//, i.e., by
the structure of the set of initial data ( = state space, domain of up) and G’s action on it.

If 2; can be given the structure of a (possibly infinite-dimensional) symplectic
manifold such that the action p is in terms of canonical transformations, we call S
fully Hamiltonian. This property is much stronger than the requirement that the
evolution can be described, in terms of suitable variables (pa, q“), by Hamiltonian
equations (1). In the fully Hamiltonian case, 11/ can essentially be characterized by a ca-
nonical representation of the Lie algebra of G in terms ofa Poisson algebra offunctions
(generators) on the phase space P E Z,_. (In the quantum case, P would be the ray-
space of all pure states, and up would be a unitary or antiunitary action.) This con-
sideration establishes the relation between Hamiltonian dynamical systems and
canonical realizations (or semiunitary representations) of the space-time group G.

In the non-relativistic case (Galilean space-time) it is easy to construct fully Hamil—
tonian systems of N interacting particles with a 6N-dimensional phase space P.
The reason is that the Galilean group G is a semidirect product of the 9-dimensional
normal subgroup F of those transformations which leave the absolute time fixed,
and the l-dimensional group R of time translations (see Appendix). In particular, in
G boosts and spatial translations commute, so that in a canonical (or unitary) repre-
sentation of the Lie algebra of G the generators K, and Pb of boosts and translations
have the Poisson brackets (or commutators)

[Kaa Pb] : Méab (4)

(M is a constant). Therefore, one can pass from a representation of a non-interacting
system to one for an interacting system by leaving the generators of F—P,,, J“, K,—
unchanged, and adding to the time-translation generator H an interaction term
which commutes with the generators of F. That is easily accomplished.

In the case of special relativity, i.e., the Poincare’ group P, the simple procedure of
passing from a representation belonging to non-interacting particles to one involving
interactions just described does not work since, in P, the subgroup of those trans-
formations which map a hypersurface of constant time into itself is only the six-
dimensional Euclidean group of rotations and (spatial) translations, whereas boosts

* It is important to distinguish this “dynamical” action of G from the “kinematical” action which tells
one how the components of local objects like tensors relative to 2 change if these objects are carried
along by the active transformation from an event x to g(x).
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are “mixed up” with time translations. Instead of (4) one has

[K03 Pb] : 60bH (4/)

To change the evolution, H, in order to incorporate interactions requires, therefore,
to change also the KS or the PS, or both. (Usually one changes the K, and leaves
the Pa unaffected by the interaction*.) That is the group-theoretic origin of the
difficulty in constructing interacting special-relativistic systems. (Compare similar
discussions in [9] and [12], pp. 105—107. The fundamental paper is [13].)

One drastic consequence of (4’) is that the only fully Hamiltonian (as defined
above!), P-invariant dynamical systems of finitely many particles obeying “New-
tonian” equations of motion

at?) = ff” (x9. 5c?) (5)
(‘ = 1,..., N; r = 1,2, 3) for which the position coordinates (as coordinates on 2;)
have vanishing Poisson brackets, are systems of free particles. This famous “no
interaction theorem”, due in this generality to Leutwyler and Hill, has been carefully
analyzed in [10]. This result has sometimes been interpreted to mean that, in (special)
relativity, interactions have to be transmitted via fields. This conclusion, however, is
not warranted. For one thing, one can give up the requirement of Hamiltonian
equations of motion, or at least relax the definition of fully Hamiltonian systems
given above in various ways, and then there are P-invariant, deterministic particle
systems [10], [l 1]. But one may even keep the canonical structure and also maintain
vanishing Poisson brackets between the position coordinates if one parametrizes
the space Z of histories of an N-particle system not in terms of initial data referring
to one instant of time t in an inertial frame, but instead in terms of positions and
velocities taken at relatively lightlike events on the particle worldlines. At least for
N = 2, Kt'mzle has shown [11] that in this way one can construct P-invariant
systems with a 12-dimensional phase space (which, now, is defined as the set of
non-instantaneous “initial” data just mentioned) which carries a symplectic structure
invariant under the action of P. Unfortunately, in Kunzle’s examples the two particles
appear to play intrinsically different roles; moreover, it is still an open question
whether such systems exist for more than two particles, whether the particles can
be treated as indistinguishable, and whether the interaction can be chosen to be
separable (in the sense that interactions vanish for large distances). The mathematical
problems posed by predictive P-invariant (Hamiltonian) mechanics have been very
clearly exposed in [10], [11]. For a related approach which is also concerned with
relativistic quantum 2-particle systems see [14]. It emerges that whereas at present
no P-invariant Hamiltonian theory of many interacting particles exists, the task of

“ Then H. K7 are “dynamical”, and Pa, J, are “kinematical” generators. in contrast to the Galilean case.
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creating such a theory is neither finished nor hopeless, and future work may well
influence statistical mechanics as well as quantum theory.

it is \\ ell known that some important Poincare-invariant (classical; fields or
systems of particles interacting rittfmltls can be described at least formally, in a fully
Hamiltonian way tin the above sense). This is the case, e.g.. for the free electromagnetic
field and {or point charges interacung with such a field. The generators oz" the cor-
responding canonical representation hat. e been given 17} Dirac [13]. The correspond-
ing statistical mechanical formalism. in particular for rt relativistic plasma. has been
elaborated by Balescu and Korcra {15]. where earlier work is cited Just as (It des—
cribes the effect of time translations on the distribution function _t' so similar equations
describe the behaviour off under boosts. e. 2..

(U = [fl K1] (6)
where s is the rapidity of the boost exp(—sK1) in the (x1, x4)-plane. With this for-
malism one can derive, e.g., the values ofmacroscopic quantities as ensemble averages,
study their evolution and transformation properties, and obtain macroscopic balance
equations [15]. The Liouville operator and its analogues for boosts have been
studied in detail, as is necessary for perturbation theory. Moreover, Balescu has
studied the generalized master and kinetic equations of this theory, and verified
formally their appropriate invariances.

However, this formalism, being formulated in terms of bare (mass-unrenormalized)
particles and a single “total” field, is plagued by infinite self-energies. A related, but
perhaps more serious objection to this approach is this: The (as far as one can tell)
rigorous formulation of the classical theory of electromagnetically interacting point
charges proposed by Rohrlich [16] strongly suggests that one fundamental assump-
tion made by Balescu and Kotera, that initial values of the canonical variables (of
the particles and the field) can be specified arbitrarily at a finite time (in some inertial
frame), is fictitious. If this were indeed so, then the whole theory (which conforms to
the “philosophy” outlined at the end of Sec. 2) would break down. The point is that
the essential non-locality of the complete set of basic laws of (renormalized) classical
electrodynamics with point sources (asymptotic condition! See [16], in particular
chapter 6 B and sections 7-1, 9-1 and 9-3) seems to imply that no exact formulation
of it can be strictly canonical. The crucial unsolved problem is the initial value problem
or, more generally, the problem how to describe, in some explicit way, the set Z of
dynamically possible (particle + field) histories of the theory. In connection with
regularization rules and perturbation theory the Balescu—Kotera formalism may
be very useful, but in View of the difficulties of principle just discussed other ap-
proaches should also be considered.

I only mention that Balescu has also initiated the study of a relativistic quantum
statistical plasma theory by means of the Weyl—Wigner correspondence [l7].
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A completely different, non-Hamiltonian, manifestly Lorentz-covariant framework
for classical relativistic statistical mechanics has been elaborated by Hakim [18].
In this formulation the intrinsic space-time geometrical structures are put into the
foreground, and the use of quantities related to extraneous things like spacelike
hyperplanes, inertial frames, etc., is avoided. This formulation, therefore, can be
generalized (as far as the general structure is concerned) even to general relativity,
as long as the gravitational field (the metric gab) is treated as a given external field
or as a self—consistent collective field. (In the latter case the problem of justifying
this mean field approximation remains, of course, outside of the theory.)

Let a system consist of N particles interacting via a field ()3 (and possibly be embed-
ded in an external field, e.g., a metric field gab), with some specified equations of
motion. If the equations of motion for the particles contain the space-time coordinates
x”, the 4-velocities u“, and the 4-accelerations 11" = b”, but no higher derivatives of
the functions x“(t) describing the world lines, the tangent bundle T(X x X x x
X) (N factors X, where X = space-time) is called the N-particle phase space (dimen-
sion 8N). If also the (absolute) derivatives i2" enter (as they do if radiation reaction
is taken into account in the electromagnetic case), one takes instead the product of
N factors {x"} x {u"} x {b"} as phase space P. The possible values of the field (1)
will be cross sections of some tensor (or spinor) bundle over X; the space of these
cross sections is then called the field phase space P. Then P x P is the total phase
space. A solution of the equations of motion will be a collection of N world lines,
parametrized in terms of N (independent) proper times 11, , TN, and a field x“ —>
(1; (x0). In other words, it will consist of an N—dimensional submanifold (“N-worldline”)
of P and a “point” of P. Thus P x P “contains” all dynamically possible histories
of the system (recall the remarks at the end of Sec. 2). (If there is no field and one
assumes Fokker-type actions-at-a-distance, the phase space is just P.) For a theory
where one knows which Cauchy data (e.g., on a spacelike hypersurface of X) determine
uniquely a history of the system one could also define a space of initial data, which
would be different from P x P. Since for the theories ofinterest here (e.g., renormalized
classical electrodynamics or Wheeler—Feynman electrodynamics) this is not so, one
cannot introduce such a space. Nevertheless, there is the (huge) set of all histories,
Z, and that is naturally taken as the sample space for the statistics of the system. (If
a space of initial data were known, it would of course be bijectively related to Z, and
could itself be taken as sample space, as in ordinary statistical mechanics.) A Gibbs
ensemble is a probability measure on Z.*

To simplify the writing, let X, = (xf, u‘i’, ...) be the phase coordinates of the ith
particle, so that X = (X1, ,XN) e P. An element of Z can then be characterized
either by an “N-worldline” (a term introduced by Kiinzle [11])

(‘51,...,TN) —> (X1(r1),..., XN(TN))

* Such measures may not exist, but a mean would be sufficient, see [47], Appendix 7.
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and the accompanying field ¢, or by a proper-time dependent microscopic density

RN(X1,...,XN;11,...,IN)=2H6(Xj—X,-j(rj)) (7)
1r j=1

where the summation extends over all permutations 7t:(1,...,N) —> (i1,..., iN) and
we assume indistinguishable particles, again together with 45. By means of formulae
analogous to (7) one can introduce reduced densities R1, R2,... ; e.g.,

N

R1(X,r) = N-1 Z 6(X — Kim) (8)
i=1

OI'

W32(X1,X2,X3;r1,r2,r3) = {N(N — 1)}-1 x

x XJ 5(X. — Xi(r1))6(X2 — X:(tz))5(X3 — X,-(r3))
i¢j

If a Gibbs ensemble is given, one has not one history (RN,¢) but a collection
{(RN(co), d)(w))} of such indexed by a), and one may consider the stochastic micro-
scopic density RN(X1,... ;r1,...;w) together with the stochastic field ¢>(x",w) as
characterizing the ensemble. In addition to these basic random fields, there will be
others like R1 and W32. It is clear that ensemble averages (RN), ((15) can be defined.
In particular

D1 = <R1> (8')
is a r-dependent average one-particle density, and

+ co

f1(X“, u“) = f D1 dr (8”)
— w

is the usual single-particle distribution function on the single-particle phase space
T(X). Clearly one can also define current densities of physical quantities within this
framework, like a kinetic energy-momentum tensor.

The microscopic equations of motion (for examples, see [18]) imply coupled
equations of motion for the r-dependent microscopic densities R., W’; and hence
for their averages, the reduced distributions, either the r-dependent or the r-indepen-
dent ones. (The t-dependent quantities are nothing but tools, convenient for the
adaptation of non-relativistic methods to the relativistic case; at the end one gets rid
of the 1’s by integration.) In this way, Hakim has been able to establish a relativistic
analogue of the Klimontovich hierarchy, an infinite system of linear partial differential-
integral equations coupling a suitably chosen set of generalized reduced distribution
functions ([18], see also [19]). These can be used as a basis for deriving kinetic
equations. So far, only some first steps have been made to carry out the enormous
programme thus indicated.
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The theory outlined manages to provide, at least in principle, a conceptually
clear, manifestly covariant statistical description of a relativistic system which does
not presuppose a knowledge of the nature of the Cauchy initial data of the system.
The price paid for this remarkable achievement is that the description is non-Hamil-
tonian, and that the equations for the reduced distributions are non-local.

No corresponding quantum-statistical theory (which one might envisage as an
extension of the pseudoclassical Weyl—WigneriMoyal description mentioned above)
appears to be known. In this important respect the Hakim theory is inferior to the
“Balescu—type” theory which does have a close (formal) quantum analogue.

Before closing this section I wish to mention that the relation between microscopic
and macroscopic electrodynamics, classically as well as quantum mechanically, at
the non-relativistic as well as at the special-relativistic level, has been extensively
investigated, in particular with regard to the old and frequently discussed question
of the macroscopic material and field energy—momentum tensors, by de Groot and
Suttorp [4] It turns out, not surprisingly, that T” is much more complicated than
any of the previously proposed (guessed) candidates (by Minkowski, Abraham,
EinsteiniLaubpn), if long range correlations between particles are taken into
account. De Groot and Suttorp treat the electromagnetic field as a functional of the
particle world lines and use a covariant averaging over systems of world lines (a la
Hakim) to obtain the macroscopic quantities and relations. The method leads to
macroscopic lawsiref. [4] contains the most detailed treatment of macroscopic
electrodynamics on a relativistic microscopic-statistical basis of which I am aware—
but the macroscopic equations ofmotion do not form a closed system and are there-
fore supplemented by phenomenological equations by the authors.

4. STATISTICS AND GENERAL RELATIVITY

Whereas the theory of Hakim outlined in the preceding section can be adapted, in a
rather obvious way, to systems of particles and non-gravitational fields in a given
(or self-consistent, mean) gravitational field, a theory which includes gab in the set
of “microscopic” variables to be subjected to statistics does not seem to have been
attempted. In principle it should be possible to take the Hamiltonian form of general
relativitygsay, the ADM formulationias a basis for a statistics of gravitational
fields. One could try to introduce a distribution functional f[g,-j(x), 7t”(x) ; t] obeying
an “Einstein~Liouville equation”

of ,.
E:[.fi'%]N+[fi’%i]]\/l (9)

where t labels the members of a l-parameter family of spacelike hypersurfaces
(formal time), 97’, 3%,- are the super-Hamiltonian and supermomentum, respectively,
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N, N‘ are the lapse and shift functions, and the r.h.s. of (9) stands for an integral. The
mathematical problems of such a theory would be similar to those of a superspace
quantum gravity theory [20], [21], [47], though probably somewhat simpler. Super-
ficially such a theory would be analogous to the Balescu version of statistical electro-
dynamics considered in Sec. 3. The roles of H and K, correspond to that of if,
whereas Pa, Ja correspond to 3V, (dynamical and geometrical generators); the
Poincare group corresponds (formally) to the group of deformations of a spacelike
hypersurface in space-time [22]. It might be interesting to develop a statistical theory
of gravitational fields of a restricted (e.g., cosmological) type, i.e., in a “mini-super-
space”.

In connection with perturbation theory, statistical arguments have been used in
general relativity. An important example is Isaacson’s definition of an effective
energy-momentum tensor for short-wave gravitational waves superimposed on a
smooth background by means of the Brill—Hartle averaging method [23].

In this connection the following remarks may be useful. Averaging over metric
tensors (gab) may be a questionable procedure since linear combinations of Loren-
tzian metrics are, in general, not metrics at all. (As pointed out by P. G. Bergmann,
one can generate Lorentzian metrics from spin-matrices; the latter do form a closed
set with respect to averaging.) However, averaging over linear connections <1"i is
meaningful, since the set of linear connections on a manifold is closed under convex
combinations. Also, 1",; — (F3) is a tensor which plays an important role in per-
turbation theory. If the realizations of a random connection F(co) are metric, the
average connection <1"(a;)) will in general not be metric, however. Therefore it may
be useful in considering an ensemble of metrics, {g((u) }, to define a splitting g(w) =
g(background) + h(co), not by requiring <h> = 0, but by postulating <F(w)> = T,
where l"(w), F are the Riemannian connections of g(co) and g(background), respec—
tively.

A problem of interest is to create a gravitational analogue of Lorentz’s derivation
of macroscopic electrodynamics from microscopic electrodynamics, particularly in
view of the justification and refinement (correlation energy?) of the Vlasov-type ap-
proximation used so far to describe stellar systems.* This seems not to have been
attempted. A difficulty arises from the fact that point particles are not (strictly)
compatible with Einstein’s field equation, as is clear from the Kruskal extension of the
Schwarzschild space-time.

A truly “first principle derivation” of Einstein’s macroscopic theory of gravitation
from an underlying microscopic theory can be hoped for only once the relation of
general relativity to quantum theory is better understood, of course.

* “Microscopic” in the gravitational case should not be taken literally; stars might play the roles of
“molecules”, or even galaxies in a cosmological context.
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5. GENERAL-RELATIVISTIC KINETIC THEORY OF GASES

It is well known how one can set up, in a given space-time (X, gab) which may also
contain an external electromagnetic field Fab, a kinetic theory of gases, using plau-
sibility arguments like Boltzmann to obtain a Boltzmann equation for the single-
particle distribution function f1(x“, uh). For systematic presentations see, e.g., [24]—
[26].

The single-particle distribution function f1 of kinetic theory may be identified
with the function defined in Eq. (8”) within the covariant statistical mechanics of
Hakim. The definition given there implies, as is easily verified, that f1 measures the
average density of world lines in a Gibbs ensemble representing a macrostate of the
gas considered. If all particles have the same proper mass, f1 contains a factor 6( pap" +
m2) (pa = mu“), and one may replace f1 by an ordinary function f(x“, p“) defined on
the mass-shell bundle {(x", p“)lpap“ = —m2} over space-time. This f can be scaled
so that it coincides numerically with the ordinary (x, p)-phase space density of any
local Lorentzian observer, and is the basic quantity of kinetic theory (which has also
the corresponding interpretation in the limiting case m = 0).

For a collisionless gas, the collisionless Boltzmann equation (single-particle Liouville
equation)

Lf—(“V+ Fab a>f—0 (10)_ péx" ebp 8pb _

(V/éx" denotes the horizontal lift of 8/6x" into TX restricted to the mass-shell)
follows immediately from the definitions (8), (8’), (8”) and the Lorentz—Einstein
equation of motion

Dp“
ds

= npb (11)

Similar derivations of the relativistic.Vlasov and Landau equations from statistical
mechanics have been given, even with the inclusion of radiation reaction terms
related to the collective emission of radiation [18]4.

For the relativistic Boltzmann equation (with collisions due to short range inter-
actions), a “quasi-derivation” similar to the non-relativistic ones does not seem to
exist. An outline of a derivation on the basis of the Fock-space formalism of quantum
theory has been given in [27], somewhat improved in [26]1.

The possibility to include straightforwardly the gross effects of inelastic collisions
(nuclear reactions) in mixtures and of quantum statistics (induced processes, e.g.)
into kinetic theory make it a particularly useful tool for astrophysics. It would be
desirable to have a more satisfactory microscopic justification of the relativistic
Boltzmann equation, however.
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If one accepts, presently on the basis of plausibility only, the gravitational-Vlasov
approximation (approximation to what? one does not know), then the basic equations
for a gravitating gas are

G” = 81! J‘papbfn
(12)

Lf = Boltzmann collision integral

The microscopic data specifying such a system are cross sections entering the r.h.s.
of (12)2. (I have here disregarded a collective electromagnetic field which could
easily be included in (12).)

These laws imply conservation laws and an H-theorem, as is well known. As in
the non-relativistic case, one can determine local and global equilibrium distributions
from the requirement of vanishing entropy production, and thus reestablish the old
results of Jiittner. If the distributions of a mixture differ only slightly from local
thermal equilibrium,

fj =fjo(1+ 9;), fjo = exp {'09- + filial?" i1} (13)
(,B'1 = T = abs. temperature, (xi/3‘1 = chemical potentials), the relations

5 = F(p, n1,..., nR)

ds= T‘ldp—ZuJ-dnj (14)
between entropy density 3, mass-energy density p, particle number densities nj, etc.,
which hold exactly at local thermal equilibrium, remain valid to within first order in
the perturbations gj; this establishes part of irreversible thermohydrodynamics of
gases. Eqs. (14) can be re-expressed thus: near equilibrium, the entropy current 4-
vector S“ is given by

6F 6FS —su +apq +073; (14)
J

where s = F (p, m) is a thermostatic potential of the system and u“, q“, i; are, respec-
tively, the mean velocity (see (13)), heat flow, and diffusion currents.

To complete the non-equilibrium theory, one needs approximation methods to
determine the gj and the transport and reaction laws and coefficients (see [24]—[26]
and the references given there).

The following recent improvements of the theory are of importance:
1) D. Bancel and Y. Choquet [28] have established the local existence, uniqueness

and stability (i.e., stable dependence on initial data) of solutions to the Cauchy initial
value problem for the coupled Boltzmann—Maxwell—Einstein system (Eqs. (12) +
electromagnetic terms).

2) J. M. Stewart has largely clarified the question of how fast deviations from
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equilibrium can propagate in a relativistic gas, using the relativistic Grad-method of
14 moments [24]. This work solves an old causality puzzle, at least for dilute gases.

3) S. R. de Groot and W. A. van Leeuwen have treated non-reacting mixtures of
isobaric Maxwellian particles, and have deduced Onsager relations for such systems
[29].

4) W. Israel and J. N. Vardalas have computed transport coefficients of relativistic
quantum gases [30].

5) Relativistic kinetic theory has been extended from structureless particles (char-
acterized by m and scalar charges only) to a) particles with a magnetic moment [31]
and spin [32], and b) photons with spin (which usually has been left out of account)
[33].

In both cases one has to deal with an enlarged phase space to accommodate the
internal degrees of freedom. As Israel [32] points out, “an anisotropic universe
containing material with a large store of internal spins (elementary particles, tur-
bulent eddies, primeval black holes) will tend to dissipate its anisotropy by rotational
viscosity. The importance of this effect remains to be estimated.”

In case b the polarization states for fixed x”, p“ form a 2-dimensional complex
Hilbert space {fllpatfl = 0;<t1,r2> : $320}, hence one has a distribution matrix
(2 x 2 Hermitean), F(x", pb), the trace of which is the ordinary distribution function
f(x”, p”) considered above. Aquista and Anderson have derived a transfer equation
for partially polarized light passing through a stationary or moving scattering
medium; in particular, they have considered Compton scattering. (As an aside I
wish to point out that partially polarized radiation is an example of a system with
non-commuting, macroscopic observables—the matrices corresponding to the
Stokes parameters.)

6) J. L. Anderson and H. R. Witting [34] have elaborated a new relaxation time
model for the collision term of the Boltzmann equation for a single-component gas,
and have used it to determine relativistic quantum transport coefficients.

Further, technical improvements of the mathematical tools used to compute
transport coefficients have been achieved by J. L. Anderson; however I shall not go
into that.

7) J. Guichelaar, W. A. van Leeuwen and S. R. de Groot have investigated the
propagation of sound in a dissipative relativistic gas [35].

8) A. Mangeney has given a general-relativistic extension of the Chew—Goldberg—
Low equations governing a strongly magnetized collisionless plasma [45]. This
theory may be of use in studying the behaviour of the plasma in pulsar magneto—
spheres close to the velocity-of-light cylinder.

Kinetic theory has been applied to various cosmic processes such as dissipative
processes in Galaxy formation and the behaviour of neutrinos in the early universe.
For an introduction to these problems and references see, e.g., Stewart [36] and the
books quoted in the introduction.
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6. CONTINUUM MECHANICS AND THERMODYNAMICS

Basic for the kinematics of a deformable medium in a general space-time (X, gab) is a
congruence K of timelike curves describing the mean motion. The latter may be
characterized by the 4—velocity field u“. Its gradient determines derived kinematical
variables like rate of expansion, vorticity, etc.; for a complete review see [37]. The
members of K may be identified with the “particles” (in a macroscopic sense) of the
medium. The distances between these particles are measured by hub = gab + uaub. An
instantaneous state of the medium corresponds to data associated with a spacelike
cross section 2 of K. In particular, the restriction of hub to Z is the relativistic analogue
of a “state of strain” of the medium. In order to judge (Lagrangean) changes of local
quantities associated with the medium relative to the medium (in contrast to changes
relative to a local inertial frame), one uses a suitable modification of the Lie derivative
gun, the convective derivative (see [38] or [26]2 for careful discussions). By means
of these concepts one can adapt to the relativistic case in an elegant and satisfactory
way those local notions of non-relativistic kinematics (like finite or infinitesimal
deformation, irrotationality, etc.) which are prerequisites for a dynamics ofdeformable
media.

Relativistic continuum mechanics and thermodynamics, like its non-relativistic
predecessor, is based on a few general principles and various constitutive laws
characterizing particular models of materials. As general principles one can take the
existence, symmetry and balance of an energy-momentum tensor,

TM] = 0, T3"; = 0 (15)

and the existence of an entropy 4-current S“ satisfying the Clausius—Duhem inequality

S“ >0 (16)la—

Whereas Eq. (15) is generally accepted as a basic law of all metric theories of
gravity, the proposal to regard the inequality (16) as a general expression of the
local law of the non-decrease of entropy in relativistic, phenomenological thermo-
dynamics of deformable media is perhaps still controversial. To me, (16) appears
well motivated and almost unavoidable, for the following reason. With any macro-
scopic state of a medium, i.e., a set of Cauchy data on a spacelike hypersurface Z for
the macroscopic equations of motion, there should be associated a numerical infor-
mation-entropy (which one could compute on a microscopic basis if such a basis
were known) S [2...], a functional of that state which should be additive with
respect to 2. If this is so, and if D is a space—time region bounded by two spacelike
hypersurfaces, then S[6D,...] measures the entropy production, or loss of state-
information, associated with irreversible processes in D. Hence S[6D,...] should
be of the order of the space-time volume of D. These assumptions which seem hardly
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avoidable in any macroscopic description which is a coarse-grained version of an
underlying (unknown) microscopic description, combined with mild smoothness
assumptions on the functional S[..,] imply the existence of a 4—vector field S”, a
local functional of the state variables, such that S[Z,...] = j"; 5%,, so that (16)
follows. (The proof is a straightforward adaptation to space-time of Cauchy’s classical
argument establishing the existence of a stress tensor from assumptions about the
distribution of surface forces in a 3-dimensional body.) This general reasoning is
illustrated by kinetic theory, but I wish to emphasize that ( 16) is motivated not only
by analogy to that special microscopic model; on the contrary, the general argument
explains why one has (16) particularly for dilute gases.

No general law can be expected to link the 14 variables T”, S“. The general laws
(15), ( 16) and possibly further general conservation laws like baryon conservation
provide a framework only into which all specific models of matter (perfect fluids,
viscous fluids, elastic solids,...) must fit.

In order to characterize particular materials, one postulates the existence of
material currents and balance equations for them, e.g., conservation laws like

N3, = 0 (17)

and possibly additional fields like polarization densities, etc. Moreover, one imposes
restrictions on the (so far independent) quantities Tab, S”, N?,

A multi-component fluid, e.g., can be characterized as follows: There exists a mean
4-velocity u‘7 and a thermostatic potential F(p, nj) such that (14’) holds (for all processes
of the material). (The quantities s, p, nj, q“, ij are defined in a standard manner in
terms of the basic fields T”, S“, N‘}, and u”: s = —Sau", p = Tabuau", nj = —N‘§ua,
q” = —ubTbc(6§ + uauc), i? = N203; + uaub).)

This assumption (of local thermal equilibrium) introduces simultaneously the
mean velocity u“ and a caloric equation of state (14)1. The Gibbs equation (14);
then serves to define the temperature Tand the aj’s. (Whereas in kinetic theory (14),
(14’) follow as approximations from the kinetic equation, with completely determined
F, they are postulated in the phenomenological continuum theory, with a disposable
F restricted by some inequalities, e.g., dF/ap > 0.)

Elastic solids can be defined by means of a constitutive assumption quite analogous
to the one given above for fluids, except that the configuration variables nj in F
have to be replaced by the strain tensor hub (defined in the first paragraph of this
section). For details, see [38], [39], [26]2, [40].

If (14/) (or its analogue for solids), (15) and (17) are inserted into (16) one obtains
an inequality for pairs of variables connected with irreversible processes. In the
particular case where the last (diffusion) term in (14’) vanishes, (16) can be rewritten
in the form

(5110):“ Z _(qa/T) ;a
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which is a precise version of the somewhat vague, but traditional formula T65 Z 5Q.
The constitutive laws introduced so far still do not specify a material completely.

As a last step needed to obtain a complete set of macroscopic equations of motion
one has to postulate transport and reaction equations, etc. These are suggested and
restricted by the inequality ( 16). A complete model of matter should permit a Cauchy
problem compatible with relativistic causality (see [41]), and the subset of its solutions
satisfying $70 = 0 should give a physically reasonable set of equilibrium states.
Moreover it should have an acceptable non-relativistic limit.

The adaptation of the highly developed non-relativistic, non-linear theory of mate-
rials (due to W. Noll, C. Truesdell, C. Coleman and others) to relativity has been
initiated by various authors (Bragg, Bressan, Carter, Eringen, Grot, Leaf, Maugin and
others). For an application of relativistic elasticity theory to the theory ofgravitational
wave detection, and many references to modern work on non-relativistic and rela-
tivistic continuum mechanics, see [40].

It appears that the conceptual and mathematical apparatus now available for
describing relativistically matter in bulk is sufficiently well developed and flexible
to accommodate most of what has been done non-relativistically. However, whether
such largely formal adaptations of classical theories are physically correct in the
relativistic regime must be considered an open question until such theories can
either be confronted with observations, or be linked to relativistic, quantum-mechan-
ical many-body theories.

In the presentation sketched in this survey thermodynamic quantities S“, T,...
have been introduced, both at the kinetic and the continuum level, by means of
local laws assumed to be valid at each point of space-time. In this approach, entropy
appears either as a 4-vector S“ or as a density 5 = — Sau" or as specific entropy a =
s/n (n = particle number density). The temperature Tappears as a scalar, just like
s, n and 0. These quantities are often referred to as “measured by a comoving local
observer”. This procedure seems to be simpler, less ambiguous and, in view of astro-
physical applications, more realistic than the traditional way of considering laws
for integral quantities like U, V, S for a fluid enclosed in a box. There does not appear
to be any need to introduce in addition relative temperatures T’ for non-comoving
observers. How should they be measured? In which way do such quantities help to
describe physical states or processes? The physical content of the laws of thermo-
dynamics seems to be adequately expressed by the local laws (15), (16) in conjunction
with constitutive equations as exemplified above. Classical relations like d U + pd V =
TdS could be obtained by integrating local laws over appropriate space-time domains
representing gases in boxes. (A simple example is given in [42]. The point of View
indicated here is well illustrated by the work of Horwitz and Katz [49] on the thermo-
dynamics of rotating fluids in relativity.)

For the reasons given I do not wish to comment on the “Planck—Ott controversy”,
but refer to MgSller [43] and Balescu [44] for detailed discussions.
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The validity of all such relativistic continuum theories can be questioned on the
grounds that one cannot, at present, derive them in sufficient generality from a
microscopic theory or check them experimentally. The mere formal resemblance
to classical laws and the covariance do not, of course, guarantee their physical
validity. However, classical continuum theories were and still are developed and
successfully applied prior to and independently of their microscopic justification,
and particularly in view of the difficulties of relativistic microscopic theories of
interacting systems, I do not see any reason for rejecting such relativistic theories of
matter.
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research grant No. 613.

APPENDIX

Let (r, a, w, D) denote the Galilean transformation

t’ — r + t
x’ = a + wt + D - x

where r is a real number, a and w are column-matrices with three elements, and
D is a 3 x 3 rotation matrix. The multiplication law

(r’, d, w’, D’)- (r, a, w, D) = (r’ + t, a’ + w“: + D’a, w’ + D’w, D/D)

implies, as is easily verified, that the set F = {(0, a, w, D)} of those transformations
not affecting t is a normal subgroup, the set R = {(r,0,0, 1)} of time translations is
an abelian subgroup, G = F- R (since (7:, a, w, D) = (r,0,0,1)' (0,61, w.D)), and
F m R = (O, 0, O, I) = id. Hence G = F40 X 42R is a semi-direct product, where the
homomorphism h from R into the group of automorphisms of F is given by
h(r) : (0, a, w, D) —> (O, a — wr, w, D). It is easily checked that F is the commutator group
of G.

Notes Added in Proof

1. The mathematical and conceptual problems one has to face when setting up a
relativistic—particularly a general-relativistic—statistical theory of particles or
fields are closely related to those encountered in some of the various attempts to
“quantize” general relativity. It may therefore be useful to read this review in con-
junction with the excellent report on “Quantum Theory of Gravity” by Ashtekar
and Geroch [47]. Progress in either field will probably affect the other one.

2. An important field of research related to several parts of this review is that of
relativistic turbulence theory. Such a (not yet existing) theory may, for example, be
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relevant, in connection with cosmology, for the problem of galaxy formation. A
start in this direction has been made in Newtonian cosmology by D. W. Olson and
R. K. Sachs, see [48].
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Einstein and Zionism

BANESH HOFFMANN*
Queens College ofthe City University ofNew York

Flushing, N. Y. 11367, USA.

An experienced orator once gave some excellent advice to after-dinner speakers.
He said, “Think of a good start, and think of a good ending—and then keep them
as close together as possible.”

I am tempted to stop right here. But I don’t think he meant the ending to follow
the beginning quite so quickly. Besides, when it comes to giving speeches, I do not
believe in the law of the excluded middle. So let me try to help you fill in the time
while you wait for the end.

In a sense, what I want to tell you tonight is a story of a man finding his way to
a cause. But more profoundly, it is a story of a man finding his way to part of his
own self. The cause is Zionism, and the man, I need hardly say, is Einstein.

Because he made the universe seem a bit more comprehensible to us as scientists,
and a bit more beautiful, we find ourselves gathered here in amity from far parts
of the globe. Indeed, because of him, and because his theory is so beautiful, we can
truly say that what draws us together is the attraction of gravitation. It unifies us
despite our singularities.

But Einstein’s spirit is present here also in a second sense. For this is the land
of his forefathers. I want to tell of his feelings towards it. But in the telling I face an
insuperable problem—the problem of trying to recapture for you feelings that belong
to a different era. Let me try to explain the problem by means of examples.

On the island of Principe, Eddington hastened to measure his eclipse photographs
and was thrilled to find a deflection of light that seemed to agree with the prediction

* I am grateful to Dr. Otto Nathan for permission to quote material belonging to the Estate of Albert
Einstein; to Helen Dukas for invaluable help in providing copies of documents from the Einstein
Archives and sharing with me her unrivalled knowledge of Einsteiniana; and to Professor Konrad
Gries for unstinting aid in the recognition and rendering into English of subtle nuances of German.
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of the general theory of relativity. Telling about it later, he said that it was the greatest
moment of his life. Tell this to the man in the street, and he will probably be utterly
incredulous. Recalling joys of a quite different sort, he might well exclaim, “What
a drab life poor Eddington must have had!” As scientists. we can understand what
Eddington meant. But even so we cannot recreate for ourselves the thrill that came
to him at that time. Our best efforts yield only a pale imitation.

Again. in 1916 Einstein wrote to his friend Paul Ehrenfest, “Imagine my joy at
the feasibility of the general covariance and at the result that the equations yield
the correct perihelion motion of Mercury. I was beside myself with ecstacy for days.”
As relativists we well understand what Einstein meant. But can we really recapture
the thrill? Much as we marvel at Einstein’s theory, were any of us, on contemplating
it. beside ourselves with ecstacy for several days? And yet we are specialists.

But my topic is one on which few of us are specialists. Let me, therefore, offer
two examples that do not pertain to the physical sciences.

When we read about the Battle of Waterloo, we can recapture only faintly the
emotions of Wellington, who lived through the long day not knowing how the battle
would end. For, in more familiar jargon, once the wave function collapses, things
are never the same.

Again, suppose we see a prisoner of war returning to his own country. He falls
to his knees and kisses the ground. We are deeply moved. There may even be tears
in our eyes. But we cannot feel what he feels. We cannot know in our guts what he
felt in his at that precious moment. And in fact, after a while neither can he.

Please do not misunderstand me. I shall not be harrowing. Just the opposite.
I fear that many of the Einstein quotations to be presented, though they tell of deep-
felt things, may seem a little banal. Their emotion may seem remote. and little related
to our own experience. I chose them to play a dual role: to tell us of Einstein’s motives
and feelings even though we cannot really recapture them; and through them, to
give at least an indication of the situation and the conflicting aspirations of the
Jews at the time, as if by reflected light.

If they do not do this, ifI seem to have underplayed the story, I ask your forgive-
ness and your understanding. For, as Einstein said in 1929, “How many non-Jews
[and he could easily have included Jews as well] have any insight into the spiritual
suffering and distortion, the degradation and the moral disintegration engendered
by the mere fact of homelessness of a gifted and sensitive people?”

To be a Zionist, it sometimes helps if one is a Jew. Einstein’s parents were Jews.
But they were assimilated Jews for whom the orthodox rituals were little more than
a memory. In his Autobiographical Notes Einstein describes them as “entirely ir-
religious” but I do not think we should take that too literally.

His parents sent him and his sister Maja to the local Catholic elementary school:
it was cheaper than sending them to the distant private Jewish school, and much
more convenient. Even so. the children learned about Judaism at home from a



EINSTEIN AND ZIONISM 235

private instructor. And at the Gymnasium religious instruction in one’s own faith
was compulsory, as was attendance at services.

The children learned other things connected with being Jewish, as we see from
the following excerpt from a draft of a letter written by Einstein in 1920. He was
some forty years old when he wrote it, and at the height of his fame. Note how in-
delibly certain childhood happenings had impressed themselves on him:

“The teaching staff of the elementary school was liberal and made no denomina—
tional distinctions. Among the Gymnasium teachers there were a few anti-Semites,
one in particular who never let us forget that he was a reserve officer. Anti-Semitism
was evident among the children, particularly in the elementary school. . . . Physical
assaults and insults were frequent on the way to school, though for the most part
not really malicious. Even so, however, they were enough to confinn, even in a
child of my age, a Vivid feeling of not belonging.”

The young Einstein was so impressed by his Jewish religious instruction that he
quickly became intensely religious in a formal sense. For example, he refused to
eat pork, and he was disturbed that his parents did not observe the Jewish rituals.
But this phase did not last. As he wrote at age sixty-seven in his Autobiographical
Notes:

“This deep religiosity came to an abrupt end at age twelve. Through the reading
of popular scientific books I soon reached the conviction that much in the stories
of the Bible could not be true. The consequence was a positively fanatical orgy of
freethinking coupled with the impression that youth is intentionally deceived by
the state through lies. It was a crushing impression. Suspicion of every kind of author-
ity grew out of this experience . . . an attitude that has never left me. . . .”

It is perhaps worth mentioning here that some forty years after this crushing ex-
perience Einstein had the grace to say, “To punish me for my contempt for authority,
Fate made me an authority myself.”

For many years after his break with the Bible, Einstein seems to have been little
concerned with Judaism. An incident in 1910 illustrates his casual attitude. He was
offered the chair of theoretical physics at the German University in Prague, and,
as was his custom, he listed his religious status as “unafliliated.” But it turned out
that one of the requirements for any such appointment was a pledge of allegiance
to the Emperor Franz Josef; and the Emperor, not without justification, felt that
an oath of allegiance did not amount to much if it came from someone who had
no God by whom to swear the allegiance. Einstein was thus in grave danger of being
refused the professorship. How did he solve the problem? By a maneuver that re-
veals both his contemptuous understanding of petty authority and his casualness
about formal religion. He went to the registrar and simply asked him to change the
word “unafliliated.” This the registrar absolutely refused to do without proper
authorization. Einstein asked by what authority the registrar had used the word
in the first place, upon which the registrar said indignantly that Einstein himself
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had told him to use it. To the registrar that must have seemed the end of the matter,
as indeed it probably would have to you and me. But Einstein, having maneuvered
the registrar into citing him as an authority on this particular matter, now played
his trump card. He said to the registrar that he, Einstein, now formally declared
himself to be of the Hebrew faith. Since the logic was unanswerable, the registrar
was persuaded to change “unaffiliated” to “Mosaic,” which was the appropriate
technical term. And that is how Einstein, with tongue in cheek, saved his almost
lost professorship.

While in Prague, Einstein did come in contact with Zionists, but apparently he
remained quite without interest in Zionism. From Prague he was invited back to
Zurich, and from there, as we all know, to a prestigious position in Berlin in 1914.
But still Jewish matters seem not to have occupied his mind to any significant
extent.

An indication of what happened next can be gleaned from the following two quota—
tions, even though they slightly conflict with previously quoted material. Both
were written in 1929. In an article, Einstein said, “When I came to Germany fifteen
years ago I discovered for the first time that I was a Jew, and I owe this discovery
more to Gentiles than to Jews.“ And in a letter, he wrote in similar vein, “1 first
came to Zionism after my emigration to Berlin in 1914 at the age of 35, after I had
lived in a completely neutral environment.”

Let us not jump to conclusions. Einstein did not become a Zionist in 1914. Listen
as I re-read his words: “I first came to Zionism after my emigration to Berlin at the
age of 35.”

How long after? Quite a while. As Kurt Blumenfeld said, “Till 1919 Einstein
had no connection with Zionism or Zionistic ideas.”

Who, then, is this Kurt Blumenfeld who speaks of Einstein with such assurance?
He was the director of propaganda for the Zionist Union of Germany [Zionistisches
Vereinigung fur Deutschland]. The German Zionists had made a list of Jewish
intellectuals whom they wanted to attract to the Zionist cause. Einstein’s name was
on the list. And because of it Blumenfeld presented himself to Einstein in the February
of 1919 to talk with him about Zionism.

Note the circumstances. Two years before, the famous Balfour Declaration had
promised a national homeland for the Jews. The Zionists rejoiced, of course. They
could see their dream becoming a reality. But many successful assimilated Jews were
bitterly outspoken in their opposition. They were afraid that a Jewish national
homeland might tend to give them the status of aliens in the lands Where they had
achieved their success. As for Einstein, he had propounded his general theory of
relativity in 1915, yet in early 1919 he was still relatively unknown to the general
public. The results of the British eclipse expedition under Eddington were not
officially announced till 6 November of that year, and only then did the people of
the world suddenly realize that a mighty genius was in their midst. When Blumenfeld
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first came to Einstein in the February of 1919, Einstein’s spectacular worldwide
fame was still some nine months in the future, and if Einstein~could not foresee it,
surely neither could Blumenfeld. Obviously, the Zionists did not approach Einstein
because of his world fame. But, naturally, when it came they were not at all averse
to capitalizing on it.

Blumenfeld’s task did not turn out to be easy. Einstein had many doubts that had
to be resolved. For instance, as an internationalist he worried about the nationalistic
aspects of Zionism. The months of discussion dragged on into years. Sometimes
Einstein asked questions with what Blumenfeld described as “Godlike naivete.”
For example, when Blumenfeld started out by telling about the Jewish question
and thus, presumably, of the historical persecutions of the Jews, Einstein asked
what that had to do with Zionism. He asked, too—and I paraphrase his words as
reported by Blumenfeld—whether it was really a good thing to separate the Jews
from the intellectual pursuits for which they were born, and whether it was not a
backward step to put manual skills, and above all agriculture at the center of things
as Zionism did.

A month after Blumenfeld’s first visit, Einstein did make this passing reference
in a letter to his friend Paul Ehrenfest: “What pleases me the most is the realizing
of the Jewish State in Palestine.” But as Blumenfeld put it: “Einstein [warmed]
up to the Zionist idea only gradually and after long deliberation. He joined the move-
ment when he felt that it was actually a matter of a struggle for spiritual freedom,
for human rejuvenation, and when he became convinced that the conquest of
Eretz Israel for the Jewish people was a conquest through labor and that the move-
ment was free from tendencies of profiteering and exploitation.”

As we have said, Blumenfeld began his discussions with Einstein early in 1919.
By 1920 Einstein was beginning to speak out in Zionistic tones, saying for example,
“Only when we [Jews] have the courage to regard ourselves as a nation, only when we
have respect for ourselves, can we win the respect of others.”

This change of outlook had not been brought about solely by Blumenfeld. The
end of World War I brought a sharp rise in anti-Semitism, and Einstein saw for
himself the shattering effect it had had on the refugees who fled to Germany from
Eastern Europe.

On 10 March 1921, Chaim Weizmann, in England, sent a detailed telegram to
Blumenfeld. Weizmann was the leader of world Zionism—he was later to become
the first President of the State of Israel. In his telegram he said that Blumenfeld
should persuade Einstein to accompany Weizmann on a visit to the United States
to help raise funds for Zionist causes. In particular, Blumenfeld was to stress to
Einstein the need to raise money for the creation of a Hebrew University in Jerusalem.

Blumenfeld used all his arts of persuasion, but Einstein would have none of it.
Right away he said, “I am no orator. I can add nothing convincing. You will only
be using my name.” And he defeated Blumenfeld’s arguments so easily that Blumen-
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feld gave up the battle. But as he was about to take his leave, a last desperate thought
came to him. He turned to Einstein and said, “I do not believe that we can weigh

arguments against each other in this case. Our work can succeed when all of us are
moved by a new spirit of national discipline. . . . I do not know what [Dr. Weizmann]
would say to you in my place. But I know that he has been entrusted by the Jewish
people with the responsibility of realizing the Zionist program. Dr. Weizmann, not
as an individual, but as president of the Zionist Organization has ordered me to
persuade you to go to America, and I have the right to expect that you subordinate
your considerations to Dr. Weizmann’s decision.” To Blumenfeld’s surprise,
Einstein agreed. And that is how it came about that Einstein and Weizmann travelled
together to America in the cause of Zionism.

(It is interesting to see Einstein, the instinctive rebel, here bowing to authority.
I have a feeling of kinship with him. The topic of the present talk was not of my
choosing. It was decided upon by the organizers of the Conference and, like Einstein,
I am simply obeying orders.)

Weizmann was a distinguished scientist. Telling about the boat trip across the
Atlantic, he said, “Einstein explained his theory to me every day, and on my arrival
I was fully convinced that he understood it.”

Einstein was received in America with extraordinary enthusiasm. Many honors
were bestowed on him, and his presence on the platform turned out to be a major
asset. For his unguarded account of what happened, let us look at a letter he sent
from New York to his long-time friend Michele Besso, whom he had thanked in

the celebrated 1905 paper that set forth the special theory of relativity. Einstein
wrote:

“Two frightfully exhausting months now lie behind me, but I have the great
satisfaction of having been very useful to the cause of Zionism and of having assured
the foundation of the University. We found special generosity among the Jewish
doctors of America (ca. 6000) who provided the funds to create the medical school.
. . . I had to let myself be exhibited like a prize ox, to speak an innumerable number
of times at small and large gatherings, and to give innumerable scientific lectures.
It is a wonder I was able to hold out. But now it is over, and there remains the beauti-

ful feeling of having done something truly good, and of having intervened coura-
geously on behalf of the Jewish cause, ignoring the protests of Jews and non-Jews
alike."

And in 1944, for Blumenfeld’s sixtieth birthday, Einstein wrote to him saying:
“Now almost twenty-five years have passed since your first visit to me, when you

persuaded me to make the journey to the United States, a journey that was good
and necessaryiand also pleasant once it was over.”

(Actually, it had not been on Blumenfeld’s first visit. On this point Einstein’s
memory had played him false. But he still vividly remembered how nice the whole
thing was once it was over.)
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If we look behind the banter, it is easy to see that the journey to America meant
a great deal to Einstein. His commitment to Zionistic ideas was enormously strength-
ened and his sense of being a Jew took on a new profundity. From now on, guided
by Blumenfeld, he spoke and wrote frequently in support of Zionism. No longer
did he object that the Zionists were using his name. He realized that his fame was
a unique asset entrusted to him by Fate, and his conscience told him that he must
let it be used in the cause of Zionism, as in other causes he saw as worthy. Unlike
too many other Jews in Germany, he felt a strong bond of kinship with the bedraggled,
poverty-stricken Jewish refugees from Eastern Europe. He could see beyond their
outward appearance, their air of vagabondage, and their lingering fear, and he recog-
nized them not just as fellow human beings but also as fellow Jews who, therefore,
had a special claim on his sympathy. He did not run from them as if fearing contamina-
tion from their contact. He saw that, unlike some of the more assimilated Jews in
Germany, they retained a vivid sense of belonging—“a healthy national feeling
. . . not yet destroyed by the process of atomization and dispersion.” But let him
speak for himself. Here are excerpts from a speech he gave in England in 1921 on
his way home from the trip to America:

“When I moved to Berlin. . . I realized the difficulties with which many young
Jews were confronted. I saw how, amid anti-Semitic surroundings, systematic study,
and with it the road to a safe existence, was made impossible for them. This refers
specially to the Eastern-born Jews in Germany. . . .These Eastern-born Jews are
made the scapegoat of all the ills of present-day German political life and all the
after-effects of the war. Incitement against these unfortunate fugitives, who have
only just saved themselves from the hell which Eastern Europe means for them today,
has become an effective political weapon, employed with success by every demagogue.
When the Government contemplated the expulsion of these Jews, I stood up for
them, and pointed out in the Berliner Tageblatt the inhumanity and the folly of such
a measure. Together with some colleagues, Jews and non-Jews, I started University
courses for these Eastern-born Jews, and I must add that in this matter we enjoyed
official recognition and considerable assistance from the Ministry of Education.

“These and similar happenings have awakened in me the Jewish national senti-
ment. I am a national Jew in the sense that I demand the preservation of the Jewish
nationality as of every other. I look upon Jewish nationality as a fact. . . . I regard
the growth of Jewish self-assertion as being in the interests of non-Jews as well as
Jews. That was the main motive of my joining the Zionist movement.”

And later in the speech he says: “The main point is that Zionism must tend to
enhance the dignity and self-respect of the Jews of the Diaspora. I have always been
annoyed by the undignified assimilationist cravings and strivings which I have ob-
served in so many of my friends.”

As Einstein now saw it, Zionism was a unique revitalizing and unifying force for
all Jews. Though steeped in tradition, it looked to the future. A few months after
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his return from America he said, “For the last two thousand years the common
property of the Jewish people has consisted entirely of its past. . . . Now all that is
changed. History has set us a great and noble task in the shape of active cooperation
in the building up of Palestine . . . [which must] become a seat of modern intellectual
life, a spiritual center for the Jews of the whole world. . . . A Jewish University in
Jerusalem constitutes one of the most important aims of the Zionist organization.”

The fact that in 1922 Einstein visited Japan is not in itself relevant to our topic.
But, early in 1923, on his way home from Japan, he stopped off in Palestine, and this
was an event indeed.

It is well known that Einstein was in the habit of doing calculations on any handy
scraps of paper. It seems that just before his trip to Japan a friend gave him a going-
away present of a travel diary. It consisted of blank pages bound together into a
volume. We shall not be surprised to learn that Einstein did not waste it. What is
surprising is that instead of using it for calculations, he actually used it as a travel
diary.

Some of the entries are amusing. For example, one day in Japan, because of a
mishap, Einstein had to borrow a top hat. It turned out to be so small that he had to
carry it around in his hand all day. (It is not easy to imagine Einstein of the flowing
mane willingly wearing a top hat in the first place. Perhaps he was secretly glad it
did not fit.)

Here is a striking entry—striking because it was utterly routine. Einstein is on
his way to Palestine and he writes in his diary, “1 Feb. Arrival in Port Said.” Good
heavens, we say to ourselves, Port Said is in Egypt! A Jew cannot travel these days
to the Jewish homeland Via Egypt—if his name is not Kissinger. But things were
diflerent in those days. Indeed, the diary unwittingly points up the difference further.
It goes on to say that a young Jew came to the customs house in Port Said to meet
the Einsteins and, with another young Jew, to accompany them on the ferry boat
to Palestine. Times have changed since then.

As in Japan, so in Palestine Einstein was greeted with extraordinary enthusiasm.
But in Palestine the visit had an emotional impact that could not possibly be
duplicated in any other land. The diary tells of staying as the guests of the very
British Sir Herbert Samuel, who was the Governor of Palestine under the British
Mandate. It tells, too, of an incredible number of engagements and visits packed
into a mere two weeks. There are frequent references to “rain” and “torrential rain.”
Here are some other excerpts:

“8 Feb. Drive to Tel Aviv. . . . The accomplishment of the Jews in just a few
years in this city arouses the highest admiration. . . . An incredibly active people,
our Jews.”

“10 Feb. . . . Visit to Weizmann’s mother, surrounded by x sons, daughters,
etc‘” (Note how deftly Einstein here portrays Weizmann’s mother. I know nothing
about her beyond this sentence, yet I feel that she is no longer a stranger.)
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“13 Feb. In evening German lecture in Jerusalem in packed hall with unavoidable
speeches and Jewish doctoral diploma, during presentation of which the speaker
grew nervous and came to a stop. Thank goodness some of us Jews are not so self-
assured.” In this entry Einstein goes on to say that he is pressed from all sides to
settle in Jerusalem, and he adds, “The heart says yes, but the mind says no.”

But the highlight was the visit to Mount Scopus, the site on which the Hebrew
University was destined to be built. There, on 6 February 1923, Einstein gave a
lecture in French, and remarked in his diary, “1 had to begin with a greeting in
Hebrew, which I read off with great difliculty.” What Einstein did not mention in
his diary was the joy and sense of fulfillment that his presence on Mount Scopus
brought to the Jews of Palestine, and the reverence that was manifest in their invita-
tion to him to speak from “the lectem that has waited for you for two thousand
years." In these few words are packed the tragedy and triumph of Jewry.

With the rise of Nazism in Germany, the position of the German Jews became
desperate. When Hitler seized power, Einstein was in California. He never returned
to Germany. Instead, he severed all official German ties and spoke out against the
Nazi tyranny with the fervor and fearlessness of the ancient Hebrew prophets. In
Princeton, where he settled, he found ways to rescue friends and strangers from
death at the hands of the Nazis.

After World War II, with the Nazis defeated, he was invited to rejoin various
German orgainizations from which he had resigned. But he refused. And his words
of refusal reveal how profound had become his sense of Jewish identity. For example,
to one organization he said, “The Germans slaughtered my Jewish brethren. I
will have nothing further to do with the Germans.” And to another he said, “Because
of the mass murder that the Germans inflicted on the Jewish people, it is evident
that any self-respecting Jew could not possibly wish to be associated in any way
with any official German institution.” He never relented.

When Weizmann died, in 1952, Einstein was invited to succeed him as president
of the State of Israel. It was a natural thing. For, while Einstein looked on Zionism
as the only ideal powerful enough to give to the scattered Jews of the world a sense
of unity, he seems not to have realized how potent a unifying symbol and source
of self-confidence he had himself become for the Jews. He declined the invitation
gently, citing his lack of aptitude and experience for such a post, and adding, “I
am the more distressed over these circumstances because my relationship to the
Jewish people has become my strongest human bond, ever since I became aware
of our precarious situation among the nations of the world.”

And in March of 1955, less than a month before he died, he wrote to Blumenfeld
saying, “I thank you, as I should have done much earlier, for having helped me
become aware of the Jewish soul.”

Has Einstein a message for Israel today? I do not know. But let me cite two
passages written in another time. In Los Angeles, in 1932, he said:
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“The Zionist goal gives us an actual opportunity to put into practice, through a
viable solution of the Jewish-Arab problem, those principles of tolerance and justice
that we owe primarily to our prophets. I am convinced that the living transmission

of those principles is the most important thing in Judaism.”
And in a speech in 1939. given shortly after acts of violence in Palestine by Arabs

against Jews, he said:
“There could be no greater calamity than a permanent discord between us and

the Arab people. Despite the great wrong that has been done us, we must strive for

a just and lasting compromise with the Arab people. . . . Let us recall that in former

times no people lived in greater friendship with us than the ancestors of these Arabs.”

Every speaker faces a delicate problem of simultaneity. His task is just to speak.

The task of his auditors is harder; it is to listen. The aim of the speaker is to have

their listening and his speaking come to an end simultaneously.
There is a story of a professor who said to his class: “I don’t so much mind your

looking at your watches during my lectures. What hurts is that some of you look

at your watches, stare at them in utter disbelief, and then hold them to your ears

to see if they are still running.”
Well, I have said my say. I think you’ll all agree with me in echoing Einstein’s

words and saying it‘s pleasant;now that it’s over.



Gravitational Waves: Panel Discussion

D. SCIAMA (Moderator): I would like to welcome you all here to this panel discussion
on gravitational waves. This, alas, is the final session of this conference where we
feed the discussion into John Wheeler’s computer and then, at the end of this session,
will come an output from him to remind you of all you have heard during the last
few days. I would like to introduce the panelists to you and then explain the format
of this session. On my left, Joe Weber of Maryland. On his left, Tony Tyson from
the Bell Laboratories. On my right Ron Drever from Glasgow, and on his right,
Peter Kafl(a from Munich. The format of this session will be as follows: we will
begin with formal statements from each of the participants. This will be followed
by a discussion between them of what they have just said. At that point, I will invite
the audience to ask questions or make comments and then finally we will move over
from discussing the present situation to having a look at the future to see what
possibilities there may be for designing detectors far more sensitive than the current
generation of detectors. Now, we have a very tight schedule and I have promised
the organizers we would finish by 11:00 o’clock absolutely. Therefore, I am forced
to be a ruthless chairman. I warn everybody here about that. Now it is my great
pleasure to ask Joe Weber to open the session.

JOE WEBER: Thank you very much. Perhaps President Nixon should not have promised
nuclear technology to the Egyptians. It might have been better if he had offered
gravitational radiation detector technology. Therefore, I propose giving Tony
Tyson’s equipment to Egypt, Ron Drever’s equipment to Syria, the Munich—
Frascati equipment to Arabia, and the Douglass bar to Jordan; Israel does not
need one since she has Sadeh. It is very important for these experiments to have
isolation. To meet this need we can take the International Business Machines’
detector together with Richard Garwin and transport them to the Moon to send
back data until the sidereal anisotropy is confirmed by Egypt and Syria. Needless
to say, as soon as these installations are transferred and start operating, the level
of controversy in the Middle East will rise exponentially. The amount of national
energy involved will be so great as to leave no chance of any more shooting wars.
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Perhaps then I could exchange salaries with Dr. Kissinger in order to facilitate the
data exchange.

The gravitational radiation antenna (detector) was developed at the University
of Maryland during the period of l958—present [1]. It is an elastic solid with a normal
mode instrumented to observe strains excited by the Riemann curvature tensor.
In 1968, we began'a series of experiments to search for two antenna coincidences.
The experiments are done by looking for coincident changes in some function of
the detector oscillation amplitudes for two widely separated detectors. We count
the number of coincidences and compare it with the number of chance coincidences,
which are measured by inserting a time delay in one channel or the other. The de-
sired output is a histogram similar to the ones in Particle Physics, and a positive
result means that you see a larger number of coincidences without a time delay than
with a time delay.

Statistically significant numbers of coincidences were observed between antennas
at the University of Maryland and the Argonne National Laboratory early in 1969
[2]. Later, sidereal anisotropy was observed, suggesting the galactic center as the
source [3] Observations with a disc gave evidence for the tensor character of the
interaction causing the coincidences. These data were taken by human observers
studying pen and ink records.

From the very beginning all features of these experiments were intensely criticized.
Nonetheless, it has been clear for some time that the early instrumentation did
achieve the claimed sensitivity [4], and that the thermal fluctuations of the aluminum
cylinder detector were being observed. The number of coincidences observed for
extended periods exceeded the number of chance coincidences by statistically sig-
nificant margins.

Now we come to a problem which has been encountered in high energy physics.
The problem relates to computing and there are important moral questions here.
It is a full-time job for me to develop the apparatus and maintain the detectors;
this is all I do. The data on a magnetic tape are analyzed by a computer, using pro-
grams prepared by another individual. I will not believe the results of an experiment
based solely on a computer printout. This is one of the features which distinguishes
our work from the other experiments. We use a telephone circuit which connects
the two detectors so that separate magnetic tape units are not needed, and we always
do several experiments, some with real time counting and others with magnetic tape
and a computer. Results are discussed or published only if the different methods
are in reasonable agreement. Program errors cannot change the character of our
results.

Our computing has been criticized and some of the criticism is justified. It is
very well documented, and documents have been shown to various members of the
panel that the corrected programs support the kind of data reported at Paris in
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June 1973, and published in the Proceedings 220 [8]. Furthermore, at Warsaw,
I reported the existence of significant numbers of coincidences between detectors
in 710 Hertz and 1661 Hertz on a timescale of a few days with statistical significance.
In my opinion, this result is very well established.

A list of coincidences employed for the study of the sidereal anisotropy was fur-
nished to Dr. J. A. Tyson. He found evidence for correlations with the very low fre—
quency fluctuations of the earth’s magnetic field. Study of the response of the Maryland
gravitational radiation detector to magnetic field fluctuations indicated that the
response was much too small to account for the earth’s magnetic field as the source
of the coincidences. If Tyson’s correlations are correct, the inference is that the
sidereal anisotropy has been correctly observed and that whatever excites the gravi-
tational radiation detectors also excites changes in the earth’s magnetic field.

Magnetic tape and computer analyses began supplementing human observer
study of pen and ink records in 1970. Outputs of two detectors are recorded on
different channels of a magnetic tape. The computer prepares a list of coincidences,
and then the accidental coincidences are measured by inserting time delays in one
of two channels. The number of real coincidences is then the number at zero delay
minus the number of chance coincidences. Mr Brian K. Reid prepared an elaborate
computer program which recorded [5] coincident increases of power. He then mea-
sured the pulse height after filtering and computed the number of times per day that
the given pulse height was exceeded.

Reid left the University of Maryland in 1971. New programs were prepared be—
cause it was thought that other groups would have difficulty reproducing the Reid
programs.

An incoming signal may or may not increase the power output, depending on the
initial phase. To observe effects of both increase and decrease of antenna energy,
it was decided to observe some function of the derivative of the amplitude or power.
The new programs were based on the following considerations:

Demodulation
Let the output voltage of the gravitational radiation antenna amplifier be glven by

A = F(t) sin (wot + 45), (1)
where (no is the normal mode angular frequency. The amplitude F (t) and the phase
(I) have values characteristic of signals and noise. It is now common practice to
obtain from (1) the amplitude and phase by combining (1) with local reference os-
cillator voltages sin mot and cos wot to obtain:

A cos wot = iF(t) [sin (2w0t + 4)) + sin gt] (2)

A sin wot = lF(t) [cos ([5 — cos (2w0t + ¢)] (3)
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After filtering with a time constant short compared with the antenna relaxation
time, (2) and (3) become the averages

x = <F(t) cos d>/2> (4)

y = <F(r)sin d>,/2> (5)
An incoming signal may change phase and amplitude of the detector voltage, de-

pending on the initial noise-induced phase relations. The detector output voltage

includes narrow band noise of the normal mode of the antenna VANT and relatively

wide band noise VN from transducers and electronics. To search for sudden changes

in amplitude we may observe a function of the derivative of the power P which for
convenience is taken as the (positive) quantity:

(dP >2 i [Afxz + 31)]2 _ [A[VANT + VNJZ :|Z [2A(VANTVN):|2 (6)

E — I — t I

(6) is independent of the phase. Incoming signals which change only the phase would
therefore be missed and to include such cases we may search for sudden changes in
the quantity [6].

dX 2 d} 2 [AVANT + AVN]: + [AVANT + AVN]:E + a = 2 (7)
I

Suppose we insert a sequence of calibration test pulses with the short duration
At at times t1, t2, t3 tn and search for the single pulse detector response only at
times t1 + At. t2 + At, t3 + At, ...t,, + At. It is found for pulses which would in—
crease the energy of the normal mode from zero to kT that algorithm (7) gives a
larger amount of response pulses exceeding thresholds, than algorithm (6). Perhaps
this is the reason that algorithm (7) is preferred by a number of groups.

However, a study of chart records shows that (Figure l) algorithm (7) produces
single response pulses for each test pulse while algorithm (6) may produce a sequence
with more than 20 pulses following insertion of a single test pulse, many of them
large enough to cross thresholds. This is a consequence of occurrence of the term
A(VANTVN) in (6). The single pulse excites the antenna and VANT remains large for
the antenna relaxation time. The rapidly varying wide band noise VN then produces
the sequence of large pulses. This does not occur with (7) because AVANT instead
of e is combined with AVN. For very weak signals the term ZVANTAVANT may
be important for (6).

In one series of observations 50 single kT pulses were introduced at two-minute
intervals. One hundred and ninety—two response pulses exceeding threshold set at
five per minute were emitted by the receiver for algorithm (6) in consequence of the
proliferation process.
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Figure 1

Proliferation of pulses for nonlinear algorithm.

We believe that this kind of cascading may result in observation of a larger number
of two-detector coincidences for algorithm (6) than for (7), at certain energies.

Furthermore, it seems clear that tests of the single-pulse response of detectors is
not sufficient to establish their sensitivity for gravitational radiation experiments.

Observations
The new computer programs did not become available until early 1973. Results
were uncertain until late May 1973. Our magnetic tape data processing system con-
verted the detector outputs to digital form with only 6 bit accuracy. To minimize
the quantization errors, we employed analogue devices to compute (dP/dt)2 at both
Maryland and Argonne installations.

This was then transmitted from Argonne by a telephone line and the digitized
(dP/dt)2 written on magnetic tape at Maryland every 0.1 second along with the value
from the Maryland detector. Without further processing, the data from both de-
tectors were compared by programs on the Univac 1108 computer. For one kind
ofanalysis [7] thresholds were set and a coincidence defined as a simultaneous crossing
(within the 0.1 second writing interval) from low to high values of (dP/dt)2. A histo-
gram for the period June 1—5, 1973, for the threshold crossing algorithm is shown
as Figure 2.*
* This histogram is for the very controversial tape 217. A copy of this tape together with an unpublished

list of coincidences was sent to Professor David Douglass at the University of Rochester. Douglass
discovered a program error and incorrect values of the unpublished list of coincidences. Without further
processing this tape, he reached the incorrect conclusion that the zero delay excess was one per day.
This incorrect information was widely disseminated by him and Dr. R. L. Garwin of the IBM Thomas
J. Watson Research Laboratory. After all corrections are applied, the zero delay excess is 8 per day.
Subsequently, Douglass reported a zero delay excess of 6 per day for that tape.

Douglass has also reported computing errors in the data reported at the Warsaw Copernicus Sym-
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Figure 2
Time delay histogram for simultaneous threshold crossings (June 1-5, 1973), 0.1 second bins.

A second type of analysis [8] defines a coincidence as any pair of points above
threshold regardless of previous history. The histogram for the same period as
Figure 2 is shown as Figure 3, but the width of the zero delay excess is larger and a
higher significance is obtained by grouping together counts in 5 bins In each instance
the standard deviation is computed as the square root of the mean square differences
between the mean of the accidental coincidences and the individual delay values.

Figure 3 gives a zero delay excess with a higher level of confidence. For this reason,
we decided to process all other data in this report employing the criterion that a
coincidence is any pair of points above threshold, without regard to previous his-
tory (Figure 3).

posium in September 1973, involving detectors at widely separated frequencies. A 2.6 standard deviation
zero delay excess was reported for a six-day period with no claims for it being a positive or negative
result. Analyses of other data make it clear that on a time scale at least exceeding four days there is ob-
served a zero delay excess with a level of confidence associated with more than 6 standard deviations
for gravitational radiation detectors at frequencies differing by several hundred Hertz.
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Figure 3
Time delay histogram for coincidence defined as any pair of points above threshold at the same time.

Each bin is 0.5 seconds wide.

No significant numbers of coincidences were observed during the latter part of
June and July 1973. In July 1973 a new pre-amplifier was installed at the Argonne
National Laboratory Gravitational Radiation Detector and the algorithm (dx/dt)2 +
+ (dy/ait)2 was substituted for (dP/dt)2. No significant numbers of coincidences
were observed for the period July—November, 1973, except for one four-day period.
In November 1973, parallel experiments were begun employing both X2 + V and
(dP/dt)2 for both the Argonne and Maryland detectors. Again, no significant number
of coincidences were observed until mid-December 1973. At that time, it was dis-
covered that the Argonne pre-amplifier had deteriorated in noise performance.
A calibration plate was installed at Argonne for introduction of small amounts
of energy into the detector by electric fields. For the old (deteriorated) pre-amplifier
only one third of the calibration pulses which would couple kT into a cylinder
with no lowest mode initial velocity resulted in threshold crossings for the (dP/dt)2
algorithm. The amplifier noise performance was improved to the point were 0.7
of the kT pulses crossed threshold for the (dP/ait)2 algorithm. A significant zero
delay excess was observed for the 14—day period immediately following the improve-
ment in sensitivity and shown as the histogram of Figure 4. A histogram for the
x2 + V algorithm for the same period is shown as Figure 5. Clearly these results
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Parameters for Argonne Maryland Experiments, June 1974.
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are inconsistent with the generally accepted idea that 3&2 + V should be the better
algorithm.

During the months January—May 1974 results were uncertain—in part because
of problems of temperature control with the Argonne installation, in part because
a series of experiments was carried out involving new electronics at liquid nitrogen
temperatures. Toward the end of April 1974, these experiments were terminated
and the parameters of Figure 6 installed. Further improvements in noise performance
were made on June 10, 1974, at which time the Butterworth filter bandwidths were
further reduced, to 0.8 Hertz for our X2 + y‘2 algorithm. Such reduction was made
for P2 on July 12, 1974.

For the period May 15—June 9, the zero delay excess characterized by Figure 7
obtained for P2, again summing over five bins each 0.1 seconds wide. During this
period we were not recording X2 + y”. During the period June 18—July 1, 1974,
we did not observe a significant result for P2 but we did observe a significant zero
delay excess for X2 + f, at very low threshold settings as shown in Figure 8.
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Time delay histogram for (dx/dr)2 + (dy/dt)2 for June 18—July 1. 1974, 0.1 second bins.
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Calibration
As a check on the overall sensitivity, pulsed mechanical forces were applied to both
detectors simultaneously, by electric fields at one end of each cylinder. The pulses
were sinusoidal wave trains, 50 milliseconds in length, and applied at intervals of
two minutes. Outputs of both detectors were recorded on magnetic tape for (dP/dt)2
and (dx/dt)2 + (dy/dt)2. Our standard programming procedure was then employed
to search for these pulses at thirty different thresholds. To smooth the data and
minimize effects of real coincidences during that period, delays at multiples of two
minutes were applied to one detector output and results averaged over 5 such delays.

For conditions of the operating experiment we find that to obtain a standard
deviation excess at zero delay for 150 operating days, summing over 5 bins each
0.1 seconds wide, the experiment could detect the following numbers of pulses per
day for the listed increase in energy (assuming the initial energy were zero).

Number per day Number per day
For (dx/dr)2 + (aiy/dt)2 For (dP/dt)2

kT .07 1.1
kT/3 0.5 14
kT/lO 12 160

Conclusion
The past year of observations has been characterized by long periods when there
was no significant zero delay excess, and four periods of a few weeks each (in May—
June 1973; December 11—25, 1973; May 21—June 9, 1974; June 18—July 1, 1974)
when a considerable excess of coincidences was observed, over the accidental ones.
As a rule the algorithm (dP/dt)2 gave a larger zero delay excess than 58 + )32 except
for the period of Figure 8. Each of these periods was characterized by a continuous
sequence of tapes, each of which has a zero delay excess. The level of confidence
greatly exceeds that which would be expected from simply selecting data which
give desired results from a large ensemble, and in each instance the zero delay excess
is observed for a range of thresholds. Such results are only observed at zero delay.

We cannot conclude, at this time, that we are dealing with an intermittent source.
The attempt to obtain outstandingly good noise performance led to operation of
field effect transistors at the large currents recommended by the manufacturer.
Under these conditions slow deterioration over a period of about two months was
common. Operation now at much lower currents has stabilized the output, and an
8—channel pre-amplifier gives the required noise performance. A further problem
has been one of gain adjustment. Our 6-bit recording system, with preprocessing
of data before they are written on tape, gives significant errors due to saturation at
high gain and significant errors due to quantization noise at low gain. It has been
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difficult to stabilize the gain for long periods. These difficulties resulted from attempts
to improve the experiment so that the detection efficiency would be increased to
permit more accurate measurements of anisotropy and polarization. Improved data
acquisition systems are now under development in order to give satisfactory solutions
for these problems.

On the whole, our results are in fair agreement with the observations of the Munich—
Frascati group.

Our recent results suggest a low background event rate with short periods of
about two weeks, a few times a year with much larger event rates. Now it is rumored
that another group has found the coincidences. I have been waiting five years for
someone to find these coincidences and am reminded of the story of Jacob in the
Bible. He worked for seven years for a beautiful woman Rachel but received, as a
result of trickery, a non-beautiful woman Leah. Then he had to work seven more
years for Rachel. I hope the results to be given by the others will not require me to
wait five more years. Thank you.
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SCIAMA: Thank you very much Joe and thank you for keeping to your time. I now
invite Peter Kafka to continue the discussion.

KAFKAZ The experimental work in our coincidence experiment was mainly done
by H. Billing and W. Winkler in Munich, and by K. Maischberger in Frascati. The
decision to repeat Weber’s experiment as closely as possible was made independently
by both groups, but the Frascati group was taken over by our institute when ESRIN
closed down. The detectors started working in 1972 and we collected some simul-
taneous data without finding evidence for Weber-type events. Since the experi-
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mentalists always wanted to increase sensitivity (like Weber did), a long-term run
with stable detectors was started only in July 1973. Due to failures of the tape re-
cording systems we obtained simultaneous data only for 150 out of 300 days until
May 1974, but the detectors themselves nearly did not change over that period.
This stability is very important, because it guarantees uniform statistical behavior
of the noise data, required for a uniform evaluation over the whole year. My colleague
F. Meyer and myself have developed the theory of optimal signal detection in such
an experiment, and we think there is not much room left for quarreling about the
best procedure. The algorithm which Weber now calls the “preferred” one, is close
to the one which we have used and recommended for several years. I cannot go
into details here, but let me sketch the basic ideas. The detector can be represented
by an equivalent circuit as in Figure 9. Its output is a voltage U (I) as a function of
time, roughly a sine at 000 = 1660 Hz with slowly varying amplitude and phase. We
know its statistical behavior in pure noise. The “Gaussian” character defines a
metric in the functional space of all U (r) in a neighborhood of a given moment to.
Using this metric defined by the noise, we can project any observed output on the
output which would be produced by a unit signal arriving at time to, in the absence
of noise. This projection defines the “signal content” A at time to

+ so

Mo) = f G(t) U(t0 + t)dt (1)

The optimal filter 00:) is calculated from the equivalent circuit and the unit signal.
(But for short pulses no other property of the signal except the pulse strength comes
in!) Mt) is still oscillating at (90. Since we are not interested in the exact arrival time
or the relative phase between the signal and the detector, we average over the ab-
solute phase (of the 1660 Hz output) and define a squared signal content A200),
referring to an arrival time only roughly at to. The long term mean value K2 of the
optimal signal content function A2(t) in pure noise can be used for a definition of
optimal sensitivity: We define a dimensionless pulse strength E, by comparison with
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Figure 9
Equivalent circuit of Weber-type detectors, C1, Ll, Rl represent the mechanical oscillator; C2, R2 the

transducers; Ra, R,- the amplifier noise.
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a short pulse which would excite the cylinder from emergy zero to 1kT. (Detector
dependent unit pulse E9 = 1!) Then, optimal sensitivity is defined by

(I) = (A2 in pulse on = 1)//_\2. (2)
The optimal filter involves a certain time-scale of exponential smoothing (e+“‘).
The optimal smoothing time 1 /it and the corresponding optimal sensitivity (1) result
from the values of the equivalent circuit, and are in good approximation:

4.112 z wnRflRl + Ra)/(1 + RaR’zwéCfi} (3)
1/<1) z 4' [(R1 + Ra)/R’2 + RiRawécill/Za

where (1)5 = 1/L1Cl and l/R’z = l/RZ +1/Ri.
In order to compare the optimal sensitivities of experiments with different detector

masses, we had better compute the spectral density (at coo) of a short gravitational
pulse of E9 = 1. One finds

Z(v) = (c3/27rG)' (Al/1)2 z 1.2- 107(MMunich/M)erg/cm2- Hz (4)
(G = gravitational constant: I = length of cylinder; M = mass; AI = amplitude after
the pulse, if it was zero initially.) Table 1 compares the equivalent circuits, optimal
filter times and optimal sensitivities of the detectors in Munich and Frascati with
Tyson’s and Weber’s of last year. The last line is the relevant one for comparison of
optimal sensitivities. It shows the spectral density of the signal which is on the average
simulated by pure noise, if one uses the optimal evaluation. Clearly, any deviation
from the optimal data processing can only decrease the sensitivity to short pulses.

TABLE 1
Values for the Equivalent Circuits of Some Detectors. M: Munich
(1973/74); F: Frascati (Jan. 1974); B: Bell Lab. (1973,/74)1°;W’73: Mary-
land (1973)“; W'70: Maryland (1970)“. R2 Comprises R2 and RE in
Figure 9. Optimal Filter Time )1“, Optimal Sensitivity CD and Spectral
Density 2., in a Pulse of Strength 1kT/Q. (1GPU = 105 erg/cmZHz.)

M F B W73 W70

(10-1310 3.6 9.1 100 122 5
(10%) 25.7 11 5 .75 20
(o) 760 750 82 50 2000
(
(

1

1

1

2 10—917) .8 1.2 50 70 100
106(2) 44 22 1 .23 .1

0(9) 120 80 20 15 7
‘ 1 (sec) .31 .15 1.4 .69 > 2.8

48 35 18 10 <2
2.,(GPU) 2.5 2.9 23 12 >60
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Therefore, we have to ask how good our actual evaluation is, as compared to the
theoretical optimum. The actual evaluation is as follows:

Using a reference oscillator near frequency (00, we decompose the output U (r)
into two slowly varying function x(t) and y(t), the “phase-plane components in a
co-rotating frame.” Figure 10 shows an example for the output of the Munich de-
tector in the x,y—plane. The 600 data points of 1 minute are connected by a line.
The radius r of the circle represents the long-term mean value of r2 = x2 + yz.
This corresponds to the energy lkT in the cylinder plus about 2% wide-band noise
energy. Near the point marked P in Figure 10, an artificial pulse of E9 = 0.1 was
applied. One can see that it is nearly drowned by the noise. Let us therefore apply
a reasonable approximation of the theoretically optimal filtering process, and de-
termine the signal content function for this minute of data. At the moment t, we define

the smoothed future position by x+ = p- At- 2 x(t + n - At) e“""‘A‘, the smoothed
"—0

no

past by x‘ = “At- 2 x(t — nAt) e‘”"‘“ (and correspondingly y+ and y‘). At = 0.1
":1

sec is the discretization time. Then we approximate the optimal signal content
A2 by A3 = (x+ — x12 + M — y-)2 (5)

T7

Figure 10
One minute of noise in the x,y-phase plane, in the co-rotating frame. (Munich detector.) The circle repre—
sents the long term mean of r2 = x2 + y2 (i.e., the cylinder energy lkT, except for a correction of a few

percent). Near the moment marked P an artificial pulse of Eg = 0.1 was applied.
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Of course, this can only be a good approximation, if the beat between the reference
oscillator and the cylinder is always negligible. To achieve this by temperature con-
trol would be expensive. Instead, it is much simpler to control the reference oscillator
by the detector output, and this is what we do. If there is no beat, the function A§(t)
obeys the same statistical law as the optimal A20):

If we define the normalized signal content S by

so = Ado/AZ (6)
the probability to find S above a threshold S0 in pure noise, will be

Wo(So) = 8'50- (7)
At the arrival of a signal pulse of strength E9 the observed normalized signal content
will be found above threshold S0 with the probability

CE

W1(SO,(DE5) = J‘ e‘S‘q’EQ- I0(2 V/S©Eg)dS (8)
So

where I0 is the modified Besselfunction of order zero.
Let us look at the normalized signal content function A50) for the same minute

for which we showed the x,y—data. In the next 3 slides (Figures 11a,b,c) it is shown
for 3 different values of the smoothing time l/u You can see that the optimal value
I/u z 0.3 sec gives the best result. Now, let us be unfair and look at the same arti-
ficial pulse with the procedure formerly preferred by Weber. In Figure 12 we plot
the squaredjump (AB)2 in the energy E = x2 + f, also normalized with its long-term
mean value. You see that the pulse is not there, because it went fully into the phase.
Instead you find many crossings of high thresholds due to noise near the beginning

l. . | l + ' ' 7
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Normalized signal content function A50) for the data from Figure 10. a) With no additional filtering;

b) With optimal filtering (1 /p = 0.3 sec); c) with too much filtering (1 /u = 0.7 sec). The horizontal ex-
tension is one minute, the arrow points at the artificial pulse; the vertiml scale is in steps of 1 ( = long term
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Figure 12
The same as in Figure 3, but with the signal function (AE)2, formerly preferred by Weber

of the minute, when the energy x2 + y2 was high. This is just a nasty demonstration
of what Weber called “proliferation”—but of course one is not allowed to make a
comparison between the procedures from selected data.

Hence, let us now look at the calibration of our procedure in long series of arti-
ficial pulses. It does not matter whether the pulses are applied over condensor plates
or piezoelectric transducers. (We now choose the latter procedure because it is more
stable.) The pulser has to be calibrated by direct observation of strong pulses in
the phase plane. For pulses of 5kT, e.g., future and past are sufficiently sharply
defined to measure the length of the arrow in the x,y-plane. The unit is supplied by
the lkT circle in this plane (after subtraction of the small contribution of the wide
band noise). Since we know the distribution (8) for the observed signal content in
pulses of given strength E9, with a detector and algorithm of sensitivity (I), we can
now determine the actual sensitivity of our evaluation and compare it with the
theoretical optimum. Figure 13 shows the theoretical probability W1 (S, CDEQ) from
equation (8) for various values of the parameter (DEQ. It also shows the results of two
test series in Munich and one in Frascati. We simply plot the fraction of the test
pulses which produced S-values above threshold 0.1 sec after the pulse arrival.
The actual sensitivity is then given by the parameter (DE of the fitting curve, divided
by the known pulse strength E9. We find actual sensitivities of about 40 and 28 for
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Figure 13

One-detector detection probability W1 (S, (IJEQ) at threshold S for sensitivity (1) and pulse strength Eg.
Theoretical curves for various (DEF Calibration of actual sensitivity (1) from series of artificial pulses with
known strength Eg. Filled circles: 3500 pulses with E9 = 1/40 in Munich; Open circles: 1000 pulses with
E9 = 0.1 in Munich; crosses: 100 pulses with E9 = 0.28 in Frascati. From the known E9 and the parameter

0E9 of the best fitting theoretical line follows the actual sensitivity (1).
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Munich and Frascati, respectively, corresponding to 83% and 80% of the corre-
sponding optimal values. This shows that a more sophisticated approximation of
the optimal filter (taking into account more detailed spectral features of noise and
signal and using better time resolution) is scarcely worthwhile. The Frascati value
still has to be multiplied by 1.25 due to a higher mass. Hence we are on the safe side
when we take a sensitivity (1) z 30 for Frascati (referring to lkT pulses defined for
Munich), in spite of a slow deterioration over the last year.

You have seen that our theory of evaluation is nicely confirmed by the tests with
artificial pulses of known strength. I have not developed the theory for Weber’s
(AE)2-algorithm. Because of its non-linearity it is more complicated. I therefore looked
at it only experimentally. For that purpose we simply determine the probability
W1 for the same series of pulses, but with Weber’s signal function. The result you
see in Figure 14: The solid lines are the same curves as in Figure 13, but this time in
a logarithmic scale. The lowest line, for (DEg = 0, represents the probability W0
to be above threshold in pure noise; the other ones are for various pulse strengths.
The broken lines I found in the series of artificial pulses, using (AE)2 as the signal
function. One might think that the higher values of the broken lines show a superiority
of Weber’s procedure; however, this “advantage” is more than cancelled by the high
values of W0.

To make this clear, we have to consider the concept of “sensitivity” more care-
fully. What we need is not a high “detection efficiency” W1 but a small “minimal
detectable rate.” A rate R of pulses of strength Eg is detected at threshold S with m
standard deviations within an observation time I if the additional number ofcrossings
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Figure 14
The solid lines show again the theoretical curves for W1 (S, (DEg), however in logarithmic scale. The broken
lines represent the result with Weber’s (AE)2-procedure, applied to the same series of artificial pulses on
the Munich detector. (The line for 1kT is roughly extrapolated.) In order to estimate the analogue of W1
in Weber’s procedure for his own detectors, one has to extrapolate to Weber’s smaller value of optimal (I).

is greater than m times the random fluctuation of the accidental crossing number.
Using our probabilities WO and W1, this condition reads

R > _ \ 'l‘L-L
W1(S,<I>Eg) — Woo) v/TfiS)

(Here r(S) is the average peak duration of the signal function above S in noise.)
For fixed E9, the minimum of (9) defines the optimal threshold for unlimited ob-
servation time T For (DEg between 2 and 15 one finds nearly a linear relation
Sopt z 4113Eg — 2.6. For the Munich detector ((1) z 40) and pulses of 0.1 kT this
would mean that one should look for crossings at threshold S z 13 rather than 4
(=40-0.1) in order to find such pulses most significantly against the noise. If the
observation time is limited, the optimal thresholds for stronger pulses will come
down to a value ST where no accidentals are expected. Then the minimal detectable
rate is given by

m
R z —— (10)T- W1(ST,<DE9)

instead of (9).
For two or more detectors with unknown relative phases the optimal signal con-

tent function would simply be a sensitivity-weighted sum of single detector functions.
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However, since we want to discriminate against local disturbances, we will require
that both detectors cross threshold in a real event. The detection probability in
coincidence is then given by a product of two values of W1. Figure 15 shows this
probability for three pairs of thresholds in our coincidence experiment.

With the same arguments which led to equations (9) and (10), we can now derive
the optimal pairs of thresholds and minimal detectable rates for given pulse strength
and observation time. The plot of minimal detectable pulse rate versus pulse strength
for given observation time is the most reasonable representation of sensitivity. It
is shown in Figure 16 for T: 150 days with the actual evaluation procedure in the
Munich—Frascati experiment, for the optimal evaluation in Weber’s experiment,
and for the (AE)2-evaluation which Weber preferred last year. The latter curve is
a rough estimate because extrapolation from our sensitivity to Weber’s was involved.
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Figure 15
Detection probability in coincidence in the Munich—Frascati experiment, for 3 pairs of thresholds. (This

shows why strong pulses are excluded by our null result at thresholds 11; 10!)
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Figure 16
Detectability of short pulses in 150 days. Daily rate R150 of pulses of strength Ea (unit lkT = 120 GPU),

detectable with 3 sigma in Munich-Frascati (actual evaluation) and in Argonne-Maryland 1973 (estimates
for optimal and actual evaluation). Weber’s present detectors and procedures may be a bit improved, and

thus the corresponding curves may be a bit lower now.
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(Of course, Weber should determine these curves experimentally for his detectors.)
As you see, we have to find Weber’s events with extreme significance if they are short
gravitational pulses. (A threatening step forward of the moderator. . . .)

What we have found, I haven’t shown yet. Shall I show the last slide? (Laughter
in the audience, moderator steps back in resignation.)

Figure 17 shows the results over the whole period of 150 days at 3 pairs of thresh-

149,15 days between July 9,1973 and May 8,1974
thresholds: 5; 4 ‘-

2° _ ThrEsliolds: 83 5 4,5 _ 7 m *7—

Ul .1.

-300 -150 -30 -1. -S 0 5 1. 30 150 300

-—> time delay [sec]
Figure 17

Some results of 150 days. Number of “peaks” above thresholds in coincidence and with 40 values of relative
delay, at 3 pairs of thresholds. i is the mean of the outer 22 bins plus the zero bin. 0 marks the square
root of the mean. This negative overall results allows to set upper limits to the average rate of short pulses
in the 150 days. These limits are given by the lowest curve for the minimal detectable rates in Figure 16.
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olds. (Evaluation was done for many more pairs!) You see that the number of
coincidences without time delay is not significantly higher than at arbitrary time
delay. There was no problem with synchronization of the data tapes, because time
is written every minute, and simultaneous artificial pulses were detected in the
predicted way. Our negative result allows us to set upper limits to the average daily
rate of short pulses arriving at the earth (with favorable direction and polarization)
within the observation time. These limits are given by the lowest curve in the last
picture (Figure 16). You see that they are far below the rates stated formerly by
Joe Weber.

The very last picture (Figure 18) is the one in which Joe Weber thinks we have
discovered something, too. This is for 16 days out of the 150. There is a 3.60 peak at
zero time delay, but you must not be too much impressed by that. It is one out of
13 pieces for which the evaluation was done, and I looked at least at 7 pairs of thresh-
olds. Taking into account selection we can estimate the probability to find such a
peak accidentally to be of the order of 1 °/o. Hence, before I say definitely that we have
not found any evidence for Weber pulses, I shall study carefully the fluctuations
in time. This analysis can be done quickly from the stored results of a long period
of evaluation, and I will start it when I am back in Munich.

SCIAMA: Thank you very much, Peter. And now I call on Ron Drever,

DREVER: I plan to talk about two different experiments here; one which has lasted
about two years, and one which has lasted two weeks so far. Perhaps to give a little
background, I should explain how we got to be doing these experiments. I think
it was about three or four years ago when Joseph Weber produced the sidereal
distribution for his events, and this result, at the time, seemed to me to be very sig-
nificant and extremely exciting. In fact, so exciting that I felt impelled to do something
about it; we could not just let something like that lie there. What could we do to
find out more about these exciting signals, to find out more about gravitational
waves and about the sources? So, thinking about it a bit, I decided to develop a
slightly different type of detector from Weber’s one, with the aim of finding out more
information. Now, my aim was not to try to find out if Weber’s work was right
or wrong, but to find out more about gravitational waves. Therefore, our devices
were developed to be rather different from the ones which he has built.

In this talk I will first go through the experiments in which we searched for pulses,
some of which have been published already, and at the end I will go on to the new
experiment which we have just done in the last two weeks.

The detectors which we have built are as shown schematically in Figure 19. They
differ from Weber’s ones in that they have two separate masses linked by piezo-
electric transducers. The point of this arrangement is that the coupling between the
mechanical and electrical systems is very much stronger than in other detectors—
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16.6 days between March 7,1974 and March 27,1974

thresholds: 5 ; l.

; 5

3a ——————— \————~\~ e--—————
thresholds:8,5; 4,5 l

-300 -150 -30 -1 -.5 O 5 1 30 150 300

—> time delay [sec]
Figure 18

As in Figure 17, but for the piece with the largest positive peak observed in one out of 13 pieces (at several
pairs of thresholds), which were either about 8 or about 16 days long. The probabilities that this is due

to chance or due to real pulses, both seem to be of the order of 1 percent.
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by a factor of the order of 104 to 105 —and thus for the same energy in the mechanical
system we get very much larger electrical signals. This means that with amplifiers
of similar quality to those of other workers we can have a very much wider band-
width. In fact the bandwidth is so large (it covers about a kilohertz) that we can see
the individual cycles of the bar vibrations. Thus, we have the possibility of studying
any signals in very much more detail than with other detectors.

Because of this wide bandwidth we process the signals on line; we have a filter
that defines the bandwidth, and we have another filter (the “notch filter”) which is
a little analog computer which solves the equation of motion of the bar and gives
an output signal which represents the force acting. Thus, the latter device will tell
us the waveform of any gravitational force acting on the system. What we do then
is to look for interesting waveforms appearing in the system. An important point
to stress is that we have a calibration device for pulses. We have plates near the ends
of the detector, and we can test the response to pulses of various kinds by applying
electrostatic pulses to the detector systems.

Figure 20 shows one of the detectors; they are not terribly big, but as we shall see
their sensitivity is comparable to that of most of the other detectors. The masses are
about 300 kilograms. Figure 21 shows the electronic system. I will not go into details,
but merely make the point that, as we have such a wide bandwidth, it is not practi-
cable for us to record all the signals coming in; it would involve too much magnetic
tape. We have to process the signals on line, and we have electronics connected to
the two detectors (which are, in fact, in the same building), which selects interesting
events and records them in detail by an oscilloscope and photographic system.
There is also a digital computer system which examines the signals at quite a high
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TIME DELAY BETWEEN PULSES FROM DETECTOR 1 AND DETECTOR 2
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rate and makes quick decisions about whether they are interesting or not; it records
any interesting signals.

I will summarize some of the results; we have a large mass of data, most of which
have been published. Figure 22 shows the time delay distribution for a particular
seven-month run. It is the same type of plot that Joseph Weber was showing us. It
covers the delay range —2 to +2 seconds. In fact we have no sign of a peak at zero
delay, unfortunately. When we first plotted this we were very saddened indeed, be-
cause this is a good, long run. The central part of the same distribution is shown below,
with the timescale magnified by a factor of 10. There is still no peak. This was rather
saddening because we felt that the sensitivity is at least as good as that of Weber’s
experiments.

Now it is necessary to try to make some comparison of sensitivities, because our
detectors are so different. We can certainly find out how sensitive our detector is
for any arbitrary waveform, for we can apply that force waveform and see how it is
detected. But there is some difficulty in knowing how sensitive Weber’s experiments
were, so what we have had to do is estimate his sensitivity. We have tried to make it
an upper limit estimate neglecting his amplifier noise. In the table are shown the
results of this comparison.
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TABLE

Assumed Pulse Detection Efficiency Deduced Pulse Rate
Energy in coincidence expt. per day

(Units of kT given to a Expt. ofRef. 1 Present Expt. of Present
Weber bar initially at (estimated) Expt. Ref. 1. Expt.

rest.)

3.0 <0.10 0.8 > 7.5 0.04 i- 0.09
1.0 <0.0056 0.09 >130 0.39 i- 0.79
0.3 <0.0004 0.0004 > 1800 89 -l_- 180

(Ref: 1—], Weber. Nuovo Cim. 4B. 201 (August 1971)., Figure 3b.)
(Present Experiment: R. W P. Drever. J. Hough. R. Bland and G. W. LessnolT.)

We postulate gravitational wave pulses of various energies, the values taken corre-
sponding to energies of 3 kT, 1 kT, and 0.3 kT given to Weber’s bar if it were initially
at rest, and we have estimated upper limits to the efficiency of Weber’s system for
these pulses. For one particular experiment by Weber we have then estimated the
incident rate which the experiment has to imply. These are minimum incident rates,
and range from 7 to 1800 pulses per day for gravitational waves of these particular
energies. If we then compare these figures with what our own experiment gives—
and our experiment has generally much higher efficiency, we think—we find the
numbers are completely discordant. (This is shown in the last two columns of Figure
23). Again, this is a saddening thing, and we find it hard to understand.

I should put in a little warning here. Our experiment is most efficient for short
pulses. If there were longer pulses we would not be quite so efficient and therefore
we do not completely discount the possibility of long pulses. In most of our runs the
experimental data are recorded in several parallel modes at the same time; by photo-
graphic recordings, by an on-line computer, and by an automatic time analyzer.
The photographs give the most interesting data because you can get the full detail
there. In that seven-month period we only had one good candidate for a gravitational
wave: it is one we have mentioned before. Figure 23 is the record for that event.
The top trace shows sine wave which is, in fact, the Brownian motion of the detector,
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and shows you can see it, cycle by cycle. The scale here is a millisecond for each wiggle
of the sine wave, and here we see something has certainly caused the amplitude to
increase. The other detector was giving us the bottom trace, and there is no apparent
change of amplitude there; but if you measure the photograph carefully you find
the phase has changed. That has been detected correctly by our electronic processing
system. This system displays a signal related to the force acting on the first detector
in the second trace, and on the second detector in the third trace. The interesting
thing about this event is that these forces are in phase, and are very similar in wave-
form; and that is a good candidate for a gravitational wave. But of course we cannot
prove that it is a gravitatiOnal wave. However, an important point is that this was
unfortunately the only candidate we had in that seven-month period.

I should just mention too, to update these results a little, that we also do look for
long pulses using the computer. Figure 24 shows tirne—delay histograms for these at
various threshold levels, which do not in fact show any positive effect; but the sensi-
tivity in this case is not so good, and I will not say much about these results.

To update the results of this whole experiment let me conclude by saying that the
thing has been running for about 16 months altogether; we have found no more good
candidates at all. We had two slightly interesting pulses which I may talk about
later, but we do not think they are very good candidates and so our results are still
negative.

INTEGRATED PULSES— 45 DAY RUN
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Having had this experiment going for about 16 months now we thought, well,
it is a bit disappointing all this; we were hoping to get these wonderful gravitational
waves, with a certain amount of excitement. However, under the stimulus of Joseph
Weber’s work, we have built these detectors, we have them in our hands now, can
we do anything else with them? And, we thought, yes we could. What about looking
for continuous background gravitational waves?

Of course we have not got the sensitivity to detect the predicted levels of flux
which you might really expect to be present. But even if our detectors are limited
in this sense, it seems worth while looking anyway just to check if there is anything
there. We have done an experiment in the last few weeks just to do that. What we
have done is to carry out a cross-correlation between the outputs from the two
detectors.

I should mention that Dr. James Hough was the person principally responsible
for this particular experiment; several people were involved in the two experiments
discussed here.* Neither of these are one-man experiments.

For the correlation experiment we have slightly modified the electronic system,
as shown in Figure 25. We have our detectors, the filters defining the system band-
width, the inverse filters; and the signals then come out transformed to represent
the forces acting on the bars. We then use the digital computer, on-line, to cross-
correlate these two signals. In fact, we do not multiply them together; we use the
simpler technique of one-bit correlation. This is only a technical matter; it is easier
for the computer to do. So we look for correlated forces acting on the two detectors.
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* Pulse experiment: R. W. P. Drever. J. Hough, R. Bland and G. W. Lessnoff. Continuous-wave experi—
ment: J. Hough, R. Bland, R. W. P. Drever and J. Pugh.



GRAVITATIONAL WAVES 273

It is important to test such a system, to show that it is working. We have applied
two forms of signals to test. it We had in mind two types of signals. One was a sine
wave signal such as might have been produced by vibrations of a neutron star, per-
haps relatively near. The other one was a wide-band signal, perhaps something like
a black-body spectrum, so we used a noise generator to simulate that. We could apply
either of these test signals to the detectors, and, in fact, detect them by the com-
puter.

First, I must show you the frequency response of the system, because an experi-
ment like this, particularly for sine waves, is only reasonable if you have enough
bandwidth to have a fair chance of finding something. Figure 26 shows the frequency
response found by exerting a sinusoidal force on the detector and sweeping it through
the bandwidth. It indicates that the detector is effective from about 900 to 1100 Hz.
The little dip is where the resonance frequency of the bar was—it is a dip in this
particular measurement because the person doing the testing did not want to hold
the oscillator too long on that frequency in case oscillations built up and damaged
the system. We had an unfortunate accident that way before; a test detector broke
at the cemented joints when a large sine wave was being applied.

The arrow indicates the frequency of a particular sine wave test, in which the
computer extracted the correlation shown in Figure 27. This is the correlation func-
tion produced by the computer in a short run, lasting about half an hour, with an
applied force of 4 x 10‘8 Newtons at a frequency of 910 Hz. This corresponds to
a very small fraction of kT in the bar (something like 10'4 kT), and the computer
has produced a sine wave correlation curve just as it should do. That shows the
system works. Let me also show it works for a continuous wide-band spectrum.
Figure 28 shows a similar curve produced by applying a random test force, and we
get a decaying correlation function; the decay constant corresponds to the band-
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width of the system. That works too; again the signal corresponds to a very small
fraction of kT, but the correlation pulls it out perfectly well.

Now we come to the real runs. In Figure 29 we have some data obtained only in
the last two weeks. (Since the Cambridge, Massachusetts, meeting where I gave
some earlier results, we have improved the equipment by making the computer run
four times as fast, thus giving us more data points than before.) The figure shows
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the correlation curve from one run, with the errors marked in. Essentially there is
no eflect. A signal might have produced a rise at zero time delay. Well, you might
say there is a very slight indication of a very small effect there, less than the errors.
In case this was something real we tested it by reversing the polarity of one of the
pre-amplifiers, and we get another correlation curve with the polarity reversed.
This is shown in Figure 30; it has the same shape, which shows that any effect that
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may have been present was a spurious one, produced perhaps by mains pickup.
The conclusion is that there is no sign of any real effect at all. Let me now try to tell
you what that corresponds to in terms of numbers. We can express it in various
ways. We might set a limit to the component of the temperature of the bar due to
correlated forces of about 230 millidegrees Kelvin. Rather a small temperature.
We’ve set a limit to the gravitational sine wave flux of any origin, in the range 900 Hz
to 1100 Hz, of about 1.7 w/cmz; we have set a limit to a flat frequency spectrum of
broadband noise in the region of0.38 w/cms. These limits are not really interesting
astronomical ones; they are much larger than you could expect from reasonable
sources. However, we might have been lucky; there might have been a close-by
neutron star, or there might have been a strong broadband local source. We feel
it was worthwhile looking anyway. Maybe I should remark that these are preliminary
data; we may change our minds on the precise numbers in a short time. Perhaps I
will come back afterward and talk on the relevance of these results to the other
problem. Thank you.

SCIAMA: Thank you. I now call on Tony Tyson.

TYSON: The people involved in this high sensitivity search are Dave Douglass and
Roger Gram at the University of Rochester, Ron Decker and myself at Bell Labora-
tories and Bob Lee at Stanford University, who does the domputer analysis of most
of our data. The experiment, as you know, consists of searching for an increase in
the amount of energy in the lowest longitudinal mode of the bar. In a minute I will
show you the equivalent circuit of that electrically, but physically this is what is
going on. There is a certain amount of energy E deposited in the bar by the gravita-
tional wave of flux density Fv per unit frequency. If 0(v) is the differential absorption
cross—section. the integral over frequency of the flux density times the differential
cross-section for absorption is then the amount of energy that the bar absorbs from
the gravitational wave: Eabs = j Fva(v) dv. For a resonant detector we have a Breit—
Wigner response and we can integrate over the absorption cross-section, and consider
just the flux at the resonant frequency of the bar. What these resonant bars are doing
then is sampling the power spectrum of gravitational radiation at one frequency.
The integrated absorption cross-sections for these detectors are: for our detectors
1.5 x 10'21cm2Hz, and for Weber’s detectors it works out to be 0.61 x 10‘21cm2Hz.

The reason why we did this experiment was to try to examine the possibility that
there really were bursts of gravitational waves. You have just heard about a couple
of very beautiful experiments done by Ron Drever, in which he has looked cycle
by cycle in the gravity. We decided to forgo obtaining that type of information, and
trade off that information for increased sensitivity. There is therefore a considerable
difference between the kinds of experiments Weber, Kafka and myself have been
doing and the experiments that you have just heard about, in the sense that the
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Weber-type experiment is one done with a bar of aluminum which acts, more or less,
as an integrating calorimeter. It asks the question “was there an increase or a decrease
in the amount of energy in one of the longitudinal modes in the last tenth ofa second?”
(We also search for a sudden phase change.) If there was, we get some output. The
sensitivity therefore is going to be a function of how we analyze the data, the kind
of integration times that are used in the experiment, the size of the bar, etc. I think
you can appreciate the fact that we can trade off a lot of wide-band information about
the detailed short time nature of the pulse for increased narrow-band sensitivity.
What we have out of these bars, then, is a signal with a characteristic signature as a
function of time, if something came along and excited the bar. The interesting feature
of these antennas is that the filtered signal coming out of the electronics is pretty
much insensitive to the detailed nature of the original pulse in the metric. Figure 31 is
a picture of the large bar we constructed at Holmdel three years ago. This bar, which is
larger than the Weber antennas, is 3.5 meters long, 68 cm in diameter, and weighs
3720 Kg. The electromechanical transducers are strain gauges symmetrically placed
around the center. Figure 32 shows the detection scheme. You see the sine wave from
the bar changing in amplitude slowly as the Brownian motion of the bar changes with
time. This is followed by a four-quadrant multiplier which puts you into the rotating
frame at the bar frequency. The coordinates of this co-rotating frame are X and Y,
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which you have heard about before, which are the outputs from the electronics and
are recorded on the magnetic tape. In our system, each one of the two antennas is
like this; it has a stabilized local oscillator, and these outputs X and Y are sampled
every tenth of a second by a magnetic tape system, with two entirely separate tape
systems, one for each antenna. One antenna is at Bell Laboratories, the other is at
the University of Rochester about 300 miles north. There is no physical connection
between the two antennas.

However, in order to really believe in an experiment of this type, it is necessary,
as you have heard from Kafka and Drever, to be able to put fake gravitational waves
into such a pair of antennas. For that purpose, four years ago, Laurie Miller and I
designed an absolute calibration system in which we put capacitive end—plates up
next to the end of the bar. By putting voltages between the end-plate and the bar,
we were able to excite the bar in any way we wanted to; we could imitate any shape
of the metric as a function of time. For the data which I report here we had for several
months a calibration process in which we introduced small calibration pulses locally
at both antennas, at each end of the two-antenna array. Then we looked at the com—
puter analysis to see if the computer found these calibration pulses, and we measured
the efficiency with which these have been uncovered. These pulses were not put in
at exactly the same time, otherwise we would obscure the question of whether gravi-
tational waves were exciting the antennas. We ask the clocks at each station to insert
the pulses exactly two seconds apart in real time, so that in our time lag plots we will
see a peak at +2 seconds from the calibration pulses if there were any during that
period oftime.

Figure 33 shows what the power output of this kind of antenna looks like as a
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Figure 34

function of time. This is just the square root of X2 + Y2 (the distance from the
origin in the complex plane) as a function of time. This very slowly varying signal
is the Brownian motion, and the very fast noise you see on top of it is the residual
wide-band noise of the pre-amplifier. Figure 34 shows what the output looks like
in the complex plane of one antenna. The computer looks at each antenna’s com-
plex plane. This is a whole day’s integration of the behavior of the antenna in the
complex plane. This is the same thing as integrating an optimally filtered output
over the recent past, present and immediate future. There exists an optimal algorithm
for this which we have computed and have also tested experimentally. The nice
thing about doing the experiment using our autocalibration technique is that we can
introduce any sort of force on the two antennas, we can calibrate the entire system
in this way and we can find out how effective our filter is. We can change the filter
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to find out if we can get a better filter for extracting these calibration signals from
the noise. Figure 35 shows the kind of signal we are looking for as a function of time.
Again, we are sacrificing information about millisecond structure in the curvature#
we are monitoring the phase and amplitude changes in the bar oscillation, and
we do not know anything about the detailed shape of the metric itself. Any burst
of gravitational radiation which has measurable power at the bar resonant frequency
will give us this output from the electronics. It jumps up in a very short time com-
pared to the ringdown time I which is 100 seconds. The rise time of the electronics
1 is a tenth of a second, and we wish to use an optimal algorithm. I will not go through
this. It is possible to obtain an optimal algorithm mathematically that agrees closely
with the optimal algorithm that we discovered experimentally. Any detector/elec-
tronics system has a unique optimal algorithm.

Figure 36 is the result of looking with an optimal algorithm and the output of
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our antenna at Bell Laboratories. Plotted here is the log of the number of pulses
above a certain threshold as a function of the energy of that pulse above the thresh-
old. You see here, in the solid line strong evidence for Boltzmann statistics. It is very
necessary to have plots like this to convince oneself that the antenna is running
correctly. There are a few excess pulses at high energy. These could be gravitational
waves (with such a short integration time, we have some excess pulses due to local
excitation). However, when we go into coincidence with the other nearly identical
antenna at the University of Rochester, there is no evidence for simultaneous ex-
citation. In Figure 37 again we have the number of simultaneous excitations above
threshold plotted vertically as a function of the energy of that excitation. We are
looking at the energy distribution of coincidences between these two antennas
300 miles apart on a tenth-second timescale. Here again, Boltzmann statistics. No
evidence for any excess at either high or low energy. We have extended this, by the
way, all the way down to zero energy.

Now to the time lag plots. Figure 38 is a typical time lag plot: vertically the num-
ber of coincidences between these antennas is a function of time lag between the
two. There is no evidence at zero time lag for any excess. We have many such lag
plots. But are we using the correct algorithm? Is there perhaps an even better one?
We can compare the type of derived optimal algorithm which we use with other
algorithms that other people use. In Figure 39 are the distributions for noise and
calibration pulses for the linear algorithm that we are using. What we have done
here in this experiment is to apply 93 calibration pulses at 1 kT and look at the com-
puter output and see how many have been discovered. It finds practically all of them
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as you can see here. The dotted lines are the calibration pulses and the solid lines the
background, again Boltzmann distributed. Now bear in mind how this looked, and
now if we look at Figure 40 this will indicate the performance of the non-linear algo-
rithm. The algorithm is P2 where P is X2 + Y2. P2 is what you heard about from
Weber just a few moments ago. With the same data analyzed with the P2 algorithm,
you can see that the signal to noise ratio is substantially worse. To see how this affects
the search for gravitational radiation we look at the next two figures. Figure 41
shows the non-linear algorithm in the form of a time lag plot. During the time that
these data were being taken, many calibration pulses were inserted, but we do not
see any excess at plus two seconds where they should appear. In Figure 42, however,
we have the result of using our own optimal algorithm, on the same data, and here
are the calibration pulses that were inserted at +2 seconds.

In the search for gravitational radiation, we must do this experiment as a function
of threshold: we do not know if there are just a few pulses of high amplitude or many
pulses of very low amplitude. Figure 43 is a very low threshold time lag plot. Again
there is no excess at zero time lag. (During this period of time there were no calibra-
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tion pulses.) We have many lag plots like this for different groups of 4 data days and
for many thresholds. We can plot all of this data, as observed coincidence rate nor-
malized per day, as a function of the energy deposited in the bar. Figure 44 shows the
results of the searches that we have analyzed to date. The lower dashed line here is
the most significant limit. The scale on top assumes unity efficiency of detecting bursts
in noise. In fact, this efficiency falls off at lower energies. This is from all the time lag
plots. The single triangle point is from a null experiment that was done with my
antenna at Holmdel, in which we looked with the optimal single antenna integration
time for any excitation that occurred in three months. The Munich—Frascati results
at 1600 Hertz are the open rectangles. I should point out that the bars we are using
are resonant at 710 Hertz and sample the gravity at that frequency. There are three
reasons why the sensitivity of these detectors is very much greater than other presently
operating detectors: 1) increased mass; 2) better impedance match and higher coupling
and Q; and 3) optimal signal filtering. All these measurements taken together consti-
tute a strong null result.
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SCIAMA: Thank you very much Tony. 1 do apologize for being ruthless, but we also
want the opportunity for a discussion of all these contributions. First I want to ask
the panelists to discuss for a few minutes what we have just heard and then we can
have an open discussion with the audience. Perhaps Joe, would you like to begin?

WEBER: Yes, I do not accept the sensitivity analyses made by others of the Maryland
array. To really discuss this fully would require having Maischberger, who is con-
cerned with the electronics engineering of the Munich—Frascati array, here and
would involve issues of electronics engineering which do not concern this con-
ference, let me therefore indicate my disagreement and let the matter rest here. An
important question is “Do the artificial pulses really simulate gravity waves?” I
do not know whether they do or not. The evidence from the histograms is that they
probably do not because often we get better results from the histogram which is
not preferred. There are some data where the preferred algorithm did give better
results. I would like to ask Dr. Kafka two questions. One is, “How do you compute
your number of coincidences; are they just the pairs of points above threshold, or
is there some rejection of pairs of points which appear close together?”

KAFKAZ No, there is no rejection, but I plot histograms of two different kinds. In
one I count all pairs of points where both detectors were above threshold. But those
are not all independent events and the observed fluctuation will not follow a V/W'
law. Therefore, in a different kind of histogram I also count the “number of peaks.”
If a peak contains more than 1 point I count only one event.
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WEBER: For the histograms which you show, the one with the 3.6 sigma peak, what
was then on that one?

KAEKA: I am not even sure at the moment. But there is not much difference between
the two procedures if one uses our signal content function. [Added in proof: The
picture was for the count of “peaks.” When all pairs of points above threshold are
counted, the zero delay peak is only 2.8 times the observed standard deviation. I
should also say that the probability that the peak was caused by real pulses can
also be estimated to be small, if one takes into account the result at various thresh-
olds.]

WEBER: Well, there would be in our case. The second question I will ask is “How
do you compute the standard deviation?” You showed a sigma, two sigma, three
sigma. How do you compute this?

KAFKA: I just mentioned it. The theoretical value depends on the definition of the
events. For independent peaks the observed sigma coincides quite well with the value
given by the fl—argument. For the other kind of histogram a correction comes in
for the average number of points per independent peak.

WEBER: Right. But the object displayed on your slide, was that the measured value
or the theoretical value?

KAFKA: With our signal content function the agreement between predicted and
observed fluctuation is always good. [Added in proof: For my last picture the theo-
retical fluctuation was used for the definition of a. The observed fluctuation was
slightly larger—hence, the significance of the peak would be judged to be a bit lower.]

WEBER: My own analysis of Kafka’s data and system suggests that the sensitivities
of the two installations are comparable and this difference he talks about is not large.
Thank you.

SCIAMA: Any other comments from the panelists?

KAFKA: I should answer to Joe Weber that there is always doubt in everything and
that we certainly try and exclude such doubts as well as we are able to. I have shown
you how we calibrated our sensitivity. We have made lots of independent tests, and
everything seemed to be consistent. I think our sensitivity is reliable, and then ours
should be the most sensitive coincidence experiment working.

DREVER: Perhaps I might just express a personal opinion on the situation because
you have heard about Joseph Weber’s experiments getting positive results, you



288 PANEL DISCUSSION

have heard about three other experiments getting negative results and there are
others too getting negative results, and what does all this mean? Now, at its face
value there is obviously a strong discrepancy but I think it is worth trying hard to
see if there is any way to fit all of these apparently discordant results together. I
have thought about this very hard, and my conclusion is that in any one of these
experiments relating to Joe’s one, there is always a loophole. It is a different loop-
hole from one experiment to the next. In the case of our own experiments, for ex-
ample, they are not very sensitive for long pulses. In the case of the experiments
described by Peter Kafka and Tony Tyson, they used a slightly different algorithm
which you would expect to be the most sensitive, but it is only most sensitive for a
certain kind of waveform. In fact, the most probable waveforms. But you can, if you
try very hard, invent rather artificial wave forms for which this algorithm is not quite
so sensitive. So it is not beyond the bounds of possibility that the gravitational waves
have that particular kind of waveform. However, our own experiment would detect
that type of waveform; in fact, as efficiently as it would the more usually expected
ones, and so I think we close that loophole. I think that when you put all these dif-
ferent experiments together, because they are different, most loopholes are closed.
It becomes rather difficult now, I think, to try and find a consistent answer. But still
not impossible, in my opinion. One cannot reach a really definite conclusion, but
it is rather difficult, I think, to-understand how all the experimental data can fit
together.

TYSON: I would merely like to comment that all the experiments of the Weber type,
where you have an integrated calorimeter which asks the question: “Did the energy
increase or decrease in the last tenth of a second?”—all those experiments, of which
my own, Weber’s and Kafka’s are an example—would respond in a similar manner
to a given pulse shape in the metric given the same algorithm. I think it must be some-
thing which only your detector is sensitive to and not ours. And that is the conclusion
I have to draw.

WEBER: It can be seen from the calibration data which have been shown to a number
of the panelists that at the level kT/3 there is a substantial amount of proliferation.
It appears to me that it would be worthwhile for the Munich—Frascati group to
look at their data for May 21 to June 15, 1974 with both algorithms.

KAFKA: I will do that. But I must say that in the 150 days, we did not have any pulses
stronger than half a kT. This remark, I think, excludes any influence of “proliferation”
(which, by the way, would produce a wide peak and not a narrow one).

TYSON: I wish to say a few words here about proliferation. Before I do so, I would
like to say that we, as a matter of course, over the last year, have been analyzing our
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data not only with the optimal algorithm but also with the algorithms P2 and
X2 + Y2 and we have not seen any excesses at zero time lag on any of these. Of course,
we go down to a low enough threshold, so we have all sorts of candidates. Figure 45
is an example here of what happens when we calibrate an antenna of the Weber
type with artificial gravitational waves, and, as you see here, we have two kinds of
filters. I am plotting the log of the number of events counted above threshold as a
function of the threshold, and we put in 104 calibration pulses. During that same
period of time there were a million background pulses at zero threshold. You see
here for a nonlinear filter (and this nonlinear filter is the P2 one) that the background
is indeed very high. Not only does the signal proliferate, not only do the signal
pulses increase, but the background increases enormously over the linear filter. In
this case the linear filter was X2 + Y2, and so the proliferation indeed does occur
but because you cannot invoke a Maxwell Demon in the system, not only does the
signal itself proliferate, but the noise grows. And as you can see here, the noise grows
even more, so that the signal to noise ratio goes down when one goes from a linear
to a nonlinear filter.

SCIAMA: I think this is a good moment to throw the discussion open to the floor.
If anyone would like to ask a question of any of the panelists or make a statement,
now is the time to do it.

QUESTION: Joe, at a Niels Bohr Institute given about three and a half years ago,
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you saw, I believe, about one event per day, something like that, and you had a
strong sidereal correlation. Have you seen the same thing in the runs since then?

WEBER: l have not looked. To do the sidereal anisotropy, we need about six months
of data. I did not think we could do it any better now. In view of the intense criticism
of the experiment, it seemed most important to change our procedures, make them
more like those of other groups, and try to find coincidences using the procedures
and algorithms of others.

We believe that the old algorithms which we used to generate the histograms dis-
played in Nature in 1972 are correct, but they involved 100 pages of Fortran and we
did not think anyone else would be interested in reproducing them. The sidereal
anisotropy will have to wait until the present controvery is somewhat better resolved.

QUESTION: Would one of the panel members be willing to comment on experiments
that are not represented on the platform?

TYSON: I would like to comment on Braginsky’s experiment. He came to the con-
clusion, after running it for several months and not obtaining any evidence for excess
at zero time lag, that there were no gravitational waves of the intensity that was
originally reported by Weber in 1970, present at Braginsky’s frequency which was
about 1600 Hertz. And so he is not running his experiment any longer. He had two
detectors which had the same mass as Weber’s bars. The electronic pick-off tech-
nique was different; it had capacitive sensitive instead of piezo-electric sensors. But
I would rate the sensitivity of Braginsky’s experiment, considering the way he analyzed
the data, as about equal to Weber’s sensitivity in 1971,

WEBER: I do not agree.

SCIAMA : Thank you for that comment Joe.

TYSON: There was a question “How about Garwin?” The question there is com-
plicated because in the I.B.M. experiment it was assumed that there is a complete
distribution of signal intensities, the Boltzmann distribution, if you will, of the
intensities of signals such that occasionally you find a big one. With that assump-
tion, however, they can set very good limits and exclude the large flux implied by
the observations of Weber just by using that assumption. Their bar, of course, is
smaller than Weber’s by roughly a factor of five or ten, and therefore the absorption
cross-section is down by that amount. But their analysis is quite superior to Weber’s,
I think, and their sensitivity is nearly as good, as a result.

QUESTION: There is something that has been puzzling me for quite a while. Joe Weber
reported on some experiments with a disc antenna that linked to a cylinder antenna
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and, as I understand it, he said that when he had the disc wired up to respond to
tensor waves he got coincidences. When he wired it to respond to scalar waves, the
coincidences went away. It seems to me that if you can make coincidences go away,
they must have been there, or you could not make them go away. Could someone
comment on this?

WEBER: I believe those experimental results are correct.

QUESTION: But if you stand by them, and no one wants to object to them, does not
that mean that you are the winner?

WEBER: No, I do not think that. Well, if you look at my wife, you will see that I have
won!

QUESTION: We have heard from two sides statements about the optimal evaluation
procedures. As far as I got it from the course, these procedures are indeed essentially
the same. However, if two different people use the same word “optimal,” then one
would have to conclude that they are essentially the same. Could one on the spur
of the moment conclude that they are essentially the same? Or, are there still dis-
agreements between these two so-called optimal procedures?

TYSON: I can comment on the process by which we obtained our filter and, as far
as I understand, it is in essence the same as the type of filter that is used by the Kafl<a
group. The filter which we have looks like this. What we are interested in doing is
obtaining the convolution integral of the output, say, X (r) or, for example Y(t)
with the filter kernel H (I) over some period of time long enough so that we can define
the event: + A,

276) = JXU — r)H(t)dr.
—Al

This convolution is some statistic which you may then threshold. In fact, what one
generally does is threshold the quantity )72 + 72. The way that we obtain the optimal
algorithm is twofold. First of all, I did a calculation of the shape of the algorithm.
In optimal signal theory the optimal algorithm in frequency space is given by the
complex conjugate of the signal, before you filter the signal, divided by the noise
power spectral density. This gave the shape, say, in the time domain. This told us
that, first of all, the optimal algorithm had to be an odd function of time. And second-
ly, it had to be zero area. We then went ahead and developed an optimal algorithm
H (t) for two antennas in coincidence. We did this by trial and error on various types
of signals applied to the end plates. The final algorithm was independent of the shape
of signal applied to the end plates for all types of signals which we used. The optimal
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filter has a sharp transition with 0.1 second rise. This is somewhat sharper than for
the single antenna optimal filter: for two antennas in coincidence you want better
time resolution than you have with just one antenna, in order to get the coincidence
real-to-random rate up. The filter decay time (exponential decay on both sides) is
roughly two seconds, and as far as I know, that is more or less the filter that Kafka
used.

KAFKA: I think you have done the same calculations which we did. We have not yet
pared our results, but I suppose they agree in principle if they are found from the
same principles of signal detection. The numbers for the optimal filters and corre-
sponding optimal sensitivities do of course depend on the different equivalent circuits.
As you could see from my table, the filter time scale which is about 0.3 seconds in
Munich, would be about 1.5 seconds for Tyson’s detector. [Added in proof: This
is nice for him, because he is still far beyond the discretization interval, but on the
other hand it requires an even tighter limit on the beat between cylinder and reference
oscillator!]

QUESTION: This particular session and sessions of the Cambridge conference and
at Liverpool in the last two years are of the same order. Namely, there are people who
report one result and there are people who report the opposite result. I think the
community would be happy to have this situation resolved, to everybody’s satis-
faction. Now the question is, of course, that different people have performed dif-
ferent experiments with sophisticated individual apparatuses and they all use what
they believe to be the best algorithm possible in their analysis. Can you possibly
combine some of the people of the various groups and see if they can possibly agree
on a reasonable approach to analyzing the data, because I understand the various
difficulties and efforts necessary. Perhaps the next step is to get people together
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from the various groups working around the world and see if they can agree on some
reasonable algorithm that in the end will make them all happy. There are variations
in the basic experiments but at least the basic algorithm or basic set of algorithms
is satisfactory. This seems to be the next step. We always seem to be bantering back
and forth and not resolving the issue. There seems to be the same situation in terms
of people who firmly believe in their algorithms and maybe it is time for them to
get together. Do you agree?

SCIAMA: Thank you very much.

TYSON: I would like to reply to that. There has been a great deal of intercommunica-
tion here. Much of the data has been analyzed by other people. Several of us have
analyzed each other’s data using either our own algorithm or each other’s algorithms.
And as far as I know the only evidence I have seen so far in the direction of con-
firmation of Weber’s results is Kafka’s 3.6 sigma peak, which is the result of a lot
of selection, as he mentioned. There has been a lot of analysis by several of us, of
other people’s data, and as far as I know, there is no confirmation of the result. I
should point out that there is a very important difference in essence in the way in
which many of us approach this subject and the way Weber approaches it. We have
taken the attitude that, since these are integrating calorimeter type experiments
which are not too sensitive to the nature of pulses put in, we simply maximize the
sensitivity and use the algorithms which we found maximized the signal to noise
ratio, as I showed you. Whereas Weber’s approach is, he says, as follows: He really
does not know what should be happening, and therefore he or his programmer is
twisting all the adjustments in the experiment more or less continuously, at every
instant in time locally maximizing the excess at zero time delay. I want to point out
there is a potentially serious possibility for error in this approach. No longer can
you just speak about Poisson statistics. You are biasing yourself to zero time delay,
by continuously modifying the experiment on as short a time scale as possible (about
four days), to maximize the number of events detected at zero time delay. We are
taking the opposite approach, which is to calibrate the antennas with all possible
known sources of excitation, see what the result is, and maximize our probability
of detection. Then we go through all of the data with that one algorithm and integrate
all of them. Weber made the following comment before and I quote out of context:
“Results pile up.” I agree with Joe. But I think you have to analyze all of the data
with one well-understood algorithm.

WEBER: It is not true that we turn our knobs continuously. I have been full time at
the University of California at Irvine for the last six months, and have not been turn-
ing the knobs by remote control from California. In fact, the parameters have not
been changed for almost a year. What we do is write the two algorithms on a tape
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continuously. The computer varies the thresholds to get a computer printout which
is for 31 different thresholds. The data shown are not the result of looking over a
lot of possibilities and selecting the most attractive ones. We obtain a result which
is more than three standard deviations for an extended period for a wide range of
thresholds. I think it is very important to take the point of view that the histogram
itself is the final judge of what the sensitivity is.

SCIAMA: The authorities have allowed us to extend this session for 15 minutes and
I believe the best thing to do at this point is to go on to the final item on the agenda
I referred to at the outset, that is to talk about future possible detectors. It is my
impression as a layman that in the past few years there has not been a very great
increase in sensitivity of these detectors—as though Joe’s designs from the beginning
have reached some kind of threshold of possibility. Some of us Astrophysicists,
quite apart from the controversy we have been hearing about this morning, would
like to be able to detect, let us say, gravitational waves from a supernova explosion
in the Virgo cluster of galaxies. Such an event would probably occur several times
a year, giving a very acceptable event rate. But, of course, the sensitivity you would
need to detect such an event would have to be very great. A very crude estimate
would suggest that one would need sensitivities of the order of say a million to 108
times greater than the kind of sensitivities we have today. I think we ought to spend
a few minutes discussing the question. Is it conceivable that future designs of de-
tectors have any hope, let us say in the next ten years, of achieving an improvement
in sensitivity of that kind of order of magnitude? What I have arranged is that, first
of all, Tony Tyson will say a few words about the Stanford experiment which is
already under construction (Stanford and Rome, 1 should say) and then a few words
about his own vision about detectors of the future; Ron Drever will then say a few
words about his vision. We will either end at that point or, if we have a few moments
to spare, the other panelists can throw in their visions too. I ask Tony Tyson to take
up this topic.

TYSON: Thank you. I would like to do that. But, first I would like to close the previous
discussion by saying that I agree with Joe Weber that the histograms are the whole
story. However, for the histograms to be the whole story, one has to calibrate both
antennas; you have to put signals into both antennas simultaneously; you have to
put a known force into both antennas to see what the result is. The one thing that
we really need now from Joe Weber more than anything is one of these plots of the
number of pulses above threshold as a function of threshold, for simultaneous cali-
brated excitations of the two antennas. Absolute calibration is absolutely necessary.
Now I should say something about the recent Stanford results. It is a very difficult
experiment. Let me explain to you what it is. They want to get very high sensitivity.
To get very high sensitivity you have to have large coupling to the bar, as Ron Drever
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pointed out. You also have to have very low noise. To get low noise, you have to
eliminate the Brownian motion of the bar. You do that by cooling to low tempera-
tures; that noise goes like kT. But you also have to eliminate the amplifier noise.
Unfortunately, you cannot just eliminate amplifier noise by cooling. You cannot
dump your hi-fi into a dewar of liquid nitrogen and expect better noise performance.
So, the Stanford people have set out to make a completely superconducting detector
with a superconducting transducer, a superconducting amplifier first stage called
a SQUID. This stands for Superconducting Quantum Interference Device. All of
this technology is possible today. Although possible, getting these three new tech-
nologies working together at the same time is very difficult indeed. They have the
dewars, they have the aluminum, but they do not have many of the other items
which they need. The biggest problem right now, as I understand it, is that they are
having difficulty floating their aluminum in a noise-free way on a magnetic field.
They want to float the aluminum bar in a magnetic field by the Meissner effect.
The critical field for aluminum is 100 gauss. They need several thousand gauss to
float this large bar of aluminum. So, their approach has been to attempt to coat the
bar with a hard superconducting coating which has a high critical field and will
float in a large magnetic field. They are now trying to vacuum-sputter on some
niobium titanium, which is a very expensive process that I think eventually would
work. Another unfortunate delay is that they have designed a transducer which
should be resonant near the frequency of the bar. But the bars are resonant up above
a kilohertz and the transducers they had working are resonant below 700 hertz,
and they cannot seem to get the two together. I suspect that in the next year this
will be overcome. I think we estimated three years ago that it would take three years.
Perhaps we should give it another three years, but it is a very worthwhile project.
The eventual sensitivity should be somewhere around 100,000 times the sensitivity
of Weber’s experiment of 1970. This will possibly allow them to see supernovae in
the Virgo cluster, if the stars have enough angular momentum to start with, but it
is on the edge of detection. As for my own hopes for the future, I am now most
excited about the short range. I can well sympathize with the Fairbank group at
Stanford and with Bill Hamilton’s group at L.S.U. and with the Rome group in their
difficulties in cooling large bars. I think, however, that it is possible to get noise tem-
peratures well below what we have achieved at room temperature. With our room-
temperature bar we have about 20 degrees Kelvin effective noise temperature now
for the detection of the signature which we are searching for in the presence of noise.
One ought to be able to do even better than that. Fundamental limitations set in
strongly at about a half a degrees Kelvin. We have designed and are now testing a
new kind of transducer which, when applied to the large 300-degree Kelvin bar,
should give a noise temperature around one degree Kelvin or lower.

SCIAMA: Thank you very much; Ron?
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DREVER: Perhaps it might be useful if I were to give a slightly broader view on ideas
about the future development of the field. I should commence by saying that before
Joseph Weber started his experiments nobody believed we had a hope of detecting
gravitational waves. If you worked out the fluxes expected they were incredibly
small. Then Joe found his pulses, apparently. These pulses were, in fact, ten times
bigger than anybody might have expected, as well as being far more frequent. This
focused attention on that region of the spectrum and all experimental groups have
therefore been studying that same region: for pulses lasting some milliseconds, and
of the same magnitude as Joe’s. In my opinion, I think it now seems probable that
Joe has been mistaken. We are not yet certain but it is probable. If one accepts as a
hypothesis for the moment that he is mistaken, then the field has in a sense rather
broadened. Perhaps one should see what other things can be done as well. One is not
necessarily just trying to search in that particular region of sensitivity for those par-
ticular kinds of pulses. This broadens one’s viewpoint. One might consider both
pulses and experiments for continuous radiation. In the case of pulses, I think that
one obviously needs a huge improvement in sensitivity in order to see predicted
effects. Tony Tyson has told us about one obvious direction in which to go—low-
temperature large detectors. In the last two years or so, I think two other possibilities
have become apparent. One is the technique being developed in Russia by Braginskii
and his group in Moscow, who have been investigating the possibility of building
rather small detectors of single crystals which have exceedingly high Q when operated
at low temperatures. If these experiments are successful, and it is too early to say if
they will be yet, this may provide an. alternative to the technique being developed
by Fairbank and the Rome and Louisiana groups. Another technique which is coming
into view now is the quite different possibility of having separate masses which are
a long distance apart, so that you get motions of absolute magnitude bigger than
you would get with two masses at the separation of about two meters available in
a bar. One may monitor the separations using laser techniques in a kind of Michelson
inteferometer arrangement. This, I think, is a very promising technique in the long
term and I can see important advances in that direction in the next few years. These
two methods apply of course to pulses. Supposing one considers the question of
continuous waves. We can see several sources from which we would expect to get
signals, for example, pulsars (as long as the cores are not symmetrical) and binary
stars. If one calculates the fluxes from these, as Bertotti showed in some of these
cases earlier in this meeting, they are very small indeed. Can one hope to detect
them? Well, I think one can. And I can see now three ways in which this might be
done, perhaps. Using resonant detectors of very high Q, such as the techniques being
developed by Braginskii, is one possibility. Another is to use the laser interferometer
technique with a very large base line; that is well adapted to low frequency signals.
A third one is the one which Bertotti talked about—the heterodyne technique.
These are three new possibilities for looking for low-frequency signals. The experi-
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ments are at least as difficult as the past experiments, but I think now they will go
on as well, and I think that they may possibly work in a few years. Let me just make
a final remark on this. The experiments have much greater potentialities than isapparent to those who are not in the game. If in fact the pulses Joe found were what
everyone expected them to be—short pulses, of quite strong intensity—I myself
am quite certain that all of the groups would have found them by now. The important
thing is that it would have been possible to find the directions and begin to produce
maps of the sky of the signals; for by comparing phase information from detectors
at different places, or from times of arrival, one can in principle find the directions
of individual pulses. Unfortunately, this program has been held up because none of
us has found the pulses, with the exception of Joe who knows how to do it rather
better, or has been more lucky. However, I still feel strongly that these pulses will
eventually be discovered, perhaps at a much lower level. As soon as that happens,
I think the field will develop very rapidly. From a confirmed initial discovery that
can be reproduced readily, I think the thing could rapidly spread to where we would
have a real astronomy and we would be producing maps of the sky of gravitational
wave sources.

WEBER: From my understanding of the standards of particle physics, if you get a
histogram with a zero time delay excess of 3.6 standard deviations, that is regarded
as a positive result. Perhaps Ron Drever has higher standards; it would be nice to
have a larger excess with a higher level of confidence, but please be patient.

TYSON: I think these results of Weber’s would be convincing if it were not for all
the selection and bias to zero time lag.

KAFKA: Since there were many questions from participants about what we would
be able to see, I should like to make one last remark about the sensitivity of the
present coincidence experiments. Yesterday, Bludman told us about a possible
observation of an anti-neutrino evnet. Though it seems unlikely to me, let us speculate
with Bludman that it was connected with the collapse of a star of several solar masses,
and that it also emitted gravitational radiation, say 2 percent of a solar mass, in a
bandwidth of lkHz, at a distance of 1 kpc. Then it turns out that the gravitational
wave pulse would correspond to 1/40 kT in our or Weber’s detector—and this is
exactly what our noise simulates on the average. Hence, with a sufficient number of
such detectors it would be a marginally detectable event. With coincident independent
evidence from neutrinos or electromagnetic waves, the existence of the gravitational
pulse would be significantly proved, and one could already start an analysis of its
polarization properties. Therefore, if one is extremely optimistic about sources
(which I am usually not), one has already reached a stage where one should look
for something.
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TYSONzl would like to second that. I think that every time we have looked into the
sky with a new kind of detector, a new black box, we have found something which
we did not expect. I do not think we should be discouraged by the fact that one needs
a factor of a million or so improvement over Weber’s sensitivity of 1970, before

one'can really expect to see a supernova in the Virgo cluster. I think we are going
to be surprised long before then. Right now we have antennas that are perhaps 200
times more sensitive than Weber’s experiment. We do not yet see anything, but then
antennas are always increasing in sensitivity. I am very excited about the possibilities.

SCIAMA: Ladies and gentlemen, I fear we have to bring this session to a close but

I am very glad it has ended on this Optimistic note, because I too believe we are going
to detect either pulsars or supernovae or both or something else in the next few years.
So now I ask you to thank all the panelists for this clarifying discussion.
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Never was an old saying more relevant than at this conference: The larger the island
of the known, the greater the shoreline of the unknown. Would that it were possible
to go on consulting with colleagues from near and far on the many fascinating issues
that came up at this conference, and go on doing this under such favorable arrange-
ments! Did we sometimes in imagination see Einstein at these discussions? We knew
that for him this was a favorite subject, in a favorite country. How could he have
failed to smile and to enjoy these meetings? For the hospitality, for the organization,
and for ever so much more, I know that the thanks of all present go to the agencies
that sponsored this meeting, to the officers of the local organizing committee, in-
cluding not least President Ne’eman, Professor N. Rosen, Professor J. Rosen, and
Professor Shaviv, and to many other devoted hands and hearts.

The number of able young men at this conference and the caliber of their con-
tributions provide living evidence for the extraordinary upsurge of activity in gravita-
tion physics and relativity in the past decade. Another index of activity is the number
of contributions at GR7, so great that often three simultaneous sessions were nec-
essary during this week-long meeting.

It would be out of place to attempt here any detailed summary of all the individual
research reports. Moreover, excellent review papers were given at the conference.
They survey the state of our knowledge in many of the major divisions of our field.
In View of these circumstances, this closing report may be most useful if it takes a
sample participant and asks what seemed to him eight highlights or perspectives
opened up by the meeting. Naturally there will be as many answers to such a question
as there are participants. Moreover, any such arbitrary selection of eight topics
necessarily leaves out a large number of important contributions, possibly even
what in retrospect might prove to be the most important single finding reported
at this meeting. Therefore, for a proper appreciation of what went on, the student

299



300 JOHN A. WHEELER

must turn to the conference proceedings themselves. They provide the only true
summary of this meeting.

1. THE QUANTUM RADIANCE OF A BLACK HOLE

No topic attracted more interest than the quantum radiance of a black hole. There
is a standard expression (Bardeen, Carter and Hawking, 1973) for the change in
mass-energy of a black hole when additions are made to its charge Q, its angular
momentum J, and the proper surface A, of its horizon:

acceleration of gravity of horizon . dA
dM = 2 —4— + (angular velocity of horizon) ' dJ+

TE
. (M

+ (electrostatic potential at horlzon) - dQ = 21—4— + QdJ + (DdQ (1)
TC

(geometric units; G = 1, c = 1). This result recalls the formula for the change in
mass-energy in a thermodynamic transformation,

dM = TdS + QdJ + (DdQ (2)

(see, for example, Landau and Lifshitz, 1958). Bekenstein (1972, 1973, 1974) argued
that the connection between the two formulas is more than an analogy; it is an
identity. The area of the horizon of a black hole, divided by the quantum of angular
momentum,

h(cm2) = hwnvG/c3 = (Planck length)2 =

= (1.66 x 10-33 em)2 = 2.612 x 10—66mm2 (3)
is not only analogous to entropy; it is entropy, up to a numerical factor of order
unity. The acceleration of gravity at the horizon, multiplied by it, is not only analogous
to temperature; it is temperature, again up to a numerical factor of order unity,
according to Bekenstein. Hawking (1974a, b) provided a deeper mathematical
foundation for these considerations of Bekenstein, showed why a black hole must
radiate, gave a formula for the radiation, and determined the two numerical factors
left undetermined by Bekenstein; thus, the temperature is

“l = (Ci/c4) conv = h(cm2)g(cm'1)/27t (4)
and the entropy is

S(dimensionless) = Sum/k = A(cm2)/4h(cm2) (5)

For the special case of a non-rotating uncharged (i.e., Schwarzschild) black hole,
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where horizon gravity is

g = M/Rfmr = 1/4M (6)
the temperature is

Tom, = 0.616 x 10—7 deg(Mo/M) (7)

No one sees any possibility whatever for directly measuring such a temperature,
nor the associated thermal electromagnetic radiation, for any black hole of solar
mass or greater. No one sees any possibility whatever for any process of astrophysics
or human technology to produce a black hole of quarter solar mass or smaller
(Harrison, Thorne, Wakano, and Wheeler, 1965). However, Hawking (1973) points
out that quantum fluctuations in geometry at the time of the big bang itself may
well give birth to small black holes. Moreover, he notes (1974a,b) that such a pri-
mordial black hole, when endowed initially with a suitable mass, of the order of
10159, will be able to survive until today, radiating more and more strongly as its
mass evaporates away, until in the last 0.1 sec of its life it goes out with a bang
equivalent in energy to some millions of hydrogen bombs. Therefore the Bekenstein—
Hawking black hole radiance is in principle of the very greatest interest.

No subject has been of more intense concern in informal discussions at this con-
ference than the derivation of Hawking’s formula for the quantum radiance. There
are as many approaches to the derivation as there are investigators working on the
question. More appropriate to recall here than the derivations—fit subject for a
future meeting—is the final result, on which most workers, however different their
methods, nevertheless agree. This result is conveniently stated in the form of a
“doctor’s prescription”. This prescription is most quickly arrived at by considering
an old and simple problem of physics that has in it no reference whatever to a black
hole or to gravitation: How much radiation does a spherical black body (not a
black hole!) put out? The answer is expressed as the product of four factors:

The area of the radiating surface

47tR2

The average component of the velocity of a photon normal to the surface, c/4,
when one deals with electromagnetic radiation; or, when one deals more gen-
erally with thermal emission of any kind of particle

v/4

The number of independent modes of oscillation of the electromagnetic field
or other field per unit volume that lie in the interval of circular wavenumber
of interest, dk, and have the state of polarization of interest

4nk2dk/(21r)3
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The average number of photons per mode of oscillation, when one is dealing with
radiated number; or the average energy per mode of oscillation, when one is
dealing with radiated energy; with a minus in the denominator when one is
dealing with bosons and a plus sign for mermions

7 , W (8)
Multiply to obtain the total radiation in the specified frequency interval.

1.1. The “access factor”

Now subdivide this radiation into classes, each class characterized by the total
number of units of angular momentumj that the representative outgoing quantum
carries away, as well as its angular momentum m around some preferred axis, and
its polarization 7:. Thus arrive at the “doctor’s prescription”,

number of quanta or amount
v dk l or flu)

ofener emitted erunit 2— - _ 9gy p 2“ Z mmeC/T i1 ( )
time in specified interval dk j‘m'"

Here C 2 ha) is an abbreviation for the “cost of emission” in the numerator in the
Boltzmann exponent. Nowhere in the formula is there any explicit reference to the
radius R of the radiating sphere Instead there appears the “access factor” F. It de-
pends on the angular momentum of the quantum, or, equivalently in the standard
semiclassical approximation, on the impact parameter b of the quantum (Fig. l):

_ J a
Figure 1

Access factor F as a function of impact parameter b or angular momentum quantum numberj for the
impact of a photon on, or the emission ofa photon from, a sphere of radius R. The sphere above (dimension
cm) and the range ofj values below (integers; dimensionless) are so scaled that point of transition from
full access to zero acmss, b : R in the upper diagram matches with the corresponding point oftransition,

j = kR, in the lower diagram.
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_ _, — (10)
:[inear moment uml kh k

b < impact ) <classicaldistance> [angularmomentum jh j
parameter of closest approach

It also depends on the size of the emitting object. Again in the semiclassical approxi-
mation, all those quanta make contact with the completely absorbing surface for
which the impact parameter is less than the radius; and all those quanta miss the
surface for which the impact parameter is greater than the radius; that is,

F21 for j<kR

F20 for j>kR (11)

In actuality the access factor F falls rapidly from unity to zero in the neighborhood
ofj ~ kR provided that the value of kR is large compared to one. Under these circum-
stances, to carry out the sum over all modes of emission is to make the first step in
recovering from the “doctor’s prescription” (9) the standard surface—area propor-
tionality and all the other features of the standard formula,

ener emitted< gy , . . > : 47IR2 ‘

per unit time
7:2 T4
B h3c3 (12)h

lt
‘:

for the total blackbody radiation of the sphere; thus,
kR j kR

Z Fw.j.m,u : 2 Z Z 1: 2 Z (2j+1): 2k2R2 (13)
13e i=0 m=—j i=0

Here the factor 2 presupposes a radiation with two independent states of polariza-
tion.

When the patient is not a blackbody but a black hole, the doctor, in this Stephen—
Hawking case, employs the standard tried and true prescription (9) for the quantum
radiance, with the following modifications:

1. Replace the “cost of emission” C = ha) (rest mass plus kinetic energy) in the
Boltzmann exponent in (9) by the “corrected cost of emission” as given in standard
treatises on statistical mechanics (see, for example, Landau and Lifschitz, 1958) for
a rotating charged body,

C = Ma) — mo) — eitl) (14a)
where mh is the azimuthal angular momentum of the emitted quantum and e, is
its charge.

2. Insert for the temperature Tin the Boltzmann exponent (constant over the radiat-
ing surface) the value

T= git/27: (15)
where g, the horizon value of the gravity, is constant over the horizon (the “zeroth
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law of black hole physics”, the history of which is summarized by Carter (1973)).
3. Recognize that the total angular momentum of a quantum in the nonspherically-

symmetric geometry of a rotating black hole is not a constant of the motion. There-
fore do not identify the labelj of the access factor Fwy...» with total angular momentum.
Instead, identify j with the index number of the appropriate spheroidal harmonic
when one separates the wave equation for the radiation in question in Boyer—
Lindquist coordinates. Table 1, adapted from Press (1973), recalls what one knows
about this separation.

TABLE 1
Analysis into Harmonic Components of (1) a Field Propagating in the Geometry of a Black Hole, (2) a
Perturbation in This Geometry Itself. or (3) a Coupled Combination of the Two. Also the Representation
of the Harmonic Component in Terms of a Single Scalar Function of Position. and the Separation of the
Partial Differential Equations for This Function into Four Ordinary Differential Equations in the Four
Separated Variables t, r. 6 and d7 (Table taken from Press (1973) with rearrangements and supplements)

Geometry Field References

Schwarzschild Scalar Bel (1963); Price (1971, 1972a)
Neutrino. electron Brill and Wheeler (1957); Wheeler (1971b)
Electromagnetic In terms of vector harmonics, Wheeler (1955);

in terms of spinorial field components, Price
(1971. 1972a) and Bardeen and Press (1973)

This geometry itself In terms of tensor harmonics, Regge and
Wheeler (1957), Vishveshwara (1968. 1970),
Zerilli (1970a. 1970b); in terms of spinorial
field components, Bardeen and Press (1973).

Reissner—Nordstrom Scalar Carter (1968a, 1968b)
Neutrino, electron Brill and Wheeler (1957); Wheeler (1971b)
Coupled EM—geometrodynamic Zerilli (1974), Moncrief (1974a, 1974b), Chitre

(1975)

Kerr Scalar Carter (1968a, 1968b)
Neutrino Teukolsky (1972, 1973, 1974)
Electromagnetic Teukolsky (1972, 1973, 1974); Fackerell and

Ipser(1972).
Geometrodynamic Teukolsky (1972, 1973, 1974); Wald (1973)

4. Solve the “radial” wave equation for the spheroidal harmonic in question to
determine the access factor F. This is the point where the size of the black hole enters.
So does the effective potential that runs from the horizon of the black hole to in-
finity. It measures the combined effect of “gravitational”, “centrifugal”, and electro-
magnetic forces.

To define the access factor, let a wave of the given (a), j, m, 7:) start outward from
just outside the emitter. Then the fraction of the intensity of this wave that arrives
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at infinity measures F, and the fraction of the intensity that gets reflected back down
the black hole, is 1 — F. As an alternative, equivalent, and often more convenient
way to define F, let a wave of unit strength be envisaged as running inward from
infinity, and identify the fraction of the intensity reflected back out by the potential
barrier as (1 — F). In this case all comparisons of intensity are made at infinity.

1.2. Superradiance

Distant from the spontaneous quantum radiation considered by Hawking is the
classical superradiance whose existence was first pointed out by Zel’dovich (1971,
1972) and by Misner (1972), whose meaning was clarified by Bekenstein (1973),
and whose magnitude has since been calculated: (a) analytically in appropriate lim-
iting cases by Starobinsky (1973) and Starobinsky and Churilov (1973), and (b)
numerically for the entire frequency range by Press and Teukolsky (1972) and
Teukolsky and Press (1974). In superradiance, a wave of given (a), j, m, 71.") runs in
from infinity toward a black hole and is returned back to infinity with augmented
strength. The increase in the energy of the wave comes at the expense of the rotational
energy of the black hole. It is for waves what the Penrose process is for particles,
an instance of activity, the ability of a rotating black hole to communicate energy
to its surroundings (Fig. 2). It manifests itself in a value of the reflection coefficient
(1 — I") greater than unity; that is to say, in a negative value for the access factor F.

A negative value of F makes no difficulties for the quantum radiance prescription
(9), for a simple reason. The access factor F in the numerator of (9) becomes negative
then and only then, and the black hole becomes superradiant then and only then,
when the denominator

eC/T i 1 (16)
in (9) is also negative.

In contrast to the quantum radiance of a black hole, governed by the ratio

F
gm? “7)

and always positive, superradiance is entirely classical, but conditional. For it to
occur, two conditions must be met. First, the radiation in question has to have
Bose—Einstein character (minus sign in (16)). Second, the “corrected cost of emission”
C in (14a) has to be negative.

1.3. Quantum radiance as affected by the number of types of neutrinos

Nothing is more impressive about black hole radiance than the blackness of the
emitter. A star, opaque to photons, is normally almost perfectly transparent to
neutrinos and to gravitational radiation, and is therefore a significant radiator of
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Figure 2

Tilt ofthe light cone on approach to the horizon of an extreme Kerr rotating black hole (J = M2). Interior
of backward light cone, black; interior of forward light cone. white; “neutral region" (spacelike intervals),

dotted. For simplicity only the equatorial plane of the black hole is considered. and only photons which
are directed exclusively in the azimuthal direction (41) changing; no change in r or 9). L4) represents the
angular momentum of the photon in the direction of increasing (1); E is its energy. Far away (r —§ 30)
the forward light cone has its usual form, E = Mal/K and a photon has positive energy. Within the ergo—
sphere (from r : M to r = 2M), a photon still has positive energy, as that energy is judged in a local
Lorentz reference system. In contrasL the energy as defined by E. like the angular momentum L4,, (1) is
an “integral of" or “constant of“ the equations of motion of the photon on its way from r to so (when
it can get to infinityl); (2) thus provides a measure of the energy of the same photon as judged by the
“common—market standard ofenergy as measured at infinity“; and (3) can be negative for a photon trapped
inside the ergosphere. Example: For r : 1.4M (inside ergosphere). and for a photon with negative L4,
(traveling against the direction of the rotation of the black hole), the energy is E : 0.234L¢/M. Such a
photon, though locally endowed with positive energy, has negative common—market energy. It reduces
the mass energy of the black hole when it falls into it (PenroseiChristodoulou process). In contrast, a
photon going with the rotation (positive L4,) has positive common-market energy (E : 0.417 L‘b/M).
The tilted double light cone that one has for a photon splits up for a particle into two hyperboloids, also
tilted; but otherwise the situation for particles is similar to that for photons. If a particle or a photon in
an allowable state (on upper sheet of hyperboloid, or on forward light cone, or endowed with positive
energy as seen in a local Lorentz frame) can have a common-market energy E that is negative. can it not
likewise have a direction of progress, dt/dr. in common-market time t that is also negative? If this idea
were correct. it would open up the possibility to travel back into one‘s own past; but it is not correct.
The 4-vector (E. Lg) and the 4—vector (Adz/(1r), Addy/tin) are the same vector in covariant (“l—form")
and contravariant (“tangent vector") representations; but the metric is non—diagonal (non»zero 9,4,). The
coordinates t and 4) are not orthogonal. The common-market energy E can be negative, but the rate of

advance of common-market time t with particle proper time can never be negative.
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neither. In contrast, a “hot” black hole, that is, a small black hole, is as good at
emitting neutrinos and gravitons as at emitting photons; and as effective in sending
out mu-neutrinos as electron-neutrinos. Thus any estimate of the life of a small
black hole against Hawking’s quantum evaporation has to depend in an important
way on the number of different kinds of neutrinos that there are in nature. On that
one knows as little as one does about the number of particles beyond the electron
and the mu-meson: Zero? Infinity? A finite but small number? Or a finite but large
number?

1.4. Cosmological limit on types of neutrinos

If this question evidences one link between gravitation and neutrino physics, cos-
mology recalls another. Were the density of mass-energy in the universe greater
by one or more factors of ten than the so-called critical cosmological density,

Earl—r
= (3/87r)(20 x 1091e2 = 3 x 10-58cm-2 or 4 x 10-30g/cm3 (18)

3 1 da 2
pcos = — ~ (3 /81r) (49km/sec Megaparsec)2

it would have greatly shortened the time-scale of the universe. There would not have
been time enough since the big bang for stars and star clusters to have evolved so
far as we see them to be evolved. Therefore (18), or ten times it, provides an upper
limit on the density. One neutrino family contributes to this density the amount

77:2 T4
f ‘l =——pv(one ami y) 120h3c5 (19)

unless a chemical potential shifts the equilibrium away from the equality of numbers
of neutrinos and antineutrinos presupposed in (19). In this event the contribution
of neutrinos and antineutrinos together is only increased above the value (19).
Moreover, in the absence of other considerations, it is reasonable to assume for
neutrinos roughly the same temperature today as the primordial cosmic fireball
radiation, 3 deg K, on the view that both were once in equilibrium with matter and
both have been cooled together by the expansion of the universe.*

* In actuality neutrinos are believed to have broken their thermal link with matter at a time when matter
was very hot, and (e+e‘) pairs were overwhelmingly more numerous than the electrons seen today.
Under these conditions the calculated energy present in electron pairs was about 7/4 of the energy
present in the form of electromagnetic radiation. On further cooling the pairs must have been frozen
out, dumping their energy into the electromagnetic field. Thereupon the T4-proportional energy of
EM radiation must have risen to ~11/4 of the value otherwise to have been anticipated, bringing it to
this extent out of alignment with the energy of any single neutrino family, though otherwise both energies
decrease alike with time during the expansion of the universe. On this account, in the calculation from
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This reasoning leads to a lower limit of the order

pv(one family, 3 deg K) ~ 6 x 10‘3’4g/cm3 (20)

for the contribution of a single family of neutrinos to the cosmological density;
and to an upper limit for the allowable number of families of neutrinos of the order
of

Nv(max) ~ peas/p(one family) ~ (4 x 10‘30 g/cm3)/(6 x 10‘34 g/cm3) ~ 104
(21a)

Subsequent to the conference, Martin Rees has pointed out (Rees, 1975) that a number
of varieties of neutrons of the order of 10—100 times that already recognized would
so raise the pressure in the earliest days of the universe and so alter the time scale
of expansion that great difficulties would arise in accounting for the observed ratio
of helium to hydrogen. From this argument one arrives at an upper limit of the
order of

Nv(max) ~ 102 (21b)

In conclusion, no way is evident to exclude the possibility that a black hole evap-
orates via quantum radiance ~102 times as fast as one has previously supposed.
Such a neutrino-enhanced radiation would lead to no observable effect whatsoever
for a black hole of solar mass or greater, because its previously calculated life was
already greater than the estimated age of the universe by so many more than two
powers of ten. However, a small black hole of primordial origin would have to be
more massive than previously supposed by a factor of the order of NE,” in order to
survive from big bang to today. The mass converted into electromagnetic energy
in the last 0.1 sec of the life of the object would be

AM(EM,lastO.1 sec) ~ 0.7 x 108g/Nf"3 (22)

dependent in an important way on the number of families of neutrinos. To observe
the final flash of such an object would therefore not only confirm the existence of
primordial black holes, but also tell one something new about elementary particles.

(19) of the energy in a single family of neutrinos. it would be reasonable to take for T3,“, not the value
(3 deg K)4 obtained directly from measurements on the primordial cosmic fireball radiation, but rather
(4/1 1) (3 deg K)‘. This correction is neglected for simplicity in the present order-of-magnitude discussion.
It would not be possible to ignore such a correction ifin addition to the energy dumped into the EM
field by freezout of(e+e‘) pairs one also had energy dumped into the EM field after neutrino decoupling
by freezout of (t1+;1‘) pairs and the many many hadron and other particle pairs that one could list.
The actual order of events is not known. Until it is known, an important element of uncertainty will
reside in the present analysis, which is based on the assumption that almost all of these other particle
pairs froze out before neutrinos decoupled from matter. Appreciation is expressed here to William H.
Press for a discussion in which he pointed out that cosmological density puts a tighter limit on the number
of families of neutrinos than does the rate of evaporation of black holes.
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1.5. Chemical potentials and the laws of conservation
of baryon number and lepton number

This discussion presupposes that the horizon of a black hole is not endowed with
a chemical potential. But a chemical potential ,u does appear in the statistical-
mechanics theory of the equilibrium of a rotating charged body in every other
normal context. The “corrected cost of emission” in the Boltzmann exponent con-
tains a term additional to that shown in (14a), and reads (see, for example, Landau
and Lifshitz, 1958)

C=h(w—m.Q)—e,~(D—,u,- (23)

where the subscript 1‘ refers to the type of particle being emitted. Moreover, a positive
chemical potential it, for a given particle favors the emission of that particle and
inhibits the emission of the corresponding antiparticle. Therefore the chemical
potentials for the various emissions can be imagined to be so adjusted, and in normal
evaporation processes automatically will so adjust themselves, that what is given
off is identical in content of conserved components with what went in to form the
object in question in the first place.

The theory of the quantum radiance of a black hole is not sufficiently developed
to allow a definitive judgment whether a black hole is characterized by chemical
potentials. If it is, these potentials would be automatically fixed by the requirement
that baryon number and lepton number be conserved in a cycle in which a black
hole is first formed, and then evaporates away (Wheeler, 1974).

Whatever may be the final conclusion on this question of black-hole chemical
potentials, three cements are appropriate. First, it is interesting in principle to
conceive of a cycle in which one puts together matter to make a black hole, and then
lets that black hole evaporate. However, it is questionable whether such a cycle
is achievable except in imagination. It may well be that the beginning of the cycle
can be followed, or the end, but not both Either the star can be followed from forma-
tion through its collapse (then one can imagine counting the number of baryons
that go in, and the number of leptons; however, the resulting black hole is too big,
and lives too long to evaporate. Therefore one cannot count what comes out) or
the black hole is small enough to evaporate before the Einstein-predicted contrac-
tion and collapse of the universe. Then the ejected particles can be counted. However,
such a black hole has to be primordial, formed in the big bang. Then no way offers
itself to tell what goes in. In neither case is it evident how to make any direct check
whatsoever on the laws of conservation of particle number. This difficulty of checking
may rule out even in principle any definition of any effective baryon number and
lepton number for a black hole. However, the alternative is also conceivable, that
one should forget the Einstein-argued finiteness of the time scale of the universe in
considering black-hole physics—in which case total evaporation can be imagined
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eventually to occur, and total output of particles will be as well defined as total

input.
Second, as far back as the 1930’s, one learned to understand in easily Visualizable

terms the production of pairs of electrons in a sufficiently strong electric field. One

had to deal with a tunneling between one region where locally-negative-energy

states are occupied and another region where locally-positive-energy states of the

same common-market energy are empty. No equally simple picture has yet been

developed for the quantum radiance of a black hole. For someday filling this gap in
our understanding it is therefore useful that G. W. Gibbons has explained to us at
this meeting the mechanism of loss of charge by a black hole, a process where there

is some overlap between the old picture of pair creation and the new aspects of
quantum radiance. In an important preprint, Brandon Carter (Carter, 1974) has
given additional insight into this process (see also Zel’dovich, 1972a; Bekenstein,

1973)
Third, by any method of analyzing properties of a black hole, whether from the

study of a test object around it, or by the electrical repulsion it exerts on a test charge
or by the superradiance to which it gives rise, one sees not the slightest possibility

to distinguish this black hole from another black hole of the same mass, charge,

and angular momentum formed from a quite different mix of baryons and anti-

baryons, leptons and antileptons, and radiation. In this sense it is as true as ever that
the laws of conservation of particle number are “transcended” in black hole physics
(Wheeler, 1971b).

2. ANALYSIS OF REALISTIC SCENARIOS
OF GRAVITATIONAL COLLAPSE

Three signals come from a black hole: gravitational radiation during formation,
X-ray from the accretion disk after formation, and “activity”—transfer of energy

from a rotating black hole to its surroundings. For the detection of these three

signals there is much observational work in progress, and much progress in the

instruments of observation. In contrast, predictions lag behind on what is to be ob-
served, and nowhere more so than on gravitational radiation. Detailed calculations
of great difficulty and beauty have been made on the collapse of systems endowed

with spherical symmetry, but unhappily they provide the one exception to the other-
wise universal rule of gravitational radiation during collapse. Allowance for rotation
—-and rotation-induced fragmentation, when it occurs—however difficult, is es—
sential for any proper prediction of the radiation.

For the prediction of the astrophysical evolution up to the point of collapse and radi-
ation. one supposes that rotation is without great influence. On this basis Schwarz-
schild, Hayashi, Paczynski and others calculate the scale of time for the successive
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steps in the evolution of a single star. Others, not least van den Heuvel (1974), analyze
the great effect upon the evolution of one star produced by the companion star in
a close binary. At this meeting Martin Rees has given a most useful survey of what
we know about the “natural economy” of black holes—how many new ones are
produced per year, how long one is “live”, and how many “dead” black holes one
can reasonably believe our galaxy to contain today.

For an analysis of the very difficult hydrodynamics of collapse nothing would
be more useful for a first orientation than exact results for a sufficiently wide variety
of idealized situations to allow one to extrapolate or interpolate to the scenarios
of actual physical interest. A model need not even have rotation to be of interest,
provided only that it has a deformation comparable to that produced by rotation.
Among models for which some hydrodynamic analysis has been carried out, and
much more would be appropriate, are these:

1. Newtonian gravitational collapse of a spheroidal cloud of dust of uniform
density.

2. The same for an ellipsoidal cloud of dust (Mestel, 1965; Lin, Mestel, and Shu,
1965).

3. Initial stages of the fragmentation of an infinite plane slab of nuclear fluid
(Renfrew, 1972).

4. Final stages of the approach of a black hole to ideality (Price, 1972a,b; Thorne,
1972; Fackerell, 1971 ; Press and Teukolsky, 1973).

Interesting and important as it is to treat idealized models in all detail, they repre-
sent only a first step on a long road, culminating in the detailed hydrodynamics
analysis of realistic scenarios. What a moving picture of one such scenario might
look like can at most be suggested in a highly schematized and symbolic way by
Fig. 3. Only when the several stages of the hydrodynamics are worked out will one
be able to calculate within anything like 20 percent latitude the intensity and other
features of the gravitational radiation emitted in the successive steps of collapse:

1. Continuous radiation of ever-increasing frequency given off during the contrac-
ti on of a slowly rotating and slightly non-axisymmetric white dwarf core to a rapidly
rotating and still slightly non-axisymmetric neutron-star pancake.

2. The pulse of quadrupole gravitational radiation given off during the last rush
of this approach to pancake shape even when any departure from axisymmetry is
zero or negligible.

3. The pulse or pulses emitted as this pancake fragments—a fragrnentation con-
ditional upon the hydrodynamic system having a sufficient angular momentum.

4. Continuous radiation of changing frequency or frequencies given off as a frag-
mented system gradually loses angular momentum.

5. A pulse of radiation emitted each time that two fragments amalgamate to make
a more massive fragment.

6. A pulse given off each time that a neutron star collapses to a black hole.
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Figure 3
Collapse (A to B or B’) of the slowly rotating white dwarf core of a star to a rapidly rotating neutron
star pancake; fragmentation (B to C) of this pancake into separate neutron stars; and slow dissipation
(C) of the angular momentum of this revolving system by gravitational radiation, allowing the separate

pieces one by one to amalgamate into a single neutron star or black hole. This diagram of a “collapse,

pursuit, and plunge scenario”, taken from Ruffini and Wheeler (1971) is, as they emphasize, schematic
only, and must undergo great alterations for modest changes in the values of the mass and angular mo-
mentum of the original white dwarf core. For the very different scenario for the formation of a neutron

star or a black hole by accretion in a double-star system, see van den Heuvel (1974).

A great difference will be expected between one scenario and another as to whether
fragmentation will or will not occur, as to the number of fragments when fragmenta-
tion does occur, and as to the number of distinct stages run through by the system
in settling down to a single final compact object. In selecting between one such
motion picture run and another the decisive parameters are two in number: the mass
M and angular momentum J of the system before collapse. May the day soon come
when for at least three values of M, and three values of J (or J/MZ), or a total of
nine representative cases, one can give to 20 percent accuracy predicted curves for
gravitational wave amplitude and polarization in their dependence upon viewing
angle and time. Not until then will one know what is the characteristic “signature”
that gravitational collapse writes with the pen of gravitational radiation. Not until
then will one have the information required to design a detector of this radiation
of maximal astrophysical relevance.

Weber bar detectors of present sensitivity we expect to detect collapse processes
that take place within this galaxy, with an average time between events of the order
offifty years. The second generation of detectors, now under construction at Stanford,
Baton Rouge, and Rome (Everitt, Fairbank, and Hamilton, 1972; Boughn et a1.,
1973), can be envisaged to be followed by a third generation of even greater Q-value
and sensitivity, able to detect collapse anywhere in the Virgo Cluster of galaxies,
perhaps of the order of once a month (MTW, 1973). The signal comes through all
overlying layers of matter and all surrounding clouds of gas and dust No other
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observational means offers itself to acquire more decisive insights into the dynamics
of collapse, except neutrinos (Chudakov, Ryajskaya and Zatsepin, 1973; Kotzer,
Lord, and Reines, 1975) and gravitational radiation. Only by continuing and in-
tensifying present work, as well on collapse hydrodynamics as on gravitational wave
detectors, can we win that new understanding of collapse, and that new power over
gravitational radiation, that stand within our grasp.

Mathematical tools are under development that promise new power to analyze
hydrodynamic and geometrodynamic complexity individually and in combination.
The work of DeWitt and Smarr, reported by L. L. Smarr, on computer analysis
of the collision between two black holes, step by step identifies and solves problems
of stability, of accuracy, of checks, of the best balance between elliptic initial value
equations and hyperbolic dynamic equations, of optimal “slicing” of spacetime, and
—perhaps most difficult of all—optimal display of the results. Preparing the algebra
prior to computer coding, whether for hydrodynamics or relativity or both, is a
heavy task in itself, towards the lightening of which much has already been done
(summarized, for example, in MTW (1973, p. 342)), and more has been reported at
this meeting by H. 1. Cohen, 0. Leringe and Y. Sundblad in one paper, and by I.
Frick in another.

3. BLACK-HOLE PHYSICS

3.1. The X—ray “signature” of a black hole

Calculation of gravitational radiation at the moment of formation of a black hole,
and construction of detectors, constitute a continuing investment with a great payoff
expected around the corner. In contrast, calculation of the X-radiation from the
accretion disk around an already existing black hole, and lofting X-ray telescopes
to detect this X-radiation, make up an investment of equal vision, whose first mar-
vellous payoff is already in hand. This is not the place to review the evidence that the
X-ray object Cyg X—l is a black hole. For that it is enough to refer to the report
of M. Rees at this conference, and reports by him and by R. Giacconi at another
conference (chapter in Debever (1974)), as well as the book of Giacconi and Gursky
(1974). It is more useful here to recall a central objective still to be achieved. Can
one by calculation or observation or both establish the X-ray “signature” of a black
hole? Can one identify some characteristic feature of the spectral distribution, or
of the fluctuations in time, or of the radiation from some revolving and then inward
plunging hot spot, or of the polarization, that will distinguish easily and unambiguous-
ly between a black hole and a neutron star, without need for a discrimination by
way of mass? A. P. Lightman and D. M. Eardley, by analyzing in their report some
of the instabilities expected in the inner part of the accretion disk, give us a most
helpful impression of the problems that will have to be solved before we can arrive
at a reliable X-ray “signature” for a black hole.
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3.2. Superradiance

The order of history was not first the quantum radiance of a black hole and then
superradiance, but first superradiance (Zeldovich, 1971, 1972b; Misner, 1972) and
then quantum temperature and quantum radiance (Bekenstein, 1972, 1973, 1974;
Hawking, 1974, 1975). Therefore it is of interest that much more detailed calculations
are now available, as reported here by Press in his review and Teukolsky in his
written report (see also Press and Teukolsky, 1973; Teukolsky and Press, 1974),
than one ever had before. In this superradiance, one is concerned with the comparison
between the radiation that comes out and that which went in. For this reason it is
especially interesting to know that a charged black hole will send out electromagnetic
radiation when illuminated with pure gravitational radiation. The original static
electric lines of force (nonrotating black hole) or static electric and magnetic lines
or force (rotating black hole) are set avibrating. Thereby electromagnetic waves are
generated and run out into space. It is evident that the black hole serves as a convertor
to transform incoming gravitational radiation to outgoing electromagnetical radia-
tion. The cross-section for this process will evidently be of the order of the geometric
dimensions of the black hole itself in the extreme case—very far from astrophysical
realization—of a black hole with charge comparable to the Misner—Nordstrom
limit and angular momentum comparable to the Kerr limit. Several papers in the
literature deal with aspects of this conversion process (see Table 1; also Johnston,
Ruffini, and Zerilli, 1973, 1974; Chitre, Price, and Sandberg, 1973, 1975; Johnston,
1974; Boughn, 1975; Chitre, 1975; Weinstein, 1975). Reports given at this conference
add to our understanding. However, we are still far removed from a detailed knowl-
edge of the conversion cross—section in its dependence upon angle and frequency.

3.3. Scattering by a black hole

For the simpler process of scattering of radiation by a noncharged rotating black
hole, or the even simpler case where there is no rotation (Matzner, 1968), one has
reasonably detailed information on the angular distribution in the geometrical
optics limit of high frequency. A special case of the geometrical optics analysis
requires special considerations—that in which one looks at radiation scattered
straight back toward the source. When close up, the observer will see a whole series
of rings of brightness corresponding to photons that have made halfa loop, one and
a half loops, two and a halfloops, and so on, around the black hole. However, Mash-
hoon (1973a, 1974) showed that for the ideal case of the 180° observer, like the source,
removed to infinity, the contributions to the back scattered amplitude from the several
parts of the several rings all add together destructively and one gets zero back
scattering.

In the opposite limiting case of low frequency and long wavelength, the Rayleigh
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analysis of scattering of light by a small particle invites us to consider the scattering
cross-section as proportional to the fourth power of the frequency and the square
of the static polarizability. What is the polarizability of a black hole? Or is this quan-
tity zero? In that event one would expect to have to determine the next relevant co-
efficient beyond the static polarizability in an expansion of the radiation moment
in powers of the frequency. Or is the polarizability of a black hole even a well-defined
quantity, when due account is taken of the slow fall-off of the gravitational influence
at great distances? Much is to be found on the response of a black hole to static
electric fields in the analyses of Cohen and Wald (1971) and Hanni and Ruffini
(1973); but to answer these questions about polarizability and scattering would seem
to require an additional investigation.

The reports that we have heard at this conference of new analytical methods and
new computer approaches increases our assurance that we will soon know enor-
mously more than we do today about the scattering power of black holes of a variety
of types and for a variety of radiations for the whole range of frequencies and angles.

3.4. “Activity”: tidal kick

The transfer of energy from a rotating black hole to its surroundings, otherwise
known as “activity”, is not limited to superradiance. Transfer of energy by the Pen-
rose—Christodoulou process (Penrose, 1960; Christodoulou, 1970) was the original
example of activity and remains an instructive mechanism. In its extreme form, it
envisages the split up of an incoming mass into two fragments propelled apart at
substantial velocity, one going into a “positive root state” of negative energy (Fig. 2)
(“indebtedness” or “due-bill” state) from which it is captured into the black hole
thereby decreasing the total mass energy of the black hole. The other fragment flies
off to infinity with a greater content of mass-energy than the incoming object brought
with it in the first place.

Fascinating as the Penrose—Christodoulou “due-bill” process is as a matter of
principle, does it have any significant physical application? One can imagine the
decay of an incoming elementary particle so well timed and so energetic that the
particle flies apart at the right place and in the right direction. However no one sees
the slightest prospect of a real astrophysical mechanism that would lead to any
significant number of such carefully tailored elementary particle transformations.
Nobody has ever come up with a process of other than elementary particle origin
that would drive apart two fragments at a speed that is a substantial fraction of the
speed of light, yet it has been pointed out more than once (Bardean, Press, and
Teukolsky, 1972; Starobinsky and Churilov, 1973; Wald, 1974) that it is necessary
and sufficient to have a separation velocity of half the speed of light or greater to
make the “due-bill” process work in its extreme form (rest plus kinetic energy out
greater than rest plus kinetic energy in).
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Do the jets shot out in opposite directions from quasistellar objects signal the
existence of a new and exciting process that would meet this v > 0/2 criterion for
the “due-bill” process? The two centers of radio-emission at the ends of the two jets
are known to move apart with a substantial fraction of the velocity of light. More-
over, Blandford and Rees (1974, 1975) have given a perfectly straightforward astro-
physical explanation for the jet ejection process. They consider relativistic plasma
generated in an active galactic nucleus. They envisage this plasma as confined by

a surrounding cloud of gas. This cloud has some rotation. By reason of this rotation

it is thinner at the poles than elsewhere. In these two domains of lowered tamping
the plasma pushes its way through the confining gas by the much-studied “snow-

plow” mechanism. The plasma emerges in “twin-exhaust” jets. They have relativistic

velocity. This twin-exhaust process is remarkable in the magnitude of the velocities
it imparts and the masses it propels (IOSMO to 1010MQ). It can supply enough
velocity for the “due-bill” mechanism, but in two other respects it appears unworkable:

1. The twin-exhaust leaves behind the bulk of the mass of galactic-nucleus-plus-
confining gas. In this respect it gives something far short of the proper two-body
explosion that was envisaged by Penrose and Christodoulou.

2. A galactic scale of distances marks the separation of the two blobs of matter
emerging in the double exhaust; yet this gigantic machine has to fit into the close
neighborhood, the ergosphere, of a rotating black hole. Such a black hole would
have to be enormous in size (1051yr or 1023cm or more) and preposterous in mass
(1023cm or 1051g or 1018M® or more) to accommodate the twin-exhaust machine.
This is not the way to make the due-bill process astrophysically relevant!

To make break-up in the ergosphere of a black hole astrophysically relevant, it
would seem necessary to give up the “all or nothing” philosophy. It is not required
that one should gain everything in order to gain something It is not required that
the rest plus kinetic energy of what goes out should exceed the rest plus kinetic energy
of what goes in. It is enough to impart astrophysical interest to the process that the
kinetic energy of what goes out should exceed by a good margin the kinetic energy
of what goes in. Moreover, for this gain to occur, it is not at all required that the two
fragments separate with a velocity equal to any substantial fraction of the speed of
light, nor is it even necessary for the fragment left behind to go into a state which
has negative energy as judged by the common market standard of energy as measured
at infinity. Neither is it necessary to invent a mechanism to drive the fragments apart.
One already exists; tidal disruption (Wheeler, 1971a; Mashhoon, 1971, 1973b, 1975).

It might at first sight seem that the velocity of separation brought about by tidal
disruption is too small to bring about ejection of a fragment with any substantial
velocity. This would certainly be an appropriate assessment of the situation if one
depended on the Penrose-Christodoulou mechanism in its extreme form for pro-
pulsion. However, in actuality, one depends neither on the due-bill mechanism nor
on being inside the ergosphere nor even upon having a black hole. By way of illustra-
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tion it is enough to recall the familiar example ofa spaceship that swoops in hyperbolicorbits with velocity V close to a planet and blows apart into two modules withseparation velocity v. The gain in kinetic energy-per-unit-of-mass of the emergentmodule is of the order Vv and can be very big even when u itself is modest. Of course,either V or v or both must be relativistic if the module is to emerge relativistic (Wald,1974); the law of conservation of energy is not violated. The gain of the one fragmentcomes primarily at the expense of the energy of the residual module, which does notretain enough velocity to escape.

Wide though the scope is of this familiar planetary “kick process” it clearly operatesat its best when the speed V at closest approach is maximal; that is, as close to thespeed of light as one can arrange. No better way to achieve such velocities has everbeen proposed than entry of the incoming object into an orbit that takes it in a closeloop around a black hole. The conditions achieved are still more extreme when theblack hole is rotating at the Kerr maximal rate or close to it, for then, with the ap-propriate direction of the incoming orbit, the object acquires a substantial additionalincrement in the effective velocity V from the frame-dragging. The only additionalrequirement is breakup in the most favorable direction. Mashhoon’s calculations
on the total deformation of a rotating star falling into the ergosphere of a sufficientlylarge black hole show that this directionality does not have to be engineered. It can
come about automatically. In an appreciable fraction of all infall scenarios, thecalculated kinetic energy imparted in the form of increasing tidal deformation would
suggest velocities of ejection (not yet calculated!) of hundreds of km/sec.

3.5. White holes

At a meeting, less than a year ago (International Astronomical Union Symposium
No. 64, Warsaw, September 1973; DeWitt-Morette, 1974) Zel’dovich marshalledthe long known arguments against the existence of any such object as a “white hole”
and pointed out that any such object, for example, one of solar mass, even if formed
in the primordial big bang, will be expected to break up at a time of the order of
10— 5 sec. At the present conference, Eardley has given us a new reason to drop the
idea of a “white hole” and with it the word itself. His considerations focus on the
energy that would be transported out of such an object if it existed and on the drastic
modification that would be produced by this energy flow in the originally presupposed
geometry.

This review of some of the aspectsof black hole physics including X—ray signature,
“activity” in general and superradiance in particular, “conversion” of gravitational
radiation into electromagnetic radiation, simple scattering, and “tidal kick”, is
enough to suggest that 90°/0 of the detailed work of analysis of this physics, in all
its ramifications, still lies ahead of us—a reminder, if one were needed, of the exciting
future of this topic.
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4. STATISTICS

A review by Professor Ehlers of progress in relativistic statistical mechanics, thermo-
dynamics, and continuum mechanics recalls anew how successful and how com-
prehensive are the well-established principles of these long-cultivated fields, even

under relativistic conditions. We received a fresh impression of the strength of the

principles of statistical mechanics and the law of increase of entropy with time.

Nevertheless the foundation for this “onesidedness in time” remains to us as mys-
terious as ever. A wireless antenna loses energy. An atom drops from a higher state
to a lower state. A star pours out radiation. A fast electron that is deviated sends out
an electromagnetic wave and suffers a loss of energy. Heat flows from a hot body to
a cold body. Biological reproduction proceeds forward in time. Memory reaches
backward in time. Moreover, nowhere that we look do we see the arrow of time

reversed. The onesidedness of time is, so far as we can tell, cosmological in its scope.

This circumstance, far from explaining the onesidedness of statistics, has in the

minds of many colleagues even raised the question whether entropy will forever

continue to increase. Yes, today the arrow of time points to the future; but also today,

the universe is expanding. If Einstein is right and the universe is closed, there will
come a time, general relativity tells us, when the universe will stop expanding and

start contracting. Will the arrow of statistical time (as contrasted to the continuous

advance of dynamical time) then turn around and point to the past? Will entropy
then decrease? Stars sop up radiation? All who are then alive have a sense of time
opposite to our own? In this event, far from seeing the universe contracting, they
will see it expanding and see entropy increasing (Wheeler, 1962; Gold, 1967; Davies,

1974).
It is difficult to name a topic of principle in physics on which views are more

divided than on this: Does the statistical arrow of time always point the same way?

Or does a moment come of “dead center” or of “turning of the tide” when this arrow
reverses sense? The liveliness of the issue is perhaps best shown by the fact it is not
lively. Some respected colleagues who suppose entropy forever to increase find

the idea of a turning of the tide impossible to consider let alone accept. Other re-
spected colleagues regard the concept of a tie between statistics and cosmology as
so natural that they find it equally impossible to contemplate any other foundation

for the arrow of time.
Happily there are two signs that the question of a cosmological reverse in the

arrow of time is passing from the domain of opinion to the domain of science. One
is the paper of W. J. Cocke (1967) on the mathematical foundations and logical self—
consistency of “double-ended statistics”. The other is the measurement of radiation

reaction carried out by Partridge (1973) and subsequently analyzed by Davies
(1974).
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The idea is simple behind the Partridge experiment and most other proposed
experiments to look for a premonitory evidence for a turn-around in the arrow of
time. The exponential decay with time of a temperature difference or the population
of atoms in an excited state or number of uranium nuclei that have not yet undergone
decay is replaced according to the calculation of Cocke by a hyperbolic cosine.
The minimum in the number occurs at the time of “turning of the tide”. The charac-
teristic time scale for the turn-around from exponential decay to exponential in-
crease is governed in the highly idealized and necessarily simplified model of Cocke
by the characteristic time of the single elementary process envisaged in his analysis.
For a process of long characteristic time scale, the calculated departure from the
normally assumed simple exponential decay shows up long before the minimum.
To search for this departure or to set an upper limit on it is the objective.

Not radioactivity but radiation damping is the process on which Partridge
focused attention. In effect, he ran a telescope backward. He put a source of radiation
at the focus and measured the power consumption. He found the drain of radiation
reaction to be the same within a fraction of a percent whether he directed the telescope
at a nearby absorber or at the darkness of space. Light travelling out into space,
simple estimates indicate, will go several 1010 years or more before it is absorbed.
At that time, according to Einstein’s picture of a closed universe, the universe will
be in its contracting phase. It is often reasoned that damping here and now depends
on the back reaction of the absorber there and then. On this View one might suppose
that a reversal in the statistics at the time of absorption would alter the force of re-
action observed today from today’s standard value. This expectation is contrary
to what Partridge observed. A closer examination (Davies, 1974, based on Wheeler
and Feynman, 1945) shows that no alteration would be expected unless each atom
of the source could see out into the emptiness of space both forward and backward,
more after the fashion of something like a bazooka than a traditional telescope.
This two-way radiation experiment is yet to be done. Also to be done is any real
calculation of what is to be expected on the basis of double-ended statistics, either
in this experiment or in observations (Dicke and Peebles, 1962) comparing the ef-
fective lifetime for the same decay processes several 109 years in the past.

In brief, the cosmological domain of statistics confronts us with fascinating and
perplexing issues. It presents us with a deep question of principle. It calls for new
observations. It demands penetrating theoretical analysis to plan decisive measure-
ments. It is virgin territory.

5. COSMOLOGY

Matzner’s report gave an impressive overview of many of the chief results of cos-
mology, both observational and theoretical, as we see them today. It ranged from
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the primordial cosmic fire ball radiation and the “ring of fire” or bright halo that
one might expect to see in the otherwise isotropic (Boynton and Partridge, 1973)
distribution of this radiation on some models of cosmology (unpublished 1970

lecture of Matzner and other references given in the report of Matzner; see also Ryan
and Shepley, 1974; Ellis and King, 1974) to the age-old problem (Peebles, 1971,

1974a) what primordial pattern is required in the original disturbance in density
and flow of matter to account for the distribution of galaxies as we see it today (Peebles

and Hauser, 1974; Peebles, 1974b,c; Peebles and Groth, 1975); and reaching from

the formation of the elements (Fowler and Hoyle, 1964; Wagoner, 1973) to the ques-

tion whether the universe is open or closed (Gott, Gunn, Schramm, and Tinsley,

1974).
Is the universe open or closed? On no central issue of cosmology is there greater

divergence of evidence today. Einstein’s philosophical arguments speak for closure.
An appreciable body of astrophysical evidence speaks against it.

To determine the so-called deceleration parameter go from source counts is the
goal of some of the greatest and most skilful observers of our times. This important
measurement nevertheless requires such care in interpretation, demands so many
corrections, and is afflicted with such uncertainties that the final number still today
leaves the door open to either cosmology.

The quickest way to see that the expansion may be slowing down is still the most
elementary. One has only to compare the actual time back to the start of the expan-
sion, a time of the order of 10 x 109 years, as judged from the rate of evolution of
stars and clusters of stars, with the apparent, or extrapolated, or Hubble time of
~20 >< 109 years. This is the time it would have taken galaxies to get to their present
separations from us, moving with their present separation velocities, with no allowance
for the greater velocity in times past. Of course, considerable uncertainties attend
both numbers, uncertainties of the order of 30 percent or, conceivably, even more.
Even so, it is difficult to find evidence more impressive anywhere else in cosmology
for the predicted slowing down ofthe expansion.

If to fix ideas we take the two numbers, 10 x 109 years and 20 x 109 years, as
100 percent accurate and assume a homogeneous isotropic spherical universe and
neglect the pressure and energy content of radiation in comparison to the mass
energy of inchoate material (“dust”) then Einstein’s theory straightforwardly gives
all the other illustrative numbers of Table 2. The 30-fold discrepancy between the
density of the universe today as called for by these calculations and the density
estimated by Oort (1958) gives rise to the well-known “mystery of the missing mass”
to which Matzner has already alluded. Of all the evidence for a low density cited by
Gott, Gunn, Schramm, and Tinsley (1974) and by Gunn and Oke (1975), none is
more impressive than the abundance of primordial deuterium. The sensitivity of the
deuterium abundance to density arises as we know from the dependence of the ex-
pansion rate on density and from the fact that only a few minutes are required for
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TABLE 2
Major Features of the Universe According to Einstein’s
Theory, as Normalized by Two Key Astrophysical Data,
Each believed Uncertain by an Amount of the Order of
30%: (1) the Actual Time, ~10 x 109 Yr, Back to the
Start of the Expansion, as Determined From the Evolution
of the Stars and the Elements. and (2) the “Hubble Time”,
or Time Linearly Extrapolated back to the Start of the
Expansion, ~20 x 109 Yr, that is, the Time Needed for
Galaxies to Reach Their Present Distances if They Had
Always Been Receding From Us with Their Present

Velocities (Adapted from MTW, 1973)

Illustrative values all derived from

Time from start to now 10 x 109 yr
Hubble time now 20 x 109 yr

. km /secHubble expansron rate now 49.0
megaparsec

Rate of increase of radius now 0.66 lyr/yr
Radius now 13.19 x 1091yr
Radius at maximum 18.94 x 1091yr
Time, start to end 59.52 x 109 yr
Density now 14.8 X 10—30 g/cm3
Amount of matter 5.68 x 1056 g
Equivalent number of baryons 3.39 x 1080

primordial neutrons to decay to protons. Unhappily less satisfactory than this theoret-
ical side of the story is the observational evidence. Determinations of deuterium
abundance are made by looking at the absorption of light in interstellar space on
its way from a star to the telescope. Only a few such determinations have been made.
No one knows how representative are the samples of gas intervening nor how much
they have been altered between primordial rim es and today by cosmic ray impacts
and contaminated by ejecta from stars and supernovae.

New light on missing mass comes from the recent work of Ostriker and Peebles
(1973) and Ostriker, Peebles, and Yahil (1974). They give arguments from galactic
stability that the mass of the typical galaxy must be of the order of 3 to 20 times as
great as one has previously estimated They give reasons to believe that this matter
is in the form of stars of modest mass and very low luminosity. Happily for the subject,
the direct observational search for this “halo” is now underway. It is difficult to
name any single issue in all of astrophysics which draws together a wider variety
of important investigations than those going on today concerning in one way or
another the mystery of the missing mass.
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It has often been suggested that one should make a direct geometrical determina-

tion of the curvature of space in the large. In this way, the hope has been expressed,

one could find out whether the universe is closed or open even prior to a reliable
determination of the average mass density of the universe. More than one calcula-

tion has been made and reported (Misner, Thorne, and Wheeler, 1973) ofthe apparent

angular diameter of an object of standard dimensions (if there be any such) as a

function of distance (as defined by red shift). In Euclidean space, a “standard” object

has an apparent angular diameter which decreases in inverse proportion to distance.

However, when the object is far enough away in an ideal spherical space, it is magni-

fied by a kind of lens effect. Then the apparent angular diameter, rather than de-

creasing, increases with distance. Moreover, the double radio sources associated

with quasistellar objects offer a conspicuous “ruler”. If anything, the length of this

“ruler” will be shortened in early double radio sources as compared to more recent

ones by the greater density at early times of the matter through which the “twin

exhausts” (Blandford and Rees, 1974, 1975) have to plough their way. Thus if double

radio sources of a sufficiently great red shift were to begin to show an increase in

apparent angular diameter, one could hardly do anything but regard this effect as

evidence for the predicted lens effect.
A closer consideration shows that the situation is by no means as simple as would

be indicated by these elementary considerations. It was already pointed out by

Zel’dovich (1964) and by Dashevsky and Zel’dovich (1964) (references to this and

the subsequent literature in Press and Gunn (1973)) that the clustering ofmatter into

galaxies, deviation from uniformity unimportant for the question of openness
or closure, is vitally important for the focusing process. A spray of light rays that
starts at a point, and spreads out as it goes, continues to spread out as it travels through

matter-free interstellar space, even though the universe itself is contracting. Nothing
like the elementary focusing effect takes place. We are indebted to R. C. Roeder

in his report at this conference for stressing the difficulties posed by this circum-

stance for any proposed cosmological test of closure, via measurement of apparent

angular diameters as a function of red shift. However, if one hope fades, another

brightens. Press and Gunn (1973) show that a cosmologically significant density of

condensed objects has high probability to cause a distant point source to be gravita-
tionally imaged into two roughly equal images—an effect with testable consequences.

Nothing is more entrancing to the viewer of scenery than the moment when the

mist dissipates and he can see whether the hidden feature was a mountain or a lake.
Nothing is more tantalizing today than the mist, here and there thinning out but
not yet dissipated, that conceals whether the density of space has the cosmological

value or is far less; and whether the universe is closed or is open.

However much these two issues belong to science and however important general

relativity is in dealing with them, one cannot forget that this science and tool took
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its birth in philosophy. On this account, I will be remiss ifI do not quote what Einstein
himself (1950, pp. 107—108) says about closure,

“Thus we may present the following arguments against the conception of a space-
infinite, and for the conception of a space-bounded, universe: (1) From the
standpoint of the theory of relativity, the condition for a closed surface is very
much simpler than the corresponding boundary condition at infinity of the
quasi-Euclidean structure of the universe. (2) The idea that Mach expressed,
that inertia depends upon the mutual action of bodies, is contained, to a first
approximation, in the equations of the theory of relativity; . .. But this idea of
Mach’s corresponds only to a finite universe, bounded in space, and not to a
quasi-Euclidean infinite universe.”

In another place Einstein (1934, p. 52) states,
“In my opinion the general theory of relativity can only solve this problem [of
inertia, for a recent survey of which see for example MTW (1973), §21.12]
satisfactorily if it regards the world as spatially self-enclosed.”

How are we to look at Einstein’s arguments today? One View is “empirical”:
“These are outdated considerations of purely historical interest. One should pay
attention to the field equations alone. One should forget everything else as ‘theology’.
An open universe is just as conceivable as a closed universe. Only observation can
decide”.

Another view takes Einstein’s considereations quite seriously: “It is only a matter
of historical accident that the demand for closure was not stated in an equation as
mathematical in appearance as the field equation itself”. On this view, the condition
for closure is essential in formulating the “initial value data”; and the “initial value
data” are essential in formulating what general relativity is all about. There are al—
ternatives to closure as part of the formulation of the initial value data but no al-
ternative so simple as closure. It is one alternative to postulate asymptotic flatness
at infinity. It is another alternative to postulate more particularistic data on some
closed 2—surface that bounds the 3-geometry embraced in the “initial value prob-
lem”. What kind of data should be given on such a 2-surface? Mathematical tools we
have on hand to try to answer such a question, but no slightest hint of any physical
consideration that would make this a reasonable route to follow. And asymptotic
flatness (see, for example, the “heirarchical cosmology” of Alfvén and Klein (1962)
and De Vaucouleurs (1971)) makes double difficulties. First, it takes the geometry
of faraway space out of physics and makes it part of theology, to be discovered by
reading Euclid’s bible. It puts us back to the days before Riemann, days when, as
Einstein (1934, p. 68) puts it,

. . space was still, for them [physicists], a rigid, homogeneous something, sus-
ceptible of no change or conditions. Only the genius of Riemann, solitary and
uncomprehended, had already won its way by the middle of the last century to
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a new conception of space, in which space was deprived of its rigidity, and in
which its power to take part in physical events was recognized as possible.”

Why accept this advance for near space and undo it for faraway space? Second,
“asymptotic flatness” leaves one lost. How can anyone even define the idea of asymp-
totic flatness? According to the most elementary considerations of quantum theory

there is no such thing as the geometry of space. Geometry is not deterministic, it

is probabilistic. There is a probability amplitude 114(3)?) for this, that, and the other
3-geometry. If a given 3—geometry occurs with appreciable probability amplitude
so does any other 3—geometry that differs from the first by an amount of the order

Ag ~ L*/L in a region of order L. Thus, no matter how “far away” one goes, one can

never arrive at a place where the fluctuations have less than standard strength.
Difficult as it is under these circumstances to define “far away”, it is even more diffi-

cult to define “asymptotic flatness”. No one has ever proposed a reasonable defini-
tion of “average geometry” such as would seem to be a prerequisite for defining

asymptotic flatness. It would be contrary to the whole concept of general relativity

as well as to its mathematical methodology, to try to “step out of the manifold”

to do any averaging. Under these circumstances, it is difficult not to rate the concept
of “asymptotic flatness” as a “concept without a concept”; and difficult to see where
else one can turn for a satisfactorily sharp boundary condition compatible with

quantum fluctuations, except to closure.
Other cosmological issues besides closure attracted attention in this conference,

among them homogeneity. Liang discussed the dynamical evolution of primordial
inhomogeneities in a model universe. We have only to look at the collapse of a star
to a black hole to see one ultimate in this evolution; but Liang considers the problem
more generally. King reported on considerations of his own and earlier considera-
tions by Matzrner, and by Ellis (1973, 1974) and by Ellis and King (1974), summarized
in the question, “Was the big bang a whimper?”. The Taub—Misner transition from
the closed Friedmann-like Taub geometry to the open NUT geometry has long been
known (Misner and Taub, 1968) to take place in a continuous way. However, its
continuity is achieved only at the cost of having certain classes of world lines spiral
round the universe in the final stages of its collapse to tighter and tighter packing.
Thus the presence of the slightest “real matter” builds up an ever-increasing density
(in this connection, see also Penrose (1973)). As it goes to infinity, this density destroys
the relevance of the model with which one started. One returns to something closer
to a Friedmann cosmology with a Friedmann singularity. Friedmann singularity;
Misner—Taub or whimper beginning or ending; singularity characterized by the
general mixmaster oscillation, whose phase, amplitude and orientation of principal
axes varies from point to point (Lifshitz and Khalatnikov, 1963a,b, 1970; Belinsky
and Khalatnikov, 1969a, b, 1970; Khalatnikov and Lifshitz, 1970; Belinsky,
Khalatnikov and Lifshitz, 1970; Belinsky, Lifshitz, and Khalatnikov, 1971; see also
Eardley, Liang and Sach, 1972 for relevant considerations); analytic behavior of
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singularities (Schmidt. 1971. 1974): causal analysis of singularities lliau'king and
Ellis. 1.13}: v» hen will all these points of view he assimilated into a larger. unified.
picture of the en liesi and the latest phases oicosniology‘.’ Not until then. and perhaps
not even then. we cut believe. will we be able to state with confidence which kind
of cosmological singularity makes physical sense and which does not.

5.1. Is the universe Copernican?

Is the universe Copernican? Are conditions in the Vicinity of this galaxy quite similar
to those in galaxies elsewhere in the universe? Can we exclude the possibility that
densities, for example, are several-fold lower—or several-fold higher—in our cluster
of galaxies than in the average of galaxies at greater distances? This is a cosmological
issue of great interest; but on it, unhappily, the evidence is too scanty to permit a
reliable conclusion today. The isotropy of the distribution of galaxies as seen from
our own vantage point is well known and carefully documented (Peebles and Hauser,
1974; Peebles, 1974b,c; Peebles and Groth, 1975). However, to see that the universe
is isotropic from our vantage point by no means allows one to conclude that the
universe is homogeneous. One has to add, and one is accustomed to adding, the
Copernican assumption that things would not look very different from any other
vantage point of the universe; only then does it follow that the universe is homo-
geneous; thus

isotropy Copernican) isotropy >
< here ) + (assumption 9(everywhere

( isotropy > _) < homo- > (24)
everywhere geneity

It is disturbing to be reminded how much of astrophysics depends on pure assump-
tion—the Copernican assumption. The Copernican assumption as it is understood
today is very different from what was given to us by the great pioneer whose 500th
birthday we celebrated last year. Then, it took man out of the center of the universe
and installed the sun at the center of the solar system. Today it rules out anything
special about the physics in this part of the universe. One check on this point has been
carried through to marvelous precision; Bahcall and Schmidt (1967) conclude that
the fine structure constant for galaxies 2 X 109 light years away (2 = 0.17 to 0.26)
agrees with the fine structure constant here to three parts in 103 or better. But the
Copernican assumption as commonly accepted today carried with it certain over-
tones and assumptions which are such common property that they are not always
explicity stated. Among these is the idea that the universe is a gigantic machine and
life on this planet of this solar system of this Milky Way is, by comparison, an accident
and an unimportant accident at that. From this assumption it then follows that there
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is nothing special about this galaxy or this galactic cluster. From saying that this
is no special place, it is a small step to say that isotropy of the heavens as seen from
here implies isotropy of the universe as seen from any other location—and hence
the universe on the scale in question must be homogeneous.

Life, instead of being accidental, is central according to a very different view of

the universe which goes back to the Greeks and has received renewed attention in
our own time. In the thought of Paramenides of Elea (~ 500 BC), “What is, ..., is

identical with the thought that recognizes it”; or in the later formulation of Berkeley
(ca. 1710), “No object exists apart from mind”; or, as tentatively restated for the
purposes ofa recent reanalysis (Patton and Wheeler, 1975), “[We look for] a guiding

principle of ‘wiring together’ past, present, and future that does not even let the uni-
verse come into being unless and until the blind accidents of evolution are guaranteed

to produce, for some non-zero stretch of time in its history-to-be, the consciousness,

and consciousness of consciousness, and communicating community, that will

give meaning to that universe from start to finish.” It has no sense even to talk of
a universe, Dicke (1961) in effect argues, unless there is a mind to be aware of it. But

to have a mind requires life. And to have life requires heavy elements. To produce

heavy elements, in turn, requires thermonuclear combustion. Thermonuclear com-

bustion demands ~109 years of cooking time in the interior of a star. But to have a

universe that lives ~109 years in time, according to general relativity, requires a
universe with ~ 109 light years of space. So why, on this view, is the universe as big
as it is? Because we are here!

The ridiculous disproportion between the means employed, the universe, and the
end achieved, life and mind in one place in that universe, is ridiculous, on this view,
only because attention is focused on distance and on volume instead of the relevant
parameter, time. The important point is time enough for the evolution of conscious-
ness. One goes back again to time as a central point when one speaks of improving
the “cost effectiveness” of the process. Look at the waste: ~ 1011 stars per galaxy,
and ~ 1011 galaxies in the universe and all that matter to permit the development of
consciousness of that universe on one planet! Institute some savings! Don’t chop

the project too drastically. Cut down the amount of matter and the size of the universe,

not to the amount required for one star, but to the amount required for one galaxy,
or ~ 1011 stars. Why is not that still more than enough? In amount of matter, yes!

In number of stars, yes! But in amount of time, no! The total time from big bang

to collapse is cut down from 101 1 years to 1 year. There is not time enough to produce
even one star let alone a planet or life or mind. The purported improvement in the
“cost effectiveness” of the program has ended up with the collapse of the program.
From this point of view it is far from obvious that there is any extravagance in the
scale of the universe.

It would be out of place here even to mention these cosmogonic issues if they did

not bear on the cosmologic issue of homogeneity. Homogeneity would not necessarily
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seem natural if the sole requirement is that the universe give rise to consciousness,
and consciousness of consciousness and communication and meaning, in some
limited place and for some limited time in its history-to-be. More probable would
seem a distribution of density which, by favoring evolution in one region, reduced
the “cost” of the system as a whole. It is not necessary to know how to define “cost”
nor how to calculate it in order to raise this question. Nor is it necessary to raise this
question in order to agree that the Copernican assumption of “no special location
for us” as it is employed in cosmology is, so far as density is concerned, very far in-
deed from having been verified or even tested. We can hope that advances in astro-
physics will suggest some observational means to get at this fascinating question.

5.2. How do non-communicating domains of the universe communicate?

Turn from the question of homogeneity of density to the identity of physical laws
in the various parts of the universe for another cosmological issue. In light that has
undergone a red shift of

Areeeption lemission= —— = 3 252 2L ( )
emission

on its way to us from a distant galaxy, we see evidence for the same atoms and the
same spectrum as well as the same fine structure constant that we have on earth.
Yet on the basis (Patton and Wheeler, 1975) of the illustrative cosmological parameters
of Table 2, the light received now, 10 x 109 years after the big bang, was given off
by that galaxy only 1 x 109 years after the big bang. At that time it had not yet
received a single signal from us. It was destined to have to wait another 1 x 109
years (2 X 109 years after the big bang) before it could get this first information from
us about what the laws and constants of physics are here. How did it find out? On
this great question, we are still in the dark. Misner (1968,1969) made a valiant at-
tempt to provide an explanation with his picture of the primordial “Mixmaster
oscillations” of the universe which provided opportunity for signals to travel all
around at the very earliest days. That picture has had to be abandoned (Doroshkevich,
Lukash, and Novikov, 1971; Chitre, 1972) and we have nothing to take its place
nor any suggestion of any replacement at our conference.

5.3. How do galaxies form?

What initiates galaxy formation? On few puzzles has the intensity of effort risen
more strikingly. Few puzzles have so long continued to defy explanation. Neither
in the observational data on the distribution of galaxies nor in the theory of gravita-
tional agglomeration is there any evidence for a well defined length with the di-
mensions of a galaxy, a cluster of galaxies, or a star cluster (Peebles, 1974a,b). What
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then governs the size of these large scale features of the universe? It is no explanation
to “feed in by hand” some assumed initial spectrum of perturbations in density and
in flow. This circumstance is a renewed reminder that physics deals with laws of
motion and initial conditions. We have gone far toward understanding the laws.
We know no more than Laplace what sets the initial conditions.

Cosmology is laced with great issues, but also lighted up with great achievements,
ranging from quasistellar objects to neutron stars and from radio sources to Cyg X-l.
No report at this conference does more than Matzner’s to convince one that physical
cosmology is a great and growing subject, the present scope and solidity of which
were beyond imagination 25 years ago. The splendid present-day orchestration of
new technology, new observing techniques, new young talent, and new powers of
analysis surely promises even greater advances in the coming decades.

6. TESTS OF RELATIVITY

Nowhere has there been a greater increase in precision of observational tests of
general relativity than in the bending of “light” by the sun, thanks especially to
radiowave interferometry. Nevertheless, we may have still to wait for several more
years of this ongoing enterprise of successive improvements before we achieve the
better than 1 percent precision that we all hope for so much to resolve questions
now unresolved.

Other ways to test theories of gravitation in the solar system have been reported
here by Richard. We have also heard at this conference new proposals to improve
traditional tests and proposals for new kinds of tests. Among these are radar search
for the Lense—Thirring rotation (Jaffe, Miller, and Shapiro), search for the second-
order gravitational red shift (Jaffe), search for the gravitational spin-spin interaction
(Jaffe), the influence of earth structure on the Lense-Thirring precession of a gyro-
scope (Teyssandier), and ideas about interaction of gravitation with superconducting
matter (Halpern).

If we look upon the bending of “light” by the sun as a measurement whose pre-
cision is just at present increasing dramatically, we also have to note that the sig-
nificance of that measurement is subject to real question because of the possibility
that the sun is oblate (Dicke, 1964). On this account, great interest attaches to the
independent method of getting at the solar oblateness recorded at this conference
by Hill. In whatever way the disagreement is ultimately resolved between the two
very different results for the flattening of the sun, it is clear that the work of Dicke
and Hill promises to open a new chapter in our understanding of the sun. Is it too
much to hope that out of this work we will someday come to understand why the
high-energy, temperature-sensitive, fraction of the neutrinos from the sun carries
a so much lower flux than we had previously expected (Davis, 1972; Bahcall and
Sears, 1972; Hill, McCullen, Brown, and Stebbins, 1975)?
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7. FROM EXACT SOLUTIONS TO ALL SOLUTIONS?

Kinnersley’s comprehensive and systematic survey of what we know about exact
solutions of the equations of general relativity invites the question whether there
does not exist some magic algorithm that will give all of the solutions of the vacuum
field equations. Why do I still have hope that such an algorithm will be discovered?
Did I not bet Rainer K. Sachs $5 at Les Houches in 1963 that by 1973 one would
know how to get all vacuum solutions? And did I not send a last minute cable to
Roger Penrose asking if he could see a way to save me? And in the end did I not have
to pay?

It may give some impression of the continuing allure of the hoped-for algorithm to
point to what success meant in the theory of minimal surfaces. There, as in general
relativity, the equation is nonlinear:

[I+<6z>2]822+[1+(6z>2]622 26262 622 _0 26
ax 0y2 6y 6x2 axayaxay" ( )

The solution proceeds as follows (Douglass, as summarized by Bers (1952); see also
Darboux, 1941): Take any real plane algebraic curve C in the (s, t) plane, 3 = 5(1)
and t = t0»), and construct the Abelian integrals

2x=Rejljffifi 0h)
1 — s2 _

y = Re 1 + ltds (27b)82

z=hffis am

Now treat 3 as a complex number, s = a + if}. Then the functions

x = x(oc, fl)

y=ymm
Z = 201,13) (28)

satisfy the original minimal surface equation.
The intrinsic simplicity of the geometry of a minimal surface does not show in

the non-linear partial differential equation (26), but does come through in the sim-
plicity of the final solution (27). Einstein’s equation is also nonlinear, but it expresses
even greater geometric simplicity (Cartan 1928, 1946; MTW, 1973). That this sim-
plicity shows up more conspicuously when we go from the realm of real numbers to
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the realm of complex numbers is becoming more and more apparent. In only a few
years we have progressed to seeing the Kerr solution derived from the Schwarzschild
solution by replacing the real mass m by the complex quantity m + ia, and from
there to the still more comprehensive picture summarized for us here by Newman.
We also have more and more results from Penrose (up-to-date summary in Penrose
(1975)) and his colleagues in the theory of twistors which suggest that some great
new insight lies around the corner. Are we indeed destined someday to have an auto-
matic way to construct all the solutions to Einstein’s vacuum field equation?

8. THE DYNAMICS OF GEOMETRY

Each passing year instructs us both how much we learn about physics from general
relativity, and how little. Physical law expresses itself through group theory and
symmetry; but group theory and symmetry hide the machinery beneath that physical
law. ,

The search for the most illuminating statement and derivation of Einstein’s field
equation did not end with his death. No statement, we know, shortens more the jump
from the classical theory to the quantum theory than the Hamilton—Jacobi formula-
tion. It deals with the simplest object that one can have, short of the wave function
itself: the phase of the wave function. For a particle moving in one dimension under
the influence of a potential V(x) with the specified energy E, the phase is

sew) = —Et + [[2m(E — V(x))]1/2dx, (29)
-0

Of course, this phase, like the wave itself, is spread all over (x, t) space. Not the slightest
resemblance of anything like the classical path is to be seen. For that, one considers
not one wave but the superposition of two waves of slightly different energies. The
two waves interfere destructively almost everywhere. The region of constructive
interference is marked by the equality.

SE06: 3) = SE+AE(xa 1‘) (30)

(condition to determine the world line x = x(t)); or, more compactly,

555(x, t)
6E

= 0. (31)

How this condition of “constructive interference” yields the full story of classical
motion is too well known to bear spelling out here. Neither is this the place to recall
in detail the analogous discussion of the condition of “constructive interference”
as applied (Gerlach, 1969) to determine the dynamics of geometry in all its fullness.
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It is enough to recall that the phase of any individual wave is expressed in the form:
S = 5((3)g) (32)

This phase is defined all over “superspace” (Wheeler, 1964, 1968; Fischer, 1970;
Bers, 1970; Wheeler, 1970; MTW, 1973), the infinite-dimensional manifold, each
point of which represents one spacelike 3-geometry (3)g_ Thus the whole story of the
dynamics of geometry of geometry follows from the simple Hamilton—Jacobi
equation satisfied by S (Peres, 1962),

_ (SS 55
g 1/2[%gpqgrs _ 9171-9115] {a + gl/Z(3)R : 0 (33)
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It is all very well to have the dynamics of geometry thus briefly epitomized; but
why this law and why this Hamilton—Jacobi equation? Why not some other law,
some other Hamilton—Jacobi equation? Deser and Goldberg have given us accounts
of many of the many ways in which we can look at the dynamics of geometry; but
we come back always in the end to the question, why this law, why not some other?
It provides only a partial answer to our question to turn back to Hilbert’s famous
paper (Hilbert, 1915). He derived electrodynamics and vacuum geometrodynamics
and the combined theory by postulating the simplest action principle that depends
on a 4-dimensional vector field,

A, (34)

or on a 4-dimensional metric field,
9,” (35)

or on the combination of the two. But why the simplest action principle? Why not
some one of the thousand and one alternative action principles that contain these
two fields in some other invariant combination? “Imbeddability” is the new and magic
and beautiful answer that Hojman, Kuchaf, and Teitelboim (1973) (see also Teitel-
boim (1973a,b) and Kuchaf (1973, 1974)) give to this old question. They invisage
a 3-vector field

WA, (and its conjugate momentum) (36)

or a 3-tensor field

‘3’n (and its conjugate momentum) (3 7)

or both (and their conjugate momenta). Whatever the dynamic law that governs
the evolution of these fields with time, as time is pushed forward from the spacelike
hypersurface 01 to the spacelike hypersurface 02 that law must give the same result
for the dynamic variables whether this hypersurface is pushed forward first more
rapidly on the “right” and then more rapidly on the “left”; or first more rapidly on
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The “history of deformation" indicated by the dashed hypersurface leads from initial-value hypersurface
01 to final-value hypersurface 02 So does the history indicated by the dotted hypersurfacesi The physics
on 02 resulting from a complete specification of the initial value data on 01 must be independent of the
history one chooses to integrate along in passing from a, to 02 via the Hamiltonian equations of motion
This heavy but simple requirement suffices to fix the form of the Hamiltonian both for the dynamics of
a vector field (giving Maxwell theory) and for the dynamics of the 3-geometry itself (giving Einstein’s

geometrodynamics) (Hojman. Kuchar, and Teitelboim, 1973).

the “left” and then more rapidly on the “right”. If the conditions obtained at 02
(by forward integration of the field equations) depended upon the choice of “history”
adopted in proceeding from 01 to 02, then the history of the fields could not be im-
bedded in any single space-time manifold. Imbeddability would be lost. No one has
ever seen a simpler or more compelling way to state the requirements that lead to
physics as we know it.

The “group” of deformations of a spacelike hypersurface provides the mathematical
framework for the physical considerations of Hojman, Kuchar, and Teitelboim.
This is in keeping with the spirit of physics as it has developed in our time. Whether
one is concerned with solids or elementary particles, with molecules or nuclei, one
finds that the simplest formulation of physical law is one that draws most directly
on group theoretic and symmetry considerations (see, e.g., Dyson, 1966; Michel,
1970, 1974).

Unhappily, it is also true that group theoretic and symmetry considerations
hide from View any sight of the underlying machinery (see, e.g., Dt’irr, 1969). The very
arguments of group theory that ascribe two, and only two, elastic constants to a
homogeneous isotropic medium, give not the faintest clue that these elastic constants
are to be found by adding the second derivatives of a multitude of very complicated
potential energy curves that describe 100 different atomic and molecular bonds.
Even more deeply hidden from View is the fantastic underlying simplicity of the solid:
A system of electrons and positively charged nuclei governed by Coulomb’s law
and Schrodinger’s equation and nothing more. Sakharov, following the analogy of
elasticity (Sakharov, 1967; developed more fully in Zel’dovich and Novikov (1971))
proposes to regard the constant of gravitation as measuring the “metric elasticity
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of space”, the resistance that space puts up to being bent again following the model
of the solid. He proposes to regard the source of this resistance to bending as the zero
point energy of particles and fields. However, can we not look in our mind’s eye
beyond Sakharov to a day when we shall see both geometry and particles as built
on something far simpler than either, call it “pregeometry” or call it what one will?

How shall we make progress into this unknown territory? Perhaps it is better to
ask how not to make progress! A hundred years of the study of elasticity revealed
nothing about atomic and molecular bonds. A hundred years ofstudy of the chemistry
of atoms and molecules revealed nothing of Schrédinger’s equation. The direction
of progress was not “down” but “up”, from Schrodinger’s equation to atomic and
molecular potential energy curves; and from these potentials to elasticity. The hundred
striking regularities of chemistry did not require for their explanation a hundred
laWS of physics. One was enough. Likewise 59 years of study of the dynamics of curved
space geometry has not explained the existence of particles; and 79 years of the study
ofparticles has not taught what underlies the structure of particles. Not from geometry
and particles to an understanding of “pregeometry” is the direction of progress,
if history is any guide, but from “pregeometry” to particles and geometry.

What kind of “structure” is one looking for when he speaks of pregeometry?
One View has it that we will work down from cells to molecules, from molecules

to atoms, from atoms to nuclei, from nuclei to elementary particles, from elementary
particles to partons or quarks, and so on, level after level, world Without end!
Another View thinks of this uncovering of layers of structure as bottoming out at
some finite nth level. On a third View, the layering of structure neither leads on forever
nor terminates but of necessity must lead back, by a kind of “Leibnitz logic loop”
to the observer himself, seen at last to be involved in an inescapable way in the very
structure of that which he observes.

Gravitational collapse, as evidenced in the big bang and in the collapse of a star
to a black hole and in the Einstein-Friedmann-predicted collapse of the universe
itself, is the crowning argument for the mutability of the physical world (Fig. 5).
Nothing argues more strongly than collapse against the existence of an iron frame-
work of laWs, structure, and constants that goes on from everlasting to everlasting.
And What is everlasting? Even the very ideas of spacetime and time have to be re-
garded, not as basic ideas but only as semi-classical approximations, we know, when
we turn from a classical description of the dynamics of geometry to the superspaoe
quantum description. “Before” and “after” make good sense in everyday discussions
but have to be rejected as meaningless terms in the legalistic quantum description
of what is going on in physics. As if this were not shock enough for our long estab-
lished ways of looking at the world, the quantum principle tells us that the observer
is more than an observer, he is a participator. In some strange sense this is a partic-
ipatory universe.

Much as we admire Einstein for what he did to give us the two overarching principles
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Figure 5
“Mutability”, Each tread of the staircase of physics registers a law (for example, the fixity ofnuclear charge
number and mass number). Each riser marks the transcendence of that law (nuclear transmutation in
this example), the imposition of conditions so extreme that that law no longer applies The condition
most extreme of all is gravitational collapse. There is no law of physics that has not required space and
time for its statement. With the complete collapse of space, the framework falls down for everything one

ever called a law (adapted from Wheeler (1973)).

of 20th century physics, relativity and quantum, we have had to abandon his view of
reality, “Physics is an attempt conceptually to grasp reality as it is thought inde-
pendently of its being observed”. In direct contrast to that View, Bohr teaches us
that an observation is only then complete when it can be communicated to another
in plain language; and Wigner (1973) tells us that, “No measurement is complete
until the result has entered the consciousness”. If the quantum principle has become
so much a part of our everyday technology that we have forgotten to be astounded
by it, we can always return to the words of Bohr, “If a man does not feel dizzy when
he first learns about the quantum of action, he has not understood a word”. We can
agree that we have not yet seen a point of View that makes clear the necessity of the
quantum principle in the construction of the world. Until we do, who can say that
he has grasped the first thing about it?

The mystery of collapse and the mystery of “participation” summarize the greatest
crisis that physics has ever faced. Once murmuring voices, they grow louder and



CONFERENCE SUMMARY 335

LAST 500 YEARS NEXT 500 YEARS
Figure 6

That the discoveries of the next 500 years will outweigh those of the last 500 years is suggested by nothing
so much as the magnitude of the great question that still confronts us, “How did the universe come into

being?”

louder in our ears. Soon, we can believe, they will unite to thrust an imperative upon
us: “Accept a drastically new View of man’s relation to the physical universe—or
understand nothing.”

We used to say, “No theory of particles that deals only with particles will ever
explain particles”. Today we say, “No theory of physics that deals only with physics
will ever explain physics”. Tomorrow, who know what young colleague, inspired by
this meeting and the problems we have taken up here, will explain to us the greatest
puzzle of all (Fig. 6), how this mysterious universe came into being.
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