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Abstract. We investigate tunneling of charged and magnetized Dirac particles from
a rotating dyonic Taub-NUT (TN) black hole (BH) called the Kerr-Newman-Kasuya-
Tub-NUT (KNKTN) BH endowed with electric as well as magnetic charges. We derive
the tunneling probability of outgoing charged particles by using the semiclassical WKB
approximation to the covariant Dirac equation and obtain the corresponding Hawking
temperature. The emission spectrum deviates from the purely thermal spectrum with
the leading term exactly the Boltzman factor, if energy conservation and the backre-
action of particles to the spacetime are considered. The results provides a quantum-
corrected radiation temperature depending on the BH background and the radiation
particles energy, angular momentum, and charges. The results are consistent with those
already available in literature.
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1. INTRODUCTION

Hawking’s discovery that a BH can radiate thermally (Hawking, 1974, 1975)
has attracted lots of physicists’ attention and many papers have appeared to deeply
discuss the quantum radiation of BHs via different methods (Damour and Ruffini,
1976; Hawking and Gibbons, 1977; Zhu et al., 1995; Jing, 2001; Wu and Cai, 2000).
Much interests have grown up in exploring quantum phenomenon of Hawking radia-
tion from BHs as a tunneling technique of emitting quantum particles. The tunneling
rate with the WKB approximation takes the form: Γ ∝ exp[−2ImI] with I the clas-
sical action of the trajectory. Therefore, it is important for this tunneling method to
calculate the imaginary part of the action. There are two universal methods to com-
pute particle’s action. The first one is the null geodesic method developed by Parikh
and Wilczek (PW) (Parikh and Wilczek, 2000; Parikh, 2004), following the work of
Kraus and Wilczek (Kraus and Wilczek, 1995), in which the imaginary part of the
action is regarded as the only contribution of the momentum pr of the emitted null
s-wave. The barrier is created by the outgoing particles themselves and a corrected
spectrum can be derived when self-gravitation of particles is taken into account. The
second tunneling method, called Hamilton-Jacobi (HJ) ansatz, is proposed by Srini-
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vasan and Padmanabhan (Srinivasan and Padmanabhan, 1999; Shankaret al., 2001)
and has been developed by Angheben et al. (Angheben et al., 2005), which suc-
cessfully derives the imaginary part of the action by solving the HJ equation. In this
method, the same conclusion as the first method can be drawn.

Kerner and Mann (Kerner and Mann, 2006) investigated quantum tunneling
methods for calculating temperatures of KN and TN BHs, using both the null-geodesic
and HJ methods. Subsequently, using the WKB approximation to the covariant Dirac
equation, Kerner and Mann (KM) developed the calculations of the tunneling pro-
cess for the spin-1/2 particle’s emission from nonrotating BHs (Kerner and Mann,
2008a) and investigated the Hawking temperature for the KN BH (Kerner and Mann,
2008b). This model has been extended to study the tunneling of charged and magne-
tized fermions from the RN (Li and Han, 2008) and KN-AdS (Zeng and Li, 2009a)
BHs with magnetic charges. HJ method and KM tunneling approach have also been
exploited in investigating tunneling of scalar and Dirac particles from the TN-AdS
BH (Zeng and Li, 2009b). There are some works of investigating the tunneling phe-
nomenon for different BHs (Sharif and Javed, 2010, 2012a,b,c, 2013a) (including
accelerating as well as rotating (Gillani et al., 2011; Gillani and Saifullah, 2011;
Rehman and Saifullah, 2011; Sharif and Javed, 2013b)) by employing the aforemen-
tioned methods.

My previous work, with my honorable supervisor during Ph.D.degree (Ali and
Sultana, 2013a), is a study of charged particles Hawking radiation via tunneling
of both horizons from the Reissner-Nordstrm-Taub-NUT (RNTN) black holes. All
these works are in agreement with Parikhs work and show no loss of information.
Also in (Ali and Sultana, 2013b) we calculate, following Zhou and Liu (Zhou and
Liu, 2008), the temperature of the inner horizon of the dyonic KNKTN-AdS black
hole, which is a rotating RNTN black hole in AdS space and prove the existence of
thermal characters of the inner horizon. Like as in the RNTN black hole case (Ali
and Sultana, 2013a), the inner horizon of the KNKTN-AdS black hole emits posi-
tive energy particles inside the inner horizon (towards the singularity) with a positive
temperature. In order to maintain a local energy balance, antiparticles with negative
energy are emitted away from the singularity through the inner horizon. This is a
process analogous to that takes place at the outer horizon according to the Hawking
effect at the outer horizon antiparticles go in and particles come out. The real particle
remains inside the inner horizon and finally meets with the singularity. But the an-
tiparticle enters the intermediate region between the horizons. Traveling across the
intermediate region this antiparticle finally comes out from the white hole horizon, if
the backscattering effects are neglected.

In this paper, I apply the KM tunneling approach to calculate emission rate of
charged and magnetized fermions from a rotating dyonic TN BH namely the KNK
BH generalized NUT or magnetic monopole parameter. This BH is a more general



3 Tunneling of Charged and Magnetized Fermions from a Rotating Dyonic TN BH 193

background to be investigated. Conservation of energy and the particles’ backreac-
tion lead to the same terminations as the previous works. The result can be treated
as tunneling radiation at a quantum corrected temperature, which is dependent on
not only the BH background, but also the tunneling particle’s energy, angular mo-
mentum, and charges. The interest in the possibility of dyonic BHs has grown since
magnetic monopoles have been predicted in various extensions of the standard model
of particle physics. The magnetic monopole hypothesis in general relativity was put
forward by Dirac (Dirac, 1948) relatively long ago. His ingenious suggestion of ex-
isting magnetic monopole in nature was neglected due to the failure to detect such
objects. In recent years, however, the development of gauge theories has shed new
light on it. The string theory (Mignemi, 1995) admits the existence of such objects.
By exhausting the energies related to rotation and charges, the KNKTN BH may re-
duce to the interesting TN BH, which plays an important role in the conceptional
development of general relativity and in the construction of brane solutions in string
theory and M-theory (Cherkis and Hashimoto, 2002; Clarkson et al., 2004a,b). Ac-
cording to Misner the TN spacetime has the interpretation of being a counter example
to almost anything (Misner, 1967). It has drawn a particular interest in recent years,
because it plays the role in furthering our understanding of the AdS/CFT correspon-
dence (Kerner and Mann, 2006; Hawking et al., 1999; Chamblin et al., 1999; Mann,
1999) and in this regard, the thermodynamics of various TN solutions has become
a subject of intense study. The Dirac field in TN background has been analyzed
(Comtet and Horvathy, 1995; Cotuaescu and Visinescu, 2001a,b). Of course, the ex-
istence of the closed time-like geodesics in the TN spacetime violates the causality
condition. Nevertheless, one can explore the half-closed time-like geodesics of Taub
area in the NUT area, so the naked singularity does exist. In the meantime, it admits
no angular velocity and no superradiation occurs at the event horizon. Hawking ra-
diation from the TN BH was found to agree with Parikh and Wilczek’s result (Chen
and Zu, 2008).

The paper is organized as follows. In Sec 2, we describe the background geom-
etry of the KNKTN BH with magnetic charges and perform the dragging coordinate
transformation. In Sec 3, we provide Dirac equation of charged and magnetized par-
ticles and compute the tunneling probability as well as the corresponding temperature
across the event horizon. A precise construction of the particles action has also been
done. In Sec 4, we calculate the emitting rate by considering backreaction of the
radiation. Finally, we give our concluding remarks in Sec 5.



194 Kausari SULTANA 4

2. DYONIC KNKTN BLACK HOLE

The metric of the dyonic KNKTN BH in Boyer-Lindquist coordinates can be
written as:

ds2 =−∆r

Σ
(dt−ηdϕ)2 +

Σ

∆r
dr2 + Σdθ2 +

sin2 θ

Σ
(adt−ρ2dϕ)2, (1)

where Σ = r2 + (n+ acosθ)2, η = asin2 θ− 2ncosθ, ∆r = ρ2− 2(Mr+ n2) +
Q2 +P 2, ρ2 = r2 +a2 +n2 and M , a(= J/M), Q, P , n are respectively the mass,
angular momentum per unit mass parameter, electric charge, magnetic charge and
NUT (magnetic mass) parameters of the BH. The presence of the NUT parameter
makes the spacetime asymptotically nonflat. In a recent work, Aliev (Aliev, 2008)
interpreted the NUT parameter as generating a “rotational effect”. The associated
“specific angular momentum” is JM = nM , which we have incorporated in the fol-
lowing analysis. The gauge potential associated with the metric eq(1) is (Cazares,
2013)

A=Aµ+ iBµ =

[
−Qr

Σ
(dt−ηdϕ)− P (n+acosθ)

aΣ
(adt−ρ2dϕ)

]
+i

[
−Pr

Σ
(dt−ηdϕ) +

Q(n+acosθ)

aΣ
(adt−ρ2dϕ)

]
.

In our analysis we write the electric potential Aµ and the magnetic-like potential Bµ
as

Aµ =−Qr
Σ

(dt−ηdϕ), Bµ =−Pr
Σ

(dt−ηdϕ), (2)

considering the appropriate limiting case. The event (outer) horizon r+ and Cauchy
(inner) horizon r− of the BH are given by r± = M ±

√
M2−Q2−P 2−a2 +n2.

Since the outer infinite red-shift surface obtained from gµν∂µ∂νf = 0 of the metric
eq(1) doesn’t coincide with the event horizon, the geometrical optics limit cannot
be used at the horizon and the semi-classical WKB approximate is invalid there. In
order to view the Hawking radiation of fermions, we need to choose one coordinate
system in which they will be coincident. We can perform this by either selecting
the dragging coordinate system (t,r,θ) with dϕ = −g03

g33
dt, or introducing a new

coordinate system (t,r,θ,χ). We adopt the latter one and set χ = ϕ−Ωt, where
Ω = −g03

g33
= ρ2asin2 θ−∆rη

ρ4 sin2 θ−∆rη2
is the dragged angular velocity of the BH. The metric

eq(1) then takes the form

ds2 =−Fdt2 +G−1dr2 +Hdθ2 +Kdχ2, (3)

where

F (r,θ) =
∆r sin2 θ(ρ2−aη)2

Σ(ρ4 sin2 θ−∆rη2)
, G(r,θ) =

∆r

Σ
,
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K(r,θ) =
1

Σ
(ρ4 sin2 θ−∆rη

2), H(r,θ) = Σ, (4)

with the corresponding gauge potential of electric and magnetic fields

Aµ =−Qr
Σ
· ρ

2 sin2 θ(ρ2−aη)

ρ4 sin2 θ−∆rη2
dt+

Qrη

Σ
dχ,

Bµ =−Pr
Σ
· ρ

2 sin2 θ(ρ2−aη)

ρ4 sin2 θ−∆rη2
dt+

Prη

Σ
dχ. (5)

In metric eq(3), the outer (inner) horizons coincide with the outer (inner) infinite
red-shift surfaces. The Landau’s condition of the coordinate clock synchronization
is also satisfied. So, we can investigate the radiation of fermions for this BH.

3. CHARGED AND MAGNETIZED PARTICLES TUNNELING

In order to study the tunneling of charged and magnetized fermion of mass µo
from a KNKTN BH, we consider the Dirac equation in covariant form as (Sharif and
Javed, 2013b)

γµ
[
i~
(
∂µ+

i

2
Γαβµ Σαβ

)
+ qeAµ+ qmBµ

]
Ψ +µoΨ = 0, (6)

where Γαβµ = gβγΓαµγ , Σαβ = 1
4 i[γ

α,γβ] and γµ marices satisfy {γµ,γν} =
2gµνI . We choose the γµ matrices as

γt =
1√

F (r,θ)

(
i 0
0 − i

)
,γr =

√
G(r,θ)

(
0 σ3

σ3 0

)
,

γθ =
1√

H(r,θ)

(
0 σ1

σ1 0

)
,γχ =

1√
K(r,θ)

(
0 σ2

σ2 0

)
, (7)

where σi (i= 1,2,3) are Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (8)

Dirac matrices imply that [γα,γβ] = 0 or −[γβ,γα] according as α = β or α 6= β.
Consequently, contribution of the term containing Σαβ in eq(6) is zero. The eigen-
vectors of σ3 are denoted by ξ↑/↓. Then measuring spin in the r-direction we have
two spin states for the spinor wave function Ψ (related to the particle’s action): spin-
up in +ve r-direction and spin-down in −ve r-direction. Accordingly, we assume
the two following ansatz for the spin-1/2 Dirac field (Kerner and Mann, 2008a):

Ψ↑ =

[
Aξ↑
Bξ↑

]
exp

[
i

~
I↑

]
= [A,0,B,0]′ exp

[
i

~
I↑

]
, (9)
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Ψ↓ =

[
Cξ↓
Dξ↓

]
exp

[
i

~
I↓

]
= [0,C,0,D]′ exp

[
i

~
I↓

]
, (10)

where the action of the radiant spin particles I↑/↓ and the wave modes represented by
A, B, C, D are all functions of (t,r,θ,χ). In this paper, we only analyze the spin-up
case because the final result is the same as the spin-down case, as can be presented
by using the methods described below. Inserting eq(9) into the Dirac Equation eq(6)
and applying WKB approximation, we find

−

(
iA√
F (r,θ)

(∂tI↑− qeAt− qmBt) +B
√
G(r,θ)∂rI↑

)
+µoA= 0, (11)

−B

(
1√

H(r,θ)
∂θI↑+

i√
K(r,θ)

(∂χI↑+ qeAχ+ qmBχ)

)
= 0, (12)(

iB√
F (r,θ)

(∂tI↑− qeAt− qmBt)−A
√
G(r,θ)∂rI↑

)
+µoB = 0, (13)

−A

(
1√

H(r,θ)
∂θI↑+

i√
K(r,θ)

(∂χI↑+ qeAχ+ qmBχ)

)
= 0. (14)

It is quite difficult to immediately determine the action. Nevertheless, taking into
account the existence of time-like killing vector ( ∂∂t)

a and space-like killing vector
( ∂
∂ϕ)a in the stationary space time, we carry out the separation variable as

I↑ =−ωt+W (r) + j̃ϕ+ Θ(θ), (15)

where ω is the energy and j̃ = j̃(j,jM ) is the magnetic quantum number of the par-
ticle. Using eq.(15) in eq.(11)–eq.(14) and Taylor’s expansion of F (r,θ) near the
horizon r+, we obtain with iA=B, iB =A,

−B

(
−ω+ωo√

(r− r+)∂rF (r+,θ)
+
√

(r− r+)∂rG(r+,θ)(∂rW )

)
+µoA= 0, (16)

−B

(
1√

H(r+,θ)
∂θΘ +

i√
K(r+,θ)

j̃+ qeAχ(r+) + qmBχ(r+))

)
= 0, (17)

A

(
−ω+ωo√

(r− r+)∂rF (r+,θ)
−
√

(r− r+)∂rG(r+,θ)(∂rW )

)
+µoB = 0, (18)

−A

(
1√

H(r+,θ)
∂θΘ +

i√
K(r+,θ)

j̃+ qeAχ(r+) + qmBχ(r+))

)
= 0, (19)

where ωo = j̃a
r2++a2+n2 + qeQr+

r2++a2+n2 + qmPr+
r2++a2+n2 .
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We deal first with eq.(16)–eq.(19) for massless (µo = 0) case. Accordingly,
eq.(16) and eq.(18) imply that

W ′(r) =W ′+(r) =−W ′−(r) =

[
(r2

+ +a2 +n2)(ω−ωo)
(r− r+)(r+− r−)

]
, (20)

where W+ corresponds to outward solutions and W− corresponds to the incoming
solutions. Thus the particle’s tunneling probability from inside to outside the horizon
is

Γ =
Prob[out]
Prob[in]

=
exp[−2(ImW+ + ImΘ)]

exp[−2(ImW−+ ImΘ)]
= exp[−4ImW+], (21)

whereW+ is the integral of eq.(20). There is a pole at the horizon, r= r+, in eq.(20).
After integrating around the pole, we find

W+ =

[
πi(r2

+ +a2 +n2)(ω−ωo)
r+− r−

]
, (22)

and consequently, the resultant tunneling probability to leading order in ~ is given by

Γ = exp

[
−4π(r2

+ +a2 +n2)(ω−ωo)
r+− r−

]
= exp[−2π(ω−ωo)/κ]. (23)

Hence, the Hawking temperature of the KNKTN BH is recovered as

T =
1

β
=

κ

2π
, κ=

r+− r−
2(r2

+ +a2 +n2)
. (24)

This is fully in consistence with that obtained by other method. For n= 0, it reduces
to the temperature of the KN BH (Kerner and Mann, 2008a), which further reduces
to the temperature of the RN BH for a= 0 (Li and Han, 2008). In absence of charge
(Q = 0 = P ), it exactly becomes the Hawking temperature of the Schwarzschild
BH (Gillani et al., 2011). In the massive particles (µo 6= 0) case, adopting the same
process, we can find the same temperature. Thus, when a BH radiates massless
particles and massive particles, the tunneling probability and Hawking temperature
remain the same and are not related to the kind of particles. In the case of the spin-
down case, adopting the corresponding (spin-down) wave function and analyzing it
again as the analogous process, we can find the same result.

The action I↑ in the spin-up case is obtained by solving eq.(16)–eq.(19). For
outgoing particles, eq.(16) gives on integration

W (r) =W+(r)

=

∫
µoA

B
√

(r− r+)∂rG(r+,θ)
dr− −ω+ωo√

∂rF (r+,θ)∂rG(r+,θ)
ln(r− r+),

(25)
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while for the incoming particles, eq.(18) yields

W (r) =W−(r)

=

∫
µoB

A
√

(r− r+)∂rG(r+,θ)
dr+

−ω+ωo√
∂rF (r+,θ)∂rG(r+,θ)

ln(r− r+).

(26)
Equations eq.(17) and eq.(19) imply that

Θ =−i
[
j̃ lntan

θ

2
+
a− (qeQ+ qmP )r+

r2
+ +a2 +n2

(acosθ+ 2n lnsinθ)

]
. (27)

Equations eq.(25) and eq.(27) with eq.(15) determine the outgoing massive particles’
action. This expression reduces to the massless particles’ action for µo = 0. Likewise,
one can find the action for the ingoing particle either massive or massless.

4. BACKREACTION IN THE TUNNELING PROCESS

In this section, we consider the emitting particles’ backreaction on the space-
time. When a particle with energy ωi, charge qie, magnet qim, and angular momen-
tum j̃i tunnels out of the BH, the parameters M , Q, P , a, n should be substituted by
(M −ωi), (Q− qie), (P − qim), ai = Ma−j̃i

M−ωi
and ni = Mn−j̃i

M−ωi
, respectively. Then,

the emission rate is
Γi = exp[−2π(ωi−ωi0)/κi], (28)

where
ωi0 = j̃iΩi+ + qieAi+ + qimBi+

=
j̃iai

r2
i+ +a2

i +n2
i

+
qie(Q− qie)ri+
r2
i+ +a2

i +n2
i

+
qim(P − qim)ri+
r2
i+ +a2

i +n2
i

,

ri± = (M −ωi)±
√

(M −ωi)2−a2
i −z2

i +n2
i ,

z2
i = (Q− qie)2 + (P − qim)2, κi =

(ri+− ri−)

2(r2
i+ +a2

i +n2
i )
. (29)

For emission of many particles and thinking that they radiate one by one, we get

Γ =
∏
i

Γi = exp

[∑
i

(−2π(ωi−ωi0))/κi

]
. (30)

If the emission is regarded as a continuous procession, the sum in eq.(30) could be
replaced by integration

Γ = exp[−2π

∫
(dω′−Ω′+dj̃

′−A′+dq′e−B′+dq′m)/κ′]. (31)
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We consider the entropy S =A/4 = π(r2
+ +a2 +n2) and obtain the difference

between the entropies of the horizon before and after the emission, ∆S = Sf −Si:

∆S = π

[
2(M −ω)2− (Q− qe)2− (P − qm)2 + 2n′2

+2(M −ω)
√

(M −ω)2− (Q− qe)2− (P − qm)2−a′2 +n′2

−2M2 +Q2 +P 2−2n2−2M
√
M2−Q2−P 2−a2 +n2

]
. (32)

We find

1

2π

∂(∆S)

∂ω′
=− ((M −ω′) +

√
(M −ω′)2−z′2−a′2 +n′2)2√

(M −ω′)2−z′2−a′2 +n′2

−
(M −ω′)a′2 +n′2[(M −ω′)−2r′+]

(M −ω′)
√

(M −ω′)2−z′2−a′2 +n′2

=−2
r′2+ +a′2 +n′2

r′+− r′−
−

4n′2r′+
(M −ω′)(r′+− r′−)

'− 1

κ′
,

1

2π

∂(∆S)

∂q′e
=

(Q− q′e)((M −ω′) +
√

(M −ω′)2−z′2−a′2 +n′2)√
(M −ω′)2−z′2−a′2 +n′2

=
A′+
κ′
,

1

2π

∂(∆S)

∂q′m
=

(Q− q′m)((M −ω′) +
√

(M −ω′)2−z′2−a′2 +n′2)√
(M −ω′)2−z′2−a′2 +n′2

=
B′+
κ′

,

1

2π

∂(∆S)

∂j̃′
=

a′√
(M −ω′)2−z′2−a′2 +n′2

=
Ω′+
κ′
, (33)

where a′ =
(Ma−j̃′
M−ω′

)
, n′ =

(Mn−j̃′
M−ω′

)
and z′2 = (Q−q′e)2 +(P −q′m)2. From eq.(31)

and eq.(33), we deduce that the emission rate is connected with the change in Bekenstein-
Hawking entropy:

Γ = e
∫
d(∆S) = e∆S . (34)

Expanding the emission rate Γ in ω, qe, qm and j̃, one finds

Γ = exp[−β(ω−ω0) +O(ω,qe, qm, j̃)
2]. (35)

It depicts that the emission rate in the tunneling approach, up to first order in ω,
retrieves the Boltzmann factor of the form exp[−βω] with β the inverse Hawking
temperature. The higher order terms of ω, qe, qm, j̃ describe self-interaction effects
resulting from the energy conservation. They are a deviation from a purely thermal
spectrum. So, some information can be brought out of the BH with the corrected
spectrum. This can give an explanation to the information loss paradox. Equation
eq.(35) can be put in the form

Γ = exp[−β′(ω−ω0)], β′ =
1

T ′
= β

[
1− O(ω,qe, qm, j̃)

2

β(ω−ω0)

]
, (36)
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where β′ can be treated as an inverse quantum-corrected temperature. This result
goes over to the KN BH case (Zhou and Liu, 2008) in the limit n= 0 = P .

In quantum mechanics the emitting rate is given by Γ(i→ f) = |Afi|2δp where
Afi is the amplitude for the tunneling action. The phase space factor δp is the average
of the number of microstates of the initial state and the number of microstates of the
final state. Since the number of microstates of the initial and final states are the
exponent of the initial and final entropies, Γ = eSf /eSi = e∆S . Manifestly, this is
consistent with our result. Thus, our result satisfies the underlying unitary theory in
quantum mechanics and thereby provides a might explanation to the BH information
puzzle.

5. CONCLUDING REMARKS

Our concern in this study is to apply the KM fermion tunneling method (Kerner
and Mann, 2008a,b) to charged and magnetized fermion cases for a rotating dyonic
TN BH described by the KNKTN metric eq.(1). In this semiclassical method the
horizon plays a role of two way energy barrier for a pair of positive and negative en-
ergy particles. Although classically a particle can only fall inside the event horizon,
there exists a crossing of a particle’s energy level near the event horizon in the semi-
classical approach. The energy of a negative energy particle can be larger than the
energy of the nearby positive energy level. As a result, it can travel across the forbid-
den region because of the quantum tunneling effect and becomes a positive energy
particle that can move out. In our investigation we have therefore computed tunneling
probabilities for both incoming as well as outgoing particles. We find the tunneling
probability of emission for the spin-up particle case at the event horizon and recover
the corresponding Hawking temperature. The result shows that the tunneling prob-
ability depends upon fermion’s charges but not upon its mass. The corresponding
Hawking temperature depends upon mass, rotation and NUT parameters as well as
electric and magnetic charges of the BH. One can find the result for the spin-down
particle case with the equations of the spin-up case by only excluding a negative sign.
The Hawking temperature implies that the tunneling rates of the spin-up and spin-
down particles are the same and it remains invariant as well for both massive and
massless cases (Kerner and Mann, 2008a).

We also have calculated corrections to the fermion emission temperature by
computing corrections to the tunneling probability with fully taking into account
conservation of energy and considering self-gravitational interaction and backreac-
tion of radiant particles. The result shows that the tunneling probability of fermion is
related to the change of the Bekenstein-Hawking entropy. We find that the quantum-
corrected radiation temperature is dependent on the BH background and the radia-
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tion particle’s energy, angular momentum and charges. The result implies that the
emission spectrum is not purely thermal anymore and the leading term is exactly the
Boltzman factor. This is consistent with the previous works done by using PW or HJ
method. Our analysis gives as well results in agreement to that obtained by Damour-
Ruffini’s method in the case of charged Dirac particles’ Hawking radiation from a
KN BH (Zhou and Liu, 2008). The corrected spectrum of emission can bring some
information out of the BH. The underlying unitary theory may be satisfied as well.
In the limit n = 0 = P our results reduce to the results of the KN BH (Kerner and
Mann, 2008b) and a= 0 = n yields the results of the RN BH (Li and Han, 2008).
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