
The Effect of NUMA Tunings on CPU Performance

Christopher Hollowell1, Costin Caramarcu1, William
Strecker-Kellogg1, Antonio Wong1, Alexandr Zaytsev1

1Brookhaven National Laboratory, Upton, NY 11973, USA

E-mail: hollowec@bnl.gov, caramarc@bnl.gov, willsk@bnl.gov, tony@bnl.gov,

alezayt@bnl.gov

Abstract. Non-Uniform Memory Access (NUMA) is a memory architecture for symmetric
multiprocessing (SMP) systems where each processor is directly connected to separate memory.
Indirect access to other CPU’s (remote) RAM is still possible, but such requests are slower as
they must also pass through that memory’s controlling CPU. In concert with a NUMA-aware
operating system, the NUMA hardware architecture can help eliminate the memory performance
reductions generally seen in SMP systems when multiple processors simultaneously attempt to
access memory.

The x86 CPU architecture has supported NUMA for a number of years. Modern operating
systems such as Linux support NUMA-aware scheduling, where the OS attempts to schedule a
process to the CPU directly attached to the majority of its RAM. In Linux, it is possible to
further manually tune the NUMA subsystem using the numactl utility. With the release of Red
Hat Enterprise Linux (RHEL) 6.3, the numad daemon became available in this distribution.
This daemon monitors a system’s NUMA topology and utilization, and automatically makes
adjustments to optimize locality.

As the number of cores in x86 servers continues to grow, efficient NUMA mappings of
processes to CPUs/memory will become increasingly important. This paper gives a brief
overview of NUMA, and discusses the effects of manual tunings and numad on the performance
of the HEPSPEC06 benchmark, and ATLAS software.

1. Introduction
NUMA, Non-Uniform Memory Access, is a memory architecture for multiprocessing computer
systems where CPUs are directly attached to their own local RAM [1]. The architecture provides
for fast processor access to local memory. Access to remote memory, which is generally local to
other processors in the host, is possible, but slower. The x86 NUMA implementations are cache
coherent (ccNUMA) and incorporate on-processor memory controllers. AMD introduced NUMA
support for x86 with the HyperTransport bus for Opteron in 2003. Intel followed with their
own NUMA implementation utilizing the QuickPath Interconnect (QPI) bus for the Nehalem
processor in 2007.

In the NUMA architecture, a NUMA node is a grouping of CPU and associated local memory.
When one speaks of the NUMA topology of a system, they’re referring to the layout of CPUs,
memory and NUMA nodes in a host. For x86, there has traditionally been one NUMA node per
physical processor package. In this configuration, all cores on the same physical processor belong
to a single NUMA node. This has started to change, however, with Intel’s recent introduction
of Cluster On Die (COD) technology in some Haswell CPUs [2], [3]. With COD enabled, the
CPU splits its cores into multiple NUMA domains, which the OS can make use of accordingly.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092010 doi:10.1088/1742-6596/664/9/092010

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

In Uniform Memory Access (UMA) systems, typically only one CPU can access system
memory at a time. This can lead to significant performance reductions in SMP systems, with
more severe degradation occurring as the number of processors in a system is increased. The
primary advantage NUMA offers over UMA is that because CPUs have their own local memory,
they can effectively access this memory independently of other CPUs in the system.

2. Linux NUMA Support
To optimize memory-processor locality, and thereby take advantage of potential NUMA
performance improvements, a NUMA-aware operating should attempt to allocate most/all of a
task’s memory to one CPU’s local RAM. Its process scheduler should also attempt to schedule
a task to the CPU directly connected to the majority of that task’s memory.

Basic support for a NUMA-aware scheduler first appeared for Linux in kernel 2.5, and evolved
over time. The kernel’s NUMA support has continued to be enhanced recently in the 3.x series.
For the purpose of this study, however, our focus has been on Red Hat Enterprise Linux (RHEL)
6, Scientific Linux (SL) 6, and their kernel, based on 2.6.32, as this is what we’re currently
running on our processor farm at the RHIC/ATLAS Computing Facility (RACF). By default,
the RHEL/SL6 kernel attempts to allocate RAM to the node that issued the allocation request.
This, in combination with the kernel’s attempts to schedule a process to the the same physical
processor, and preferably the same core, in order to improve L1/L2/L3 cache hits [4], often
results in process NUMA locality.

While the RHEL/SL6 kernel does have a default memory and CPU scheduling policy which
is NUMA-aware, system administrators can fine tune the NUMA scheduling parameters for
processes using a number of tools, including numactl and numad. Developers can also make
changes to their own software to modify these parameters, using a number of provided system
calls, such as sched setaffinity() and mbind().

numactl has been available in Linux for a number of years. It allows a user to view system
NUMA topology, and start a process with specific NUMA node bindings for CPU and/or
memory. Some typical examples of numactl usage are shown in Figure 1.

numad, on the other hand, became available fairly recently, making its first appearance
for RHEL/SL in the 6.3 release. This software is a userspace daemon which monitors NUMA
topology, and resource utilization, automatically making affinity adjustments to optimize process
locality based on dynamically changing system conditions. numad uses the Linux cpuset cgroup
to set NUMA affinity, and to instruct the kernel to migrate memory between nodes.

By default, x86 64 RHEL/SL6 enables Linux Transparent Huge Pages (THP). With THP
enabled, the kernel attempts to allocate 2 MB pages for anonymous memory (i.e process heap
and stack), rather than the x86 standard 4 KB, but will fall back to such allocations when
necessary. The use of THP reduces process page table size, and thus increases Translation
Lookaside Buffer (TLB) cache hits. This increases the performance of logical/virtual to physical
address lookups performed by a CPU’s memory management unit, and generally overall system
performance. As part of the THP subsystem, the kernel introduced khugepaged. khugepaged is
a kernel daemon which periodically scans through system memory, attempting to consolidate
small pages into huge pages, and defragment memory.

Early versions of numad recommended changing the kernel’s khugepaged sysfs
scan sleep millisecs settings to 100 ms from the system default of 10,000 ms. This increases
the frequency of khugepaged memory scans, and therefore small page coalescence and memory
defragmentation. This can lead to a better ability for the system to make use of huge pages,
and is beneficial when numad moves memory between nodes [5]. Newer versions of numad au-
tomatically set scan sleep millisecs to 1,000 ms, but this is changeable with the -H parameter.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092010 doi:10.1088/1742-6596/664/9/092010

2

Display NUMA Topology:

numactl -H

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29

node 0 size: 40920 MB

node 0 free: 23806 MB

node 1 cpus: 10 11 12 13 14 15 16 17 18 19 30 31 32 33 34 35 36 37 38 39

node 1 size: 40960 MB

node 1 free: 24477 MB

node distances:

node 0 1

0: 10 20

1: 20 10

Force execution on node0 with memory allocation forced on node0

(out of memory condition when all node0 memory exhausted):

numactl --cpunodebind=0 --membind=0 COMMAND

Force execution on node1 with memory allocation on node1 preferred:

numactl --cpunodebind=1 --preferred=1 COMMAND

Figure 1. Using numactl to display NUMA topology, and run a process with forced and
preferred specific NUMA node affinity

3. Benchmarks
We utilized two benchmarks to measure the impact of NUMA tunings on CPU/memory
performance with a High Energy Physics and Nuclear Physics (HEP/NP) workload:
HEPSPEC06 and timing of ATLAS KitValidation software execution. Tests were run under
Scientific Linux 6, and were executed multiple times, with averages reported. Figure 2 lists the
hardware benchmarked. All benchmarks were run on dual processor Intel Xeon-based systems.
It would have been preferable to also benchmark some recent AMD Opteron-based hosts, as
well as quad-CPU servers, but unfortunately, as of Spring 2015, we did not have such equipment
available at our facility.

HEPSPEC06 is the standard HEP-wide CPU performance benchmark developed by the
HEPIX Benchmarking Working Group [6]. It consists of the all cpp benchmark subset of SPEC
CPU2006 [7], run in parallel (one process per logical core in our case) to simulate a host fully
loaded with processing jobs.

To accurately simulate actual system utilization, Shuwei Ye from Brookhaven National
Laboratory had previously developed a benchmarking suite which times software components
extracted from ATLAS KitValidation [8]. This includes event generation, Geant4 simulation,
digitization, and reconstruction. The suite is currently based on a somewhat older ATLAS
software release (16.6.5) for 32-bit SL5. However, the benchmark results are still applicable
to the use of newer releases since they share the same basic processing models. In order to
reduce any possible effects of the CernVM Filesystem (CVMFS) server and network load on
performance, the ATLAS software was copied to local storage, and all job I/O was also performed
to local disk. Again, to simulate typical utilization, the benchmark was run in parallel, with
one KitValidation process per core spawned and timed. The run-times for event generation and
digitization in this benchmark were relatively short on our test hardware: on the order of 1
minute. This didn’t give numad sufficient time to make affinity adjustments. Therefore for this
study, our focus has been on the reconstruction and simulation test results.

Multiple NUMA tunings were tried with each benchmark. The configurations tested included
execution with numactl forced node binding, execution with numactl forced CPU node binding
with preferred memory node binding, and finally execution with numad enabled with both 15
second and 30 second numad scanning intervals. The results were compared to running on a

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092010 doi:10.1088/1742-6596/664/9/092010

3

system with no tunings, and running with a 100 ms scan sleep millisecs setting alone.

Table 1. Evaluation hardware configuration.
System Specifications
Penguin Computing
Relion 1800i

Dual Intel Xeon E5-2660v2 (Ivy Bridge) CPUs @2.20 GHz
40 logical cores total (HT on)

10 x 8 GB DDR3 1600 MHz DIMMs
80 GB RAM total

4 x 3.5” 7200 RPM 2 TB SATA 6.0 Gbps Drives
Configured as a software RAID0 device

Dell PowerEdge R620 Dual Intel Xeon E5-2660 (Sandy Bridge) CPUs @2.20 GHz
32 logical cores total (HT on)

8 x 8 GB DDR3 1600 MHz DIMMs
64 GB RAM total

8 x 2.5” 7200 RPM 2 TB SATA 6.0 Gbps Drives
Configured as a software RAID0 device

Dell PowerEdge R410 Dual Intel Xeon X5660 (Westmere) CPUs @2.80 GHz
24 logical cores total (HT on)

6 x 8 GB DDR3 1333 MHz DIMMs
48 GB RAM total

4 x 3.5” 7200 RPM 2 TB SATA 3.0 Gbps Drives
Configured as a software RAID0 device

Figure 2. Average HEPSPEC06 results with various numactl and numad configurations.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092010 doi:10.1088/1742-6596/664/9/092010

4

4. Results
4.1. HEPSPEC06
Simply decreasing the khugepaged scanning period to 100 ms improved HESPEC06 performance
by up to 1.4% (standard error 0.3%). Manual NUMA bindings for each HESPEC06 process
had little effect on systems with newer Intel CPUs (Sandy Bridge and Ivy Bridge), and lead to
a performance reduction on the Dell R410 host with Westmere CPUs and fewer logical cores.
Utilizing numad with a maximum scanning interval of 30 seconds (-i 30) appears to be best,
and lead to a performance improvement of 1.5% (standard error 0.4%) for the Ivy Bridge based
system, and 3.1% (standard error 1.4%) for the Sandy Bridge host. However, the use of numad
slightly reduced performance for the Westmere system.

4.2. ATLAS KitValidation Reconstruction
Unlike with HEPSPEC06, the 100 ms scan sleep millisecs change slightly reduced reconstruction
performance, in general. However, as seen with HESPEC06 on newer CPUs, running the
benchmark with numad management improved performance. With this benchmark, a 15 second
numad scanning interval was best, and lead to an execution wall clock time reduction of 1.9-
4.2% per process (standard error 1.7% or less). In general, slight improvements were seen with
manual numactl bindings, however, they were not as significant as with numad.

Figure 3. Average ATLAS KitValidation reconstruction software run-times with various
numactl and numad configurations.

4.3. ATLAS KitValidation Simulation
The khugepaged scanning period change to 100 ms improved simulation performance by 3.5-
4.5% (standard error less than 0.4%). Interestingly, numad management reduced simulation

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092010 doi:10.1088/1742-6596/664/9/092010

5

performance by 2.6-4.4% (standard error less than 0.5%) for the 30 second max interval setting,
during our tests. There was also no benefit seen with manual numactl bindings. Therefore,
NUMA affinity tunings were not beneficial for simulation. A possible explanation could be
that the majority of the simulation software’s memory manipulations fit in processor cache.
The mechanism behind numad ’s performance reduction for simulation is also not completely
understood, but we speculate it’s related to numad ’s movement of memory between nodes.

Figure 4. Average ATLAS KitValidation simulation software run-times with various numactl
and numad configurations.

5. Conclusions
Linux NUMA tunings had a positive impact on performance of up to 4.2% for some HEP/NP
benchmarks. However, specific tunings were best for different workloads and hardware.
Unfortunately, there doesn’t appear to be a “one size fits all” optimal configuration.

Overall, simply changing the sysfs khugepaged scanning period (scan sleep millisecs) to 100
ms was beneficial to the majority of HEP/NP workloads tested on dual-CPU Intel Xeon-based
systems. Manual static NUMA bindings with numactl lead to slight performance gains, or had
little/no effect, for all benchmarks on systems with newer CPUs.

Performance gains on the order 2-4% were seen on systems with newer Intel CPUs (with more
cores) running numad, but only for HEPSPEC06 and reconstruction. Simulation performance
was reduced by numad, however. Therefore, this daemon should not be run where simulation
jobs are executed. However, the use of numad would be possible for sites with segregated
processor farms where particular queues/job-types are restricted to run on distinct sets of hosts.
For sites with mixed job-type processor farms, one can instruct numad to ignore simulation jobs
by passing their PIDs to the daemon via the -x option. This doesn’t require a numad restart
to implement, but would require batch system modification or a job wrapper.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092010 doi:10.1088/1742-6596/664/9/092010

6

While large performance gains from various NUMA tunings were not seen in this study, it’s
possible numad and numactl tunings may lead to more significant performance increases on
quad-socket servers, or dual-socket servers with COD Haswell processors. Additional NUMA
nodes and cores increase OS scheduling and memory allocation complexity. Therefore, it would
be interesting to incorporate such configurations in a future study.

References
[1] Non-uniform memory access: http://en.wikipedia.org/wiki/Non-uniform memory access
[2] Intel Xeon E5 Version 3: Up to 18 Haswell EP Cores: http://www.anandtech.com/show/8423/intel-xeon-e5-

version-3-up-to-18-haswell-ep-cores-/4
[3] Szostek P and Innocente V 2015 Evaluating the power efficiency and performance of multi-core platforms

using HEP workloads To be published in the CHEP 2015 proceedings, J. Phys.: Conf. Ser.
[4] Lameter, C 2013 NUMA (Non-Uniform Memory Access): An Overview ACM Queue: vol. 11, no. 7
[5] numad: http://www.unix.com/man-page/centos/8/numad/
[6] HEP-SPEC06 Benchmark: http://w3.hepix.org/benchmarks/doku.php/
[7] SPEC CPU 2006: https://www.spec.org/cpu2006/
[8] Ye, Shuwei (BNL): 2015 private conversation on KitValidation benchmarking

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092010 doi:10.1088/1742-6596/664/9/092010

7

