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ABSTRACT

We have studied the production of muon pairs with invariant
masses froﬁ:llto 4 GeV by 20.5 GeV breméstrahlung radiation. The
invariapt mass distribution has‘avlarge deviation from the ;xpected
Bethe-Heitler shape which we attribute to éhe (3.1 QgV). We de-
termine the Y(3.1 GeV) photoproduction cross section to be

k]
3.7 t i'? nb at an average photon energy of 18 GeV.
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We have studied the photoproduction of high‘ihvariant mass muon pairs by

- a 20.5 GeV breméStrahlung beam striking a Be target. The expériment was de-
signed to search for deviations from Bethe-Heitler behavior, and to meaéure &he
cross section for phoﬁoproducing the P(3.1 GeV).(l’z) The method ié similérr
to that in a less sensitive search previously reported.(é)

The experimental apparatus is showh schematically in Fig. 1. A 20.5 GeV
electron beam from the Stanford Linear Accelerator Center (SLAC) strikes an
18.5 gm/cm2 Be target. The incident beam contains 1.5 x io5 electrons in each
1.3y sec SLAC pulsé. Mupn pairs are produced in the targét‘through two success-
ive steps. First the incident electron radiates, then the radiation photopro-
duces the muon pair. The intermediate radiation is primarily real bremsstrah-
lung, with only a;lo% contribution from the virtual phofons associated with
electroproduction.

Thévspectrometer, consisting of a magnet and a multi-wire proportional
chambef (MWPC) array, has been dsscribed‘earlier.(3) A superconducting beam
pipe provides forward-produced radiation from the target with a field-free'path
. through the magnet. To enter the MWPC array a particle from the target must
typically pass through first, 50 gm/cm2 of Cu in the superconducting beam
pipe wall; second, a 280 gm/cm2 concrete absorber; and third, 11 kG-meters of
transverse magnetic field. | | \

‘The trigger which initiateé readout of ﬁhe MﬁPC array comes from two scin-
tillation hodoscopes. The first is immediately behind the final MWPC. The
second is further downstream, behind a 787 gm/cm2 Ee absorber. We‘require
in coincidence s signal from each side of éhe front hodoscope and a signal from
each side of the rear .hodoscope.

-Mubns were defined to be straight tracks in the MWPC array which pointed

back to the target, had measured momenta greater than 2 GeV/c, and passed
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through hodoscope elements which were latched for the event. A sample of 605
events having 2Imuons whose arrival times at the rear scintillation hodoécope
differed by less than U nsec were retained for further coﬁsideration. of tﬂese
events 110 contained same-signed (++ or --) muon pairs, and Lgs contained opfosite; i
signed (+-) muoﬁ pairs. In the 5% of these events which had more than 2 muons,
opposite-signed pairs and higher-momentum muéns were preferentially chosen.

Kinematics were calculated for each event assuming the reaction

YN+puN (1)
where N is either a proton or a neutron initially at rest. We computed M,

the invariant mass of the muon pair, E, the incident photon energy, and
. .

t' =t - tMIN' Here t is the momentum transfer squared to. the nucleon N, and

-t is the t whose absolute value is the smallest kinematically allowed at

MIN

the computed value.of E. The r.m.s. resolution in M was computed to change
linearl& with M fréﬁ 0.05 GeV at M=1 GeV to 0.13 Gev at M=4 GeV. Events
with t' <-2.0 (GeV/c)2 and M < 1.0 Gev were excluded to restrict the anal-
ysis to a region of relatively uniform acceptance. The acceptance was 0 for
M > L GeV. |

The primarybbackground in the data comes from accidental coincidences be-
tween unassociated muon-like tracks. The size of this background .was estim-

ated Ty studying the ++ and -- events, which appeared to be entirely of this

: {
" accidental nature. Unlike the +- events, these events did not have a sharp

coincident peak in the digitized time-of-.light diffefence between‘left and
right muons, and did not have the sharp pegk in t' at t' =0 which for the +-
events was characteristic of the Bethe-Heitler mechanism.

The M distributionh of the muon pair events is showﬁ'in Fig; 2. Here only
the +- évents are:included, and the estimated (20%) contribution frgm acci-

dentals has been subtracted.

The M distribution expected from the Bethe-Heitler photoproduction of muon ™



pairs is also shown in Fig. 2. This curve comes from a Monte Carlo integration
of the cross seétions<h) and acceptaﬁces for the three dominant Bethe-Heitler
mechanisms - eléstic scattering from Be, quasi elastic scattering from nucleons,
and pion pré&ﬁction. The curve shown is normalized absolutely using independent
information abouﬁ the beam flux, counter and MWPC efficiencies, etc. The es-
timated overall systematic uncertainty in this norm§lization is‘i_l5%. For
M< 2;7 GeV we find no major deviation from the expected Bethe-Hgitler be-
havior, althoughkwe are continuing to investigate the small possible excess of
events between>l.7 and 2.3 GeV.

In the M rang?_above 2.7 GeV we find 5 events.< We egpect fewer than 1 from
‘the Bethe-Heitler process or from the accidental backgrbund. The kinematic
. parameters of these 5 events are listed in Table I. Tﬁeée events have an aver-

age mass of 3.09 GeV, with an r.m.s. deviation of 0.15 GeV. We associate these

events with P(3.1 GeV) photoproduction

YN > YN, (23)
followed by the decay
.- .
P> uu . (2v)
. o
If the t' dependence of the cross section for (2a) is simply e®®’ then the last
L events in Table I suggest that b h(GeV/c)—g, and the first event is a

highly unlikely event.

We calculate from these 5 events that the cross section for (2a) is

+2.2 . .

&7_1.5nb.

OyN + yN ~

at an everage photon.enefgy of 18 GeV. We assume in this calculation
(;) that the contribution to our 5 events from coherent Y photoproduc-
tion bfffthe Be nucleus is negligible, .

(2) that the cross section for (2a) is constant over the range

13.5 < E < 20.5 GeV, - ' | ' e
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(3) that the cross section varies with t! as eP®' yhere b > 3(GeV/c)-2;
(1)

(4) that the ¥ decays to.a muon pair T% of the time , and
(5) that the ¢ decay angular distribution is 1 + c0520 where 6 is the
angle between the lab direction and the positive muon direction in

the ¥ c.m. frame.

Using the vector meson dominance model one can relate the differential

_cross section at t = O reaction (2a) to the total YN cross section. Using

(3)

the procedure outlined earlier we have done this assuming b=U4 (GeV/c:)-'2

and computed -

= 1.0 + 0.3 mb

at an average Y éﬁergy of 18 GeV. This is'considerably smaller than the equiv-~

(3)

Oy (ToT)
i

alent cross sections determined for the other vector mesons.

(5)

We note that éxperimenters at FNAL have measured a similar value for

OWN at a considérably larger value of Ey(ml mb at v 120 GeV/c). Experimenters
(6)

at Cornell operating closé’to threshold for reaction 2a have shown that the
Y photoproductibn cross section there is less than 1.3 nb, and extracted an
upper limit of 1.2 mb fof GwN'
In addition to measuring the ¢ photoprbduction cross section we can set
limits on the photoproduction cross sections for other (unknown) vector meson

(7) The 90% confidence level

states with masses in the range 1 < MV < 2.7 GeV.
uéper limit on the product of the photoproduction cross section and the branch-
ing ratio for any such narfow state.is 0.16 nb¥. Assumptions here are identical
to those made in computing the ¥(3.1 GeV) photoproduction cross section. In
addition,’we see no evidence for Y(3.7 GeV) photoproduction, and determine this
cross section to be less than 72 nb with 90% confidence. We assume the branch-
ing fatio for P(3.7 GeV) to muons to be 0.5 x 10_2. (1)

.
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TABLE I

¥(3.1) EVENTS

No. M ’ g . f . E

1 | 3.05 - -L.b5 18.1
2 - -0.3k4 ) 13.9
3 3.35 -0.08 18.9
. | 3.0k ~0.54 19.2

5 3.06 : -0.20 16.4-
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Fig. 1

Schematic drawing of the apparatus.
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Fig. 2
Histogram of the invariant masses of detected muon pairs. The curve

shows the expected yield from the Bethe-Heitler mechanism.



