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Abstract. One way to find the solution of black holes is through the Ernst equations that is
quite simple instead of solving the Einstein equation. Solution of Ernst equations for Kerr and
Kerr-Newman black holes have been achieved in the last century. The magnetized case for those
black holes and their Ernst potentials can be found using Harrison transformation. Herein the
Ernst potential for extremal rotating Kerr and its magnetized solution is shown. In the end, we
also extend this fashion for extremal Kerr-Newman black hole.

1. Introduction

The Einstein field equation has been applied to many physical phenomena in our universe. The
space-time metric of our accelerated expansion universe itself is the solution of this equation
called by Friedmann-Lemaitre-Robertson-Walker metric.! It is believed that this expansion
is accelerated due to the presence of dark energy that might be modeled by the scalar field?
and other fields (see [3-5] for some examples). We could also study about the smaller scale of
the gravitational field using Einstein equation for instance are Neutron stars® and Boson stars
which contain scalar field within the theory (see [7-10] for some examples). For the absence of a
gravitational field, we could find the investigation of the so-called Q-balls.” 112 The other thing
which is quite important is the black hole especially for rotating black hole solution because it
is believed that this type is the most physical black hole in our universe.'3

Black hole solutions can be obtained from Ernst formulation.!%'® In this formulation, it
is introduced the Ernst potentials which are the solutions to the Ernst equations which are
equivalent to the Einstein field equation in the stationary case. In Ernst formalism, we work
on general rotating black hole mAetriclﬁAcalled by Papapetrou metric which corresponds to the
existence of Killing vector fields & and ;. This formalism has been applied to the more general
black holes, Kerr-Newman black holes.'® For an uncharged solution, the intrinsic charge of the
Kerr-Newman space-time is taken to be zero and will reduce to the Kerr space-time.

Tools of Ernst formalism are also applied to the Kerr black hole which is immersed by the
external magnetic field. The magnetized Kerr metric firstly is proposed by Melvin that solves the
Maxwell-Einstein system of equations. In addition, such physical magnetic fields are believed to
exist in the active galactic nuclei that have an important role in explaining the physical aspects
of the supermassive black holes in the center of the galaxies.?! The magnetized metric also
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can be obtained from the method proposed by Harrison?? called by Harrison transformation.
In [23], the Harrison transformation has been applied to the Kerr-Newman space-time metric.
Therein it investigates the correspondence between the gravity and the CFTs. In addition,
Near-Horizon Extremal Magnetized Kerr (NHEMK) metric of the magnetized Kerr black holes
has been obtained in [23,26,31] by applying Harrison transformation.

In this paper, we compute the Ernst potentials for the near-horizon and extremal case of
Kerr black hole. We can see that the Ernst potential for the extremal case depends on the
angular coordinate only. We also calculate the Ernst potential of the magnetized solution. For
more general case, the Ernst potentials for Near-Horizon Extremal Kerr-Newman black hole
and its magnetized case are calculated. The aim of computing all of this Ernst potentials
is to provide another way of deriving charged rotating black hole solution without employing
Einstein-Maxwell system of equations, yet through the Ernst equations which are simpler.

We organize the remaining parts of the paper as follows. In section 2, we review the part
of the derivation of Kerr metric from the Ernst equations. In section 3, we show the near-
horizon and extremal Kerr metric and its new Ernst potential. In the next section, we find the
Ernst potential related to the NHEMK metric. The general Ernst potentials for Near-Horizon
Extremal Kerr-Newman black hole are then shown in section 5. Finally, we summarize the entire
paper in the last section.

2. Review on Ernst solution for Kerr black holes

We wish to briefly review the derivation of the rotating black hole solutions from the Ernst
equations.'® Ernst equations are equivalent to the Einstein field equation in the stationary case.
The original papers'® 1 use this Ernst formalism to provide a simpler way of deriving black
hole solutions of stationary space-time. To obtain stationary black hole solutions, we may apply
Ernst formalism that has Ernst potentials as the solutions. Solving Ernst equations is simpler
than solving the Einstein field equation because one only needs to solve a second differential
order equation. In addition, when employing Einstein equation, we need to solve more than one
second differential order equation.

The classical statlonary axially symmetric metric is described by the Lagrangian density that
is independent of time t and azimuth coordinate gb so it has Killing vectors §t and §¢ So, it will
be invariant under transformations ¢ — —¢ and <Z> — gb. This can be expressed in Papapetrou
form of metric defined by

ds? = 71 [ezv(dp2 + sz) + deqp — f(dt - wdg@)Q. (1)

Then the well-known Ernst equation for axially symmetric metric without intrinsic charge is
given by
(Re £)V?e = Ve. Ve, (2)

for which ¢ is the Ernst potential where ¢ = f 4 i@ with twist potential ¢ (see 16 for detail
derivation). We apply the following operator

0? 0? 10 0 0
2 < v _ ~ ~
- 0p? toz T pOp’ 8,0p+ 52" 3)

which indicates cylinder coordinate. To produce Kerr space-time metric, we start with the
Papapetrou metric (1) and define e = —P~2,¢ = (2 +ip)/v/2. Hence Eq. (1) will become

ds® = f~1 (=2P~2dC.dC" + p2di?) — f (dé — wdf)g . (4)
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Note that we have changed ¢ <> QAS just for the convention. For the case of the metric consists of
the radial and angular coordinates, we can choose

d¢ = \2 (\C/l’% 4 z‘d9> , (5)

where A = 72 — 2M7 + a?. Hence, Eq. (4) becomes

~2 N N 2
ds® = 1 [-P‘Q <d£ n d92> n defz] _f (d¢ - wdt) . (6)
By choosing
. 2 A
p=+VAsinb, P = (\/ZsiHG)*l, f= —AS;; 9, W= 2]\1{1(”, (7)

we straightforwardly obtain Kerr metric in Boyer-Lindquist coordinates that is given by

A di? Asin?6 ~  2Mar - 2
2 _ B ar 2 .
ds” = E( dt® + + df ) + <dqz5 dt > , (8)

where
¥ =% 4 a’cos®d, A = (#* + a*)? — Ad’sin?6.

where w is the angular velocity, M is black hole mass, J is angular momentum, and a = J/M.
Then the Ernst potential for Kerr space-time metric as the solution of Eq. (2) is

2Ma3sin*6

e = — (7 + a®)sin0 + 2iMacosf(3 — cos?0) — .
7 + iacost

9)

For more general black hole, Kerr-Newman black hole, Ernst equation becomes more complex
because of the presence of the intrinsic charge q. The Ernst equations are now

(Re e + |®*)V?e = (Ve+20*VD). Ve, (10)
(Re e + |®*)V?® = (Ve +20*VD).VOD, (11)

where ¢ = f — |®|? 4+ i. For Kerr-Newman, the Ernst potentials are

Masin?6 + ig*cosf . ,
sin“6,

e = —[(#* + a®)sin®0 + ¢*cos®6] + 2iMacosf(3 — cos*6) — 2a —
7 + tacosf

. qa . 92
P =— 0 + —————sin“0. 12
iqcost + P iacow m (12)

It is obviously seen that for & =0 (¢ = 0), it will reduce to Kerr black hole.

2.1. Magnetized Kerr black holes
In this subsection, we briefly review the way to find magnetized black holes solution by employing
Harrison transformation?? on the Ernst potentials. Harrison transformation satisfies

/_i ! —1 _1 o _}2
= @ = A <<1> 2Ba>,A—1+B<I> 1B, (13)
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where B is the axial magnetic field parameter. Several Papapetrou potentials in Eq. (1) also
change simultaneously

f=|A"%f, V' =|APVw —pf 1 (A*VA - AVAY). (14)

If we perform the Harrison transformation to the Kerr metric (8), we will produce magnetized
Kerr metric that is given as follows

A di? Asin26
2 2 ) 2
ds® = X|A| < —Adt —|—+d9>+ SIAP

< (dé - w’d£)2 . (15)

This is the electrovacuum solution of the Einstein field equation. The potential w’ is obtained

from (14) and can be separated to this relations®®
ow’ Ow 2% ORe A Olm A
— = AP - Im A —Re A 1
ar ASr ~ Asing ( mA=gg ~Re Ay > ’ (16)
Ow'’ 0w 2XA ORe A Olm A
06 A 0 * Asinf (Im A ar Re A or > ' (17)

By solving Egs. (16) and (17), we will find

,  16Mra+ wy B4
W= where (18)

wy = 4a®M3#(3 + cos0) + 2aM2[F4{ (cos?0 — 3)% — 6} + 2a%#2(3 — 3cos20 — 2cos')
at(1 + cos*0)] + aM#(#% 4 a?){ 7#2(3 + 6cos®0 — cos’@) — a?(1 — 6cos?0 — 3cos?0)} .

This is the Kerr black hole solution immersed by the axially external magnetic field. This
transformation actually generates non-asymptotically flat black holes solution but may be a
good theoretical model for the strong magnetic field around the black holes. However, it is
found in 39 that magnetized Kerr metric (15) suffers conical singularity in the axial coordinate
¢ hence one rotation of ¢ is not 2 anymore but 27|Ag|? where Ag is equal to Alg—g. In order
to solve this problem, we need to rescale the axial coordinate, i.e. d;’ — ’A()szg' . After rescaling,
the magnetized Kerr metric (15) becomes

A di? Asin?0
2 _ SIA 2 _ =982 wr 2
ds |A| Adt + f +do* ) + SINE

. A2
(]Ao\ngb - w’dt) : (19)
for which the event horizon is similar with the Kerr black hole solution. If we take B = 0,
it will reduce to Kerr metric. The more general magnetized Kerr solution, i.e. magnetized
Kerr-Newman metric also has been obtained in [40].

3. Ernst Potentials for Near-Horizon Extremal Kerr Black Holes
We will see the corresponding Ernst potential for the Near-Horizon Kerr solution. We will also
extend to the extremal condition. The event horizon of Kerr black hole is located on

ry =M+ M?— a2 (20)

To produce the Near-Horizon extremal Kerr (NHEK) metric, we work with new coordinates
defined by'®

f:%t, <ZA>:¢+wH%Ot, 7= Aror+rg, (21)
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where 72 = 72 + ¢2. By adjusting that appropriate coordinates transformation, the Ernst
0 T y ) g pprop )

potential (9) changes to be

2Ma’sin*0
(Aror +r4) + iacosd

e=—[(Aror + ry)?+ aQ} sin?0 + 2i Macosf(3 — cos*6) — (22)

In this circumstance, we can call this Ernst potential as the potential for the Near-Horizon
Kerr black holes. However, it doesn’t prevail for the extremal case. For Kerr black holes,
extremality occurs when M? = a? and in coordinates transformation (21) we have to take
A — 0. In fact, this constant is a perturbation constant of the near-horizon and we have
neglected the higher terms. Potential (22) is a solution of the Ernst equation (2) where Eq. (3)
has to transform using Eq. (21). So we find this Ernst potential for Near-Horizon Kerr which
is by finding this, we could derive near-horizon Kerr black hole solution without performing the
tensorial calculation and using near-horizon coordinates transformation. We have to mention
also that the near-horizon form of the Ernst potential is never shown before because the near-
horizon metric is just recently discussed.??

After the near-horizon case, we will add another feature which is the extremal condition. To
gain the extremal and Near-Horizon Kerr black hole, we may apply (21) and put A — 0 to the
Kerr metric. Then the NHEK black holes metric is finally given by

d 2
ds® = 272 | —r2di® + S 4 d6® + A2 (do + rdt)? | (23)
r
where
1+ cos?6 2sinf
J=M? Q= = .
’ 2 ’ 1 + cos26

The NHEK metric is asymptotically AdS and possesses SL(2, R) x U(1) isometry. This property
has brought the opportunity to study the correspondence between AdS space-time and the CFTs
on the boundary of the black holes.'”-2329 After taking A\ — 0, the corresponding Ernst potential
is then33

2M2sin*6

— _9MZsin?g — SO Y
¢ St 1+ cos20

. 40
2iM> — cos20) + ——— ). 24
+ 2iM“cosf <(3 cos“0) + T o020 (24)

Interestingly, it is not the solution of Eq. (2) anymore. One could check by inserting (24) to
Eq. (2). The AdS structure on the metric (23) may be the reason of that. Because in [41],
it is found that for black hole solution in AdS background, we apply the other different Ernst
equations that come from the reality of the non-zero value of the cosmological constant. This
constant appears in the Lagrangian besides the scalar Ricci as the gravitational part. The main
point is to check whether this extremal potential matches the Ernst equation for the case of
non-vanishing cosmological constant or not.

4. Near-Horizon Extremal Magnetized Kerr Black Holes
The Harrison transformation does not replace the location of the event horizon of the Kerr black
hole, so the extremal condition occurs also when M? = a?. So, to gain the NHEK for magnetized
metric, we work with these new coordinates transformations?6-42

2M?%*t (14 2B*M*Y) Mt

b= o= T )

s 72:)\?”4—7"4,_. (25)
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We are not going to show the form of near-horizon Ernst potential of the magnetized solution
because the mathematical formula is quite long. So we just show the potential and the space-
time metric when the extremal limit is also taken. By taking the limit A — 0, we obtain
Near-Horizon Extremal Magnetized Kerr (NHEMK) metric from Eq. (19) that is defined by
dr? Asin?6|Ag|! (1-BiMY)  \?
ds? = S|AP [ —r2dt? + — + db? ———— | d ———rdt 26
2 = o (s + U )+ B (0 CS B ) e

It is similar with NHEK metric, the Ernst potentials can be obtained from the corresponding
coordinate transformations (25). The new Ernst potentials for NHEMK are

S —4M?[1 + 3M?B? + (B2M? — 1)?(2cos?0 — 1)] + 16iM>cost (27)
N 3+ 2B2M? 4+ 3B*M* 4 (B2M?2 — 1)2(2cos26 — 1) ’

o — 2M?2B[1 + 3M?B? + (B>M? — 1)?(2cos?0 — 1)] — 8iM? Bcost (28)
B 3+ 2B2M?2 + 3B*M* + (B2M? — 1)2(2cos20 — 1) ’

which reduce to the Ernst potentials of the NHEK metric by taking the magnetic field parameter
B to 0. The remaining orthonormal components of the electromagnetic field for the locally non
rotating observer, are only

_ 4B[146B?*M? + B*M* — (B2M? — 1)?(2cos?§ — 1)]
" [3+42B2M2 +3BiM* + (B2M? — 1)2(2c0s20 — 1)]2”’
16B(1 — B*M*)cosd

E, = , 30
[3+2B2M?2 + 3B4M* + (B2M? — 1)2(2cos?0 — 1)]? (30)

(29)

and the angular components vanish. In [44], they have shown the orthonormal components for
extremal magnetized Kerr-Newman. However we will also show the similar Ernst potentials for
the Kerr-Newman solution in the next section.

5. Near-Horizon Extremal Kerr-Newman Black Holes

Before we summarize our result, we will show the Ernst potentials for the more general extremal
black hole, i.e. extremal Kerr-Newman black holes. The Kerr-Newman black holes has the event
horizon located on

ry =M+ /M2 —a?— ¢2, (31)

which comes from the root of A = #2 — 2M# + a? 4+ ¢> = 0. The Ernst potential for the
near-horizon Kerr-Newman black hole is given by

e = —q?cos’h - [(Aror + r)? + a2] sin?6 + 2iMacosf(3 — cos>6)
2M a?sin*0 + 2iaq? cos O sin @
B (Aror + 1) + iacosf
agsin? @ — igcos O(ry. + Aror + ia cos 6)

o = . 33
r+ + Argr +tacos 0 (33)

(32)

In the extremal limit, we have to take M? = a® + ¢%>. Near-Horizon Extremal Kerr-Newman
black hole has the form

2
2 22 2\2,342 2 2 2
ds? = o (22 + W 4 g2 ) ¢ GOS0 [ eVt et (34)
r2 o q? + 2a?
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where o = ¢ + a?(1 + cos?6). The solution of Eq. (34) is related to these Ernst potentials

V@2 + a%(4a? + ¢?) + ia(4a® + 3¢%)cosd
V@ + a? + iacosd ’
q (a —i/q? + a%os@)

o = . (36)

Vq% + a? + iacosf

The solution of Near-Horizon extremal magnetized Kerr-Newman has also been derived.?* Here
we show the related Ernst potentials which are given by

o —41/q? + a%(4a® + ¢®) + 4ia(4a® + 3¢*)cosh
X1 — X2 ’
, 4qa + (8a2 + 2¢?)B+/q? + a2 — 2i(4a3B + 3a¢® B + 2q+/q?% + a?)cosf
X1 — X2 ’

P (35)

)

where

X1 = dagB + 4a’B*\/ 2 + a2 + \/¢* + a*(4 + ¢* B?),
X2 = [4a3B2 + 49B+\/q? + a2 + a(3¢* B* — 4)} cosf.

It is worth noting that it is needed to check the Ernst potentials of the near-horizon form of
extremal Kerr-Newman black hole. As the extremal Kerr black hole and its magnetized solution,
we need to check whether it satisfies the Ernst equations such in [41] or not. So we will address
these extremal results to be checked in the next paper.

6. Summary

Black hole solutions are related to the arbitrary Ernst potentials which is solved from the Ernst
equation. Ernst equation is a simpler way to find a new black hole solution because we only need
to solve two complex differential equations because we know that Einstein equation is tensorial
equation with second order differential equation. Herein we have studied the Kerr black hole
and its Ernst potentials. We have shown the Ernst potential for the near-horizon and extremal
Kerr black holes metric. The aim of this calculation is to provide the simpler calculation to find
near-horizon and extremal Kerr black hole solution without solving the Einstein equation and
using the coordinates transformation because it has been shown within this paper.

Tools of Ernst formalism are also applied to the magnetized Kerr black holes. Mathematically,
this magnetized metric is produced from applying Harrison transformation. By applying it,
Ernst potentials for this magnetized case are found. The non-zero Cartan components of the
NHEMK metric are also shown. Note that by taking B to be zero will reduce to the case of
NHEK solution. Later we finish our result by showing the Ernst potentials for the extremal
Kerr-Newman metric and its magnetized case. As the extremal Kerr solution, we calculate the
Ernst potential to provide the simpler way to find the near-horizon and extremal Kerr-Newman
black hole solution and its magnetized case.

For further studies, it is interesting to verify whether the Ernst potential we find here are
related or matching with the solutions of the Ernst equation when the cosmological constant is
not vanishing.
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