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Supersymmetric dark matter

in light of recent searches for new physics

Abstract

Unraveling the nature of dark matter remains among the most important challenges
of contemporary physics. Indisputably, the lightest supersymmetric particle is one of the
most popular candidates for the dark matter particle.

In this thesis we first present an introduction to the topic of dark matter. It is followed
by a discussion of the current status of supersymmetric dark matter in the framework of
models constrained by some universality conditions at the scale of Grand Unified Theories.
We discuss the most popular models of this class, in particular focusing on the dark matter
relic density and direct detection, properties of the recently discovered Higgs boson and
the fine-tuning problem. We employ methods of Bayesian statistics in order to incorporate
into analysis many experimental constraints with their corresponding uncertainties.

Next we study supersymmetric dark matter in a more general framework of the
Minimal Supersymmetric Standard Model with ten free parameters defined at low energy
scale. First we investigate the lightest neutralino as a dark matter particle. Next we extend
the framework to include other well-motivated supersymmetric dark matter candidates:
the gravitino and the axino. A particular emphasis is put on a discussion of a non-standard
cosmological scenario with low reheating temperature of the Universe after a period of
cosmological inflation. We show that the consequences of this scenario for supersymmetric
dark matter can be quite dramatic. In particular the relic abundance of dark matter
can be reduced due to a modified expansion of the Universe, thus relaxing the impact
of the usually strongest constraint coming from the requirement that the Universe does
not overclose. On the other hand, effective dark matter production in decays of the
inflaton field can cause an enhancement in the dark matter relic density in otherwise
underabundant regions of the parameter space. In the case of extremely weakly interacting
particles we derive interesting new limits on the reheating temperature and the mass of

the dark matter particle.



Supersymetryczna ciemna materia

w Swietle obecnych poszukiwan nowej fizyki

Streszczenie

Poznanie natury ciemnej materii jest jednym z najwiekszych wyzwan, jakie stoja przed
wspdlczesng fizyka, zas najlzejsza czastka supersymetryczna pozostaje bez watpienia jedna
z najbardziej popularnych kandydatek na czastke ciemnej materii.

Niniejsza rozprawa rozpoczyna sie wprowadzeniem do tematyki ciemnej materii.
Nastepnie zaprezentowany jest obecny stan badan nad supersymetryczng ciemna materia
w modelach z dodatkowymi ograniczeniami narzucanymi na skali Teorii Wielkiej Unifika-
cji. Rozwazane sa najpopularniejsze modele tego typu, ze szczegdlnym uwzglednieniem
gestosci reliktowej i bezposrednich poszukiwan ciemnej materii, wlasnosci niedawno od-
krytego bozonu Higgsa oraz malego problemu hierarchi. Ograniczenia eksperymentalne
w opisywanych analizach sa nakladane przy uzyciu metod statystyki bayesowskiej z
uwzglednieniem niepewnosci wynikajacych z pomiaréw oraz obliczen teoretycznych.

W dalszej czedci pracy opisane jest zagadnienie supersymetrycznej ciemnej materii w
bardziej ogélnym kontekscie minimalnego supersymetrycznego rozszerzenia Modelu Stan-
dardowego z dziesiecioma swobodnymi parametrami zdefiniowanymi dla niskiej skali ener-
gii. Dyskutowane jest przy tym przypadek najlzejszego neutralina jako czastki ciemnej
materii. Nastepnie model ten jest rozszerzany poprzez dodanie dwéch innych supersyme-
trycznych kandydatek na czastki ciemnej materii: grawitina i aksina. Ze szczegdlna uwaga
rozwazane sa przypadki z niska temperatura podgrzania Wszechswiata po okresie inflacji
kosmologicznej. Pokazany jest mozliwy znaczny wplyw takich zalozen na gestosé reliktowa
ciemnej materii. Jej warto$¢ moze zosta¢ znacznie zredukowana w wyniku szybkiej ekspan-
sji Wszechswiata lub istotnie powiekszona w wyniku rozpadéw pola inflatonu, co pozwala
na rozwazanie przypadkéw typowo wykluczonych w standardowych scenariuszach kosmo-
logicznych. Dla bardzo stabo oddzialujacych czastek wyprowadzone sa nowe, interesujace

ograniczenia na wartos¢ temperatury podgrzania i mase czastki ciemnej materii.
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Chapter 1

Introduction

Historically, one of the most important aims of philosophical and then scientific
studies over the centuries has been the identification of the basic constituents of
matter. This effort, which eventually led to the formulation of the Standard Model
(SM) of particle physics, culminated in the recent discovery of the Higgs boson
by the CMS [I] and the ATLAS [2] Collaborations at the Large Hadron Collider
(LHC). In spite of its enormous success, however, the SM appears to be incomplete
in light of the observed data. One such piece of evidence for beyond-the-SM physics
is the existence of so-called dark matter (DM), making up about 27% of the total
mass-energy density in the Universe [3], which is significantly more than the 5%
attributed to ordinary (baryonic) matter. Understanding the nature of DM is one
of the most important quests in contemporary physics.

This prompts one to consider extensions to the SM in the description of funda-
mental interactions. Among various extensions of the SM that have been proposed
supersymmetric (SUSY) models remain arguably the most popular. They provide
both an elegant theoretical description, as well as a possibility of simultaneously
solving several other serious problems of the SM. They predict the existence of su-
perpartners for the ordinary elementary particles. Remarkably, the lightest of these
superpartners (the lightest supersymmetric particle, LSP) can play the role of the
dark matter particle.

One example of such particle that can be found in the most popular super-
symmetrized version of the Standard Model (Minimal Supersymmetric Standard
Model, MSSM), is the lightest neutralino. It is electrically neutral and stable (as-
suming R-parity conservation), as well as it belongs to a group of massive weakly
interacting particles that can be viable DM candidates with the correct value of the
relic density. Importantly, in some of the most important scenarios neutralino DM
can be potentially found in future dark matter direct or indirect detection exper-
iments within the next few years. A requirement of reproducing the correct value
of the relic abundance typically results in a strong reduction of the allowed param-

eter space of supersymmetric models. The neutralino DM scenario can be further



10 Introduction

restricted by imposing collider constraints. In particular, important constraints of
this type are associated with the mass and signal rates of the recently discovered
Higgs boson. Moreover, one typically considers additional experimental constraints
that come from, e.g., searches for supersymmetric particles at the LHC, B-physics
and the anomalous magnetic moment of the muon.

The value of the Higgs boson mass measured at the LHC, as well as lower
limits on the masses of SUSY particles suggest that the characteristic mass scale of
supersymmetry should be at least of the order of 1 TeV. This mass scale is associated
with quarks and gluinos, but in principle one could also consider scenarios with such
heavy neutralinos. However, if one wants to discuss neutralino with mass noticeably
heavier than about 1 TeV, one often finds it particularly difficult to satisfy the relic
density constraint. One way to overcome this is to assume low value of the reheating
temperature T after a period of cosmological inflation. In this scenario a modified
expansion rate of the Universe in the reheating period, i.e., before the radiation
dominated epoch in the evolution of the Universe, results in an effective dilution
of the dark matter particles. On the other hand, for low Tk additional production
of DM in decays of the inflaton field is also possible. This improves a statistical
validity of regions that are characterized by too low a relic abundance but can be
favored, e.g., from the point of view of naturalness.

Beside the lightest neutralino, supersymmetry also offers two other
well-motivated DM candidates that can be the LSP: the gravitino and the axino.
They interact extremely weakly but can populate the Universe typically originating
from late-time decays of the next-to-LSP (NLSP) and from scatterings of SUSY
particles in thermal equilibrium. The limitations of scenarios with gravitino or ax-
ino DM come from cosmological considerations. In particular, the aforementioned
late-time decays of the NLSP can destroy light elements in the Universe and there-
fore violate constraints associated with the Big Bang Nucleosynthesis.

In this thesis we will discuss in detail all the subjects associated with super-
symmetric dark matter outlined above. We begin with an introduction to the topic
of dark matter. In Chapter [2] we introduce some basic concepts of cosmology that
play a fundamental role in a further discussion. Next, in Chapter [3| we discuss the
observational evidence for DM and the most popular DM candidates. Chapter [4] is
devoted to a short description of essential features of the SM and a more extensive
one for supersymmetry. It is followed by Chapter |5/ in which we discuss the issue
of the relic density of supersymmetric DM candidates. In Chapter [6] we present
fundamental concepts of Bayesian statistics and the way it is applied to studying
supersymmetric models.

The results presented in Chapter [7] concern supersymmetric models constrained
by universality conditions at the scale of Grand Unified Theories. Beside the topic

of neutralino DM, an emphasis is put on the implications stemming from the mass of
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the recently discovered Higgs boson. In particular, we discuss the possibilities that
either the second lightest Higgs in the MSSM is responsible for the observed signal
or that the signal comes from a combination of both the lightest scalar Higgs and
another Higgs scalar or pseudoscalar. This chapter is based on research projects done
by the author of the thesis in collaboration with other members of the BayesFITS
group.

In Chapter [§]we discuss neutralino DM in a more general framework of the MSSM
with ten free parameters defined at low energy scale, as well as for the NMSSM
with three more parameters. In particular, we focus on a scenario in which the
correct value of the DM relic density can be achieved after assuming low reheating
temperature of the Universe. We consider cases both with and without effective
direct and cascade decays of the inflaton field to DM.

Chapter [9 is devoted to gravitino and axino DM scenarios. We begin with a
discussion of a case with sneutrino NLSP decaying into gravitino DM in a framework
of SUSY models with some universality conditions at high energy scale. We then
analyze the impact of taking low Tk on gravitino and axino DM scenarios in
the MSSM. In these cases we find some interesting limits either on the reheating
temperature or on the mass of DM particles.

We conclude in Chapter [10]






Chapter 2
Basics of cosmology

In this chapter we will briefly describe some of the basic concepts in cosmology that

will be useful in the rest of the thesis (for a detailed discussion see [4], [5]).

2.1 Friedmann equation

We begin with the key observation by Hubble [6] that was interpreted as the evidence
for the expansion of the Universe. Let us introduce the scale factor a(t) that depends
on a time t and is used to extract the expansion dependence of the physical distance
d(t) between any two objects in the Universe from their peculiar motion. It is related
to d(t) by

d(t) = a(t) dy, (2.1)

where dj is called the comoving distance. It corresponds only to the peculiar motion
of the objects. Differentiating Eq. (2.1)) with respect to time one obtains the Hubble

law

d(t) = a(t) d(t) = H(t)d(t), (2.2)

where H = a/a is called the Hubble expansion parameter (rate). H is typically
written in terms of its value h in units 100 km/s/Mpc, Hy = 100 hkms™' Mpc™*,
where h = 0.673(12) [7] and index 0 in the whole thesis denotes the value at present
time.

The evolution of the Universe is well described in the framework of
Friedmann-Robertson-Walker (FRW) metric that is the solution to Einstein’s field
equations of general relativity for a homogeneous, isotropic Universe. In particular

this allows one to relate the Hubble expansion rate to the energy density p in the
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Universe due to the Friedmann equatior!} For the flat Universe it read{?]

H2 _ 87Tp

= 2.3
s 23)

where Mp = 1.2 x 10" GeV = /87 Mp is the Planck mass (Mp = 2.435 x 10'® GeV
is called the reduced Planck mass). The value of p that saturates Eq. is called
the critical density p. ~ 107> h? GeV/em?® ~ 8 x 10747 h2 GeV* [1].

One of the contributions to p is related to the radiation energy density pg, where
by radiation we mean all the light (or massless) degrees of freedom (associated with
the particles) that move with relativistic velocities at a given time t. As the Universe
expands, the temperature T decreases and some of the light degrees of freedom
become non-relativistic and they do not contribute to pgp any more. The radiation

energy density can be written in terms of T" as

7T2

—qg.(T) T, (2.4)

pR:BO

where ¢, (7') is the number of relativistic degrees of freedom at temperature 7'
The energy density of the matter content of the Universe py can be decomposed

into two parts associated with ordinary baryonic matter p, and with DM ppy

PM = Pb + PDM- (2.5)

The relative contribution of a given species (e.g., DM, b or A) to the critical density

is often called the abundance

Q. h? =22, (2.6)

Pc

where, e.g., i = DM, b, A.

2.2 Reheating and the radiation dominated epoch

It is usually assumed that the early Universe underwent a period of cosmological
inflation during which an accelerated expansion of the Universe was driven by the
vacuum energy density of a scalar field — an inflaton. After inflation the large
potential energy of the inflaton field was transformed into the kinetic energy of
produced particles. As a result of this process, dubbed reheating, the Universe
entered a radiation-dominated (RD) epoch.

A careful analysis shows that the maximum temperature T},,, in the evolution of

the Universe after inflation was reached during reheating. At that time the energy

'We present here the first Freedman equation. The second equation involves é and will play
less important role in the thesis.

2We use the convention where ¢ = 1. The cosmological constant term proportional to A can be
formally absorbed in p by a redefinition of the energy density pnew = pola + (A M3) /8.
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density p of the Universe was dominated by the contribution p, associated with
coherent oscillations of the inflaton field around the minimum of the potential. As
ps decreased with time producing light degrees of freedom, i.e., radiation, at some
moment condition pr > p, was achieved that marked the onset of the RD epoch.
The temperature at which this happened, i.e., the initial temperature of the RD
epoch, will be later denoted by Tgp.

For simplicity it is often assumed that reheating was an instantaneous process
that happened when the decay rate of the inflaton field I'y was equal to the Universe’s
expansion rate H(t). In the instantaneous reheating approximation we further
assume that the whole ps was transformed simply to pgr. Using Eq. and
one then obtains

473, (Tg) T3
Ly =4/ T 945( ) Mil definition of Tk, (2.7)

where we introduced a so-called reheating temperature Tg. In the simplified ap-

proach of instantaneous reheating one interprets this quantity as the largest tem-
perature Ty, after a period of cosmological inflation

TR _ Tﬁnst reh. TIII?;; reh.. (28)
However, when the dynamics of reheating is taken into account, Eq. (2.8)) does not
hold exactly and one typically obtains [§]

non-inst. reh. non-inst. reh.

max

In this case Ty still serves as an useful parameter in a discussion of the transition
from the period of cosmological inflation to the RD epoch since Ty ~ Trp, although
there is no exact equality.

During the RD epoch, with no additional production of the light degrees of
freedom, radiation energy density scales as pr ~ a~* with expansion. Applying this
to Eq. one obtains T ~ a~!. In this case the entropy density associated with
dominant light degrees of freedom is given by

272

=g, T3, 2.10
s="59 (2.10)

where g, is the effective number of relativistic degrees of freedom for entropy.

In absence of additional entropy production one obtains constant total entropy

S = sa® = const and therefore s ~ a 3.
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2.3 Thermal equilibrium and freeze-out

Let us now assume that the matter content is dominated by a non-relativistic particle
x with mass m, which we will later identify with a DM candidate. Its energy density
is approximately equal to p, ~ m, n,, where n, is the number density. Taking into
account only expansion one obtains n, ~ a‘3E| However, e.g., in the presence of xx
annihilations or x decays the evolution of n, can be much more complicated.

In particular, let us assume that y interacts efficiently enough so that at
some moment its annihilation rateﬁ exceeds the expansion rate of the Universe,
Fann = Ny 0ann¥ > H, where 0., is the annihilation cross section and v is the
relative velocity of two annihilating particles. In this case they remain in thermal
equilibrium. The equilibrium number density is determined by the temperature and

m,. In the (non-)relativistic limit one obtains

T3 e e
gfrz ) when T' » m,, relativistic limit,
Pex >3 TraaNR e
o e ™" when T" « m,, non-relativistic limit,

where g, is the number of degrees of freedom of the particle .

When T becomes sufficiently low so that I'y,, < H, the x particles freeze-out
from the thermal equilibrium state. Using Eq. (2.3)) in the RD epoch, when pg ~ p,
and Eq. (2.4) one obtains the condition for freeze-out

TQ

nx(Tf> (Uannv) = 1—‘ann ~H ~ ﬁ;, (212)

where T} is the freeze-out temperature. After freeze-out in the RD epoch the

3

comoving number density of y particles remained fixed, n, a® ~ const. One typically

presents this in terms of a yield that is defined as

_ Ny Ny
Yo="7~Ts (2.13)

and Yy = const after freeze-out.

3This means that nXaB = const, where the comoving number density nxa3 is defined as the

average number of particles in a cube with size a® that is growing with the expansion of the
Universe.

4The quantity (oannv) represents an effective volume per unit time in which some probe x
particle moving with the velocity v can annihilate if it meets another particle y. Hence the
number of such annihilation events that can occur per unit time is equal to (Gan,v) multiplied by
the average number density n, that can be met inside this volume, i.e., I'ann = ny (Cannv). We
assume here that n, = const within the volume (cannv) which is, e.g., well satisfied if (gannv) is
tiny.
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2.4 Boltzmann equations

An accurate calculation of Y}, requires solving the Boltzmann equation that describes
the out-of-equilibrium behavior of a thermodynamic system. In a general form it

reads

L[f]=C[f], (2.14)
where f(x,p,t) is the phase space density, the Liouville operator L describes the
time evolution of the system due to diffusion and “external forces” while C[f] is
the so-called “collision term” that is associated with collisions between particles.

In the homogeneous, isotropic FRW Universe in the presence of annihilations
XX — any final state one can rewrite Eq. (2.14) as (see, e.g., [4,9])

dny

Tl —3Hn, — <O’UM¢1>(TLi —n? ), (2.15)

eq,X

where o = Zﬁnal Oxx—final @nd the quantities o,, fina1 denote the corresponding
annihilation cross sections. The first term on the right hand side (RHS) of Eq. (2.15))
corresponds to the expansion of the Universe, while the second to the annihilation

processes. Similarly, one can derive the Boltzmann equation for the radiation

dor

d —4Hpp + 2{ovmg) <E>(ni —nZ..), (2.16)

eq?X

where (F) is the average energy of the annihilating particles. The pair of coupled
Boltzmann equations and can be solved to find Y, at freeze-out. The
role of Eq. is to determine pgr and therefore the temperature of the Universe
via Eq. and the equilibrium number density of y.

The Moller velocity vy, in the rest frame of any of the incident particles or in
the center of mass (CM) frame is equal to vy = |vi — va| = v, where v denotes the
relative velocity of both annihilating particles. A thermal average (oan, vygl) for the

xx annihilations reads

22T Sfmi dso (s —4m3) /s K <\/T§>

2
<4w m2 T K, (%))

where K is the i-th order modified Bessel function of the second kind.

: (2.17)

<Oann UM¢1>m1=m2=mx =

5Tn general this means an “external influence” on particles, i.e., not from particles themselves.
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2.5 Large Scale Structure and cold/warm/hot

dark matter

Although the y particles do not annihilate efficiently after freeze-out, they can
typically still effectively scatter on light particles of the SM (radiation). The light
species have usually masses significantly lower than the mass of the particle Y,
msm € my. Thus their number densities are not Boltzmann suppressed. Thanks
to these scatterings, momentum transfer between the SM and the x sector is
efficient and y remains in kinetic equilibrium. The time of decoupling from kinetic
equilibrium (kinetic decoupling) tq of the DM particles plays a crucial role in the
dynamics of the Large Scale Structures (LSS) formation in the Universe (for a review
see, e.g., [10]). The LSS denotes an observable pattern of structures at scales of
hundreds of millions of light years that consists of galactic filaments, great walls
and cosmic voids. They arose from initial small fluctuations in the DM density
distribution that had grown due to the gravitational attraction, but could have
been effectively smoothed by radiation pressure or free streaming of DM particles
before the matter-radiation equality.

The lower limit on the characteristic length scale of fluctuations in DM density
can be translated into a lower limit for the mass of initial clusters of matter (so-called
protohalo mass Mpt0). For the non-relativistic (cold) DM (CDM) particles such
protohalos could eventually grow to the size of galaxies. On the other hand if the DM
particles were moving with relativistic velocities, as it is in the case of so-called hot
DM (HDM), the smoothing effect would be large leading to relatively high Mto.
In this scenario we would expect that galaxies were formed later in the evolution
of the Universe due to some other mechanism that caused fragmentation of large
protohalos. However, this prediction is in contrast with deep field astronomical
observations.

The warm dark matter (WDM) case corresponds to a somewhat intermediate
situation between CDM and HDM. N-body simulations suggest that galaxies with
WDM halos may be surrounded by a smaller number of dwarf galaxies than in the
case of CDM. This could potentially resolve the so-called missing satellite problem,
i.e., low number of such surrounding galaxies in the observational data of the Local
Group [1I]. On the other hand the best theoretically motivated candidates for the
DM particles seem to follow the CDM scenario.



Chapter 3

Dark matter

In this chapter we will first discuss the observational evidence of the existence of
DM (for a review see, e.g., [12]). In particular, we will focus on selected observations
that are most often mentioned in this context. Then we will present several possible
candidates for the DM particles with particular emphasis on the ones that are

important from the point of view of this thesis.

3.1 Observational evidence

The first speculation about the existence of DM is usually attributed to Zwicky’s
original paper [13] published more than eighty years ago in which he studied the
Coma Cluster. The cluster consists of about 1,000 galaxies moving along com-
plicated orbits that are determined by gravitational force. Careful analysis of this
movement led to the conclusion that there should be a large amount of non-luminous
matter contained in the cluster. Zwicky referred to it as dunkle Materie (dark mat-
ter).

One of the most widely recognized arguments for the existence of DM nowadays
is based on galaxy rotation curves, i.e., the relation between orbital velocities v of
visible stars or gas and their radial distance r from the center of galaxy. It was first
noted in the late 30s [14] and then confirmed more than thirty years later [15] [16]
that the outer parts of the M31 disc were moving with unexpectedly high velocities.
According to these observations velocities of distant stars in M31 remain constant
over the wide range of r. Similar results were later obtained [I7] for various other
spiral galaxies. This is in contradiction to the standard calculation based on the
distribution of visible matter in the galaxy. The balance between gravitational and

centrifugal forces
GmM /r* = mv?)r, (3.1)
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outside the region where majority of galaxy mass is enclosed should lead to so-called

Keplerian fall

v o 1/4/r, (3.2)

i.e., descending (not flat) rotation curve. The flat behavior suggests that the core of
the mass distribution in M31 spans much larger distances than it could be inferred
from the visible matter. Similar results were also obtained for different galaxies.

The next extremely important argument is associated with gravitational lensing,
i.e., the bending of light in a strong gravitational field (for a review see, e.g., [18]).
The effect is most easily observed when light passes through a very massive and/or
dense object like a galaxy cluster or the central region of a galaxy. Light rays can
bend around such an object (lens) which leads to a multiplication of the image of
the light source for the observer, as can be seen in Fig. (left panel). In this case
we call this effect strong lensing. In an ideal situation, when the source lies directly
behind the circular lens, one can obtain the so-called “Einstein ring”. The size and
shape of the image can be used to determine the distribution of mass in the lens
which can then be compared with the visible mass.

If the lens is not as massive as in the case of strong lensing, or light moves far
from the core of the galaxy or cluster, the effect becomes much weaker. However,
it can still be analyzed even in the case of individual stars. In particular it was
proposed [19, 20] to use such microlensing effect to look for DM in the Milky Way in
form of Massive Compact Halo Objects (MACHOs) which should cause occasional
brightening of stars from nearby galaxies. This strategy led to an exclusion of
MACHOSs with masses 0.6 x 1077 < M < 15M¢ as a dominant form of DM in the
Galaxy [21].

Weak lensing corresponds to a somewhat intermediate situation to both cases
described above. The most spectacular example of this effect can be seen in the
Bullet Cluster which consist of two clusters of galaxies after a recent collision. The
hot-gas clouds (observed thanks to the X-ray emission) that contain the majority
of the baryonic mass in both clusters, have been decelerated in the collision, while
the movement of the galaxies in clusters remained almost intact. The analysis of
the gravitational lensing shows that the center of mass for both clusters is clearly
separated from the gas clouds as can be seen in Fig. (right panel). As a result
we conclude that there is large amount of additional mass in both clusters usually
identified with DM. It was the first, and so far only, case when one observed a
dynamical system with the total center of mass displaced from that of the baryonic
visible part of the cluster.

An important role in determining the DM abundance is played by the Cosmic

Microwave Background (CMB) radiation that originates from the recombination
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Figure 3.1: Left panel: Strong gravitational lensing around galaxy -cluster
CL0024+17. Taken from Ref. [18]. Right panel: Bullet Cluster mass density con-
tours (green) and the distribution of baryonic matter. Taken from Ref. [12].

epoch. It is characterized by the thermal black body spectrum with the tempera-
ture T' = 2.7255(6) K [7]. Small non-uniformity of the distribution of this tempera-
ture corresponds to the tiny fluctuations of the matter density in the early Universe
that subsequently gave rise to all the structures in the Universe. The temperature
anisotropies are usually expanded in terms of spherical harmonics and then cosmo-
logical parameters (e.g., Qnr = Qp + Qpu or Qp for ordinary baryonic matter) can
be obtained by fitting to such spectrum with underlying assumption of some cos-
mological model, e.g., the ACDM model. The currently measured values [3] of Qy;
and (), obtained by fitting the six-parameter ACDM model suggest that the matter
component of the Universe is dominated by non-baryonic DM,

QO h* = 0.02207(27), (3.3)

Qpm h? = 0.1198(26), (3.4)

The remaining dominant contribution €2y ~ 0.685 account for the so-called dark
energy. A schematic cartoon showing different contributions to the mass-energy
content of the Universe, as well as an all-sky CMB map released by the Planck
Collaboration [3] is shown in Fig. 3.2]

Further data about the amount of matter and dark energy components of the
Universe can be derived from analyses of baryon acoustic oscillations (BAO)E],

supernovae type la or from Lyman-« forest. In the case of elliptical galaxies and

IThey are periodic fluctuations in the density of baryonic matter that originated from opposing
effects of gravitational attraction and radiation pressure.
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Dark Matter

Dark Energy

Figure 3.2: Left panel: The total mass-energy distribution in the Universe and Right
panel: the temperature anisotropy of CMB after the first results released by the
Planck Collaboration [3].

galaxy clusters another important piece of evidence for the existence of DM comes

from the X-ray emission from hot gas (for further discussion see, e.g., [12]).

3.2 Dark matter candidates

We will now discuss some of the most popular candidates for the DM particles (for
a recent review see [22]). We will begin with a brief summary of what we can learn
from the experimental observations discussed in Section [3.1] We then move on to a

more detailed discussion of specific DM candidates.

3.2.1 Properties of dark matter candidates

The first important conclusion derived from observations is that DM particles should
carry no electric charge and interact preferably only weakly (or subweakly) with
ordinary matterEl Moreover, from the CMB data we have already seen in Eqs
and that the baryonic component constitutes only about 20% of all matter in
the Universe. Hence a majority of DM should have non-baryonic nature.

We have pointed out that the LSS data accompanied by deep-field observations
constrain from above the allowed average velocity of the DM particles. As a result
one can conclude that relativistic HDM particles, in particular neutrinos, cannot
constitute the majority of DM. It should be dominated by non-relativistic species

as in the CDM scenario.

2Compare, e.g., the Bullet Cluster where DM clouds passed the gas clouds and each other
almost intact.
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Figure 3.3: Characteristic cross section of DM interactions with ordinary matter as
a function of DM mass is shown for some of well-motivated DM candidates. The
red, pink and blue colors represent HDM, WDM and CDM, respectively. Taken
from Ref. [22].

Last, but not least, the lifetime of the DM particles should be long enough so as
to make sure that they can survive until now.

To summarize a good DM candidate should be:

e cither stable or long-lived with the lifetime exceeding the age of the Universe

(for a recent discussion about lower bounds on the decaying DM lifetime

see [23]),

e non-baryonic, i.e. with no electric and (preferably) color charges,
e non-relativistic and massive.

In Fig. 3.3 we summarize the features of some of the most popular DM candidates
that are motivated by particle theory. The candidate that will be of particular
interest to us, namely the neutralino, which is a weakly interacting massive particle
(WIMP) appearing in the MSSM, is characterized by masses from about 1 GeV to
10* GeV. It interacts with the electroweak strength. Another possible supersym-
metric DM candidates, i.e., the gravitino and the axino have typically masses lower
than in the case of neutralino DMEl They also interact significantly more weakly.
Some of the candidates presented in Fig. [3.3 can compose either CDM or WDM or
even HDM depending on the mass.

3The gravitino is the supersymmetric partner of the graviton, the particle that mediates
gravitational interactions. The axino is the superpartner of the axion (see Section [3.2.4)).
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3.2.2 Weakly Interacting Massive Particles

As we have already discussed, neutrinos, the only weakly interacting particles in
the SM, remain relativistic and therefore can only constitute HDM. However, in
a minimal approach this can be circumvented by taking the DM candidate to be
a kind of “heavy neutrino”. A simplest such possibility with massive left-handed
neutrinos was proposed in [24], but subsequently excluded in light of direct DM
searches. However, the main idea survived and is often referred to as a WIMP DM
scenario.

Today’s value of the DM relic abundance is given by

my ny(To) p2 = Mx 75 nx(To)

QO h? ~
X Pe Pe T(?

h?, (3.5)

where Ty ~ 2.35 x 1073 GeV [7] is the temperature of the Universe at present
and p, (1p) ~ myn,(1p) is the corresponding WIMP’s energy density. The yield
Eq. remains constant after freeze-out Yy = Y. Using this and applying the
condition for freeze-out Eq. one can rewrite Eq. as

X

~ 20 2 h?, 3.6
Pec MP <UannvM¢l>f ( )

where T} is the WIMP freeze-out temperature and

my

- (3.7)

€T =

The value of x¢ can be roughly estimated as follows. Let us assume for simplicity

that around freeze-out n, ~ n{? with the non-relativistic equilibrium number density

from Eq. (2.11). From Egs (2.12)) and (3.6) one then obtains

. 1 107%GeV
et Ty Lq e L W07GeV

_ ~ 3.8
my MP <UannUM¢l>f * Tg) My my ( )
where we also assumed Q, h? ~ 0.12 in the last step. Such a rough estimate leads
to x5 ~ 30 for m, ~ 100GeV — 10TeV. More careful checking shows that the

appropriate value is closer to x5 ~ 25.
Finally we put the estimated value of x; back into Eq. (3.6) and find

(TanmV)f ~ 3 x 1072 cm? /s, (3.9)

for which the correct value of the WIMP DM relic density is obtained. For typical
velocities v ~ 0.1 ¢ one obtains o ~ 1073¢ cm?, which corresponds to a cross section
of weak strength for WIMP with mass around the electroweak scale. On the other
hand, as we will see in Section [1.2.1) some new physics around this energy scale
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should be expected in order to avoid possible large loop corrections to the Higgs
boson mass. This remarkable coincidence is widely known as the WIMP miracle.
However, it is important to note that one does not have to be strictly confined to
the electroweak scale in order for WIMP DM scenario to work. If g is the coupling

constant connected with the WIMP annihilation process, then one expects

g4

—
my

Cann OC (3.10)
Eq. can be satisfied for a wide range of masses (from 10MeV to 10TeV)
and coupling constants (from gravitational to strong) as long as their ratio is kept
fixed [25].

In a very precise treatment, which takes into account the dynamics of freeze-out,
one needs to solve the set of Boltzmann equations and to find Y}.
One can identify major steps of this procedure. The first one is to determine the
temperature at which freeze-out begins T e, which lies close to T defined by
Eq. E| In the second step one needs to calculate (o, Umg)y for T around
Ttpeg ~ Ty. Finally, in the third step, the DM relic density can be effectively
calculated by a proper integration of the Boltzmann equation starting from Tﬂbeg.ﬂ

A prototypical example of WIMP, the neutralino, appears in the context of
supersymmetric extensions of the SM in which it often plays the role of the LSP.
This serves as an important argument (though not the only one) for SUSY as a

theory of physics beyond the SM as we will discuss in Section 4.2.3

3.2.3 Extremely Weakly Interacting Massive Particles

In addition to the neutralino, supersymmetric extensions of the SM provide us also
with the other DM candidates, namely the gravitino and the axino (for a recent
review see [26]). They belong to a group of so-called extremely weakly interacting
massive particles (EWIMPS)H since they interact much more weakly than ordinary
WIMPs. Nevertheless, in general they can still constitute CDM and give the right

value of Qcpvh?. EWIMPs remain for the most part elusive from the point of

4The temperature when the WIMP yield begins to differ from its equilibrium value is also
referred to as the decoupling temperature Tge.. In the following we will denote it by T peg.
Similarly, the freeze-out temperature is often in the literature defined as the temperature at which
the yield becomes constant. We will denote this temperature by Tt cng.

50ne could in principle omit the first step and then in the third one integrate the Boltzmann
equation from T ~ 0 (this would also require knowing {(can,vmgy for a vast range of T.).
Nevertheless, this turns out to be extremely ineffective from the point of view of numerical
integration since for T' > Tt 1, the WIMP number density is determined by its equilibrium value
ny ~ n$t which depends only on m, and T'. T peg has to somehow be estimated. However, such
estimates can be accurate enough so that Qxh2 can be calculated with high accuracy.

6They are sometimes referred to as super-weakly interacting massive particles (super-
WIMPs) [27] or, particularly in the specific context of “freeze-in” thermal production [28], feebly
interacting massive particles (FIMPs).
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view of current DM searches, but in some specific cases it could be possible in such
scenarios to get some interesting hints about the early Universe from collider physics
(see, e.g., [29]). On the other hand models with gravitino or axino DM can be tightly
constrained by cosmological considerations.

In EWIMP DM scenarios we typically assume that after a period of cosmological
inflation, the temperature in the Universe was never high enough for EWIMPs to
remain in thermal equilibrium. However, they could still be produced in scatterings
and decays of other particles that were themselves in equilibrium. This mecha-
nism will be called thermal production (TP). The Boltzmann equation for TP of
supersymmetric EWIMP DM reads

d
% + 3Hnpwivp = Yscat + Zdec, (3.11)

where Yo = Z” o(i+j—a+..)vmgynin; and Xgee = Y, L —a+...))n;
and n; are the number densities of heavier supersymmetric species. In the RD epoch,
when T' ~ a~ !, Eq. can be rewritten in terms of the yield and integrated from
Tr = Trp to Ty. This leads to

T
"D Escat + Edec

Yewimp,o = f dT

; N (3.12)
0

We will discuss TP with more details in a more general case of non-instantaneous
reheating in Appendix

Another possible source of relic EWIMPs is late-time decays of some heavier
particle after it froze-out from thermal plasma. In particular for gravitino or axino
LSP such a heavier species can be the next-to-LSP [30, 31] E] This is typically referred
to as the non-thermal production (NTP) and resulting contribution to the EWIMP
DM relic density is given by

Qewinvp h° = TEWIMP Oxisph?, (3.13)
TMNLSP
where Qnrgp h? is calculated as if the NLSP was actually the DM particle.
EWIMPs can also in principle be produced in direct inflaton field decays at the
end of inflation. However, such a mechanism is highly model-dependent and we will
not treat this in the rest of the thesis.

3.2.4 Axion

Axion basics An interesting viable DM candidate emerges from the solution to
the strong CP problem (for reviews see [32] [33] 34]). Probably the only still viable

"It is important to distinguish this from the production in decays of the NLSPs being in thermal
equilibrium that by definition is included in TP.
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and certainly the most popular solution to this problem was proposed in [35], [36].
It introduces a spontaneously broken (at some energy scale f,) global chiral U(1)pq
symmetry known as the Peccei-Quinn symmetry. The associated pseudo-Goldstone
boson, which is the CP-conserving axion field a, carries PQ charge. To make sure
that U(1)pq possesses gluon anomaly one adds an additional term to the Lagrangian
densityf] of Quantum Chromodynamics (QCD) Lqgcp. It reads

5 ;‘—; e (3.14)

L,

It contributes to an effective axion potential and the minimization condition reads
{a) = —f,0. The parameter 0 is a priori required to be tinyﬂ 6 < 107" and it

corresponds to the following term in Lqcp
Lac 30— GG (3.15)
8 H a

This term is shifted away to f.g = 0 after a spontaneous U(1)pq-breaking, a —
Aphys + (@), as can be seen from Eqs and (3.15).

The simplest possibility of f, ~ v has been ruled-out long ago [37] and we will
instead assume f, » wv. This leads to a light and extremely weakly interacting
invisible axion. In order to justify the separation between f, and the EWSB scale
one assumes that a resides in an SU(2), x U(1)y singlet complex scalar field carrying
non-zero PQ charge. However, a still needs to couple to the SU(3). sector in order
to introduce the gluon anomaly. There are two popular approaches to address this
issue. One is the Kim-Shifman-Vainstein-Zakharov (KSVZ) model |38, 39] in which
we assign non-zero PQ charges to some new heavy quark(s). The other possibility is
the Dine-Fischler-Srednicki-Zhitnitskii (DFSZ) approach [40, 41] where one assigns
non-zero PQ charges to two Higgs doublets that couple to both a and the SM quarks
(that also carry PQ charges).m The gluon anomaly term is then generated by SM
quark loops.

The effective axion interaction Lagrangian after integrating out all heavy PQ

charged fields can be written up to the lowest order terms in 1/f, as

a a ol =~ icoa
£2ffint = Cl%ZqQVH%Q—Eq(quqRe 2 /fa—i—h,c.)
C3 A CVaWI/V ~ Cayy ~
GG wWww B B + Lieptons, (3.16
5oy, 9O gp g, AW gy a BB Lipions, (3:16)

8In the following, we will simply call £ as the “Lagrangian”.

9Tt is where the strong CP problem manifests itself. The smallness of f is required since the
CP-violating term in Lqcp contributes to the neutron electric dipole moment d,, which is tightly
constrained by experimental data.

ODirect axion-SM quarks couplings are absent since the axion is a gauge singlet.
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where (by a partial integration over on-shell quark fields) the ¢; term can be
reabsorbed into the ¢y term. The KSVZ case can be identified with ¢; = 0, ¢3 = 0,
c3 # 0, while the DFSZ one with ¢; = 0, ¢3 = 0, ¢ # 0. In general, axion models
can have both ¢y # 0 and c¢3 # 0, but their sum turns out to be constantE-] It is
called the domain wall number Npw = |co + c3].

The axion mass [42] can be estimated to be [32]

GeV)7

My ~ 0.6 x 107ev< f

(3.17)
where f, is constrained by astrophysical and cosmological data to 10°GeV < f, <
10'2 GeV [34]. However, the upper limit depends on the initial value of the axion

misalignment angle and can be relaxed if 6;,; < O(1) [43].

Axion DM energy density As can be seen from Eq. and limits on f,, ax-
ions are typically very light and very weakly interacting. After being produced they
could thermalize and fill up the Universe by forming a Bose-Einstein condensate [44]
that could closely resemble CDM. Their energy density would then be determined
by the mechanism of bosonic coherent motions (BCM) [45], 46, [47].

The equation of motion for the scalar field in the expanding Universe is given by

¢5+3H(T)¢'s+a—v -0, (3.18)
0
with the potential energy V =~ %m2(T) ¢? for small values of ¢. Initially the field
¢ moves very slowly so that one can assume gb ~ 0. Thus 3H (b ~ —m?2¢p. For
sufficiently high temperatures of the Universe, one can take additionally m(7T") ~ 0
and the solution of Eq. is given by an approximately constant field ¢ ~ const.
However, once T decreases and the condition 3H(T') ~ m(T) is achieved the scalar
field starts to oscillate giving rise to BCM.
From Eq. one can derive the evolution of the average (over one oscillation
cycle) energy density of the scalar field p = (%) = 2(V) that reads

d /pa’
—|—) =0, 3.19
dt( m > ( )
Hence, to some approximation {p) ~ a~% and the oscillating axion field behaves like
non-relativistic matter. The same is true for the oscillating inflaton field during the

reheating period in the evolution of the Universe.

The list of DM candidates could be supplemented by many other possibilities.

For a more extensive discussion see [22] and references therein.

UTt is preserved by an unbroken finite subgroup of U(1)pq.



Chapter 4

Standard Model and

supersymmetry

As we have seen supersymmetry provides a natural class of candidates for DM,
the LSP. In this chapter we will first discuss some basic features of the SM and
of supersymmetry and then introduce the most popular SUSY extensions of the
SM, namely the Minimal Supersymmetric Standard Model and the Next-to-Minimal
Supersymmetric Standard Model (NMSSM).

4.1 Standard Model

Before we move to a discussion of supersymmetry it is useful to briefly remind some
basic features of the SM.

4.1.1 Structure of the Standard Model

Currently our understanding of fundamental interactions is encoded in the SM of
particle physics. After its final formulation in the 60s and the 70s of the last century,
remarkable effort was put into the experimental verification of its predictions. In
particular, several new elementary particles were discovered, among them the ¢, b
and ¢ quarks, heavy gauge bosons W* and Z, the tau lepton 7 and its neutrino v;.
Last, but not least, the remaining missing particle species from the SM, namely the
Higgs boson, has recently been found by the CMS [I] and ATLAS [2] Collaborations
at the LHC.

The SM provides us with an elegant description of interactions among quarks
and leptons, i.e., all basic constituents of matter that we have already discovered.
The electroweak theory succeeded in unifying the electromagnetic and the weak
forces, while the strong interactions between quarks are described by the quantum
chromodynamics. Importantly, one needs to notice that each fundamental force is

in the framework of the SM accompanied by an appropriate symmetry. Requiring
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that the Lagrangian of the theory £ is invariant under a specified local gauge group
of transformations leads unavoidably to the introduction of additional terms in £
that are associated with so-called gauge fields. They couple to the matter content
of Lsv. Such a symmetry group is often referred to as a gauge group or gauge
symmetry group. In particular, the gauge groups for the electroweak and strong
interactions are SU(2);, x U(1)y and SU(3)., respectively[]

In the theoretical description of the SM one decomposes quark and lepton
spinors into chiral components thanks to the appropriate projection operators P, =
(1 —95)/2 and Pgr = (1 + 75)/2. The “weak” SU(2);, group transformations act
differently on left and right chiral fields. The former are grouped into doublets under
SU(2)r, while the latter remain singlets, i.e., effectively they are not sensitive to
the weak interactions. The conserved quantum number associated with the SU(2),
group is called the weak isospin 7. Its third component is equal to 7% = 41/2 for
the components of the left-chiral doublets and 7° = 0 for the right-chiral singlets.

In the framework of the unified electroweak theory we introduce another con-
served quantum number, the weak hypercharge Y. It is associated with the U(1)y
subgroupf’| of SU(2); x U(1)y and can be written in terms of the electric charge
Q and the third component of the weak isospin as Y = 2(Q — T%). The matter
component of the SM consists of quarks and leptons characterized by various values
of Y and Q). The set of elementary particles is further enlarged when one takes into
account representations of the SU(3). group. In particular quarks turn out to be
color triplets, while leptons are color singlets.

In addition to the matter fields, the SM contains vector fields of the intermediate
spin-one gauge bosons. In the electroweak sector B, and W,;-** fields correspond to
the generators of the U(1)y and SU(2), groups, respectively. The eight generators
of the SU(3), group lead to a so-called color octet of the gluon fields G5

Importantly, in the Lagrangian of the SM the mass terms for the fermions m v v
are allowed by the SU(3). gauge transformations, but are forbidden by the SU(2),

group since

mipy =my (Pp+ Pr) v =m (P + PE) ¢ = mypipr + mir ¢g, (4.1)

and terms that consist of one left-chiral and one right-chiral field cannot be invariant
as both fields transform under different representations of the SU(2), group. A
careful examination of the transformation of the gauge fields ensures that the mass
terms for them are also forbidden by the SU(2), x U(1)y symmetry. In the next
section we will proceed with the discussion of how to incorporate masses for the
matter and gauge fields of the SM.

!The lower index ¢ in SU(3).. stands for color. The lower indices Y and L denote hypercharge
and left chiral, respectively (see a discussion below).
2U(1)y is different from U(1)ey, corresponding to the electromagnetic interactions.
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4.1.2 Spontaneous symmetry breaking and the Higgs mech-

anism

Let us start here with some general remark. The fact that a Lagrangian £ of a
theory preserves some symmetry does not necessarily mean that this is also true
for the ground state of a quantum system described by £. This is in analogy to
the well-known behavior of the solutions to the classical equation of motion for a
particle in the Newtonian description of gravity. The equation itself is rotationally
invariant, but each given solution describes motion along an elliptical orbit that is
moreover limited to a plane. However, one can obtain other solutions by rotating a
specific one, i.e., by applying symmetry transformations that preserve the equation
of motion. In other words one could simply state that the whole set of solutions is
invariant under the symmetry group. The symmetry is “hidden” when one takes
into account only a single solution.

Similarly, when the symmetry transformation of a Lagrangian of a quantum
system can be described by a set of continuous parameters and the ground state is
not invariant under this symmetry, we expect to have a continuous set of degenerate
ground states. Once we choose one of these ground states, the underlying symmetry
becomes “hidden”. 1In other words it does not manifest itself explicitly in the
expansion of the Lagrangian around the chosen ground state. We call such a behavior
as spontaneous breaking of the symmetry.

The Lagrangian £ can still be invariant under some residual symmetry group
which contains a smaller number of generators. According to Goldstone’s theo-
rem [48], [49] (50, [51] for every spontaneously broken continuous symmetry there
has to appear in a theory a set of massless Goldstone bosons. The number of such
bosons is determined by the number of generators that vanished during spontaneous
symmetry breaking. However, after applying such a procedure one may obtain the
Lagrangian containing fields with the total number of degrees of freedom greater
than in the initial £. That means that some of the fields present in £ are un-
physical and can be removed by an appropriate choice of the gauge. Thanks to
this, some of the massless Goldstone bosons can be absorbed by the gauge bosons
that then become massive. This is the general principle of the celebrated Higgs
mechanism [52], 53], 54, [55], 56].

In order to perform a spontaneous symmetry breaking of the SU(2), x U(1)y
group in the SM (for a more extensive discussion see, e.g., [57]) one introduces addi-
tionally an SU(2);, doublet of complex scalar fields ®7 = (y)*,1°)* that contains four
degrees of freedom. As a result it is possible to obtain three massive gauge bosons
since this requires three massless degrees of freedom to be absorbed. The remaining
degree of freedom from the ® field will not produce the massless Goldstone boson,

since U(1)em for Quantum Electrodynamics (QED) remains a physical symmetry of
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the Lagrangianﬂ The Lagrangian associated with this new field is given by
Litiggs = (D" @) (D, @) — 12 0T & — \ (0T @)% (4.2)

It is expanded around the minimum in the direction of the neutral component of ®

which develops a vacuum expectation value (vev) v for p? < 0

1 0
en () o

where v = (—p?/A\)Y? and h is called the Higgs field. After a transformation to
the unitary gauge one obtains three massive gauge bosons, namely the W* and Z

bosons, and one massless photon field A,. They can be rewritten in terms of the
initial fields B, and W} as

:92W3+913M :gzw,f—ngu Wizi

Y VE g Va+g N2

When one puts these new fields into the (D* ®)" (D, ®) term in Liggs, one obtains

the mass terms for W and Z bosons with masses

1 1
mW:§U927 mZ=§U\/9%+Q§- (4.5)

From these one can also calculate the actual value of the vev v ~ 246 GeV.

A Z, (W, FiW?). (4.4)

The same doublet of complex scalar fields with hypercharge Y = 1 and isodoublet
® = i ®* with Y = —1 can be used to generate fermion masses by introducing

additional SU(2);, x U(1)y invariant terms in the Lagrangian
»CYukawa = —)\ij El - P GRJ’ — )\Zl] Qz - P dRJ' — /\LJ Qz . (BURJ + h.C., (46)

where \., Ay and \, are Yukawa matrices. Expanding around the ground state and
applying unitary gauge we obtain the fermion mass matrices
Ae Ad v Ay ¥
Me = my = ——, My, = . 4.7
Last, but not least, one can derive also the interaction terms for the Higgs
boson from (D* ®) (D, ®) and its mass from the scalar potential V (®) = p? & & +
A (DT D)2,

m; =2 v = —2p% (4.8)

The Higgs boson mass remained a free parameter of the SM with only mild theo-

retical constraints (see, e.g., discussion in [57]).

3Hence only three generators of the SU(2)r, x U(1)y group were absorbed.
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4.2 Challenges to the Standard Model

The SM of particle physics that we described in the previous section, is indisputably
an extremely successful theory. It predicted many experimental results that provided
stringent tests of this model and allowed one to measure its undetermined param-
eters. However, despite such an enormous achievement, there still remain several
unresolved puzzles at the theoretical side that are often interpreted as hints for “new
physics” beyond the SM (BSM). In this section we will discuss several such issues
with a particular emphasis on the ones that can find a successful resolution within

the framework of supersymmetry.

4.2.1 Hierarchy problem

One such open question is called the hierarchy problem. It is sometimes referred to as
big hierarchy problem in order to distinguish from the little hierarchy problem (see a
discussion in Section. It originates from the fact that the scalar mass in the SM,
i.e., the Higgs boson mass, is not protected from receiving large quantum corrections
by either the chiral or the gauge symmetry, in contrast to the case of the fermion
or gauge boson masses. As we now know from the actual measurements [I], 2], but
even before could expect from simple estimations using Eq. and the value of
v, the Higgs boson mass is of the order of about 100 GeV. However, the couplings
of the Higgs field to the fermions, which are of the form \h f f, give rise to loop

corrections to my, such that [5§]

2y

72

Ap(m3) [ — Ay + 6mF log Am—U;/ - Qmﬂ + O<L>, (4.9)

At
where Ny is the number of fermions with given m; and A\y. The Feynman diagram
can be found in Fig. [f.1p. The cut-off scale Ayy is introduced to regulate the
otherwise divergent loop integral and is usually interpreted as the energy scale at
which effects from BSM physics enter. If there was no such new physics up to the
Planck scale, Ayy ~ Mp, or the GUT scale, Ayy ~ Mgur, then in principle the
quantum corrections to mj7 in the SM would be as large as Ay, > 10°° GeV. This
could be technically canceled with the appropriate counterterm, but would require
fine-tuning with a precision at least of the order of 1073

One way to solve this issue [60, 61, 62, 63, ©64] is to introduce to a theory
additional scalar fields. For a single such field S we assume the coupling to the
Higgs field of the form Ag |h|?|S|? Withﬂ Ag = —A7 = —2m7/v® and Ng = 2 Ny. The
Feynman diagrams for the loop corrections are shown in Fig. [4.1p. The resulting

4Compare eq. 1) for diagonal fermion mass matrices,
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Figure 4.1: Feynman diagrams for the loop corrections of the Higgs boson mass.
Contribution from fermions (a) and scalars (b) are shown. Taken from Ref. [59].

contribution to m? from the scalar field is given by

Astmd) = T2 [~ Ay r2m 10g 2] - 20142108 (A)] w015

The quadratic divergences between Eq. (4.9) and Eq. (4.10]) cancel and as a conse-

quence one obtains

]\;J;;\? [(m? —m3) log (Am—U;/> +3m7 log (Eﬂ + O(A%U\) (4.11)

ms

2 ~
Am; ~

However, the cancellation obtained in this way is valid only for the 1-loop
corrections and in principle the quadratic divergence could reappear in some higher
order diagrams. In order to forbid this, one needs to introduce stricter assumption
about the extension of the SM. An elegant and efficient way of doing this is to
assume a proper symmetry relating the fermionic and the bosonic sectors of the
model, so that in each order of the loop calculations a quadratically divergent
contribution from fermionic loops will be necessarily canceled by an appropriate
scalar contribution. This is achieved within the framework of supersymmetry which

we will introduce in Section 4.3l

4.2.2 Gauge couplings unification

Another usually mentioned complication within the SM is related to the gauge
coupling unification around the GUT scale. One of the most remarkable successes
in constructing the SM was associated with the unification of the electromagnetic
and weak interactions. Needless to say that the concept of the electromagnetic
theory itself arose from initially disconnected electric and magnetic phenomena.
Following this line of reasoning it could be assumed that there exists an energy
scale at which strong and electroweak forces should manifest themselves as a single

interaction, i.e., corresponding gauge couplings should unify into a single coupling.
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Figure 4.2: Two-loop renormalization group evolution of the gauge couplings (a, =
g2/4m) of the SM (dashed lines) and the Minimal Supersymmetric Standard Model
(solid lines). Taken from Ref. [67].

Consequently the product of the gauge groups SU(3). x SU(2);, x U(1)y should be
embedded in some larger group of symmetry of the GUT theory, e.g., SU(5) [65] or
SO(10) (for a review see, e.g., [60]).

The energy scale of grand unification can be estimated due to running of the
gauge couplings from an infrared measured value to the high energy scale using
Renormalization Group Equations (RGEs). Applying this to the SM one finds that
the unification of the gauge couplings is not achieved. Early estimates in the 80s
showed Mgyt ~ 10 GeV for the SM. However, after obtaining results from the
Large Electron-Positron Collider (LEP), where the gauge couplings were precisely
measured, it turned out that the lines describing the RGE evolution intersect in pairs
around the energy scale Mgyt ~ 10" — 10'7 GeV (see Fig. 4.2 where o, = g2 /4m).
In principle, this still allows one to estimate the value of the GUT scale, though with
quite a big uncertainty. On the other hand in the case of minimal supersymmetric
extension of the SM the unification is strongly improved as can be seen in Fig. 4.2
leading to Mgyt ~ 106 GeV.

4.2.3 Dark matter

According to experimental evidence that was discussed in Section baryonic
matter makes up only about 5% of the total mass-energy of the Universe. A
significant part of the rest (about 27%) is attributed to dark matter. The SM
does not provide us with any satisfactory candidate for the DM particle (see a
discussion in Section . This can be circumvented in the framework of SUSY as
it is discussed in Section [4.3.4]
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Yet another issue is connected with the vacuum stability. As has been recently
discussed in [68], the measured values of the Higgs boson mass [II, 2] my, ~ 126 GeV
and the top quark mass [69] m; ~ 173.3 GeV point towards the metastable vacuum
state of the SM. In the case of the MSSM one finds a stable vacuum for a wide range

of parameters [70].

4.3 Basics of supersymmetry

Having justified the motivation for considering the BSM physics, in particular the
supersymmetric extension of the SM, we will now describe the fundamental features

of supersymmetry (for reviews see, e.g., [67, [71] or textbooks, e.g., [T2, [73]).

4.3.1 Algebra of supersymmetry

As we have already mentioned in Section [£.2.1] in order to avoid large quantum
corrections to the mass of the Higgs boson to all orders in perturbation theory
it is sufficient to assume that a special symmetry holds between fermions and
bosons. However, symmetries of the S-matrix of a quantum field theory cannot
be chosen arbitrarily. In particular due to the Coleman-Mandula no-go theorem [74]
if such a symmetry was generated by bosonic operators B, i.e., obeying commutation
relations, it would have to be connected with the Poincare group in a trivial way
as a direct product. Then, according to Witten’s [75] interpretation of this result,
non-zero scattering amplitudes can be obtained only for discrete scattering angles
and they wouldn’t be analytic functions of the Mandelstam variables. Moreover, a
direct product of the symmetry group and the Poincare group would manifest itself
in vanishing commutators between their generators. As a result B would commute
with the mass-square operator P? and the square of the Pauli-Lubanski vector WZ.E]
Therefore multiplets of such a symmetry could only contain particles with the same
mass and (more importantly for us) the same spin.

These difficulties can be circumvented if one assumes that the internal symmetry
is generated by anti-commuting (fermionic, spinorial) operators @), QTE] Such
operators are still a subject of important constraints from the Coleman-Mandula
theorem. A careful analysis of this issue led to the formulation of the well-known

Haag-Lopuszaniski-Sohnius theorem [76], which can be summarized in a set of (anti-)

SW? = W, WH is a Lorentz invariant operator that commutes with P*. Thus it is a Casimir
operator of the Lorentz group (its eigenvalues can label the irreducible representations of the group)
and is used to label the spin s via

W2 =-m?s(s+1),

where m is the mass of a particle.
6Here we assume for simplicity that there is only one pair of such generators @, QT, i.e., we
limit ourselves to so-called A/ = 1 supersymmetry.
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commutation relations for the s and the generators of the Poincare group. Such

an algebra is often referred to as supersymmetry algebra or super-Poincare algebra.

4.3.2 Supermultiplets and particle content of supersymme-

try

One important consequence that can be derived from the (anti-)commutation rela-
tions mentioned in the previous section is that W2 is not the Casimir operator of the
super-Poincare algebra. As a result supermultiplets, i.e., irreducible representations
of the supersymmetry algebra, can now contain both bosons and fermions.

On the other hand, the mass-square operator P?, as well as the generators of
the gauge transformations still commute with (Js. Hence supermultiplets should
contain only the particles with the same mass, electric charge, weak isospin and color.
However, in this case superpartners of the fermions of the SM should have already
been discovered. The lack of such experimental observations points towards the
necessity of introducing a mechanism of supersymmetry breaking (see Section .

Each supermultiplet must contain an equal number of bosonic ng and fermionic
nyp degrees of freedom[]] This serves as an useful guiding principle. In particular,
a single Weyl spinor for a fermion of the SM has two helicity degrees of freedom
nr | The corresponding bosonic superpartner can then be described as a complex
scalar field with np = 2. They both form a so-called chiral (matter, scalar) super-
multiplet. The scalar superpartners are usually called squarks or sleptons and are
denoted with tilde over the particle symbol, e.g., tau sneutrino ;. The superpart-
ners of left-handed or right-handed fermions are often marked with corresponding
“handedness”, e.g., “right” stop g, although this does not refer to a specific helicity
state, since they are scalars.

On the other hand for a vector gauge boson of the SM (with ng = 2 degrees
of freedom before spontaneous symmetry breaking) the corresponding superpartner
can be a single massless spin-1/2 Weyl fermion (nyp = 2) within a so-called gauge
(vector) supermultiplet. The rule to create a name of a superpartner of the SM
gauge boson is to add suffix -ino, i.e., we obtain bino B, wino W and gluino §.
Gauginos must transform as the adjoint representation of the gauge groups (just as
the gauge bosons) which is its own conjugate. As a result the gauginos are identical
to their anti-particles and they are examples of so-called Majorana fermions.

In the case of the SU(2); doublet of complex scalar Higgs fields, introduced in
the mechanism of EWSB in the SM, one could simply obtain proper supermultiplets

"This can be verified by evaluating 0 = Y, (i|(—1)?* P*|i) = p* (ng — np) for a subset of states
|i) that correspond to a fixed eigenvalue p# of the operator P* (see, e.g., [67]).

80ne has to remember that particles within each supermultiplet should not differ by weak
isospin. Hence it is natural to use two-component Weyl spinors to describe fermionic fields within
a supersyminetry.
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’ Name

‘Symbol‘ spin-0 ‘ spin-1/2 ‘ Y ‘

“left” squarks (spin-0), Q1 (tr, dr) (ur, dr)
left quarks (spin-1/2) Qo (Cr 51) (cL sp) | 3
@3 (t, br) (tr br)
“right” up-type squarks, | @' = u ak ulh,
right up-type quarks uw=c &k ch -%
=1 i th
“right” down-type squarks, | d' = d d, dl,
right down-type quarks =3 5% 3; %
d*=b b%, bl
“left” sleptons, Ly (e €1) (ve €r)
left leptons L, (D i) | (W pr) | —1
Ls (or 7) | (vr 71)
“right” sleptons, el=¢ et el
right leptons e =q [ o, 2
e =r 74 h
Higgs, Hy, | (Hj Hy) | (H Hy) | +1
higgsinos H, (HY Hy) | (HY Hy) | -1

Table 4.1: Chiral supermultiplets in the MSSM with corresponding hypercharges.
Weak isodoublets are shown in brackets. For each row the upper label in the first
column refers to spin-0 scalar particles, while the lower to spin-1/2 fermions.

by adding appropriate Weyl spinors, namely higgsinos. However, it turns out that
one such doublet is not enough when constructing the MSSM. This is due to the
cancellation of the gauge anomalies, as well as a mechanism that gives masses to
up- and down-type quarks. As a result in the MSSM we need to add the second
weak isodoublet of the Higgs superfields that is characterized by the opposite value
of the weak hypercharge. We denote positive and negative hypercharge isodoublets
of the complex scalar fields by H, and Hy, respectively.

The list of all matter particle content and Higgs boson supermultiplets in the
MSSM can be found in Table 4.1} We apply a standard convention for constructing
“right-handed” supermultiplets in terms of their conjugates, i.e., using left-handed
Weyl spinors. As a result we put bar over respective symbols which should be treated

as a part of their name.

4.3.3 Supersymmetric Lagrangian density

Having discussed the particle content of the MSSM we will now describe how to
construct a Lagrangian for a supersymmetric model. Before we present a particular
example of the MSSM we first make some more general remarks.
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Lagrangian for chiral supermultiplets We begin with a Lagrangian £ contain-
ing a set of n chiral supermultiplets with complex scalar fields ¢; and Weyl spinors
1;, where i = 1,...,n. A particular example of such a Lagrangian for n = 1 is the
massless, non-interacting Wess-Zumino model [77]. We additionally include in £ a
term describing a set of auxiliary complex scalar fields F; that vanish on-shell due

to their equations of motion
F,=F'=0. (4.12)

This turns out to be needed in order to make sure that supersymmetric transfor-
mations acting on fields off-shell generate a closed algebra. The F; fields with two
degrees of freedom are also needed off-shell to account for two additional real degrees
of freedom in the fermionic component.

The Lagrangian for the n interacting chiral fields is given by

£chiral = Echiral,free + ﬁchiral,inta (413)
where
»Cchiral,free = _aﬂ(bi* au¢l + ZWT ot a,uwl + FZ*E; (414)

and the interaction Lagrangian can be written as
| — i
Lagwasin = (= 5WIwits; + WE) + e, (4.15)

with W% and W' being polynomials in the scalar fields ¢;, ¢™* with degrees 1 and 2,
respectively. Moreover, they can be written as functional derivatives of a so-called
superpotential calculated with respect to the complex scalar fields

oW y 5w

=55 Wil = 5558, (4.16)

W’L

The superpotential W provides a unique description of interactions in the considered
model. It is a holomorphic polynomial of the complex scalar fields that can be

written as 1 1
W= Lig, + §Mif¢i¢j + éy”’“@%m, (4.17)

where, as we will see below, M% corresponds to the (symmetric) mass matrix for
the mass-degenerate ¢; and v; fields and y“* are Yukawa couplings between ¢y
and the two fermionic fields ¢;1;. From Eq. we see that ¥ must be totally
symmetric. Moreover, in the MSSM we take a priori L* = 0, since non-zero L would
only be allowed for a gauge singlet chiral supermultiplet. However, such linear terms

in the superpotential do play an important role in supersymmetry breaking.
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The equations of motion (4.12)) for the auxiliary fields F; are now modified

Fy = -W}, F* = W' (4.18)

(2

Because of this one can remove the Fjs from L.

Lagrangian for gauge supermultiplets In the case of a gauge supermultiplet
we have to consider massless gauge boson fields Af, and fermionic fields A*. Both
of them have two degrees of freedom on-shell, but off-shell we obtain ng = 3 and
ng = 4. Similarly to the chiral supermultiplets, we add a set of auxiliary real (not
complex) scalar fields D?.

The supersymmetry invariant Lagrangian for a gauge supermultiplet is given by

1 1
Lgange = _ZF;VFWQ +iATe" DA + §DaDa. (4.19)

The auxiliary fields D* can be removed from £ using their equations of motion
D" = —g(¢"T"9). (4.20)

Total £ The Lagrangian for the supersymmetric model contains now both Ll
and Lgauge.- There are also some additional interaction terms that are allowed and

that incorporate fields from both types of supermultiplets
L=L000" 4 Loange — V29(" T )X — V290 (41 T99) + g(¢*T?¢) D, (4.21)

In order to make sure that L is gauge invariant one needs to replace ordinary

derivatives with covariant ones.

Scalar potential From the Lagrangian Eq. (4.21) we can derive the scalar poten-

tial of a supersymmetric model. It is given by

. 1
V(g,¢%) = F7F+5DD* (4.22)
= MMM ™ +§M Yl G100 + éMmyjk O PP
Iy * VAT 1 *ra
+Zyzjnykln¢i¢j¢k ¢ + 593(925 T)?, (4.23)

where in Eq. (4.23) we used Eqs (4.16]), (4.17)), (4.18) and (4.20). We identify a
so-called F-term and a D-term in Eq. (4.22)), respectively. The scalar potential is

always greater than zero as a sum of squares.

As one can see, the mass matrix for the bosonic component of a chiral su-
permultiplet is given by (M?);; = MjM*. The same mass matrix is obtained

for the fermionic component, as can be verified using appropriate identities for
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two-component Weyl spinor fields (see, e.g., [67]). One could also argue that this
must be the case based on general arguments for supermultiplets from Section [4.3.2]
In other words the bosonic and fermionic components have the same mass.
Another important issue is that the scalar potential is fully determined by the
mass terms, as well as by the Yukawa and the gauge couplings. As a result, in
particular for the Higgs fields in the MSSM the quartic couplings are no longer free

parameters, in contrast to the SM.

4.3.4 R-parity

The lightest of superparticles, the LSP, can be stable due to a conservation of
so-called R-parity that originates from the matter parity. The latter symmetry is
introduced to the supersymmetric models in order to suppress baryon B and lepton
L number violating terms in the Lagrangian. The conserved quantum number for
the R-parity is given by

Pg = (—1)3B-1)+2s (4.24)

where s stands for the spin of a particle. As can be easily verified for all the SM
particles Pr = 41, while the superpartners are characterized by P = —1. As a
consequence the LSP can be a viable DM candidate.

However, even in the absence of R-parity conservation the LSP can still be a DM
particle as its lifetime can exceed the age of the Universe. This can be in particular
realized for gravitino LSP [78] or axino LSP (see, e.g., [T9]).

4.4 Supersymmetry breaking

As we have already seen, unbroken supersymmetry would unavoidably lead to
phenomenologically inviable predictions since the masses of the superpartners must
then be equal to these of the particles from the SM. Therefore they should have been
already discovered. Hence, if supersymmetry is indeed a true symmetry of nature,
it must be broken.

In the following section we will focus on this issue. We will start with an effective
description at the level of explicit supersymmetry breaking by additional terms
added to £. Then we will mention some of the possible underlying mechanism of

spontaneous supersymmetry breaking (SSB) that are usually considered.

4.4.1 Soft supersymmetry breaking

The simplest phenomenologically acceptable approach to supersymmetry breaking is
to parametrize our ignorance about the actual mechanism by introducing additional

terms into a supersymmetric Lagrangian. In principle this could result in a lack of
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cancellation of quadratically divergent parts of Eqs and and the (big)
hierarchy problem would then reappear. In order to prevent this we assume that
the additional terms in £ contain only mass terms and couplings with positive mass
dimension. We denote the largest mass scale associated with such terms by mgg.
Respective corrections to m? should then vanish in the limit of m?2; — 0 and even
by a simple dimensional analysis one can expect them to be only logarithmically
divergent with Ayy. Such a procedure is often referred to as soft supersymmetry
breaking [80].

The possible form of the additional terms in the Lagrangian that will be appli-
cable to the MSSM is given by{

1 1 1 o
Loty — —<§Ma NN+ <0 616501+ S qs,-qu) e — (M) g, (4.25)

with M, being gaugino masses, where a = 1,2,3, (m?)! and b scalar mass terms

and a”* scalar trilinear couplings, where 4,7,k = 1,2,3. Gaugino mass terms are

not forbidden by gauge symmetries but this does not have to be true for the other
ijk

terms. In particular, b # 0 and a“* # 0 are allowed if the corresponding M% and

y** terms in the superpotential can be non-zero.

4.4.2 Mechanisms of supersymmetry breaking

In a more fundamental framework the soft SUSY-breaking terms in the Lagrangian
should emerge from some underlying mechanism. We expect this to work in a similar
fashion to the EWSB, i.e., that supersymmetry would be preserved at the level of
L, but not by the ground state of a theory. Such a mechanism is usually referred to
as the spontaneous supersymmetry breaking. The analogue of Goldstone’s theorem
for the fermionic generators of the supersymmetry algebra () states that the SSB
should result in the appearance of a massless, fermionic particle in a model that is
called a goldstino.

The SSB mechanism is driven by the non-zero vev of the scalar potential which,
according to Eq. , results from a non-zero vev of some F or D fields in a model.
We will focus on scenarios with (F') # 0 that are realized in so-called O’Raifeartaigh
models of SSB [81]["] The main idea is to introduce additional chiral supermultiplets
into a theory and to construct their superpotential in such a way that some of the
auxiliary F' fields will necessarily acquire a non-zero vev. In order to do so, one needs

to add a linear term in the superpotential which therefore must be a gauge singlet.

9There are also other terms that can be in principle considered, though they play a less
important role or are excluded in the context of the MSSM (for a discussion see, e.g., [67]).

10Tn the case of (D) # 0 the SSB is associated with an additional, so-called Fayet-Iliopoulos,
term in £ that is linear in D [82] [83].However, it turns out that, even for the specific case of U(1)y
in the MSSM, the Fayet-Ilipoulos mechanism would rather result in an unwanted breaking of the
color and/or electroweak symmetry, instead of the SSB (see a discussion in [67]).



4.4 Supersymmetry breaking 43

This, in particular, requires going beyond the MSSM. As a result we expect the
SSB to be governed by the fields that belong to the hidden sector of a model which
is only very weakly coupled to the visible sector. We further distinguish different
mechanisms of the SSB due to the way it is mediated between both sectors. We
will mention here two such scenarios that are especially important for the rest of
the thesis.

One such mechanism is called gravity mediated or Planck-scale mediated super-
symmetry breaking (PMSB)(see, e.g., [84, 85, [86, 87]). We first introduce to £
a set of non-renormalizable terms containing F' that are suppressed by the Planck
mass Mp. Then we obtain Ly after employing (F) # 0. In particular, one often
assumes that a universality condition holds for various coupling constants in the
non-renormalizable £ in the so-called minimal supergravity (mSUGRA) descrip-
tion. As a result, at a high energy scale (typically chosen to be the GUT scale)
one obtains a common gaugino mass mj,, common scalar mass mgy and common
trilinear coupling Ay. This may serve as the underlying SSB mechanism that gives
rise to the Constrained MSSM (see Section [7.1)). The characteristic mass scale for
supersymmetric particles in the PMSB can be estimated by mg.n ~ (F)/Mp. For
Mot ~ 1 TeV this implies the SSB scale of the order of 4/(F) ~ 101° — 10" GeV.

Another mechanism for mediating SSB from the hidden sector to the visible
sector is called gauge-mediated supersymmetry breaking (GMSB) [88] 89, 90 9T,
92, 93]. We add to a model a gauge singlet chiral supermultiplet S and a set
of chiral supermultiplets ¢, g, [, [ (so-called messenger fields) that have non-trivial
SU(3).xSU(2), xU(1)y interactions. The scalar part of S (usually also denoted by
S) and the auxiliary field Fis acquire non-zero vevs that give rise to a mass splitting
between the scalar and the fermionic components of the messenger fields. It is then
mediated to the visible sector by loop corrections to the mass parameters. Such loop
corrections to the A terms are typically small and therefore in the GMSB scenario
one often assumes that A, = A, = A, = 0 at a high energy scale. In the GMSB one
expects Mgopy ~ (F)/Mpess, Where Mos is the mass scale of the messenger fields.
The \/@ can then vary depending on the assumed value of M., but in principle
it can be as low as 10* GeV.

The gaugino masses at the SSB scale in the GMSB scenario are given by M, =
(ag/4m) A, where A = (S)/(Fs). One can allow more freedom in choosing M, in the
framework of generalized gauge-mediated supersymmetry breaking (GGM) [94, 95
96, 07] by replacing ¢, q, I, [ fields by a more general set of chiral supermultiplets
®;, ;. The mass parameters of the GGM models at high energy scale expressed in

terms of more fundamental parameters can be found in Appendix [C]
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4.5 Minimal Supersymmetric Standard Model
(MSSM)

In Section we described the particle content of the MSSM. We will now discuss
the MSSM in more details with an emphasis on the features the will be important

from the point of view of the rest of the thesis.

4.5.1 Superpotential and soft supersymmetry-breaking

terms

The Lagrangian for renormalizable, gauge-invariant supersymmetric models is de-
termined by the superpotential W and by gauge transformation properties of the
fields that can further constrain £. Taking this into account, one finds that the
general structure of the superpotential given by Eq. in the framework of the
MSSM reads

Whissm = ﬁi (yu)ij @j H,—d; (Yd)ij @j Hy— éi (ye)ij Zj Hy+pH, Hy, (4-26)

where we used the notation from Table with 4, j = 1,2, 3 being family indicesE-]
The contraction of spinor indices involves a totally antisymmetric matrix €,s, with
a,f =1,2, eg., H Hy = H{f Hapg = Hyo Hyp €. Most of the elements of the
3 x 3 Yukawa matrices are often assumed to be negligible except for the ones that

correspond to the top and the bottom quarks, as well as the tau lepton

(Yu)ij ~ Y 0i3 53'3, (Yb>ij ~ Yy i3 53’3, (ye)ij ~ Yr O3 5]‘3' (4-27)

The p-term in Wysgm gives raise to the higgsino mass. We now see the necessity of
having two distinct supermultiplets H, and H, with different hypercharge to account
for the masses of the up- and the down-type quarks, respectively. One could not use

in £, e.g., Hj since it would violate the holomorphicity of the superpotential.

"' The symbols in Eq. 1] correspond to the scalar components of supermultiplets. This is
explicitly marked by adding tildes above the squark fields. Alternatively, one use the symbols of
the whole supermultiplets in the superspace formalism (see, e.g., [67]).
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The soft supersymmetry-breaking terms in the Lagrangian of the MSSM that

are allowed by gauge symmetries, are given by

1 o o
‘CMSSM,soft = _5 <M1 BB+ MWW + Mggg + C.C.)
— [ﬁi (ay)i @j H, —d;(ag); éj Hy— € (a.)i Zj Hy+ c.c.]

)ij J]

7
—Q! (m});; Q; — ul (m?); i, — d (m3
—LI (m});; L; — & (m2),;

—mpy, Hy H, —m3;, Hi Hy — (bH, Hy + c.c.). (4.28)

M, M, and M; are the bino B, wino W and gluino § masses, respectively. One
usually assumes that the soft supersymmetry-breaking parameters in Eq. are
real and all the mass parameter matrices are diagonal.[r_z] The matrices a,, a; and
a. are also assumed to be diagonal. They are often expressed as (a); = Ak (¥)ki
which, combined with Eq. , leads to

(au)ij ~ Aryi 0is 53‘3, (ad)ij ~ Apyp 0i3 53’3, (ae)ij ~ Aryr 03 53'3, (4-29)

with real parameters A;, A, and A, called the top, the bottom and the tau trilinear
coupling, respectively. A complete list of Feynman rules for the MSSM can be found
in [98].

4.5.2 Renormalization Group Equations (RGEs)

The physical quantities evaluated within the framework of the MSSM that can be
compared with experimental results relate to the values of the parameters in Lyssm
that are given at the EWSB scale. However, from a theoretical perspective we expect
that these parameters should rather initially appear in some more fundamental
theory at a high-energy scale, e.g., the GUT scale. One then needs to run them
down according to the respective RGEs.

The RGEs for the MSSM up to the second loop can be found, e.g., in [99]. Here
we will emphasize several features of their solutions (at 1-loop) that are important
from the point of view of the rest of the thesis. The RGEs for the gauge couplings
and the gaugino masses are given by

dgq 3 dM,

=g b, = 2b, > M,, 4.
o = Yaba o 9. (4.30)

where t = In[Q/M]/(167%) with M being some reference scale and @ — the
renormalization scale, while b5 = (33/5,1,-3) for U(1), SU(2) and SU(3),

12The off-diagonal terms in matrices in Lysgm and non-zero complex phases may potentially
induce large flavor- or CP-violating effects.



46 Standard Model and supersymmetry

respectively. One can easily verify that

d M, 1dM, Mii

My My M map (4.31)

=0 = — = = 5

JE— _|_ a
dt g2 g2 di dt g2 g 9% 9 9

where in the last equality we assumed gauge coupling unification at the GUT scale
which implies unification of the gaugino masses to the common gaugino mass mj
(up to some 2-loop corrections).

Approximate solutions to the one-loop RGEs are given in Appendix [A] To obtain
them we used the method that follows [I00]. In order to treat the running more
precisely one should in principle go to the two-loop RGEs. A simplified analysis of

this kind for the slepton mass parameters is given in Appendix [B]

4.5.3 Electroweak symmetry breaking

So far we have described soft SUSY-breaking terms in the MSSM that generate
different masses of the superpartners. We now want to embed the EWSB mechanism
into the MSSM to generate masses of the SM fermions. In the MSSM there are two
complex Higgs SU(2), doublets and both in principle can acquire non-zero vev. One
can rotate the fields in order to have (H,) = (H;) = 0. The scalar potential for

the Higgs fields can then be written in a simplified form as

V= (e, ) P ) VS (0 1 H e+ (g3 ) (1007 HGP).
(4.32)
As was pointed out above, the Higgs quartic couplings are fully determined by the
gauge couplings. The non-zero vevs are denoted by (H®) = v,/v/2 and (H}) =
vg/V/2, with v2 4+ v2 = v? ~ 246 GeV as in the SM. The ratio of the two vevs is
typically denoted by
tan = 2, (4.33)

Vg

and plays an important role as an additional parameter in phenomenological con-
siderations. One can absorb any complex phase in b by an appropriate redefinition
of the phases in the Higgs fields. Thus we assume that b is real and positive.

It turns out that in order to achieve the EWSB one needs either p? + m3; or
u? +m2 _ to become sufficiently small, or negative. As m%{u typically receives larger
negative corrections when running from high energy to the electroweak scale one can
assume that the necessary condition for the EWSB to occur is to have pu? + m%,u <0
at low energy scale.

In order to derive the mass spectrum for the MSSM, we minimize the scalar po-

tential with respect to HY and HY. In particular one of the minimization conditions
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reads

_ |de quu | 2 2 2

2 2
—miy, —my, —2ul* ~ =2(my, + )+ m(de_mHu)’

M?2
727 ] sin? 20 H (434

where the approximation holds for sufficiently large tan .
Eq. was obtained from the tree level expression for the scalar potential.
This may not be accurate enough, in particular if there is a significant mass splitting
between the lighter and heavier stops. The loop correction to the scalar potential
V — V + AV [101, 102] modify the minimization conditions that can be effectively

rewritten in terms of (check, e.g., discussion in [67])
9 1 6AV 9 1 ﬁAV

2 2

— — +x4.
v V2w, (97)“ V20 aUd Hd

(4.35)
The term in Eq. (4.34)) proportional to ¢ is suppressed by tan? 3, but X* can play

more important role (compare [103]).

4.5.4 Mass spectrum

Higgs sector After the EWSB, three of the eight real degrees of freedom in the
Higgs fields become Goldstone bosons that are then eaten up by the W* and Z
bosons because of the Higgs mechanism. The remaining degrees of freedom form
the lighter A and the heavier H scalar Higgs bosons, the pseudoscalar A and two
charged scalars H*. Expanding the scalar potential around the ground state one

finds the physical masses. In particular at the tree level

1
M} oo = 5 <m?40 +my — \/(mA0 —m%)? + 4m7m?, sin 26) < my|cos23|. (4.36)
The upper limit on my, can be saturated at the tree level for m4 » myz. The lighter
Higgs boson mass is increased by one-loop corrections. This leads to the following
approximation at one-loop level [104], 105, 106} 107, T08]

3 mi M3 X2 X2
m; ~ mycos? 2 + —s —F [ SUSY. . . <1 - —t>], (4.37)
" ? Ar? v?/V2 my Mysy 12 Mysy

where m; is the top quark mass, Msysy = /Mg, mi, and X; = A; — p/tan 5. One
can simply verify that X; term is maximized for X; = +1/6 Msysy. The radiative
corrections tend to ameliorate the upper bound on the lighter Higgs boson mass
to my < 135GeV, or even 150 GeV in non-minimal scenario (see, e.g., discussion
n [67]). Needless to mention that the recently measured value of the Higgs boson

mass satisfies these improved limits.
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Gauginos The two neutral higgsinos mix with the bino and W to form four mass
eigenstates called neutralinos X(l),...A' Similarly the two charged higgsinos mix with
W* to form two charginos (with positive and negative electric charge) Xf2.

The soft SUSY-breaking parameters M; and M, can be chosen real and positive
by a redefinition of phases of B and W. On the other hand, i can have a priori an
arbitrary complex phase. However, in order to suppress significant contributions to
the electron and neutron dipole moments, one usually assumes that p is real. The
sign of u remains a free parameter.

If a neutralino is dominated by a single gaugino or higgsino contribution, a
corresponding eigenvalue of the mass matrix is well approximated by the value of

the soft SUSY-breaking parameter or p

M, for bino-like y;,
my, & 4 My  for wino-like x;, (4.38)
i for higgsino-like x;.

Similarly most often in the case of charginos we obtain m,+ ~ M, or u. The gluino
mass is to a good approximation determined by Mj. However, as it was shown

in [109], loop corrections can be as high as ~ 25%.

Sleptons and squarks Mixing within the 1st and the 2nd generation of sleptons
and squarks is typically negligible and their masses are simply given by the respective
soft SUSY-breaking parameters. However, this is not the case of the 3rd generation.

In particular, for the stau masses at the tree level we obtain

2 ~
ms , ~

1
i, ) F [, -2 w2 (430

1
2
where mz, = mp 3, msz, = mg3 and X, = A, —p/tan 5. The left-right mixing in the
stau sector can be large if mz, ~ ms, and/or X, ~ A, is large. The tau sneutrino
mass is given by

1
m; =m; + —=my cos2p. (4.40)

Vr L 2
The sbottom and the stop masses are given by similar formulas with mz, ., m, and

A, exchanged with the appropriate quantities.

4.6 Next-to-Minimal Supersymmetric Standard
Model (NMSSM)

As we have already seen in Section [4.5] in the MSSM the EWSB mechanism is

tightly related to the appropriate value of the p parameter. It cannot be arbitrarily

high in order to allow p? + m%[u to become negative. On the other hand LEP limits
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on the chargino masses introduce a lower bound |u| = 100GeV. Moreover, the
minimization condition Eq. suggests that |u| should not exceed significantly
(by many orders of magnitude) the mass of the Z boson m.

Within the framework of the MSSM p is simply put by hand into the superpo-
tential and therefore it is not a priori a subject of any constraints that could confine
its value as desired. This can be circumvented if one goes beyond the MSSM. In
particular, the simplest such extension is to add a gauge singlet chiral supermul-
tiplet in the so-called Next-to-MSSM. We will limit ourselves to a discussion the
Zs-invariant version of the NMSSM (for a review see [110]) with the superpotential
given by

Wimssm = Wussm + AS H, Hy + % K S°. (4.41)

The soft SUSY-breaking terms in the corresponding Lagrangian can be written as
1
Lamvssy = LaMssM — ()\A)\ H,H; S + g/i A, S3 + C.C.) - m% |52‘, (442)

where S stands for scalar component of the additional chiral supermultiplet. As
one can see, the Higgs sector of the NMSSM is supplemented with several new
parameters in comparison to the MSSM. After the EWSB one typically chooses the

following set of such parameters to deal with
A Ky, Ay, A tan B, per = A S, (4.43)

where the effective p term is generated by the vev of scalar component of the
additional supermultiplet {S) = s and is therefore naturally expected to be of the
order of Mgysy. Adding the S field introduces into the NMSSM two more (scalar
and pseudoscalar) Higgs fields in comparison with the MSSM.

The scalar potential also receives several new terms and, importantly, in the
description of the EWSB one needs to take into account one more minimization
condition than in the MSSM. It is of course due to a non-zero s and it introduces
additional term A2 v? sin® 23 in the my, value calculated at the tree level. The lightest

Higgs boson mass in the limit of heavy singlet scalar now reads (up to one-loop
level) [110]

)\2
m; ~ mycos®28 + \v?sin? 23 — — v? (A — Ksin23)?
K

M2 X2 X2
log —8USY |t (1 A )] 4.44
[ s mf MSQUSY 12 MSQUSY ( )

4
3 my

(TR

In the neutralino sector the bino and the wino W° mix with the two higgsinos and
a fermionic partner of S that is called the singlino S. As aresult the neutralino mass

matrix has now rank 5 x 5 with an eigenvalue corresponding to a singlino-dominated
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state equal to
Heft

My, ¥2Ks =2k for singlino like x;. (4.45)

4.7 Little hierarchy problem and fine-tuning

Current LHC limits on squark and gluino masses suggest that the characteristic
mass scale for supersymmetry Mgygy lies above 1TeV. This gives rise to the little
hierarchy problem (known also as the fine-tuning problem). As one can see from
Eq. ({.34), if p becomes too large an uncomfortable amount of the fine-tuning
between p and my, is needed in order to obtain the proper value of M. However,
i appears in the superpotential, while my, is the soft SUSY-breaking parameter.
Hence a priori one does not expect them to be correlated ™

For a more quantitative treatment of the fine-tuning problem we will use the

so-called Barbieri-Giudice measure [I11], [112], A = max{A,,}, where

~ 1]dln M7
2| dlnp;

, (4.46)

Pi

_ |oln MG
| dlnp?

and p; are the parameters of the model. For the GUT constrained models they are
defined at the scale Mgyt and they are renormalized through the RGEs to Mgugsy.
According to Eq. (4.34) with loop corrections to the scalar potential (X) taken into

account one can write

oln My 5 p? [ ow* omy (Msusy)  0X%(Msusy)

~ _ _ . 4.47
0In p? Mz | op} op? op? (4.47)

If the input parameters are independent from one another, A, must be calculated
for each of them separately. On the other hand, if some soft parameters p; depend
on one “fundamental” parameter py because of new physics beyond the GUT scale,

Pi = a;po, the fine tuning due to py is just the sum with signs of the individual

olnMZ P} (azaM%)

olnpz M2 =\ " op?

contributions

(4.48)

One needs to remember that the amount of fine-tuning associated with the little
hierarchy problem is by no means comparable to the one characteristic for the (big)
hierarchy problem. Beside that, it turns out that the actual measured value of the
Higgs boson mass mj, ~ 126 GeV that is somewhat larger than expected in the past,
is consistent with Msysy = 1TeV (see, e.g., discussion for prototypical Constrained
MSSM in [I13], 114, [115]).

13Moreover, we prefer values of j close to the EWSB scale. The issue of how to guarantee such
low value of p is known as the p problem.



Chapter 5

Supersymmetric dark matter

candidates

In the previous chapters we presented several arguments for the existence of DM.
We also introduced some SUSY frameworks that provide viable DM candidates. We
will now connect these two subjects and discuss supersymmetric DM in more details
(for a review see [116], 117, 118§]).

5.1 The lightest neutralino as a dark matter can-
didate

We begin our considerations with by far the most popular SUSY DM candidate. It
is the lightest neutralino. We first need to generalize the Boltzmann equation from
Section to the case of many SUSY particles in the thermal plasma. Then we
describe possible mechanisms that can lead to the correct value of the neutralino

relic density.

5.1.1 Solving the Boltzmann equations

We have already discussed a simplified analytical approach to calculating the WIMP
DM relic density in Section[3.2.2] In the context of supersymmetric theories with the
LSP being a DM candidate this description should, in principle, be generalized to
considering a separate Boltzmann equation for each supersymmetric particle species
that is heavier than the LSP. This is particularly important when some of the heavier
SUSY species have masses close to the LSP mass mpgp in which case their thermal
abundance is not Boltzmann suppressed at the time of the LSP freeze-out.
Fortunately, it was shown in [IT9] 120] that in SUSY the evolution of the Universe
can still be effectively described by Eqs (2.15)-(2.16), if one replaces the number

density of a single particle species by n =}, n;, where the index ¢ runs over all the
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particle species, each with a number density n;, and with {(ov) replaced by

N N n?q ne»q
(O0)et = Z;Zl<aijvij>n_iqn_iq’ (5.1)
i=1j=
where (0;;v;;) stands for a thermally averaged (co)annihilation rate for ith and jth
particle species (for a detailed discussion see, e.g., [9]). Similarly, neq = D, Neq.i-
In Eq. (2.16) the effective average energy released in the (co)annihilations of relic

species is given by

(o) (Ber = 3, 3 (B0 + () o0y~ 2, (5:2)

i=1j=1 eq Tleq

where we approximate (E;) ~ y/m? + 9T2.

Due to decays of the heavy SUSY species to the LSP (in presence of R-parity),
n becomes the number density of the single stable species, the LSP. However, one
needs to mention here another hidden assumption that lies behind this approx-
imation. When replacing {ov) by the effective quantity it is assumed that the
relevant (lightest) SUSY particles remain in kinetic equilibrium around the time of

freeze—out.ﬂ As a result one can assume 7;/n X Neq,i/Neq-

5.1.2 Coannihilations

As we will see below, in the case of neutralino DM in phenomenologically interesting
scenarios often the LSP (denoted here by x) is mass-degenerate with some heavier
supersymmetric species. Thus, in particular, coannihilations y + NLSP — SM play
a major role in determining the DM relic density. This mass degeneracy can lead to
either decrease or increase of the final relic abundance Q, h?.

If the NLSP annihilates and coannihilates with y with larger rates than
(TamnV)yy, the resulting Q,h? is lower than in the case without mass degeneracy
(see Fig. [5.1] (left panel)). It is because even after the condition 1, (Tann¥)yy < H is
met, i.e., when the LSP would decouple from thermal plasma, its yield can be further
reduced due to coannihilations with the NLSPs that remain in thermal equilibrium ]

One the other hand, if the NLSP annihilates less efficiently than the LSP, it
decouples from thermal equilibrium before x. This would lead to the NLSP yield
at freeze-out that is larger than Y,. Ynrsp is to some extent further reduced due

to coannihilations with y, but its final value can possibly remain large (see Fig. 5.1

LAn accurate treatment shows that the kinetic decoupling temperature Tyy for neutralino is
typically in a range from several MeV to several GeV [121], [122].

2In this scenario the NLSP will annihilate more efficiently than the LSP, but also the inverse
processes will more easily produce the NLSP-NLSP pairs. As a result, the NLSP will stay longer
in thermal equilibrium than the LSP.
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Figure 5.1: Schematic plots showing evolution of the LSP (Y, ) and the NLSP (Yxsp)
yields in the case of mass degeneracy mnisp ~ m,. For simplicity we assume the
same number of degrees of freedom for x and the NLSP, g, = gnrsp. The case with
decreased (increased) final LSP abundance is shown in the left (right) panel. The
scale in the pictures is not maintained.

(right panel)). However, the NLSPs will finally decay into the LSPs and Yxpsp will
provide a dominant contribution to the final DM relic abundancef]|

In the following we will see examples of both a decrease and an increase of 2, h?
due to the LSP-NLSP mass degeneracy.

5.1.3 Neutralino relic density

The lightest neutralino ! (later denoted simply by x) can be a viable DM candidate
if it is the LSP. It does not carry either electric or color charges, has mass m,
and remains stable due to R—parityﬁ Depending on its dominant composition we
distinguish bino-, higgsino-, wino-, or singlino-like x (the last one for the NMSSM),

or a mixed state with non-negligible admixture of two or more gauge eigenstates.

Bino-like LSP In the case of the bino-like neutralino B the relic density can vary
by several orders of magnitude for a given m,, since it is very sensitive to the details

of the MSSM spectrum. Generically, the bino annihilation rate is dominated by

3The mass degeneracy mrsp ~ m, is required in this case to guarantee that the NLSPs can
decouple before they decay into the LSPs.

4The case with light sneutrino LSP, constituting even a small portion of DM, is very strongly
constrained in the framework of the MSSM by direct detection experiments [123]. In fact, the
current experimental limits [[24] require this contribution to be « 1072 of a relic sneutrino
abundance.
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t-channel slepton exchange xx — [l and the relic density reads [125]

) 1 (m? +m%)*!
(460 GeV)? \/gf, m% (m? + mL)’

(5.3)

st}
>

where g, ; stands for the number of relativistic degrees of freedom at x decoupling.
By varying the bino and the slepton [ masses, one can obtain Qh? spanning a
few orders of magnitude. Typically, for m; > 200 GeV, Eq. gives the bino relic
density that is too large and one faces the problem of its reduction. This can be done
due to proper (co)annihilations or resonances, as discussed below. Nevertheless, one
can obtain Qzh? ~ 0.12 even from Eq. alone, if myz < m; < 150 GeV, in the
so-called bulk region [119, 125]. Although such a scenario requires light sleptons, it
is not fully excluded by the current LHC searches [126], [127].

For somewhat larger, though degenerate, masses mpz ~ m; < (400 = 500) GeV
one can still reduce the neutralino relic density to the desired valuein the stau
coannihilation region (SC) [128]E| In the case of even heavier bino the correct
relic density can be obtained due to coannihilations with squarks, if mz ~ my,
or gluinos, when myz ~ my. In these cases it is possible to achieve (23 h? ~ 0.12 for
mp < 3—3.5TeV [129] [130].

Other mechanisms that can lead to a reduction of 2, h? for the bino-like neu-
tralino with some subdominant admixture of the higgsino is associated with the reso-
nant annihilation yy via the s-channel exchange of boson Z, the lighter scalar Higgs
particle h [131] (h-resonance region) or heavy (pseudo)scalar Higgs bosons H /A
(A-funnel region (AF), sometimes called the A-resonance) [125]. If the exchanged
particle has mass m, the condition for the resonant annihilation reads (s) ~ m?,
where ¢ = 1,2 and p,; is the four-momentum of the ith annihilating neutrahno.ﬂ In
the CM frame this can be recast as m? ~ (s) ~ 4m?2 + 6Tpm, ~ [(2. + 2.1) mX]Z.
Hence both the Z-resonance and the h-resonance require a light neutralino with
mass m, < 100GeV as my ~ 91GeV and my;, ~ 126 GeV, respectively. On the
other hand, in the A-funnel region the neutralino can be much heavier.

For mp 2 3.5TeV the correct relic density can still be obtained for a combi-

nation of the aforementioned scenarios. In particular this can be achieved if the

5We apply here the name for such a scenario that is well justified if some common slepton
mass is assumed at the high energy scale. Then, due to 7 Yukawa impact on the RGE running,
stau remains the lightest slepton. However, in the context of general MSSM one can, in principle,
consider smuon or selectron with mass lower than stau. Thus in general we should rather write
about slepton coannihilation region. For the purpose of our discussion all such possibilities are
simply encoded in the name “SC region”. In [I28] m 5 < 600 GeV is presented as an upper limit
on the mass in the SC region. It originates from relatively large value of the cosmological upper
limit on the relic density Qxh2 < 0.3 that should be now reduced.

6The thermal average value of s is associated with a typical (average) energy in the CM frame
of two annihilating ys.
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squark/gluino coannihilation mechanism is accompanied by the A-resonance in the

bino sector.

Higgsino-like LSP The lightest higgsino-like neutralino H, with mass My >~ [
annihilates predominantly into W*W~ and ZZ pairs if it is heavy enough. The
corresponding cross sections for these processes were first calculated in [132) 133,
134] (see also [125]). However, taking into account only xx — SM channels
turns out to be insufficient to properly calculate 25 h? since the H; is always
mass-degenerate with the second to the lightest neutralino and the lighter chargino.
Thus coannihilations play an important role in determining the relic density of the

higgsino-like LSP [135]. One can approximately write [136]

g4

(Ve ~ STom 12 (21 + 3tan® Gy + 11 tan’ Oy ), (5.4)
and therefore )
Qg h?~0.1 <1T‘;V) . (5.5)

The correct value of the DM relic density can be obtained for i ~ 1TeV in a so-called
1 TeV higgsino region (1TH). Although such a heavy neutralino was initially thought
not to be appealing [I37], it now becomes consistent with the current LHC limits
for SUSY searches that suggest Msysy = 1 TeV. Moreover, such a scenario remains
allowed by DM direct and indirect detection limits. In fact, to a large extent it will
be testable in the upcoming experiments (see, e.g., a discussion in [13§]).
Coannihilations with sleptons (the SC mechanism) in the context of higgsino-like
X lead to an increase of the relic density [139] similarly to the mechanism illustrated
in Fig. (right panel).ﬂ As a result, one can obtain 5 h? ~ 0.12 for the higgsino
mass even as low as mpy ~ 600 GeV [138]. For heavier higgsinos the correct relic

density can be achieved by employing squark or gluino coannihilations.

Wino-like LSP 1In the case of the wino-like LSP W, similarly to the higgsino, in
calculating Qg h? one needs to take into account coannihilations with the lighter

chargino [I40]. The wino relic density is then approximately given by [136]

M, \?
O~h2~0.1 ) )
w 0.13 (2.5 TeV> (5.6)

This would suggest that the correct value of the relic density for the wino DM can be

obtained for My ~ 2.5 TeV or lower. However, in the case of wino LSP a perturbative

7An accurate description of this scenario is somewhat more complicated since it corresponds to
a quadruple mass degeneracy between the two lightest neutralinos, the lighter chargino and the
lighter stau. It is the lighter stau that plays the role of the “NLSP” in Fig. (right panel),

although in this case it is often not true NLSP since mz 2 m, ~ m,q ~ My
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calculation turns out to be not sufficient. The wino relic density is quite sensitive
to a so-called Sommerfeld enhancement (SE) of the annihilation cross-section due
to attractive Yukawa potentials induced by the electroweak gauge bosons [141] (see
also [142] [143] for a recent discussion). Incidentally, the SE is particularly important
in the wino mass range for which one obtains Qg h* ~ 0.12. This results in a visible
broadening of a cosmologically acceptable wino mass range to My ~ (2 — 3) TeV.

Similarly to the higgsino case, the SC mechanism leads to an increase of the relic
density for the wino lighter than about 3 TeV, while squark/gluino coannihilations
reduce it for heavier W. Taking this into account additionally extends the mass
range for which Qg h? ~ 0.12 is obtained to 1.6 TeV < mg < 4 TeV [138].

Singlino-like LSP In the framework of the NMSSM the lightest neutralino can
become singlino-dominated (see Section . The largest values of the singlino
relic density can be significantly larger than the largest values obtained for the
bino LSP with the same mass. This can be explained by the fact that a nearly
pure singlino interacts very weakly. It annihilates mainly into scalar-pseudoscalar
pairs (mainly HsA;) with the associated couplings proportional to £ or A that are
suppressed for singlino-like LSP. Intermediate values of the relic density can be
obtained due to coannihilations with the bino (10° < Qgh® < 10°) or the higgsino
(Qh* ~ 10?). Obtaining even smaller values requires coannihilations with the
higgsino, wino, stau/sneutrino, stop or gluino, as well as Z- or Higgs- resonant
annihilations. For an extensive discussion about the issue of DM relic density in the
NMSSM see [144].

Mixed neutralino LSP A general neutralino state in the MSSM (or the NMSSM)
is the mixed state between the bino, wino, higgsino (and the singlino). Among
various possible mixed states of the lightest neutralino the most important one is
the bino-higgsino LSP. In the mass range 100 GeV < m, < 1TeV typically pure
bino LSP has too large, while pure higgsino too small, relic density. This can
be circumvented for an appropriate admixture of B and ITIuvd. In the context of
GUT-constrained SUSY models this is called the hyperbolic branch/focus point
region (HB/FP) [145], 146]. In the following we will apply this name also to the
corresponding region in the MSSM with parameters defined at low energy scale.
The correct value of the relic density can be achieved in the HB/FP region due
to xx annihilations into gauge bosons, as well as through t-channel exchange of a
higgsino-like lighter chargino and/or the second lightest neutralino.

Among other mixed scenarios discussed in the literature one can distinguish
bino-wino (see, e.g., [147, [148, [136], singlino-higgsino (in the context of the
NMSSM) [144] or even bino-higgsino-wino (see, e.g., [149, [150]) admixtures.
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5.2 Gravitino dark matter

We will now briefly discuss the gravitino DM scenario. We begin with short

introduction of the theoretical background and then describe gravitino TP.

5.2.1 Basics

So far we have assumed that supersymmetry is a global symmetry. However, if one
wants to take into account gravity, SUSY must be promoted to a local symmetry.
This leads to so-called supergravity [151, 152], 153, 154].

In the context of supergravity we introduce an additional supermultiplet that
contains spin-2 graviton and its fermionic superpartner spin-3/2 gravitino. For
unbroken SUSY both the graviton and the gravitino are massless particles with
two degrees of freedom. After spontaneous supersymmetry breaking the gravitino
acquires mass by absorbing two goldstino degrees of freedom in the super-Higgs
mechanism [I55] [156], [157) [158] analogously to the weak gauge bosons in the SMEI
The gravitino plays a role of a gauge field for local supersymmetry.

The mixing between the gravitino ¢ and the fermionic components of the chiral
and gauge supermultiplets (y and A, respectively) is described by the following terms

in the Lagrangian of supergravity

1 a Ya i i 7
Lo §gD (Va) ot A —eG/z\/—iGiX " (Ya), + h.c. (5.7)

They can be eliminated by an appropriate shift of the gravitino field
Y — +1ﬁ5“=1/1“ +1<LG-Xi+16_G/29D“X“>5“ (5.8)
G G 3 G 3 \/5 7 2 ;
where the fermionic field 7 corresponds to the massless goldstino. One can then

obtain the gravitino mass,

(K F 5

5.9
T (59)

= i = O =
where K} = (0°K/6¢i0¢’*), G = K/Mp + InWW*/M}P and the function K =
K(¢,¢*), which contributes to the Lagrangian, is called the Kahler potential. In
the PMSB scenario, where 4/(F) ~ 10'° — 10" GeV, the gravitino mass mg is
typically at least of the order of 100 GeV. On the other hand in the GMSB, mg can

be much lower depending on the M, css.

8In the case of fermionic operators that generate supersymmetry, Goldstone bosons from the
ordinary Higgs mechanism are replaced by fermionic goldstinos.
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The Lagrangian term that is relevant for gravitino thermal production is given
by
mg 1

ES_G[MP ¢G[7 P)/]g G;un (510)

where ¢¢ is the goldstino component of gravitino. Note the characteristic ratio
between the gluino and the gravitino masses mg/mg . The other interaction terms

for the gravitino that are relevant for the thesis can be found, e.g., in [I59).

5.2.2 Gravitino thermal production

Due to their extremely weak interactions, primordial gravitinos decouple from
thermal plasma at very high temperatures.  For the gravitino with mass
mg 2 1GeV (10GeV) its decoupling temperature is of the order of Tgee 2>
10 GeV (10'® GeV) [160]. Thus it is typically assumed that, after a period of cos-
mological inflation, the maximum temperature 7},,, of the Universe was never high
enough for the gravitino to be in thermal equilibrium. Any population of primordial
(equilibrium) gravitinos can then be effectively diluted during inflation [I61]. Oth-
erwise the gravitinos would be easily overproduced and would dominate the energy
density of the Universe unless they were very light with mg < 1keV [162].

In the following we will assume that Tgec > Thax. Within this approach the
gravitinos can still be produced in the early Universe in TP and NTP processes, as
discussed in Section . NTP is determined by the NLSP’s (typically neutralino
or slepton) yield at freeze-out and by the mg/myisp ratio as shown in Eq. (3.13).
On the other hand TP depends more on the SU(3). sector of the MSSM and is
dominated by the production in scatterings of gluinos, gluons and (s)quarks.

The present yield of TP gravitinos [163], 164, [165] can be estimated by

(i) 0 (40 ).

where y125 = (0.653,1.604,4.276), ki3 = (1.266,1.312,1.271), while M, (T%) and

g-(Tr) denote gaugino mass parameters and gauge couplings evaluated at @ = Tk,

respectively. They can be replaced by values M, and g, at low energy scale after
imposing on Eq. (5.11)) additional numerical factors obtained from running of RGEs.

If the gluino is the heaviest gaugino with mass significantly exceeding mg,

Eq. (5.11)) can be recast as

T
QL o ma VAT o m—R~m§. (5.12)
G
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Assuming that QL < 0.12, Eq. (5.12) can be rewritten as an upper limit on the
reheating temperature
m»\/
TR,max o CQ; (513)
mg

Clearly larger mg leads to larger Tr. However, the gravitino mass cannot be
arbitrarily high since we want it to remain the LSP. Moreover, for too small a
mass difference (mnrsp — mg) the NLSP lifetime becomes often too long and Big
Bang Nucleosynthesis (BBN) constraints become violated as will be discussed in
Section . As a result one typically obtains Tgmax < 2 % 10°GeV, ie., below
the minimum value required by simple models of thermal leptogenesis with zero
initial abundance of the lightest right-handed neutrinos and sneutrinos [166]. The
gravitino LSP scenario either suffers from thermal overproduction of G or the
reheating temperature has to suppressed. Nevertheless, even in the case of thermal
leptogenesis one can obtain lower Tz ~ 2 x 108 GeV if thermal initial abundance of
vg and 7 is assumed [167]. Beside that, baryogenesis is still a subject of an ongoing
discussion and in particular many models were proposed with low values of Tx (see,
e.g., [I68] or recent review [169]).

Eq. should be modified for sufficiently low Tx in order not to overestimate
the abundance of TP gravitinos. This is due to a possible decoupling of heavy
SUSY species before the RD epoch, i.e., in the reheating period when T > TRp.
Nevertheless, in this limit even the yield calculated using Eq. typically leads
to very low Qgph2 and the DM relic density has to be dominated by the NTP
component in order to keep le)h2 ~ (.12. Hence such a modification plays a
negligible role in the case of gravitino DM. The exception could be a very light
gravitino (see, e.g., [I70]) which we will not address in this thesis.

Another possible modification of Eq. appears in the GMSB-type models
of SUSY breaking. If the reheating temperature exceeds the messenger scale T >
M pess, the gravitino production rate becomes suppressed by about M2 /T? with
respect to supergravity calculations. As a result Yg P becomes effectively insensitive
to Tg [I71, 172]. In the following, when discussing GGM models with gravitino DM
in Section 9.1, we will assume that the messenger scale is always high enough so
that this effect plays a negligible role.

One needs to mention here that there are also other possible production mech-
anisms for the gravitinos in the early Universe, e.g., from inflaton decay [173, [174].
They are very model-dependent and not necessarily important [175]. Hence we will

ignore them in the rest of the thesis.
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5.3 Axino dark matter

The case of axino CDM [176] [177] is, at least at the phenomenological level, similar
to the gravitino DM scenario. Axino is a neutral Majorana particle. Likewise the
gravitino, it is an EWIMP, though with the interaction rates suppressed by the
energy scale f, that is typically significantly lower than Mp| Other than that, the
main difference between axino and gravitino DM arises from the dominant terms in

the corresponding effective interaction Lagrangians.

5.3.1 Basics

In a supersymmetrized version of an axion model [I78, 179, 180] the real scalar
axion field a resides in a chiral supermultiplet since it is a gauge singlet. The other
members of the axion supermultiplet are the fermionic superpartner axino a and
the real scalar field saxion s that provides a remaining bosonic degree of freedom
on-shell [

The interaction Lagrangian for the axion supermultiplet can be obtained by
supersymmetrizing Eq. (3.16). In particular, the axino-gaugino-gauge boson and
the axino-gaugino-sfermion-sfermion interaction terms are given by [177, 181]

eff Qs

e — ~ wo vl b b ay Ta
L3 o faa ¥ VG G+ faag a9s 4
+@'—O‘QC“WW&7 [ AT WEWE, + 2 GWS; gs f5T° fo
167 £, 47 fa fo
ay Cuyy =
@Wa75[7 ’Y]BBMV+4 7 aB* Sigy ffQv f, (5.14)

where fp and f denote sfermions carrying non-zero T3 and Y, respectively. Clpw
and C,yy are model-dependent parameters that correspond to axino-gaugino-gauge
boson anomaly interactions for the U(1)y and the SU(2),, groups, respectively. The
SU(2)y, coefficient can be always set to zero Cuww = 0 by a proper rotation of the
axion field.

A generic form of interaction between the axion and matter supermultiplets was
considered in [I82]. In particular, it was pointed out that, for vpq > T 2 M,
where Mg is the mass of the heaviest PQ-charged and gauge-charged supermultiplet
P, the axino-gaugino-gauge boson interaction term is suppressed by M2 /T?. This
is particularly important for the DFSZ axino, where ® corresponds to the Higgs
supermultiplets and therefore Mg = p (the higgsino mass). The dominant contri-

bution to axino TP is then associated with a higgsino decay to the axino and the

9f, is constrained by astrophysical and cosmological data to 10° GeV < f, < 10'2 GeV [34].
100 ff-shell the additional two bosonic degrees of freedom are provided by an auxiliary field F.
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Higgs boson that is described by [182] [183] [184]

L s 3 e fﬁ a[Hy H, + H, Hy + h.c. (5.15)

The axino mass m; (for a recent review see [I85]) is generated as a result of
supersymmetry breaking and in the spontaneously broken global SUSY is expected
to be at the tree level at least of the order of ~ O(MZygy/fa) [179]. In various models
considered in the literature m; can be either much lower than Mgysy [180, 186, 187,
188, 189] or much higher [I90]. In the following we will not limit ourselves to any

particular scenario of the SSB and will treat the axino mass as a free parameter.

5.3.2 Axino thermal production

The axino decoupling temperature from thermal plasma is given by [191]

2 3
dec fa 0.1
T& = 1011 GeV (m) <a—s> . (516)

If the temperature in the RD epoch following inflation were high enough, regenerated
axinos would remain in thermal equilibrium and the corresponding relic density
would be given by Qe ~ m; /2keV [191]. In this case in order to obtain the correct
value of Qpy one requires mz ~ 0.2keV which leads to axino WDM scenario. In
the following we will focus on sufficiently low T}, < Tgec and heavier axino which
can constitute CDM.

For high reheating temperature the most important contribution to the TP of
KSVZ axino is associated with the first term in £ given by Eq. (5.14). One can
notice the absence of a term analogous to the mg/mg term in Eq. . This
results in a different QXY A% dependence on mg [I77] that in the gravitino case. The

approximate formula for the yield of the KSVZ axinos for high T (see the left panel
of Fig. reads [192]

1.1 Tp /101 2
YIP ~ 2 x 1077 ¢ ln( 908) TRy ( 0 fG6V> ., KSVZ, high Tx. (5.17)

As a result, for the TP relic density one obtains
QP ~ma VI~ mg — KSVZ, high Tk. (5.18)

In addition, as can be seen from Eq. (5.17), the KSVZ axino TP yield in the high
Tr regime is to a good approximation independent of a SUSY spectrum. Similarly
to the gravitino DM scenario, Eq. can be used to derive an upper limit on the
reheating temperature TH** ~ n’;—z As can be seen from Fig. (right panel), KSVZ

axino CDM with m; = 0.1 GeV naturally points towards rather low values of the
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Figure 5.2: Left panel: Axino TP yield Y;'¥ for the KSVZ model as a function
of the reheating temperature Tx. Gluino and squark masses are assumed to be
mg = mg = 1 TeV, while f, = 10" GeV. Solid black line corresponds to the effective
thermal mass approximation, while solid/dotted blue (solid green) describes HTL
(Strumia’s) approach (see a discussion in text). Horizontal red (green) line shows
yield from gluino (squark) decays that add to the dominant (for T = 103 GeV)
contribution from SU(3). scatterings. Taken from Ref. [I81]. Right panel: TE* vs
mg in the KSVZ model for my = m; = 1 TeV and f, = 10! GeV. Regions excluded
from the Large Scale Structure formation are marked with vertical blue lines for
mg < bkeV (TP axino) and mz < 30 MeV (NTP axino with a neutralino NLSP).
Solid black (I) (green (IT),red (III)) line corresponds to non-thermal yield YNTF =
(10719 for (IT), 10~ for (III)). Taken from Ref. [181].

reheating temperature Tr < 1TeV. One should note that in the case of axino such
low T can still lead to a non-negligible TP contribution to the DM relic density
in contrast to the gravitino DM scenario[”] We will examine axino TP in low Ty
regime with more details in Section [9.3] and Appendix [E]

In the case of the DFSZ framework TP is dominated by higgsino decays into
axinos (see Eq. (5.17])) and (less importantly) by scatterings involving SU(2)y,
interactions. Because of this the DFSZ axino yield for vast range of Tx, but not too

low, becomes independent of the reheating temperature [182] [184) 193]

YIP ~ 1075 ¢ (TZV) (101}(}6\/)2, DFSZ, (5.19)

where ¢ ~ O(1). If Tr becomes very high, depending on the value of the higgsino
mass p, axino production from SU(2), scatterings start to dominate and the Tx

dependence is recovered even for DFSZ axino.

" This is because, as discussed above, axino interaction rates are suppressed by f, ~ 10! GeV,
which is large, but still significantly lower than Mp.
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Dependence on a SUSY spectrum In the KSVZ model, in the limit of high Ty,
scatterings associated with the SU(3).. group dominate in Y'*¥. The additional U(1)
scatterings (for non-zero Cyyy ) contribute typically by no more than a few percent.
In this regime of high Tg, the yield from scatterings is practically independent of a
SUSY spectrum, as mentioned above. This is because the thermal kinetic energy
of the incident particles can be high enough so that the suppression of phase space
for heavier SUSY particles (incident or produced) is negligible. In particular, in the
case of the scatterings of the SM particles leading to the production of the axino
and a heavy SUSY particle (e.g., gluino) o(s) does not depend on a supersymmetric

particle mass, e.g. [194],

a; m?? 2 MEN3 | soo OF
o~ |12 () 2 () | = e

for the dominant quark-quark scatteringB

One should mention here a technical issue that arises when dealing with infrared
divergences in the scattering cross sections. One way to solve this problem is to use
a Hard Thermal Loop (HTL) resummation technique [195] that is, however, valid
only for gs « 1, i.e., Tg » 10° GeV [192]. Another method, used by Strumia [196], is
to apply fully resumed finite-temperature propagators for gluons and gluinos. This
results in an increase of Y;'¥ compared to the HTL method (see the left panel of
Fig. due to an addition of the axino production via gluon decays.ﬁ However, this
technique is applicable only to Tx = 10* GeV, which still remains far too high for the
purpose of our discussion. Hence we will follow [I77] and use the effective thermal
mass (ETM) approximation, i.e., employ a thermal gluon massE It gives somewhat
larger Y}lTP in the high Tg regime than Strumia’s result, as shown in Fig. |5.2] (left
panel). The difference (up to a factor of three) can be treated as an estimate of the
theoretical uncertainty of using ETM for the high reheating temperature [181].

The important advantage of using the ETM approach is the possibility of consid-
ering axino TP in a low T regime. When the reheating temperature drops below
about 105 GeV, the axino yield from TP may acquire non-negligible contribution
from squark and gluino decays to the axino. As a result Y;I'¥ starts to depend on

the gluino and squark masses.ﬁ For heavy squarks, phase space suppression reduces

12In general other scattering channels producing axinos can also be important in the high T
regime and one can find similar arguments for them (compare [194]).

13For a similar discussion in the case of gravitino DM see [165].

T ow-energy gluons (more strictly — plasmons, that are gluon-like collective excitations of a
quark-gluon plasma) cannot propagate as free fields in the high-temperature plasma. This effect is
taken into account in the framework of the thermal field theory by introducing an effective thermal
mass Meg ~ g1 that corresponds to the plasma frequency.

5For even lower Tp < 100 GeV TP can get important impact from U(1)y scatterings and
decays. However, for such low reheating temperature one has to additionally take into account the
impact of non-instantaneous reheating. Thus we will postpone the discussion of this regime until

Section [9.3] and Appendix [E}
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Figure 5.3: YdTP vs Tr ~ Tgp in the KSVZ model intermediate with 10° GeV >
Tr < 102GeV. Solid black line the same as in Fig. |5.2l Left panel: Yield for
the common squark mass m; = 2TeV (4TeV, 10TeV) (at the low energy scale)
is shown with dashed (dotted,dash-dotted) blue line. Dash-dotted yellow line was
obtained for mgz = 1TeV except from the lighter stop mass mz; = 500 GeV. Right
panel: Yield for the gluino mass mz = 2TeV (4TeV, 10 TeV) is shown with dashed
(dotted,dash-dotted) red line.

the scattering contributions by a factor no more than a few, as can be seen in Fig. [5.3
(left panel), where m; denotes common squark mass at Mgysy scale. The opposite
effect is obtained for smaller mass of the lighter stop. On the other hand, for heavy
gluinos the corresponding scattering contributions are also suppressed due to phase
space effect. However, enhanced squark decays lead to an increase in Yz'¥ possibly
by more than an order of magnitude (see the right panel of Fig. [5.3)). The correct
thermal axino yield from squark decays is to some approximation proportional to
m? for Tp > mg [194]

2
P ~ 66(5) ag — MP mg fa
(Y?ZT )ti,dec - (271‘)6 g <m(j> [E log (E)] (521)
~ 3 (%) (V) e for fa=10"GeV,  (5.22)

where ((5) ~ 1, g = 135/10/(273 ¢2*) and in the second line (Y}lTP)gd

contribution from gluino decays. As can be seen from Eq. (5.22)) the relative impact

of squark and gluino decays depends on their mass ratio, but typically squark decays

denotes the
ec

dominate.
In the case of the DFZS model Y;'¥ depends on the higgsino mass p as shown in
Eq. (5.19). For sufficiently low T both DFSZ and KSVZ yields become Boltzmann

suppressed.



Chapter 6
Bayesian approach and constraints

In this chapter we introduce fundamental concepts that lie behind a Bayesian
statistical approach to analyzing SUSY models. We begin with a description of
the Bayes theorem and of its application in the context of SUSY. We further discuss
relevant constraints imposed in such analyses that come from current high- and

low-energy particle physics experiments, as well as these related to dark matter.

6.1 Bayesian statistics

In this section we briefly describe some basic concepts behind Bayesian statistics.
We first discuss fundamental notions of a probability theory and then apply them
to the specific case of a SUSY model analysis.

6.1.1 Probability theory and Bayes theorem

Axiomatic probability theory The classical Kolmogorov’s definition of proba-
bility refers to the concept of measuring sets. We first define a set {2 of all possible
outcomes of some experiment, i.e., a so-called sample space. A subset of {2 is called
an event and all possible events compose a set that is usually denoted by F. Next
we introduce a function (measure on §2) P : F — [0, 1] such that P(2) = 1. It is re-
ferred to as a probability measure or simply probability. The whole triple (€2, F, P)
is formally called a probability spacell] Last, but not least, we define a random
variable X that is a function X : 2 — R” which transforms subsets from F into

Lebesgue measurable subsets of ]R”E]

In general, in order to construct a reliable probability theory, one needs to restrain an issue of
event so that not any possible subset of €2 can belong to F. Strictly writing, F must comply with
the definition of so-called o-field. In practice, when considering results of physical experiments, we
typically limit ourselves either to a discrete set  with F = 2% being set of all subsets of € or to
Q2 < R and F composed of Borel sets that remain measurable in a sense of the Lebesgue measure.

2Note that P : F — R, , while X takes arguments from the sample space €.
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Suppose we have two events A, B < Q with corresponding probabilities P(A)
and P(B). By definition a conditional probability of A under the assumption that

B happened is given by
P(An B)

P(B)
where n denotes the intersection of sets A and B. From Eq. (6.1)) it immediately
follows that

P(A|B) = (6.1)

P(B|A) P(A)
P(B)

Eq. (6.2), which relates the conditional and the unconditional probabilities of A and

B, is called the Bayes theorem.

P(A|B) = (6.2)

When (2 is a subset of R", it is convenient to identify €2 with a random variable X
being an identity function, i.e., for each w € {2 one obtains X (w) = w. From now on,
we will continue to discuss selected aspects of a probability theory in terms of random
variables or sample space interchangeably. If additionally €2 is a continuous set, as
it is often the case with results of physical experiments, we introduce a probability
density function p such that the probability of X € A, i.e., that X(w) € A for some

w € €1, is given by

P(XeA) = JA p(w) dw, (6.3)

where an ordinary Lebesgue integration is used.

Let us now consider a 2-dimensional random variable (X,Y’) with a joint prob-
ability density p(x y), where both X and Y take arguments from R. We obtain a
marginal probability density of X by integrating p(x y) over ¥

px(z) = me,n(x,y) dy. (6.4)

Now, analogously to Eq. (6.1)), we define a conditional probability density of X given
Y=y

Pix,y)(z:y) if
— py(y) # 0,
pwlely) ={ W v (6.5
0, otherwise.

Eq. (6.2) can then be rewritten in terms of conditional probability densities (for

py(y) #0)
pxyy (zly) = pYX(if;)ny(m) (6.6)

A generalization of Eq. to more than two dimensions is straightforward.

Frequentist and Bayesian approaches to probability theory From a practi-
cal point of view we often need to employ more operational definitions of probability
than the one associated with measuring sets. One can then interpret them in a way

that guarantees a fulfillment of the Kolmogorov axioms (see, e.g., [197]).
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One such (so-called frequentist) approach defines a probability based on a series
of repeatable experiments. The probability that event A can happen is associated
with the number of n trials of the experiment in which it actually happened out
of the total number of repetitions N. In order to make this definition exact one

employs a limit N — oo and obtains
P, (A) = lim —n (6 )
1 . i
fr N

In practice it is enough to assume that one can always perform one more experiment
to obtain Py (A) with any desired accuracy.

Another, namely Bayesian, approach to probability theory is based on a degree
of belief of an observer. The main advantage here over the frequentist probability
is such that Bayesian probability can be applied to non-repeatable experiments.
It also allows one to take into account a prior expectations before experimental
data are employed. Some methods to construct Bayesian probability consistent
with the Kolmogorov axioms can be proposed (see, e.g., coherent bet introduced by
Finetti [198])@ However, one can in principle employ the Bayes theorem and the
Bayesian interpretation of probability without referring to a specified probability
space and the Kolmogorov axioms (e.g., based on the Cox theorem).

In the following we will employ the Bayes theorem to statistical analyses of SUSY

models.

Bayesian analysis of SUSY models In the context of a Bayesian analysis of
supersymmetric models (for a discussion see, e.g., [199]) we introduce a multidimen-

sional random variable
n=(6,v), (6.8)

where 6 corresponds to SUSY model parameters and 1 contains so-called nuisance
parameters that encode the uncertainty in determination of relevant parameters of

the SM. Moreover, we define a set of derived variables

= (&, 6m)- (6.9)

They describe the observable quantities calculated for a given model point 7 that

can be compared with the experimental data
d=(dy,...,dy). (6.10)

Let © be a set of allowed values of 1 and D describe all the possible experimental

results. The sample space is defined then as {2 = © x D with a joint probability

3This is a so-called subjective Bayesian approach. Alternatively, in an objective approach, one
can try to construct more opinion-independent priors (see, e.g., the Jeffreys prior).
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density p(,q). Integrating p(, 4y over D or © we can obtain marginal probability den-

sities m(n), a so-called prior, and Z(d), a so-called evidence, respectively. Eq.

p(d§) 7(n)
Z(d)

can then be rewritten as

p(nld) = (6.11)

where the probability density p(n|d) is called the posterior, while p(d|{) = L is the
likelihood function[

It is easy to see that the prior, the likelihood and the posterior depend on a
SUSY model that is considered since they explicitly depend on the choice of n. This
may not be so evident in the case of Z(d), but one has to remember that, in order for
Eq. to hold, the evidence must be understood as a marginalized probability

Z(d) = fm,d)(n, d) dy = f Cn(n) dn, (6.12)

where in the second step we used Eq. . In other words, Z(d) depends on
details of a chosen SUSY model by a choice of a specific probability space. This is
sometimes marked explicitly by a formal addition of yet another condition M that
encodes the type of a considered SUSY model. We may treat then all the probability
densities in Eq. as conditional probability densities under a model hypothesis
M. This may serve as a method of comparing validity of two different models via
so-called Bayes factors (see, e.g. a discussion in [200]) within the Bayesian approach
to probability theory. In the following, the evidence will serve only as a constant
(not 1 dependent) normalization factor in the definition of the posterior.

The prior 7(n) describes our initial belief about the probability distribution of 7
parameters. The requirement of choosing m may lead to a possible prior-dependence
of results that is often considered as a drawback of a Bayesian approach. One
way to ameliorate this is to choose a simple flat prior m(0;) = const for SUSY
model parameters, which effectively leads to p(6|d)oc £ in Eq. (6.11). However,
one may argue that the flat prior is by no means more natural than some other
choices of 7, although it just seems to be due to a special choice of parametrization
0. In particular, let us focus on a mass parameter m with the allowed range
m € [0.1TeV,10TeV]. In this case flat prior assigns much larger probability to
the region m € [1 TeV, 10 TeV] than to the region of low mass m € [0.1 TeV, 1 TeV].
This so-called volume effect may not be desirable both from the point of view of
the sampling efficiency (therefore also favored regions in the parameter space) and
naturalness (in a sense of the little hierarchy problem). In order to overcome this
one could, e.g., use a so-called log prior that is flat in logm. Therefore freedom of

choosing m may be considered as an advantage of the Bayesian approach. In the case

4One should formally write p(d|n) rather than p(d|¢), but this change in notation is well justified
by the fact that the parameters n determine the values of £, which are then explicitly compared
with data d. See also a discussion of theoretical uncertainties in Section
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of the nuisance parameters 1) we typically construct priors as Gaussian probability
densities with mean and variance dictated by experimental data.

When presenting results of a Bayesian scan as 1D or 2D plots, one needs to
integrate posterior probability densities over all remaining parameters, i.e., use

marginalize posteriors, e.g.,
pl61,0510) = | p(9]d) dBisa e (613)

6.1.2 Likelihood function and y?

The likelihood function £ is the probability density of obtaining some experimental
data d given the values of derived variables ¢ that are themselves determined by
the parameters 1. However, one should mention an important caveat here. For
a given n the calculated values of derived variables £ are not necessarily equal to
“true” derived variables f . The latter ones would be obtained if the calculation was
exact. The former suffers from various theoretical uncertainties and approximations.
Unfortunately, we do not know the “true” é and rather have to compare ¢ with
the data d, which introduces an additional error. We take this into account by

integrating over é with a proper probability density,
£ = pldi§) = | pldif)p(Ele) dé. (6.14)

We will further assume that all the derived variables él are pairwise independent
and that most often a single probability densities p(&€;) are of Gaussian type with
mean values &; and theoretical errors 7;. Similarly for the experimental data we will
take average values d; and an experimental errors ;. Thus Eq. leads to

M) (6.15)

I <_2<az )

£ = pl(dilg) =
In this case, the total likelihood is a product of single-variable likelihoods
L =1LL,. (6.16)

In a construction of the total £ we initially assume that the variables &; have
marginal likelihood of Gaussian type, Eq. (6.15)). We further assume that Eq. (6.16)
holds, which means that the ;s are independent random Variables.ﬂ In our statistical

5If we only assume that the &;s are pairwise uncorrelated, then this will not guarantee that
a joint probability distribution of £ = (&1,...,&,) is a multi-dimensional Gaussian function. To
see this let us, e.g., consider two random variables X and Y = XW such that X has a normal
distribution M(0,1) and W has a Rademacher distribution. Then X and Y both have the same
normal distribution and are uncorrelated but their joint distribution is not a two-dimensional
Gaussian function. X and Y are also not independent.
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approach the assumption of independent random variables is strictly fulfilled for the

parameters 7; and this results in a possible decomposition of prior,

m(n) = Iim(n;). (6.17)

Because of this, we can set a prior for each model parameter independently. In
principle, the derived variables & do not have to be independentﬂ However, we
will assume for simplicity that Eq. holds, which is expected to be a valid
approximation as long as we do not over-constrain our model, i.e., do not use too
many &;s.

Importantly, for some of the experimental limits imposed in our analysis, e.g.,
SUSY searches at the LHC, we will not use the Gaussian approximation. However,
we will still use Eq. for the total likelihood which is valid (by definition) for
any set of independent random variables with not necessarily Gaussian likelihood.
These specific cases will be described in Section [6.3| separately for each relevant
constraint.

In order to quantify the difference between the observables &; and the data d; for

a given point in a SUSY model we will follow an approach of the y2-test, i.e., we

a-& \
v :Z< - fT?) . (6.18)

If random variables & have Gaussian distributions N (d;, /0 + 72), x? in Eq. (6.18)

has a yZ2-distribution. For simplicity we normalize the likelihood functions in

Eq. 1’ to unity, i.e., we neglect a factor 1/4/2m(0? + 77) in front, and obtain

X2 = -2 Zln L;. (6.19)

will calculate

In the following, for simplicity we will use Eq. (6.19) to calculate x? even in some
rare cases when the likelihood function £; will not be of Gaussian type. We will

always normalize £; to unity in order to make sure that for a perfect fit x? vanishes.

6 A simple pedagogical example goes as follows. Suppose X, Y are independent random variables
uniformly distributed over a range [0, 1] and we construct new random variables W = X +Y and
Z = X — Y. They are not independent since, e.g.,

0=P(W=>19,7Z>0.9)# PW >1.9) P(Z > 0.9).
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6.1.3 Confidence and credible intervals

Using x? we will construct the confidence intervals. By definition a (1—«) confidence
interval contains the true value of a parameter with a probability equal to 1 — ]
They can be constructed in terms of the difference between actual values of y? and

its minimum value x?2;, obtained for the best fit point in the whole modef]

AX? =X — X (6.20)

Points in the parameter space lie inside the (1 — «) confidence interval if Ay? <
Axgrim_a’ ~> Where N denotes the number of degrees of freedom that corresponds
to the dimension of the confidence interval. For example Axgrm%%’z = 5.99 for the
two-dimensional interval with 95% confidence level (CL).

Within the Bayesian approach we construct (1 — «) credible regions that contain
1 — a portion of the posterior. In a two-dimensional case we choose the smallest
of all such possible intervals. In one-dimensional plots we define (1 — «) credible
region by assuming that both above and below this region the remaining posterior
corresponds to /2 probability (so-called equal-tail-probabilities ordering rule). The
credible regions in general depend on parametrization. This means that an actual
set of points in a (1 — «) credible region can change when one marginalizes the
posterior with respect to different parameters. They also do not have to contain the

best fit point in contrast to the confidence intervals.

6.2 Scanning technique

So far we have described the statistical treatment of various points in the parameter
space of a SUSY model that allows us to assess the validity of a given point in the
parameter space, 7 € O, as well as the credibility of the whole model. Ideally one
would like to find £ for each 7, rewrite it in terms of the posterior and present results
by a proper marginalization. However, this procedure meets obvious difficulties. For
instance, in numerical scans of the parameter space © only a small fraction of points
can be evaluated within a reasonable computing time. The issue arises of how to
efficiently sample © and find the best fitted regions. A naive grid scan is in most
cases not manageable, e.g., for a rectangular grid in n = (n1,...,n,) parameters
space, with n being the number of parameters (model’s and nuisance), performing
m steps in each dimension requires m™ point evaluations in total. This can easily

become an unreasonably large number, unless one limits m to be a very small integer.

"In order to make this definition unique one often assumes additionally that the (1 — «) confi-
dence interval is the most compact of all the intervals satisfying the aforementioned condition. In
our approach the confidence intervals are defined uniquely and independently of reparametrization
by a construction described in the text.

8We approximate x2;, with the lowest value of x? obtained in the scan.
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However, in this case the scan resolution will typically be not satisfactory enough
to find interesting regions in ©.

One way to solve the sampling efficiency problem is provided by a wide family
of numerical methods based on random scans that are commonly referred to as
Markov Chain Monte Carlo (MCMC) methods [201]. MCMC methods allow one
to dramatically improve the sampling efficiency in comparison with grid scans.
However, in general they still require a major computing effort to derive reliable
results.

One further step in increasing the sampling efficiency that we employ in our
numerical analyses can be performed thanks to the Nested Sampling algorithm [202]
implemented in the MultiNest computer package [203, 204]. The method was
initially proposed for computing the evidence but the posterior can be inferred from

the scan. We introduce a so-called prior volume
X(\) = J () dn. (6.21)
LA

As can be easily seen, 0 < X(\) < 1. One can then formally rewrite Eq. (6.12))
using a volume element d.X

1
Z = f LdX, (6.22)
0

which allows one to replace a multidimensional integral by a one-dimensional one
that is evaluated in the algorithm. In order to calculate Z one needs to identify the
regions with the highest £ that contributes the most to the integral in Eq. . We
first randomly (according to the prior) find a set of N initial, so-called live, points
and order them by the likelihood £ < ... < Ly. We then discard point with the
lowest likelihood £ and replace it with a new point that has larger likelihood L, ey
This means that we effectively look for a new point within an iso-likelihood contour
L > L. Next, the procedure is repeated with min [Ley, £2] etc. A schematic plot
presenting the main idea of the Nested Sampling algorithm is shown in Fig.
The real power of the Nested Sampling algorithm manifests itself in the way how

X, at each step can be estimated without performing a multi-dimensional integral

in Eq. (6.21)) (for details see [202])

X, ~ exp (—%) (6.23)

The evidence can then be evaluated from Eq. (6.22), e.g., by applying the trapezoidal
rule

M
i=1
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Figure 6.1: Cartoon illustration of Left panel: iso-likelihood contours in the case
of two-dimensional scan and Right panel: likelihood function values L£; with corre-
sponding prior volumes X;. Taken from Ref. [205].

where L; is the likelihood for the point replaced in the ith step, M is the total
number of replacements (steps) and “weights” are equal to w; = (X;_1 — X;11)/2.
The posterior for the “replaced” points can be derived fromﬂ

£i W;

= . 6.25
p Z (6.25)

BayesFITS package Having discussed the basic features of the sampling al-
gorithm we will now move to a brief description of a numerical tool used by us
when performing scans over the parameter space of a SUSY model, namely the
BayesFITS package (see [200, 207]). BayesFITS is an interface between several
external, publicly available numerical packages. In particular, the aforementioned
Multinest [203, 204] constitutes the core of the package as the sampling tool. The
SUSY mass spectrum is computed with SOFTSUSY [208] for the MSSM and with
NMSSMTools [209, 210] 2TT1] for the NMSSM. This is then taken as input to compute
various observables. We use SuperIso Relic [212] to calculate B-physics related
branching ratios (see Section and (g — 2),, (see Section [6.3.5). The DM ob-
servables, such as the relic density and direct detection cross sections, are calculated
with MicrOMEGAs [144], 213, 214}, 215]. The electroweak observables myy, sin? f.g and
AMgp, (see Section are calculated using FeynHiggs [210].

The BayesFITS package is sometimes used by us just as a very efficient sampling

tool that allows us to simply identify physically interesting regions of a given SUSY

9In the case of the live points that remain at the end of a scan (not having been replaced before)
we also apply Eq. with the weights w; = Xj/N, ie., we assume for simplicity that they
have almost equal values of the likelihood and we divide corresponding prior volume into equal
parts. This is justified since (close to the convergence) the remaining live points have £ ~ 1.
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model. We then typically present results in terms of two-dimensional 95% confidence

intervals instead of 20 credible regions characteristic for the Bayesian approach.

6.3 Constraints included in the likelihood func-
tion

In this section we will describe the constraints imposed on SUSY models in our
Bayesian scans via the likelihood function. As mentioned in Section [6.1.2] most of
them are implemented assuming Gaussian distribution given by Eq. . The
other cases will be described separately for each contribution to the likelihood. The

relevant parameters for the probability distributions are given in Table [6.1]

6.3.1 Dark matter relic density and (in)direct detection lim-
its

DM relic density By far the most significant influence on the parameter space

of SUSY models is provided by the relic density constraint. It is implemented via

the Gaussian likelihood. When dealing with the Sommerfeld enhancement in the

wino DM case, we use enhancement factors from [142].

DM direct detection The other important constraint associated with neutralino
DM comes from direct searches through elastic scatterings of DM particles off nuclei.
As the neutralinos are WIMPs with non-relativistic velocities, one typically applies
the v — 0 limit when calculating cross section. The corresponding cross section
can then be decomposed into two contributions: the spin-independent (SI) and the
spin-dependent (SD), o ~ o5 + ¢5P. In general for heavy nuclei targets the SI

contribution dominates. It reads

st A 2
o = T[Z frt (A=2)f,], (6.26)
where Z and A are the nuclei electric charge and atomic number, respectively.
pa = (mx Ma)/(my + My) is the WIMP-nucleus reduced mass with My being
nucleus atomic mass, while f, and f, are the amplitudes for DM scattering on
proton and neutron, respectively. Typically f, ~ f, and one can rewrite Eq.

as ) )
oS W g2 g2 SUIA g2 (6.27)

T ma

where p, = (mxm,)/(m, +m,), m, is the proton mass and we defined

p

42
o) =—f (6.28)
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Figure 6.2: Upper limits on 021 as a function of the WIMP mass from various

DM direct detection experiments. Solid blue (purple) line corresponds to LUX
(Xenon100). Dashed purple line is a projected limit for future XenonlT experiment.
The yellow region on the bottom is the neutrino background. Taken from Ref. [22].

It is this last quantity that we will be comparing with experimental upper limits.
Similarly one can obtain the cross section for neutron o5 by replacing p, — j, and
fp = fn, but it is basically the same.

Neutralino DM can scatter off of quark via s-channel squark exchange, t-channel
CP-even Higgs or Z boson exchange. It is also possible for x to scatter off of gluons
via one-loop diagrams. In the case of EWIMP DM, the cross sections are by far too
small to be observed. Hence we do not impose DD constraints on the gravitino or
the axino LSP scenarios.

The advantage of using heavy nuclei in detectors can be clearly see from
Eq. where 05! ~ p% A% In particular, in the two DD experiments that
we will use to constrain SUSY models, i.e., the Xenon experiment with about 100 kg
target material (Xenonl00) and the Large Underground Xenon (LUX) experiment,
the target is made of liquid xenon.m Current upper bounds on 021 are shown in
Fig. [6.2l In our Bayesian scans we will treat these limits as a sharp cut-off, ie.,
we will assign £ = 1 for all the points lying below the exclusion lines, while £ = 0
for the remaining ones. Such an approach is often acceptable, since most of phe-
nomenologically interesting regions reach (TSI well below the current limits. For the
points lying close to the exclusion lines, exhibit the whole FP region for pu > 0,

a more proper and elaborate treatment taking into account uncertainties was used
in [217) ]

10The other advantages of using xenon are, e.g., high density and scintillation yield.

T As can be seen from Fig. for sufficiently low ogl, direct searches of DM will meet another
difficulty that comes from nuclear recoils due to the elastic scatterings of solar, atmospheric and
diffuse supernovae neutrinos. Although this is not a strict lower limit (“neutrino floor”) for
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One should mention here that a DM signal with mass of the order of several GeV
has been claimed by some DD experiments. However, it has not been confirmed by
several other experiments including Xenon100 [218], 219] and LUX [124].

DM indirect detection Neutralinos as DM particles freeze-out from thermal
plasma in the early Universe. After that point, their subsequent annihilations play
a negligible role in determining the DM relic density. Nevertheless, some annihilation
events indeed still take place and can give rise to interesting signals in astrophysical
observations. In order to increase expected signal rates one typically looks for such
signatures from nearby regions of the Universe with potentially large DM density,
i.e., from the center of our Galaxy or from nearby galaxy clusters.

The list of possible signals consist mainly of (anti-)protons, (anti-)electrons,
~-rays and energetic neutrinos. However, in DM indirect detection (ID) experiments
one needs to take into account various sources of astrophysical background. Because
of such background it turns out that it is particularly difficult to use cosmic protons
or electrons to observe signals from DM annihilations. Several possible signals of
DM in ID experiments have already been claimed, but the nature of these results is
still a matter of discussion and its possible astrophysical origin is taken into account.

In the numerical analyses presented in this thesis we do not impose ID limits
on bino and higgsino DM due to their relative weakness. However, the situation is
entirely different in a scenario with wino DM as will be discussed in Section [8.1]

Gravitino or axino DM candidates do not lead to observable effects in DM ID
due to annihilations, but could potentially generate an interesting signal from decays
in R-parity violating scenarios. An example of such an analysis with a possible
explanation of 3.5keV line that incorporates decaying gravitino DM with mass
meg ~ TkeV was given in [I70]. For a similar study in the case of axino DM
see [220, 221].

6.3.2 Higgs boson mass and signal rates

Higgs boson mass The recent discovery of the Higgs boson has introduced an-
other important constraint on SUSY models. It is implemented as a Gaussian like-
lihood. The theoretical error of m;, that we incorporate is due to residual difference
between calculations using different approaches and renormalization schemes. It is
estimated in the literature to be of the order of 2 — 3 GeV [59].

When discussing the CNMSSM in Section[7.2] we take into account the possibility
that the lightest Higgs scalar h; has mass below 126 GeV and remains invisible in
the current searches, while the observed signal corresponds to the second-to-lightest

scalar ho. In this case we replace my,, with my, in the likelihood function. In another

experimentally accessible values of O'SI, without a proper treatment of this background one would
not be able to successfully look for WIMP DM giving such a low scattering cross section.
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scenario we consider a mass degeneracy my, >~ my, >~ 126 GeV. According to the
discussion in Section [6.1.2] we assume that in our statistical approach the random
variables m‘,ﬁk and mfglc (calculated) are independent. Thus we employ a product
likelihood L, = Ly, ; L), , With the £,,, . being an appropriate Gaussian function.
A similar approach is used in Section [7.3|in the context of the partially non-universal
version of the CNMSSM where we consider a possible mass degeneracy between hy

and lighter pseudoscalar a; with my, ~ m,, ~ 126 GeV.

Higgs boson signal rates In the initial announcement of the Higgs boson dis-
covery in the year 2012 an enhancement in the h — 77 decay channel was reported
by ATLAS, with u(yy) = 1.9 + 0.5, as well as by CMS, with p(yy) = 1.6 £ 0.4,
where u(X) is the ratio of the observed Higgs production cross section to the one
predicted by the SM in a Higgs decay channel h — X. On the other hand, the
updated values of u(ZZ) by CMS [222] and ATLAS [223] were, within 1o error,
SM-like. We took this into account when performing scans at that time.E

We calculated for both Higgs bosons h; o the reduced cross sections

Ry (X) = X , 6.29
hZ( ) U(pp — hSM) BR(hSM — X) ( )
for a given Higgs decay channel X. Equation (6.29) can be approximated by
Ye prod
where the sum runs over the Higgs production channels Y (with Y = gg for

gluon-fusion, V'V for vector boson-fusion and Higgs-strahlung off a Z boson, ¢t and
bb for associated Higgs production with top and bottom quarks, respectively). The
ratios Rsm(Y) = o(pp — Y — hsum)/o(pp — hsu) were obtained from public tables
provided by the LHC Higgs Cross Section Working Group [224] 225] for 4/s = 8 TeV.

The reduced cross sections R}; (X) for the individual production channels were

calculated as

oY — h;) " BR(h; — X)
(Y = hem)  BR(hgy — X)
['(h; = X)/Tiot
F(hSM - X)/FEQ%

9 9 BR(h; — F)
— CAY)CAX e VA
( ) ( ) Fe SMZdecay C2(F)

Ry (X) =

= C*(Y) x

(6.31)

12\We only used the dominant decay channels where an about 50 excess had already been
observed.
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where the sum runs over the decay channels F' open to the SM Higgs boson and
quantities C'(X) are called the Higgs reduced couplings (the ratio of the couplings
of the Higgs boson with a given mass to a pair of X particles within SUSY, to the
ones calculated in the SM).

In the case of mass-degenerate h; and hy only the combined production rate for
hy and hy needed to be equal to Rg,s(X). Hence the observation likelihood was
defined as

EobS(X> = exp {_ [RobS<X) - (Riu(X) + ha(X))]2/2<0§( + 7)2()} . (6-32)

In addition to constraining hgs, we also required that the second of the two light-
est C'P-even Higgs bosons remained “hidden”, i.e., it must had escaped detection at
the LHC (or at LEP if light enough). In the following we refer to this as hnq. We
constructed an “exclusion” likelihood. Following the procedure outlined in [199] for

the exclusion bounds we first defined a step function,

1 for Ry, (X) < ios( (6.33)
>

X
LEP (Mg R (X), p95(X)) =
excl (mhhld hh1d< ) ,U,95< )) { 0 fOl" thid (X> M95(X)7

where p5(X) is the value of the signal strength modifier (X)) = op,,, (X)/ngy (X)
that was excluded at 95% C.L. by the LHC searches for a Higgs with a given mass
Mpy.y, Obtained from the exclusion plots published by the CMS Collaboration[226].
The LEP exclusion limits were also taken into account.

In order to include the theoretical error on the true values of the reduced cross

(step)
excl

section and the Higgs mass, £ became then smeared out further by convolving
it with Gaussian functions centered around their true theoretical values fx’hhi LX)

and my,,,, respectively

smear A r ste A~ I
E((excl ) (mhhid7 thid? ﬂ') = Jdmh}xid J dthid Eéxclp) (mhhicH thid? ﬂ)

(mhhid - mhhid)2 (thid — Rhma)2
2 exXp |~ =2
2T 27

. (6.34)

X exp [—

where the theoretical errors were taken to be 7 = 3GeV and 7 = 15% - Ry, [227],
respectively. The exclusion likelihood was calculated for X = ~v, ZZ, WW and 77.
Finally, in order for our exclusion criterion to be consistent with our criterion for
signal observation at 125.8 + 3.1 GeV (with theory and experimental errors added

in quadrature), we further imposed the condition

Lon(X) = 0 for 122.7GeV < my,,, < 128.9GeV,
- Lime (X) elsewhere.

excl

(6.35)
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Figure 6.3: Left panel: Our approximation of the CMS razor 4.4fb~! likelihood
map for the CMSSM. tan 8 = 3 and Ay = 0 are fixed. The thick solid line shows
the 95.0% CL (20) bound. It approximates the CMS 95% CL exclusion contour,
shown by the dashed black line. The thin solid line and the thin dashed line show our
calculations of the 68.3% CL (1) the 99.73% CL (3c¢) exclusion bound, respectively.
The dotted gray line shows the ATLAS 95% CL exclusion bound. Taken from
Ref. [200]. Right panel: The 95% C.L. lower bounds from our razor likelihood for
the CNMSSM, for different values of A\ and A,, compared with the experimental line
(in dashed black). Taken from Ref. [207].

6.3.3 Direct searches for supersymmetric particles

In our Bayesian analyses we need also to take into account the LHC lower limits on
the SUSY mass particles that come from lack of SUSY signal in data so far. We
focus on the SU(3). sector of the MSSM, where bounds are the strongest.

When performing CMSSM and CNMSSM (see Sections and analysis we
derived our LHC likelihood for the CMS search [228] following the so-called razor
method [229]. We generated a two-dimensional grid of points in the (mg, mq/s)
plane, namely the likelihood map. The other parameters can be shown to play a
much less important role [230, 231], because they have little effect on the squark and
gluino masses. For each point in a grid we assigned a value of the likelihood function
describing exclusion limits, i.e., we put £ &~ 1 for allowed points and £ ~ 0 for points
corresponding to SUSY particle masses that were well below the exclusion limits.
The values of L for points close to the exclusion limits were obtained by approximate
razor analysis that followed closely the full one of the CMS Collaboration [229]. A
similar approach was applied when discussing a ten-parameter version of the MSSM
(p1OMSSM) in Chapter |8, However, in this case we constructed a likelihood map in

the gluino and squark mass plane (mg, mg).



80 Bayesian approach and constraints

We present our results for the CMSSM in Fig. [6.3| (left panel) as the 68.3% (1o),
95.0% (20) and 99.73% CL (30) limits obtained from our likelihood. The reproduced
95% CL razor contour for the CNMSSM is shown in Fig. (right panel). We also
show that the dependence of the limit on A and A, is negligible.

6.3.4 B-physics

Rare leptonic decays of neutral B mesons in the SM are absent at tree-level and
appear dominantly at one-loop level in W-box and Z-penguin diagrams. Moreover,
the corresponding branching ratios (BRs) of these flavor changing neutral current
(FCNC) decays are helicity suppressed (for a review see, e.g., [232, 233]). Because
of this, it is possible for a loop-level supersymmetric contributions to become com-
parable with the SM values. Thus one expects that SUSY could manifest itself in
a precise determination of such BRs. Conversely, this can also serve as an useful
constraint on SUSY models when comparing with experimental data.

Similarly the effect of SUSY can be seen in radiative inclusive decays of B meson
that is driven by the process b — sy (for a review see, e.g., [232, 234]) or in the
B, — B, mixing (for a pedagogical introduction see [235]).

B, — pp~  One such example of a rare process is the decay of strange meson B,
composed of bs pair of quark and anti-quark, to a pair of muons. The corresponding
BR is proportional to [236, 237, 238, 239]

2

4m
BR(B, — putu”) o {(1 -~ “>|ng +|Fp + FAP} , (6.36)
B

S

where m,, and Mp, denotes the muon and the By meson mass, respectively. Fyu, Fg,
and Fp are the axial-vector, pseudo-scalar and scalar form factor, respectively.

In the SM the dominant contribution to BR(Bs — p*p™) is associated with
Fy = —im, fg, Cho, where fp, is the Bg decay constant and (' is the corresponding
Wilson coefficient. Other terms are suppressed by m, /My, where My is the
W-boson mass. Since B, is a flavor eigenstate, rather than a mass eigenstate,
when comparing with experimental data, one uses a value of BR(B, — u*u~) that
is flavor-averaged and time-integrated over B, — B, oscillations [240]. According to

recent calculations [241], its SM value is equal to
BR(B, — ptpu™) = (3.65 £ 0.23) x 1077, (6.37)

In the case of SUSY the Fg and Fp terms can become comparable to the Fy

one. Their dominant dependence on the SUSY parameters [242] 243] can be recast
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as [115]

FLO) (638)

where for the phenomenologically interesting regions of SUSY models that we will

consider,

2
m
t
FLO = _,uAt D3 2 2
mz mz

t1 to

(6.39)

where D3 ~ 0.1 — 0.3, m, is the top mass, while m; and m;, denote the mass of the
lighter and heavier stop, respectively. As can be seen BR(Bs — pu*u~) in SUSY is
enhanced for large tan 3, u and |A;/Msysy| and relatively small m 4.

The choice of the theoretical error 75, in the corresponding Gaussian likelihood
follows [244]. We subtract the uncertainty, about 1%, due to the top pole mass
since it is included by adding a corresponding nuisance parameter to our scans (see
Section . The recent calculation suggests a reduction of 75, in the SM, as can

be seen in Eq. (6.37).

B, — Tv In our analysis we also take into account the B, meson (ub) leptonic
decay to tau and anti-neutrino. Because of the helicity suppression, the decay into
7 is dominant, in comparison with the decays into muon or electron, due to lepton
mass hierarchy m, > my,, m.. In the SM the decay occurs via W-boson exchange.
In the MSSM there appears an additional decay channel via charged Higgs boson
that can interfere both constructively and destructively with the SM contribution.
The ratio between the SM and the MSSM branching ratios is given by [245]

2
BR(B, — 7v)" % [1 ~ tan? 8 (mB) ] | (6.40)

BR(B, — 7v)M Myt

Current average [7] of the experimental results obtained by Bell [246] 247] and
BaBar [248, 249] Collaborations reads BR(B, — 7v)®P @ = (1.14 + 0.23) x 10~*.
However, only the recent Belle analysis [247] has been updated using the hadronic
B decay sample. We use the results of this analysis to determine the parameters of
the Gaussian likelihood in our recent scans. The theoretical uncertainty results from
uncertainties in the CKM matrix elements, as well as from the B, meson lifetime
and its decay constant [205].

As can be derived from Eq. , an enhancement in BR(B, — 7v)M%M in
comparison with the SM can be obtained for tan 3/mpg+ > (0.25 — 0.3) GeV ™.
When tan 3/my+ ~ 0.19GeV ™' both W-boson and H* contributions cancel each
other. However, the ratio tan 5/mp+ is often significantly lower leading to BR(B, —
Tv)MSSM ~ BR(B, — 7v)%M.



82 Bayesian approach and constraints

B — X,y Another constraint associated with B-physics comes from the B meson
(db) decay into a hadron X, with a strange flavor. It is mediated by the FCNC
process b — s7, which is loop-suppressed in the SM[®] and therefore can obtain
important contributions from SUSY particles. The corresponding branching ratio
in the SM was calculated in [251], 252] and the result reads

BR(b — s7)*™ = (3.15 £ 0.23) x 107*. (6.41)

In the context of SUSY penguin loop diagrams involving W -boson are accompanied
by charged Higgs, chargino, neutralino and gluino loops (see, e.g. [253, 254]).
Depending on which diagrams dominate the SUSY contribution can be proportional
to 1/tan 3 or A;.

AMp, B, and B, are flavor eigenstates rather than mass eigenstates. They mix
non-trivially to form two mass eigenstates: By; (lighter) and By (heavier). A
transition between B, and B, may occur via box diagrams involving quarks and
the W-boson in the SM, as well as, e.g., squarks, gluinos, charginos, Higgs bosons
in SUSY. As a result one can observe oscillations between pure flavor states with
a frequency determined by the mass difference between Bs; and B;j. The SM
prediction of this quantity is currently equal to [235]

AMPM = (17.3 £ 1.5) ps~ . (6.42)

When calculating SUSY contributions we follow [254] 255].

6.3.5 Anomalous magnetic moment of muon

For a particle with mass m, electric charge e and spin S the magnetic moment /i

can be written as

— € o

g=g (%> S, (6.43)
where ¢ is the gyromagnetic ratio that is equal to g = 2 at tree level in QED for ele-
mentary spin-1/2 particles. Involving loop diagrams, strong and weak interactions,
as well as (potentially) new physics like SUSY leads to the so-called anomalous

magnetic moment
1
a=3 (9 —2), (6.44)
that describes the difference g # 2. This quantity for muon was measured with
great precision at the Brookhaven national Laboratory [256]

aS® = 11659208.0(6.3) x 1071°. (6.45)

13Tn can be also CKM suppressed, see [250].
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The SM prediction of a, can be decomposed to QED, weak and hadronic contribu-
tions. The QED one is dominant and well theoretically controlled. The weak contri-
bution is the smallest, although within the precision of the experimental result. In
general it has similar magnitude to the corrections expected from new physics [257].
The most problematic part is associated with hadronic processes. It can be further
decomposed into vacuum polarization and light-by-light scatterings contributions.
The former can be derived from experimental data in electron-positron collisions or
hadronic decays of tau [258]. However, these methods lead to the results that are not
entirely consistent with each other [257]. The light-by-light contribution cannot be
inferred from experiment. A discrepancy between its various theoretical evaluations
is one of the important sources of the theoretical uncertainty in a,.

An enhancement in @, in the context of SUSY is mainly due to an increase of the
Yukawa coupling of muon by a factor of 1/cosf ~ tan f for large tan 5. This, e.g.,
enters into the coupling of muon to Higgs bosons and higgsinos in corresponding loop
diagrams. Another contributions are associated with loop diagrams involving, e.g.,
bino, wino or squarks. To summary the SUSY contribution to the muon anomalous

magnetic moment is approximately given by (see, e.g., [257])

(6.46)

100 GeV )
da, = aS™M — aiM ~ 13 x 107%sgn(y) tan 3 (m—e) :
m

where mj; is the smuon mass.

6.3.6 Electroweak precision observables

Another pair of constraints is associated with two of the fundamental parameters
used in a description of the EWSB, namely the W-boson mass My, and the effective
weak mixing angle sin .. They both can acquire SUSY loop corrections that could

be seen after comparing the SM calculations with experimental values.

W-boson mass The dominant SUSY contributions to My, at one loop level stem
from stops and sbottoms via gauge-boson self energies [259, 260]. They are typically

written in terms of Ap that is equal to

x70)  x"(0)
Ap = M2 T M2 )
Z w

(6.47)

where ©V(0) and £4(0) are transverse parts of the unrenormalized W- and Z-boson
self energies at zero momentum transfer, respectively (for more details see [261]).
The correction to the W-boson mass can be approximated by [261]

2
CMw ey

2 2
2 Gy — S
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where ¢y = cosfy and sy = sinfy, are cosine and sine of the weak mixing angle

(see below), respectively.

Effective weak mixing angle At tree level after EWSB the weak mixing angle

satisfies
sin“ Oy =1— —5-. (6.49)

However, e.g., in the context of the MSSM, this quantity[lzl receives corrections that

predominantly arise from loops involving squarks [262], and can be recast as

2 2
§sin? Qg ~ % Ap. (6.50)
Cw — Sw

6.4 Nuisance parameters

When performing our Bayesian analyses we also take into account uncertainties
in experimental determination of selected SM quantities 1); that themselves can
have a non-negligible influence on calculated values of the observables described in
Section [6.3] To implement this effect we allow these nuisance parameters to vary
from their experimental mean values d, according to a Gaussian prior distribution
with the corresponding experimental standard deviations oy,. We treat as the
nuisance parameters: the top mass M;, the bottom mass m,;, the strong coupling

constant «, and the fine-structure constant ay,.

Top mass M; One nuisance parameter that we employ is the top pole mass
defined in the perturbative regime as the pole in top quark propagator. We follow
a PDG approach [7] that identifies the top pole mass with a top mass parameter in
Monte Carlo event generators. The latter is obtained by fitting the reconstructed
kinematic distributions to experimental data [263 264]. We add in quadrature
statistical and systematic uncertainties (10).

Bottom mass mb(mb)NTS The running mass of the bottom quark in the MS
renormalization scheme is related to the pole mass M, by (see [7] and references

therein)
My, = my(m)™ {1 +0.09 + 0.05 + 0.03}, (6.51)

which is valid up to a three-loop level. The choice of the renormalization scale,

p = m)S is a convention. The bottom mass M, can be inferred from measured

1Gtrictly, the quantity in Eq. 1' is the so-called leptonic mixing angle that differs no
more [261] than about 1% from sin® 6y, defined in the on-shell renormalization scheme that was

used in Eq. ,
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energy spectra of the products of B-meson decays [265, 266, 267, 268]. Using
Eq. one can then obtain my(m,)MS with the corresponding uncertainty.
Strong coupling as(M Z)NTS The energy-scale dependence of the strong coupling
strength, defined as a, = g?/4m, is described by the corresponding renormalization
group equation. We conventionally use as a nuisance parameter the MS scheme
value of a; evaluated at the renormalization scale p = My.

The current world average of a,(Mz)MS has been obtained [269] by combining
many experimental results and theoretical predictions including, e.g., tau-lepton de-
cays, radiative Y (bb) decays, lattice QCD calculations, deep inelastic lepton-nucleon
scatterings, hadronic events in eTe™ annihilations, electroweak precision data like

the hadronic decay width of the Z-boson etc.

In the case of the CMSSM analyses we additionally used as a nuisance parameter
an inverse of the fine-structure constant 1/, (Mz)M calculated in the MS
scheme at the renormalization scale © = My. Its error introduces uncertainty in
determining the GUT scale and therefore can change the soft supersymmetric masses
at the EWSB scale (after RGE running).

6.5 Parameters of probability distributions

In Table we list the parameters of the likelihood function for various constraints

taken into account in our analyses. A treatment of direct SUSY searches and DM

direct detection is described in Sections [6.3.1 and [6.3.3] respectively.

6.6 Additional cosmological constraints

So far we have discussed various collider and dark matter constraints which were
taken into account when performing Bayesian scans of the parameter space of SUSY
models. In this section we will focus on additional cosmological constraints that were
not included in the likelihood but were imposed later on the results of the scan. They

are particularly important when considering EWIMP DM scenarios.

6.6.1 Big Bang Nucleosynthesis

The first such constraint is associated with the Big Bang Nucleosynthesis epoch in
the evolution of the Universe (for a review see, e.g., [274]), known also as primordial
nucleosynthesis epoch. In this process light nuclei (heavier than the proton) were
formed. Nuclear fusions led mainly to a production of *He with smaller abundances
of 3He and deuterium 2H, as well as trace amounts of the lithium, beryllium and

boron isotopes or nuclei with higher atomic number. In general, the comparison
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’ Measurement \ Mean \ Error: exp., theor. \ Ref. ‘
QO h? 0.1199 0.0027, 10% 13l
mp 125.7 GeV 0.4 GeV, 3 GeV [59, 270]
R(h — ~y) 1.6 0.4, 15% [T, 227]
R(h— ZZ) 0.8 (+0.35,—0.28), 15% [222], 227]
BR(b — sv) x 10* 3.43 0.22, 0.21 [251], 252 271]
BR(B, — mv) x 10* 0.72 0.27, 0.38 [247]
BR(Bs; — putp~) x 10° 2.9 0.7, 10% [244), 272, 273]
AMp, 17719 ps~* | 0.043ps~!, 2.400ps~! [7, 205]
da, x 1010 28 8, 1 [7, 258]
sin? O 0.23116 0.00013, 0.00015 [7
My, 80.385 GeV | 0.015 GeV, 0.015 GeV [7
Nuisance parameters
M, 173.5 GeV 1GeV [7
my(my) M3 4.18 GeV 0.03 GeV [7
as(Mz)MS 0.1184 0.0007 [269]
1/Ctom (M 7)MS 127.916 0.015 [

Table 6.1: The parameters of the likelihood function and Gaussian prior probability
distributions for the nuisance parameters.

leads to an excellent agreement between the BBN predictions and the abundances
inferred from observations. This serves as one of the major pillars of the Big Bang
theory. Some discrepancy in the “Li abundance can be either associated with its
primordial enhanced production[l—_gl or with the post-BBN evolution.

Successful predictions of the BBN may be violated by an inclusion of hadronic
or electromagnetic cascades in the early Universe. They could potentially destroy
some nuclei X changing the X /H ratios. From now on we will focus on a scenario in
which such cascades were initiated by decays of some heavy particle. In particular,
we will treat them as generated by the decays of the NLSPs to gravitino or axino
DM (for such analyses in the framework of the CMSSM see [275], 276, 277, 278, 279] ).
We take into account a wide range of the NLSP lifetimes mpgp from about 107! sec
to 102 sec. For lower lifetimes the decay products of the NLSPs would thermalize
before the proton-neutron decoupling. Thus they would not influence the BBN.

When discussing the BBN constraints below, we will employ limits on the light

nuclei abundances used in [280]

Y, < 0.258, (6.52)
1.2x107° <> H/H <53 x 1077, (6.53)
*He/?H < 1.52, (6.54)

5 Therefore it can be used to constrain models with a heavy particle decaying during the BBN.
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"Li/H > 0.85 x 10717, (6.55)
oL /7Li < 0.1 less conserv.ative, (6.56)
0.66 conservative.

Uncertainties in treatment of the lithium-6 and lithium-7 production in stars lead to
a possible weakening of the less conservative upper limit on °Li/"Li < 0.1. Because of
this, we will also use the other, more conservative, limit as can be seen in Eq. .

We distinguish between electromagnetic and hadronic cascades taking into ac-
count primary particles produced in such decays. Such a distinction appears to be
useful due to a difference in thermalization processes. However, one needs to note
that, e.g., an NLSP decay into a pair of quark and anti-quark qg does not necessar-
ily lead to a hadronic cascade. In particular, if ¢ form primary 7%, its dominant
decay into two photons will induce an electromagnetic cascade. Each such cascade
typically contains tens or hundreds of secondary particles.

Depending on the NLSP lifetime such cascades can cause violation of various
limits Eq. (6.52)-(6.56) (for an extensive discussion see, e.g., [280]). A schematic
plots valid for decays of a 1TeV electrically neutral NLSP to EWIMP DM which
show the regions excluded by BBN constraints in the (7yLsp, nLsph?) plane where
Qnrgph? is calculated as if the WIMP was DM can be seen in Fig. [6.4

If the decaying NLSP is electrically charged, one can obtain stronger BBN bounds
for lifetimes Tnp.sp = 300 sec. This is due to a catalysis of an overproduction of nuclei
X with the atomic mass number A > 4. It results from the possibility of forming
meta-stable bounds states between nuclei and the charged NLSP [281]. This has
particular importance for °Li production rate. An example of this scenario is a
stau NLSP decaying into either gravitino or axino DM. In the following we will
incorporate this constraint following exclusion plots from [282].

In a simplified approach to the BBN constraints we use the exclusion plots
from [280]. The lifetime of the NLSP depends on its mass and the mass of the
DM particles. In the case of a neutralino NLSP decaying into gravitino DM the
corresponding lifetime for m, » mg can be estimated as (see, e.g., [283])

57sec (722 )75 (1072;2\/)27 for bino-like Y,

Teng =~ { 250sec (177%?\,)_5 (1077&‘1\/)2, for wino-like ¥, (6.57)
114 sec (ln%fv)_B (10”&2\,)2 . for higgsino-like .

If the neutralino mass is closer to the gravitino mass, the lifetime becomes larger
due to a phase space suppression. In the case of neutralino decay into axino the

lifetime depends on the bino fraction Ny; of yx, as well as on the values of C,yy and
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Figure 6.4: Left panel: BBN bounds on the abundance of a relic decaying electrically
neutral particle (e.g., the NLSP) with mass equal to 1 TeV and hadronic branching
ratio B, = 1 as a function of its lifetime 7. The colored regions are excluded due to
“He overabundance (orange, low 7 regime), ?H overabundance (dark blue), violation
of the upper limit on *He/?H (red, high 7 regime) or the lower limit on “Li/H (light
blue). Conservative (less conservative) upper limit on °Li/"Li is violated in green
(yellow) excluded region. Taken from Ref. [280]. Right panel: The same excluded
region as in the left panel, but for various hadronic branching ratios: B, = 0 or
log,q By, ranging from 0 to —5. The solid red (dotted blue) lines correspond to the
most stringent BBN constraint for a given 7 taking into account the conservative
(less conservative) upper limit on °Li/"Li. Taken from Ref. [280].

fa 07T,

1 fa 2 My -3 m2\ ~?
() e )T (1-2a) .
T = 0335€¢ Zp N <1011Ge\/) (50v) < m2 (6.58)

One can verify that, in comparison to decays into gravitinos, axino DM scenario with

neutralino NLSP is only mildly constrained by the BBN since often 7,5, < 0.1sec.
Strong constraints can be obtained only either for light neutralinos or for m, ~ m;.

Slepton NLSP decays into gravitino DM are described by

2 —4
o (125 () (12
Ty = 5950¢ (1 TeV 10 GeV m2 ) (6.59)

We use existing results for hadronic branching ratios of neutralinos [283], sneutri-

nos [284] and charged sleptons [285] decaying into gravitino DM. In the case of a
bino decaying into axino DM with ms « m, the hadronic branching fraction is

typically of the order of 0.03 — 0.04 if m, < myz and can grow up to about 0.06 for
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m,, ~ 150 GeV [I77]. For heavier neutralino its lifetime is usually too small to affect
the BBN.

In the case of analysis described in Section with a sneutrino decaying into
gravitino DM we perform a much more detailed study. This approach allows us not
to overestimate the impact of BBN constraints and therefore treat an upper limit
on Tr with higher accuracy.

A sneutrino NLSP decays into gravitino DM dominantly via two-body decay
channel 7 — Gu. High energetic neutrinos produced in such decays may annihilate
with cosmic background neutrinos to an electron-positron pair vvgg — ete™, and
therefore initiate an electromagnetic cascade. However, the rate of this process is
suppressed by the weak interaction strength. As a result, the BBN constraints are
typically determined by hadronic cascades associated with subdominant four-body
decays v — yéch via real or virtual gauge bosons.

One possible way to treat them (see, e.g., [159]) is to estimate the hadronic
energy release

&h=e, BrYs, (6.60)

where Y} is the sneutrino yield at freeze-out, by assuming that the energy released

into hadronic particles per a single decay v — vGqq is approximately equal to

¢, ~ v Ma (6.61)
3
Instead, we will calculate €, more accurately using [285]
3 . me MG Al (v — vGqq)
en(v - vGql) = ———— dmgs Mg , 6.62
n( qq) T'(7 — vG) fmg‘g aq ""*qq dmay; ( )

where we introduce low energy cut-off on the invariant mass of the ¢g pair mg,; >
meat = 2GeV. This is well justified by the fact that only quarks with high enough
initial energy could initiate hadronic cascades of relevance for BBN. This assumption
also helps to overcome some problems with infrared divergences when dealing with an

intermediate off-shell photon v* since my; = pi*. When we calculate the hadronic

branching fraction B, = I'(# — vGqq)/T(7 — vG), we take into account the
masses and the decay constants of the intermediate W and Z bosons in Breit-Wigner
propagators. Finally, we calculate abundances of light elements obtained during the
BBN with a state-of-the-art numerical code [280)].

6.6.2 Large Scale Structure formation

Non-thermal gravitinos or axinos produced in NLSP decays can have velocities
much larger than those characteristic for thermal distribution. Such fast moving

DM particles tend to erase small scales of large scale structures, especially when
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they constitute a sizable fraction of the dark matter density. The impact of the
injection of high energetic DM particles on LSS can vary depending on the time
when the process took place, i.e., on the NLSP lifetime. We typically take this into
account by imposing constraints on the present day velocity of DM particles v,;.
Following [286], we impose the LSS constraints by requiring that the present root
mean square velocity of non-thermally produced EWIMP DM particles is smaller
than vy < 1km/s][Y

As an example, let us focus on a dominant channel of a sneutrino decay to
gravitino DM, i.e., the process 7 — vG. Treating neutrino as a massless particle we

obtain the velocity at the time of decay for non-relativistic gravitinos

m=

VA~ ————=
¢ 2myme

2
> —m

Qe

(6.63)

The present day velocity can be obtained from vz by applying an appropriate redshift

m2 —mZ T, 3 k mZ — mZ 5\ /2
UO@ ~ —G_O(@> P~ 457 x 1070 —mgd_l/12 (—G) (2) ,  (6.64)
2mymea Ty \ga S 2myme 1s

where Ty and T, are the present day and the decay epoch’s temperature, respectively,

while gy and g4 are the corresponding effective number of degrees of freedom.

6.6.3 Cosmic Microwave Background Radiation

Another possible constraint is associated with the CMB radiation [288] 289]. An
injection of energetic photons yyp from the late-time decays of the NLSP could
distort the blackbody shape of the CMB spectrum.

For the NLSP lifetimes mnr.gp < 10 sec that we are typically dealing with, high
energetic photons could lose their energy via elastic Compton scatterings. In these
processes the number of photons was kept Constantﬂ Thus the CMB spectrum
follows the Bose-Einstein distribution with the chemical potential . Following the
procedure outlined in [276] we apply an upper limit || < 9 x 107° [290]. This can
be translated into a limit on electromagnetic energy releasd™| [288, 289

In the following, we typically obtain lifetimes mnpsp that are too low to violate
the CMB constraint. Rare points that could have been excluded by this are usually
already ruled out by the BBN constraints.

16Tn the analysis [287] discussed in Section where present day gravitino DM velocities are
typically larger than in other cases discussed in this thesis, we additionally applied a stringent
approach in which we required that non-thermal component makes less than 20% of the total dark
matter abundance.

"Moreover, e.g., double Compton scattering or bremsstrahlung processes were inefficient.

181t is defined analogously to the hadronic energy release mentioned above.



Chapter 7

Constrained supersymmetric

models

In this chapter we discuss phenomenological properties of some basic GUT con-
strained SUSY models. A particular emphasis is put on DM and Higgs boson
properties. In Section we analyze the issue of fine-tuning. The chapter is based
on the results published in [206, 207, 2911, 292] and partly in [293].

7.1 Constrained MSSM

The results presented in this section are based mostly on [206] (earlier study) and

partly on [293] (recent study).

The CMSSM The Constrained Minimal Supersymmetric Standard Model
(CMSSM) is a phenomenological realization of the mSUGRA unification conditions
mentioned in Section [4.4.2] Three of the parameters of the model are given at the
GUT scale: the common scalar mass mg, the common gaugino mass m; and the
common trilinear coupling Ay. Remaining parameters are tan 3 and sgn(u) = +1
which is not determined by the EWSB conditions. In our approach the sign of u will
be fixed for a given scan. The ranges of the parameters are given in Table As
can be seen, they were significantly extended in the recent study [293] in comparison
with the older study [206]. As it will be discussed, this is justified by the measured
value of the Higgs boson mass that favors Mgysy = Jmimg, 21 TeV.

The CMSSM is a prototypical example of the GUT constrained SUSY model.
Despite having very limited number of free parameters, it allows to discuss several
most interesting scenarios for which the correct neutralino DM relic density can be
obtained in the framework of the MSSM.

Constraints The earlier study [206] was performed shortly before the first an-

nouncement of the Higgs boson discovery [Il, 2]. However, when performing scan we
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Parameter Range [200] Range [293] Prior
(earlier study) (recent study)
mo 0.1TeV, 4TeV 0.1 TeV, 10 TeV Log
m1/2 0.1TeV, 2TeV 0.1 TeV, 10 TeV Log
Ay —7TeV, +7TeV | —15TeV, +15TeV || Flat
tan 3, 62 2, 62 Flat
sgn(p) +1 +1 Fixed

Table 7.1: Prior ranges of the parameters in the CMSSM analyses. The sign of u is
fixed for a given scan.

’ Measurement \ Mean \ Error: exp., theor. \ Ref. ‘
Q,h? 0.1120 0.0056, 10% [294]
mp, 125 GeV 2GeV, 2GeV (assumed)
BR(b — sv) x 10 3.60 0.23, 0.21 [295]
BR(B, — Tv) x 10* 1.66 0.66, 0.38 [296]
BR(Bs — putp™) x 10° < 4.5 0, 14% [297]

Table 7.2: Important differences between the experimental constrains used in [200]
(earlier study) and values shown in Table

had assumed a Higgs signal with m;, = 125GeV which turned out to be close to
the actual measured value. This analysis took place also before the measurement
of BR(Bs — p*p~) [272, 273]. Thus we used an upper limit on this branching ra-
tio implemented via half-Gaussian likelihood. Appropriate parameters are provided
in Table [7.2][] The parameters of the likelihood for the recent study [293] follow
Table , but without a, taken into account. We will comment on this below.

Results (earlier study) In Fig. (left panel) we present the lo and 20
marginalized posterior plots for the CMSSM in the (19, m1/2) plane obtained in [200]
for 4 > 0. One can identify two main 1o credible regions: the SC region (lower left
corner) and the AF region (upper half of the plot). In addition a 20 posterior
corresponds also to the HB/FP region (lower right corner).

The SC region lies close to the exclusion line from direct SUSY searches. Low
values of mgy are needed to keep the mass of the lighter stau close to the bino
mass mz =~ M;. Therefore the requirement of having the bino LSP introduces also
an upper limit on m,s. Light smuons in the SC region also help to enhance a,
to become closer to the experimental value according to Eq. . However, in
general a, remains poorly satisfied. The SC region also corresponds to relatively
low values of tan 5 < 30 and Ag ~ 0 as can be seen in Fig. (right panel). This
allows one to suppress the mixing in the stau sector and therefore to keep the mass

!The experimental value of BR(B,, — 7v) also differ significantly in comparison with Table
However, since calculated BR(B,, — 7v) is typically very close to the SM value, as discussed
in Section this difference has negligible impact on the parameter space of the CMSSM (it
corresponds to an almost constant shift in x?2).
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of the lighter stau slightly above the bino mass. Low values of my and m,/, in the
SC region lead to low Msysy. This suppresses the one-loop correction to my, that is
proportional to log M4y, as can be seen in Eq. (4.37)). However, the correct value
of the Higgs boson mass can be obtained thanks to a saturation of the mixing term
for X; ~ v/6 Mgysy. This is shown in Fig. . In the right panel of this figure the
SC region corresponds to Msysy close to 1 TeV.

On the other hand, the AF region can be obtained for larger m,, and wide
range of myg. It also favors larger values of tan 8 due to the a, constraint (compare
Eq. in absence of light smuons). Larger my, in this region leads to increased
Msysy due to RGE running of the third generation soft squark masses. This helps
to obtain my ~ 125GeV as can be seen in Fig. [7.2] The mixing term is no more
saturated. However, one can increase it by allowing large X; ~ A;. This results in
a possible increase of |A| in Fig. [7.1| (right panel) in the AF region in comparison
with the other two regions.

The HB/FP region corresponds to low mys, large my, intermediate values of
tan 8 (between the SC and AF regions) and small |Aq|. The condition mqg » my,
with Ay ~ 0 guarantees that p is kept small according to [292]

— p? =~ mj (SUSY) = 0.074m§ — 1.008m7 , — 0.080 A3 + 0.406 myjs Ag,  (7.1)

where we employed the EWSB minimization condition Eq. and the the
solution of the one-loop RGE for my,. The value of i is close to M; resulting in
the lightest neutralino being the mixed bino-higgsino state (dominantly bino). Low
values of |Ag| result in X; « v/6Mgsysy and typically too low radiative corrections
to my,. Moreover, the a, constraint is even more poorly satisfied than in the other
two regions because of relatively low tan 8 and lack of light smuons. Therefore the
HB/FP region is statistically less important than the SC and the AF regions.

The a, constraint is by far the worst satisfied in all the regions described above.
However, as shown in Table [6.1] it is characterized by quite substantial errors
(especially the experimental one). It is therefore useful to additionally study the
allowed parameter space in the CMSSM without this constraint taken into account.
It also allows one to consider negative value of u, which is highly disfavored in
presence of the a, constraint according to Eq. . Once one abandons a,, the
relative impact of other constraints increases. As a result, the SC region becomes
slightly less favored in contrast to both the AF and the HB/FP regions as can be
seen in Fig. [7.3] (left panel). Interestingly, the change in the posterior is in general
small. In other words, given the large value of the x* contribution associated with a,,,
this constraint is to some approximation equally poorly fitted in all the considered
regions. We will utilize this feature of the allowed parameter space in the more
recent study described below, in which we neglect the a, constraint (see further

comments below).
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Figure 7.1: Marginalized posterior for the CMSSM (earlier study) in the (mg,m12)

plane (left panel) and the (Ag,tan ) plane (right panel). The positive sign of p is
assumed. Taken from Ref. [206].
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Figure 7.2: Left panel: Scatter plot showing the value of my, in the (mg, m1/2) plane
of the CMSSM. Right panel: Marginalized posterior in the parameters X; vs Mgusy,
relevant for the loop corrections to the Higgs mass. Positive p is assumed. Taken

from Ref. [206].

One can then additionally assume negative p which helps to reduce the BR(B; —
pt ) below the upper limit from Table In particular, this allows to extend
the AF region to lower values of mg and m, /gﬂ As a result a relative statistical

2Lower my /2 leads to the lower neutralino mass which is given by m, ~ m/2 in the AF region.
Thus one obtains lighter pseudoscalar which could enhance BR(Bs — p* 17~ ) too much according
to a discussion in Section[6.3.4} This can be circumvented for 4 < 0.
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importance of the SC and HB/FP regions is reduced as shown in Fig. (right
panel)).

The reduction of BR(Bs — putp™) in the case of negative u can be better seen
in Fig. The branching ratio can be reduced to values even below the SM one.
This may be consistent with currently measured branching ratio given in Table [6.1]
It is also important to note that negative p helps to increase BR(b — sv) closer
to the experimental value. It is due to a change of sign of the chargino-stop loop
contribution.
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Last, but not least, one needs to take into account the exclusion limits from dark
matter DD searches. In the older study [206] we employed the Xenonl100 data. As
can be seen in Fig. majority of the parameter space of the CMSSM remained
then well below the lower limit on o). The situation is different for the HB/FP
region. The lightest neutralino can elastically scatter off of quarks via the ¢-channel
CP-even Higgs exchange or the s-channel squark exchange. In each of these cases
the corresponding cross section is proportional to oy n ~ |Ni1|*|Ny;|> where ¢ = 3,4
and IV;; is the respective entry of the neutralino mixing matrix (see, e.g., [298]). Ny
term corresponds to the bino composition, while N;3 and N4 to the higgsino ones.
As a result, USI is typically reduced for the pure bino or the pure higgsino neutralino,
while it is enhanced for a mixed state in the HB/FP region. The enhancement can
be to some extent ameliorated for negative p as can be seen in Fig. [7.5] (right panel).
In this scenario a cancellation between diagrams involving the heavy and the light
Higgs can reduce O'EI below the experimental limits (see, e.g., [I38] and references
therein).

To summarize our discussion we show in Fig. the x? contributions to the
best-fit points (BFPs) obtained in the scans for both positive and negative pu, as
well as with or without the a, constraint taken into account. As it was mentioned
above, a, provides by far the largest x? contribution if it included in the likelihood.
Another important contribution comes from BR(b — s7v), but it can be reduced for

negative p as discussed above. Interestingly, the relic density constraint contributes
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Figure 7.6: A bar chart showing the main contributions to the x? of the best-fit
points of different scans in the CMSSM. Taken from Ref. [206].

negligibly to x? of the BFP. It is because the relative importance of Q,h?, which
guarantees that it has to be satisfied for the phenomenologically acceptable regionsEl

In some sense the a, and 2, h? constraints lie on the opposite side on the scale of
effectiveness. The former is very poorly fitted, gives large contribution to x? of the
BFP and its abandonment leaves posterior plots almost intact. The latter is very
well satisfied for phenomenologically acceptable regions, contributes negligibly to x?
of the BFP and to a large extent determines the shape of the posterior plots. Thus,
as long as we do not compare different models, but are interested in the preferred
parameter space of a given SUSY model, we may often safely omit the a, constraint
in a discussion. Hence we will give much more attention to Q, h?.

On the other hand, a,, after further reduction of the experimental error, can
potentially play a very important role in excluding SUSY models. It is because of the
tension within the framework of SUSY that appears when one tries to simultaneously
explain a large discrepancy of the measured value of a,, with respect to the SM value
and the lack of signal from new physics in various other experiments, e.g., direct
SUSY searches at the LHC.

Results (recent study) The results for the more recent analysis [293] are shown
in Fig. [7.7 They are presented as the 95%CL regions instead of posterior plots, but
this has minor impact on the physics discussed below.

A major difference in comparison with Fig. is the appearance of the 1TH
region (shown in red) for large values of my and my, that go beyond the allowed
ranges in the previous study HZEHH This allows one to obtain the correct DM relic

3This importance results from a combination of the relatively small errors in the corresponding
likelihood function and a limited number of specific scenarios in which the correct neutralino DM
relic density can be obtained.

For the first time it was shown that the 1TH region appears in the CMSSM in [115].
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Figure 7.7: 95%CL regions in the CMSSM (recent study) in the (mg,m1/2) plane
(left panel) and the (m,, USI) plane (right panel). The positive sign of u is assumed.
Taken from Ref. [293].

density for higgsino-like LSP with m, = p ~ 1TeV < M;. According to another
recent analysis of the CMSSM [299] with three-loop corrections to my taken into
account a 20 marginalized posterior in the 1TH region reaches up to my < 12.5 TeV
and my, < 4.5 TeV. For larger of values of both the common scalar and the common
gaugino masses one typically obtains too large my. For a given value of mg in the
1TH region one can obtain neither too low nor too large m; 2 because of the condition
1~ 1TeV. The lower limit corresponds to the bino that becomes lighter than the
higgsino, while the upper one can be derived from Eq. . As can be seen there,
my 2 cannot be too large for a given my in order to keep p ~ 1 TeVﬂ

The 1TH region in the CMSSM remains currently not excluded by the DD
searches, but can be probed by the future XenonlT experiment as shown in Fig.
(right panel). It also true for some part of the AF region. The HB/FP region is
entirely absent in the recent study due to updated DM direct detection limitsﬁ

On the other hand, in Fig. the SC region lies outside the range of the
XenonlT experiment. However, to a large extent it can be tested by the upcoming
second run of the LHC. Note that in the recent study this region is statistically
less important than in the previous one. It is both due to the absence of the a,

constraint and more stringent exclusion limits from direct SUSY searches.

5The freedom of choosing Ay is often limited by other constraints, e.g., my.
SIn the case of the unconstrained MSSM some points within the HB/FP scenario can survive
even the LUX exclusions [I38], if u < 0, due to the cancellation mentioned above.
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7.2 Constrained NMSSM

The results presented in this section are based on [207].

In this section we will present a Bayesian study of the Constrained NMSSM
(CNMSSM). In particular, due to an extended Higgs sector present in the framework
of the NMSSM (in comparison with the MSSM) we will be able to consider scenarios
in which the recently discovered Higgs boson is not the lightest CP-even Higgs

particle in the model.

CNMSSM and constraints We define the CNMSSM in analogy to the CMSSM.
In particular, we use the common scalar my and the common gaugino m;, mass
parameters, as well as the common trilinear coupling Ay. All of them are defined at
the GUT scale. The mass of the singlet mg (see Eq. (4.42)) is not unified to my. From
the theoretical point of view, it has been argued [300] that the mechanism for SUSY
breaking might treat the singlet field differently from the other superfields. From
the phenomenological point of view, the freedom in mg allows for easier convergence
when the renormalization group equations are evolved from the GUT scale down to
Msuysy. It also yields, in the limit A — 0, and with \s fixed, effectively the CMSSM
plus a singlet and singlino fields that both decouple from the rest of the spectrum.
Through the minimization equations of the Higgs potential, m% can then be traded
for tan § and either sgn(feg) or k. We choose sgn (i) for conventional analogy with
the CMSSM. Both A and tan  are defined at Mgygy. Ay and A, are unified with
Ay at the GUT scale.

The ranges of parameters that we use are given in Table The perturbativity
condition leads to an upper limit A < 0.7. On the other hand we have checked that
allowing A < 0.001 hardly increases the number of points allowed by the physicality
conditions. Beside that, it would have most likely driven the scan towards a purely
CMSSM-like scenario.

The experimental constraints that we employed in the scan are given in Table
with modifications shown in Table [7.4] similarly to the CMSSM case (earlier study)
described in the previous section. The differences are associated with the first

measurements of the Higgs boson mass and BR(Bs; — u*u™).

Results Marginalized posterior plots for the CNMSSM in the (mg, m1/2) plane are
shown in Fig.[7.8] The left panel of the plot corresponds to the CMSSM-like scenario
in which the lightest Higgs scalar hy plays a role of the discovered Higgs boson. We
identify the SC and AF regions similarly to the CMSSM. In the CNMSSM the SC
region appears to be more extended relative to the CMSSM (earlier study) [206]. It
is due to somewhat larger my,, that is closer to the experimental value. However, this

is not a specific feature of the CNMSSM, but is rather connected with an increase
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Parameter Range Prior
mo 0.1TeV, 4TeV Log
m1/2 0.1TeV, 2TeV Log
A —7TeV, +7TeV | Flat
tan g 1, 62 Flat

sgn () +1 Fixed
A 0.001, 0.7 Flat

Table 7.3: Prior ranges of the parameters in the CNMSSM analysis. The sign of u
is fixed for a given scan.

’ Measurement \ Mean \ Error: exp., theor. \ Ref. ‘
mp 125.8 GeV | 0.6GeV, 3GeV | [30]]
BR(B, — utp~) x 10° 3.2 (+1.5,—1.2), 10% | [302]

Table 7.4: Important differences between the experimental constrains used in [207]
and values shown in Tables [6.1] and [7.2]

BayesFITS (2012)
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Figure 7.8: Marginalized posterior for the CNMSSM in the (mg, m1/2) plane for the
case with my, ~ 126 GeV (left panel) and my, ~ 126 GeV (right panel). Positive u
is assumed. Isocontours of the fine-tuning measure A are also shown. Taken from

Ref. [207).

of the top mass used in the scan (compare Eq. (4.44)) )|Z| The increase of a statistical
relevance of the SC region leads also to a reduction of the marginalized probability
in the HB/FP region. 20 credible region encompasses only small fraction of the

HB/FP region which lies in the mgy » my, sector and merges with the AF region in
Fig. [7.8] (left panel).

"In the study of the CNMSSM we used an updated central value of the top pole mass M,

173.5GeV (see Table , while in the earlier study of the CMSSM [206] we employed M,
172.9 GeV.
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In the right panel of Fig. [7.8 we present the results for a scenario in which the
second lightest hy has a mass my, ~ 126 GeV, while h; is lighter. The case with
both the lightest CP-even Higgs particles being mass-degenerate leads to very similar
posterior plot. In this scenario h; and hy combine to generate an observed signal in
detectors.

In Fig. (right panel) the 20 credible region in the (mg,my/2) plane is dra-
matically reduced in comparison with the m;, ~ 126 GeV case described above.
We found the SC and the HB/FP regions, while the AF region could not satisfy
mp, ~ 126 GeV condition. A careful analysis of the allowed parameter space en-
sures that the requirement of having low mass of hy typically suppresses also xs. As
a result, the lightest neutralino for the values of m, s characteristic for the would-be
AF region or for the SC region is singlino-like. Therefore its relic density cannot
be effectively reduced due to A-resonance mechanism, but such reduction is still
possible thanks to coannihilations with the lighter stau. The statistical relevance of
the HB/FP region increases simply due to a suppression of the AF region.

In Fig. we additionally present the fine-tuning measure (see Section |4.7)
calculated for the CNMSSM. One typically obtains A ~ 300—500 for a vast majority
of points in the my, ~ 126 GeV scenarioﬁ Smaller fine-tuning can be achieved only
in the HB/FP region due to the relatively low values of pieq. For the same reason A is
in general slightly larger in the SC region than in the AF one which is characterized
by smaller peg. On the other hand, in the light hy case one can obtain A < 50 in
the HB/FP region.

In Fig. [7.9| we show the Higgs signal rates for both m;, ~ 126 GeV and my,, ~
126 GeV. As can be seen, the first case corresponds to the SM-like Higgs boson
similarly to the CMSSM. On the other hand, light hy can have a non-negligible
singlet component. This allowed to simultaneously reduce both of the corresponding
signal rates. Therefore it was not possible to explain the discrepancy between
Ru,(vy) and Ry, (ZZ) shown in Table [6.17] Moreover, in both scenarios Ry, (77)
could hardly exceed 1 over the 20 credible region.

Interestingly, a combination of BR(Bs — ™) and dark matter DD constraints
could have been used to disfavor the light hy scenario already at the time of the
analysis. This is shown in Fig. [7.10l For comparison, in the left panel we present
results for the my, =~ 126GeV case. They closely resemble the CMSSM with
the HB/FP region lying above the Xenonl00 exclusion line. The majority of the
preferred parameter space lies within a reach of the future XenonlT experiment. In
the case of light hy the HB/FP remains disfavored by dark matter DD, while the

SC region with singlino-like y is characterized by very low JSI. On the other hand,

81t is also the case of the CMSSM as we will see below in Section
9Current experimental data [303} [304] points towards the SM-like nature of the discovered Higgs
boson.
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Figure 7.9: Marginalized posterior for the CNMSSM in the Ry (vy) vs. Ry, (Z7)
plane for the case with mj,, ~ 126 GeV (left panel) and my, ~ 126 GeV (right panel).
Positive u is assumed. Taken from Ref. [207].

it leads to too large value of the BR(B; — p*p~) branching ratio. This is due to
larger tan 5 than in the SC region in my, ~ 126 GeV casem

Last, but not least, we could abandon the a, constraint and employ negative f.
As aresult (not shown in the plots), the SC region appears to be slightly less favored,
while the HB/FP region becomes clearly separated from the AF one. Similarly to
the CMSSM, negative x helps to reduce both BR(B, — p* ™) and o).

The x? contributions for the BFPs of all the scans of the CNMSSM are shown
in Fig. . Not surprisingly, in the my,, ~ 126 GeV case x? is dominated by the a,,
contribution if it is included. BR(b — sv) can be improved for negative p similarly
to the CMSSM. In all the scans one obtains significant contribution from Ry, (7y7)
since it cannot exceed one as discussed above. Interestingly, in the scenarios with
light hs, the a, contribution can be reduced. This is due to a larger tan 8 in the SC
region than in the my,, ~ 126 GeV case. However, the total x? is increased back by
poorly fitted BR(Bs — p*tp™).

It is important to mention that due to a limited ranges of my and m,/,, we did
not find 1TH region in [207]. However, one expects to obtain this region in the

parameter space for an extended scan, as in the CMSSM case.

ORequirement of having light hy can be translated into an approximate upper limit |A,| < xs.
This can be obtained from a physicality condition my, > 0 at the tree level for tiny A and ks < Mz
that are characteristic for singlino-like x with mass below 200 GeV in the SC region in the light Ao
scenario (see a discussion in [207]). This suppression of A, leads to a reduction of Ay and therefore
also A,. In order to obtain satisfactory mixing in the stau sector (to reduce the lighter stau mass
to the level of the singlino mass), i.e., to keep | X,| = |A; — u/tan 3| greater than zero, one then
needs to increase tan 8 (for positive ). The other possibility of allowing small tan 8 and therefore
| X¢| ~ |p| is disfavored by the a, constraint.
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Figure 7.10: Marginalized posterior for the CNMSSM in the BR(Bs — ptu~) vs.
ol plane for the case with mj, ~ 126 GeV (left panel) and my, ~ 126 GeV (right
panel). Positive u is assumed. The solid (dotted) blue horizontal line corresponds
to Xenonl00 (XenonlT) dark matter DD exclusion limit. The pink vertical band
shows the 1o experimental uncertainty on the measurement of BR(By — pu*u™)
from Table[7.4] Taken from Ref. [207].
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Figure 7.11: A bar chart showing the main contributions to the x? of the best-fit
points of different scans in the CNMSSM. Taken from Ref. [207].

7.3 Constrained NMSSM with non-universal soft

Higgs masses

The results presented in this section are based on [291].

We have so far discussed two GUT constrained SUSY models in which either the
lightest or the second lightest Higgs scalar has mass about 126 GeV (or both). In this
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section we will study yet another possibility of having pseudoscalar Higgs particle
mass-degenerate with hy (hy plays o role of the discovered Higgs boson)H This
scenario is excluded in the MSSM, as noted in [306} [307], since in this framework in
order to obtain h; with mass around 126 GeV, m4 is required to be at least about
300 GeV (decoupling regime)m However, it appears to be possible in the framework
of the NMSSM where we can obtain my, ~ m,, ~ 126 GeV with doublet-dominated
hy and singlet-like a;.

Observed signal rates The lighter pseudoscalar in this scenario can have sizable
one-loop effective coupling to v in the presence of a light higgsino-like chargino
in the loop. The corresponding contribution to the Higgs signal rate at the LHC
can be calculated by replacing h; with a; in Eqs —. However, despite the
potentially non-negligible size of BR(a; — 77)/BR(hsm — 77), no net enhancement
in the v+ rate of a; with decreasing chargino mass would be visible in the ggh (gluon
fusion) production mode. The reason is that the first term in the product always
has a very small magnitude due to a highly reduced effective coupling of a; to two
gluons compared to that of a SM Higgs boson, which is dominated by the top quark
loop.

However, the overall enhancement in R¥(a;) due to a light chargino should be
visible in the associated bbh production mode, which we will focus on, since the
conditions necessary to obtain a light chargino also result in an enhanced coupling
of a; to bb/TT7~. The bbh Higgs production mode is very subdominant for a SM
Higgs boson and is therefore generally considered to be of less interest. In contrast,
in SUSY it is enhanced by tan® 3 (see, e.g., [39]). This allows one to obtain a clear
signature of our scenario that is a simultaneous “triple enhancement” in the signal
rates of the three Higgs decay channels, v, bb and 777~ (collectively referred to as
X henceforth) [F]

The lighter pseudoscalar mass The approximate expression for the lighter

pseudoscalar mass in the NMSSM can be written as

M4
m2, ~ —3ksASSY — %. (7.2)
Mp

In the above equation M}, ~ A(ASYSY — 2ks)y/2v is the off-diagonal entry of

the pseudoscalar mass matrix (see [110]), where Ai?ﬁSY denote Ay, at Mgusy.

1 Another recent study of the issue of light pseudoscalar in the framework of the NMSSM can
be found in [305].

12In addition, while it is also possible to have a 126 GeV ho, this can only be achieved for
95 GeV < my < 110GeV, in a tiny portion of the “non-decoupling regime”.

130n the other hand, a1, being a pseudoscalar, would not contribute to the WW and ZZ decay
channels. The absence of signal here would also be a part of the signature.
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M3, =~ pegBeg tan §, with Beg = AYYSY + ks, is the diagonal term corresponding
to the mass-squared of the doublet-like heavy pseudoscalar, as. The leading term
in eq. implies that, for positive x, which we will assume here, the condition of
the positivity of m2 depends predominantly on the relative signs of peg and AZYSY.
Assuming the leading term to be positive, the negative contribution from the second
one should be kept close to zero. This would require M3, = Mp 5.

A careful analysis [291] shows that for negative pg the values of Ay at the GUT
scale are bounded from below by the condition of the physicality of a;. This causes
a slight tension between my, and m,,, since in order to obtain h; which is SM-like
with mass about 125 GeV large negative values of Aj are preferred. For positive piqg
there is no such tension because Ay is relatively free, as long as the correct a; mass
can be achieved by adjusting other free parameters. However, in practice according
to Eq. this requires a non-unification of Ay with A, at the GUT scale, as
well as keeping k as a free parameter. This can be realized in the GUT constrained
extension of the CNMSSM with non-universal Higgs masses (NUHM) my, and my,,.
We will call this model CNMSSM-NUHM. Through the minimization conditions of
the Higgs potential mpy, and mpg, at the electroweak scale can be traded for the

parameters x and tan 5. Thus we will use the following set of free parameters
Mo, M2, Ao, tan B, sgn(pes), A, £, A = Aj. (7.3)

Pseudoscalar signal rates The effective coupling of the lighter pseudoscalar a,
to two photons (see, e.g.,[59]), is dominated by a light chargino in the loops and can
be approximated by

e gal %L 1i a
Car () =~ ﬁ Afly(11), (7.4)
X1

where 7, = mgl /4m>2<i. For 73 < 1, which is applicable here|“| the form-factor
12

higgsino-like xi one can derive the upper limit

Afjy(11) lies in the ralnge 1 < AT, (m) < 1.2 [57). Assuming singlet-like a; and

130 GeV
Cef(yy) < A x S =, (7.5)
eff

for mg, ~ 126 GeV and Myt > fleg.
The signal rates can be calculated with Eq. (6.31). For the bbh associated

production mode one obtains

(7.6)

130 GeV\2 1
R (@) ~ [Py X tan® B ) (f )
ai SM

Heft

14We assume m,, ~ 126 GeV, while the light chargino obeys the lower limit, my > 94 GeV [7]
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P

bb
Rbé/ﬁr(al) = Fa?tal/r}:lcgtl\zzﬁ (7.7)
where ©( ASUSY
-2
Py~ AU s (73)

pe(ASUSY — ks) tan 3

As can be seen, all the three signal rates are enhanced for large A\ and small pieg.

The dependence of the above expressions on tan  is not straightforward, since it

total /T total
hSM /Fal *

Both the bb and the 777~ decay channels show exactly the same behavior as

only enters indirectly through I'

far as their signal rates are concerned, despite the fact that BR(ay — 7777) is
considerably smaller than BR(a; — bb). From an experimental point of view, the
bb decay mode will result in four b-jets which may be quite challenging to tag owing
to the large hadronic background, although this mode has been visited in the past
[3]. The 7t7~ decay mode, on the other hand, is subject to a much smaller leptonic

background.

Results We perform a scan over the CNMSSM-NUHM parameter space using the
same set of experimental constraints as in the CNMSSM study described in the
previous section, but we neglect the a, constraint. We additionally require that
122GeV < mg,, < 130GeV similarly to the hy mass. After applying all the con-
straints we find that the preferred parameter space of the CNMSSM-NUHM giving
an enhancement in the aforementioned signal rates due to the lighter pseudoscalar
with mass about 126 GeV can be divided into three main regions depending on
the composition of the lightest neutralino x: the singlino-higgsino region, the pure
higgsino region, and the HB/FP region.

In the singlino-higgsino region Y is a mixture of a large higgsino component
and a smaller (20% — 30%) but important singlino one. Owing to the significant
singlino component the neutralino will interact very weakly with matter and will thus
typically have too large relic abundance. In order to satisfy the Q,h? constraint one
then needs to consider small m, and consequently large annihilation cross-section.
In practice we find in this region m, ~ 70 < 80 GeV. The preferred region in the
parameter space spans a wide range of mg and m /», while we obtain 0.4 < A < 0.6
and 0.25 < k < 0.4. The parameter A\ is bounded from below by requirement
to enhance the Higgs signal rates, but it cannot be too large in order to obtain
SM-like hy. Small-to-intermediate values of k are required to maximize the singlino
component of y. The smallness in x has to be compensated by large values of A,
for obtaining the correct value of the lighter pseudoscalar mass. Ay almost always

takes large negative values, which helps to maximize my,. tan 3 is typically between
10 and 40.
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In order to enhance the signal rates we need to keep p noticeably smaller than
1TeV. This has important consequences for the pure higgsino region in our anal-
ysis of the CNMSSM-NUHM in which one obtains too low DM relic density. How-
ever, as the primary aim of the analysis was to discuss the possible enhancement
in R%(a;), we will assume in this case that thermally produced neutralinos con-
tribute only partially to the total DM relic abundance, i.e., Q;hh? ~ € Qb total
with ¢ < 1[P] Another possibility would be that the entire relic abundance is due to
an alternative DM candidate, e.g., gravitino or axino. In the pure higgsino region
we once again obtain wide range of allowed mg and m; . It is also true for A, x and
tan 3, although signal rates are enhanced significantly only for large \. Ay is again
confined to be typically large and negative, while A, appears to be more close to
zZero.

When analyzing the HB/FP region we assumed negative peg which helps to
satisfy the dark matter DD constraints as discussed above. The preferred values
of most of the parameters follow the discussion for the CMSSM. However, tan § in
this case is often limited to be not greater than about 15 since larger values would
enhance too much Yukawa couplings of h; to bb and 7F7~. This effective upper
limit on tan 3, in turns, causes an increase of m,, above 126 GeV via the A, and
A, running (see a discussion in [291]). The upper bound on tan 3 is relaxed for A,
more close to zero, when the running is slower. The parameters A and x span wide
ranges, while A, is typically close to zero.

In Fig. we show the range of m,, and the corresponding values of &ISI across
all the regions for which an enhancement above one was obtained in a combined
signal rate for h; and a, Rzlfy(hl +ay). The corresponding value of R (hy + ay) are
shown in the right panel. The HB/FP region is characterized by relatively smaller
enhancement in the Higgs signal rates than the other two regions due to a heavier
chargino x7.

In Fig. (left panel) we show the combined Higgs signal in the bbh production
mode for bb and 77~ decay channels for the pure higgsino region. As it is expected
the rate increases for larger A and smaller peg. On the other hand, in the HB/FP
region illustrated in Fig. (right panel) Rzg " +—(a1) can have extremely large
values, even about 100. However, this should not be interpreted as a characteristic

feature specific to the HB/FP region, but as a result of negative pueg assumed

b
bb/TrT—

approaches zero. For small negative g and large positive A, resulting in small

for this region. R (a1) increases as the denominator of | P[], AUSY + ks,

negative s = peg/A, the size of the denominator reduces as x grows. In Fig.

b
bb/Tt T

value of the above denominator term. Evidently a similar effect of negative pieg

(right panel) we show how R (a1) enhances with increasing x and decreasing

15Tn the following we assume & = 1 for the other two discussed regions in the parameter space
of the CNMSSM-NUHM.
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Figure 7.12: Left panel: The preferred regions of the parameter space of the

CNMSSM-NUHM in the (my,&o,") plane giving an enhancement in R% (hy + ay).
Also shown are the 90% CL exclusion limits from XENON100 as well as the 90% CL
limits expected (at the time of analysis) from the LUX and XENONIT experiments.
Maroon squares denote the singlino-higgsino region, green squares the pure higgsino
region and yellow squares the HB/FP region. Right panel: The (mX,USI) plane
showing the actual values of Rf’f;(hl + ay) in the preferred regions. Taken from

Ref. [291].
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Figure 7.13: Left panel: Enhancement in R[? e (h1 + a;) obtained in the pure

higgsino region as a function of the A and pg parameters. Right panel: Enhancement

in RZ%/T+T, (hi+a;) obtained in the HB/FP region as a function of k and (A3YSY +ks)

(see text for details). Taken from Ref. [291].

should manifest in the other two regions also, but it would cause a tension between

Mg, and my, and would not allow both of these to be around 125 GeV.
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7.4 Fine-tuning and 1 TeV higgsino dark matter

The results presented in this section are based on [292].

As discussed in Section 4.7 the little hierarchy problem arises since current lower
limits on squark and gluino masses, as well as the measured value of the Higgs
boson mass suggest that the characteristic mass scale for the SUSY particles Msusy
lies above 1TeV. In this section we will study the issue of fine-tuning for the GUT
constrained models within the framework of the MSSM[™| In particular we will focus
on the phenomenologically interesting 1TH region for which u ~ 1 TeV and therefore

the problem is often the most severe.

CMSSM Let us begin with the simplest GUT constrained model discussed so
far in this thesis, i.e., the CMSSM. In the CMSSM the fundamental GUT-scale
parameters to deal with when discussing the fine-tuning issue are mg, my, Ao, the
unified bilinear parameter, By, and the high-scale Higgs/higgsino mass parameter,
o (at the EWSB scale the last two are typically traded for tan ). Contributions to
the total fine-tuning A that come from mg and m, j» are shown in Fig. Another
contributions are typically smaller, beside A, which will be discussed later. As can
be seen A can easily reach large values (above 1000) in the 1TH region that appears
in the upper right corner of the plots for large mgy and m, .

Another (large) contribution to the total fine-tuning can be calculated by differ-
entiating M2 with respect to the top Yukawa y;. In the following, for simplicity, we
will fix g, at the experimental value and focus on a possible reduction of contribu-

tions to A that come from the SUSY parameters.

Non-universal unification conditions The fine-tuning with respect to gaugino
and scalar mass parameters can be reduced by employing some non-universality
conditions at the GUT scale. This is illustrated in Fig.[7.15]

In particular, in the left panel we present the fine-tuning with respect to Mj
(here defined at the GUT scale) for various unification patterns with non-universal
gaugino masses (NUGM). As can be seen, one can identify three well theoretically
justified patterns of My : My : M3, that is 19/10:5/2:1,10:2: 1, 0or —=5:3: 1, for
which one obtains Ay, < 100 for a wide range of M3E]

In the scalar sector, the amount of fine tuning strongly depends on the high-scale
relation among m3; and the soft stop masses at the GUT scale [311]. In SU(5) (or
in SO(10)) the fermions and the Higgs bosons belong to different representations,
so that the corresponding soft-breaking masses are in general unrelated and the fine

tuning can become very large (since there is no possibility of cancellation between

6For a discussion of the fine-tuning in the CNMSSM see Section
17"The last two patterns appear in the context of SU(5) GUT unification (see [308, 309]), while
the first one can be obtained for SO(10) (see [310]).
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Figure 7.14: 95% CL regions in the CMSSM with contributions to the total
fine-tuning that come from mq (left panel) and myy, (right panel). Taken from

Ref. [292].
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Figure 7.15: Left panel: The fine tuning due to Mj for different GUT-scale gaugino
mass patterns. Right panel: The fine tuning associated with GUT scale scalar masses
for different choices of the parameter bp = my, (Mgur)/mo. Taken from Ref. [292].

the corresponding fine-tuning contributions). However, if supergravity-inspired
universality conditions are imposed at the high scale, the fine tuning can be reduced
to the CMSSM levels.

By employing the RGEs evolution of my, one can rewrite this parameter as a
function of its value at the GUT scale and my (assuming my, # mg at high energy
scale)

my;, (Msusy) ~ —0.571mg +0.645my, + gaugino and trilinear contributions. (7.9)
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Figure 7.16: The 1TH 95% CL region obtained for two different non-universal GUT
unification patterns. Scalar (left panel) and gaugino (righ panel) mass contributions
to the total fine-tuning is shown with color. Taken from Ref. [292].

It is straightforward to see that one can obtain less fine tuning from the scalars than

in the CMSSM when my, and m2 are related (but not simply unified) as

my, = bymg, with |bp| ~ +/0.57/0.64 = 0.94. (7.10)
For simplicity we will consider br to be positive. Remarkably, br does not deviate
substantially from one, i.e., the value corresponding to universal scalar masses. In
Fig. [7.15| (right panel), we show the scalar fine tuning as a function of mg for various
values of bp. The curves are drawn for fixed values m;, = 1 TeV, Ag = —1TeV and
tan 8 = 30. As can be seen, one can obtain a significant reduction of the scalar A
for by ~ 0.94. Smaller (or slightly larger) b can also lead to very low fine-tuning,
especially for specific values of my.

The impact of non-universality conditions on A,,, and Ay, in the 1TH region is
illustrated in Fig. for some selected unification patterns. The lowest values of
both fine-tuning contribution separately can be lower than 10. Points shown in the
scatter plots were a priori obtained without imposing condition that would minimize
the fine-tuning. Interestingly, it appears that the 1TH region for a specific patterns
shown in Fig.[7.16|coincides spectacularly with the region of the lowest contributions
to A

The fine-tuning of ©  Another substantial contribution to the total fine-tuning in
the CMSSM, which remains sizable in the partially non-universal models discussed

above, is associated with the py parameter. It is commonly defined at Mgygy, and

8Black strips go along the middle of phenomenologically preferred regions in both plots.
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is related to its GUT-scale value, jg, through RGE evolution. The running depends
on the Yukawa couplings of the third generation, v, . and the gauge couplings of

the SU(2), and U(1)y groups, go and g;. In practice to some approximation
= Ry~ 09u. (7.11)

Since the corresponding derivatives of mp, (Msysy) and X% with respect to pg vanish
(if pp is unrelated to mg) in the Barbieri-Giudice measure Eq. (4.47)), one obtains

approximately
dln M2 N _2R2,u(2) _ —2u? (7.12)
9ln a2 M T MZC '

This shows the well-known fact that in the MSSM naturalness requires preferably

small values of p = Ry .

However, one can effectively cancel this contribution with the one from my
by imposing a unification condition between mg and po. This can be realized,
e.g., within supergravity thanks to the Giudice-Masiero mechanism [312]. In its
minimal implementation one introduces a set of visible-sector superfields and at
least one additional set of hidden-sector superfields. If some symmetry forbids a
SUSY-conserving bilinear term in the superpotential of the visible sector, a naturally
small effective py proportional to the gravitino mass can be generated through
interactions with hidden-sector fields. The same mechanism generates masses for
the scalar fields. As a result, one expects to obtain a correlation between the po and

mg parameters, o = Cj, mg, where constant (Y, is determined by the hidden sector.
Combining this with Eq. (7.11) one derives

p=(RCy)mgy = cygmyg. (7.13)

The Barbieri-Giudice measure of the fine-tuning for mq related to py now reads

oM mg [ ou*  omiy, (Msusy) [1+0(1072)]
olnm2 — TMZ | om? om?
2
~ 2% (—c% — 0.6412% + 0.57) . (7.14)
Z

One can reduce this contribution to A by proper adjusting br and cy parameters.
We show examples of such adjustment for two choices of NUGM patterns in Fig.[7.17]

Note that it is necessary to have bp < 1 to obtain low levels of mg fine-tuning,
similarly to the cases where p is a fundamental parameter (discussed above). One
way to control the amount of my,/mg splitting, which is discussed in [292], is to
employ RGE running above the GUT scale, if a larger GUT gauge group breaks
down to the SM group at Mgyr. Additionally, we assumed there that the u term in

the superpotential is forbidden by the anomalous U(1) 4 symmetry group introduced
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Figure 7.17: The 1TH 95% CL region in the (cg, br) plane for two different gaugino
unification patterns. Taken from Ref. [292].
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Figure 7.18: Left panel: The total fine-tuning in the 1TH region in the (mqg, M3)
plane for NUGM(-5:3:1) and three choices of bp and cy. Points with the lowest
fine-tuning for each such choice are denoted by light blue dots. Right panel: Com-
parison of the total fine-tuning of three models shown in the left panel with the
CMSSM and the model without o and myq relation at the GUT scale. Taken from

Ref. [292].

in the Missing Partner mechanism [313] 314]. In particular, we referred to the model
described in [315].

In Fig. [7.18| (left panel) we present the total fine-tuning in the (mg, Ms3) plane
for NUGM condition —5 : 3 : 1 and several choices of br and cy. As can be seen, A
can be much reduced in comparison with the CMSSM (see also the right panel of
Fig. [7.18).






Chapter 8

MSSM and NMSSM

Having discussed properties of some GUT constrained SUSY models we now move
to an analysis of the MSSM (and the NMSSM) with some set of parameters defined
at low energy scale. After short description of the standard case we will focus on
the neutralino DM scenario with low reheating temperature of the Universe. This

chapter is based on the results published in [293].

8.1 Dark matter relic density €, h* in the MSSM
and the NMSSM

The p10MSSM model We begin with a short description of the neutralino DM
scenario within the MSSM in the standard cosmological scenario where freeze-out of
x takes place in the RD epoch. In particular, we focus on the so-called p10MSSM
with the parameters and their ranges given in Table [8.1. This set of parameters
appears to be large enough to discuss all the important scenarios leading to the
correct value of , h* and simultaneously the set remains small enough to allow us
to efficiently scan the parameter space. We perform a Bayesian scan of this model
taking into account constraints listed in Table

Although the choice of parameters and their ranges given in Table is quite
generous, one needs to mention its several limitations. For instance, it does not
allow to consider coannihilations of y with selectrons or smuons. However, from the
point of view of our discussion it is enough to permit coannihilations with the lighter
stau and not to distinguish between different sleptons being mass-degenerate with
X. Another important remark is such that in the following we will first put a special
attention to the issue of heavy neutralino DM (up to 5TeV). This is justified by
the fact that a low mass regime has been already studied much more extensively in

the literature and, beside that, by the current experimental limits on the masses of
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Parameter \ Range ‘
bino mass 01l<M; <5
Wwino mass 0.l <M, <6
gluino mass 0.7 < M3 < 10
stop trilinear coupling —12< A, <12
stau trilinear coupling —12< A, <12
sbottom trilinear coupling Ay = —0.5
pseudoscalar mass 0.2 <my <10
[t parameter 0.l <pu<6
3rd gen. soft squark mass 0.1 <mg, <15
3rd gen. soft slepton mass 0.1 <mz, <15
Ist/2nd gen. soft squark mass mg, , = My +100 GeV
Ist/2nd gen. soft slepton mass mg, ., =mg, +1 TeV
ratio of Higgs doublet VEVs 2 <tanf < 62

Table 8.1: The parameters of the plOMSSM and their ranges used in our scan. All
masses and trilinear couplings are given in TeV, unless indicated otherwise. All the
parameters of the model are given at the SUSY breaking scale.

SUSY particles[] Although such a heavy x naturally leads to SUSY particles that
avoid detection at the LHC, we will show that in this case the lightest neutralino
can be often found in future dark matter DD (or ID) experiments. The issue of
fine-tuning for this mass regime may be potentially resolved after embedding the
plOMSSM into some GUT inspired theory similarly to the 1TH region case discussed
in the previous chapter. We will not treat this in the thesis.

Since we focus on heavy DM, it is typically rather difficult for us to satisfy the
a, constraint which requires relatively light smuons. Since the primary aim of our
discussion is to present some properties of SUSY DM and the experimental error

associated with a,, is still substantial, we will neglect this constraint in the study.

Neutralino dark matter in the plIOMSSM  As it was discussed in Section[5.1.3]
the correct DM relic density for the lightest neutralino can be obtained in the
bulk region, or by employing several possible coannihilation mechanisms (e.g., with
the lighter stau, lighter stop or the lighter sbottom), or due to some resonant
annihilations (in the AF region or in the h- or Z-resonance regions). The special case
of 1 TeV higgsino dark matter is associated with efficient (co)annihilations between
three lightest SUSY species, x = x?, x) and x7.

These regions with bino-like or higgsino-like x are shown in Fig. on the
(my,05") plane. The basic features of the m, < 1TeV mass regime was already
discussed for the CMSSM. The 1TH higgsino region in a more general framework of
the plOMSSM remain to a large extend testable in the future XenonlT experiment,

!These limits are not so stringent for the neutralino, but rather for the gluino or squarks.
Nevertheless, we will focus on a possible scenario in which also the neutralino LSP is heavy.



8.1 Dark matter relic density Q,i? in the MSSM and the NMSSM 117

7 p1OMSSM (95% CL) high Tg
bino
4+ higgsino LUX

0 1 2 3 4 5
my, (TeV)

Figure 8.1: Direct detection 021 cross section as a function of m, in the pI0MSSM

95% CL regions. The solid (dashed) black lines correspond to LUX (projected

XenonlT) limit on sz'gmaﬁl. Green squares correspond to bino-like x, while red

triangles to higgsino-like x. Taken from Ref. [293].

while in the case of bino-like neutralino ¢! can vary by several order of magnitude

depending on its higgsino (subdominant)pcomposition. On the other hand, as can
be clearly see, it is particularly difficult to obtain Q,h% ~ 0.12 for x heavier than
about 1TeV. In particular, for the largest masses of our interest, this is possible
in presence of coannihilations with the lighter stop or the gluino accompanied by
the A-resonance condition. However, this requires a very specific mass pattern, e.g.,
m, =~ mgz =~ 0.5m,4. Note that few higgsino-like points obtained for m, ~ 2 + 3 TeV
are within a reach of the XenonlT experiment.

Wino DM is not shown in Fig. [8.1] It is because this scenario in the MSSM has
been recently claimed to be excluded by ID searches [316], B17, B18]. It is due to
an accidental overlap of the mass range corresponding to the correct relic density
and the region where the Sommerfeld enhancement of (cv) plays an important role.
In particular, the enhanced rates of present-day wino annihilations would give rise
to diffuse gamma ray background in the H.E.S.S. data [319]. It could also lead
to an excess in the antiproton signal from PAMELA [320]. Conclusions from such
analyses [316, 317, BI8] can be summarized in the exclusion of wino DM for the
mass ranges below 800 GeV and between 1.8 TeV and 3.5 TeV when Einasto DM
profile is assumed in the center of the Galaxy. The exclusion generally holds also
for other DM profiles, except from the flat ones. On the other hand, wino DM with
mass smaller than 1.8 TeV or larger than 3.5 TeV generically cannot satisfy the relic
density constraint. Therefore a combination of the Q, A% and ID constraints excludes
wino-like xy as a DM candidate in a standard cosmological scenario where wino DM

particles are produced thermally in the early Universe and freeze-out in the RD
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epoch. In the following, we will employ (as sharp cuts) mass bounds from [31§]
from which we also take the SE factors needed to calculate Q,h? in presence of the
SE.

One in principle obtains similar results in the case of the NMSSM. Important
additions are the singlino-like lightest neutralino and some singlino mixed states. In
the NMSSM, similarly to the MSSM, it is also very difficult to satisfy the relic den-
sity constraint for m, =z 3TeV. In particular, as it was mentioned in Section [5.1.3]
obtaining the correct relic density for x with significant singlino composition re-
quires, e.g., coannihilations with the lighter stau or gluino or non-negligible mixing
between the singlino and the higgsino. Pure singlino DM is typically characterized
by very low DD rates as it was shown in the case of the CNMSSM in Section [7.2]
These rates can be enhanced to the level reachable by the XenonlT experiment for

a mixed singlino-higgsino neutralino.

8.2 Low reheating temperature T and heavy su-

persymmetric dark matter

As we will see it is particularly difficult to obtain Q,h% ~ 0.12 for heavy neutralino
DM both in the framework of the MSSM and for the NMSSM. In this section we will
show how this can be circumvented if one assumes that the reheating temperature
of the Universe after a period of cosmological inflation was low enough so that DM

freeze-out took place in the reheating period (i.e., before the RD epoch).

8.2.1 Boltzmann equations and suppression of Q, h?

During the reheating period the total energy density of the Universe was dominated
by the contribution from a decaying inflaton field. One should then take this into
account when writing the set of Boltzmann equations needed to calculate the DM
relic density. In particular, Eq. for radiation needs to be modified. Moreover,
it is necessary to add one more equation describing decays of the inflaton field
to radiation. On the other hand, Eq. associated with thermally produced
DM remains unchanged for our discussion in this section. However, one needs to
remember that some of the quantities in this equation are modified in the framework
of SUSY as it was described in Section B.1.1l

In principle we should also take into account a possibility that the inflaton field
will produce DM particles via direct or cascade decays. However, this will serve
as an additional source of DM different than a production in thermal equilibrium.
On the other hand, when we focus on heavy DM, we typically face the problem
of DM thermal overproduction. Thus we rather want to suppress Q,h% and not to

introduce an additional production mechanism. For this reason in this section we
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will assume that such inflaton decays to DM contribute negligibly to the DM relic
density. We will treat these decays more accurately in the next section.

Thus the appropriate set of Boltzmann equations now reads:

dpg
Do _3Hp, - T
dpr_ - _ 2
i AHpp + Topy + 200 et (Best(n* — n2,), (8.1)
d
d_? = —-3Hn— <Uv>eff(n2 — nzq),

where py is the energy density of the inflaton field and I'y is the inflaton decay rate.

At the beginning of the reheating period the temperature of the Universe rapidly
increases from T ~ 0 to some maximum value Ty, due to inflaton decays to
radiation | At later times radiation is still effectively produced, but the additional
entropy production, associated with decays of the inflaton field, leads to a decrease
of T'. The rate of this decrease with increasing scale factor is approximately given by
T ~ a=%3. In other words, the same drop in the temperature corresponds to a faster
expansion of the Universe during the reheating period than in the RD epoch where
T ~ a~!'. This has a remarkable impact on the DM relic density assuming that
the freeze-out of the DM particles took place during the reheating period. Between
the freeze-out and the end of the reheating period the DM particles were effectively
diluted away due to fast expansion. As a result one obtains a reduced value of 2, h?
in comparison with the standard result obtained for freeze-out in the RD epoch.
This is summarized in Fig. [8.2

The faster expansion of the Universe additionally result in a slightly earlier (in
terms of higher T') freeze-out of the DM particles. This effect could potentially
lead to an increased DM production, as can be deduced form Fig. [8.2] However,
this increase is almost always by no means less important than the aforementioned
dilution. Thus final QA% for low T is reduced in comparison with the high Tg
(standard) value [§]. In principle one might expect a slight increase of the DM
relic density, if freeze-out occurred just at the end of reheating period, since then
the dilution period would not be present. However, we found that the maximum
increase is at best a few percent, i.e., of the order of the error associated with this
type of calculations.

An approximate analytical treating of Eqs leads to relation between the
standard value of the relic density Q,h%(high T%) and the one calculated in the low

2The value of Ty,ax does not play a role in the determination of the DM relic abundance, since
Qpumh? is set mainly by the the rate of (co)annihilation processes near freeze-out and typically
Tto € Thax-
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Figure 8.2: Total yield Y = n/s as a function of x = m, /T in scenarios with low and
high reheating temperature. A solid (dotted) curve corresponds to the low (high)
Tr scenario. The beginning of the RD epoch for the low Ty scenario is denoted by
vertical dotted blue line. Taken from Ref. [293].

Tr regime Q, h?

3 3
Qpnih?(high Tg) ~ <%) (TfO) Qpaih?, (8.2)
Tr My

with (T,/m,)?® factored out since its value changes only in a narrow range. From
(8.2) it immediately follows that in scenarios with low reheating temperatures,
Tr < Tt,, the DM relic abundance is suppressed with respect to scenarios with
high reheating temperatures. However, in a more accurate treatment Eq. may
be slightly misleading, as it does not show a certain degree of correlation between
Ti, and Qpyh?(high Tr).

In the following we rather solve Eqs numerically. We obtain both {ov)es and
(o0)e{ E)ert as a function of temperature with appropriately modified MicrOMEGAs.
We follow a general methodology from [8] described for a single particle DM. In
order to treat SUSY DM we additionally apply the freeze-out approximation (see,
e.g., [321]) modified to our non-standard cosmological scenario. Some details of this
are given in Appendix @ MicrOMEGAs v3.6.7 was used to obtain Q,h%(high Ty), i.e.,
the relic density in the standard cosmological scenario, and ogl. We also checked
that in the high T limit our numerical tool for solving the Boltzmann equations
reproduces Q,h?(high Tg) obtained with MicrOMEGAs.
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Figure 8.3: Contours (black dotted) of constant Qpyh? = 0.12 for different val-
ues of the reheating temperature Tx in the MSSM (left panel) and the NMSSM
(right panel), for which only the (almost) pure singlino DM case is shown, in the
(mpur, Qpah?(high Tg) ) plane. The solid black horizontal line corresponds to the
high T limit. Green squares correspond to the bino DM region, while red triangles
(blue diamonds) to the higgsino (wino) DM case. In the left panel dark (light) brown
triangles correspond singlino fraction > 99% (between 95% and 99%). Taken from

Ref. [293].

8.2.2 MSSM and NMSSM at low Tg

In this section we apply the methodology of solving the Boltzmann equations for
low Tx to the plOMSSM and the p13NMSSM (with three additional parametersﬂ,
A, k and A,). We follow Table for the choice of parameters and their rangesﬂ
and Table [6.1] for the constraints.

The main results of such study — but obtained without imposing the constraint on
the DM relic abundance and direct detection rates — can be summarized in Fig. [8.3]
We present there the lines of constant ,h* ~ 0.12 as a function of m, obtained for
several values of T = 1,10, 50, 100 and 200 GeV. The horizontal line corresponding
to the standard (high Tg) scenario is also shown. As can be seen, the standard
result 2, h?(high T) can be suppressed by several orders of magnitude in the low
Tk regime.

The upper limit on Q,h?(high Tx) in the left panel of Fig. corresponds to
bino-like y annihilating via ¢-channel slepton exchange. The relic density is then
given by Eq. with maximum value of slepton masses in our scan that is about
10 — 15 TeV. In the low T regime one can easily obtain 2, h? ~ 0.12 for wide range

3 A, is determined in terms of other parameters including jieg and m 4.
4Additional parameters in the p13NMSSM have ranges: 0.001 < A < 0.7, 0.001 < & < 0.7,
—12TeV < A,; < 12TeV.
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Figure 8.4: Direct detection ng cross section as a function of m, in the pI0MSSM
95% CL regions for Tr = 10 GeV (left panel) and Tx = 100 GeV (right panel). The
solid (dashed) black lines correspond to LUX (projected XenonlT) limit on o'
Color coding as in Fig. . Taken from Ref. [293].

of masses without imposing any other conditions on the SUSY mass spectrum. The
similar is true for singlino-like y as shown in the right panel of Fig. [8.3

In the case of higgsino DM one can obtain the correct relic density for masses
much heavier than 1TeV. Remarkably, this happens only for T ~ 100 GeV. One
interesting consequence of this could be derived if in some combination of future
DM experiments one would be able to find the DM particle recalling the higgsino
but mass significantly exceeding 1TeV. This could then be interpreted as a hint
for the low T scenario with a value of the reheating temperature determined quite
precisely.

The other important advantage is that wino DM in the low Tx scenario can
become again viable provided that T ~ 100 — 200 GeV. In this case the correct
relic density can be obtained for mg; > 3.5 TeV. Thus it escapes from current ID
exclusion limits, but may be potentially tested in some future ID experiments.

The dark matter DD rates O’SI for several values of Tk are shown in Fig. for
bino and higgsino DM and Fig. for wino DM. In particular, the heavy higgsino
DM scenario can be almost entirely tested in XenonlT experiment within a few
years. Some part of the wino DM case is also testable. On the other hand, bino

(and singlino) DM remains to a large extend beyond the reach of DD searches.

8.2.3 Constrained MSSM at low Tg

It is interesting to briefly discuss the impact of low T on the allowed parameter
space in the CMSSM to compare this with the results shown in Section [7.1] In this
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Figure 8.5: Left panel: the reheating temperature range in the wino DM scenario
that gives the correct relic density for mg; > 3.5 TeV where indirect detection limits
are not violated. The results with (Wlthout) the Sommerfeld effect are shown as dark
blue solid diamonds (light blue empty squares). Right panel: the 95% CL region of
the pLlOMSSM for T = 150 GeV in the (m,, O'SI) plane with the Sommerfeld effect
included in calculating the relic density. In the case of wino DM, we use pink (blue)
color to distinguish points which are excluded (not excluded) by the requirement
mgy > 3.5TeV imposed by indirect detection searches. The Solid (dashed) black
line corresponds to the LUX (a projected XenonlT) limit on o I Remaining color
coding as in Fig. 8.3 . Taken from Ref. [293].
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Figure 8.6: Left panel: The 95% CL regions in the (mg, m1/2) plane of the CMSSM
for T, = 10 GeV. Rigth panel: The direct detection O’SI cross section as a function
of m, for the CMSSM 95% CL for T = 10 GeV. Taken from Ref. [293]

analysis the ranges of parameters follow Table (recent study), while experimental
constraints are given in Table [6.1]
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In particular in Fig. (left panel) we present the 95% CL region in the
(mg,mq/2) plane obtained for T = 10GeV. As it is expected from Fig. for
such low reheating temperature only the bino can be a viable DM candidate.
The lower left corner of the preferred region in (mg,m;/2) plane corresponds to
stau coannihilation region, analogous to that obtained for high T[] For slightly
higher values of the mass parameters, the suppression of the relic density by stau
coannihilations is traded for low-Tr suppression and we find acceptable points there.
In that region, the bino relic density for a fixed T and a fixed bino mass (or my ;)
depends on many factors, in particular, on stau masses (which depend not only on
mo, but also on tan 8 and Ap), as well as on the small but non-negligible higgsino
fraction of the lightest neutralino.

In Fig. (right panel) the spin-independent direct detection cross section o'

p
is shown as a function of the neutralino mass for T = 10 GeV. As expected from

results obtained for the plOMSSM, in the CMSSM for T = 10 GeV prospects for
DM discovery are much worse than in the high Tk case. Only a small fraction of
the allowed region can be covered by XenonlT. In this case the higgsino fraction of

the bino-dominated DM goes up to even 5%.

8.3 Inflaton field decays to DM at low Tg

We have so far assumed that the direct and cascade decays of the inflaton field to
DM species are negligible. In this section we will take into account this additional,
non-thermal contribution to Q,h% Our analysis follows here the model-independent
approach used in [322, [323].

Direct and cascade decays of the inflaton field to superpartners of SM particles
correspond to an additional term in the Boltzmann equation for n, which is

now given byﬂ
dn

. b
pri —3Hn — (ov)[n® — (n°)*] + m—¢F¢p¢>, (8.3)

where b describes the average number of DM particles produced per one inflaton
decay and my is the inflaton mass.

We present our results in Fig. in the (m,, Tr) plane in terms of the dimension-
less quantity n = b- (100 TeV/my) for higgsino (left panel) and wino (right panel)
DM where along the lines we fix a value of the total relic density, 2, h? ~ 0.12[] As

5For such low WIMP mass values the suppression due to low T is inefficient.

5The most important contribution from direct and cascade decays is associated with the period
between the freeze-out of DM particles and the end of the reheating period when n becomes
essentially equal to n,.

“The total DM relic density contains both thermal and non-thermal contributions. The ther-
mal component corresponds to a production in thermal equilibrium (that lasts up to a time of
freeze-out). The non-thermal production, instead, corresponds mainly to a production after the
DM freeze-out, but before the inflaton field disappears completely. Decays of the inflaton field
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can be seen, the non-thermal contribution to the DM relic abundance in the low T
regime can help to increase otherwise too low Q, k% Examples of such cases include
the higgsino with mass below 1 TeV or wino with mass below 2 TeV.

The relic density of DM in this case is a sum of the thermal and the non-thermal
components. The thermal component increases with the reheating temperature (up
to a moment when the high Tk regime begins). On the other hand, the magnitude
of the non-thermal component may depend, for fixed n and m,, on the reheating
temperature in a non-monotonic way, as discussed in detail in [323]. When T is
sufficiently low, non-thermal production leads to €2, ~ Tg, while for larger reheating
temperature DM relic density goes down with increasing T'g.

The latter behavior corresponds to a shortening (with increasing Tx) of a period
between the DM freeze-out and the end of the reheating period. The DM particles
produced from the inflaton decay before freeze-out can effectively thermalize. Hence
their number density will be adjusted to the thermal one and one will not observe
increase of the DM abundance from the inflaton decays. The situation changes
after the DM freeze-out, but before the inflaton field disappears completely, since in
this period newly produced DM particles will not thermalize and therefore indeed
contribute additionally to ©,h?. The shorter this period is, the less amount of the
additional DM produced. In other words the smaller fraction of the inflaton field
number density, F'ng = F (py/my), with F' < 1, would decay effectively producing
additional (non-thermalized) DM particles.ﬁ Hence Q,h? increases with decreasing
Ty for intermediate (but generally low) Tg.

However, for very low Tk the situation changes. In this regime one can safely
assume that non-thermal production of DM dominates (thermal one is highly sup-
pressed) and that a significant fraction of n, could decay producing the DM particles
(as well as radiation in cascade decays), i.e., F' is more close to unity. Therefore by
decreasing Tz one cannot increase F' much. In this regime, to some approximation,
one can describe the non-thermal DM production using the instantaneous reheat-
ing approximation. In particular, one can assume that the whole energy density of
the inflaton field was transformed into radiationﬂ ps = pr ~ Tp in the (cascade)
processes that also produced the DM particles, i.e., p, ~ myn, =~ bng ~ np,. As a

result, one obtains [323]

RH
Yo = YXRH = ;)R—H ~ 1Tk, for sufficiently low Tk, (8.4)

to DM particles being still in thermal equilibrium are also taken into account when numerically
solving the Boltzmann equations. Their impact on the total relic density is limited, since produced
DM particles quickly thermalize, but in principle these decays can slightly change the moment of
freeze-out.

8In this regime F increases as Tk decreases.

9For the purpose of a qualitative discussion in this section we neglect the difference between T
and Trp mentioned in Section
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Figure 8.7: Contours of constant Q,h* = 0.12 in the (m,,Tr) plane for different
values of the dimensionless quantity n = b(lOO TeV/m¢> for higgsino (left panel)

and wino (right panel) DM. Solid black (dashed red, dot-dashed green, dotted blue)
lines correspond respectively to n = 107! (1076, 1077, 107®). In the wino DM case
we take indirect detection limits following [318]. For the reheating temperatures
above thin dashed black lines the freeze-out of the DM particles occurs after the
reheating period (i.e., in the RD epoch). The limit at ~ 800 GeV comes from
antiprotons and the one around 1.8 TeV from the absence of a v-ray line feature
towards the Galactic Center. taken from Ref. [293]

where we used s® ~ T3 (index RH denotes the value at the end of the reheating
period). Thus Q,h? starts to decrease with decreasing Tx for sufficiently low
reheating temperature.

This is summarized in Fig. m where we show Q,h? (both from thermal and
non-thermal production) as a function of T, for several values of  and two masses
of higgsino-like neutralino. Consequently, each curve corresponding to a fixed value
of the relic density ,h? = 0.12 and fixed 7 in Fig. is C-shaped. As m,, increases
required values of the Tk become larger (for the upper branches of C-shaped curves).
Finally they reach the level at which freeze-out occurs after the reheating period,
i.e., in the RD epoch, and therefore direct and cascade decays of the inflaton field
play no role in determining Q, A%

For sufficiently large values of n, one can even generate too much DM from
inflaton decays. The corresponding upper bound on 7 oc 1/m can be translated into
a lower bound on the inflaton mass above which the direct production is negligible
even for a branching ratio BR(¢ — superpartners) ~ O(1). In particular, for
n < 1072 we obtain no significant non-thermal production of DM particles. This

value corresponds to the inflaton mass my > b- 103 GeV, as it is illustrated in

Fig.
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Figure 8.9: The reheating temperature required to obtain ©,h? = 0.12 as a function
of the inflaton mass for three fixed higgsino masses and two values of the b parameter
(an average number of the DM particles produced per one inflaton decay). The
vertical dashed black line corresponds to the minimum mg above which one obtains
effectively the n ~ 0 regime (only thermal production).






Chapter 9

Gravitino and axino dark matter

In this chapter we will discuss in more details some specific scenarios with SUSY
EWIMP DM that were so far rarely studied in the literature. We begin with a
discussion of the case with gravitino DM and sneutrino being lightest ordinary
supersymmetric particld’| (LOSP) in the framework of constrained SUSY models (at
the GUT or other high energy scale). We then study the impact of low reheating
temperature on gravitino and axino DM scenarios within the pl0MSSM. The results
presented in this chapter are partly based on [287, 293] and partly on currently

ongoing project.

9.1 Gravitino dark matter from sneutrino de-
cays in supersymmetric models constrained
at high energy scale

The results presented in this section are based on [287].

Gravitinos as the DM particles can be produced -either thermally or

non-thermally as discussed in Sections|3.2.3|and [5.2.2] In particular, if the reheating

temperature of the Universe after a period of cosmological inflation Ty is large, the
TP mechanism dominates and can easily lead to DM overabundance. This can be
translated into an upper limit on Tk that depends mainly on the gravitino mass
me and the gluino mass my as shown in Eq. . In this section we will examine
this limit in a scenario with the sneutrino LOSP taking into account the BBN and
the LSS constraints, as well as the recently measured value of the Higgs boson mass
my, for two selected, though as we will see in some sense representative, constrained

SUSY models.

Tt is the lightest of all supersymmetric particles beside possibly lighter SUSY EWIMPs. In
the scenarios that we consider in this chapter, in which either the gravitino or the axino (but not
both at the same time) are lighter than all the other SUSY particles, the LOSP is the NLSP.
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Sneutrino LOSP in constrained SUSY To begin with we need to discuss the
conditions imposed on soft SUSY breaking parameters that lead to the sneutrino
LOSP scenario. From Egs and one can easily derive a necessary
condition for the sneutrino to be lighter than stau 7; written in terms of the

parameters evaluated at the SUSY scale

mz(ﬂtaﬂﬂ B AT)2

m2 — M3, cos 23

m2(ptan B — A;)?
2z Mz

3
m? (SUSY) —m2 (SUSY) + 5 M7 cos 23 — My, cos 268 — m}

3
+M§V—5 z, (9.1)

where in the second line we assumed that tan is noticeably larger than one.
However, typically tan 8 cannot be too large, since then the term proportional to
p?tan? 3 on the RHS could grow too much and it would be particularly difficult to
satisfy Eq. .

One can rephrase Eq. in terms of the parameters defined at high energy
scale by solving the corresponding RGEs. Approximate, though accurate enough

for our discussion, solutions that one can obtain (for more details see Appendices

and readﬂ

- 1 g?
mﬁR = ng,o +cpM?E + CRUm%],o — —D? (1 — Tl> + 6]2%7% (9.2)
11 9io
2 2 2 2 | =~ 2 Lo g 2
mz, = Mzt enMy + ey + Gomoo + 5 D7 (1 7 +67,. (9.3)
1,0

where by m?q,o (with an additional index 0) for S = Q,U,D we denote third
generation soft squark masses at the high scale, while M; 5 are low-scale U(1) and
SU(2) gaugino soft mass parameters. The coefficients cg; and cg; can be found by
solving the one-loop RGEs, whereas ¢ry, ¢rg by solving the two-loop RGEs and
identifying the leading effects. They are given in Table for some representative
choices for the high scale ) and the SUSY scaleﬁ D? (denoted in literature also as
Sp) is defined as

D? = Sy = tr [YMfcalars’O] = m%,u —mffd+tr [m?g,o — Qm?]’O + m%,o — m%,o + m%%o] ,
(9.4)

2The approximate method of solving one-loop RGEs follows [100] and is valid for not too large
tan 8. This is however consistent with the requirement of having the sneutrino LOSP, as mentioned
above.

3We assume that at the high scales the soft supersymmetry breaking parameters are the same
for all three generations. Beyond that framework, e.g., in models with inverted hierarchy of soft
supersymmetry breaking masses, two-loop contributions proportional to squark masses can drive
m%L to values smaller than ng, opening up a possibility for yet another example of sneutrino

LOSP [324] which we do not treat here.
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Msusy CR1  CL1  Cr2 CRU CLQ
Q = 10" GeV

500GeV | 047 0.12 0.52 -0.0027 —0.0049
1000GeV | 0.45 0.11 0.51 —0.0026 —0.0048
Msusy CR1  CL1  Cr2 CRU CLQ

Q = 109 GeV
500GeV | 0.62 0.15 0.64 —-0.0038 —0.0060
1000GeV | 0.59 0.15 0.62 —0.0037 —0.0059

Table 9.1: Numerical values of the coefficients cgr1, cr1, cr2, Cru, Crg in Eq. 1}
for two representative choices of the high scale () and of the EWSB mass scale

MSUSY = . /mglmEQ.

where m7 are the 3 x 3 sfermion mass matrices at the high scale, m3; and mj; are
the soft supersymmetry breaking masses of the Higgs doublets at the high scale, and
91 (g10) is the U(1)y gauge coupling at the low (high) scale. Leading corrections
arising due to the 7 Yukawa couplings are denoted by 5%7% and 5%,%. For small
and moderate values of tan 8 they are small and their only role is to make the
third generation of sleptons slightly lighter than the first two, but they can become

important, e.g., if the mass parameter m%{d at the high scale is much larger than

\/mii and \/@ . Adding the leading two-loop contributions to the RGEs allows to
obtain O(10 GeV) accuracy in a mass determination.

Substituting and into ([9.1)), we see that the sneutrino can be the LOSP
in two (mutually not exclusive) cases[f| One possibility is to assume D? < 0, which

drives left slepton mass to m2, < M7. Moreover, in this case the sign difference

in the coefficients multiplying D? in and can lead to mgL < m%R. We
will discuss this scenario for the non-universal Higgs mass (NUHM) model, in which
mu, # mp, and both of them are not unified to mg, while the remaining parameters
follow the CMSSM. The second option is to relax the gaugino mass universality.
This possibility is naturally realized in, e.g., generalized gauge mediation (GGM)
models [’

Allowed parameter space of the models We performed a grid scan over the
parameter spaces of the NUHM and the GGM (see Appendix models. The
values of the fixed parameters in each case were chosen so as to maximize the

allowed region with the sneutrino LOSP and simultaneously make it possible to

4Note that in models with D? = 0 and universal gaugino masses, such as the CMSSM for which
M, ~ 2M,, and a high scale is greater than 10 GeV, the sneutrino cannot be the LOSP, since it
is always heavier than the bino. The stau LOSP case in the CMSSM corresponds to the “right”
stau Tgr.

® Another way would be to assume large mgq o, since it would give a negative contribution to
mgL. However, this would lead to large u, hence would increase the left-right mixing in the stau
sector and would thus make the lighter stau lighter than the sneutrino.
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Figure 9.1: Left panel: Slice of the NUHM model parameter space in the (mg, mq/2)
plane with the values of my, = 500 GeV, mpy, = 4000 GeV, Ay = —3 TeV fixed at
the unification scale and tan 8 = 10, x > 0. Contours of constant LOSP (Higgs
boson) masses are shown as dashed (solid) lines. Unphysical regions are marked in
white. Right panel: Sections of the GGM model parameter space in the (]\1, /~\2)
plane and with fixed ratio My : Mg : M3y = 5 : 2 : 5 and fixed values of
tan 8 = 10, the messenger scale Mpess = 103 GeV and A3 = 20 TeV with p > 0.
Taken from Ref. [287].

obtain my, =~ 126 GeV. In particular for the NUHM model we keep mpy, < mgy,
and therefore D? < 0, while for the GGM model it follows from that sneutrino
LOSP is viable for My/M; < 2 at the electroweak scale.

Slice of the allowed parameter space in the (mg,mi/) plane for the NUHM
model is shown in Fig. [0.1] (left panel). We present the LOSP identity and its
mass, as well as the mass of the Higgs boson. In the left panel the sneutrino LOSP
region is bounded from above at large values of m;/,. This can be easily understood
since, according to Eq. and assuming gaugino mass unification at the GUT
scale, mgL grows faster with my; than the bino mass squared M{. As a result, for
sufficiently large m, /3, the bino becomes lighter than the sneutrinoﬂ On the other
hand, for too low m,, and mg one obtains mz, <0 (unphysical region) because large
negative contribution from D? < 0 is not compensated by other terms in Eq. .
Beside the large negative contribution to mg (proportional to D?) can drive, for
sufficiently small values of m;,, the lighter stop mass below the sneutrino mass.
Thus we observe a lower bound on my, z 800 GeV. This also limits from below
acceptable gluino masses which has an important impact on the maximum Tx as
discussed above. The lower limit on mj; even increases when one takes into account

the condition for the Higgs boson mass my, ~ 126 GeV. It is because M3 has a large

6The sneutrino mass also grows with mg. That is the reason why the bino LOSP region (green
area in the plot) increases for larger my.
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Figure 9.2: BBN and LSS bounds for the sneutrino LOSP region in the NUHM
shown in the left panel of Fig. for the values of gravitino mass of mg =
40 and 250 GeV. For °Li/7Li the stringent limit was used Eq. (6.56). The con-

servative limit is denoted by red dash-dotted line.

impact on the RGE evolution of the soft squark masses which, in turn, determines
Msgusy and therefore a size of loop corrections to my,, .

In the case of the GGM model described in terms of the parameters given in
Appendix [C]we can utilize the possibility of non-universal gaugino masses. We adopt
M,y = Ms;, (at high energy scale), while Mg is kept lower. More specifically, we
assume My : Moo : Msg = 5 : 2 :5, which predicts that the lightest gaugino-like
neutralino is a wino. A slice of the allowed parameter space in this case is shown in

Fig. [0.1] (right panel).

BBN and LSS constraints For the region with sneutrino LOSP shown in the
left panel of Fig. for the NUHM model we calculate the abundances of light
elements and apply both the BBN and the LSS constraints. In Fig. [9.2] we show a
sample of such results for two masses of gravitino mg = 40,250 GeV. We find no
constraints for the gravitino masses smaller than 7.5 GeV. At mg = 40 GeV a part
of the parameter space corresponding to m; = 500 GeV is excluded because of too
large D/H abundance, but typically the bounds from °Li/7Li are more stringent.
For large gravitino masses non-thermal gravitinos produced in sneutrino LOSP
decays will have present-day (after redshift) velocities much larger than those char-
acteristic for thermal distribution.Such fast moving dark matter particles tend to
erase small scales of Large Scale Structures (LSS), especially when they constitute a
sizable fraction of the dark matter density as discussed in Section [6.6.2] The impact
of this bound on the parameter space of the NUHM model is shown in Fig.|9.2| (right
panel) for ms = 250 GeV. At such large mg, the LSS bounds become more strin-
gent than the BBN ones. For mg > 270 GeV, we find that the LSS bounds exclude
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Figure 9.3: Left panel: BBN constraints shown in the 7; vs m;Y; plane for the
sneutrino LOSP region shown in the left panel of Fig. 0.1} Dots show the results of
our scan with fixed mg = 2.5, 20 and 250 GeV. Right panel: The impact of different
estimates of hadronic energy release on the D/H bounds for ms = 20 GeV. For the
excluded region marked “simple Ehad” an approximation Ey.q = (ms —mg)/3 was
used, while the excluded region marked “full Ehad” corresponds to a computation
of Fy.q involving integration over the full 4-body phase space.

the entire section of the parameter space in the NUHM model that we analyze here.
This has important consequences for the maximum reheating temperature, since
limits on Tk become weaker with increasing gravitino mass according to Eq. .

In order to understand better the origin of the BBN constraints, we first project
all the analyzed points onto the 7; vs m;Y; plane for several gravitino masses,
me = 2.5, 20, 250 GeV. This is shown in the left panel of Fig. where we also
present the D/H and SLi/"Li bounds. As can be seen with increasing mg, the BBN
constraints first appear, next tighten up and then eventually become weaker [

The D/H bound is quite sensitive to the hadronic energy release. In Fig.
(right panel) we compare the approximate estimate Eq. and more exact
treatment Eq. . It turns out that the lower boundary of the respective excluded
region could shift downwards by as much as 100 GeV in the approximate treatment.
In other words, one would significantly overestimate the sneutrino LOSP region
excluded by the constraint.

In Fig. we show regions in the (mg, my) plane excluded in the case of the
NUHM model. Taking into account only the BBN constraints one finds two separate
allowed regions in the plot. The first one, for small ms < 10GeV, corresponds

to relatively low values of the maximum reheating temperature, Tp** ~ 107 GeV.

"This can be understood taking into account that the sneutrino lifetime 75 oc mzém;5 for

mea < my and Qzh% « mg. Interestingly, for m; close to the bino mass we obtain an increase of
the sneutrino relic density; this is an example of scenario in which the LSP-NLSP mass degeneracy
causes an increase of Qpgph? that is discussed in Section
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Figure 9.4: A summary of the bounds in the NUHM in the (mg, m;) plane. The
thick dashed line bounds the region excluded by BBN, the solid red line marks the
boundary of the region excluded by LSS. Thinner dashed lines show the maximum
reheating temperature, T5**, and thinner dotted lines show the Higgs boson mass
corresponding to T2, For °Li/"Li the stringent limit was used; the boundary of
the excluded region with the more conservative constraint for °Li/7Li is represented
by a red dash-dotted line.

On the other hand, for larger mg, the region allowed by the BBN bounds is
characterized by the maximum reheating temperature of the order of 10° GeV when
my ~ mg. However, imposing the LSS bounds closes this second region, thus slightly
reducing the maximum reheating temperature. It is further reduced when one add
a constraint from the Higgs boson mass. As can be seen, the requirement that the
Higgs boson mass is at least 125 GeV, brings T8 down to below 10® GeV.

These bounds on maximum T as a function of mz are shown in the left panel
of Fig. for the same sets of constraints. We impose there the BBN bounds
and we show the results with and without the LSS bounds and with and without
the requirement that the Higgs boson mass is at least 122 GeV (at the time of the
analysis we took into account theoretical error of m; in a quite conservative way).
We see that in each case the maximum T lies close to 10° GeV. In the right panel
of Fig. we show the maximum Tk versus the Higgs boson mass with and without
BBN and LSS constraints.

In the GGM model we find a similar value of the maximum reheating temperature

when the Higgs boson mass and the BBN constraints are taken into account. The
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Figure 9.5: Left panel: The maximum reheating temperature as a function of mg
with the BBN, the LSS and the Higgs boson mass constraints (m, > 122 GeV)
applied, as well as without one or both of the LSS and the Higgs boson mass
constraints. Right panel: The maximum reheating temperature versus the Higgs
boson mass without the LSS constraint (upper red dashed line) and with the LSS
constraint (lower line). The solid (dotted) segments correspond to the cases where
the BBN bound is (is not) applied.

LSS constraints are not important since in these models typically mgy « m; which

is assumed to allow a natural suppression of the FCNC processes.ﬂ

9.2 Gravitino dark matter with low reheating

temperature

The results presented in this section were published in [293].

In this section we will analyze the impact of taking low values of the reheating
temperature on the scenario with gravitino DM. As we will show, in this scenario
a combination of the relic density and the BBN constraints allows one to derive a
lower limit on Tx. This complements the study of the upper limit on Tk discussed
above.

As it was shown in Eq. gravitino relic density from thermal production is
suppressed for low Tx and not too low mg. In particular, for T « 10°GeV and
mg 2 1GeV, that we are interested in here, this component is much smaller than

the measured value of the DM relic density.ﬂ In the following, we want to focus

8In gauge-mediated models the leading contributions to the soft masses are flavor-diagonal,
while the subdominant gravity-mediated contributions, of the order of mg, do not have to exhibit
any such structure.

9In fact, for such low values of T that we employ there may appear additional reduction of
Qéh2 going beyond Eq. It is due to a Boltzmann suppression of number densities of heavier
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Figure 9.6: Contours of constant Qéh2 = 0.12 for different values of the reheating
temperature Tr and for mgs = 10 GeV and 1 TeV in the plOMSSM with BBN
constraints imposed. Color coding as in Fig. [8.3]

on scenarios in which the gravitino constitutes the whole DM relic abundance. Its
relic density for low Tk has to be then dominated by the non-thermal component.
In this case the gravitino abundance is related to the abundance of the LOSP by
Eq. with Qnrgph? replaced by Qrogph?. The LOSP relic abundance has to be
calculated taking into account low values of T following the methodology described
in Sections .2 and [8.3]

Long after they have frozen out, during or after BBN, the LOSPs can decay into
gravitinos and SM particles. Hadronic and electromagnetic cascades initiated in this
processes can change abundances of light elements and therefore possibly ruin an
agreement between the BBN predictions and current observational limits. We im-
plement the BBN constraints following the methodology described in Section |6.6. 1.

Typical results for my = 10GeV and 1TeV obtained in the plOMSSM are
given in Fig. In both figures we fix the gravitino abundance Qs ~ 0.12.
This is achieved by a proper adjustment of the reheating temperature so that
Qrosp(low Tg) ~ (mposp/me) x 0.12. The corresponding lines of constant reheating
temperature for different points in the (m,, QLosph?) plane are shown by dashed
black lines. The line corresponding to the correct NTP gravitino abundance in
high-Txr case is naturally not horizontal in this plane, since it is described by
Qrosp(high Tg) ~ (mrosp/mea) X O.lQH We assume that the LOSP can be either

the lightest neutralino or slepton (in particular, the lighter stau or the tau sneutrino).

SUSY particles that produce gravitinos in their scatterings in thermal plasma (similarly to axino
DM case discussed in Section .

0An addition of TP for high Tk would allow one to obtain the correct value of the gravitino
relic density also for points lying in the hatched regions labeled by “too low Q@hZ”. We show only
the pure NTP case for a comparison with the low Tz scenario in which TP is negligible.
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We note that the sneutrino LOSP is always mass degenerate with the lighter (left)
stau. Thus coannihilations do play an important role in determining Qzh?. This
may result in Qrosph?(high Tg) smaller for the sneutrino LOSP than for the (right)
stau LOSP.

As long as mg < 100 GeV, the bino LOSP is the only possibility for gravitino
DM with Q@h2 ~ (.12 in the low Tg regime. In this case typically hadronic branching
ratio By, ~ 1. Additionally, Qposph?(low Tg) has to exceed 0.12 in order to keep
the correct value of the relic density for gravitino. Thus the BBN constraints are
quite severe. In order not to violate them one then simply requires that the LOSP
lifetime is less than about 0.1s. According to Eq. this leads to

> 1400 ( e )2/5 GeV (9.5)
mrosp < eV ev, .

which is consistent with the results shown in the left panel of Fig. E

On the other hand, it follows from Fig. that a lower bound on mpogp can be
translated into a lower bound on Tk. We show such bounds for the bino LOSP in
Fig. 9.7 (left panel) as a function of the gravitino mass assuming that the inflaton
field is heavy enough so that its direct and cascade decays to DM are negligible (see
a discussion in Section . As we argued in Section , the upper boundary of the
points in Fig. corresponds to the maximum value of the stau mass. Therefore
the lower limits on Tk with the bino LOSP are presented for three maximum values
of the stau mass: 5, 10 and 15 TeV.

On the other hand, when mg = 100 GeV, the LOSP lifetime is typically so large
that the BBN bounds can only be evaded when By is small. Moreover, in the low
Ty regime where the LOSP yield at freeze-out is suppressed one requires mposp = 1
TeV to satisfy the relic density constraint for NTP gravitino. This naturally points
towards a scenario with the slepton LOSP which can be either the sneutrino or,
very rarely, for the lighter stau [276] 277]. We present typical result for mg = 1 TeV
in the right panel of Fig. Similarly to the bino LOSP case, for mg z 100 GeV
we also find a lower bound Tk 2 150 GeV, as can be seen in Fig. [9.7] (right panel).

The lower limits on the reheating temperature that we derive for gravitino DM
and both the bino or slepton LSP lie typically around T ~ 100 GeV if the gravitino
is not too light. Remarkably, it is much larger value than 7' ~ 1 MeV characteristic
for the beginning of the BBN, which is often mentioned in the literature as the

theoretical lower bound on T.

" One needs to notice that, for fixed me, Qrosph?(low Tg) is constant along the vertical lines
in Fig. @ that correspond to m, = const. Along these lines we also obtain fixed values of the
LOSP lifetime and to a good approximation hadronic branching ratios By, (for each of the possible
LOSPs separately). Thus the BBN bounds appear in Fig. as sharp vertical exclusion lines.

12Tn our case the stau LOSP scenario is only slightly constrained by the possibility of forming
bound states with nuclei discussed in Section due to a relatively low stau lifetime. For the
same reason the CMB constraint plays no role here.
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Figure 9.7: Lower bounds on Ty as a function of mg for gravitino DM with a bino
LOSP (left panel) and a slepton LOSP (right panel). Direct and cascade decays of
the inflaton field to the LOSP are neglected. For the bino LOSP three choices of
the maximal stau mass ms = 5, 10 and 15 TeV are shown. Taken from Ref. [293].
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Figure 9.8: Lower bounds on Ty as a function of mg for gravitino DM with a bino
LOSP. The effects of the inclusion of the direct and cascade decays of the inflaton
is shown for different values of 7 and fixed m; = 15 TeV. Taken from Ref. [293].

The aforementioned lower limits on Tk become weaker if direct and cascade

decays of the inflaton field to the LOSP cannot be neglected, as can be seen in Fig.
for the bino LOSP. It is because thermal production of LOSPs (later decaying

to gravitinos) can be suppressed more by allowing low Tx, while the condition

Qrosph® = (mrosp/mg) x 0.12 will be maintained thanks to additional non-thermal

production of LOSPs. However, the weakened lower limits on Ty typically remain

significantly larger than 1 MeV.
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9.3 Axino dark matter with low reheating tem-

perature

According to our discussion in Section [5.3.2] (see the right panel of Fig. in the
axino DM scenario with mgz = 0.01 GeV we are naturally confined to assuming low
values of the reheating temperature Tr < 10° GeV. However, this regime was so
far treated in the literature (see [26] and references therein) without taking into
account the details of the expansion of the Universe in the reheating period. The
non-thermal production of axinos can be described similarly to the gravitino DM
case discussed in the previous Section. In addition, axino interaction rates are much
less suppressed than the ones for the gravitino, since typically f, « Mp. As a
result, in contrast to the gravitino DM scenario, axino thermal production can play
a non-negligible (though still often subdominant) role in determining ;72 even for
low values of the reheating temperature.

In this section we will study the impact of taking low Tz on the allowed values
of the axino mass. We will assume that the axino can be produced both thermally
and non-thermally from late-time LOSP decays[®| Both TP and NTP in general
depend on the SUSY spectrum. In order to take this into account we perform our
analysis within the framework of the plOMSSM (see Section [3.1]).

Axino TP with non-instantaneous reheating Before we present the results
of our study we first briefly describe the impact of the reheating period on the axino
TP (for a more detailed discussion about a methodology see Appendix . We will
focus on the KSVZ axino, but will give some remarks about the DFSZ one, too.
Although the impact of the non-instantaneous reheating on Qzh? is generally
larger for low values of the reheating temperature, it is also non-negligible in the
high-Tg regime (see [196]). In this limit scatterings associated with the SU(3)
group dominate Y;'¥. In the standard cosmological scenario with an instantaneous
reheating the axino relic yield from TP is given by Eq. with Tg = Tgp (the
temperature at which the RD epoch begins). This contribution to Y;'© remains
intact when the non-instantaneous reheating is taken into account. However, in this
scenario there appears an additional contribution associated with scatterings taking
place during the reheating period, when the temperature of the Universe is higher
than Trp
y TP.non-inst. reh. (Ti) = YaTP,stand. (Tan) + YvaTP,reh. (Tr). (9.6)

a

In the limit of high Tk, to a good approximation the TP axino yield does not
depend on the SUSY spectrum, as discussed in Section [5.3.2] As a result, when one

. TP, non-inst. reh.
estimates the excess of Y, =~ nonnst r¢

a

over the standard result, it depends only on

13We neglect possible other sources of relic axinos that can be associated, e.g., with saxion
decays [325].
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Figure 9.9: The ratio between Y'* for the KSVZ axino obtained assuming instanta-
neous and non-instantaneous reheating in high-Tx (left panel) and intermediate-Tg
(right panel) regimes. For the intermediate values of T we assume the gluino mass
and squark masses to be equal 1TeV.

details of the evolution of the Universe. The excess turns out to be always about
1/6 of the standard result as can be seen in Fig. (left panel) (see a discussion
in Appendix . In other words, in the high Tk limit axinos are produced with a
“constant rate” and therefore to a good approximation the longer the production
lasts, the larger is the final abundance. The presence of non-instantaneous reheating
before the RD epoch effectively extends the period of production and therefore
increases the axino yield[”]

For intermediate values of the reheating temperature
102GeV < Tr < 10°GeV a phase space suppression of the scattering terms
associated with the heavy superparticles starts to play a non-negligible role. For a
given Tgrp such suppression is smaller for Y, =" ™ than for ¥, 7**"" because
of the additional contribution to the axino yield, ie., ¥; ", which is associated
with the production at larger temperatures. As a result, the ratio between yields
calculated for both non-instantaneous and instantaneous reheating becomes larger
than 1 + 1/6 obtained in the high-Tx regime. This can be seen in Fig. (right

panel).

14Tn [196] a constant reduction (instead of the increase) of Y:I'¥ of the level of about 0.75 was
obtained. However, this is not in contradiction with our result. In [I96] results obtained for
instantaneous and non-instantaneous reheating are compared for the same value of Ty which is a
conventional parameter used in this kind of studies. However, we believe that it is more proper
to compare both yields assuming the same value of Tgp which has an exact physical meaning for
non-instantaneous reheating in contrast to T (see a discussion in Section. If we, instead, used
the same methodology as the one used in [196] we would obtain a similar level of reduction in the

yield.
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If the reheating temperature is smaller than about 1TeV (for a reference point
with the gluino and squark masses m; = mg = 1TeV), the contribution to the
TP axino yield from squark decays also becomes important. However, in the
case of decays the impact of the reheating period is generally smaller than for
scatterings. In principle, larger temperature during the reheating period leads to
a larger equilibrium number density of decaying squarks or gluinos and therefore
an increase of YIF but this effect appears to be much less important than the one
associated with the phase space suppression for scatterings. Hence, as long as the
role of decays in determining Y:'* increases, the ratio in Fig. (right panel) drops
down even below 1 + 1/6.

The difference between the instantaneous and non-instantaneous reheating sce-
narios can become significantly larger for the low-Tgr regime with Tr < 100 GeV.
This is in particular true if C,yy = 0 or if C,yy is non-zero, but the lightest
neutralino is heavy enough (see the left panel of Fig. B The phase space
suppression of the SU(3) scatterings, which is responsible for a reduction of the

TP,stand.
standard result Y; 7"

in the low Tk regime, can then be partially avoided for
higher temperatures in the reheating period. On the other hand, if C,yy is non-zero
and the lightest neutralino is relatively light, Y:I'¥ is dominated by the U(1) con-
tributions (mainly decaysm and only partially by scatterings) and the impact of
non-instantaneous reheating is much smaller (see the right panel of Fig. . In
practice, we observe in our pl0MSSM analysis that the TP yield, if non-negligible,
is increased by of most about 50% in comparison with the standard cosmological
scenario.

Last, but not least, as it was mentioned above, the non-instantaneous reheating
modifies the scattering contribution to YT rather than the decay one. Thus it plays
less important role in the framework of the DFSZ models, where TP is for wide range

of Tr dominated by the higgsino decays (see a discussion in Section |5.3.2]).

Results for the pl0MSSM In the axino DM scenario possible lower limits on T,
that could be derived in a way similar to the one described in the previous section,
are much weaker than for gravitino DMM In practice we find in our pl0MSSM
analysis that even for the lowest values of T ~ 1GeV that we take into account,
we can obtain Q;h? ~ 0.12 for some specific SUSY spectra by adding TP and NTP

contributions unless the axino is too light.

15Tn the case of the bino LOSP with mass mpg 2 500GeV its decays to the axino in thermal
equilibrium contribute negligibly to axino TP. For the higgsino or the wino with a small bino
composition the U(1) decays become negligible for even lower masses of x.

16This corresponds to the decays of neutralino being in thermal equilibrium and should be
distinguished from NTP in late-time decays of out-of-equilibrium neutralinos.

ITThis is because one can further suppress non-thermal production by reducing Tg, since the
total relic abundance can be supplemented with the contribution from TP.
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Figure 9.10: The ratio between Y.I¥ for the KSVZ axino obtained assuming instan-
taneous and non-instantaneous reheating in the low-Tx regime for negligible (left
panel) and non-negligible (right panel) contributions from the lightest neutralino
decays (in thermal equilibrium). We assume the gluino mass and squark masses to
be equal 1 TeV. The lightest neutralino is bino-dominated with mass m, ~ 140 GeV.

As discussed in Section [6.6.1 the BBN constraints for the axino are typically
mild. The lifetime of the neutralino LOSP decaying to the axino can hardly exceed
0.1sec., unless one considers very light neutralinos or assumes a mass degeneracy
mg ~ m, (see Eq. ) However, for light neutralinos one often obtains too low
Q,h? that is further suppressed for low Tx. This additionally weakens the impact
of the BBN boundsm The only exception is a scenario with a sufficiently light
axino and, simultaneously, light bino LOSP that is characterized by very large 2, h?
close to the upper boundary in Fig. [8.3| which is associated with annihilations via
t-channel slepton exchange. In this case axino TP is suppressed, but the correct
relic density can be achieved due to NTP given large QXhQH Simultaneously, one
can obtain a large lifetime of the bino and it can be abundant enough to violate the
BBN constraints. That is the reason why we see in Fig. [9.11] a region excluded by
the BBN constraints for light (instead of heavy) axinos.

On the other hand, for too heavy axinos and Tr 2 50 GeV the considered scenario
suffers from DM overabundance. It is because both TP and NTP contributions to
the relic density increase with increasing mg. In this regime TP plays a dominant
role when determining Q;h2. For values of the reheating temperature Tz ~ 50 GeV

NTP starts to play a major role and sets an upper limit on the axino mass. If

181t is because at late time there is not enough LOSPs decaying to axinos to effectively violate
the BBN bounds. The correct axino relic density in this case can be achieved thanks to TP if mg
is not too small.

19The smallness of the axino mass is required for these points to satisfy the relic density constraint
since Q572 o (ma/my) x O, h? and Q, h? is large even for low (but not too low) Tk.
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Figure 9.11: The upper bound on the axino mass m; as a function of the reheating
temperature T for axino DM with a bino LOSP. KSVZ model is assumed with
fa =5 x10°GeV and C,yy = 8/3. Dash-dotted red line corresponds to the upper

limit on m; in the instantaneous reheating scenario.

non-instantaneous reheating is assumed this limit is weakened in comparison with
the standard cosmological scenario, as can be seen in Fig. This is so due to a
suppression of NTP that appears if the LOSP freeze-out had taken place before the
RD epoch began.

For even lower values of the reheating temperature, T < 50GeV, NTP is
suppressed so much that in order to satisfy the relic density constraint one needs
to assume that the LOSP is characterized by very low (ov)es (equivalently large
Q, h?(high Tg)). These can, however, be only obtained for the bino LOSP with not
too large mass m,, as can be seen in Fig. [8.3] As a result, one obtains an effective

upper limit on the axino LSP mass from a condition mg < mz.



Chapter 10
Conclusions

Over the past eighty years after the first speculation about the existence of dark
matter many astronomical observations have confirmed this hypothesis. We have
learned a lot about the distribution of DM in galaxies and clusters of galaxies, as
well as about its relic abundance. However, the nature of dark matter particles
remains a puzzle.

Given current data and exclusion limits from both direct and indirect DM
searches, undoubtedly the lightest supersymmetric particle remains one of the most
popular DM candidates. In this thesis we discussed this scenario in more detail. We
showed preferred cases and prospects for their discovery.

In particular, we considered selected GUT constrained supersymmetric models
that are most commonly considered in the literature, i.e., the CMSSM and the
CNMSSM. We also discussed some non-universality conditions at the GUT scale
that could either open up interesting possibility associated with the measured signal
of the recently discovered Higgs boson or drastically reduce the overall amount of
fine-tuning. We conclude that such GUT constrained supersymmetric models with
neutralino DM often remain valid after applying many experimental constraints
within the framework of Bayesian statistics. In particular, it is also true for the
1TH region with 1TeV almost pure higgsino DM, which was in the past treated
as not so appealing. However, in order to simultaneously find phenomenologically
interesting regions in the parameter space and satisfy the naturalness requirement,
one may be prompted to consider some special non-universality conditions at the
high energy scale that can be justified within the framework of a more fundamental
theory valid for the physics above the GUT scale.

In a more general framework of the MSSM with ten free parameters defined
at the low energy scale we find similar preferred regions in the parameter space,
including the 1TH region, which are accompanied by several other specific scenarios
that can lead to the correct value of the relic density. We showed that this can
be much improved by assuming low values of the reheating temperature T of the

Universe after a period of cosmological inflation. In this scenario one can obtain
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O h? ~ 0.12 for a wide range of masses and annihilation rates for the lightest
neutralino depending on its composition, as well as effectiveness of direct and cascade
decays of the inflaton field to DM. Remarkably, often the DM particles remain
detectable in future DD and ID experiments. In particular, it is true for the wino
DM scenario. This case is claimed to be excluded in the standard cosmological
scenario by dark matter ID due to Sommerfeld enhancement of the present-day
annihilation rate, but can become again viable for low T and both larger and lower
masses than the ones typically considered.

Last, but not least, we discussed the other two supersymmetric DM candidates:
the gravitino and the axino. For gravitino DM originating from sneutrino LOSP
decays and thermal production we presented upper limits on Tx in some represen-
tative GUT constrained models. We found that in the non-universal Higgs mass
model they can be close to the lower limit desired by thermal leptogenesis when one
takes into account theoretical uncertainties in the determination of the Higgs boson
mass.

Considering gravitino and axino DM scenarios in a regime of low reheating
temperature also allowed us to derive interesting results. In the case of gravitino DM
we obtained the lower bound on Tx that is much larger than typically mentioned
value associated with the beginning of the Big Bang Nucleosynthesis. On the other
hand in the axino DM case we improved the existing simplified upper bounds on
the axino mass and found them to be either weaker or stronger depending on the

actual value of the reheating temperature.



Appendix A

Approximate solutions to the
1-loop RGEs of the MSSM

Approximate solutions to the one-loop RGE for soft mass parameters of the MSSM
can be obtained following the method from [100]. This leads td[]

m%d( de +Z17H“ :(0)* — Dpg,, (A.1)
mi 5(t) = m7 5(0) + an i(0)2 — Dy, (A.2)
mz5(t) = mZ5(0) + Z Nei M;(0)* — D, (A.3)
m?i,g(t) = m?{,g(O) + ind,i M;(0)* — Dy, (A4)

i) = (1= ) mi (0) = Sy (me(0) + m2,(0)

3
—%y(l - y) <A(2) — 24, Z éle) (A.5)
i=1

3
1 A A .
ZZ { i M + 51/[ = (Mig + 005 M) + (2= 0i5)y & 5j]}Mi(O)Mj(O) — Dy,

1= ]>'L

'We assume that tan 3 is not too large and therefore neglect the tau and the bottom Yukawa
couplings.
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—2y(1 - y) (A3 — 240 ), 6iM;) (A.6)
=1
3 3
+ ZZ {6i7j NQ,i + éy[ (Mg + 0ij Mja) + (2 — 61}]’)3/5@' éj]}MZ(O)M](O) — Dg,

i=1j>i

mia(t) = (1= 30)mia(0) — 5y (mh,(0) + mb(0))

3
1 5.
*gy(l ~y) <A(2) — 24 Z fz‘Mi> (A7)
i=1
+ZZ{ s+ 3yl O+ 6550 + (2= 85w E &1} M0)M(0) — D,
i=1j52>1
where 1
Dy = a%S(0 -1 A8
K A ( ) <1 +>——Oq(0)t ) ( )
with ag = —a5 Uy = =, O = —z5, af = o5, ab = —35, Ay, = 55, dly, = —5; and
t = (1/2m)log M/Q. The auxiliary functions are given by
E e IRSTON M IO | |
I'ad(t) d' a?(t)
N (t) = 6,; H . H ! wilt) |, A.10
71,5 (t) J [Ox?(@) ] + [ i(0) €u,j(t) ( )
where
J a2(t t
et = 1| )= [ peya,
a;(0) 0
and
t 1 t
HISO) = | $@)de ~ 1o | P £ . (A12)
0 F(t) Jo
F(t) =JtE(t’) dt' where BE(t) =TI, (O‘im))% (A.13)
. =128\ ) :
vifith ab = (12,3,%2) and df, = (55,3, %), di = (2,0, %), dyy, = diy, = (2,3,0),
d' = diy+dy+dy, = (3,6, 32) The one-loop RGE solutions for the gauge couplings
read )
a2(t) = — 22l (A.14)

1—b,a2(0)t’
where a = 1,2,3 for U(1), SU(2) and SU(3), respectively.



Appendix B

Approximate 2-loop solutions to

the RGEs for slepton masses

In order to treat the RGE running of the supersymmetric parameters more precisely
than in Appendix [A] it is necessary to include at least the leading two-loop correc-
tions. As an example we will now discuss this issue for the third generation slepton
mass parameters mpr s = my, = mz, and mz3 = mg = ms,. The full two-loop RGEs
can be found in [99]. In this Appendix we will limit ourselves only to the terms that
play the most important role from a point of view of the analytical estimation of
the sneutrino and the stau masses in Section [9.1]

In the case of m, one can find that among various possible 2-loop contributions
the most important correction is typically connected with high mq (“left” squark
mass). Simplified, though exact enough, treatment of this dependence is to take
into account term proportional to o3 in the 2-loop RGE for m, from [99]. Moreover,
it is enough to consider only the part of this term that is proportional to mg. In
order not to deal with the full second order equation, we use perturbative approach.
This means that we calculate mg using the one-loop equation, and then integrate

it in order to obtain two-loop correction for the my,

9 (* _
D) = 11 ()~ o || 0305) () . (B.1)

where the one-loop solution is given by Eq. (A.2)), while is given by Eq. (A.7) with
Dq and (1 — y/6)m, 5(0) replaced with 3 Dg and (3 — y/6) mg/(0), respectively!

Collecting all the terms together one obtains

mi(t) ~ m3(0)+ Zm;,i M;(0)* — Dy, — 8% (3 az(0) aa(t) t — %CQ(t))mé(O)
—oo(t) (3, (0) + m3(0)). (B.2)

! Additional factors of 3 are connected with the first and the second generation masses.
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where the function ¢y is given below.
The other mass parameter important in our considerations, which has a
non-negligible two-loop corrections, is mp = ms . In this case one can identify

three important 2-loop contributions in the corresponding /3 function [99)

2 12 2808 12
5;%~€9%5/+W9fM12+39%01, (B.3)
wherd’] S ~ Y2(md 5 + 4m? ;) and oy ~ £ g7 Tr[mg) + 8m3 + 2m?2]. Integrating all

the terms one obtains

m%(t) ~ sz(O) + {77E,1 _ 8%% a;(0) [1 —(1+ ?OQ(O) t)*3] }Ml(())Z
+ 23: nei Mi(0)" — Dg (B-4)
_8%{2_‘55[3 03(0) (01— e (B)] + 2 [d)) — 2 )] }mg(o)
_8%{3—2[240@(0) ay(t)t — %701(0] + %[4 da(t) — %fl(ﬂ] }mi(O)

where:

t t t

o) = | adonds  d) - | VilaHshds A0 = [ s Vils)al)ds,
0 0 0

(B.5)

where Y; = y?/4m. Both Y; and function y can be read from, e.g., from [100]. We

assumed m2(t) = m2(0) in the appropriate 2-loop correction to m%(¢).

20nce again we focus only on terms proportional to squark masses and neglect Yukawa couplings
other than the top one. In S’ we also neglect flavor mixing.



Appendix C

Mass parameters for generalized

gauge-mediation models

In GGM models, the soft supersymmetry breaking masses at the high scale in the

notation of [97] read

M, = (a./47)A, fora=1,2,3 (C.1)
mg = (8/3)(e3/167*)A3 + (3/2)(a3/167°)A3 + (1/30)(a}/1677)AT  (C.2)
m2 = (8/3)(a2/167%)A2 + (8/15)(a?/167%) A2 (C.3)
m2: = (8/3)(a2/167%)A2 + (2/15)(al/167%)A? (C.4)
my = mj, =my, = (3/2)(a3/167>)A3 + (3/10)(af/167%)A (C.5)
m2 = (6/5)(a?/16m)A2. (C.6)

The trilinear scalar couplings are all equal to zero and tanf, sgn(u) are free

parameters. The free parameters are related to (S) and (Fg) as described in [97].






Appendix D

Solving Boltzmann equations for

low TR

We rewrite set of Boltzmann equations ({8.1) in terms of dimensionless quantities

_ Po 3 _ 4 _ 3 __ a
@—Ea,R—pRa,X—nxa andA—E

o 729, (TR) AV2P
dA 30 \/q) LRy X<Ti,x>
dR 729, (TR) A% 3 AT Mpi(ov)2{Ex) ¢ o )
dA 30 X{(Ex) + 87 X(Ex) [X _Xeq]’
R R
\/ P+ + 5 \/ P+ 5+ =5
dX A2 )M T
T Ve e X (>0
™ R
b + A + T—RX

where, since none of the physical results will depend on the initial value of the scale

factor (at the end of a period of cosmological inflation), we fixed a; = Tj L

D.1 Freeze-out approximation

The method which we use to deal with numerical integration of Eqs (D.1) is a
generalization of the freeze-out approximation used in the context of standard
cosmological scenario to the case with non-instantaneous reheating.

We can rewrite the Boltzmann equation for X in terms of

y=1+A= , (D.2)
eq

and notice that y ~ 1, when X is in thermal equilibrium. Hence we do not have
to solve Boltzmann equation for y for intermediate values of Aq < A < A, where

Aeq describes the moment, in which thermal equilibrium is established, while A,
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describes the moment, when X starts to decouple (it corresponds to 7't e introduced
in Section . For these intermediate values of A we simply assume y = 1.
Therefore the Boltzmann equation for radiation decouples from equation for X and
can be solved independently (with the equation for the inflaton field). For A > A,
we integrate the full set of equations taking R(A,) and ®(A,) as the initial
values.

To find proper A, we notice that in thermal equilibrium, since y ~ 1, to some
approximation

0~ dlny

= fly, ), (D3)

where function f is derived below. From Eq. (D.3]) we find A, that corresponds to
Yx, which, in turns, is some arbitrary chosen value adjusted in numerical tests (in

practice we choose y ~ 1.01).

D.2 Equations and procedure of calculations

Equations In order to find f(y, A) we rewrite the Boltzmann equation for X in

terms of y
dln(1+ A) ~dlny 1dy 1 dX 1 dX (D.4)
dA dA  ydA yX,dA X, dA’ ‘
According to (D.3)) we get
~ (L) (D.5)
YA \aa ) o ‘
where
dX _ '3 A2 Mplov)Tr
ﬂ = CXEQq [y2 — 1], with C = — 8_7'(' (D6)

\/<I> + & Xyl

The total equilibrium number density n = ;n; used in the framework of SUSY can

be rewritten in terms of X and used to derive

dXeq Xeg dinT dInT A3 gim? m;
- X = LR (D D.
e S Ry u v s D= (D7)

Note that it does not depend explicitly on y.
The temperature dependence on the radiation energy density Eq. (2.4]) can be

used to derive

(D.8)
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where the Boltzmann equation for radiation can be approximately simplified to

dR L 2ol A (D.9)
dA 30 \/@ + % + XeqéfX>
Using (D.5]) and one can obtain
dXeg\ !
y~OX2 [ 1] (550) (D.10)

Thus

1 dX,, \/ dXeq>2 2
~ — 4(C X2 D.11
Y zcxgq{ o () raoxy) (D)
It is the only positive root of the quadratic equation (D.10]), since C' < 0.

Procedure of calculation The procedure of calculation is the following:

1. We solve full set of Boltzmann equations for 1 < A < A, (till the
moment, when thermal equilibrium of the X particles is established). For
very early times X /X, « 1 and then this ratio grows. We choose A., by
assuming, that it corresponds to X /X., = 0.99.

2. For A,y < A < A, we assume X = X.,. We solve only two Boltzmann equa-
tions for the inflaton field and radiation (with no impact of X'). We calculate
y using (D.11]). The end of the thermal equilibrium period corresponds to

1

= COR Ay—1.01 (D.12)

The need of multiplication by correction factor 1/COR is described in the next
section.

3. For A > A, we once again solve the full set (D.1)) with the initial conditions
O(A,), R(A,) and X = 1.01 X, (A,).

Correction factor COR In the Fig. (left panel) X/X., and y dependence
on A and T is shown for some sample point from the pl0MSSM parameter space.
In this figure X /X, is obtained by solving the full set of Boltzmann equations
for the whole range of A, while y is calculated via approximate eq. . As can
be seen y given by the approximate formula starts to grow later than true X/X.,.
Therefore A,_; o1 overestimates the true value of A,. In order to take this into
account we introduce the additional correction in Eq. . It can be estimated
semi-analytically to be typically of the order of COR~ (6 = 40). In practice we
begin with COR= 1 and than increase it gradually until the final result for the relic
density stabilizes. This is illustrated in Fig. m (right panel).
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m, =800 GeV (higgsino), Tg =1 GeV Tg =1 GeV, higgsino DM
le+40 T T T T 25 T T T T T T T T T
—_ mxl=2517GeV—
les35F *+ X/ Xeq (full set of 3 Bol. eq.) : 1 my = 799 GeV e
i m, =173 GeV ----
le+30 i 2r 1
le+25 ¢ N 1
1e420 ] |
le+15¢ 1
le+10 1
100000 | A 1
\ /Ayzl.Ol 0.5 1
1r ‘/..-— 1
O L

le_051 160 10600 le-‘l-06 le-‘I—OS le-‘i—lO le-‘l—l2 le-‘i—l4 le+16 0 jo 40 60 éo 160 léo 1‘40 160 fgo 200
A COR

Figure D.1: Left panel: Difference between A, and A,_; ¢1. Rigth panel: Stabiliza-
tion of the value of the relic density calculated for an increasing correction factor

COR.



Appendix E

Axino thermal production (TP)

with low reheating temperature

In scenarios with a non-instantaneous reheating one has to take into account a
modified expansion rate of the Universe when calculating Y-'¥. We briefly describe

below the methodology that can be used to calculate the axino TP yield.

E.1 Axino TP yield with non-instantaneous re-

heating

It results in a modification of temperature dependence on the scale factor T'(a). The

Boltzmann equation (3.11]) can then be rewritten as

AX; dT _ a?
dT da H

<Escat + Edec)a (El)

where X; = a®ng. Thus Eq. (3.12)) is now modified to

1 (Tw dlnT~-1 A2
Yao = (—T ) —(Em 2) E.2
07 WA LO aA ) T \Feeat T d (E.2)

where T, corresponds to an effective upper limit in the integrationH7 we used
A = aja; = aTk (we put a; = Tx as in Appendix D)) and dInT/dA is given by
Eq. (D-8). One can verify that Eq. (E.2)) is equivalent to (3.12) in the RD epoch

when T oc ¢~ ! and s oc T3.

Tn practice it is enough to perform integration to Ty, ~ (5 + 10)Trp or even lower. For larger
temperatures TP of axinos is more efficient, but the fast expansion of the Universe in the reheating
period dilutes away all the axinos produced at that early times.
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E.2 The scattering term

In order to deal with the scattering contribution to Y;'¥ we substitute (o (i + j —
A+ .. )U)NeqNjeq (from Xgear; see, e.g., [I71]) into (E.2)) and obtain

.. Tup [0 1 2
Yas%at,z,j _ 9:9; J J dr ( - TC“HT> A_ o
’ OA 167T (m1+m2)/T dA H
T? K, () o(22T?) [( 272 2 — m2)’ 4m§mg]. (E.3)

We then change the order of integration and decompose the above integral into

ygeabid — 9 (1-m) E.4
@0 soA3 1674 ’ (E-4)
where
0 To
]lej dxf dl’ ...~ 0, (E.5)
(m1+m2)/To (m1+m2)/z

since Ty ~ 0. From the remaining integral I one obtains

tTop

o Gaig Mpy [*
s~ 000 Mm ( ek | ds
' (m1+ma2)/Tup

4
167 mi+ma

2) 2 2, 2

F/3) ols) L= , (E.6)

52

where g = 213‘;”3/2 and

T Js (_lenT)—l A?TS

: Vs
L th7 =Y (BT
7543\ 30 dA v i (B

f(Vs) = <1>T4 RT4
+

The whole correspondence of Eq. to the non-standard cosmological scenario is
hidden in function f. In the RD epoch Eq. reduces to the standard formula
from [I71] (i.e., f(4/s) becomes constant and equal to unity) obtained for the
instantaneous reheating approximation where we take T\, = Tgrp = Tr. A careful
analysis of Eq. in the reheating period shows that to some approximation
f o T7E| Thus Eq. can be approximately rewritten as

= (TRD/T>_ (< 1) in the reheating period,
1 in the RD epoch,

(E.8)

20One could argue that this is in principle written explicitly in Eq. (E.7). However, one has to
remember about the “hidden” temperature dependence of other terms, dInT/dA, A, ®, R and g,.
A careful verification shows that these dependences approximately cancel each other.
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where a ~ —7 and Trp ~ 0.5Tx. In practice we find more exact values of a and

Trp numerically, but they depend only slightly on details of a SUSY spectrum.

High Tg limit of the scattering term The integral (E.6) can be rewritten as

a sum of three integrals such that

o (m1+m2)/Trp  tTup o0 tTrD e tTup
Yot ~ f J +J J +f f = A+B+C.
(m1+m2)/Tup mi1+msa (m1+m2)/Trp Ymi+ma (m1+m2)/Trp JtTRD
(E.9)
One can verify that A Jip—ee, 0, since external range of integration shrinks to zero
(Tuwp > Trp — ©0), while the integrand does not diverge as Tgp — . The second
integral B corresponds to the the standard result obtained for the instantaneous

reheating approximation. In the limit of high reheating temperature the inner

integral can be simplified td|

J " dE) fls) o(s,p) B M) — dmim f A 1 x o(t) x 1

52
mi+ma mi+ma

~ tO’(t) TRD; (E]_O)

where we noticed that the integral is mainly determined by the values of the
integrand in high s limit in which, to a good approximation, o(s,t) = o(t).

For the third integral C we similarly note that inner integration leads to

[ s s ot (s Zmy = ma )" = dmims [ s ro -

2
TrD s TrD

In the integration range T = 1/s/t > Trp and therefore

T Trp\7T 1

(+) = to(t) f dT (ﬁ) ~ > to(t) Tro,
Tep T 6

where we assumed 7),, = c¢Igrp with ¢ high enough so that effectively T}, can be

replaced by oo in the integration. The remaining (external) integrals for both B and

C are the same. Hence

~

(oM N
|~

Eq. (E.12) remains valid for each contribution to the scattering term.

30 depends on t via mcyss (see, e.g., [I81]).
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E.3 The decay term

In the case of the decay term we substitute (I'yn;? (see, e.g., [I71]) into (E.2)) and

obtain
2
. TUP -1 2 LEQ _ m%
Kdgc,z _ sz my; f dT J dln T) A_ T2 _ T .
e 30A3 272 /T dA H et F 1
(E.13)

Once again we change the order of integration and find that one term is negligible,
while the other leads to

deci  99iUm; Mpy [* tt tTup 1 m?
Yao ZTfm/T daz1 ) EIE) - (B

where f is given by Eq. (E.8) with /s replaced by E.

The inner integral

tTup 1 m?

meal®) = | 4B T = Bft) 1= T (E.15)

where m;/T,, <t < o can be calculated analytically. Depending on the value of ¢

one obtains:

1. for mZ/Tup <t < mi/TRD

1=[mefern)]”

reh

gmi,TR(t) = Ym; Tr (t) =

T§Dt7(1w3 4 5.6 - 4 4 1 11>
10

m;

(E.16)

2. for t = m;/Trp temperature can be either larger or smaller than Tgp and we

can write
Gme 1 (8) = goo, () + gl (1), (E.17)

where (tg = m;/Trp)

1 T tR tR
gﬁ??TR (t) = W <§ — arctan W + t—4(t2 - 275%)1 /12 — t%), (E18)

g R

1 [mo/1p) |
g (1) = Tipt’ <1w3 4 5.6 7 4 4 1 11>
mi TR 1013 5 7 9 11

m;

, (E.19)

2

A[1- [mi/(tTRD)]

One can verify that in the case of instantaneous reheating the standard result [171]

is rederived.
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