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We review recent work on realizing a superfluid within gauge/gravity duality in the top-down
approach, based on embedding a probe of two coincident D7 branes into the AdS-Schwarzschild
black hole geometry. From the QCD point of view, this corresponds to a flavour superfluid in
the presence of a finite isospin density. Moreover, inspired by recent results within QCD on
superconductivity in presence of an external magnetic field, we also investigate the possibility of
a magnetic field triggering superfluidity within a similar holographic approach.
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1. Introduction

In 2008, a simple model for a holographic superconductor was proposed within gauge/gravity
duality, based on the condensation of a charged scalar in a charged Anti-de Sitter black hole ge-
ometry [1, 2]. In this model, the frequency-dependent conductivity displays the features expected
for a superconductor. Numerous generalisations of this model have been studied, in particular a
p-wave superconductor in which a component of an SU(2) gauge field condenses [3].

The p-wave superconductor model may be realised in a ten-dimensional low-energy string
theory construction by embedding a probe of two coincident D7 branes into the AdS-Schwarzschild
background [4, 5]. A finite isospin chemical potential and density are turned on by considering a
non-trivial profile for the SU(2) gauge field on the brane probe. This construction has the advantage
that the dual four-dimensional field theory is explicitly known; it is given by .4 = 4 Super-Yang-
Mills theory plus two .#” = 2 fundamental hypermultiplets, the supersymmetry being broken by the
finite temperature and the finite isospin density. The condensate obtained in this theory is a charged
p meson condensate. String theory embeddings of the scalar or s-wave superconductor have been
discussed for instance in [6, 7]. A p meson condensate for the Sakai-Sugimoto holographic model
has been found in [8].

In our model of [4, 5], we calculated the frequency-dependent conductivity and showed that
it has the behaviour expected for a superconductor. We confirmed that the new condensate state
has lower free energy. We also found a remnant of the Meissner-Ochsenfeld effect in an external
magnetic field: since the spontaneously broken symmetry is global, the Meissner effect just implies
that the superfluid condensate vanishes above a critical value for the magnetic field, which depends
on the temperature. For a related probe D-brane model, fermionic excitations were studied in [9].
In the superfluid phase, the Fermi surface splits into isolated peaks in momentum space. These
correspond to the zeros of the condensate on the normal state Fermi surface.

At the workshop ‘The many faces of QCD’ we were given the opportunity to discuss our
results with M. Chernodub and to compare them to his recent results within QCD [10, 11], see
also [12], in which he found a superconducting state within QCD in a strong magnetic field. These
discussions motivated us to look at a similar mechanism in the holographic setup with D7 brane
probes as described above. In fact, introducing an external magnetic field is technically very similar
to introducing an isospin chemical potential: the magnetic field requires introducing a non-trivial
profile for the spatial component Ai of the gauge field on the brane, with the upper index denoting
the SU(2) component, while the isospin chemical potential requires a temporal gauge field profile
A}. Below, we argue that a superfluid ground state may also be found by using the background
corresponding a magnetic field in the holographic approach.

2. Holographic superfluid at finite isospin density

Let us first discuss the finite isospin case. We start with a ten-dimensional geometry involving
an 4+1 dimensional AdS-Schwarzschild black hole as well as a five-sphere, corresponding to .4/ =
4 Super Yang-Mills theory a finite temperature. The metric is given by

2_’”2 f22~ﬁ2 R2222
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with
4 4

f(r):l—rr—lz f(r):H‘rTIZ' (22)

R is the AdS radius given by R* = 4mg,N.a'> = 24> and ry is the radius at which the event
horizon is found. The Hawking temperature of the system is given by T = %, which is also the
temperature of the field theory on the boundary.

To include fundamental matter, we embed Ny coincident D7-branes into the ten-dimensional
spacetime. For simplicity, we consider massless embeddings (corresponding to massless quarks)
only. In this case the D7-brane wraps AdSs x S°. These D7-branes host flavor gauge fields A p with
gauge group U (Ny). We introduce an SU (2) isospin chemical potential i by a non-vanishing time
component of the non-Abelian background field on the D7-brane. The generators of the SU(2)
gauge group are given by the Pauli matrices 6’. Due to the gauge symmetry, we may rotate the

flavor coordinates until the chemical potential lies in the third flavor direction,
= limAl(r). (2.3)
r—00

This non-zero gauge field breaks the SU(2) gauge symmetry down to U(1)3 generated by the third
Pauli matrix 6. The spacetime symmetry on the boundary is still SO(3) since the Lorentz group
SO(3,1) is already broken down to SO(3) by the finite temperature. The chemical potential (2.3)
is the source for the operator

P < oy + 0039, =n, —ng, (2.4)

where n, /4 is the charge density of the isospin fields.

In addition, we consider a further non-vanishing background gauge field which stabilises the
system for large chemical potentials. Due to the symmetry of our setup we may choose A)],dyG "to
be non-zero. To obtain an isotropic configuration in the field theory, this new gauge field A; only
depends on r. Due to this two non-vanishing gauge fields, the field strength tensor on the branes
has the non-zero components,

By =By =),
2 2 Y 341
Ey - _Fizt - ﬁAtAyv (25)

3 3 3
Frt = _Er = a”At :

The equations of motion which determine the profile of the D7-brane probes and of the gauge
fields on these branes are obtained from the Dirac-Born-Infeld (DBI) action. Since we require two
coincident D7 branes for the necessary SU(2) symmetry to ensure a charged condensate, the DBI
action is necessarily non-abelian. By using the spatial and gauge symmetries present in our setup,
we obtain a non-abelian DBI action of the form

Sper = —Tp7 /d8§ Stry/|det(P[g] +2ma/F)], (2.6)

where Str stands for the symmetrized trace, and P|g] is the pull-back of the ten-dimensional metric
to the worldvolume of the D7 branes. F is the field strength tensor for the U(2) gauge field on the
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Figure 1: The profile of A;: This plot shows the profile of the gauge field A; dual to the condensate J)], in
the AdS radial direction. In agreement with spontaneous symmetry breaking, the field goes to zero at the
boundary p — oo.

brane. We used two different prescriptions for evaluating the action and its equations of motion:
a modified symmetrized trace prescription in analogy to [13], which allows for an all-order evalu-
ation of the action, and the expansion of the DBI action to fourth order. Both approaches lead to
qualitatively agreeing results.

The equations of motion obtained from (2.6) with (2.5) allow for a new solution with both
non-zero A7 and Ai, whose leading asymptotic form near the boundary is

1
2t AIN_dL
p2’ y p2’

where we have defined the dimensionless variable p = r/ry. The full solution has to be obtained

2.7)

numerically. The profile for A; is shown in figure 1.

A?} contains the isospin chemical potential u as well as the isospin density 7. On the other
hand, the source term in A; is absent, such that the leading term in Ai corresponds to a VEV for
the operator

T} < o'y + 00" 0,0 = W% Wa -+ Wa'¥y Wi + bosons, (2.8)

and thus to spontaneous breaking of the symmetry U(1)s. Simultaneously, the spatial rotational
group SO(3) is broken down to SO(2). Using the method of holographic renormalisation [14]
we calculated the on-shell action which determines the grand potential. Since the grand potential
is smaller in the superfluid phase than in the normal phase, we see that the superfluid phase is
thermodynamically preferred.

The non-trivial profile of the gauge field A; is induced by the non-Abelian interaction with
the gauge field A> which generates an effective mass for the gauge field A;. This mass generation
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is due to a Higgs mechanism since the SU(2) symmetry is spontaneously broken in the bulk. The
effective mass is given by m? o< g g (A>)? which is negative in the bulk since g’ < 0. This triggers
an instability such that the field A; condenses.

Moreover, by using the Kubo formula

o(w) = éGR(a),q:O), (2.9)

we may calculate the frequency-dependent conductivity o(®). GX is the retarded Green function
of the current J; dual to a fluctuation of the gauge field component a?, which we calculate using
the method obtained in [15]. The current J;? is the analogue of the electric current since it is
charged under the U(1)3 symmetry. In real space it is transverse to the condensate. Since this
fluctuation is the only one which transforms as a vector under the SO(2) rotational symmetry, it
decouples from the other fluctuations of the system. The conductivity obtained by applying (2.9)
to the retarded Green function for J is displayed in figure 2. It shows the appearance and growth
of a gap as we decrease the temperature, in agreement with expectations from superconductivity.
Both calculational prescriptions — the adapted symmetrized trace prescription and the expansion
of the DBI action to fourth order in the field strength — yield qualitatively very similar results.
Using the Kramers-Kronig relation, which connects the real and imaginary part of the complex
conductivity, we find a delta peak at @ = 0 in the real part of the conductivity, Re 6 (®) o< n;8(w)
in the condensed phase. As expected from Ginzburg-Landau theory, our numerics show that the
superconducting density n vanishes linearly at the critical temperature, ny < (1—1,/T) for T =~ T..
Note that for translation invariant systems at finite density, there is a delta peak in the real part of
the conductivity even in a normal conducting phase since the charge carriers cannot lose their
momentum. This peak is called Drude peak. In our system, however, the charge carriers can
dissipate their momentum although our system is translation invariant. The adjoint degrees of
freedom can transfer momentum at order N> while the fundamental degrees of freedom only at
order N.. The adjoint degrees of freedom effectively act as a heat sink into which the flavor fields
can dissipate their momentum. Thus we do not observe a Drude peak in our system.

Let us now compare our results to QCD. In QCD, the pion condensate is of course the natural
state in isospin asymmetric matter. The condensation of a particle sets in if the isospin chemical
potential is larger than the mass of this particle. According to this rule, the pions condense first
in QCD since they are the Nambu-Goldstone bosons of the spontaneous chiral symmetry breaking
and therefore the lightest particles. However the dual field theory which we consider here is super-
symmetric at zero temperature and therefore chiral symmetry cannot be broken spontaneously. In
this supersymmetric theory, the vector and scalar mesons have the same mass at zero temperature.
Due to finite temperature effects, the mass of the vector and scalar mesons can become different as
we increase the temperature. It is a priori unclear which particle will condense. In our model we
checked that the vector mesons condense first such that the p meson condensation state, which we
describe here, is the physical ground state of our system near the phase transition.

3. Holographic superfluid generated by an external B field

Let us now turn to the possibility of a transition to a superfluid phase with condensed p mesons
which is exclusively induced by a finite magnetic field B. In QCD this effect was found recently in
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Figure 2: Real part of conductivity, Re ¢, in units of NyN.T/(167) versus the dimensionless frequency
w = @/(2xnT) for massless quarks computed from the adapted symmetrized trace prescription for the isospin
background. Distinct curves correspond to T /T, = e (black), 1(red), 0.5 (orange) and 0.28 (brown). By
decreasing the temperature below the critical one, a gap appears which is a characteristic feature of a super-
conductor. In addition prominent peaks arise, corresponding to mesonic excitations. Figure from [5].

[10, 11, 12]. In order to simplify the discussion, we consider the DBI action (2.6) to lowest order
only, i.e. to &(a'?). In addition we assume that the fields do not depend on the coordinates of the
S3, such that we can integrate out this directions. In this limit the effective action for the gauge
field on the branes is the Yang-Mills action

S= 4;2 /de\/?g F{ F* 3.1)
where the Yang-Mills coupling § is determined by the brane tension and the volume of the S°. In
order to switch on a finite magnetic field B in z and flavor 73 direction on the boundary field theory,
we consider the non-zero field strength ny in the bulk. Choosing the B field in these directions
breaks the spatial rotations SO(3) down to SO(2) and SU(2) to U(1)3. As before we now study the
spontaneous breaking of the U(1)3 symmetry which induces superfluidity.

By using the gauge symmetry, we may choose A;’, (x,r) to be the only non-zero gauge field
component which introduces an r-dependent B field. As seen in the section above, the condensation
of the p mesons is induced by the non-Abelian interaction with the background field, A; in this case.
This suggests that we consider the gauge fields A'? dual to the charged p mesons which we expect
to condense, and more precisely an ansatz with non-zero gauge fields A}(j% in the x or y direction'.
The equations of motion from the action (3.1) are

V“Fayv _ _SabcAZFCuV 7 (3.2)

Note that it is also consistent to consider an non-zero Aé'z or A,l 2 exclusively. However this does not lead to a
condensation.
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In the normal phase, i. e. when A2 =0, we have that Afg = xB and the B field is constant. Since
we expect a second order phase transition to the superfluid phase, the condensate <J)}y2> is small
slightly above the critical magnetic field B.. Thus near the expected critical point, we may expand
the solution of (3.1) in € o< (J;}2> as done in [16, 17], giving

A;(x7 r) = xB.+ O(&?), 33
A2cr) = eale ) + (). o
To first order in €, finding the normalizable mode for a}cjyz is equivalent to finding the quasinormal
modes with zero frequency in the normal phase. In order to find this quasinormal mode it is useful
to consider gauge invariant fields Efy = A}C_y j:iAiy, which allow us to reduce the equations of
motion. Due to the non-Abelian interaction €*A2F™ o< B(A26! — A1§%%) (and similarly for
A}{,z) we expect a Zeeman splitting in the mass spectrum, such that one mode of E* gets a higher
mass while the other mass gets lowered. We expect that by increasing the magnetic field we may
get a negative mass state which will lead to meson condensation. For a more precise analysis, we
plan to work out the meson spectrum in the normal phase to obtain the instability, and then to study
the condensate which stabilizes the system.

For the Sakai-Sugimoto model of holographic QCD [18], which involves D8 and anti-D8 brane
probes in a compactified D4 brane background, a related analysis will soon appear in [19] (see also
the contribution [20] to these proceedings).

4. Discussion

We have reviewed recent results on a holographic superfluid in presence of an isospin chemical
potential and density for which the dual field theory is explicitly known. Also, we have argued that
by a related mechanism, a superfluid condensate corresponding to the charged p mesons may arise
also in presence of a magnetic field at vanishing isospin chemical potential and density. Let us add
a few comments about this result:

e In view of our setup using flavour D7 branes, we have a flavour superfluid and not an electro-
magnetic superconductor. The spontaneously broken U (1)3 is global in the dual field theory.
Also, our magnetic field is a flavour magnetic field rather than the standard magnetic field
of electromagnetism. In the QCD approach [10, 11, 12], the condensation mechanism arises
from a non-minimal coupling of the charged p mesons to the electromagnetic field. We do
not have such an interaction here.

e In the simple case considered here, our superfluid is anisotropic as in [10, 11, 12] — the
p meson condensate will point in the direction perpendicular to the B field. Moreover, we
expect our condensate to be dependent on the direction transverse to the magnetic field as
observed in [10, 11, 12].
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e For simplicity we have considered a massless flat D7 brane embedding. For a complete
analysis, it will also be important to take into account the chiral symmetry breaking induced
by the B field, known as magnetic catalysis, which leads to a bending of the D7 brane probes,
as observed for instance in [21, 22, 23].

We plan to explore these issues in more detail in the future.
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