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CIŚ computer cluster at the National Centre for Nuclear Research is gratefully acknowl-

edged.



Supersymmetric dark matter

in light of recent searches for new physics

Abstract

Unraveling the nature of dark matter remains among the most important challenges

of contemporary physics. Indisputably, the lightest supersymmetric particle is one of the

most popular candidates for the dark matter particle.

In this thesis we first present an introduction to the topic of dark matter. It is followed

by a discussion of the current status of supersymmetric dark matter in the framework of

models constrained by some universality conditions at the scale of Grand Unified Theories.

We discuss the most popular models of this class, in particular focusing on the dark matter

relic density and direct detection, properties of the recently discovered Higgs boson and

the fine-tuning problem. We employ methods of Bayesian statistics in order to incorporate

into analysis many experimental constraints with their corresponding uncertainties.

Next we study supersymmetric dark matter in a more general framework of the

Minimal Supersymmetric Standard Model with ten free parameters defined at low energy

scale. First we investigate the lightest neutralino as a dark matter particle. Next we extend

the framework to include other well-motivated supersymmetric dark matter candidates:

the gravitino and the axino. A particular emphasis is put on a discussion of a non-standard

cosmological scenario with low reheating temperature of the Universe after a period of

cosmological inflation. We show that the consequences of this scenario for supersymmetric

dark matter can be quite dramatic. In particular the relic abundance of dark matter

can be reduced due to a modified expansion of the Universe, thus relaxing the impact

of the usually strongest constraint coming from the requirement that the Universe does

not overclose. On the other hand, effective dark matter production in decays of the

inflaton field can cause an enhancement in the dark matter relic density in otherwise

underabundant regions of the parameter space. In the case of extremely weakly interacting

particles we derive interesting new limits on the reheating temperature and the mass of

the dark matter particle.



Supersymetryczna ciemna materia

w świetle obecnych poszukiwań nowej fizyki

Streszczenie

Poznanie natury ciemnej materii jest jednym z najwi ↪ekszych wyzwań, jakie stoj ↪a przed

wspó lczesn ↪a fizyk ↪a, zaś najlżejsza cz ↪astka supersymetryczna pozostaje bez w ↪atpienia jedn ↪a

z najbardziej popularnych kandydatek na cz ↪astk ↪e ciemnej materii.

Niniejsza rozprawa rozpoczyna si ↪e wprowadzeniem do tematyki ciemnej materii.

Nast ↪epnie zaprezentowany jest obecny stan badań nad supersymetryczn ↪a ciemn ↪a materi ↪a

w modelach z dodatkowymi ograniczeniami narzucanymi na skali Teorii Wielkiej Unifika-

cji. Rozważane s ↪a najpopularniejsze modele tego typu, ze szczególnym uwzgl ↪ednieniem

g ↪estości reliktowej i bezpośrednich poszukiwań ciemnej materii, w lasności niedawno od-

krytego bozonu Higgsa oraz ma lego problemu hierarchi. Ograniczenia eksperymentalne

w opisywanych analizach s ↪a nak ladane przy użyciu metod statystyki bayesowskiej z

uwzgl ↪ednieniem niepewności wynikaj ↪acych z pomiarów oraz obliczeń teoretycznych.

W dalszej cz ↪eści pracy opisane jest zagadnienie supersymetrycznej ciemnej materii w

bardziej ogólnym kontekście minimalnego supersymetrycznego rozszerzenia Modelu Stan-

dardowego z dziesi ↪ecioma swobodnymi parametrami zdefiniowanymi dla niskiej skali ener-

gii. Dyskutowane jest przy tym przypadek najlżejszego neutralina jako cz ↪astki ciemnej

materii. Nast ↪epnie model ten jest rozszerzany poprzez dodanie dwóch innych supersyme-

trycznych kandydatek na cz ↪astki ciemnej materii: grawitina i aksina. Ze szczególn ↪a uwag ↪a

rozważane s ↪a przypadki z nisk ↪a temperatur ↪a podgrzania Wszechświata po okresie inflacji

kosmologicznej. Pokazany jest możliwy znaczny wp lyw takich za lożeń na g ↪estość reliktow ↪a

ciemnej materii. Jej wartość może zostać znacznie zredukowana w wyniku szybkiej ekspan-

sji Wszechświata lub istotnie powi ↪ekszona w wyniku rozpadów pola inflatonu, co pozwala

na rozważanie przypadków typowo wykluczonych w standardowych scenariuszach kosmo-

logicznych. Dla bardzo s labo oddzia luj ↪acych cz ↪astek wyprowadzone s ↪a nowe, interesuj ↪ace

ograniczenia na wartość temperatury podgrzania i mas ↪e cz ↪astki ciemnej materii.
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Chapter 1

Introduction

Historically, one of the most important aims of philosophical and then scientific

studies over the centuries has been the identification of the basic constituents of

matter. This effort, which eventually led to the formulation of the Standard Model

(SM) of particle physics, culminated in the recent discovery of the Higgs boson

by the CMS [1] and the ATLAS [2] Collaborations at the Large Hadron Collider

(LHC). In spite of its enormous success, however, the SM appears to be incomplete

in light of the observed data. One such piece of evidence for beyond-the-SM physics

is the existence of so-called dark matter (DM), making up about 27% of the total

mass-energy density in the Universe [3], which is significantly more than the 5%

attributed to ordinary (baryonic) matter. Understanding the nature of DM is one

of the most important quests in contemporary physics.

This prompts one to consider extensions to the SM in the description of funda-

mental interactions. Among various extensions of the SM that have been proposed

supersymmetric (SUSY) models remain arguably the most popular. They provide

both an elegant theoretical description, as well as a possibility of simultaneously

solving several other serious problems of the SM. They predict the existence of su-

perpartners for the ordinary elementary particles. Remarkably, the lightest of these

superpartners (the lightest supersymmetric particle, LSP) can play the role of the

dark matter particle.

One example of such particle that can be found in the most popular super-

symmetrized version of the Standard Model (Minimal Supersymmetric Standard

Model, MSSM), is the lightest neutralino. It is electrically neutral and stable (as-

suming R-parity conservation), as well as it belongs to a group of massive weakly

interacting particles that can be viable DM candidates with the correct value of the

relic density. Importantly, in some of the most important scenarios neutralino DM

can be potentially found in future dark matter direct or indirect detection exper-

iments within the next few years. A requirement of reproducing the correct value

of the relic abundance typically results in a strong reduction of the allowed param-

eter space of supersymmetric models. The neutralino DM scenario can be further
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restricted by imposing collider constraints. In particular, important constraints of

this type are associated with the mass and signal rates of the recently discovered

Higgs boson. Moreover, one typically considers additional experimental constraints

that come from, e.g., searches for supersymmetric particles at the LHC, B-physics

and the anomalous magnetic moment of the muon.

The value of the Higgs boson mass measured at the LHC, as well as lower

limits on the masses of SUSY particles suggest that the characteristic mass scale of

supersymmetry should be at least of the order of 1 TeV. This mass scale is associated

with quarks and gluinos, but in principle one could also consider scenarios with such

heavy neutralinos. However, if one wants to discuss neutralino with mass noticeably

heavier than about 1 TeV, one often finds it particularly difficult to satisfy the relic

density constraint. One way to overcome this is to assume low value of the reheating

temperature TR after a period of cosmological inflation. In this scenario a modified

expansion rate of the Universe in the reheating period, i.e., before the radiation

dominated epoch in the evolution of the Universe, results in an effective dilution

of the dark matter particles. On the other hand, for low TR additional production

of DM in decays of the inflaton field is also possible. This improves a statistical

validity of regions that are characterized by too low a relic abundance but can be

favored, e.g., from the point of view of naturalness.

Beside the lightest neutralino, supersymmetry also offers two other

well-motivated DM candidates that can be the LSP: the gravitino and the axino.

They interact extremely weakly but can populate the Universe typically originating

from late-time decays of the next-to-LSP (NLSP) and from scatterings of SUSY

particles in thermal equilibrium. The limitations of scenarios with gravitino or ax-

ino DM come from cosmological considerations. In particular, the aforementioned

late-time decays of the NLSP can destroy light elements in the Universe and there-

fore violate constraints associated with the Big Bang Nucleosynthesis.

In this thesis we will discuss in detail all the subjects associated with super-

symmetric dark matter outlined above. We begin with an introduction to the topic

of dark matter. In Chapter 2 we introduce some basic concepts of cosmology that

play a fundamental role in a further discussion. Next, in Chapter 3, we discuss the

observational evidence for DM and the most popular DM candidates. Chapter 4 is

devoted to a short description of essential features of the SM and a more extensive

one for supersymmetry. It is followed by Chapter 5 in which we discuss the issue

of the relic density of supersymmetric DM candidates. In Chapter 6 we present

fundamental concepts of Bayesian statistics and the way it is applied to studying

supersymmetric models.

The results presented in Chapter 7 concern supersymmetric models constrained

by universality conditions at the scale of Grand Unified Theories. Beside the topic

of neutralino DM, an emphasis is put on the implications stemming from the mass of
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the recently discovered Higgs boson. In particular, we discuss the possibilities that

either the second lightest Higgs in the MSSM is responsible for the observed signal

or that the signal comes from a combination of both the lightest scalar Higgs and

another Higgs scalar or pseudoscalar. This chapter is based on research projects done

by the author of the thesis in collaboration with other members of the BayesFITS

group.

In Chapter 8 we discuss neutralino DM in a more general framework of the MSSM

with ten free parameters defined at low energy scale, as well as for the NMSSM

with three more parameters. In particular, we focus on a scenario in which the

correct value of the DM relic density can be achieved after assuming low reheating

temperature of the Universe. We consider cases both with and without effective

direct and cascade decays of the inflaton field to DM.

Chapter 9 is devoted to gravitino and axino DM scenarios. We begin with a

discussion of a case with sneutrino NLSP decaying into gravitino DM in a framework

of SUSY models with some universality conditions at high energy scale. We then

analyze the impact of taking low TR on gravitino and axino DM scenarios in

the MSSM. In these cases we find some interesting limits either on the reheating

temperature or on the mass of DM particles.

We conclude in Chapter 10.





Chapter 2

Basics of cosmology

In this chapter we will briefly describe some of the basic concepts in cosmology that

will be useful in the rest of the thesis (for a detailed discussion see [4, 5]).

2.1 Friedmann equation

We begin with the key observation by Hubble [6] that was interpreted as the evidence

for the expansion of the Universe. Let us introduce the scale factor aptq that depends

on a time t and is used to extract the expansion dependence of the physical distance

dptq between any two objects in the Universe from their peculiar motion. It is related

to dptq by

dptq “ aptq d0, (2.1)

where d0 is called the comoving distance. It corresponds only to the peculiar motion

of the objects. Differentiating Eq. (2.1) with respect to time one obtains the Hubble

law
9dptq “

9aptq

aptq
dptq “ Hptq dptq, (2.2)

where H “ 9a{a is called the Hubble expansion parameter (rate). H is typically

written in terms of its value h in units 100 km{s{Mpc, H0 “ 100h km s´1 Mpc´1,

where h “ 0.673p12q r7s and index 0 in the whole thesis denotes the value at present

time.

The evolution of the Universe is well described in the framework of

Friedmann-Robertson-Walker (FRW) metric that is the solution to Einstein’s field

equations of general relativity for a homogeneous, isotropic Universe. In particular

this allows one to relate the Hubble expansion rate to the energy density ρ in the
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Universe due to the Friedmann equation1. For the flat Universe it reads2

H2
“

8πρ

3M2
P

, (2.3)

where MP “ 1.2ˆ 1019 GeV “
?

8π ĎMP is the Planck mass (ĎMP “ 2.435ˆ 1018 GeV

is called the reduced Planck mass). The value of ρ that saturates Eq. (2.3) is called

the critical density ρc » 10´5 h2 GeV{cm3 » 8ˆ 10´47 h2 GeV4 [7].

One of the contributions to ρ is related to the radiation energy density ρR, where

by radiation we mean all the light (or massless) degrees of freedom (associated with

the particles) that move with relativistic velocities at a given time t. As the Universe

expands, the temperature T decreases and some of the light degrees of freedom

become non-relativistic and they do not contribute to ρR any more. The radiation

energy density can be written in terms of T as

ρR “
π2

30
g˚pT qT

4, (2.4)

where g˚pT q is the number of relativistic degrees of freedom at temperature T .

The energy density of the matter content of the Universe ρM can be decomposed

into two parts associated with ordinary baryonic matter ρb and with DM ρDM

ρM “ ρb ` ρDM. (2.5)

The relative contribution of a given species (e.g., DM, b or Λ) to the critical density

is often called the abundance

Ωi h
2
“
ρi
ρc
h2, (2.6)

where, e.g., i “ DM, b,Λ.

2.2 Reheating and the radiation dominated epoch

It is usually assumed that the early Universe underwent a period of cosmological

inflation during which an accelerated expansion of the Universe was driven by the

vacuum energy density of a scalar field – an inflaton. After inflation the large

potential energy of the inflaton field was transformed into the kinetic energy of

produced particles. As a result of this process, dubbed reheating, the Universe

entered a radiation-dominated (RD) epoch.

A careful analysis shows that the maximum temperature Tmax in the evolution of

the Universe after inflation was reached during reheating. At that time the energy

1We present here the first Freedman equation. The second equation involves :a and will play
less important role in the thesis.

2We use the convention where c “ 1. The cosmological constant term proportional to Λ can be
formally absorbed in ρ by a redefinition of the energy density ρnew “ ρold ` pΛM

2
P q{8π.
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density ρ of the Universe was dominated by the contribution ρφ associated with

coherent oscillations of the inflaton field around the minimum of the potential. As

ρφ decreased with time producing light degrees of freedom, i.e., radiation, at some

moment condition ρR ě ρφ was achieved that marked the onset of the RD epoch.

The temperature at which this happened, i.e., the initial temperature of the RD

epoch, will be later denoted by TRD.

For simplicity it is often assumed that reheating was an instantaneous process

that happened when the decay rate of the inflaton field Γφ was equal to the Universe’s

expansion rate Hptq. In the instantaneous reheating approximation we further

assume that the whole ρφ was transformed simply to ρR. Using Eq. (2.3) and (2.4)

one then obtains

Γφ “

c

4π3g˚pTRq

45

T 2
R

MPl

definition of TR, (2.7)

where we introduced a so-called reheating temperature TR. In the simplified ap-

proach of instantaneous reheating one interprets this quantity as the largest tem-

perature Tmax after a period of cosmological inflation

TR “ T inst. reh.
RD “ T inst. reh.

max . (2.8)

However, when the dynamics of reheating is taken into account, Eq. (2.8) does not

hold exactly and one typically obtains [8]

T non-inst. reh.
max " TR Á T non-inst. reh.

RD . (2.9)

In this case TR still serves as an useful parameter in a discussion of the transition

from the period of cosmological inflation to the RD epoch since TR « TRD, although

there is no exact equality.

During the RD epoch, with no additional production of the light degrees of

freedom, radiation energy density scales as ρR „ a´4 with expansion. Applying this

to Eq. (2.4) one obtains T „ a´1. In this case the entropy density associated with

dominant light degrees of freedom is given by

s “
2π2

45
g˚s T

3, (2.10)

where g˚s is the effective number of relativistic degrees of freedom for entropy.

In absence of additional entropy production one obtains constant total entropy

S “ sa3 “ const and therefore s „ a´3.
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2.3 Thermal equilibrium and freeze-out

Let us now assume that the matter content is dominated by a non-relativistic particle

χ with mass mχ which we will later identify with a DM candidate. Its energy density

is approximately equal to ρχ » mχ nχ, where nχ is the number density. Taking into

account only expansion one obtains nχ „ a´3.3 However, e.g., in the presence of χχ

annihilations or χ decays the evolution of nχ can be much more complicated.

In particular, let us assume that χ interacts efficiently enough so that at

some moment its annihilation rate4 exceeds the expansion rate of the Universe,

Γann “ nχ σannv ą H, where σann is the annihilation cross section and v is the

relative velocity of two annihilating particles. In this case they remain in thermal

equilibrium. The equilibrium number density is determined by the temperature and

mχ. In the (non-)relativistic limit one obtains

neq,χ »

$

&

%

gχT 3

π2 , when T " mχ, relativistic limit,

gχ

´

mχT

2π

¯3{2

e´mχ{T , when T ! mχ, non-relativistic limit,
(2.11)

where gχ is the number of degrees of freedom of the particle χ.

When T becomes sufficiently low so that Γann ă H, the χ particles freeze-out

from the thermal equilibrium state. Using Eq. (2.3) in the RD epoch, when ρR » ρ,

and Eq. (2.4) one obtains the condition for freeze-out

nχpTf q pσannvq “ Γann » H „
T 2
f

ĎMP

, (2.12)

where Tf is the freeze-out temperature. After freeze-out in the RD epoch the

comoving number density of χ particles remained fixed, nχ a
3 » const. One typically

presents this in terms of a yield that is defined as

Yχ “
nχ
s
„
nχ
T 3
, (2.13)

and Y χ “ const after freeze-out.

3This means that nχa
3 “ const, where the comoving number density nχa

3 is defined as the
average number of particles in a cube with size a3 that is growing with the expansion of the
Universe.

4The quantity pσannvq represents an effective volume per unit time in which some probe χ
particle moving with the velocity v can annihilate if it meets another particle χ. Hence the
number of such annihilation events that can occur per unit time is equal to pσannvq multiplied by
the average number density nχ that can be met inside this volume, i.e., Γann “ nχ pσannvq. We
assume here that nχ “ const within the volume pσannvq which is, e.g., well satisfied if pσannvq is
tiny.
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2.4 Boltzmann equations

An accurate calculation of Yχ requires solving the Boltzmann equation that describes

the out-of-equilibrium behavior of a thermodynamic system. In a general form it

reads

L̂rf s “ Ĉrf s, (2.14)

where fpx,p, tq is the phase space density, the Liouville operator L̂ describes the

time evolution of the system due to diffusion and “external forces”,5 while Ĉrf s is

the so-called “collision term” that is associated with collisions between particles.

In the homogeneous, isotropic FRW Universe in the presence of annihilations

χχÑ any final state one can rewrite Eq. (2.14) as (see, e.g., [4, 9])

dnχ
dt

“ ´3Hnχ ´ xσvMøly
`

n2
χ ´ n

2
eq,χ

˘

, (2.15)

where σ “
ř

final σχχÑ final and the quantities σχχÑ final denote the corresponding

annihilation cross sections. The first term on the right hand side (RHS) of Eq. (2.15)

corresponds to the expansion of the Universe, while the second to the annihilation

processes. Similarly, one can derive the Boltzmann equation for the radiation

dρR
dt

“ ´4HρR ` 2xσvMøly xEy
`

n2
χ ´ n

2
eq,χ

˘

, (2.16)

where xEy is the average energy of the annihilating particles. The pair of coupled

Boltzmann equations (2.15) and (2.16) can be solved to find Yχ at freeze-out. The

role of Eq. (2.16) is to determine ρR and therefore the temperature of the Universe

via Eq. (2.4) and the equilibrium number density of χ.

The Møller velocity vMøl in the rest frame of any of the incident particles or in

the center of mass (CM) frame is equal to vMøl “ |v1´v2| “ v, where v denotes the

relative velocity of both annihilating particles. A thermal average xσann vMøly for the

χχ annihilations reads

xσann vMølym1“m2“mχ “

2π2 T
ş8

4m2
χ
ds σ ps´ 4m2

χq
?
sK1

´?
s
T

¯

˜

4πm2
χ T K2

´

mχ
T

¯

¸2 , (2.17)

where Ki is the i-th order modified Bessel function of the second kind.

5In general this means an “external influence” on particles, i.e., not from particles themselves.
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2.5 Large Scale Structure and cold/warm/hot

dark matter

Although the χ particles do not annihilate efficiently after freeze-out, they can

typically still effectively scatter on light particles of the SM (radiation). The light

species have usually masses significantly lower than the mass of the particle χ,

mSM ! mχ. Thus their number densities are not Boltzmann suppressed. Thanks

to these scatterings, momentum transfer between the SM and the χ sector is

efficient and χ remains in kinetic equilibrium. The time of decoupling from kinetic

equilibrium (kinetic decoupling) tkd of the DM particles plays a crucial role in the

dynamics of the Large Scale Structures (LSS) formation in the Universe (for a review

see, e.g., [10]). The LSS denotes an observable pattern of structures at scales of

hundreds of millions of light years that consists of galactic filaments, great walls

and cosmic voids. They arose from initial small fluctuations in the DM density

distribution that had grown due to the gravitational attraction, but could have

been effectively smoothed by radiation pressure or free streaming of DM particles

before the matter-radiation equality.

The lower limit on the characteristic length scale of fluctuations in DM density

can be translated into a lower limit for the mass of initial clusters of matter (so-called

protohalo mass Mproto). For the non-relativistic (cold) DM (CDM) particles such

protohalos could eventually grow to the size of galaxies. On the other hand if the DM

particles were moving with relativistic velocities, as it is in the case of so-called hot

DM (HDM), the smoothing effect would be large leading to relatively high Mproto.

In this scenario we would expect that galaxies were formed later in the evolution

of the Universe due to some other mechanism that caused fragmentation of large

protohalos. However, this prediction is in contrast with deep field astronomical

observations.

The warm dark matter (WDM) case corresponds to a somewhat intermediate

situation between CDM and HDM. N -body simulations suggest that galaxies with

WDM halos may be surrounded by a smaller number of dwarf galaxies than in the

case of CDM. This could potentially resolve the so-called missing satellite problem,

i.e., low number of such surrounding galaxies in the observational data of the Local

Group [11]. On the other hand the best theoretically motivated candidates for the

DM particles seem to follow the CDM scenario.



Chapter 3

Dark matter

In this chapter we will first discuss the observational evidence of the existence of

DM (for a review see, e.g., [12]). In particular, we will focus on selected observations

that are most often mentioned in this context. Then we will present several possible

candidates for the DM particles with particular emphasis on the ones that are

important from the point of view of this thesis.

3.1 Observational evidence

The first speculation about the existence of DM is usually attributed to Zwicky’s

original paper [13] published more than eighty years ago in which he studied the

Coma Cluster. The cluster consists of about 1, 000 galaxies moving along com-

plicated orbits that are determined by gravitational force. Careful analysis of this

movement led to the conclusion that there should be a large amount of non-luminous

matter contained in the cluster. Zwicky referred to it as dunkle Materie (dark mat-

ter).

One of the most widely recognized arguments for the existence of DM nowadays

is based on galaxy rotation curves, i.e., the relation between orbital velocities v of

visible stars or gas and their radial distance r from the center of galaxy. It was first

noted in the late 30s [14] and then confirmed more than thirty years later [15, 16]

that the outer parts of the M31 disc were moving with unexpectedly high velocities.

According to these observations velocities of distant stars in M31 remain constant

over the wide range of r. Similar results were later obtained [17] for various other

spiral galaxies. This is in contradiction to the standard calculation based on the

distribution of visible matter in the galaxy. The balance between gravitational and

centrifugal forces

GmM{r2
“ mv2

{r, (3.1)
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outside the region where majority of galaxy mass is enclosed should lead to so-called

Keplerian fall

v 9 1{
?
r, (3.2)

i.e., descending (not flat) rotation curve. The flat behavior suggests that the core of

the mass distribution in M31 spans much larger distances than it could be inferred

from the visible matter. Similar results were also obtained for different galaxies.

The next extremely important argument is associated with gravitational lensing,

i.e., the bending of light in a strong gravitational field (for a review see, e.g., [18]).

The effect is most easily observed when light passes through a very massive and/or

dense object like a galaxy cluster or the central region of a galaxy. Light rays can

bend around such an object (lens) which leads to a multiplication of the image of

the light source for the observer, as can be seen in Fig. 3.1 (left panel). In this case

we call this effect strong lensing. In an ideal situation, when the source lies directly

behind the circular lens, one can obtain the so-called “Einstein ring”. The size and

shape of the image can be used to determine the distribution of mass in the lens

which can then be compared with the visible mass.

If the lens is not as massive as in the case of strong lensing, or light moves far

from the core of the galaxy or cluster, the effect becomes much weaker. However,

it can still be analyzed even in the case of individual stars. In particular it was

proposed [19, 20] to use such microlensing effect to look for DM in the Milky Way in

form of Massive Compact Halo Objects (MACHOs) which should cause occasional

brightening of stars from nearby galaxies. This strategy led to an exclusion of

MACHOs with masses 0.6 ˆ 10´7 ă M ă 15Md as a dominant form of DM in the

Galaxy [21].

Weak lensing corresponds to a somewhat intermediate situation to both cases

described above. The most spectacular example of this effect can be seen in the

Bullet Cluster which consist of two clusters of galaxies after a recent collision. The

hot-gas clouds (observed thanks to the X-ray emission) that contain the majority

of the baryonic mass in both clusters, have been decelerated in the collision, while

the movement of the galaxies in clusters remained almost intact. The analysis of

the gravitational lensing shows that the center of mass for both clusters is clearly

separated from the gas clouds as can be seen in Fig. 3.1 (right panel). As a result

we conclude that there is large amount of additional mass in both clusters usually

identified with DM. It was the first, and so far only, case when one observed a

dynamical system with the total center of mass displaced from that of the baryonic

visible part of the cluster.

An important role in determining the DM abundance is played by the Cosmic

Microwave Background (CMB) radiation that originates from the recombination
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Figure 3.1: Left panel: Strong gravitational lensing around galaxy cluster
CL0024+17. Taken from Ref. [18]. Right panel: Bullet Cluster mass density con-
tours (green) and the distribution of baryonic matter. Taken from Ref. [12].

epoch. It is characterized by the thermal black body spectrum with the tempera-

ture T “ 2.7255p6qK [7]. Small non-uniformity of the distribution of this tempera-

ture corresponds to the tiny fluctuations of the matter density in the early Universe

that subsequently gave rise to all the structures in the Universe. The temperature

anisotropies are usually expanded in terms of spherical harmonics and then cosmo-

logical parameters (e.g., ΩM “ Ωb ` ΩDM or Ωb for ordinary baryonic matter) can

be obtained by fitting to such spectrum with underlying assumption of some cos-

mological model, e.g., the ΛCDM model. The currently measured values [3] of ΩM

and Ωb obtained by fitting the six-parameter ΛCDM model suggest that the matter

component of the Universe is dominated by non-baryonic DM,

Ωb h
2
“ 0.02207p27q, (3.3)

ΩDM h2
“ 0.1198p26q, (3.4)

The remaining dominant contribution ΩΛ » 0.685 account for the so-called dark

energy. A schematic cartoon showing different contributions to the mass-energy

content of the Universe, as well as an all-sky CMB map released by the Planck

Collaboration [3] is shown in Fig. 3.2.

Further data about the amount of matter and dark energy components of the

Universe can be derived from analyses of baryon acoustic oscillations (BAO)1,

supernovae type Ia or from Lyman-α forest. In the case of elliptical galaxies and

1They are periodic fluctuations in the density of baryonic matter that originated from opposing
effects of gravitational attraction and radiation pressure.
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Figure 3.2: Left panel: The total mass-energy distribution in the Universe and Right
panel: the temperature anisotropy of CMB after the first results released by the
Planck Collaboration [3].

galaxy clusters another important piece of evidence for the existence of DM comes

from the X-ray emission from hot gas (for further discussion see, e.g., [12]).

3.2 Dark matter candidates

We will now discuss some of the most popular candidates for the DM particles (for

a recent review see [22]). We will begin with a brief summary of what we can learn

from the experimental observations discussed in Section 3.1. We then move on to a

more detailed discussion of specific DM candidates.

3.2.1 Properties of dark matter candidates

The first important conclusion derived from observations is that DM particles should

carry no electric charge and interact preferably only weakly (or subweakly) with

ordinary matter.2 Moreover, from the CMB data we have already seen in Eqs (3.3)

and (3.4) that the baryonic component constitutes only about 20% of all matter in

the Universe. Hence a majority of DM should have non-baryonic nature.

We have pointed out that the LSS data accompanied by deep-field observations

constrain from above the allowed average velocity of the DM particles. As a result

one can conclude that relativistic HDM particles, in particular neutrinos, cannot

constitute the majority of DM. It should be dominated by non-relativistic species

as in the CDM scenario.

2Compare, e.g., the Bullet Cluster where DM clouds passed the gas clouds and each other
almost intact.
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FIG. 1: (Color online) Several well-motivated candidates of DM are shown in the log-log plane of DM relic mass and σint

representing the typical strength of interactions with ordinary matter. The red, pink and blue colors represent HDM, WDM
and CDM, respectively. This plot is an update of the previous figures [453, 562].

emerges from the Peccei-Quinn (PQ) solution to the strong CP problem and the neutralino which emerges from a
supersymmetric solution to the gauge hierarchy problem. In cases such as these and others, the relic abundance of DM
along with DM detection rates are calculable in terms of fundamental parameters, and thus subject to experimental
searches and tests.

Generally, DM relics are considered to be produced in the early Universe in (at least) two distinct ways. One
possibility involves DM particles generated in processes taking place in thermal equilibrium, which we will generically
refer to as thermal production (TP), and the relics produced this way will be called thermal relics. On the other
hand, non-thermal production (NTP), will refer to processes taking place outside of the thermal equilibrium, and the
resulting relics will be called non-thermal relics. The first class of processes will include the freeze-out of relics from
thermal equilibrium, or their production in scatterings and decays of other particles in the plasma. The second will
include, for example, relic production from bosonic field coherent motion or from out-of-equilibrium decays of heavier
states or from bosonic coherent motion.

Working within the Standard Model (SM) of particle physics, it is found that none of the known particles have
the right properties to constitute CDM. At one time, massive SM(-like) neutrinos were considered a possibility.
Measurements of the number of light neutrinos at LEP combined with calculations of their relic abundance rule out
this possibility [324].

Instead, the most often considered theoretical candidate for CDM is the weakly interacting massive particle, or
WIMP. It is worth stressing, however, that the WIMP is not a specific elementary particle, but rather a broad class

Figure 3.3: Characteristic cross section of DM interactions with ordinary matter as
a function of DM mass is shown for some of well-motivated DM candidates. The
red, pink and blue colors represent HDM, WDM and CDM, respectively. Taken
from Ref. [22].

Last, but not least, the lifetime of the DM particles should be long enough so as

to make sure that they can survive until now.

To summarize a good DM candidate should be:

• either stable or long-lived with the lifetime exceeding the age of the Universe

(for a recent discussion about lower bounds on the decaying DM lifetime

see [23]),

• non-baryonic, i.e. with no electric and (preferably) color charges,

• non-relativistic and massive.

In Fig. 3.3 we summarize the features of some of the most popular DM candidates

that are motivated by particle theory. The candidate that will be of particular

interest to us, namely the neutralino, which is a weakly interacting massive particle

(WIMP) appearing in the MSSM, is characterized by masses from about 1 GeV to

104 GeV. It interacts with the electroweak strength. Another possible supersym-

metric DM candidates, i.e., the gravitino and the axino have typically masses lower

than in the case of neutralino DM.3 They also interact significantly more weakly.

Some of the candidates presented in Fig. 3.3 can compose either CDM or WDM or

even HDM depending on the mass.

3The gravitino is the supersymmetric partner of the graviton, the particle that mediates
gravitational interactions. The axino is the superpartner of the axion (see Section 3.2.4).
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3.2.2 Weakly Interacting Massive Particles

As we have already discussed, neutrinos, the only weakly interacting particles in

the SM, remain relativistic and therefore can only constitute HDM. However, in

a minimal approach this can be circumvented by taking the DM candidate to be

a kind of “heavy neutrino”. A simplest such possibility with massive left-handed

neutrinos was proposed in [24], but subsequently excluded in light of direct DM

searches. However, the main idea survived and is often referred to as a WIMP DM

scenario.

Today’s value of the DM relic abundance is given by

Ωχh
2
»
mχ nχpT0q

ρc
h2
“
mχ T

3
0

ρc

nχpT0q

T 3
0

h2, (3.5)

where T0 » 2.35 ˆ 10´13 GeV [7] is the temperature of the Universe at present

and ρχpT0q » mχ nχpT0q is the corresponding WIMP’s energy density. The yield

Eq. (2.13) remains constant after freeze-out Yf “ Y0. Using this and applying the

condition for freeze-out Eq. (2.12) one can rewrite Eq. (3.5) as

Ωχ h
2
»
T 3

0

ρc

xf
ĎMP

1

xσannvMølyf
h2, (3.6)

where Tf is the WIMP freeze-out temperature and

x “
mχ

T
. (3.7)

The value of xf can be roughly estimated as follows. Let us assume for simplicity

that around freeze-out nχ « neq
χ with the non-relativistic equilibrium number density

from Eq. (2.11). From Eqs (2.12) and (3.6) one then obtains

x
3{2
f e´xf „

xf

mχ
ĎMP xσannvMølyf

» Ωχ
ρc
T 3

0

1

mχ

»
10´8 GeV

mχ

, (3.8)

where we also assumed Ωχ h
2 » 0.12 in the last step. Such a rough estimate leads

to xf „ 30 for mχ „ 100 GeV ´ 10 TeV. More careful checking shows that the

appropriate value is closer to xf „ 25.

Finally we put the estimated value of xf back into Eq. (3.6) and find

xσannvyf » 3ˆ 10´26 cm3
{s, (3.9)

for which the correct value of the WIMP DM relic density is obtained. For typical

velocities v „ 0.1 c one obtains σ „ 10´36 cm2, which corresponds to a cross section

of weak strength for WIMP with mass around the electroweak scale. On the other

hand, as we will see in Section 4.2.1, some new physics around this energy scale
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should be expected in order to avoid possible large loop corrections to the Higgs

boson mass. This remarkable coincidence is widely known as the WIMP miracle.

However, it is important to note that one does not have to be strictly confined to

the electroweak scale in order for WIMP DM scenario to work. If g is the coupling

constant connected with the WIMP annihilation process, then one expects

σann 9
g4

m2
χ

. (3.10)

Eq. (3.9) can be satisfied for a wide range of masses (from 10 MeV to 10 TeV)

and coupling constants (from gravitational to strong) as long as their ratio is kept

fixed [25].

In a very precise treatment, which takes into account the dynamics of freeze-out,

one needs to solve the set of Boltzmann equations (2.15) and (2.16) to find Yf .

One can identify major steps of this procedure. The first one is to determine the

temperature at which freeze-out begins Tf,beg which lies close to Tf defined by

Eq. (2.12).4 In the second step one needs to calculate xσann vMøly for T around

Tf,beg « Tf . Finally, in the third step, the DM relic density can be effectively

calculated by a proper integration of the Boltzmann equation starting from Tf,beg.5

A prototypical example of WIMP, the neutralino, appears in the context of

supersymmetric extensions of the SM in which it often plays the role of the LSP.

This serves as an important argument (though not the only one) for SUSY as a

theory of physics beyond the SM as we will discuss in Section 4.2.3.

3.2.3 Extremely Weakly Interacting Massive Particles

In addition to the neutralino, supersymmetric extensions of the SM provide us also

with the other DM candidates, namely the gravitino and the axino (for a recent

review see [26]). They belong to a group of so-called extremely weakly interacting

massive particles (EWIMPs)6 since they interact much more weakly than ordinary

WIMPs. Nevertheless, in general they can still constitute CDM and give the right

value of ΩCDMh
2. EWIMPs remain for the most part elusive from the point of

4The temperature when the WIMP yield begins to differ from its equilibrium value is also
referred to as the decoupling temperature Tdec. In the following we will denote it by Tf,beg.
Similarly, the freeze-out temperature is often in the literature defined as the temperature at which
the yield becomes constant. We will denote this temperature by Tf,end.

5One could in principle omit the first step and then in the third one integrate the Boltzmann
equation from T « 0 (this would also require knowing xσann vMøly for a vast range of T .).
Nevertheless, this turns out to be extremely ineffective from the point of view of numerical
integration since for T ą Tf,beg the WIMP number density is determined by its equilibrium value
nχ « neq

χ which depends only on mχ and T . Tf,beg has to somehow be estimated. However, such
estimates can be accurate enough so that Ωχh

2 can be calculated with high accuracy.
6They are sometimes referred to as super-weakly interacting massive particles (super-

WIMPs) [27] or, particularly in the specific context of “freeze-in” thermal production [28], feebly
interacting massive particles (FIMPs).
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view of current DM searches, but in some specific cases it could be possible in such

scenarios to get some interesting hints about the early Universe from collider physics

(see, e.g., [29]). On the other hand models with gravitino or axino DM can be tightly

constrained by cosmological considerations.

In EWIMP DM scenarios we typically assume that after a period of cosmological

inflation, the temperature in the Universe was never high enough for EWIMPs to

remain in thermal equilibrium. However, they could still be produced in scatterings

and decays of other particles that were themselves in equilibrium. This mecha-

nism will be called thermal production (TP). The Boltzmann equation for TP of

supersymmetric EWIMP DM reads

dnEWIMP

dt
` 3HnEWIMP “ Σscat ` Σdec, (3.11)

where Σscat “
ř

i,j xσpi` j Ñ ã` . . .qvMølyni nj and Σdec “
ř

i xΓpiÑ ã` . . .qyni

and ni are the number densities of heavier supersymmetric species. In the RD epoch,

when T „ a´1, Eq. (3.11) can be rewritten in terms of the yield and integrated from

TR “ TRD to T0. This leads to

YEWIMP,0 “

ż TRD

T0

dT
Σscat ` Σdec

sH T
. (3.12)

We will discuss TP with more details in a more general case of non-instantaneous

reheating in Appendix E.

Another possible source of relic EWIMPs is late-time decays of some heavier

particle after it froze-out from thermal plasma. In particular for gravitino or axino

LSP such a heavier species can be the next-to-LSP [30, 31].7 This is typically referred

to as the non-thermal production (NTP) and resulting contribution to the EWIMP

DM relic density is given by

ΩEWIMP h
2
“
mEWIMP

mNLSP

ΩNLSPh
2, (3.13)

where ΩNLSP h
2 is calculated as if the NLSP was actually the DM particle.

EWIMPs can also in principle be produced in direct inflaton field decays at the

end of inflation. However, such a mechanism is highly model-dependent and we will

not treat this in the rest of the thesis.

3.2.4 Axion

Axion basics An interesting viable DM candidate emerges from the solution to

the strong CP problem (for reviews see [32, 33, 34]). Probably the only still viable

7It is important to distinguish this from the production in decays of the NLSPs being in thermal
equilibrium that by definition is included in TP.
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and certainly the most popular solution to this problem was proposed in [35, 36].

It introduces a spontaneously broken (at some energy scale fa) global chiral Up1qPQ

symmetry known as the Peccei-Quinn symmetry. The associated pseudo-Goldstone

boson, which is the CP-conserving axion field a, carries PQ charge. To make sure

that Up1qPQ possesses gluon anomaly one adds an additional term to the Lagrangian

density8 of Quantum Chromodynamics (QCD) LQCD. It reads

La Q
αs
8π

a

fa
Gaµν

rGµν
a . (3.14)

It contributes to an effective axion potential and the minimization condition reads

xay “ ´faθ̄. The parameter θ̄ is a priori required to be tiny9 θ̄ À 10´11 and it

corresponds to the following term in LQCD

LQCD Q θ̄
αs
8π

Gaµν
rGµν
a . (3.15)

This term is shifted away to θ̄eff “ 0 after a spontaneous Up1qPQ-breaking, a Ñ

aphys ` xay, as can be seen from Eqs (3.14) and (3.15).

The simplest possibility of fa « v has been ruled-out long ago [37] and we will

instead assume fa " v. This leads to a light and extremely weakly interacting

invisible axion. In order to justify the separation between fa and the EWSB scale

one assumes that a resides in an SUp2qLˆUp1qY singlet complex scalar field carrying

non-zero PQ charge. However, a still needs to couple to the SUp3qc sector in order

to introduce the gluon anomaly. There are two popular approaches to address this

issue. One is the Kim-Shifman-Vainstein-Zakharov (KSVZ) model [38, 39] in which

we assign non-zero PQ charges to some new heavy quark(s). The other possibility is

the Dine-Fischler-Srednicki-Zhitnitskii (DFSZ) approach [40, 41] where one assigns

non-zero PQ charges to two Higgs doublets that couple to both a and the SM quarks

(that also carry PQ charges).10 The gluon anomaly term is then generated by SM

quark loops.

The effective axion interaction Lagrangian after integrating out all heavy PQ

charged fields can be written up to the lowest order terms in 1{fa as

Leff
a,int “ c1

pBµaq

fa
Σq q̄ γ

µ γ5 q ´ Σqpq̄LmqR e
i c2 a{fa ` h.c.q

`
c3

32π2 fa
aG G̃`

CaWW

32π2 fa
aW W̃ `

CaY Y
32π2 fa

aB B̃ ` Lleptons, (3.16)

8In the following, we will simply call L as the “Lagrangian”.
9It is where the strong CP problem manifests itself. The smallness of θ̄ is required since the

CP-violating term in LQCD contributes to the neutron electric dipole moment dn which is tightly
constrained by experimental data.

10Direct axion-SM quarks couplings are absent since the axion is a gauge singlet.
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where (by a partial integration over on-shell quark fields) the c1 term can be

reabsorbed into the c2 term. The KSVZ case can be identified with c1 “ 0, c2 “ 0,

c3 ‰ 0, while the DFSZ one with c1 “ 0, c3 “ 0, c2 ‰ 0. In general, axion models

can have both c2 ‰ 0 and c3 ‰ 0, but their sum turns out to be constant.11 It is

called the domain wall number NDW “ |c2 ` c3|.

The axion mass [42] can be estimated to be [32]

ma » 0.6ˆ 107 eV
´GeV

fa

¯

, (3.17)

where fa is constrained by astrophysical and cosmological data to 109 GeV À fa À

1012 GeV [34]. However, the upper limit depends on the initial value of the axion

misalignment angle and can be relaxed if θini ă Op1q [43].

Axion DM energy density As can be seen from Eq. (3.17) and limits on fa, ax-

ions are typically very light and very weakly interacting. After being produced they

could thermalize and fill up the Universe by forming a Bose-Einstein condensate [44]

that could closely resemble CDM. Their energy density would then be determined

by the mechanism of bosonic coherent motions (BCM) [45, 46, 47].

The equation of motion for the scalar field in the expanding Universe is given by

:φ` 3HpT q 9φ`
BV

Bφ
“ 0, (3.18)

with the potential energy V « 1
2
m2pT qφ2 for small values of φ. Initially the field

φ moves very slowly so that one can assume :φ « 0. Thus 3H 9φ « ´m2φ. For

sufficiently high temperatures of the Universe, one can take additionally mpT q « 0

and the solution of Eq. (3.18) is given by an approximately constant field φ „ const.

However, once T decreases and the condition 3HpT q » mpT q is achieved the scalar

field starts to oscillate giving rise to BCM.

From Eq. (3.18) one can derive the evolution of the average (over one oscillation

cycle) energy density of the scalar field ρ “ x 9φ2y “ 2xV y that reads

d

dt

´ρa3

m

¯

“ 0, (3.19)

Hence, to some approximation xρy „ a´3 and the oscillating axion field behaves like

non-relativistic matter. The same is true for the oscillating inflaton field during the

reheating period in the evolution of the Universe.

The list of DM candidates could be supplemented by many other possibilities.

For a more extensive discussion see [22] and references therein.

11It is preserved by an unbroken finite subgroup of Up1qPQ.



Chapter 4

Standard Model and

supersymmetry

As we have seen supersymmetry provides a natural class of candidates for DM,

the LSP. In this chapter we will first discuss some basic features of the SM and

of supersymmetry and then introduce the most popular SUSY extensions of the

SM, namely the Minimal Supersymmetric Standard Model and the Next-to-Minimal

Supersymmetric Standard Model (NMSSM).

4.1 Standard Model

Before we move to a discussion of supersymmetry it is useful to briefly remind some

basic features of the SM.

4.1.1 Structure of the Standard Model

Currently our understanding of fundamental interactions is encoded in the SM of

particle physics. After its final formulation in the 60s and the 70s of the last century,

remarkable effort was put into the experimental verification of its predictions. In

particular, several new elementary particles were discovered, among them the c, b

and t quarks, heavy gauge bosons W˘ and Z, the tau lepton τ and its neutrino ντ .

Last, but not least, the remaining missing particle species from the SM, namely the

Higgs boson, has recently been found by the CMS [1] and ATLAS [2] Collaborations

at the LHC.

The SM provides us with an elegant description of interactions among quarks

and leptons, i.e., all basic constituents of matter that we have already discovered.

The electroweak theory succeeded in unifying the electromagnetic and the weak

forces, while the strong interactions between quarks are described by the quantum

chromodynamics. Importantly, one needs to notice that each fundamental force is

in the framework of the SM accompanied by an appropriate symmetry. Requiring
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that the Lagrangian of the theory L is invariant under a specified local gauge group

of transformations leads unavoidably to the introduction of additional terms in L
that are associated with so-called gauge fields. They couple to the matter content

of LSM. Such a symmetry group is often referred to as a gauge group or gauge

symmetry group. In particular, the gauge groups for the electroweak and strong

interactions are SUp2qL ˆ Up1qY and SUp3qc, respectively.1

In the theoretical description of the SM one decomposes quark and lepton

spinors into chiral components thanks to the appropriate projection operators PL “

p1 ´ γ5q{2 and PR “ p1 ` γ5q{2. The “weak” SUp2qL group transformations act

differently on left and right chiral fields. The former are grouped into doublets under

SUp2qL, while the latter remain singlets, i.e., effectively they are not sensitive to

the weak interactions. The conserved quantum number associated with the SUp2qL

group is called the weak isospin T . Its third component is equal to T 3 “ ˘1{2 for

the components of the left-chiral doublets and T 3 “ 0 for the right-chiral singlets.

In the framework of the unified electroweak theory we introduce another con-

served quantum number, the weak hypercharge Y . It is associated with the Up1qY

subgroup2 of SUp2qL ˆ Up1qY and can be written in terms of the electric charge

Q and the third component of the weak isospin as Y “ 2pQ ´ T 3q. The matter

component of the SM consists of quarks and leptons characterized by various values

of Y and Q. The set of elementary particles is further enlarged when one takes into

account representations of the SUp3qc group. In particular quarks turn out to be

color triplets, while leptons are color singlets.

In addition to the matter fields, the SM contains vector fields of the intermediate

spin-one gauge bosons. In the electroweak sector Bµ and W 1,2,3
µ fields correspond to

the generators of the Up1qY and SUp2qL groups, respectively. The eight generators

of the SUp3qc group lead to a so-called color octet of the gluon fields G1,2,...,8
µ .

Importantly, in the Lagrangian of the SM the mass terms for the fermions mψ̄ ψ

are allowed by the SUp3qc gauge transformations, but are forbidden by the SUp2qL

group since

mψ̄ ψ “ m sψ
`

PL ` PR
˘

ψ “ m sψ
`

P 2
L ` P

2
R

˘

ψ “ m sψR ψL `m sψL ψR, (4.1)

and terms that consist of one left-chiral and one right-chiral field cannot be invariant

as both fields transform under different representations of the SUp2qL group. A

careful examination of the transformation of the gauge fields ensures that the mass

terms for them are also forbidden by the SUp2qL ˆ Up1qY symmetry. In the next

section we will proceed with the discussion of how to incorporate masses for the

matter and gauge fields of the SM.

1The lower index c in SUp3qc stands for color. The lower indices Y and L denote hypercharge
and left chiral, respectively (see a discussion below).

2Up1qY is different from Up1qem corresponding to the electromagnetic interactions.
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4.1.2 Spontaneous symmetry breaking and the Higgs mech-

anism

Let us start here with some general remark. The fact that a Lagrangian L of a

theory preserves some symmetry does not necessarily mean that this is also true

for the ground state of a quantum system described by L. This is in analogy to

the well-known behavior of the solutions to the classical equation of motion for a

particle in the Newtonian description of gravity. The equation itself is rotationally

invariant, but each given solution describes motion along an elliptical orbit that is

moreover limited to a plane. However, one can obtain other solutions by rotating a

specific one, i.e., by applying symmetry transformations that preserve the equation

of motion. In other words one could simply state that the whole set of solutions is

invariant under the symmetry group. The symmetry is “hidden” when one takes

into account only a single solution.

Similarly, when the symmetry transformation of a Lagrangian of a quantum

system can be described by a set of continuous parameters and the ground state is

not invariant under this symmetry, we expect to have a continuous set of degenerate

ground states. Once we choose one of these ground states, the underlying symmetry

becomes “hidden”. In other words it does not manifest itself explicitly in the

expansion of the Lagrangian around the chosen ground state. We call such a behavior

as spontaneous breaking of the symmetry.

The Lagrangian L can still be invariant under some residual symmetry group

which contains a smaller number of generators. According to Goldstone’s theo-

rem [48, 49, 50, 51] for every spontaneously broken continuous symmetry there

has to appear in a theory a set of massless Goldstone bosons. The number of such

bosons is determined by the number of generators that vanished during spontaneous

symmetry breaking. However, after applying such a procedure one may obtain the

Lagrangian containing fields with the total number of degrees of freedom greater

than in the initial L. That means that some of the fields present in L are un-

physical and can be removed by an appropriate choice of the gauge. Thanks to

this, some of the massless Goldstone bosons can be absorbed by the gauge bosons

that then become massive. This is the general principle of the celebrated Higgs

mechanism [52, 53, 54, 55, 56].

In order to perform a spontaneous symmetry breaking of the SUp2qL ˆ Up1qY

group in the SM (for a more extensive discussion see, e.g., [57]) one introduces addi-

tionally an SUp2qL doublet of complex scalar fields Φ: “ pψ`, ψ0q˚ that contains four

degrees of freedom. As a result it is possible to obtain three massive gauge bosons

since this requires three massless degrees of freedom to be absorbed. The remaining

degree of freedom from the Φ field will not produce the massless Goldstone boson,

since Up1qem for Quantum Electrodynamics (QED) remains a physical symmetry of
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the Lagrangian.3 The Lagrangian associated with this new field is given by

LHiggs “ pD
µ Φq: pDµ Φq ´ µ2 Φ: Φ´ λ pΦ: Φq2. (4.2)

It is expanded around the minimum in the direction of the neutral component of Φ

which develops a vacuum expectation value (vev) v for µ2 ă 0

Φ Ñ
1
?

2

˜

0

v ` h

¸

, (4.3)

where v “ p´µ2{λq1{2 and h is called the Higgs field. After a transformation to

the unitary gauge one obtains three massive gauge bosons, namely the W˘ and Z

bosons, and one massless photon field Aµ. They can be rewritten in terms of the

initial fields Bµ and W a
µ as

Aµ “
g2W

3
µ ` g1Bµ

a

g2
2 ` g

2
1

, Zµ “
g2W

3
µ ´ g1Bµ

a

g2
2 ` g

2
1

, W˘
µ “

1
?

2
pW 1

µ¯iW
2
µq. (4.4)

When one puts these new fields into the pDµ Φq: pDµ Φq term in LHiggs, one obtains

the mass terms for W and Z bosons with masses

mW “
1

2
v g2, mZ “

1

2
v
b

g2
1 ` g

2
2. (4.5)

From these one can also calculate the actual value of the vev v » 246 GeV.

The same doublet of complex scalar fields with hypercharge Y “ 1 and isodoublet
rΦ “ i τ2 Φ˚ with Y “ ´1 can be used to generate fermion masses by introducing

additional SUp2qL ˆ Up1qY invariant terms in the Lagrangian

LYukawa “ ´λ
ij
e L̄i ¨ Φ eR,j ´ λ

ij
d Q̄i ¨ Φ dR,j ´ λ

ij
u Q̄i ¨ rΦuR,j ` h.c., (4.6)

where λe, λd and λu are Yukawa matrices. Expanding around the ground state and

applying unitary gauge we obtain the fermion mass matrices

me “
λe v
?

2
, md “

λd v
?

2
, mu “

λu v
?

2
. (4.7)

Last, but not least, one can derive also the interaction terms for the Higgs

boson from pDµ Φq: pDµ Φq and its mass from the scalar potential V pΦq “ µ2 Φ: Φ`

λ pΦ: Φq2,

m2
h “ 2λ v2

“ ´2µ2. (4.8)

The Higgs boson mass remained a free parameter of the SM with only mild theo-

retical constraints (see, e.g., discussion in [57]).

3Hence only three generators of the SUp2qL ˆ Up1qY group were absorbed.
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4.2 Challenges to the Standard Model

The SM of particle physics that we described in the previous section, is indisputably

an extremely successful theory. It predicted many experimental results that provided

stringent tests of this model and allowed one to measure its undetermined param-

eters. However, despite such an enormous achievement, there still remain several

unresolved puzzles at the theoretical side that are often interpreted as hints for “new

physics” beyond the SM (BSM). In this section we will discuss several such issues

with a particular emphasis on the ones that can find a successful resolution within

the framework of supersymmetry.

4.2.1 Hierarchy problem

One such open question is called the hierarchy problem. It is sometimes referred to as

big hierarchy problem in order to distinguish from the little hierarchy problem (see a

discussion in Section 4.7). It originates from the fact that the scalar mass in the SM,

i.e., the Higgs boson mass, is not protected from receiving large quantum corrections

by either the chiral or the gauge symmetry, in contrast to the case of the fermion

or gauge boson masses. As we now know from the actual measurements [1, 2], but

even before could expect from simple estimations using Eq. (4.8) and the value of

v, the Higgs boson mass is of the order of about 100 GeV. However, the couplings

of the Higgs field to the fermions, which are of the form λh f̄ f , give rise to loop

corrections to mh such that [58]

∆f pm
2
hq »

Nf λ
2
f

8π2

”

´ Λ2
UV ` 6m2

f log
ΛUV

mf

´ 2m2
f

ı

`O
´ 1

λ2
UV

¯

, (4.9)

where Nf is the number of fermions with given mf and λf . The Feynman diagram

can be found in Fig. 4.1a. The cut-off scale ΛUV is introduced to regulate the

otherwise divergent loop integral and is usually interpreted as the energy scale at

which effects from BSM physics enter. If there was no such new physics up to the

Planck scale, ΛUV „ ĎMPl, or the GUT scale, ΛUV „ MGUT, then in principle the

quantum corrections to m2
h in the SM would be as large as Λ2

UV ą 1030 GeV. This

could be technically canceled with the appropriate counterterm, but would require

fine-tuning with a precision at least of the order of 10´30 .

One way to solve this issue [60, 61, 62, 63, 64] is to introduce to a theory

additional scalar fields. For a single such field S we assume the coupling to the

Higgs field of the form λS |h|
2 |S|2 with4 λS “ ´λ

2
f “ ´2m2

f{v
2 and NS “ 2Nf . The

Feynman diagrams for the loop corrections are shown in Fig. 4.1b. The resulting

4Compare eq. (4.7) for diagonal fermion mass matrices,
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1 The Higgs sector of the MSSM

1.1 Supersymmetry and the MSSM

1.1.1 The hierarchy problem

As is well known1, when calculating the radiative corrections to the SM Higgs boson mass,

one encounters divergences which are quadratic in the cut–off scale Λ at which the theory

stops to be valid and New Physics should appear. To summarize the problem, let us consider

the one–loop contributions to the Higgs mass, Fig. 1.1a, of a fermion f with a repetition

number Nf and a Yukawa coupling λf =
√

2mf/v. Assuming for simplicity that the fermion

is very heavy so that one can neglect the external Higgs momentum squared, one obtains [13]

ΔM2
H = Nf

λ2
f

8π2

�
− Λ2 + 6m2

f log
Λ

mf
− 2m2

f

�
+ O(1/Λ2) (1.1)

which shows the quadratically divergent behavior, ΔM2
H ∝ Λ2. If we chose the cut–off scale

Λ to be the GUT scale, MGUT ∼ 1016 GeV, or the Planck scale, MP ∼ 1018 GeV, the Higgs

boson mass which is supposed to lie in the range of the electroweak symmetry breaking

scale, v ∼ 250 GeV, will prefer to be close to the very high scale and thus, huge. For the SM

Higgs boson to stay relatively light, at least MH <∼ 1 TeV for unitarity and perturbativity

reasons, we need to add a counterterm to the mass squared and adjust it with a precision of

O(10−30), which seems highly unnatural. This is what is called the naturalness or fine–tuning

problem [14]. A related question, called the hierarchy problem, is why Λ ≫ MZ .

The problem can be seen as being due to the lack of a symmetry which protects MH

against very high scales. In the case of fermions, chiral symmetry is a protection against

large radiative corrections to their masses [and the breaking of chiral symmetry generates

radiative corrections which are only logarithmically divergent], while local gauge symmetry

protects the photons from acquiring a mass term. In the case of the Higgs boson, there is

no such a symmetry. [Note that the divergence is independent of the Higgs mass and does

not disappear if MH=0; this can be understood since the choice of a massless Higgs boson

does not increase the symmetry of the SM].

f

H H
• •

a) b)

H
φi

H
•

H H

φi

• •

Figure 1.1: Diagrams for the contributions of fermions and scalars to the Higgs boson mass.

1Some aspects of this issue have been discussed in section 1.4.3 of the first part of this review: §I.1.4.3.

13

Figure 4.1: Feynman diagrams for the loop corrections of the Higgs boson mass.
Contribution from fermions (a) and scalars (b) are shown. Taken from Ref. [59].

contribution to m2
h from the scalar field is given by

∆Spm
2
hq »

NS λs
16π2

”

´Λ2
UV`2m2

S log
ΛUV

mS

ı

´
λ2
S v

2

16π2

”

´1`2 log
´ΛUV

mS

¯ı

`O
´ 1

λ2
UV

¯

.

(4.10)

The quadratic divergences between Eq. (4.9) and Eq. (4.10) cancel and as a conse-

quence one obtains

∆m2
h »

Nf λ
2
f

4π2

”

`

m2
f ´m

2
S

˘

log
´ΛUV

mS

¯

` 3m2
f log

´mf

mS

¯ı

`O
´ 1

Λ2
UV

¯

. (4.11)

However, the cancellation obtained in this way is valid only for the 1-loop

corrections and in principle the quadratic divergence could reappear in some higher

order diagrams. In order to forbid this, one needs to introduce stricter assumption

about the extension of the SM. An elegant and efficient way of doing this is to

assume a proper symmetry relating the fermionic and the bosonic sectors of the

model, so that in each order of the loop calculations a quadratically divergent

contribution from fermionic loops will be necessarily canceled by an appropriate

scalar contribution. This is achieved within the framework of supersymmetry which

we will introduce in Section 4.3.

4.2.2 Gauge couplings unification

Another usually mentioned complication within the SM is related to the gauge

coupling unification around the GUT scale. One of the most remarkable successes

in constructing the SM was associated with the unification of the electromagnetic

and weak interactions. Needless to say that the concept of the electromagnetic

theory itself arose from initially disconnected electric and magnetic phenomena.

Following this line of reasoning it could be assumed that there exists an energy

scale at which strong and electroweak forces should manifest themselves as a single

interaction, i.e., corresponding gauge couplings should unify into a single coupling.
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Figure 6.8: Two-loop renormaliza-
tion group evolution of the inverse
gauge couplings α−1

a (Q) in the Stan-
dard Model (dashed lines) and the
MSSM (solid lines). In the MSSM
case, the sparticle masses are treated
as a common threshold varied be-
tween 500 GeV and 1.5 TeV, and
α3(mZ) is varied between 0.117 and
0.121.
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This unification is of course not perfect; α3 tends to be slightly smaller than the common value of
α1(MU ) = α2(MU ) at the point where they meet, which is often taken to be the definition of MU .
However, this small difference can easily be ascribed to threshold corrections due to whatever new
particles exist near MU . Note that MU decreases slightly as the superpartner masses are raised. While
the apparent approximate unification of gauge couplings at MU might be just an accident, it may also
be taken as a strong hint in favor of a grand unified theory (GUT) or superstring models, both of which
can naturally accommodate gauge coupling unification below MP. Furthermore, if this hint is taken
seriously, then we can reasonably expect to be able to apply a similar RG analysis to the other MSSM
couplings and soft masses as well. The next section discusses the form of the necessary RG equations.

6.5 Renormalization Group equations for the MSSM

In order to translate a set of predictions at an input scale into physically meaningful quantities that
describe physics near the electroweak scale, it is necessary to evolve the gauge couplings, superpotential
parameters, and soft terms using their renormalization group (RG) equations. This ensures that the
loop expansions for calculations of observables will not suffer from very large logarithms.

As a technical aside, some care is required in choosing regularization and renormalization procedures
in supersymmetry. The most popular regularization method for computations of radiative corrections
within the Standard Model is dimensional regularization (DREG), in which the number of spacetime
dimensions is continued to d = 4 − 2ǫ. Unfortunately, DREG introduces a spurious violation of su-
persymmetry, because it has a mismatch between the numbers of gauge boson degrees of freedom and
the gaugino degrees of freedom off-shell. This mismatch is only 2ǫ, but can be multiplied by factors
up to 1/ǫn in an n-loop calculation. In DREG, supersymmetric relations between dimensionless cou-
pling constants (“supersymmetric Ward identities”) are therefore not explicitly respected by radiative
corrections involving the finite parts of one-loop graphs and by the divergent parts of two-loop graphs.
Instead, one may use the slightly different scheme known as regularization by dimensional reduction,
or DRED, which does respect supersymmetry [109]. In the DRED method, all momentum integrals
are still performed in d = 4 − 2ǫ dimensions, but the vector index µ on the gauge boson fields Aa

µ

now runs over all 4 dimensions to maintain the match with the gaugino degrees of freedom. Running
couplings are then renormalized using DRED with modified minimal subtraction (DR) rather than

61

Figure 4.2: Two-loop renormalization group evolution of the gauge couplings (αa “
g2
a{4π) of the SM (dashed lines) and the Minimal Supersymmetric Standard Model

(solid lines). Taken from Ref. [67].

Consequently the product of the gauge groups SUp3qcˆ SUp2qLˆUp1qY should be

embedded in some larger group of symmetry of the GUT theory, e.g., SUp5q [65] or

SOp10q (for a review see, e.g., [66]).

The energy scale of grand unification can be estimated due to running of the

gauge couplings from an infrared measured value to the high energy scale using

Renormalization Group Equations (RGEs). Applying this to the SM one finds that

the unification of the gauge couplings is not achieved. Early estimates in the 80s

showed MGUT „ 1015 GeV for the SM. However, after obtaining results from the

Large Electron-Positron Collider (LEP), where the gauge couplings were precisely

measured, it turned out that the lines describing the RGE evolution intersect in pairs

around the energy scale MGUT „ 1013 ´ 1017 GeV (see Fig. 4.2 where αa “ g2
a{4π).

In principle, this still allows one to estimate the value of the GUT scale, though with

quite a big uncertainty. On the other hand in the case of minimal supersymmetric

extension of the SM the unification is strongly improved as can be seen in Fig. 4.2

leading to MGUT „ 1016 GeV.

4.2.3 Dark matter

According to experimental evidence that was discussed in Section 3.1, baryonic

matter makes up only about 5% of the total mass-energy of the Universe. A

significant part of the rest (about 27%) is attributed to dark matter. The SM

does not provide us with any satisfactory candidate for the DM particle (see a

discussion in Section 3.2). This can be circumvented in the framework of SUSY as

it is discussed in Section 4.3.4.
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Yet another issue is connected with the vacuum stability. As has been recently

discussed in [68], the measured values of the Higgs boson mass [1, 2] mh » 126 GeV

and the top quark mass [69] mt » 173.3 GeV point towards the metastable vacuum

state of the SM. In the case of the MSSM one finds a stable vacuum for a wide range

of parameters [70].

4.3 Basics of supersymmetry

Having justified the motivation for considering the BSM physics, in particular the

supersymmetric extension of the SM, we will now describe the fundamental features

of supersymmetry (for reviews see, e.g., [67, 71] or textbooks, e.g., [72, 73]).

4.3.1 Algebra of supersymmetry

As we have already mentioned in Section 4.2.1, in order to avoid large quantum

corrections to the mass of the Higgs boson to all orders in perturbation theory

it is sufficient to assume that a special symmetry holds between fermions and

bosons. However, symmetries of the S-matrix of a quantum field theory cannot

be chosen arbitrarily. In particular due to the Coleman-Mandula no-go theorem [74]

if such a symmetry was generated by bosonic operators B, i.e., obeying commutation

relations, it would have to be connected with the Poincare group in a trivial way

as a direct product. Then, according to Witten’s [75] interpretation of this result,

non-zero scattering amplitudes can be obtained only for discrete scattering angles

and they wouldn’t be analytic functions of the Mandelstam variables. Moreover, a

direct product of the symmetry group and the Poincare group would manifest itself

in vanishing commutators between their generators. As a result B would commute

with the mass-square operator P 2 and the square of the Pauli-Lubanski vector W 2.5

Therefore multiplets of such a symmetry could only contain particles with the same

mass and (more importantly for us) the same spin.

These difficulties can be circumvented if one assumes that the internal symmetry

is generated by anti-commuting (fermionic, spinorial) operators Q, Q:.6 Such

operators are still a subject of important constraints from the Coleman-Mandula

theorem. A careful analysis of this issue led to the formulation of the well-known

Haag- Lopuszański-Sohnius theorem [76], which can be summarized in a set of (anti-)

5W 2 “ WµW
µ is a Lorentz invariant operator that commutes with Pµ. Thus it is a Casimir

operator of the Lorentz group (its eigenvalues can label the irreducible representations of the group)
and is used to label the spin s via

W 2 “ ´m2 s ps` 1q,

where m is the mass of a particle.
6Here we assume for simplicity that there is only one pair of such generators Q, Q:, i.e., we

limit ourselves to so-called N “ 1 supersymmetry.
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commutation relations for the Qs and the generators of the Poincare group. Such

an algebra is often referred to as supersymmetry algebra or super-Poincare algebra.

4.3.2 Supermultiplets and particle content of supersymme-

try

One important consequence that can be derived from the (anti-)commutation rela-

tions mentioned in the previous section is that W 2 is not the Casimir operator of the

super-Poincare algebra. As a result supermultiplets, i.e., irreducible representations

of the supersymmetry algebra, can now contain both bosons and fermions.

On the other hand, the mass-square operator P 2, as well as the generators of

the gauge transformations still commute with Qs. Hence supermultiplets should

contain only the particles with the same mass, electric charge, weak isospin and color.

However, in this case superpartners of the fermions of the SM should have already

been discovered. The lack of such experimental observations points towards the

necessity of introducing a mechanism of supersymmetry breaking (see Section 4.4).

Each supermultiplet must contain an equal number of bosonic nB and fermionic

nF degrees of freedom.7 This serves as an useful guiding principle. In particular,

a single Weyl spinor for a fermion of the SM has two helicity degrees of freedom

nF .8 The corresponding bosonic superpartner can then be described as a complex

scalar field with nB “ 2. They both form a so-called chiral (matter, scalar) super-

multiplet. The scalar superpartners are usually called squarks or sleptons and are

denoted with tilde over the particle symbol, e.g., tau sneutrino ν̃τ . The superpart-

ners of left-handed or right-handed fermions are often marked with corresponding

“handedness”, e.g., “right” stop t̃R, although this does not refer to a specific helicity

state, since they are scalars.

On the other hand for a vector gauge boson of the SM (with nB “ 2 degrees

of freedom before spontaneous symmetry breaking) the corresponding superpartner

can be a single massless spin-1{2 Weyl fermion (nF “ 2) within a so-called gauge

(vector) supermultiplet. The rule to create a name of a superpartner of the SM

gauge boson is to add suffix -ino, i.e., we obtain bino B̃, wino W̃ and gluino g̃.

Gauginos must transform as the adjoint representation of the gauge groups (just as

the gauge bosons) which is its own conjugate. As a result the gauginos are identical

to their anti-particles and they are examples of so-called Majorana fermions.

In the case of the SUp2qL doublet of complex scalar Higgs fields, introduced in

the mechanism of EWSB in the SM, one could simply obtain proper supermultiplets

7This can be verified by evaluating 0 “
ř

i xi|p´1q2s Pµ|iy “ pµ pnB ´nF q for a subset of states
|iy that correspond to a fixed eigenvalue pµ of the operator Pµ (see, e.g., [67]).

8One has to remember that particles within each supermultiplet should not differ by weak
isospin. Hence it is natural to use two-component Weyl spinors to describe fermionic fields within
a supersymmetry.
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Name Symbol spin-0 spin-1{2 Y

“left” squarks (spin-0), Q1 pũL d̃Lq puL dLq
left quarks (spin-1{2) Q2 pc̃L s̃Lq pcL sLq

1
3

Q3 pt̃L b̃Lq ptL bLq

“right” up-type squarks, ū1 “ ū ũ˚R u:R
right up-type quarks ū2 “ c̄ c̃˚R c:R ´4

3

ū3 “ t̄ t̃˚R t:R

“right” down-type squarks, d̄1 “ d̄ d̃˚R d:R
right down-type quarks d̄2 “ s̄ s̃˚R s:R

2
3

d̄3 “ b̄ b̃˚R b:R
“left” sleptons, L1 pν̃e ẽLq pνe eLq

left leptons L2 pν̃µ µ̃Lq pνµ µLq ´1
L3 pν̃τ τ̃Lq pντ τLq

“right” sleptons, ē1 “ ē ẽ˚R e:R
right leptons ē2 “ µ̄ µ̃˚R µ:R 2

ē3 “ τ̄ τ̃˚R τ :R
Higgs, Hu pH`

u H0
uq pH̃`

u H̃0
uq `1

higgsinos Hd pH0
d H

´
d q pH̃0

d H̃
´
d q ´1

Table 4.1: Chiral supermultiplets in the MSSM with corresponding hypercharges.
Weak isodoublets are shown in brackets. For each row the upper label in the first
column refers to spin-0 scalar particles, while the lower to spin-1{2 fermions.

by adding appropriate Weyl spinors, namely higgsinos. However, it turns out that

one such doublet is not enough when constructing the MSSM. This is due to the

cancellation of the gauge anomalies, as well as a mechanism that gives masses to

up- and down-type quarks. As a result in the MSSM we need to add the second

weak isodoublet of the Higgs superfields that is characterized by the opposite value

of the weak hypercharge. We denote positive and negative hypercharge isodoublets

of the complex scalar fields by Hu and Hd, respectively.

The list of all matter particle content and Higgs boson supermultiplets in the

MSSM can be found in Table 4.1. We apply a standard convention for constructing

“right-handed” supermultiplets in terms of their conjugates, i.e., using left-handed

Weyl spinors. As a result we put bar over respective symbols which should be treated

as a part of their name.

4.3.3 Supersymmetric Lagrangian density

Having discussed the particle content of the MSSM we will now describe how to

construct a Lagrangian for a supersymmetric model. Before we present a particular

example of the MSSM we first make some more general remarks.
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Lagrangian for chiral supermultiplets We begin with a Lagrangian L contain-

ing a set of n chiral supermultiplets with complex scalar fields φi and Weyl spinors

ψi, where i “ 1, . . . , n. A particular example of such a Lagrangian for n “ 1 is the

massless, non-interacting Wess-Zumino model [77]. We additionally include in L a

term describing a set of auxiliary complex scalar fields Fi that vanish on-shell due

to their equations of motion

Fi “ F ˚i “ 0. (4.12)

This turns out to be needed in order to make sure that supersymmetric transfor-

mations acting on fields off-shell generate a closed algebra. The Fi fields with two

degrees of freedom are also needed off-shell to account for two additional real degrees

of freedom in the fermionic component.

The Lagrangian for the n interacting chiral fields is given by

Lchiral “ Lchiral,free ` Lchiral,int, (4.13)

where

Lchiral,free “ ´B
µφi˚ Bµφi ` iψ

i: σ̄µ Bµψi ` F
i˚Fi, (4.14)

and the interaction Lagrangian can be written as

Lchiral,int “

´

´
1

2
W ijψiψj `W

iFi

¯

` c.c, (4.15)

with W ij and W i being polynomials in the scalar fields φi, φ
i˚ with degrees 1 and 2,

respectively. Moreover, they can be written as functional derivatives of a so-called

superpotential calculated with respect to the complex scalar fields

W i
“
δW

δφi
W ij

“
δ2W

δφi δφj
. (4.16)

The superpotential W provides a unique description of interactions in the considered

model. It is a holomorphic polynomial of the complex scalar fields that can be

written as

W “ Liφi `
1

2
M ijφiφj `

1

6
yijkφiφjφk, (4.17)

where, as we will see below, M ij corresponds to the (symmetric) mass matrix for

the mass-degenerate φi and ψi fields and yijk are Yukawa couplings between φk

and the two fermionic fields ψiψj. From Eq. (4.17) we see that yijk must be totally

symmetric. Moreover, in the MSSM we take a priori Li “ 0, since non-zero Li would

only be allowed for a gauge singlet chiral supermultiplet. However, such linear terms

in the superpotential do play an important role in supersymmetry breaking.



40 Standard Model and supersymmetry

The equations of motion (4.12) for the auxiliary fields Fi are now modified

Fi “ ´W
˚
i , F i˚

“ ´W i. (4.18)

Because of this one can remove the Fis from L.

Lagrangian for gauge supermultiplets In the case of a gauge supermultiplet

we have to consider massless gauge boson fields Aaµ and fermionic fields λa. Both

of them have two degrees of freedom on-shell, but off-shell we obtain nB “ 3 and

nF “ 4. Similarly to the chiral supermultiplets, we add a set of auxiliary real (not

complex) scalar fields Da.

The supersymmetry invariant Lagrangian for a gauge supermultiplet is given by

Lgauge “ ´
1

4
F a
µνF

µνa
` iλa:σ̄µDµλ

a
`

1

2
DaDa. (4.19)

The auxiliary fields Da can be removed from L using their equations of motion

Da
“ ´gpφ˚T aφq. (4.20)

Total L The Lagrangian for the supersymmetric model contains now both Lchiral

and Lgauge. There are also some additional interaction terms that are allowed and

that incorporate fields from both types of supermultiplets

L “ LBµÑDµchiral ` Lgauge ´
?

2g
`

φ˚T aψ
˘

λa ´
?

2gλa:
`

ψ:T aφ
˘

` g
`

φ˚T aφ
˘

Da. (4.21)

In order to make sure that Lchiral is gauge invariant one needs to replace ordinary

derivatives with covariant ones.

Scalar potential From the Lagrangian Eq. (4.21) we can derive the scalar poten-

tial of a supersymmetric model. It is given by

V pφ, φ˚q “ F i˚Fi `
1

2
DaDa (4.22)

“ M˚
ikM

kjφi˚φj `
1

2
M iny˚jknφiφ

j˚φk˚ `
1

2
M˚

iny
jknφi˚φjφk

`
1

4
yijny˚klnφiφjφ

k˚φl˚ `
1

2
g2
apφ

˚T aφq2, (4.23)

where in Eq. (4.23) we used Eqs (4.16), (4.17), (4.18) and (4.20). We identify a

so-called F -term and a D-term in Eq. (4.22), respectively. The scalar potential is

always greater than zero as a sum of squares.

As one can see, the mass matrix for the bosonic component of a chiral su-

permultiplet is given by pM2qij “ M˚
ikM

kj. The same mass matrix is obtained

for the fermionic component, as can be verified using appropriate identities for
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two-component Weyl spinor fields (see, e.g., [67]). One could also argue that this

must be the case based on general arguments for supermultiplets from Section 4.3.2.

In other words the bosonic and fermionic components have the same mass.

Another important issue is that the scalar potential is fully determined by the

mass terms, as well as by the Yukawa and the gauge couplings. As a result, in

particular for the Higgs fields in the MSSM the quartic couplings are no longer free

parameters, in contrast to the SM.

4.3.4 R-parity

The lightest of superparticles, the LSP, can be stable due to a conservation of

so-called R-parity that originates from the matter parity. The latter symmetry is

introduced to the supersymmetric models in order to suppress baryon B and lepton

L number violating terms in the Lagrangian. The conserved quantum number for

the R-parity is given by

PR “ p´1q3pB´Lq`2s, (4.24)

where s stands for the spin of a particle. As can be easily verified for all the SM

particles PR “ `1, while the superpartners are characterized by PR “ ´1. As a

consequence the LSP can be a viable DM candidate.

However, even in the absence of R-parity conservation the LSP can still be a DM

particle as its lifetime can exceed the age of the Universe. This can be in particular

realized for gravitino LSP [78] or axino LSP (see, e.g., [79]).

4.4 Supersymmetry breaking

As we have already seen, unbroken supersymmetry would unavoidably lead to

phenomenologically inviable predictions since the masses of the superpartners must

then be equal to these of the particles from the SM. Therefore they should have been

already discovered. Hence, if supersymmetry is indeed a true symmetry of nature,

it must be broken.

In the following section we will focus on this issue. We will start with an effective

description at the level of explicit supersymmetry breaking by additional terms

added to L. Then we will mention some of the possible underlying mechanism of

spontaneous supersymmetry breaking (SSB) that are usually considered.

4.4.1 Soft supersymmetry breaking

The simplest phenomenologically acceptable approach to supersymmetry breaking is

to parametrize our ignorance about the actual mechanism by introducing additional

terms into a supersymmetric Lagrangian. In principle this could result in a lack of
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cancellation of quadratically divergent parts of Eqs (4.9) and (4.10) and the (big)

hierarchy problem would then reappear. In order to prevent this we assume that

the additional terms in L contain only mass terms and couplings with positive mass

dimension. We denote the largest mass scale associated with such terms by msoft.

Respective corrections to m2
h should then vanish in the limit of m2

soft Ñ 0 and even

by a simple dimensional analysis one can expect them to be only logarithmically

divergent with ΛUV. Such a procedure is often referred to as soft supersymmetry

breaking [80].

The possible form of the additional terms in the Lagrangian that will be appli-

cable to the MSSM is given by9

Lsoft “ ´

´1

2
Ma λ

aλa `
1

6
aijk φiφjφk `

1

2
bij φiφj

¯

` c.c.´ pm2
q
i
j φ

j˚φi, (4.25)

with Ma being gaugino masses, where a “ 1, 2, 3, pm2q
j
i and bij scalar mass terms

and aijk scalar trilinear couplings, where i, j, k “ 1, 2, 3. Gaugino mass terms are

not forbidden by gauge symmetries but this does not have to be true for the other

terms. In particular, bij ‰ 0 and aijk ‰ 0 are allowed if the corresponding M ij and

yijk terms in the superpotential can be non-zero.

4.4.2 Mechanisms of supersymmetry breaking

In a more fundamental framework the soft SUSY-breaking terms in the Lagrangian

should emerge from some underlying mechanism. We expect this to work in a similar

fashion to the EWSB, i.e., that supersymmetry would be preserved at the level of

L, but not by the ground state of a theory. Such a mechanism is usually referred to

as the spontaneous supersymmetry breaking. The analogue of Goldstone’s theorem

for the fermionic generators of the supersymmetry algebra Q states that the SSB

should result in the appearance of a massless, fermionic particle in a model that is

called a goldstino.

The SSB mechanism is driven by the non-zero vev of the scalar potential which,

according to Eq. (4.22), results from a non-zero vev of some F or D fields in a model.

We will focus on scenarios with xF y ‰ 0 that are realized in so-called O’Raifeartaigh

models of SSB [81].10 The main idea is to introduce additional chiral supermultiplets

into a theory and to construct their superpotential in such a way that some of the

auxiliary F fields will necessarily acquire a non-zero vev. In order to do so, one needs

to add a linear term in the superpotential which therefore must be a gauge singlet.

9There are also other terms that can be in principle considered, though they play a less
important role or are excluded in the context of the MSSM (for a discussion see, e.g., [67]).

10In the case of xDy ‰ 0 the SSB is associated with an additional, so-called Fayet-Iliopoulos,
term in L that is linear in D [82, 83].However, it turns out that, even for the specific case of Up1qY
in the MSSM, the Fayet-Ilipoulos mechanism would rather result in an unwanted breaking of the
color and/or electroweak symmetry, instead of the SSB (see a discussion in [67]).
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This, in particular, requires going beyond the MSSM. As a result we expect the

SSB to be governed by the fields that belong to the hidden sector of a model which

is only very weakly coupled to the visible sector. We further distinguish different

mechanisms of the SSB due to the way it is mediated between both sectors. We

will mention here two such scenarios that are especially important for the rest of

the thesis.

One such mechanism is called gravity mediated or Planck-scale mediated super-

symmetry breaking (PMSB)(see, e.g., [84, 85, 86, 87]). We first introduce to L
a set of non-renormalizable terms containing F that are suppressed by the Planck

mass MP . Then we obtain Lsoft after employing xF y ‰ 0. In particular, one often

assumes that a universality condition holds for various coupling constants in the

non-renormalizable L in the so-called minimal supergravity (mSUGRA) descrip-

tion. As a result, at a high energy scale (typically chosen to be the GUT scale)

one obtains a common gaugino mass m1{2, common scalar mass m0 and common

trilinear coupling A0. This may serve as the underlying SSB mechanism that gives

rise to the Constrained MSSM (see Section 7.1). The characteristic mass scale for

supersymmetric particles in the PMSB can be estimated by msoft „ xF y{MP . For

msoft „ 1 TeV this implies the SSB scale of the order of
a

xF y „ 1010 ´ 1011 GeV.

Another mechanism for mediating SSB from the hidden sector to the visible

sector is called gauge-mediated supersymmetry breaking (GMSB) [88, 89, 90, 91,

92, 93]. We add to a model a gauge singlet chiral supermultiplet S and a set

of chiral supermultiplets q, q̄, l, l̄ (so-called messenger fields) that have non-trivial

SUp3qcˆSUp2qLˆUp1qY interactions. The scalar part of S (usually also denoted by

S) and the auxiliary field FS acquire non-zero vevs that give rise to a mass splitting

between the scalar and the fermionic components of the messenger fields. It is then

mediated to the visible sector by loop corrections to the mass parameters. Such loop

corrections to the A terms are typically small and therefore in the GMSB scenario

one often assumes that At “ Ab “ Aτ “ 0 at a high energy scale. In the GMSB one

expects msoft „ xF y{Mmess, where Mmess is the mass scale of the messenger fields.

The
a

xF y can then vary depending on the assumed value of Mmess, but in principle

it can be as low as 104 GeV.

The gaugino masses at the SSB scale in the GMSB scenario are given by Ma “

pαa{4πqΛ, where Λ “ xSy{xFSy. One can allow more freedom in choosing Ma in the

framework of generalized gauge-mediated supersymmetry breaking (GGM) [94, 95,

96, 97] by replacing q, q̄, l, l̄ fields by a more general set of chiral supermultiplets

ΦI , Φ̄I . The mass parameters of the GGM models at high energy scale expressed in

terms of more fundamental parameters can be found in Appendix C.
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4.5 Minimal Supersymmetric Standard Model

(MSSM)

In Section 4.3.2 we described the particle content of the MSSM. We will now discuss

the MSSM in more details with an emphasis on the features the will be important

from the point of view of the rest of the thesis.

4.5.1 Superpotential and soft supersymmetry-breaking

terms

The Lagrangian for renormalizable, gauge-invariant supersymmetric models is de-

termined by the superpotential W and by gauge transformation properties of the

fields that can further constrain L. Taking this into account, one finds that the

general structure of the superpotential given by Eq. (4.17) in the framework of the

MSSM reads

WMSSM “ ˜̄ui pyuqij rQj Hu ´
˜̄di pydqij rQj Hd ´ ˜̄ei pyeqij rLj Hd ` µHuHd, (4.26)

where we used the notation from Table 4.1 with i, j “ 1, 2, 3 being family indices.11

The contraction of spinor indices involves a totally antisymmetric matrix εαβ, with

α, β “ 1, 2, e.g., HuHd “ Hβ
u Hd β “ HuαHd β ε

αβ. Most of the elements of the

3 ˆ 3 Yukawa matrices are often assumed to be negligible except for the ones that

correspond to the top and the bottom quarks, as well as the tau lepton

pyuqij « yt δi3 δj3, pybqij « yb δi3 δj3, pyeqij « yτ δi3 δj3. (4.27)

The µ-term in WMSSM gives raise to the higgsino mass. We now see the necessity of

having two distinct supermultiplets Hu and Hd with different hypercharge to account

for the masses of the up- and the down-type quarks, respectively. One could not use

in L, e.g., H˚
d since it would violate the holomorphicity of the superpotential.

11The symbols in Eq. (4.26) correspond to the scalar components of supermultiplets. This is
explicitly marked by adding tildes above the squark fields. Alternatively, one use the symbols of
the whole supermultiplets in the superspace formalism (see, e.g., [67]).
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The soft supersymmetry-breaking terms in the Lagrangian of the MSSM that

are allowed by gauge symmetries, are given by

LMSSM,soft “ ´
1

2

´

M1 B̃ B̃ `M2 W̃ W̃ `M3 g̃ g̃ ` c.c.
¯

´

”

˜̄ui pauqij rQj Hu ´
˜̄di padqij rQj Hd ´ ˜̄ei paeqij rLj Hd ` c.c.

ı

´ rQ:i pm
2
Qqij

rQj ´ ˜̄u:i pm
2
uqij ˜̄uj ´

˜̄d:i pm
2
dqij

˜̄dj

´rL:i pm
2
Lqij

rLj ´ ˜̄e:i pm
2
eqij ˜̄ej

´m2
Hu H

˚
u Hu ´m

2
Hd
H˚
d Hd ´ pbHuHd ` c.c.q. (4.28)

M1, M2 and M3 are the bino B̃, wino W̃ and gluino g̃ masses, respectively. One

usually assumes that the soft supersymmetry-breaking parameters in Eq. (4.28) are

real and all the mass parameter matrices are diagonal.12 The matrices au, ad and

ae are also assumed to be diagonal. They are often expressed as paqii “ Aik pyqki

which, combined with Eq. (4.27), leads to

pauqij « At yt δi3 δj3, padqij « Ab yb δi3 δj3, paeqij « Aτ yτ δi3 δj3, (4.29)

with real parameters At, Ab and Aτ called the top, the bottom and the tau trilinear

coupling, respectively. A complete list of Feynman rules for the MSSM can be found

in [98].

4.5.2 Renormalization Group Equations (RGEs)

The physical quantities evaluated within the framework of the MSSM that can be

compared with experimental results relate to the values of the parameters in LMSSM

that are given at the EWSB scale. However, from a theoretical perspective we expect

that these parameters should rather initially appear in some more fundamental

theory at a high-energy scale, e.g., the GUT scale. One then needs to run them

down according to the respective RGEs.

The RGEs for the MSSM up to the second loop can be found, e.g., in [99]. Here

we will emphasize several features of their solutions (at 1-loop) that are important

from the point of view of the rest of the thesis. The RGEs for the gauge couplings

and the gaugino masses are given by

dga
dt
“ g3

a ba,
dMa

dt
“ 2ba g

2
aMa, (4.30)

where t “ ln rQ{M s { p16π2q with M being some reference scale and Q – the

renormalization scale, while b1,2,3 “ p33{5, 1,´3q for Up1q, SUp2q and SUp3q,

12The off-diagonal terms in matrices in LMSSM and non-zero complex phases may potentially
induce large flavor- or CP-violating effects.
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respectively. One can easily verify that

d

dt

Ma

g2
a

“
1

g2
a

dMa

dt
`Ma

d

dt

1

g2
a

“ 0 ñ
M1

g2
1

“
M2

g2
2

“
M3

g2
3

“
m1{2

g2
U

, (4.31)

where in the last equality we assumed gauge coupling unification at the GUT scale

which implies unification of the gaugino masses to the common gaugino mass m1{2

(up to some 2-loop corrections).

Approximate solutions to the one-loop RGEs are given in Appendix A. To obtain

them we used the method that follows [100]. In order to treat the running more

precisely one should in principle go to the two-loop RGEs. A simplified analysis of

this kind for the slepton mass parameters is given in Appendix B.

4.5.3 Electroweak symmetry breaking

So far we have described soft SUSY-breaking terms in the MSSM that generate

different masses of the superpartners. We now want to embed the EWSB mechanism

into the MSSM to generate masses of the SM fermions. In the MSSM there are two

complex Higgs SUp2qL doublets and both in principle can acquire non-zero vev. One

can rotate the fields in order to have xH`
u y “ xH

´
d y “ 0. The scalar potential for

the Higgs fields can then be written in a simplified form as

V “
`

|µ|2`m2
Hu

˘

|H0
u|

2
`
`

|µ|2`m2
Hd

˘

|H0
d |

2
´pbH0

uH
0
d`c.c.q`

1

8

´

g2
1`g

2
2

¯

`

|H0
u|

2
`|H0

d |
2
˘

.

(4.32)

As was pointed out above, the Higgs quartic couplings are fully determined by the

gauge couplings. The non-zero vevs are denoted by xH0
uy “ vu{

?
2 and xH0

dy “

vd{
?

2, with v2
u ` v2

d “ v2 » 246 GeV as in the SM. The ratio of the two vevs is

typically denoted by

tan β “
vu
vd
, (4.33)

and plays an important role as an additional parameter in phenomenological con-

siderations. One can absorb any complex phase in b by an appropriate redefinition

of the phases in the Higgs fields. Thus we assume that b is real and positive.

It turns out that in order to achieve the EWSB one needs either µ2 ` m2
Hu

or

µ2`m2
Hd

to become sufficiently small, or negative. As m2
Hu

typically receives larger

negative corrections when running from high energy to the electroweak scale one can

assume that the necessary condition for the EWSB to occur is to have µ2`m2
Hu
À 0

at low energy scale.

In order to derive the mass spectrum for the MSSM, we minimize the scalar po-

tential with respect to H0
u and H0

d . In particular one of the minimization conditions
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reads

M2
Z “

|m2
Hd
´m2

Hu
|

1´ sin2 2β
´m2

Hu´m
2
Hd
´2|µ|2 « ´2pm2

Hu`|µ|
2
q`

2

tan2 β ´ 1
pm2

Hd
´m2

Huq,

(4.34)

where the approximation holds for sufficiently large tan β.

Eq. (4.34) was obtained from the tree level expression for the scalar potential.

This may not be accurate enough, in particular if there is a significant mass splitting

between the lighter and heavier stops. The loop correction to the scalar potential

V Ñ V `∆V [101, 102] modify the minimization conditions that can be effectively

rewritten in terms of (check, e.g., discussion in [67])

m2
Hu Ñ m2

Hu`
1

?
2 vu

B∆V

Bvu
“ m2

Hu`Σu
u, m2

Hu Ñ m2
Hd
`

1
?

2 vd

B∆V

Bvd
“ m2

Hd
`Σd

d.

(4.35)

The term in Eq. (4.34) proportional to Σd
d is suppressed by tan2 β, but Σu

u can play

more important role (compare [103]).

4.5.4 Mass spectrum

Higgs sector After the EWSB, three of the eight real degrees of freedom in the

Higgs fields become Goldstone bosons that are then eaten up by the W˘ and Z

bosons because of the Higgs mechanism. The remaining degrees of freedom form

the lighter h and the heavier H scalar Higgs bosons, the pseudoscalar A and two

charged scalars H˘. Expanding the scalar potential around the ground state one

finds the physical masses. In particular at the tree level

m2
h,tree “

1

2

´

m2
A0 `m2

Z ´

b

pm2
A0
´m2

Zq
2 ` 4m2

Zm
2
A0 sin2 2β

¯

ă m2
Z | cos 2β|. (4.36)

The upper limit on mh can be saturated at the tree level for mA " mZ . The lighter

Higgs boson mass is increased by one-loop corrections. This leads to the following

approximation at one-loop level [104, 105, 106, 107, 108]

m2
h « m2

Z cos2 2β `
3

4π2

m4
t

v2{
?

2

”

log
M2

SUSY

m2
t

`
X2
t

M2
SUSY

´

1´
X2
t

12M2
SUSY

¯ı

, (4.37)

where mt is the top quark mass, MSUSY “
?
mt̃1 mt̃2 and Xt “ At ´ µ{ tan β. One

can simply verify that Xt term is maximized for Xt “ ˘
?

6MSUSY. The radiative

corrections tend to ameliorate the upper bound on the lighter Higgs boson mass

to mh À 135 GeV, or even 150 GeV in non-minimal scenario (see, e.g., discussion

in [67]). Needless to mention that the recently measured value of the Higgs boson

mass satisfies these improved limits.
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Gauginos The two neutral higgsinos mix with the bino and ĂW 0 to form four mass

eigenstates called neutralinos χ0
1,...,4. Similarly the two charged higgsinos mix with

ĂW˘ to form two charginos (with positive and negative electric charge) χ˘1,2.

The soft SUSY-breaking parameters M1 and M2 can be chosen real and positive

by a redefinition of phases of rB and ĂW . On the other hand, µ can have a priori an

arbitrary complex phase. However, in order to suppress significant contributions to

the electron and neutron dipole moments, one usually assumes that µ is real. The

sign of µ remains a free parameter.

If a neutralino is dominated by a single gaugino or higgsino contribution, a

corresponding eigenvalue of the mass matrix is well approximated by the value of

the soft SUSY-breaking parameter or µ

mχi «

$

’

&

’

%

M1 for bino-like χi,

M2 for wino-like χi,

µ for higgsino-like χi.

(4.38)

Similarly most often in the case of charginos we obtain mχ˘i
«M2 or µ. The gluino

mass is to a good approximation determined by M3. However, as it was shown

in [109], loop corrections can be as high as „ 25%.

Sleptons and squarks Mixing within the 1st and the 2nd generation of sleptons

and squarks is typically negligible and their masses are simply given by the respective

soft SUSY-breaking parameters. However, this is not the case of the 3rd generation.

In particular, for the stau masses at the tree level we obtain

m2
τ̃1,2
«

1

2
pm2

τ̃L
`m2

τ̃R
q ¯

c

1

4
pm2

τ̃L
´m2

τ̃R
q2 `m2

τ X
2
τ , (4.39)

where mτ̃L “ mL,3, mτ̃R “ mē,3 and Xτ “ Aτ ´µ{ tan β. The left-right mixing in the

stau sector can be large if mτ̃L « mτ̃R and/or Xτ „ Aτ is large. The tau sneutrino

mass is given by

m2
ν̃τ “ m2

t̃L
`

1

2
m2
Z cos 2β. (4.40)

The sbottom and the stop masses are given by similar formulas with mτ̃L,R , mτ and

Aτ exchanged with the appropriate quantities.

4.6 Next-to-Minimal Supersymmetric Standard

Model (NMSSM)

As we have already seen in Section 4.5, in the MSSM the EWSB mechanism is

tightly related to the appropriate value of the µ parameter. It cannot be arbitrarily

high in order to allow µ2`m2
Hu

to become negative. On the other hand LEP limits
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on the chargino masses introduce a lower bound |µ| Á 100 GeV. Moreover, the

minimization condition Eq. (4.34) suggests that |µ| should not exceed significantly

(by many orders of magnitude) the mass of the Z boson mZ .

Within the framework of the MSSM µ is simply put by hand into the superpo-

tential and therefore it is not a priori a subject of any constraints that could confine

its value as desired. This can be circumvented if one goes beyond the MSSM. In

particular, the simplest such extension is to add a gauge singlet chiral supermul-

tiplet in the so-called Next-to-MSSM. We will limit ourselves to a discussion the

Z3-invariant version of the NMSSM (for a review see [110]) with the superpotential

given by

WNMSSM “ WMSSM ` λS HuHd `
1

3
κS3. (4.41)

The soft SUSY-breaking terms in the corresponding Lagrangian can be written as

LNMSSM “ LNMSSM ´ pλAλHuHd S `
1

3
κAκ S

3
` c.c.q ´m2

S |S
2
|, (4.42)

where S stands for scalar component of the additional chiral supermultiplet. As

one can see, the Higgs sector of the NMSSM is supplemented with several new

parameters in comparison to the MSSM. After the EWSB one typically chooses the

following set of such parameters to deal with

λ, κ,Aλ, Aκ, tan β, µeff “ λ s, (4.43)

where the effective µ term is generated by the vev of scalar component of the

additional supermultiplet xSy “ s and is therefore naturally expected to be of the

order of MSUSY. Adding the S field introduces into the NMSSM two more (scalar

and pseudoscalar) Higgs fields in comparison with the MSSM.

The scalar potential also receives several new terms and, importantly, in the

description of the EWSB one needs to take into account one more minimization

condition than in the MSSM. It is of course due to a non-zero s and it introduces

additional term λ2 v2 sin2 2β in the mh value calculated at the tree level. The lightest

Higgs boson mass in the limit of heavy singlet scalar now reads (up to one-loop

level) [110]

m2
h « m2

Z cos2 2β ` λ2v2 sin2 2β ´
λ2

κ2
v2
pλ´ κ sin 2βq2

`
3

4π2

m4
t

v2{
?

2

”

log
M2

SUSY

m2
t

`
X2
t

M2
SUSY

´

1´
X2
t

12M2
SUSY

¯ı

. (4.44)

In the neutralino sector the bino and the wino ĂW 0 mix with the two higgsinos and

a fermionic partner of S that is called the singlino rS. As a result the neutralino mass

matrix has now rank 5ˆ5 with an eigenvalue corresponding to a singlino-dominated
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state equal to

mχi « 2κ s “ 2κ
µeff

λ
for singlino like χi. (4.45)

4.7 Little hierarchy problem and fine-tuning

Current LHC limits on squark and gluino masses suggest that the characteristic

mass scale for supersymmetry MSUSY lies above 1 TeV. This gives rise to the little

hierarchy problem (known also as the fine-tuning problem). As one can see from

Eq. (4.34), if µ becomes too large an uncomfortable amount of the fine-tuning

between µ and mHu is needed in order to obtain the proper value of MZ . However,

µ appears in the superpotential, while mHu is the soft SUSY-breaking parameter.

Hence a priori one does not expect them to be correlated.13

For a more quantitative treatment of the fine-tuning problem we will use the

so-called Barbieri-Giudice measure [111, 112], ∆ “ maxt∆piu, where

∆pi “

ˇ

ˇ

ˇ

ˇ

B lnM2
Z

B ln p2
i

ˇ

ˇ

ˇ

ˇ

“
1

2

ˇ

ˇ

ˇ

ˇ

B lnM2
Z

B ln pi

ˇ

ˇ

ˇ

ˇ

, (4.46)

and pi are the parameters of the model. For the GUT constrained models they are

defined at the scale MGUT and they are renormalized through the RGEs to MSUSY.

According to Eq. (4.34) with loop corrections to the scalar potential (Σu
u) taken into

account one can write

B lnM2
Z

B ln p2
i

« 2
p2
i

M2
Z

„

´
Bµ2

Bp2
i

´
Bm2

Hu
pMSUSYq

Bp2
i

´
BΣu

upMSUSYq

Bp2
i



. (4.47)

If the input parameters are independent from one another, ∆pi must be calculated

for each of them separately. On the other hand, if some soft parameters pi depend

on one “fundamental” parameter p0 because of new physics beyond the GUT scale,

pi “ aip0, the fine tuning due to p0 is just the sum with signs of the individual

contributions
B lnM2

Z

B ln p2
0

“
p2

0

M2
Z

ÿ

i

ˆ

a2
i

BM2
Z

Bp2
i

˙

. (4.48)

One needs to remember that the amount of fine-tuning associated with the little

hierarchy problem is by no means comparable to the one characteristic for the (big)

hierarchy problem. Beside that, it turns out that the actual measured value of the

Higgs boson mass mh » 126 GeV that is somewhat larger than expected in the past,

is consistent with MSUSY Á 1 TeV (see, e.g., discussion for prototypical Constrained

MSSM in [113, 114, 115]).

13Moreover, we prefer values of µ close to the EWSB scale. The issue of how to guarantee such
low value of µ is known as the µ problem.



Chapter 5

Supersymmetric dark matter

candidates

In the previous chapters we presented several arguments for the existence of DM.

We also introduced some SUSY frameworks that provide viable DM candidates. We

will now connect these two subjects and discuss supersymmetric DM in more details

(for a review see [116, 117, 118]).

5.1 The lightest neutralino as a dark matter can-

didate

We begin our considerations with by far the most popular SUSY DM candidate. It

is the lightest neutralino. We first need to generalize the Boltzmann equation from

Section 3.2.2 to the case of many SUSY particles in the thermal plasma. Then we

describe possible mechanisms that can lead to the correct value of the neutralino

relic density.

5.1.1 Solving the Boltzmann equations

We have already discussed a simplified analytical approach to calculating the WIMP

DM relic density in Section 3.2.2. In the context of supersymmetric theories with the

LSP being a DM candidate this description should, in principle, be generalized to

considering a separate Boltzmann equation for each supersymmetric particle species

that is heavier than the LSP. This is particularly important when some of the heavier

SUSY species have masses close to the LSP mass mLSP in which case their thermal

abundance is not Boltzmann suppressed at the time of the LSP freeze-out.

Fortunately, it was shown in [119, 120] that in SUSY the evolution of the Universe

can still be effectively described by Eqs (2.15)-(2.16), if one replaces the number

density of a single particle species by n “
ř

i ni, where the index i runs over all the
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particle species, each with a number density ni, and with xσvy replaced by

xσvyeff “

N
ÿ

i“1

N
ÿ

j“1

xσijvijy
neq
i

neq

neq
j

neq
, (5.1)

where xσijvijy stands for a thermally averaged (co)annihilation rate for ith and jth

particle species (for a detailed discussion see, e.g., [9]). Similarly, neq “
ř

neq,i.

In Eq. (2.16) the effective average energy released in the (co)annihilations of relic

species is given by

xσvyeff xEyeff “
ÿ

i“1

ÿ

j“1

`

xEiy ` xEjy
˘

xσijvijy
neq,i

neq

neq,j

neq

, (5.2)

where we approximate xEiy »
a

m2
i ` 9T 2.

Due to decays of the heavy SUSY species to the LSP (in presence of R-parity),

n becomes the number density of the single stable species, the LSP. However, one

needs to mention here another hidden assumption that lies behind this approx-

imation. When replacing xσvy by the effective quantity it is assumed that the

relevant (lightest) SUSY particles remain in kinetic equilibrium around the time of

freeze-out.1 As a result one can assume ni{n « neq,i{neq.

5.1.2 Coannihilations

As we will see below, in the case of neutralino DM in phenomenologically interesting

scenarios often the LSP (denoted here by χ) is mass-degenerate with some heavier

supersymmetric species. Thus, in particular, coannihilations χ`NLSP Ñ SM play

a major role in determining the DM relic density. This mass degeneracy can lead to

either decrease or increase of the final relic abundance Ωχh
2.

If the NLSP annihilates and coannihilates with χ with larger rates than

xσannvyχχ, the resulting Ωχh
2 is lower than in the case without mass degeneracy

(see Fig. 5.1 (left panel)). It is because even after the condition nχ xσannvyχχ ă H is

met, i.e., when the LSP would decouple from thermal plasma, its yield can be further

reduced due to coannihilations with the NLSPs that remain in thermal equilibrium.2

One the other hand, if the NLSP annihilates less efficiently than the LSP, it

decouples from thermal equilibrium before χ. This would lead to the NLSP yield

at freeze-out that is larger than Yχ. YNLSP is to some extent further reduced due

to coannihilations with χ, but its final value can possibly remain large (see Fig. 5.1

1An accurate treatment shows that the kinetic decoupling temperature Tkd for neutralino is
typically in a range from several MeV to several GeV [121, 122].

2In this scenario the NLSP will annihilate more efficiently than the LSP, but also the inverse
processes will more easily produce the NLSP-NLSP pairs. As a result, the NLSP will stay longer
in thermal equilibrium than the LSP.
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Y

x = mχ / T time

Yχ
eq

 ≈  YNLSP
eq

Yχ

YNLSP → small contr. to Yχ

reduced Yχ

<σv>NLSP-NLSP, <σv>χ-NLSP  >>  <σv>χ-χ   (decrease of Ωχh
2
)

equilibrium

mNLSP ≈ mχ

gχ = gNLSP
χ-NLSP coan.

would be Yχ

Y

x = mχ / T time

Yχ
eq

 ≈  YNLSP
eq

YNLSP → Yχ

would be YNLSP

increased Yχ

<σv>NLSP-NLSP, <σv>χ-NLSP  <<  <σv>χ-χ   (increase of Ωχh
2
)

equilibrium

mNLSP ≈ mχ

gχ = gNLSP

χ-NLSP coan.

would be Yχ

(small contr. to Yχ)

Figure 5.1: Schematic plots showing evolution of the LSP (Yχ) and the NLSP (YNLSP)
yields in the case of mass degeneracy mNLSP « mχ. For simplicity we assume the
same number of degrees of freedom for χ and the NLSP, gχ “ gNLSP. The case with
decreased (increased) final LSP abundance is shown in the left (right) panel. The
scale in the pictures is not maintained.

(right panel)). However, the NLSPs will finally decay into the LSPs and YNLSP will

provide a dominant contribution to the final DM relic abundance.3

In the following we will see examples of both a decrease and an increase of Ωχh
2

due to the LSP-NLSP mass degeneracy.

5.1.3 Neutralino relic density

The lightest neutralino χ0
1 (later denoted simply by χ) can be a viable DM candidate

if it is the LSP. It does not carry either electric or color charges, has mass mχ

and remains stable due to R-parity.4 Depending on its dominant composition we

distinguish bino-, higgsino-, wino-, or singlino-like χ (the last one for the NMSSM),

or a mixed state with non-negligible admixture of two or more gauge eigenstates.

Bino-like LSP In the case of the bino-like neutralino rB the relic density can vary

by several orders of magnitude for a given mχ, since it is very sensitive to the details

of the MSSM spectrum. Generically, the bino annihilation rate is dominated by

3The mass degeneracy mNLSP « mχ is required in this case to guarantee that the NLSPs can
decouple before they decay into the LSPs.

4The case with light sneutrino LSP, constituting even a small portion of DM, is very strongly
constrained in the framework of the MSSM by direct detection experiments [123]. In fact, the
current experimental limits [124] require this contribution to be ! 10´3 of a relic sneutrino
abundance.
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t-channel slepton exchange χχÑ ll̄ and the relic density reads [125]

Ω
rBh

2
«

1

p460 GeVq2
a

g˚fo

pm2
rl
`m2

rB
q4

m2
rB
pm4

rl
`m4

rB
q
, (5.3)

where g˚,f stands for the number of relativistic degrees of freedom at χ decoupling.

By varying the bino and the slepton l̃ masses, one can obtain Ω
rBh

2 spanning a

few orders of magnitude. Typically, for ml̃ ą 200 GeV, Eq. (5.3) gives the bino relic

density that is too large and one faces the problem of its reduction. This can be done

due to proper (co)annihilations or resonances, as discussed below. Nevertheless, one

can obtain Ω
rBh

2 » 0.12 even from Eq. (5.3) alone, if m
rB ă ml̃ À 150 GeV, in the

so-called bulk region [119, 125]. Although such a scenario requires light sleptons, it

is not fully excluded by the current LHC searches [126, 127].

For somewhat larger, though degenerate, masses m
rB « ml̃ À p400 ˜ 500qGeV

one can still reduce the neutralino relic density to the desired valuein the stau

coannihilation region (SC) [128].5 In the case of even heavier bino the correct

relic density can be obtained due to coannihilations with squarks, if m
rB « mq̃,

or gluinos, when m
rB « mg̃. In these cases it is possible to achieve ΩB̃ h

2 » 0.12 for

mB̃ À 3´ 3.5 TeV [129, 130].

Other mechanisms that can lead to a reduction of Ωχ h
2 for the bino-like neu-

tralino with some subdominant admixture of the higgsino is associated with the reso-

nant annihilation χχ via the s-channel exchange of boson Z, the lighter scalar Higgs

particle h [131] (h-resonance region) or heavy (pseudo)scalar Higgs bosons H/A

(A-funnel region (AF), sometimes called the A-resonance) [125]. If the exchanged

particle has mass m, the condition for the resonant annihilation reads xsy » m2,

where i “ 1, 2 and pχ,i is the four-momentum of the ith annihilating neutralino.6 In

the CM frame this can be recast as m2 » xsy » 4m2
χ ` 6Tfmχ „

“

p2. ˜ 2.1qmχ

‰2
.

Hence both the Z-resonance and the h-resonance require a light neutralino with

mass mχ ă 100 GeV as mZ » 91 GeV and mh » 126 GeV, respectively. On the

other hand, in the A-funnel region the neutralino can be much heavier.

For m
rB Á 3.5 TeV the correct relic density can still be obtained for a combi-

nation of the aforementioned scenarios. In particular this can be achieved if the

5We apply here the name for such a scenario that is well justified if some common slepton
mass is assumed at the high energy scale. Then, due to τ Yukawa impact on the RGE running,
stau remains the lightest slepton. However, in the context of general MSSM one can, in principle,
consider smuon or selectron with mass lower than stau. Thus in general we should rather write
about slepton coannihilation region. For the purpose of our discussion all such possibilities are
simply encoded in the name “SC region”. In [128] mB̃ À 600 GeV is presented as an upper limit
on the mass in the SC region. It originates from relatively large value of the cosmological upper
limit on the relic density Ωχh

2 ă 0.3 that should be now reduced.
6The thermal average value of s is associated with a typical (average) energy in the CM frame

of two annihilating χs.
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squark/gluino coannihilation mechanism is accompanied by the A-resonance in the

bino sector.

Higgsino-like LSP The lightest higgsino-like neutralino rH1 with mass mχ » µ

annihilates predominantly into W`W´ and ZZ pairs if it is heavy enough. The

corresponding cross sections for these processes were first calculated in [132, 133,

134] (see also [125]). However, taking into account only χχ Ñ SM channels

turns out to be insufficient to properly calculate Ω
rH1
h2 since the rH1 is always

mass-degenerate with the second to the lightest neutralino and the lighter chargino.

Thus coannihilations play an important role in determining the relic density of the

higgsino-like LSP [135]. One can approximately write [136]

xσvyeff,H̃ »
g4

512π µ2

`

21` 3 tan2 θW ` 11 tan4 θW
˘

, (5.4)

and therefore

ΩH̃1
h2
» 0.1

´ µ

1 TeV

¯2

. (5.5)

The correct value of the DM relic density can be obtained for µ » 1 TeV in a so-called

1 TeV higgsino region (1TH). Although such a heavy neutralino was initially thought

not to be appealing [137], it now becomes consistent with the current LHC limits

for SUSY searches that suggest MSUSY Á 1 TeV. Moreover, such a scenario remains

allowed by DM direct and indirect detection limits. In fact, to a large extent it will

be testable in the upcoming experiments (see, e.g., a discussion in [138]).

Coannihilations with sleptons (the SC mechanism) in the context of higgsino-like

χ lead to an increase of the relic density [139] similarly to the mechanism illustrated

in Fig. 5.1 (right panel).7 As a result, one can obtain Ω
rH1
h2 » 0.12 for the higgsino

mass even as low as m
rH „ 600 GeV [138]. For heavier higgsinos the correct relic

density can be achieved by employing squark or gluino coannihilations.

Wino-like LSP In the case of the wino-like LSP ĂW , similarly to the higgsino, in

calculating Ω
ĂW h2 one needs to take into account coannihilations with the lighter

chargino [140]. The wino relic density is then approximately given by [136]

Ω
ĂW h2

» 0.13

ˆ

M2

2.5 TeV

˙2

. (5.6)

This would suggest that the correct value of the relic density for the wino DM can be

obtained for M2 „ 2.5 TeV or lower. However, in the case of wino LSP a perturbative

7An accurate description of this scenario is somewhat more complicated since it corresponds to
a quadruple mass degeneracy between the two lightest neutralinos, the lighter chargino and the
lighter stau. It is the lighter stau that plays the role of the “NLSP” in Fig. 5.1 (right panel),
although in this case it is often not true NLSP since mτ̃1 Á mχ » mχ0

2
» mχ˘

1
.
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calculation turns out to be not sufficient. The wino relic density is quite sensitive

to a so-called Sommerfeld enhancement (SE) of the annihilation cross-section due

to attractive Yukawa potentials induced by the electroweak gauge bosons [141] (see

also [142, 143] for a recent discussion). Incidentally, the SE is particularly important

in the wino mass range for which one obtains Ω
ĂW h2 » 0.12. This results in a visible

broadening of a cosmologically acceptable wino mass range to M2 „ p2´ 3qTeV.

Similarly to the higgsino case, the SC mechanism leads to an increase of the relic

density for the wino lighter than about 3 TeV, while squark/gluino coannihilations

reduce it for heavier ĂW . Taking this into account additionally extends the mass

range for which Ω
ĂW h2 » 0.12 is obtained to 1.6 TeV À m

ĂW À 4 TeV [138].

Singlino-like LSP In the framework of the NMSSM the lightest neutralino can

become singlino-dominated (see Section 4.6). The largest values of the singlino

relic density can be significantly larger than the largest values obtained for the

bino LSP with the same mass. This can be explained by the fact that a nearly

pure singlino interacts very weakly. It annihilates mainly into scalar-pseudoscalar

pairs (mainly H2A1) with the associated couplings proportional to κ or λ that are

suppressed for singlino-like LSP. Intermediate values of the relic density can be

obtained due to coannihilations with the bino (103 ă Ω
rSh

2 ă 105) or the higgsino

(Ω
rSh

2 „ 102). Obtaining even smaller values requires coannihilations with the

higgsino, wino, stau/sneutrino, stop or gluino, as well as Z- or Higgs- resonant

annihilations. For an extensive discussion about the issue of DM relic density in the

NMSSM see [144].

Mixed neutralino LSP A general neutralino state in the MSSM (or the NMSSM)

is the mixed state between the bino, wino, higgsino (and the singlino). Among

various possible mixed states of the lightest neutralino the most important one is

the bino-higgsino LSP. In the mass range 100 GeV À mχ À 1 TeV typically pure

bino LSP has too large, while pure higgsino too small, relic density. This can

be circumvented for an appropriate admixture of rB and rHu,d. In the context of

GUT-constrained SUSY models this is called the hyperbolic branch/focus point

region (HB/FP) [145, 146]. In the following we will apply this name also to the

corresponding region in the MSSM with parameters defined at low energy scale.

The correct value of the relic density can be achieved in the HB/FP region due

to χχ annihilations into gauge bosons, as well as through t-channel exchange of a

higgsino-like lighter chargino and/or the second lightest neutralino.

Among other mixed scenarios discussed in the literature one can distinguish

bino-wino (see, e.g., [147, 148, 136], singlino-higgsino (in the context of the

NMSSM) [144] or even bino-higgsino-wino (see, e.g., [149, 150]) admixtures.
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5.2 Gravitino dark matter

We will now briefly discuss the gravitino DM scenario. We begin with short

introduction of the theoretical background and then describe gravitino TP.

5.2.1 Basics

So far we have assumed that supersymmetry is a global symmetry. However, if one

wants to take into account gravity, SUSY must be promoted to a local symmetry.

This leads to so-called supergravity [151, 152, 153, 154].

In the context of supergravity we introduce an additional supermultiplet that

contains spin-2 graviton and its fermionic superpartner spin-3{2 gravitino. For

unbroken SUSY both the graviton and the gravitino are massless particles with

two degrees of freedom. After spontaneous supersymmetry breaking the gravitino

acquires mass by absorbing two goldstino degrees of freedom in the super-Higgs

mechanism [155, 156, 157, 158] analogously to the weak gauge bosons in the SM.8

The gravitino plays a role of a gauge field for local supersymmetry.

The mixing between the gravitino ψµG and the fermionic components of the chiral

and gauge supermultiplets (χ and λ, respectively) is described by the following terms

in the Lagrangian of supergravity

L Ą 1

2
g Da

pψGqµ σ
µ λ̄a ´ eG{2

i
?

2
Gi χ

i σµ p sψGqµ ` h.c. (5.7)

They can be eliminated by an appropriate shift of the gravitino field

ψµG Ñ ψµG `
1

3
η̄σ̄µ “ ψµG `

1

3

´ i
?

2
Gi χ̄

i
`

1

2
e´G{2 g Da λ̄a

¯

σ̄µ, (5.8)

where the fermionic field η̄ corresponds to the massless goldstino. One can then

obtain the gravitino mass,

m2
rG
” m2

3{2 “ exGy{2MP “
xKi

j Fi F
j˚y

3M2
P

, (5.9)

where Ki
j “ pδ2K{δφiδφ

j˚q, G “ K{M2
P ` lnWW ˚{M6

P and the function K “

Kpφ, φ˚q, which contributes to the Lagrangian, is called the K:ahler potential. In

the PMSB scenario, where
a

xF y „ 1010 ´ 1011 GeV, the gravitino mass m
rG is

typically at least of the order of 100 GeV. On the other hand in the GMSB, m
rG can

be much lower depending on the Mmess.

8In the case of fermionic operators that generate supersymmetry, Goldstone bosons from the
ordinary Higgs mechanism are replaced by fermionic goldstinos.
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The Lagrangian term that is relevant for gravitino thermal production is given

by

L Q mg̃

m
rG

1

6
?

2MP

φ̄G rγ
µ, γνs g̃aGa

µν , (5.10)

where φG is the goldstino component of gravitino. Note the characteristic ratio

between the gluino and the gravitino masses mg̃{m rG . The other interaction terms

for the gravitino that are relevant for the thesis can be found, e.g., in [159].

5.2.2 Gravitino thermal production

Due to their extremely weak interactions, primordial gravitinos decouple from

thermal plasma at very high temperatures. For the gravitino with mass

m
rG Á 1 GeV (10 GeV) its decoupling temperature is of the order of T dec

rG
Á

1014 GeV (1016 GeV) [160]. Thus it is typically assumed that, after a period of cos-

mological inflation, the maximum temperature Tmax of the Universe was never high

enough for the gravitino to be in thermal equilibrium. Any population of primordial

(equilibrium) gravitinos can then be effectively diluted during inflation [161]. Oth-

erwise the gravitinos would be easily overproduced and would dominate the energy

density of the Universe unless they were very light with m
rG À 1 keV [162].

In the following we will assume that T dec
rG
ą Tmax. Within this approach the

gravitinos can still be produced in the early Universe in TP and NTP processes, as

discussed in Section 3.2.3. NTP is determined by the NLSP’s (typically neutralino

or slepton) yield at freeze-out and by the m
rG{mNLSP ratio as shown in Eq. (3.13).

On the other hand TP depends more on the SUp3qc sector of the MSSM and is

dominated by the production in scatterings of gluinos, gluons and (s)quarks.

The present yield of TP gravitinos [163, 164, 165] can be estimated by

Y TP
rG
»

ˆ

TR
1010 GeV

˙ 3
ÿ

r“1

yr g
2
rpTRq

ˆ

1`
MrpTRq

3m
rG

˙2

ln

ˆ

kr
grpTRq

˙

, (5.11)

where y1,2,3 “ p0.653, 1.604, 4.276q, k1,2,3 “ p1.266, 1.312, 1.271q, while MrpTRq and

grpTRq denote gaugino mass parameters and gauge couplings evaluated at Q “ TR,

respectively. They can be replaced by values Mr and gr at low energy scale after

imposing on Eq. (5.11) additional numerical factors obtained from running of RGEs.

If the gluino is the heaviest gaugino with mass significantly exceeding m
rG,

Eq. (5.11) can be recast as

ΩTP
rG
9 m

rG Y
TP
rG
9

TR
m

rG

m2
g̃. (5.12)
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Assuming that ΩTP
rG
À 0.12, Eq. (5.12) can be rewritten as an upper limit on the

reheating temperature

TR,max 9
m

rG

m2
g̃

. (5.13)

Clearly larger m
rG leads to larger TR. However, the gravitino mass cannot be

arbitrarily high since we want it to remain the LSP. Moreover, for too small a

mass difference pmNLSP ´ m
rGq the NLSP lifetime becomes often too long and Big

Bang Nucleosynthesis (BBN) constraints become violated as will be discussed in

Section 6.6.1. As a result one typically obtains TR,max ă 2 ˆ 109 GeV, i.e., below

the minimum value required by simple models of thermal leptogenesis with zero

initial abundance of the lightest right-handed neutrinos and sneutrinos [166]. The

gravitino LSP scenario either suffers from thermal overproduction of rG or the

reheating temperature has to suppressed. Nevertheless, even in the case of thermal

leptogenesis one can obtain lower TR „ 2ˆ 108 GeV if thermal initial abundance of

νR and ν̃ is assumed [167]. Beside that, baryogenesis is still a subject of an ongoing

discussion and in particular many models were proposed with low values of TR (see,

e.g., [168] or recent review [169]).

Eq. (5.11) should be modified for sufficiently low TR in order not to overestimate

the abundance of TP gravitinos. This is due to a possible decoupling of heavy

SUSY species before the RD epoch, i.e., in the reheating period when T ą TRD.

Nevertheless, in this limit even the yield calculated using Eq. (5.11) typically leads

to very low ΩTP
rG
h2 and the DM relic density has to be dominated by the NTP

component in order to keep ΩTP
rG
h2 » 0.12. Hence such a modification plays a

negligible role in the case of gravitino DM. The exception could be a very light

gravitino (see, e.g., [170]) which we will not address in this thesis.

Another possible modification of Eq. (5.11) appears in the GMSB-type models

of SUSY breaking. If the reheating temperature exceeds the messenger scale TR ą

Mmess, the gravitino production rate becomes suppressed by about M2
mess{T

2 with

respect to supergravity calculations. As a result Y TP
rG

becomes effectively insensitive

to TR [171, 172]. In the following, when discussing GGM models with gravitino DM

in Section 9.1, we will assume that the messenger scale is always high enough so

that this effect plays a negligible role.

One needs to mention here that there are also other possible production mech-

anisms for the gravitinos in the early Universe, e.g., from inflaton decay [173, 174].

They are very model-dependent and not necessarily important [175]. Hence we will

ignore them in the rest of the thesis.
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5.3 Axino dark matter

The case of axino CDM [176, 177] is, at least at the phenomenological level, similar

to the gravitino DM scenario. Axino is a neutral Majorana particle. Likewise the

gravitino, it is an EWIMP, though with the interaction rates suppressed by the

energy scale fa that is typically significantly lower than MP .9 Other than that, the

main difference between axino and gravitino DM arises from the dominant terms in

the corresponding effective interaction Lagrangians.

5.3.1 Basics

In a supersymmetrized version of an axion model [178, 179, 180] the real scalar

axion field a resides in a chiral supermultiplet since it is a gauge singlet. The other

members of the axion supermultiplet are the fermionic superpartner axino ã and

the real scalar field saxion s that provides a remaining bosonic degree of freedom

on-shell.10

The interaction Lagrangian for the axion supermultiplet can be obtained by

supersymmetrizing Eq. (3.16). In particular, the axino-gaugino-gauge boson and

the axino-gaugino-sfermion-sfermion interaction terms are given by [177, 181]

Leff
ã “ i

αs
16π fa

¯̃a γ5 rγ
µ, γνs rgbGb

µν `
αs

4π fa
¯̃a g̃a Σq̃gs q̃

˚ T a q̃

`i
α2CaWW

16π fa
¯̃a γ5 rγ

µ, γνsĂW bW b
µν `

α2

4π fa
¯̃aĂW a Σf̃D

g2 f̃
˚
D T

a f̃D

`i
αY CaY Y
16π fa

¯̃a γ5 rγ
µ, γνs rBBµν `

αY
4π fa

¯̃a rBa Σf̃gY f̃
˚QY f̃ , (5.14)

where f̃D and f̃ denote sfermions carrying non-zero T 3 and Y , respectively. CaWW

and CaY Y are model-dependent parameters that correspond to axino-gaugino-gauge

boson anomaly interactions for the Up1qY and the SUp2qL groups, respectively. The

SUp2qL coefficient can be always set to zero CaWW “ 0 by a proper rotation of the

axion field.

A generic form of interaction between the axion and matter supermultiplets was

considered in [182]. In particular, it was pointed out that, for vPQ ą T Á MΦ,

where MΦ is the mass of the heaviest PQ-charged and gauge-charged supermultiplet

Φ, the axino-gaugino-gauge boson interaction term is suppressed by M2
Φ{T

2. This

is particularly important for the DFSZ axino, where Φ corresponds to the Higgs

supermultiplets and therefore MΦ “ µ (the higgsino mass). The dominant contri-

bution to axino TP is then associated with a higgsino decay to the axino and the

9fa is constrained by astrophysical and cosmological data to 109 GeV À fa À 1012 GeV [34].
10Off-shell the additional two bosonic degrees of freedom are provided by an auxiliary field FA.
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Higgs boson that is described by [182, 183, 184]

Leff
ã,DFSZ Q cH

µ

fa
ã r rHdHu ` rHuHds ` h.c. (5.15)

The axino mass mã (for a recent review see [185]) is generated as a result of

supersymmetry breaking and in the spontaneously broken global SUSY is expected

to be at the tree level at least of the order of „ OpM2
SUSY{faq [179]. In various models

considered in the literature mã can be either much lower than MSUSY [180, 186, 187,

188, 189] or much higher [190]. In the following we will not limit ourselves to any

particular scenario of the SSB and will treat the axino mass as a free parameter.

5.3.2 Axino thermal production

The axino decoupling temperature from thermal plasma is given by [191]

T dec
ã “ 1011 GeV

ˆ

fa
1012 GeV

˙2 ˆ

0.1

αs

˙3

. (5.16)

If the temperature in the RD epoch following inflation were high enough, regenerated

axinos would remain in thermal equilibrium and the corresponding relic density

would be given by Ωther
ã » mã{2 keV [191]. In this case in order to obtain the correct

value of ΩDM one requires mã » 0.2 keV which leads to axino WDM scenario. In

the following we will focus on sufficiently low Tmax ă T dec
ã and heavier axino which

can constitute CDM.

For high reheating temperature the most important contribution to the TP of

KSVZ axino is associated with the first term in L given by Eq. (5.14). One can

notice the absence of a term analogous to the mg̃{m rG term in Eq. (5.10). This

results in a different ΩTP
ã h2 dependence on mã [177] that in the gravitino case. The

approximate formula for the yield of the KSVZ axinos for high TR (see the left panel

of Fig. 5.2) reads [192]

Y TP
ã » 2ˆ 10´7 g6

s ln
´1.108

gs

¯ TR
104 GeV

´1011 GeV

fa

¯2

, KSVZ, high TR. (5.17)

As a result, for the TP relic density one obtains

ΩTP
ã „ mã Y

TP
ã „ mã

TR
fa

KSVZ, high TR. (5.18)

In addition, as can be seen from Eq. (5.17), the KSVZ axino TP yield in the high

TR regime is to a good approximation independent of a SUSY spectrum. Similarly

to the gravitino DM scenario, Eq. (5.18) can be used to derive an upper limit on the

reheating temperature Tmax
R „

fa
mã

. As can be seen from Fig. 5.2 (right panel), KSVZ

axino CDM with mã Á 0.1 GeV naturally points towards rather low values of the
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Figure 1. Thermal axino yield Y TP
ã as a function of the reheating temperature TR from strong interactions

using the effective mass approximation (black). We use the representative values of fa = 1011 GeV and

m�q = mg̃ = 1TeV. For comparison, we also show the HTL approximation (dotted blue/dark grey) and

that of Strumia (green/light grey). We also denote the yield from squark (solid green/light grey) and gluino

decay (dotted red), as well as out-of-equilibrium bino-like neutralino decay (dashed black). Here we used

the interactions in Eq. (3.3) and Eq. (3.7) for the KSVZ model. We use the same definition of reheating

temperature in the instantaneous reheating approximation for the three methods.

neutralino decay to an axino and a photon originally considered in Ref. [1]. It is clear that NTP is

only important at very low TR, well below squark or gluino masses.

In Fig. 2, we show a contribution to the axino yield in thermal production from each SM gauge

group interaction. Here we set the coefficients CaWW = 1 and CaY Y = 1 as a normalization. As

shown in the figure, the contributions from scatterings due to SU(2)L and U(1)Y couplings (blue

dotted and green solid lines, respectively) are significantly suppressed compared to that of SU(3)c

(red dashed), by a factor of 10 or more. This is because the interaction between axinos and gauge

bosons are proportional to a gauge coupling-squared so that the cross-section is σ ∝ α3. Thus it

would be only for very large (and perhaps unnatural) values of the effective couplings CaWW , CaY Y

that these channels could become comparable to the QCD contribution. To give an order of magnitude

estimate of these effects, we included the SU(2) and U(1) contributions with a normalized value in

figure 2. For different values of CaWW and CaY Y the curves move up and down. We note that in

general SUSY breaking effects in the leptonic sector may bring a modification of the couplings here

considered. The situation here is different from the case of gravitino production since the interactions

of the gravitino to the three gauge groups are of the same order: the spin-3/2 gravitino component
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Figure 4. TR versus mã for fa = 1011 GeV in the KSVZ models. The bands inside like curves correspond

to a correct relic density of DM axino with both TP and NTP included. To parametrize the non-thermal

production of axinos we used YNLSP = 0 (I), 10−10 (II), and 10−8 (III). The upper right-hand area of the plot

is excluded because of the overabundance of axinos. The regions disallowed by structure formation are marked

with vertical blue dashed lines and arrows for, respectively, TP (mã
∼
< 5 keV, see text below Eq. (4.2)) and

NTP (mã
∼
< 30MeV, with a neutralino NLSP).

mass giving the correct DM relic density for the given relic abundance of Yã.

3.2 Non-thermal production

As stated above, axinos can be produced non-thermally in NLSP decays after they have frozen out

of equilibrium. This NTP mechanism is dominant for reheating temperatures below the mass of the

gluino and squarks [1, 2]. In this case, the axino abundance is independent of the reheating temperature

as long as the temperature is high enough for the NLSP to thermalize before freeze-out. Axino relic

density from NTP is simply given by

ΩNTP
ã =

mã

mNLSP
ΩNLSP ≃ 2.7 × 1010

� mã

100 GeV

�
YNLSP. (3.10)

Clearly, in order to produce a substantial NTP population of axinos, the NLSP must itself have an

energy density larger than the present DM density.

To see if such production is sufficient to give a dominant DM component, we need to know the

yield of NLSPs after they have frozen out of the thermal plasma. For the neutralino NLSP yield,

relevant processes include pair-annihilation and co-annihilation with the charginos, next-to-lightest

– 18 –

Figure 5.2: Left panel: Axino TP yield Y TP
ã for the KSVZ model as a function

of the reheating temperature TR. Gluino and squark masses are assumed to be
mg̃ “ mq̃ “ 1 TeV, while fa “ 1011 GeV. Solid black line corresponds to the effective
thermal mass approximation, while solid/dotted blue (solid green) describes HTL
(Strumia’s) approach (see a discussion in text). Horizontal red (green) line shows
yield from gluino (squark) decays that add to the dominant (for TR Á 103 GeV)
contribution from SUp3qc scatterings. Taken from Ref. [181]. Right panel: Tmax

R vs
mã in the KSVZ model for mg̃ “ mq̃ “ 1 TeV and fa “ 1011 GeV. Regions excluded
from the Large Scale Structure formation are marked with vertical blue lines for
mã À 5 keV (TP axino) and mã À 30 MeV (NTP axino with a neutralino NLSP).
Solid black (I) (green (II),red (III)) line corresponds to non-thermal yield Y NTP “ 0
(10´10 for (II), 10´8 for (III)). Taken from Ref. [181].

reheating temperature TR À 1 TeV. One should note that in the case of axino such

low TR can still lead to a non-negligible TP contribution to the DM relic density

in contrast to the gravitino DM scenario.11 We will examine axino TP in low TR

regime with more details in Section 9.3 and Appendix E.

In the case of the DFSZ framework TP is dominated by higgsino decays into

axinos (see Eq. (5.15)) and (less importantly) by scatterings involving SUp2qL

interactions. Because of this the DFSZ axino yield for vast range of TR, but not too

low, becomes independent of the reheating temperature [182, 184, 193]

Y TP
ã » 10´5 ζ

´ µ

TeV

¯´1011 GeV

fa

¯2

, DFSZ, (5.19)

where ζ „ Op1q. If TR becomes very high, depending on the value of the higgsino

mass µ, axino production from SUp2qL scatterings start to dominate and the TR

dependence is recovered even for DFSZ axino.

11This is because, as discussed above, axino interaction rates are suppressed by fa „ 1011 GeV,
which is large, but still significantly lower than MP .
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Dependence on a SUSY spectrum In the KSVZ model, in the limit of high TR,

scatterings associated with the SUp3qc group dominate in Y TP. The additional Up1q

scatterings (for non-zero CaY Y ) contribute typically by no more than a few percent.

In this regime of high TR, the yield from scatterings is practically independent of a

SUSY spectrum, as mentioned above. This is because the thermal kinetic energy

of the incident particles can be high enough so that the suppression of phase space

for heavier SUSY particles (incident or produced) is negligible. In particular, in the

case of the scatterings of the SM particles leading to the production of the axino

and a heavy SUSY particle (e.g., gluino) σpsq does not depend on a supersymmetric

particle mass, e.g. [194],

σpsqqq »
α3
s

72π2 f 2
a

«

1´ 3
´m2

g̃

s

¯2

` 2
´m2

g̃

s

¯3

ff

sÑ8
ÝÝÝÑ

α3
s

72π2 f 2
a

, (5.20)

for the dominant quark-quark scattering.12

One should mention here a technical issue that arises when dealing with infrared

divergences in the scattering cross sections. One way to solve this problem is to use

a Hard Thermal Loop (HTL) resummation technique [195] that is, however, valid

only for gs ! 1, i.e., TR " 106 GeV [192]. Another method, used by Strumia [196], is

to apply fully resumed finite-temperature propagators for gluons and gluinos. This

results in an increase of Y TP
ã compared to the HTL method (see the left panel of

Fig. 5.2) due to an addition of the axino production via gluon decays.13 However, this

technique is applicable only to TR Á 104 GeV, which still remains far too high for the

purpose of our discussion. Hence we will follow [177] and use the effective thermal

mass (ETM) approximation, i.e., employ a thermal gluon mass.14 It gives somewhat

larger Y TP
ã in the high TR regime than Strumia’s result, as shown in Fig. 5.2 (left

panel). The difference (up to a factor of three) can be treated as an estimate of the

theoretical uncertainty of using ETM for the high reheating temperature [181].

The important advantage of using the ETM approach is the possibility of consid-

ering axino TP in a low TR regime. When the reheating temperature drops below

about 105 GeV, the axino yield from TP may acquire non-negligible contribution

from squark and gluino decays to the axino. As a result Y TP
ã starts to depend on

the gluino and squark masses.15 For heavy squarks, phase space suppression reduces

12In general other scattering channels producing axinos can also be important in the high TR
regime and one can find similar arguments for them (compare [194]).

13For a similar discussion in the case of gravitino DM see [165].
14Low-energy gluons (more strictly – plasmons, that are gluon-like collective excitations of a

quark-gluon plasma) cannot propagate as free fields in the high-temperature plasma. This effect is
taken into account in the framework of the thermal field theory by introducing an effective thermal
mass meff „ gT that corresponds to the plasma frequency.

15For even lower TR À 100 GeV TP can get important impact from Up1qY scatterings and
decays. However, for such low reheating temperature one has to additionally take into account the
impact of non-instantaneous reheating. Thus we will postpone the discussion of this regime until
Section 9.3 and Appendix E.



64 Supersymmetric dark matter candidates

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
2

10
3

10
4

10
5

10
6

Y
T

P
a

x
in

o

TRD (GeV)

mq~ = 1 TeV

mq~ = 2 TeV

mq~ = 4 TeV

mq~ = 10 TeV

mq~ = 1 TeV, mt~ = 500 GeV
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
2

10
3

10
4

10
5

10
6

Y
T

P
a

x
in

o

TRD (GeV)

mg~ = 1 TeV

mg~ = 2 TeV

mg~ = 4 TeV

mg~ = 10 TeV

Figure 5.3: Y TP
ã vs TR « TRD in the KSVZ model intermediate with 106 GeV ě

TR ď 102 GeV. Solid black line the same as in Fig. 5.2. Left panel: Yield for
the common squark mass mq̃ “ 2 TeV (4 TeV, 10 TeV) (at the low energy scale)
is shown with dashed (dotted,dash-dotted) blue line. Dash-dotted yellow line was
obtained for mq̃ “ 1 TeV except from the lighter stop mass mt̃,1 “ 500 GeV. Right
panel: Yield for the gluino mass mg̃ “ 2 TeV (4 TeV, 10 TeV) is shown with dashed
(dotted,dash-dotted) red line.

the scattering contributions by a factor no more than a few, as can be seen in Fig. 5.3

(left panel), where mq̃ denotes common squark mass at MSUSY scale. The opposite

effect is obtained for smaller mass of the lighter stop. On the other hand, for heavy

gluinos the corresponding scattering contributions are also suppressed due to phase

space effect. However, enhanced squark decays lead to an increase in Y TP
ã possibly

by more than an order of magnitude (see the right panel of Fig. 5.3). The correct

thermal axino yield from squark decays is to some approximation proportional to

m2
g̃ for TR ą mq̃ [194]

`

Y TP
ã

˘

q̃,dec
»

6 ζp5qα4
s

p2πq6
ḡ

ˆ

MP

mq̃

˙

«

mg̃

fa
log

ˆ

fa
mg̃

˙

ff2

(5.21)

» 3

ˆ

mg̃

mq̃

˙

`

Y TP
ã

˘

g̃,dec
for fa “ 1011 GeV, (5.22)

where ζp5q » 1, ḡ “ 135
?

10{p2π3 g
3{2
˚ q and in the second line

`

Y TP
ã

˘

g̃,dec
denotes the

contribution from gluino decays. As can be seen from Eq. (5.22) the relative impact

of squark and gluino decays depends on their mass ratio, but typically squark decays

dominate.

In the case of the DFZS model Y TP
ã depends on the higgsino mass µ as shown in

Eq. (5.19). For sufficiently low TR both DFSZ and KSVZ yields become Boltzmann

suppressed.



Chapter 6

Bayesian approach and constraints

In this chapter we introduce fundamental concepts that lie behind a Bayesian

statistical approach to analyzing SUSY models. We begin with a description of

the Bayes theorem and of its application in the context of SUSY. We further discuss

relevant constraints imposed in such analyses that come from current high- and

low-energy particle physics experiments, as well as these related to dark matter.

6.1 Bayesian statistics

In this section we briefly describe some basic concepts behind Bayesian statistics.

We first discuss fundamental notions of a probability theory and then apply them

to the specific case of a SUSY model analysis.

6.1.1 Probability theory and Bayes theorem

Axiomatic probability theory The classical Kolmogorov’s definition of proba-

bility refers to the concept of measuring sets. We first define a set Ω of all possible

outcomes of some experiment, i.e., a so-called sample space. A subset of Ω is called

an event and all possible events compose a set that is usually denoted by F . Next

we introduce a function (measure on Ω) P : F Ñ r0, 1s such that P pΩq “ 1. It is re-

ferred to as a probability measure or simply probability. The whole triple pΩ,F , P q
is formally called a probability space.1 Last, but not least, we define a random

variable X that is a function X : Ω Ñ Rn which transforms subsets from F into

Lebesgue measurable subsets of Rn.2

1In general, in order to construct a reliable probability theory, one needs to restrain an issue of
event so that not any possible subset of Ω can belong to F . Strictly writing, F must comply with
the definition of so-called σ-field. In practice, when considering results of physical experiments, we
typically limit ourselves either to a discrete set Ω with F “ 2Ω being set of all subsets of Ω or to
Ω Ă R and F composed of Borel sets that remain measurable in a sense of the Lebesgue measure.

2Note that P : F Ñ R`, while X takes arguments from the sample space Ω.
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Suppose we have two events A,B Ă Ω with corresponding probabilities P pAq

and P pBq. By definition a conditional probability of A under the assumption that

B happened is given by

P pA|Bq “
P pAXBq

P pBq
, (6.1)

where X denotes the intersection of sets A and B. From Eq. (6.1) it immediately

follows that

P pA|Bq “
P pB|AqP pAq

P pBq
. (6.2)

Eq. (6.2), which relates the conditional and the unconditional probabilities of A and

B, is called the Bayes theorem.

When Ω is a subset of Rn, it is convenient to identify Ω with a random variable X

being an identity function, i.e., for each ω P Ω one obtains Xpωq “ ω. From now on,

we will continue to discuss selected aspects of a probability theory in terms of random

variables or sample space interchangeably. If additionally Ω is a continuous set, as

it is often the case with results of physical experiments, we introduce a probability

density function p such that the probability of X P A, i.e., that Xpωq P A for some

ω P Ω, is given by

P pX P Aq “

ż

A

ppωq dω, (6.3)

where an ordinary Lebesgue integration is used.

Let us now consider a 2-dimensional random variable pX, Y q with a joint prob-

ability density ppX,Y q, where both X and Y take arguments from R. We obtain a

marginal probability density of X by integrating ppX,Y q over Y

pXpxq “

ż

R
ppX,Y qpx, yq dy. (6.4)

Now, analogously to Eq. (6.1), we define a conditional probability density of X given

Y “ y

pX|Y px|yq “

#

PpX,Y qpx,yq

pY pyq
, if pY pyq ‰ 0,

0, otherwise.
(6.5)

Eq. (6.2) can then be rewritten in terms of conditional probability densities (for

pY pyq ‰ 0)

pX|Y px|yq “
pY |Xpy|xq pXpxq

pY pyq
(6.6)

A generalization of Eq. (6.6) to more than two dimensions is straightforward.

Frequentist and Bayesian approaches to probability theory From a practi-

cal point of view we often need to employ more operational definitions of probability

than the one associated with measuring sets. One can then interpret them in a way

that guarantees a fulfillment of the Kolmogorov axioms (see, e.g., [197]).
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One such (so-called frequentist) approach defines a probability based on a series

of repeatable experiments. The probability that event A can happen is associated

with the number of n trials of the experiment in which it actually happened out

of the total number of repetitions N . In order to make this definition exact one

employs a limit N Ñ 8 and obtains

PfrpAq “ lim
NÑ8

n

N
. (6.7)

In practice it is enough to assume that one can always perform one more experiment

to obtain PfrpAq with any desired accuracy.

Another, namely Bayesian, approach to probability theory is based on a degree

of belief of an observer. The main advantage here over the frequentist probability

is such that Bayesian probability can be applied to non-repeatable experiments.

It also allows one to take into account a prior expectations before experimental

data are employed. Some methods to construct Bayesian probability consistent

with the Kolmogorov axioms can be proposed (see, e.g., coherent bet introduced by

Finetti [198]).3 However, one can in principle employ the Bayes theorem and the

Bayesian interpretation of probability without referring to a specified probability

space and the Kolmogorov axioms (e.g., based on the Cox theorem).

In the following we will employ the Bayes theorem to statistical analyses of SUSY

models.

Bayesian analysis of SUSY models In the context of a Bayesian analysis of

supersymmetric models (for a discussion see, e.g., [199]) we introduce a multidimen-

sional random variable

η “ pθ, ψq, (6.8)

where θ corresponds to SUSY model parameters and ψ contains so-called nuisance

parameters that encode the uncertainty in determination of relevant parameters of

the SM. Moreover, we define a set of derived variables

ξ “ pξ1, . . . , ξmq. (6.9)

They describe the observable quantities calculated for a given model point η that

can be compared with the experimental data

d “ pd1, . . . , dmq. (6.10)

Let Θ be a set of allowed values of η and D describe all the possible experimental

results. The sample space is defined then as Ω “ Θ ˆ D with a joint probability

3This is a so-called subjective Bayesian approach. Alternatively, in an objective approach, one
can try to construct more opinion-independent priors (see, e.g., the Jeffreys prior).
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density ppη,dq. Integrating ppη,dq over D or Θ we can obtain marginal probability den-

sities πpηq, a so-called prior, and Zpdq, a so-called evidence, respectively. Eq. (6.6)

can then be rewritten as

ppη|dq “
ppd|ξq πpηq

Zpdq , (6.11)

where the probability density ppη|dq is called the posterior, while ppd|ξq “ L is the

likelihood function.4

It is easy to see that the prior, the likelihood and the posterior depend on a

SUSY model that is considered since they explicitly depend on the choice of η. This

may not be so evident in the case of Zpdq, but one has to remember that, in order for

Eq. (6.11) to hold, the evidence must be understood as a marginalized probability

Zpdq “
ż

ppη,dqpη, dq dη “

ż

L πpηq dη, (6.12)

where in the second step we used Eq. (6.5). In other words, Zpdq depends on

details of a chosen SUSY model by a choice of a specific probability space. This is

sometimes marked explicitly by a formal addition of yet another condition M that

encodes the type of a considered SUSY model. We may treat then all the probability

densities in Eq. (6.11) as conditional probability densities under a model hypothesis

M . This may serve as a method of comparing validity of two different models via

so-called Bayes factors (see, e.g. a discussion in [200]) within the Bayesian approach

to probability theory. In the following, the evidence will serve only as a constant

(not η dependent) normalization factor in the definition of the posterior.

The prior πpηq describes our initial belief about the probability distribution of η

parameters. The requirement of choosing π may lead to a possible prior-dependence

of results that is often considered as a drawback of a Bayesian approach. One

way to ameliorate this is to choose a simple flat prior πpθiq “ const for SUSY

model parameters, which effectively leads to ppθ|dq9L in Eq. (6.11). However,

one may argue that the flat prior is by no means more natural than some other

choices of π, although it just seems to be due to a special choice of parametrization

θ. In particular, let us focus on a mass parameter m with the allowed range

m P r0.1 TeV, 10 TeVs. In this case flat prior assigns much larger probability to

the region m P r1 TeV, 10 TeVs than to the region of low mass m P r0.1 TeV, 1 TeVs.

This so-called volume effect may not be desirable both from the point of view of

the sampling efficiency (therefore also favored regions in the parameter space) and

naturalness (in a sense of the little hierarchy problem). In order to overcome this

one could, e.g., use a so-called log prior that is flat in logm. Therefore freedom of

choosing π may be considered as an advantage of the Bayesian approach. In the case

4One should formally write ppd|ηq rather than ppd|ξq, but this change in notation is well justified
by the fact that the parameters η determine the values of ξ, which are then explicitly compared
with data d. See also a discussion of theoretical uncertainties in Section 6.1.2.
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of the nuisance parameters ψ we typically construct priors as Gaussian probability

densities with mean and variance dictated by experimental data.

When presenting results of a Bayesian scan as 1D or 2D plots, one needs to

integrate posterior probability densities over all remaining parameters, i.e., use

marginalize posteriors, e.g.,

ppθ1, θ2|dq “

ż

ppη|dq dθiě3 dψ. (6.13)

6.1.2 Likelihood function and χ2

The likelihood function L is the probability density of obtaining some experimental

data d given the values of derived variables ξ that are themselves determined by

the parameters η. However, one should mention an important caveat here. For

a given η the calculated values of derived variables ξ are not necessarily equal to

“true” derived variables ξ̂. The latter ones would be obtained if the calculation was

exact. The former suffers from various theoretical uncertainties and approximations.

Unfortunately, we do not know the “true” ξ̂ and rather have to compare ξ with

the data d, which introduces an additional error. We take this into account by

integrating over ξ̂ with a proper probability density,

L “ ppd|ξq “

ż

ppd|ξ̂q ppξ̂|ξq dξ̂. (6.14)

We will further assume that all the derived variables ξ̂i are pairwise independent

and that most often a single probability densities ppξ̂i|ξiq are of Gaussian type with

mean values ξi and theoretical errors τi. Similarly for the experimental data we will

take average values di and an experimental errors σi. Thus Eq. (6.14) leads to

Li “ ppdi|ξiq “
1

a

2π pσ2
i ` τ

2
i q

exp

ˆ

´
pdi ´ ξiq

2

2pσ2
i ` τ

2
i q

˙

. (6.15)

In this case, the total likelihood is a product of single-variable likelihoods

L “ ΠiLi. (6.16)

In a construction of the total L we initially assume that the variables ξi have

marginal likelihood of Gaussian type, Eq. (6.15). We further assume that Eq. (6.16)

holds, which means that the ξis are independent random variables.5 In our statistical

5If we only assume that the ξis are pairwise uncorrelated, then this will not guarantee that
a joint probability distribution of ξ “ pξ1, . . . , ξnq is a multi-dimensional Gaussian function. To
see this let us, e.g., consider two random variables X and Y “ XW such that X has a normal
distribution N p0, 1q and W has a Rademacher distribution. Then X and Y both have the same
normal distribution and are uncorrelated but their joint distribution is not a two-dimensional
Gaussian function. X and Y are also not independent.



70 Bayesian approach and constraints

approach the assumption of independent random variables is strictly fulfilled for the

parameters ηi and this results in a possible decomposition of prior,

πpηq “ Πiπpηiq. (6.17)

Because of this, we can set a prior for each model parameter independently. In

principle, the derived variables ξi do not have to be independent.6 However, we

will assume for simplicity that Eq. (6.16) holds, which is expected to be a valid

approximation as long as we do not over-constrain our model, i.e., do not use too

many ξis.

Importantly, for some of the experimental limits imposed in our analysis, e.g.,

SUSY searches at the LHC, we will not use the Gaussian approximation. However,

we will still use Eq. (6.16) for the total likelihood which is valid (by definition) for

any set of independent random variables with not necessarily Gaussian likelihood.

These specific cases will be described in Section 6.3 separately for each relevant

constraint.

In order to quantify the difference between the observables ξi and the data di for

a given point in a SUSY model we will follow an approach of the χ2-test, i.e., we

will calculate

χ2
“
ÿ

i

˜

di ´ ξi
a

σ2
i ` τ

2
i

¸2

. (6.18)

If random variables ξi have Gaussian distributions N pdi,
a

σ2
i ` τ

2
i q, χ

2 in Eq. (6.18)

has a χ2-distribution. For simplicity we normalize the likelihood functions in

Eq. (6.15) to unity, i.e., we neglect a factor 1{
a

2πpσ2
i ` τ

2
i q in front, and obtain

χ2
“ ´2

ÿ

i

lnLi. (6.19)

In the following, for simplicity we will use Eq. (6.19) to calculate χ2 even in some

rare cases when the likelihood function Li will not be of Gaussian type. We will

always normalize Li to unity in order to make sure that for a perfect fit χ2 vanishes.

6A simple pedagogical example goes as follows. Suppose X, Y are independent random variables
uniformly distributed over a range r0, 1s and we construct new random variables W “ X ` Y and
Z “ X ´ Y . They are not independent since, e.g.,

0 “ P pW ą 1.9, Z ą 0.9q ‰ P pW ą 1.9qP pZ ą 0.9q.
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6.1.3 Confidence and credible intervals

Using χ2 we will construct the confidence intervals. By definition a p1´αq confidence

interval contains the true value of a parameter with a probability equal to 1 ´ α.7

They can be constructed in terms of the difference between actual values of χ2 and

its minimum value χ2
min obtained for the best fit point in the whole model8

∆χ2
“ χ2

´ χ2
min. (6.20)

Points in the parameter space lie inside the p1 ´ αq confidence interval if ∆χ2 ď

∆χ2
crit,1´α,N , where N denotes the number of degrees of freedom that corresponds

to the dimension of the confidence interval. For example ∆χ2
crit,95%,2 “ 5.99 for the

two-dimensional interval with 95% confidence level (CL).

Within the Bayesian approach we construct p1´αq credible regions that contain

1 ´ α portion of the posterior. In a two-dimensional case we choose the smallest

of all such possible intervals. In one-dimensional plots we define p1 ´ αq credible

region by assuming that both above and below this region the remaining posterior

corresponds to α{2 probability (so-called equal-tail-probabilities ordering rule). The

credible regions in general depend on parametrization. This means that an actual

set of points in a p1 ´ αq credible region can change when one marginalizes the

posterior with respect to different parameters. They also do not have to contain the

best fit point in contrast to the confidence intervals.

6.2 Scanning technique

So far we have described the statistical treatment of various points in the parameter

space of a SUSY model that allows us to assess the validity of a given point in the

parameter space, η P Θ, as well as the credibility of the whole model. Ideally one

would like to find L for each η, rewrite it in terms of the posterior and present results

by a proper marginalization. However, this procedure meets obvious difficulties. For

instance, in numerical scans of the parameter space Θ only a small fraction of points

can be evaluated within a reasonable computing time. The issue arises of how to

efficiently sample Θ and find the best fitted regions. A naive grid scan is in most

cases not manageable, e.g., for a rectangular grid in η “ pη1, . . . , ηnq parameters

space, with n being the number of parameters (model’s and nuisance), performing

m steps in each dimension requires mn point evaluations in total. This can easily

become an unreasonably large number, unless one limits m to be a very small integer.

7In order to make this definition unique one often assumes additionally that the p1´ αq confi-
dence interval is the most compact of all the intervals satisfying the aforementioned condition. In
our approach the confidence intervals are defined uniquely and independently of reparametrization
by a construction described in the text.

8We approximate χ2
min with the lowest value of χ2 obtained in the scan.
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However, in this case the scan resolution will typically be not satisfactory enough

to find interesting regions in Θ.

One way to solve the sampling efficiency problem is provided by a wide family

of numerical methods based on random scans that are commonly referred to as

Markov Chain Monte Carlo (MCMC) methods [201]. MCMC methods allow one

to dramatically improve the sampling efficiency in comparison with grid scans.

However, in general they still require a major computing effort to derive reliable

results.

One further step in increasing the sampling efficiency that we employ in our

numerical analyses can be performed thanks to the Nested Sampling algorithm [202]

implemented in the MultiNest computer package [203, 204]. The method was

initially proposed for computing the evidence but the posterior can be inferred from

the scan. We introduce a so-called prior volume

Xpλq “

ż

Lěλ
πpηq dη. (6.21)

As can be easily seen, 0 ď Xpλq ď 1. One can then formally rewrite Eq. (6.12)

using a volume element dX

Z “
ż 1

0

L dX, (6.22)

which allows one to replace a multidimensional integral by a one-dimensional one

that is evaluated in the algorithm. In order to calculate Z one needs to identify the

regions with the highest L that contributes the most to the integral in Eq. (6.22). We

first randomly (according to the prior) find a set of N initial, so-called live, points

and order them by the likelihood L1 ă . . . ă LN . We then discard point with the

lowest likelihood L1 and replace it with a new point that has larger likelihood Lnew.

This means that we effectively look for a new point within an iso-likelihood contour

L ą L1. Next, the procedure is repeated with min rLnew,L2s etc. A schematic plot

presenting the main idea of the Nested Sampling algorithm is shown in Fig. 6.1.

The real power of the Nested Sampling algorithm manifests itself in the way how

Xi at each step can be estimated without performing a multi-dimensional integral

in Eq. (6.21) (for details see [202])

Xi « exp

ˆ

´
i

N

˙

. (6.23)

The evidence can then be evaluated from Eq. (6.22), e.g., by applying the trapezoidal

rule

Z “
M
ÿ

i“1

Liwi, (6.24)
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parameters. We note that, compared to [2], the chi-square expression employed in [3]

no longer contains an extra term whose role was to suppress (somewhat artificially) the

weight of the FP region. Also, contrary to refs [2, 3], Ωχh2 cannot be used to unambigously

determine m0 in terms of the other CMSSM parameters if one also varies SM parameters,

e.g., Mt (compare fig. 4 in ref. [12]). Furthermore, there are some indications that the code

used in refs [2, 3] (FeynHiggs) to derive the light Higgs mass value might disagree with

the results obtained using SOFTSUSY (employed here) [54]. However, without a detailed

comparison of the numerical outputs (which we have invited the authors of [3] to carry

out), we are at present unable to track down conclusively the reasons for the discrepancies

between our conclusions.

Acknowledgements

The authors wish to thank Louis Lyons for many useful discussions and suggestions, as well

as Jim Berger, Merlise Clyde, Steffen Lauritzen, Tom Loredo and Nicolai Meinshausen,

for comments and suggestions. We are grateful to Rachid Lemrani for setting up the

online plotting tools and for developping the SuperEGO interactive routines (based on code

by Sarah Bridle). R.T. is partially supported by the Lockyer Fellowship of the Royal

Astronomical Society, St Anne’s College, Oxford, the Science and Technology Facilities

Council (UK) and by the EU FP6 Marie Curie Research & Training Network “UniverseNet”

(MRTN-CT-2006-035863). F.F. is supported by the Cambridge Commonwealth Trust,

Isaac Newton and the Pakistan Higher Education Commission Fellowships. L.R. is partially

supported by the EC 6th Framework Programmes MRTN-CT-2004-503369 and MRTN-CT-

2006-035505. R.RdA is supported by the program “Juan de la Cierva” of the Ministerio

de Educación y Ciencia of Spain. The authors would like to thank the European Network

of Theoretical Astroparticle Physics ENTApP ILIAS/N6 under contract number RII3-CT-

2004-506222 for financial support. The computation was carried out largely on the the

Cambridge High Performance Computing Cluster Darwin and the authors would like to

thank Dr. Stuart Rankin for computational assistance.

A. Nested Sampling and the MultiNest algorithm

Figure 19: Cartoon illustrating (a) the posterior of a two dimensional problem; and (b) the

transformed L(X) function where the prior volumes Xi are associated with each likelihood Li.

– 35 –

Figure 6.1: Cartoon illustration of Left panel: iso-likelihood contours in the case
of two-dimensional scan and Right panel: likelihood function values Li with corre-
sponding prior volumes Xi. Taken from Ref. [205].

where Li is the likelihood for the point replaced in the ith step, M is the total

number of replacements (steps) and “weights” are equal to wi “ pXi´1 ´ Xi`1q{2.

The posterior for the “replaced” points can be derived from9

pi “
Liwi
Z . (6.25)

BayesFITS package Having discussed the basic features of the sampling al-

gorithm we will now move to a brief description of a numerical tool used by us

when performing scans over the parameter space of a SUSY model, namely the

BayesFITS package (see [206, 207]). BayesFITS is an interface between several

external, publicly available numerical packages. In particular, the aforementioned

Multinest [203, 204] constitutes the core of the package as the sampling tool. The

SUSY mass spectrum is computed with SOFTSUSY [208] for the MSSM and with

NMSSMTools [209, 210, 211] for the NMSSM. This is then taken as input to compute

various observables. We use SuperIso Relic [212] to calculate B-physics related

branching ratios (see Section 6.3.4) and pg ´ 2qµ (see Section 6.3.5). The DM ob-

servables, such as the relic density and direct detection cross sections, are calculated

with MicrOMEGAs [144, 213, 214, 215]. The electroweak observables mW , sin2 θeff and

∆MBs (see Section 6.3.6) are calculated using FeynHiggs [216].

The BayesFITS package is sometimes used by us just as a very efficient sampling

tool that allows us to simply identify physically interesting regions of a given SUSY

9In the case of the live points that remain at the end of a scan (not having been replaced before)
we also apply Eq. (6.25) with the weights wi “ XM{N , i.e., we assume for simplicity that they
have almost equal values of the likelihood and we divide corresponding prior volume into equal
parts. This is justified since (close to the convergence) the remaining live points have L « 1.
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model. We then typically present results in terms of two-dimensional 95% confidence

intervals instead of 2σ credible regions characteristic for the Bayesian approach.

6.3 Constraints included in the likelihood func-

tion

In this section we will describe the constraints imposed on SUSY models in our

Bayesian scans via the likelihood function. As mentioned in Section 6.1.2, most of

them are implemented assuming Gaussian distribution given by Eq. (6.15). The

other cases will be described separately for each contribution to the likelihood. The

relevant parameters for the probability distributions are given in Table 6.1.

6.3.1 Dark matter relic density and (in)direct detection lim-

its

DM relic density By far the most significant influence on the parameter space

of SUSY models is provided by the relic density constraint. It is implemented via

the Gaussian likelihood. When dealing with the Sommerfeld enhancement in the

wino DM case, we use enhancement factors from [142].

DM direct detection The other important constraint associated with neutralino

DM comes from direct searches through elastic scatterings of DM particles off nuclei.

As the neutralinos are WIMPs with non-relativistic velocities, one typically applies

the v Ñ 0 limit when calculating cross section. The corresponding cross section

can then be decomposed into two contributions: the spin-independent (SI) and the

spin-dependent (SD), σ » σSI ` σSD. In general for heavy nuclei targets the SI

contribution dominates. It reads

σSI
“

4µ2
A

π

“

Z fp ` pA´ Zqfn
‰2
, (6.26)

where Z and A are the nuclei electric charge and atomic number, respectively.

µA “ pmχMAq{pmχ ` MAq is the WIMP-nucleus reduced mass with MA being

nucleus atomic mass, while fp and fn are the amplitudes for DM scattering on

proton and neutron, respectively. Typically fp « fn and one can rewrite Eq. (6.26)

as

σSI
«

4µ2
A

π
A2 f 2

p “ σSI
p

µ2
A

µ2
p

A2, (6.27)

where µp “ pmχmpq{pmχ `mpq, mp is the proton mass and we defined

σSI
p “

4µ2
p

π
f 2
p . (6.28)
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FIG. 3: (Color online) Direct detection search limits in the mX vs. σSI
p plane. For comparison we show the latest theory

predictions for the usual case of the CMSSM with µ > 0 from global analyses of Buchmueller et al. (χ2 approach) [142] and
Roszkowski et al. (Bayesian approach) [565] (updated from [475]). The pMSSM region of Cahill-Rowley et al. has a much
wider region [154]. The yellow region below is the neutrino background [114].

In addition, there exist a variety of claims from indirect detection experiments. The recent AMS-02 confirmation
of an unexpected rise in the positron energy distribution confirms previous PAMELA data and may hint that WIMP-
type DM can be around 700 GeV–1 TeV [21]. However, an alternative explanation occurs in that positrons may be
created from ordinary pulsar processes [92, 363, 553], so it is unclear if this signal is really an indication of WIMP
dark matter. The Fermi-LAT gamma ray telescope also sees a possible anomaly in the high energy gamma ray
spectrum [621]. All these claims are weakened by large and often poorly understood astrophysical backgrounds.

A fourth problem with the thermal WIMP-only CDM scenario is that it ignores other matter states that may
necessarily come along with the DM particle in a complete theory and which therefore are likely to also play a role in
cosmology. Such a case is illustrated by the gravitino problem in SUSY models. In the case of gravity mediation, one
expects the presence of gravitino G̃ with mass m3/2 (also denoted by mG̃) not far above the weak scale.8 Gravitinos,

8 The simplest gauge-mediation and anomaly-mediation scenarios
seem under pressure by the measured value of the Higgs mass at
mh � 125 GeV [68].

Figure 6.2: Upper limits on σSI
p as a function of the WIMP mass from various

DM direct detection experiments. Solid blue (purple) line corresponds to LUX
(Xenon100). Dashed purple line is a projected limit for future Xenon1T experiment.
The yellow region on the bottom is the neutrino background. Taken from Ref. [22].

It is this last quantity that we will be comparing with experimental upper limits.

Similarly one can obtain the cross section for neutron σSI
n by replacing µp Ñ µn and

fp Ñ fn, but it is basically the same.

Neutralino DM can scatter off of quark via s-channel squark exchange, t-channel

CP-even Higgs or Z boson exchange. It is also possible for χ to scatter off of gluons

via one-loop diagrams. In the case of EWIMP DM, the cross sections are by far too

small to be observed. Hence we do not impose DD constraints on the gravitino or

the axino LSP scenarios.

The advantage of using heavy nuclei in detectors can be clearly see from

Eq. (6.27) where σSI „ µ2
AA

2. In particular, in the two DD experiments that

we will use to constrain SUSY models, i.e., the Xenon experiment with about 100 kg

target material (Xenon100) and the Large Underground Xenon (LUX) experiment,

the target is made of liquid xenon.10 Current upper bounds on σSI
p are shown in

Fig. 6.2. In our Bayesian scans we will treat these limits as a sharp cut-off, i.e.,

we will assign L “ 1 for all the points lying below the exclusion lines, while L “ 0

for the remaining ones. Such an approach is often acceptable, since most of phe-

nomenologically interesting regions reach σSI
p well below the current limits. For the

points lying close to the exclusion lines, exhibit the whole FP region for µ ą 0,

a more proper and elaborate treatment taking into account uncertainties was used

in [217].11

10The other advantages of using xenon are, e.g., high density and scintillation yield.
11As can be seen from Fig. 6.2, for sufficiently low σSI

p , direct searches of DM will meet another
difficulty that comes from nuclear recoils due to the elastic scatterings of solar, atmospheric and
diffuse supernovae neutrinos. Although this is not a strict lower limit (“neutrino floor”) for
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One should mention here that a DM signal with mass of the order of several GeV

has been claimed by some DD experiments. However, it has not been confirmed by

several other experiments including Xenon100 [218, 219] and LUX [124].

DM indirect detection Neutralinos as DM particles freeze-out from thermal

plasma in the early Universe. After that point, their subsequent annihilations play

a negligible role in determining the DM relic density. Nevertheless, some annihilation

events indeed still take place and can give rise to interesting signals in astrophysical

observations. In order to increase expected signal rates one typically looks for such

signatures from nearby regions of the Universe with potentially large DM density,

i.e., from the center of our Galaxy or from nearby galaxy clusters.

The list of possible signals consist mainly of (anti-)protons, (anti-)electrons,

γ-rays and energetic neutrinos. However, in DM indirect detection (ID) experiments

one needs to take into account various sources of astrophysical background. Because

of such background it turns out that it is particularly difficult to use cosmic protons

or electrons to observe signals from DM annihilations. Several possible signals of

DM in ID experiments have already been claimed, but the nature of these results is

still a matter of discussion and its possible astrophysical origin is taken into account.

In the numerical analyses presented in this thesis we do not impose ID limits

on bino and higgsino DM due to their relative weakness. However, the situation is

entirely different in a scenario with wino DM as will be discussed in Section 8.1.

Gravitino or axino DM candidates do not lead to observable effects in DM ID

due to annihilations, but could potentially generate an interesting signal from decays

in R-parity violating scenarios. An example of such an analysis with a possible

explanation of 3.5 keV line that incorporates decaying gravitino DM with mass

mG̃ » 7 keV was given in [170]. For a similar study in the case of axino DM

see [220, 221].

6.3.2 Higgs boson mass and signal rates

Higgs boson mass The recent discovery of the Higgs boson has introduced an-

other important constraint on SUSY models. It is implemented as a Gaussian like-

lihood. The theoretical error of mh that we incorporate is due to residual difference

between calculations using different approaches and renormalization schemes. It is

estimated in the literature to be of the order of 2´ 3 GeV [59].

When discussing the CNMSSM in Section 7.2 we take into account the possibility

that the lightest Higgs scalar h1 has mass below 126 GeV and remains invisible in

the current searches, while the observed signal corresponds to the second-to-lightest

scalar h2. In this case we replace mh1 with mh2 in the likelihood function. In another

experimentally accessible values of σSI
p , without a proper treatment of this background one would

not be able to successfully look for WIMP DM giving such a low scattering cross section.



6.3 Constraints included in the likelihood function 77

scenario we consider a mass degeneracy mh1 » mh2 » 126 GeV. According to the

discussion in Section 6.1.2, we assume that in our statistical approach the random

variables mcalc
h1

and mcalc
h2

(calculated) are independent. Thus we employ a product

likelihood Lmh “ Lmh,1 Lmh,2 with the Lmh,i being an appropriate Gaussian function.

A similar approach is used in Section 7.3 in the context of the partially non-universal

version of the CNMSSM where we consider a possible mass degeneracy between h1

and lighter pseudoscalar a1 with mh1 » ma1 » 126 GeV.

Higgs boson signal rates In the initial announcement of the Higgs boson dis-

covery in the year 2012 an enhancement in the hÑ γγ decay channel was reported

by ATLAS, with µpγγq “ 1.9 ˘ 0.5, as well as by CMS, with µpγγq “ 1.6 ˘ 0.4,

where µpXq is the ratio of the observed Higgs production cross section to the one

predicted by the SM in a Higgs decay channel h Ñ X. On the other hand, the

updated values of µpZZq by CMS [222] and ATLAS [223] were, within 1σ error,

SM-like. We took this into account when performing scans at that time.12

We calculated for both Higgs bosons h1,2 the reduced cross sections

RhipXq “
σpppÑ hiq

σpppÑ hSMq
ˆ

BRphi Ñ Xq

BRphSM Ñ Xq
, (6.29)

for a given Higgs decay channel X. Equation (6.29) can be approximated by

RhipXq “
ÿ

Y P prod

RY
hi
pXqRSMpY q , (6.30)

where the sum runs over the Higgs production channels Y (with Y “ gg for

gluon-fusion, V V for vector boson-fusion and Higgs-strahlung off a Z boson, tt̄ and

bb̄ for associated Higgs production with top and bottom quarks, respectively). The

ratios RSMpY q ” σpppÑ Y Ñ hSMq{σpppÑ hSMq were obtained from public tables

provided by the LHC Higgs Cross Section Working Group [224, 225] for
?
s “ 8 TeV.

The reduced cross sections RY
hi
pXq for the individual production channels were

calculated as

RY
hi
pXq ”

σpY Ñ hiq

σpY Ñ hSMq
ˆ

BRphi Ñ Xq

BRphSM Ñ Xq

“ C2
pY q ˆ

Γphi Ñ Xq{Γtot

ΓphSM Ñ Xq{ΓSM
tot

“ C2
pY qC2

pXq
ÿ

FP SM decay

BRphi Ñ F q

C2pF q
, (6.31)

12We only used the dominant decay channels where an about 5σ excess had already been
observed.
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where the sum runs over the decay channels F open to the SM Higgs boson and

quantities CpXq are called the Higgs reduced couplings (the ratio of the couplings

of the Higgs boson with a given mass to a pair of X particles within SUSY, to the

ones calculated in the SM).

In the case of mass-degenerate h1 and h2 only the combined production rate for

h1 and h2 needed to be equal to RobspXq. Hence the observation likelihood was

defined as

LobspXq “ exp
 

´ rRobspXq ´ pRh1pXq `Rh2pXqqs
2
{2pσ2

X ` τ
2
Xq

(

. (6.32)

In addition to constraining hsig, we also required that the second of the two light-

est CP -even Higgs bosons remained “hidden”, i.e., it must had escaped detection at

the LHC (or at LEP if light enough). In the following we refer to this as hhid. We

constructed an “exclusion” likelihood. Following the procedure outlined in [199] for

the exclusion bounds we first defined a step function,

Lpstepq
excl pmhhid

, Rhhid
pXq, µ95pXqq “

#

1 for Rhhid
pXq ď µ95pXq

0 for Rhhid
pXq ą µ95pXq,

(6.33)

where µ95pXq is the value of the signal strength modifier µpXq ” σhhid
pXq{σhSM

pXq

that was excluded at 95% C.L. by the LHC searches for a Higgs with a given mass

mhhid
, obtained from the exclusion plots published by the CMS Collaboration[226].

The LEP exclusion limits were also taken into account.

In order to include the theoretical error on the true values of the reduced cross

section and the Higgs mass, Lpstepq
excl became then smeared out further by convolving

it with Gaussian functions centered around their true theoretical values R̂hhid
pXq

and m̂hhid
, respectively

Lpsmearq
excl pmhhid

, Rhhid
, µq “

ż

dm̂hhid

ż

dR̂hhid
Lpstepq

excl

`

m̂hhid
, R̂hhid

, µq

ˆ exp

„

´
pm̂hhid

´mhhid
q2

2τ 2



exp

«

´
pR̂hhid

´Rhhid
q2

2τ̃ 2

ff

, (6.34)

where the theoretical errors were taken to be τ “ 3 GeV and τ̃ “ 15% ¨ Rhhid
[227],

respectively. The exclusion likelihood was calculated for X “ γγ, ZZ, WW and ττ .

Finally, in order for our exclusion criterion to be consistent with our criterion for

signal observation at 125.8 ˘ 3.1 GeV (with theory and experimental errors added

in quadrature), we further imposed the condition

LexclpXq “

#

0 for 122.7 GeV ď mhhid
ď 128.9 GeV,

Lpsmearq
excl pXq elsewhere.

(6.35)
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Figure 6.3: Left panel: Our approximation of the CMS razor 4.4 fb´1 likelihood
map for the CMSSM. tan β “ 3 and A0 “ 0 are fixed. The thick solid line shows
the 95.0% CL (2σ) bound. It approximates the CMS 95% CL exclusion contour,
shown by the dashed black line. The thin solid line and the thin dashed line show our
calculations of the 68.3% CL (1σ) the 99.73% CL (3σ) exclusion bound, respectively.
The dotted gray line shows the ATLAS 95% CL exclusion bound. Taken from
Ref. [206]. Right panel: The 95% C.L. lower bounds from our razor likelihood for
the CNMSSM, for different values of λ and Aκ, compared with the experimental line
(in dashed black). Taken from Ref. [207].

6.3.3 Direct searches for supersymmetric particles

In our Bayesian analyses we need also to take into account the LHC lower limits on

the SUSY mass particles that come from lack of SUSY signal in data so far. We

focus on the SUp3qc sector of the MSSM, where bounds are the strongest.

When performing CMSSM and CNMSSM (see Sections 7.1 and 7.2) analysis we

derived our LHC likelihood for the CMS search [228] following the so-called razor

method [229]. We generated a two-dimensional grid of points in the (m0, m1{2)

plane, namely the likelihood map. The other parameters can be shown to play a

much less important role [230, 231], because they have little effect on the squark and

gluino masses. For each point in a grid we assigned a value of the likelihood function

describing exclusion limits, i.e., we put L « 1 for allowed points and L « 0 for points

corresponding to SUSY particle masses that were well below the exclusion limits.

The values of L for points close to the exclusion limits were obtained by approximate

razor analysis that followed closely the full one of the CMS Collaboration [229]. A

similar approach was applied when discussing a ten-parameter version of the MSSM

(p10MSSM) in Chapter 8. However, in this case we constructed a likelihood map in

the gluino and squark mass plane pmg̃,mq̃q.



80 Bayesian approach and constraints

We present our results for the CMSSM in Fig. 6.3 (left panel) as the 68.3% (1σ),

95.0% (2σ) and 99.73% CL (3σ) limits obtained from our likelihood. The reproduced

95% CL razor contour for the CNMSSM is shown in Fig. 6.3 (right panel). We also

show that the dependence of the limit on λ and Aκ is negligible.

6.3.4 B-physics

Rare leptonic decays of neutral B mesons in the SM are absent at tree-level and

appear dominantly at one-loop level in W -box and Z-penguin diagrams. Moreover,

the corresponding branching ratios (BRs) of these flavor changing neutral current

(FCNC) decays are helicity suppressed (for a review see, e.g., [232, 233]). Because

of this, it is possible for a loop-level supersymmetric contributions to become com-

parable with the SM values. Thus one expects that SUSY could manifest itself in

a precise determination of such BRs. Conversely, this can also serve as an useful

constraint on SUSY models when comparing with experimental data.

Similarly the effect of SUSY can be seen in radiative inclusive decays of B meson

that is driven by the process b Ñ sγ (for a review see, e.g., [232, 234]) or in the

Bs ´ sBs mixing (for a pedagogical introduction see [235]).

Bs Ñ µ`µ´ One such example of a rare process is the decay of strange meson Bs,

composed of b̄s pair of quark and anti-quark, to a pair of muons. The corresponding

BR is proportional to [236, 237, 238, 239]

BRpBs Ñ µ`µ´q 9

"

´

1´
4m2

µ

MBs

¯

|F 2
S | ` |FP ` FA|

2

*

, (6.36)

where mµ and MBs denotes the muon and the Bs meson mass, respectively. FA, FS,

and FP are the axial-vector, pseudo-scalar and scalar form factor, respectively.

In the SM the dominant contribution to BRpBs Ñ µ`µ´q is associated with

FA “ ´imµ fBs C10, where fBs is the BS decay constant and C10 is the corresponding

Wilson coefficient. Other terms are suppressed by mµ{MW , where MW is the

W -boson mass. Since Bs is a flavor eigenstate, rather than a mass eigenstate,

when comparing with experimental data, one uses a value of ĎBRpBs Ñ µ`µ´q that

is flavor-averaged and time-integrated over Bs ´ sBs oscillations [240]. According to

recent calculations [241], its SM value is equal to

ĎBRpBs Ñ µ`µ´q “ p3.65˘ 0.23q ˆ 10´9. (6.37)

In the case of SUSY the FS and FP terms can become comparable to the FA

one. Their dominant dependence on the SUSY parameters [242, 243] can be recast
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as [115]

FS,P 9
tan3 β

m2
A

FLO, (6.38)

where for the phenomenologically interesting regions of SUSY models that we will

consider,

FLO » ´µAtD3
m2
t

m2
t̃1
´m2

t̃2

, (6.39)

where D3 „ 0.1´ 0.3, mt is the top mass, while mt̃1 and mt̃1 denote the mass of the

lighter and heavier stop, respectively. As can be seen ĎBRpBs Ñ µ`µ´q in SUSY is

enhanced for large tan β, µ and |At{MSUSY| and relatively small mA.

The choice of the theoretical error τBsµµ in the corresponding Gaussian likelihood

follows [244]. We subtract the uncertainty, about 1%, due to the top pole mass

since it is included by adding a corresponding nuisance parameter to our scans (see

Section 6.4). The recent calculation suggests a reduction of τBsµµ in the SM, as can

be seen in Eq. (6.37).

Bu Ñ τν In our analysis we also take into account the Bu meson (ub̄) leptonic

decay to tau and anti-neutrino. Because of the helicity suppression, the decay into

τ is dominant, in comparison with the decays into muon or electron, due to lepton

mass hierarchy mτ ą mµ,me. In the SM the decay occurs via W -boson exchange.

In the MSSM there appears an additional decay channel via charged Higgs boson

that can interfere both constructively and destructively with the SM contribution.

The ratio between the SM and the MSSM branching ratios is given by [245]

BRpBu Ñ τνqMSSM

BRpBu Ñ τνqSM
«

«

1´ tan2 β

ˆ

mBu

mH˘

˙2
ff

. (6.40)

Current average [7] of the experimental results obtained by Bell [246, 247] and

BaBar [248, 249] Collaborations reads BRpBu Ñ τνqexp, aver. “ p1.14˘ 0.23q ˆ 10´4.

However, only the recent Belle analysis [247] has been updated using the hadronic

B decay sample. We use the results of this analysis to determine the parameters of

the Gaussian likelihood in our recent scans. The theoretical uncertainty results from

uncertainties in the CKM matrix elements, as well as from the Bu meson lifetime

and its decay constant [205].

As can be derived from Eq. (6.40), an enhancement in BRpBu Ñ τνqMSSM in

comparison with the SM can be obtained for tan β{mH˘ ą p0.25 ´ 0.3qGeV´1.

When tan β{mH˘ « 0.19 GeV´1 both W -boson and H˘ contributions cancel each

other. However, the ratio tan β{mH˘ is often significantly lower leading to BRpBu Ñ

τνqMSSM « BRpBu Ñ τνqSM.
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B̄ Ñ Xsγ Another constraint associated with B-physics comes from the B̄ meson

(d̄b) decay into a hadron Xs with a strange flavor. It is mediated by the FCNC

process b Ñ sγ, which is loop-suppressed in the SM 13 and therefore can obtain

important contributions from SUSY particles. The corresponding branching ratio

in the SM was calculated in [251, 252] and the result reads

BRpbÑ sγqSM
“ p3.15˘ 0.23q ˆ 10´4. (6.41)

In the context of SUSY penguin loop diagrams involving W -boson are accompanied

by charged Higgs, chargino, neutralino and gluino loops (see, e.g. [253, 254]).

Depending on which diagrams dominate the SUSY contribution can be proportional

to 1{ tan β or At.

∆MBs Bs and B̄s are flavor eigenstates rather than mass eigenstates. They mix

non-trivially to form two mass eigenstates: Bs,l (lighter) and Bs,h (heavier). A

transition between Bs and B̄s may occur via box diagrams involving quarks and

the W -boson in the SM, as well as, e.g., squarks, gluinos, charginos, Higgs bosons

in SUSY. As a result one can observe oscillations between pure flavor states with

a frequency determined by the mass difference between Bs,l and Bs,h. The SM

prediction of this quantity is currently equal to [235]

∆MSM
Bs “ p17.3˘ 1.5q ps´1. (6.42)

When calculating SUSY contributions we follow [254, 255].

6.3.5 Anomalous magnetic moment of muon

For a particle with mass m, electric charge e and spin ~S the magnetic moment ~µ

can be written as

~µ “ g
´ e

2m

¯

~S, (6.43)

where g is the gyromagnetic ratio that is equal to g “ 2 at tree level in QED for ele-

mentary spin-1{2 particles. Involving loop diagrams, strong and weak interactions,

as well as (potentially) new physics like SUSY leads to the so-called anomalous

magnetic moment

a “
1

2
pg ´ 2q, (6.44)

that describes the difference g ‰ 2. This quantity for muon was measured with

great precision at the Brookhaven national Laboratory [256]

aexp
µ “ 11 659 208.0p6.3q ˆ 10´10. (6.45)

13In can be also CKM suppressed, see [250].
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The SM prediction of aµ can be decomposed to QED, weak and hadronic contribu-

tions. The QED one is dominant and well theoretically controlled. The weak contri-

bution is the smallest, although within the precision of the experimental result. In

general it has similar magnitude to the corrections expected from new physics [257].

The most problematic part is associated with hadronic processes. It can be further

decomposed into vacuum polarization and light-by-light scatterings contributions.

The former can be derived from experimental data in electron-positron collisions or

hadronic decays of tau [258]. However, these methods lead to the results that are not

entirely consistent with each other [257]. The light-by-light contribution cannot be

inferred from experiment. A discrepancy between its various theoretical evaluations

is one of the important sources of the theoretical uncertainty in aµ.

An enhancement in aµ in the context of SUSY is mainly due to an increase of the

Yukawa coupling of muon by a factor of 1{ cos β « tan β for large tan β. This, e.g.,

enters into the coupling of muon to Higgs bosons and higgsinos in corresponding loop

diagrams. Another contributions are associated with loop diagrams involving, e.g.,

bino, wino or squarks. To summary the SUSY contribution to the muon anomalous

magnetic moment is approximately given by (see, e.g., [257])

δaµ “ aMSSM
µ ´ aSM

µ « 13ˆ 10´10 sgnpµq tan β

ˆ

100 GeV

mµ̃

˙2

, (6.46)

where mµ̃ is the smuon mass.

6.3.6 Electroweak precision observables

Another pair of constraints is associated with two of the fundamental parameters

used in a description of the EWSB, namely the W -boson mass MW and the effective

weak mixing angle sin θeff. They both can acquire SUSY loop corrections that could

be seen after comparing the SM calculations with experimental values.

W -boson mass The dominant SUSY contributions to MW at one loop level stem

from stops and sbottoms via gauge-boson self energies [259, 260]. They are typically

written in terms of ∆ρ that is equal to

∆ρ “
ΣZp0q

M2
Z

´
ΣW p0q

M2
W

, (6.47)

where ΣW p0q and ΣZp0q are transverse parts of the unrenormalized W - and Z-boson

self energies at zero momentum transfer, respectively (for more details see [261]).

The correction to the W -boson mass can be approximated by [261]

δMW «
MW

2

c2
W

c2
W ´ s

2
W

∆ρ, (6.48)



84 Bayesian approach and constraints

where cW “ cos θW and sW “ sin θW are cosine and sine of the weak mixing angle

(see below), respectively.

Effective weak mixing angle At tree level after EWSB the weak mixing angle

satisfies

sin2 θW “ 1´
M2

W

M2
Z

. (6.49)

However, e.g., in the context of the MSSM, this quantity14 receives corrections that

predominantly arise from loops involving squarks [262], and can be recast as

δ sin2 θeff «
c2
W s2

W

c2
W ´ s

2
W

∆ρ. (6.50)

6.4 Nuisance parameters

When performing our Bayesian analyses we also take into account uncertainties

in experimental determination of selected SM quantities ψi that themselves can

have a non-negligible influence on calculated values of the observables described in

Section 6.3. To implement this effect we allow these nuisance parameters to vary

from their experimental mean values dψi according to a Gaussian prior distribution

with the corresponding experimental standard deviations σψi . We treat as the

nuisance parameters: the top mass Mt, the bottom mass mb, the strong coupling

constant αs and the fine-structure constant αem.

Top mass Mt One nuisance parameter that we employ is the top pole mass

defined in the perturbative regime as the pole in top quark propagator. We follow

a PDG approach [7] that identifies the top pole mass with a top mass parameter in

Monte Carlo event generators. The latter is obtained by fitting the reconstructed

kinematic distributions to experimental data [263, 264]. We add in quadrature

statistical and systematic uncertainties (1σ).

Bottom mass mbpmbq
MS The running mass of the bottom quark in the MS

renormalization scheme is related to the pole mass Mb by (see [7] and references

therein)

Mb “ mbpmbq
MS
t1` 0.09` 0.05` 0.03u , (6.51)

which is valid up to a three-loop level. The choice of the renormalization scale,

µ “ mMS
b , is a convention. The bottom mass Mb can be inferred from measured

14Strictly, the quantity in Eq. (6.50) is the so-called leptonic mixing angle that differs no
more [261] than about 1% from sin2 θW defined in the on-shell renormalization scheme that was
used in Eq. (6.49),
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energy spectra of the products of B-meson decays [265, 266, 267, 268]. Using

Eq. (6.51) one can then obtain mbpmbq
MS with the corresponding uncertainty.

Strong coupling αspMZq
MS The energy-scale dependence of the strong coupling

strength, defined as αs “ g2
s{4π, is described by the corresponding renormalization

group equation. We conventionally use as a nuisance parameter the MS scheme

value of αs evaluated at the renormalization scale µ “MZ .

The current world average of αspMZq
MS has been obtained [269] by combining

many experimental results and theoretical predictions including, e.g., tau-lepton de-

cays, radiative Υ (bb̄) decays, lattice QCD calculations, deep inelastic lepton-nucleon

scatterings, hadronic events in e`e´ annihilations, electroweak precision data like

the hadronic decay width of the Z-boson etc.

In the case of the CMSSM analyses we additionally used as a nuisance parameter

an inverse of the fine-structure constant 1{αempMZq
MS calculated in the MS

scheme at the renormalization scale µ “ MZ . Its error introduces uncertainty in

determining the GUT scale and therefore can change the soft supersymmetric masses

at the EWSB scale (after RGE running).

6.5 Parameters of probability distributions

In Table 6.1 we list the parameters of the likelihood function for various constraints

taken into account in our analyses. A treatment of direct SUSY searches and DM

direct detection is described in Sections 6.3.1 and 6.3.3, respectively.

6.6 Additional cosmological constraints

So far we have discussed various collider and dark matter constraints which were

taken into account when performing Bayesian scans of the parameter space of SUSY

models. In this section we will focus on additional cosmological constraints that were

not included in the likelihood but were imposed later on the results of the scan. They

are particularly important when considering EWIMP DM scenarios.

6.6.1 Big Bang Nucleosynthesis

The first such constraint is associated with the Big Bang Nucleosynthesis epoch in

the evolution of the Universe (for a review see, e.g., [274]), known also as primordial

nucleosynthesis epoch. In this process light nuclei (heavier than the proton) were

formed. Nuclear fusions led mainly to a production of 4He with smaller abundances

of 3He and deuterium 2H, as well as trace amounts of the lithium, beryllium and

boron isotopes or nuclei with higher atomic number. In general, the comparison
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Measurement Mean Error: exp., theor. Ref.

Ωχh
2 0.1199 0.0027, 10% [3]

mh 125.7 GeV 0.4 GeV, 3 GeV [59, 270]
RphÑ γγq 1.6 0.4, 15% [1, 227]
RphÑ ZZq 0.8 p`0.35,´0.28q, 15% [222, 227]

BRpbÑ sγq ˆ 104 3.43 0.22, 0.21 [251, 252, 271]
BRpBu Ñ τνq ˆ 104 0.72 0.27, 0.38 [247]

BRpBs Ñ µ`µ´q ˆ 109 2.9 0.7, 10% [244, 272, 273]
∆MBs 17.719 ps´1 0.043 ps´1, 2.400 ps´1 [7, 205]

δaµ ˆ 1010 28 8, 1 [7, 258]
sin2 θeff 0.23116 0.00013, 0.00015 [7]
MW 80.385 GeV 0.015 GeV, 0.015 GeV [7]

Nuisance parameters
Mt 173.5 GeV 1 GeV [7]

mbpmbq
MS 4.18 GeV 0.03 GeV [7]

αspMZq
MS 0.1184 0.0007 [269]

1{αempMZq
MS 127.916 0.015 [7]

Table 6.1: The parameters of the likelihood function and Gaussian prior probability
distributions for the nuisance parameters.

leads to an excellent agreement between the BBN predictions and the abundances

inferred from observations. This serves as one of the major pillars of the Big Bang

theory. Some discrepancy in the 7Li abundance can be either associated with its

primordial enhanced production15 or with the post-BBN evolution.

Successful predictions of the BBN may be violated by an inclusion of hadronic

or electromagnetic cascades in the early Universe. They could potentially destroy

some nuclei X changing the X{H ratios. From now on we will focus on a scenario in

which such cascades were initiated by decays of some heavy particle. In particular,

we will treat them as generated by the decays of the NLSPs to gravitino or axino

DM (for such analyses in the framework of the CMSSM see [275, 276, 277, 278, 279]).

We take into account a wide range of the NLSP lifetimes τNLSP from about 10´1 sec

to 1012 sec. For lower lifetimes the decay products of the NLSPs would thermalize

before the proton-neutron decoupling. Thus they would not influence the BBN.

When discussing the BBN constraints below, we will employ limits on the light

nuclei abundances used in [280]

Yp ă 0.258, (6.52)

1.2ˆ 10´5
À

2 H{H À 5.3ˆ 10´5, (6.53)

3He{2H ă 1.52, (6.54)

15Therefore it can be used to constrain models with a heavy particle decaying during the BBN.
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7Li{H ą 0.85ˆ 10´10, (6.55)

6Li{7Li À

#

0.1 less conservative,

0.66 conservative.
(6.56)

Uncertainties in treatment of the lithium-6 and lithium-7 production in stars lead to

a possible weakening of the less conservative upper limit on 6Li{7Li À 0.1. Because of

this, we will also use the other, more conservative, limit as can be seen in Eq. (6.56).

We distinguish between electromagnetic and hadronic cascades taking into ac-

count primary particles produced in such decays. Such a distinction appears to be

useful due to a difference in thermalization processes. However, one needs to note

that, e.g., an NLSP decay into a pair of quark and anti-quark qq̄ does not necessar-

ily lead to a hadronic cascade. In particular, if qq̄ form primary π0, its dominant

decay into two photons will induce an electromagnetic cascade. Each such cascade

typically contains tens or hundreds of secondary particles.

Depending on the NLSP lifetime such cascades can cause violation of various

limits Eq. (6.52)-(6.56) (for an extensive discussion see, e.g., [280]). A schematic

plots valid for decays of a 1 TeV electrically neutral NLSP to EWIMP DM which

show the regions excluded by BBN constraints in the pτNLSP,ΩNLSPh
2q plane where

ΩNLSPh
2 is calculated as if the WIMP was DM can be seen in Fig. 6.4.

If the decaying NLSP is electrically charged, one can obtain stronger BBN bounds

for lifetimes τNLSP Á 300 sec. This is due to a catalysis of an overproduction of nuclei

X with the atomic mass number A ą 4. It results from the possibility of forming

meta-stable bounds states between nuclei and the charged NLSP [281]. This has

particular importance for 6Li production rate. An example of this scenario is a

stau NLSP decaying into either gravitino or axino DM. In the following we will

incorporate this constraint following exclusion plots from [282].

In a simplified approach to the BBN constraints we use the exclusion plots

from [280]. The lifetime of the NLSP depends on its mass and the mass of the

DM particles. In the case of a neutralino NLSP decaying into gravitino DM the

corresponding lifetime for mχ " mG̃ can be estimated as (see, e.g., [283])

τχÑG̃ »

$

’

&

’

%

57 sec
` mB̃

1 TeV

˘´5 ` mG̃
10 GeV

˘2
, for bino-like χ,

250 sec
` mW̃

1 TeV

˘´5 ` mG̃
10 GeV

˘2
, for wino-like χ,

114 sec
` mH̃

1 TeV

˘´5 ` mG̃
10 GeV

˘2
, for higgsino-like χ.

(6.57)

If the neutralino mass is closer to the gravitino mass, the lifetime becomes larger

due to a phase space suppression. In the case of neutralino decay into axino the

lifetime depends on the bino fraction N11 of χ, as well as on the values of CaY Y and
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FIG. 6: Conservative BBN constraints on the abundance of relic decaying neutral particles as a function of their life time for
a Mx = 1TeV particle with hadronic branching ratio Bh = 1. Limits are given on the contribution the decaying particles
would have made to the present critical density, ΩXh2 (with h the Hubble parameter), if they would have not decayed. For a
conversion to constraints on, for example MXnX/nγ the reader is referred to App. A. The colored regions are excluded and
correspond to the constraints imposed by the observationally inferred upper limit on 4He - orange - (Eq. 1), upper limit on 2H
- blue - (Eq. 2), upper limit on 3He/2H - red - (Eq. 3), and lower limit on 7Li - light blue - (Eq. 4). Conservative constraints
derived from 6Li/7Li (Eq. 6) are shown by the green region. The region indicated by yellow violates the less conservative
6Li/7Li (Eq. 5) constraint but should not be considered ruled out. Rather, this region may be cosmologically interesting as a
putative source of 6Li in low-metallicity stars by relic decaying particles.

FIG. 7: As Fig. 6 but for hadronic branching ratio Bh = 3.333 × 10−2.
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FIG. 9: Constraints on the abundance of decaying neutral particles as a function of life time for an MX = 1 TeV particle with
varying hadronic branching ratios. Constraints are shown for hadronic branching ratios (from bottom to top) log10Bh = 0,
−0.5, −1, -1.5, -2, -2.5, -3, -3.5, -4, -4.5, and -5, respectively, as labeled. The case Bh = 0 is also shown. The labels always
correspond to the solid (red) line above it. For each Bh the region above this solid (red) line is ruled out when conservative
constraints are applied (i.e. Eqs 1-4 and 6). When the 6Li/7Li constraint Eq. 6 is replaced by the less conservative Eq. 5 the
dotted (blue) constraint lines result. These dotted lines coincide for small and large τX with the solid (red) lines.
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FIG. 10: As Fig. 9 but for MX = 100 GeV.

Figure 6.4: Left panel: BBN bounds on the abundance of a relic decaying electrically
neutral particle (e.g., the NLSP) with mass equal to 1 TeV and hadronic branching
ratio Bh “ 1 as a function of its lifetime τ . The colored regions are excluded due to
4He overabundance (orange, low τ regime), 2H overabundance (dark blue), violation
of the upper limit on 3He{2H (red, high τ regime) or the lower limit on 7Li/H (light
blue). Conservative (less conservative) upper limit on 6Li{7Li is violated in green
(yellow) excluded region. Taken from Ref. [280]. Right panel: The same excluded
region as in the left panel, but for various hadronic branching ratios: Bh “ 0 or
log10Bh ranging from 0 to ´5. The solid red (dotted blue) lines correspond to the
most stringent BBN constraint for a given τ taking into account the conservative
(less conservative) upper limit on 6Li{7Li. Taken from Ref. [280].

fa [177],

τχÑãγ » 0.33 sec
1

C2
aY Y |N11|

2

ˆ

fa
1011 GeV

˙2
´ mχ

100 GeV

¯´3
ˆ

1´
m2
ã

m2
χ

˙´3

. (6.58)

One can verify that, in comparison to decays into gravitinos, axino DM scenario with

neutralino NLSP is only mildly constrained by the BBN since often τχÑãγ ă 0.1 sec.

Strong constraints can be obtained only either for light neutralinos or for mχ » mã.

Slepton NLSP decays into gravitino DM are described by

τl̃ÑG̃l “ 59 sec
´ ml̃

1 TeV

¯´5 ´ mG̃

10 GeV

¯2

˜

1´
m2
G̃

m2
χ

¸´4

. (6.59)

We use existing results for hadronic branching ratios of neutralinos [283], sneutri-

nos [284] and charged sleptons [285] decaying into gravitino DM. In the case of a

bino decaying into axino DM with mã ! mχ the hadronic branching fraction is

typically of the order of 0.03´ 0.04 if mχ ă mZ and can grow up to about 0.06 for
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mχ » 150 GeV [177]. For heavier neutralino its lifetime is usually too small to affect

the BBN.

In the case of analysis described in Section 9.1 with a sneutrino decaying into

gravitino DM we perform a much more detailed study. This approach allows us not

to overestimate the impact of BBN constraints and therefore treat an upper limit

on TR with higher accuracy.

A sneutrino NLSP decays into gravitino DM dominantly via two-body decay

channel ν̃ Ñ G̃ν. High energetic neutrinos produced in such decays may annihilate

with cosmic background neutrinos to an electron-positron pair ννBG Ñ e`e´, and

therefore initiate an electromagnetic cascade. However, the rate of this process is

suppressed by the weak interaction strength. As a result, the BBN constraints are

typically determined by hadronic cascades associated with subdominant four-body

decays ν̃ Ñ ν rGqq̄ via real or virtual gauge bosons.

One possible way to treat them (see, e.g., [159]) is to estimate the hadronic

energy release

ξh ” εhBh Yν̃ , (6.60)

where Yν̃ is the sneutrino yield at freeze-out, by assuming that the energy released

into hadronic particles per a single decay ν̃ Ñ νG̃qq̄ is approximately equal to

εh »
mν̃ ´m rG

3
. (6.61)

Instead, we will calculate εh more accurately using [285]

εhpν̃ Ñ νG̃qq̄q ”
1

Γpν̃ Ñ νG̃q

ż mν̃´mG̃

mcut
qq̄

dmqq̄mqq̄
dΓpν̃ Ñ νG̃qq̄q

dmqq̄

, (6.62)

where we introduce low energy cut-off on the invariant mass of the qq̄ pair mqq̄ ą

mcut
qq̄ “ 2 GeV. This is well justified by the fact that only quarks with high enough

initial energy could initiate hadronic cascades of relevance for BBN. This assumption

also helps to overcome some problems with infrared divergences when dealing with an

intermediate off-shell photon γ˚ since mqq̄ “

b

p2
γ˚ . When we calculate the hadronic

branching fraction Bh “ Γpν̃ Ñ ν rGqq̄q {Γpν̃ Ñ ν rGq, we take into account the

masses and the decay constants of the intermediate W and Z bosons in Breit-Wigner

propagators. Finally, we calculate abundances of light elements obtained during the

BBN with a state-of-the-art numerical code [280].

6.6.2 Large Scale Structure formation

Non-thermal gravitinos or axinos produced in NLSP decays can have velocities

much larger than those characteristic for thermal distribution. Such fast moving

DM particles tend to erase small scales of large scale structures, especially when
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they constitute a sizable fraction of the dark matter density. The impact of the

injection of high energetic DM particles on LSS can vary depending on the time

when the process took place, i.e., on the NLSP lifetime. We typically take this into

account by imposing constraints on the present day velocity of DM particles v0
DM.

Following [286], we impose the LSS constraints by requiring that the present root

mean square velocity of non-thermally produced EWIMP DM particles is smaller

than v0
DM À 1 km{s.16

As an example, let us focus on a dominant channel of a sneutrino decay to

gravitino DM, i.e., the process ν̃ Ñ νG̃. Treating neutrino as a massless particle we

obtain the velocity at the time of decay for non-relativistic gravitinos

vG̃ »
m2
ν̃ ´m

2
G̃

2mν̃mG̃

. (6.63)

The present day velocity can be obtained from vG̃ by applying an appropriate redshift

v0
G̃
»
m2
ν̃ ´m

2
G̃

2mν̃mG̃

T0

Td

´g0

gd

¯
1
3
» 4.57ˆ 10´5 km

s
g
´1{12
d

´m2
ν̃ ´m

2
G̃

2mν̃mG̃

¯´ τν̃
1 s

¯1{2

, (6.64)

where T0 and Td are the present day and the decay epoch’s temperature, respectively,

while g0 and gd are the corresponding effective number of degrees of freedom.

6.6.3 Cosmic Microwave Background Radiation

Another possible constraint is associated with the CMB radiation [288, 289]. An

injection of energetic photons γHE from the late-time decays of the NLSP could

distort the blackbody shape of the CMB spectrum.

For the NLSP lifetimes τNLSP À 1010 sec that we are typically dealing with, high

energetic photons could lose their energy via elastic Compton scatterings. In these

processes the number of photons was kept constant.17 Thus the CMB spectrum

follows the Bose-Einstein distribution with the chemical potential µ. Following the

procedure outlined in [276] we apply an upper limit |µ| ă 9 ˆ 10´5 [290]. This can

be translated into a limit on electromagnetic energy release18 [288, 289]

In the following, we typically obtain lifetimes τNLSP that are too low to violate

the CMB constraint. Rare points that could have been excluded by this are usually

already ruled out by the BBN constraints.

16In the analysis [287] discussed in Section 9.1, where present day gravitino DM velocities are
typically larger than in other cases discussed in this thesis, we additionally applied a stringent
approach in which we required that non-thermal component makes less than 20% of the total dark
matter abundance.

17Moreover, e.g., double Compton scattering or bremsstrahlung processes were inefficient.
18It is defined analogously to the hadronic energy release mentioned above.



Chapter 7

Constrained supersymmetric

models

In this chapter we discuss phenomenological properties of some basic GUT con-

strained SUSY models. A particular emphasis is put on DM and Higgs boson

properties. In Section 7.4 we analyze the issue of fine-tuning. The chapter is based

on the results published in [206, 207, 291, 292] and partly in [293].

7.1 Constrained MSSM

The results presented in this section are based mostly on [206] (earlier study) and

partly on [293] (recent study).

The CMSSM The Constrained Minimal Supersymmetric Standard Model

(CMSSM) is a phenomenological realization of the mSUGRA unification conditions

mentioned in Section 4.4.2. Three of the parameters of the model are given at the

GUT scale: the common scalar mass m0, the common gaugino mass m1{2 and the

common trilinear coupling A0. Remaining parameters are tan β and sgnpµq “ ˘1

which is not determined by the EWSB conditions. In our approach the sign of µ will

be fixed for a given scan. The ranges of the parameters are given in Table 7.1. As

can be seen, they were significantly extended in the recent study [293] in comparison

with the older study [206]. As it will be discussed, this is justified by the measured

value of the Higgs boson mass that favors MSUSY “
?
mt̃1mt̃2 Á 1 TeV.

The CMSSM is a prototypical example of the GUT constrained SUSY model.

Despite having very limited number of free parameters, it allows to discuss several

most interesting scenarios for which the correct neutralino DM relic density can be

obtained in the framework of the MSSM.

Constraints The earlier study [206] was performed shortly before the first an-

nouncement of the Higgs boson discovery [1, 2]. However, when performing scan we
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Parameter Range [206] Range [293] Prior
(earlier study) (recent study)

m0 0.1 TeV, 4 TeV 0.1 TeV, 10 TeV Log
m1{2 0.1 TeV, 2 TeV 0.1 TeV, 10 TeV Log
A0 ´7 TeV, `7 TeV ´15 TeV, `15 TeV Flat

tan β 3, 62 2, 62 Flat
sgnpµq ˘1 `1 Fixed

Table 7.1: Prior ranges of the parameters in the CMSSM analyses. The sign of µ is
fixed for a given scan.

Measurement Mean Error: exp., theor. Ref.

Ωχh
2 0.1120 0.0056, 10% [294]

mh 125 GeV 2 GeV, 2 GeV (assumed)
BRpbÑ sγq ˆ 104 3.60 0.23, 0.21 [295]

BRpBu Ñ τνq ˆ 104 1.66 0.66, 0.38 [296]
BRpBs Ñ µ`µ´q ˆ 109 ă 4.5 0, 14% [297]

Table 7.2: Important differences between the experimental constrains used in [206]
(earlier study) and values shown in Table 6.1.

had assumed a Higgs signal with mh “ 125 GeV which turned out to be close to

the actual measured value. This analysis took place also before the measurement

of BRpBs Ñ µ`µ´q [272, 273]. Thus we used an upper limit on this branching ra-

tio implemented via half-Gaussian likelihood. Appropriate parameters are provided

in Table 7.2.1 The parameters of the likelihood for the recent study [293] follow

Table 6.1, but without aµ taken into account. We will comment on this below.

Results (earlier study) In Fig. 7.1 (left panel) we present the 1σ and 2σ

marginalized posterior plots for the CMSSM in the pm0,m1{2q plane obtained in [206]

for µ ą 0. One can identify two main 1σ credible regions: the SC region (lower left

corner) and the AF region (upper half of the plot). In addition a 2σ posterior

corresponds also to the HB/FP region (lower right corner).

The SC region lies close to the exclusion line from direct SUSY searches. Low

values of m0 are needed to keep the mass of the lighter stau close to the bino

mass mτ̃1 »M1. Therefore the requirement of having the bino LSP introduces also

an upper limit on m1{2. Light smuons in the SC region also help to enhance aµ

to become closer to the experimental value according to Eq. (6.46). However, in

general aµ remains poorly satisfied. The SC region also corresponds to relatively

low values of tan β À 30 and A0 „ 0 as can be seen in Fig. (7.1) (right panel). This

allows one to suppress the mixing in the stau sector and therefore to keep the mass

1The experimental value of BRpBu Ñ τνq also differ significantly in comparison with Table 6.1.
However, since calculated BRpBu Ñ τνq is typically very close to the SM value, as discussed
in Section 6.3.4, this difference has negligible impact on the parameter space of the CMSSM (it
corresponds to an almost constant shift in χ2).
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of the lighter stau slightly above the bino mass. Low values of m0 and m1{2 in the

SC region lead to low MSUSY. This suppresses the one-loop correction to mh that is

proportional to logM2
SUSY, as can be seen in Eq. (4.37). However, the correct value

of the Higgs boson mass can be obtained thanks to a saturation of the mixing term

for Xt „
?

6MSUSY. This is shown in Fig. 7.2. In the right panel of this figure the

SC region corresponds to MSUSY close to 1 TeV.

On the other hand, the AF region can be obtained for larger m1{2 and wide

range of m0. It also favors larger values of tan β due to the aµ constraint (compare

Eq. (6.46) in absence of light smuons). Larger m1{2 in this region leads to increased

MSUSY due to RGE running of the third generation soft squark masses. This helps

to obtain mh » 125 GeV as can be seen in Fig. 7.2. The mixing term is no more

saturated. However, one can increase it by allowing large Xt » At. This results in

a possible increase of |A0| in Fig. 7.1 (right panel) in the AF region in comparison

with the other two regions.

The HB/FP region corresponds to low m1{2, large m0, intermediate values of

tan β (between the SC and AF regions) and small |A0|. The condition m0 " m1{2

with A0 „ 0 guarantees that µ is kept small according to [292]

´ µ2
» m2

HupSUSYq » 0.074m2
0 ´ 1.008m2

1{2 ´ 0.080A2
0 ` 0.406m1{2A0, (7.1)

where we employed the EWSB minimization condition Eq. (4.34) and the the

solution of the one-loop RGE for mHu . The value of µ is close to M1 resulting in

the lightest neutralino being the mixed bino-higgsino state (dominantly bino). Low

values of |A0| result in Xt !
?

6MSUSY and typically too low radiative corrections

to mh. Moreover, the aµ constraint is even more poorly satisfied than in the other

two regions because of relatively low tan β and lack of light smuons. Therefore the

HB/FP region is statistically less important than the SC and the AF regions.

The aµ constraint is by far the worst satisfied in all the regions described above.

However, as shown in Table 6.1, it is characterized by quite substantial errors

(especially the experimental one). It is therefore useful to additionally study the

allowed parameter space in the CMSSM without this constraint taken into account.

It also allows one to consider negative value of µ, which is highly disfavored in

presence of the aµ constraint according to Eq. (6.46). Once one abandons aµ, the

relative impact of other constraints increases. As a result, the SC region becomes

slightly less favored in contrast to both the AF and the HB/FP regions as can be

seen in Fig. 7.3 (left panel). Interestingly, the change in the posterior is in general

small. In other words, given the large value of the χ2 contribution associated with aµ,

this constraint is to some approximation equally poorly fitted in all the considered

regions. We will utilize this feature of the allowed parameter space in the more

recent study described below, in which we neglect the aµ constraint (see further

comments below).
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Figure 7.1: Marginalized posterior for the CMSSM (earlier study) in the pm0,m1{2q

plane (left panel) and the pA0, tan βq plane (right panel). The positive sign of µ is
assumed. Taken from Ref. [206].
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Figure 8: (a) Scatter plot showing the value of mh in the (m0, m1/2) plane of the CMSSM. (b) Marginalized
posterior pdf in the parameters Xt vs MSUSY, relevant for the loop corrections to the Higgs mass.

masses, as it will appear clear below. On the other hand, taking into account the minimalization condition for the
scalar potential, large negative A0 do not allow the parameter µ to be small enough to enhance the Higgsino-like
component of the neutralino. That creates the tension between the relic density and the Higgs mass above 124 GeV.

In Fig. 8(a) we show a scatter plot representing the distribution of the lightest Higgs mass over the (m0, m1/2)
plane. One can see that Higgs masses compatible with 125 GeV at 1σ can be obtained in large numbers across the
whole plane. Particularly, the mass distribution presented in Fig. 8(a) has one interesting aspect. The one-loop
contribution to the Higgs mass in the decoupling limit (mA � mZ) for moderate-to-large tanβ is given by [57]

Δm2
h ∝ ln

M2
SUSY

m2
t

+
X2

t

M2
SUSY

�
1 − X2

t

12M2
SUSY

�
, (17)

where mt is the top quark mass, MSUSY is the geometrical average of the physical stop masses, and Xt = At−µ cotβ.
While the presence of a relatively heavy Higgs is not a surprise in the A-funnel region, where the one-loop contribution
to mh is driven up by a large SUSY scale, it is more striking in the τ̃ -coannihilation region. As anticipated above, to
ensure such a heavy Higgs mass in the region of low m0 and m1/2, the contribution from the Xt factor in Eq. (17)
should be significant. (Xt ∼ At almost throughout the whole parameter space.) In fact, it turns out that the
τ̃ -coannihilation region is the only region of parameter space where the factor |Xt|/MSUSY reaches values close to
∼ 2.5, the maximal contribution from the stop-mixing.

The interplay between MSUSY and Xt just described is often claimed in the literature to be an indication of fine-
tuning [58], thus making the CMSSM a less natural model than, for instance, the Next-to-Minimal Supersymmetric
Standard Model [17]. We plot in Fig. 8(b) the two-dimensional marginalized posterior in the (MSUSY, Xt) plane. One
can see two separate high-probability regions. The one on the right corresponds to the A-funnel region, where the
best-fit point lies, while the one on the left, smaller in size, to the τ̃ -coannihilation region. We gather that, even if
the model might be intrinsically fine-tuned, given the present status of experimental and theoretical uncertainties,
our global set of constraints favors 2σ credible regions that span an area of ∼ 10 TeV2, thus allowing a broad range
of values for these parameters. Moreover, it appears clear that the present set of constraints highly favors negative
values of Xt.

B. Impact of (g − 2)µ and the case µ < 0

Since the poor global fit is mainly a result of including the (g − 2)µ constraint in the likelihood, and the SM
prediction is to this day still marred by substantial theoretical uncertainties, we have also performed scans without
the (g − 2)µ constraint. In this case there is no reason anymore to assume sgn µ = +1, as the main reason for such

Figure 7.2: Left panel: Scatter plot showing the value of mh in the pm0,m1{2q plane
of the CMSSM. Right panel: Marginalized posterior in the parameters Xt vs MSUSY,
relevant for the loop corrections to the Higgs mass. Positive µ is assumed. Taken
from Ref. [206].

One can then additionally assume negative µ which helps to reduce the BRpBs Ñ

µ`µ´q below the upper limit from Table 7.2. In particular, this allows to extend

the AF region to lower values of m0 and m1{2.2 As a result a relative statistical

2Lower m1{2 leads to the lower neutralino mass which is given by mχ „ mA{2 in the AF region.
Thus one obtains lighter pseudoscalar which could enhance BRpBs Ñ µ`µ´q too much according
to a discussion in Section 6.3.4. This can be circumvented for µ ă 0.
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Figure 7.3: Marginalized posterior for the CMSSM (earlier study) in the pm0,m1{2q

plane without the aµ constraint. The positive (negative) sign of µ is assumed in the
left (right) panel. Taken from Ref. [206].
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Figure 7.4: Marginalized posterior for the CMSSM (earlier study) in the BRpb Ñ
sγq ˆ 104 vs. BRpBs Ñ µ`µ´q plane. Results for positive (negative) µ are shown
in the left (right) panel. Taken from Ref. [206].

importance of the SC and HB/FP regions is reduced as shown in Fig. (7.3 (right

panel)).

The reduction of BRpBs Ñ µ`µ´q in the case of negative µ can be better seen

in Fig. 7.4. The branching ratio can be reduced to values even below the SM one.

This may be consistent with currently measured branching ratio given in Table 6.1.

It is also important to note that negative µ helps to increase BRpb Ñ sγq closer

to the experimental value. It is due to a change of sign of the chargino-stop loop

contribution.
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Figure 7.5: Marginalized posterior for the CMSSM (earlier study) in the pmχ, σ
SI
p q

plane. Left panel: Results for positive µ with the aµ constraint taken into account.
Right panel: Combined results for µ ą 0 and µ ă 0 with no aµ. Taken from
Ref. [206].

Last, but not least, one needs to take into account the exclusion limits from dark

matter DD searches. In the older study [206] we employed the Xenon100 data. As

can be seen in Fig. 7.5, majority of the parameter space of the CMSSM remained

then well below the lower limit on σSI
p . The situation is different for the HB/FP

region. The lightest neutralino can elastically scatter off of quarks via the t-channel

CP-even Higgs exchange or the s-channel squark exchange. In each of these cases

the corresponding cross section is proportional to σχN „ |N11|
2|N1i|

2 where i “ 3, 4

and Nij is the respective entry of the neutralino mixing matrix (see, e.g., [298]). N11

term corresponds to the bino composition, while N13 and N14 to the higgsino ones.

As a result, σSI
p is typically reduced for the pure bino or the pure higgsino neutralino,

while it is enhanced for a mixed state in the HB/FP region. The enhancement can

be to some extent ameliorated for negative µ as can be seen in Fig. 7.5 (right panel).

In this scenario a cancellation between diagrams involving the heavy and the light

Higgs can reduce σSI
p below the experimental limits (see, e.g., [138] and references

therein).

To summarize our discussion we show in Fig. 7.6 the χ2 contributions to the

best-fit points (BFPs) obtained in the scans for both positive and negative µ, as

well as with or without the aµ constraint taken into account. As it was mentioned

above, aµ provides by far the largest χ2 contribution if it included in the likelihood.

Another important contribution comes from BRpbÑ sγq, but it can be reduced for

negative µ as discussed above. Interestingly, the relic density constraint contributes
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negligibly to χ2 of the BFP. It is because the relative importance of Ωχh
2, which

guarantees that it has to be satisfied for the phenomenologically acceptable regions.3

In some sense the aµ and Ωχh
2 constraints lie on the opposite side on the scale of

effectiveness. The former is very poorly fitted, gives large contribution to χ2 of the

BFP and its abandonment leaves posterior plots almost intact. The latter is very

well satisfied for phenomenologically acceptable regions, contributes negligibly to χ2

of the BFP and to a large extent determines the shape of the posterior plots. Thus,

as long as we do not compare different models, but are interested in the preferred

parameter space of a given SUSY model, we may often safely omit the aµ constraint

in a discussion. Hence we will give much more attention to Ωχh
2.

On the other hand, aµ, after further reduction of the experimental error, can

potentially play a very important role in excluding SUSY models. It is because of the

tension within the framework of SUSY that appears when one tries to simultaneously

explain a large discrepancy of the measured value of aµ with respect to the SM value

and the lack of signal from new physics in various other experiments, e.g., direct

SUSY searches at the LHC.

Results (recent study) The results for the more recent analysis [293] are shown

in Fig. 7.7. They are presented as the 95%CL regions instead of posterior plots, but

this has minor impact on the physics discussed below.

A major difference in comparison with Fig. 7.1 is the appearance of the 1TH

region (shown in red) for large values of m0 and m1{2 that go beyond the allowed

ranges in the previous study [206].4 This allows one to obtain the correct DM relic

3This importance results from a combination of the relatively small errors in the corresponding
likelihood function and a limited number of specific scenarios in which the correct neutralino DM
relic density can be obtained.

4For the first time it was shown that the 1TH region appears in the CMSSM in [115].
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density for higgsino-like LSP with mχ “ µ » 1 TeV ă M1. According to another

recent analysis of the CMSSM [299] with three-loop corrections to mh taken into

account a 2σ marginalized posterior in the 1TH region reaches up to m0 À 12.5 TeV

and m1{2 À 4.5 TeV. For larger of values of both the common scalar and the common

gaugino masses one typically obtains too large mh. For a given value of m0 in the

1TH region one can obtain neither too low nor too largem1{2 because of the condition

µ » 1 TeV. The lower limit corresponds to the bino that becomes lighter than the

higgsino, while the upper one can be derived from Eq. (7.1). As can be seen there,

m1{2 cannot be too large for a given m0 in order to keep µ » 1 TeV.5

The 1TH region in the CMSSM remains currently not excluded by the DD

searches, but can be probed by the future Xenon1T experiment as shown in Fig. 7.7

(right panel). It also true for some part of the AF region. The HB/FP region is

entirely absent in the recent study due to updated DM direct detection limits.6

On the other hand, in Fig. (7.7) the SC region lies outside the range of the

Xenon1T experiment. However, to a large extent it can be tested by the upcoming

second run of the LHC. Note that in the recent study this region is statistically

less important than in the previous one. It is both due to the absence of the aµ

constraint and more stringent exclusion limits from direct SUSY searches.

5The freedom of choosing A0 is often limited by other constraints, e.g., mh.
6In the case of the unconstrained MSSM some points within the HB/FP scenario can survive

even the LUX exclusions [138], if µ ă 0, due to the cancellation mentioned above.
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7.2 Constrained NMSSM

The results presented in this section are based on [207].

In this section we will present a Bayesian study of the Constrained NMSSM

(CNMSSM). In particular, due to an extended Higgs sector present in the framework

of the NMSSM (in comparison with the MSSM) we will be able to consider scenarios

in which the recently discovered Higgs boson is not the lightest CP-even Higgs

particle in the model.

CNMSSM and constraints We define the CNMSSM in analogy to the CMSSM.

In particular, we use the common scalar m0 and the common gaugino m1{2 mass

parameters, as well as the common trilinear coupling A0. All of them are defined at

the GUT scale. The mass of the singletmS (see Eq. (4.42)) is not unified tom0. From

the theoretical point of view, it has been argued [300] that the mechanism for SUSY

breaking might treat the singlet field differently from the other superfields. From

the phenomenological point of view, the freedom in mS allows for easier convergence

when the renormalization group equations are evolved from the GUT scale down to

MSUSY. It also yields, in the limit λÑ 0, and with λs fixed, effectively the CMSSM

plus a singlet and singlino fields that both decouple from the rest of the spectrum.

Through the minimization equations of the Higgs potential, m2
S can then be traded

for tan β and either sgn(µeff) or κ. We choose sgn(µeff) for conventional analogy with

the CMSSM. Both λ and tan β are defined at MSUSY. Aλ and Aκ are unified with

A0 at the GUT scale.

The ranges of parameters that we use are given in Table 7.3. The perturbativity

condition leads to an upper limit λ À 0.7. On the other hand we have checked that

allowing λ ă 0.001 hardly increases the number of points allowed by the physicality

conditions. Beside that, it would have most likely driven the scan towards a purely

CMSSM-like scenario.

The experimental constraints that we employed in the scan are given in Table 6.1

with modifications shown in Table 7.4 similarly to the CMSSM case (earlier study)

described in the previous section. The differences are associated with the first

measurements of the Higgs boson mass and BRpBs Ñ µ`µ´q.

Results Marginalized posterior plots for the CNMSSM in the pm0,m1{2q plane are

shown in Fig. 7.8. The left panel of the plot corresponds to the CMSSM-like scenario

in which the lightest Higgs scalar h1 plays a role of the discovered Higgs boson. We

identify the SC and AF regions similarly to the CMSSM. In the CNMSSM the SC

region appears to be more extended relative to the CMSSM (earlier study) [206]. It

is due to somewhat larger mh1 that is closer to the experimental value. However, this

is not a specific feature of the CNMSSM, but is rather connected with an increase
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Parameter Range Prior
m0 0.1 TeV, 4 TeV Log
m1{2 0.1 TeV, 2 TeV Log
A0 ´7 TeV, `7 TeV Flat

tan β 1, 62 Flat
sgnpµq ˘1 Fixed
λ 0.001, 0.7 Flat

Table 7.3: Prior ranges of the parameters in the CNMSSM analysis. The sign of µ
is fixed for a given scan.

Measurement Mean Error: exp., theor. Ref.

mh 125.8 GeV 0.6 GeV, 3 GeV [301]
BRpBs Ñ µ`µ´q ˆ 109 3.2 (`1.5,´1.2), 10% [302]

Table 7.4: Important differences between the experimental constrains used in [207]
and values shown in Tables 6.1 and 7.2.
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Figure 7.8: Marginalized posterior for the CNMSSM in the pm0,m1{2q plane for the
case with mh1 » 126 GeV (left panel) and mh2 » 126 GeV (right panel). Positive µ
is assumed. Isocontours of the fine-tuning measure ∆ are also shown. Taken from
Ref. [207].

of the top mass used in the scan (compare Eq. (4.44)).7 The increase of a statistical

relevance of the SC region leads also to a reduction of the marginalized probability

in the HB/FP region. 2σ credible region encompasses only small fraction of the

HB/FP region which lies in the m0 " m1{2 sector and merges with the AF region in

Fig. 7.8 (left panel).

7In the study of the CNMSSM we used an updated central value of the top pole mass Mt “

173.5 GeV (see Table 6.1), while in the earlier study of the CMSSM [206] we employed Mt “

172.9 GeV.
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In the right panel of Fig. 7.8 we present the results for a scenario in which the

second lightest h2 has a mass mh2 » 126 GeV, while h1 is lighter. The case with

both the lightest CP-even Higgs particles being mass-degenerate leads to very similar

posterior plot. In this scenario h1 and h2 combine to generate an observed signal in

detectors.

In Fig. 7.8 (right panel) the 2σ credible region in the pm0,m1{2q plane is dra-

matically reduced in comparison with the mh1 » 126 GeV case described above.

We found the SC and the HB/FP regions, while the AF region could not satisfy

mh2 » 126 GeV condition. A careful analysis of the allowed parameter space en-

sures that the requirement of having low mass of h2 typically suppresses also κs. As

a result, the lightest neutralino for the values of m1{2 characteristic for the would-be

AF region or for the SC region is singlino-like. Therefore its relic density cannot

be effectively reduced due to A-resonance mechanism, but such reduction is still

possible thanks to coannihilations with the lighter stau. The statistical relevance of

the HB/FP region increases simply due to a suppression of the AF region.

In Fig. 7.8 we additionally present the fine-tuning measure (see Section 4.7)

calculated for the CNMSSM. One typically obtains ∆ „ 300´500 for a vast majority

of points in the mh1 » 126 GeV scenario.8 Smaller fine-tuning can be achieved only

in the HB/FP region due to the relatively low values of µeff. For the same reason ∆ is

in general slightly larger in the SC region than in the AF one which is characterized

by smaller µeff. On the other hand, in the light h2 case one can obtain ∆ ă 50 in

the HB/FP region.

In Fig. 7.9 we show the Higgs signal rates for both mh1 » 126 GeV and mh2 »

126 GeV. As can be seen, the first case corresponds to the SM-like Higgs boson

similarly to the CMSSM. On the other hand, light h2 can have a non-negligible

singlet component. This allowed to simultaneously reduce both of the corresponding

signal rates. Therefore it was not possible to explain the discrepancy between

Rh2pγγq and Rh2pZZq shown in Table 6.1.9 Moreover, in both scenarios Rh2pγγq

could hardly exceed 1 over the 2σ credible region.

Interestingly, a combination of BRpBs Ñ µ`µ´q and dark matter DD constraints

could have been used to disfavor the light h2 scenario already at the time of the

analysis. This is shown in Fig. 7.10. For comparison, in the left panel we present

results for the mh1 » 126 GeV case. They closely resemble the CMSSM with

the HB/FP region lying above the Xenon100 exclusion line. The majority of the

preferred parameter space lies within a reach of the future Xenon1T experiment. In

the case of light h2 the HB/FP remains disfavored by dark matter DD, while the

SC region with singlino-like χ is characterized by very low σSI
p . On the other hand,

8It is also the case of the CMSSM as we will see below in Section 7.4.
9Current experimental data [303, 304] points towards the SM-like nature of the discovered Higgs

boson.
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Figure 7.9: Marginalized posterior for the CNMSSM in the Rhsig
pγγq vs. Rhsig

pZZq
plane for the case with mh1 » 126 GeV (left panel) and mh2 » 126 GeV (right panel).
Positive µ is assumed. Taken from Ref. [207].

it leads to too large value of the BRpBs Ñ µ`µ´q branching ratio. This is due to

larger tan β than in the SC region in mh1 » 126 GeV case.10

Last, but not least, we could abandon the aµ constraint and employ negative µ.

As a result (not shown in the plots), the SC region appears to be slightly less favored,

while the HB/FP region becomes clearly separated from the AF one. Similarly to

the CMSSM, negative µ helps to reduce both BRpBs Ñ µ`µ´q and σSI
p .

The χ2 contributions for the BFPs of all the scans of the CNMSSM are shown

in Fig. 7.11. Not surprisingly, in the mh1 » 126 GeV case χ2 is dominated by the aµ

contribution if it is included. BRpbÑ sγq can be improved for negative µ similarly

to the CMSSM. In all the scans one obtains significant contribution from Rh1pγγq

since it cannot exceed one as discussed above. Interestingly, in the scenarios with

light h2, the aµ contribution can be reduced. This is due to a larger tan β in the SC

region than in the mh1 » 126 GeV case. However, the total χ2 is increased back by

poorly fitted BRpBs Ñ µ`µ´q.

It is important to mention that due to a limited ranges of m0 and m1{2 we did

not find 1TH region in [207]. However, one expects to obtain this region in the

parameter space for an extended scan, as in the CMSSM case.

10Requirement of having light h2 can be translated into an approximate upper limit |Aκ| À κs.
This can be obtained from a physicality condition mh1

ě 0 at the tree level for tiny λ and κs ăMZ

that are characteristic for singlino-like χ with mass below 200 GeV in the SC region in the light h2

scenario (see a discussion in [207]). This suppression of Aκ leads to a reduction of A0 and therefore
also Aτ . In order to obtain satisfactory mixing in the stau sector (to reduce the lighter stau mass
to the level of the singlino mass), i.e., to keep |Xτ | “ |Aτ ´ µ{ tanβ| greater than zero, one then
needs to increase tanβ (for positive µ). The other possibility of allowing small tanβ and therefore
|Xt| „ |µ| is disfavored by the aµ constraint.
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Figure 7.10: Marginalized posterior for the CNMSSM in the BRpBs Ñ µ`µ´q vs.
σSI
p plane for the case with mh1 » 126 GeV (left panel) and mh2 » 126 GeV (right

panel). Positive µ is assumed. The solid (dotted) blue horizontal line corresponds
to Xenon100 (Xenon1T) dark matter DD exclusion limit. The pink vertical band
shows the 1σ experimental uncertainty on the measurement of BRpBs Ñ µ`µ´q
from Table 7.4. Taken from Ref. [207].
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7.3 Constrained NMSSM with non-universal soft

Higgs masses

The results presented in this section are based on [291].

We have so far discussed two GUT constrained SUSY models in which either the

lightest or the second lightest Higgs scalar has mass about 126 GeV (or both). In this
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section we will study yet another possibility of having pseudoscalar Higgs particle

mass-degenerate with h1 (h1 plays o role of the discovered Higgs boson).11 This

scenario is excluded in the MSSM, as noted in [306, 307], since in this framework in

order to obtain h1 with mass around 126 GeV, mA is required to be at least about

300 GeV (decoupling regime).12 However, it appears to be possible in the framework

of the NMSSM where we can obtain mh1 » ma1 » 126 GeV with doublet-dominated

h1 and singlet-like a1.

Observed signal rates The lighter pseudoscalar in this scenario can have sizable

one-loop effective coupling to γγ in the presence of a light higgsino-like chargino

in the loop. The corresponding contribution to the Higgs signal rate at the LHC

can be calculated by replacing hi with a1 in Eqs (6.29)-(6.31). However, despite the

potentially non-negligible size of BRpa1 Ñ γγq{BRphSM Ñ γγq, no net enhancement

in the γγ rate of a1 with decreasing chargino mass would be visible in the ggh (gluon

fusion) production mode. The reason is that the first term in the product always

has a very small magnitude due to a highly reduced effective coupling of a1 to two

gluons compared to that of a SM Higgs boson, which is dominated by the top quark

loop.

However, the overall enhancement in RY
Xpa1q due to a light chargino should be

visible in the associated bb̄h production mode, which we will focus on, since the

conditions necessary to obtain a light chargino also result in an enhanced coupling

of a1 to bb̄{τ`τ´. The bb̄h Higgs production mode is very subdominant for a SM

Higgs boson and is therefore generally considered to be of less interest. In contrast,

in SUSY it is enhanced by tan2 β (see, e.g., [59]). This allows one to obtain a clear

signature of our scenario that is a simultaneous “triple enhancement” in the signal

rates of the three Higgs decay channels, γγ, bb̄ and τ`τ´ (collectively referred to as

X henceforth).13

The lighter pseudoscalar mass The approximate expression for the lighter

pseudoscalar mass in the NMSSM can be written as

m2
a1
» ´3κsASUSY

κ ´
M4

P,12

M2
P,11

. (7.2)

In the above equation M2
P,12 » λpASUSY

λ ´ 2κsq
?

2 v is the off-diagonal entry of

the pseudoscalar mass matrix (see [110]), where ASUSY
λ{κ denote Aλ{κ at MSUSY.

11Another recent study of the issue of light pseudoscalar in the framework of the NMSSM can
be found in [305].

12In addition, while it is also possible to have a 126 GeV h2, this can only be achieved for
95 GeV ă mA ă 110 GeV, in a tiny portion of the “non-decoupling regime”.

13On the other hand, a1, being a pseudoscalar, would not contribute to the WW and ZZ decay
channels. The absence of signal here would also be a part of the signature.
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M2
P,11 » µeffBeff tan β, with Beff ” ASUSY

λ ` κs, is the diagonal term corresponding

to the mass-squared of the doublet-like heavy pseudoscalar, a2. The leading term

in eq. (7.2) implies that, for positive κ, which we will assume here, the condition of

the positivity of m2
a1

depends predominantly on the relative signs of µeff and ASUSY
κ .

Assuming the leading term to be positive, the negative contribution from the second

one should be kept close to zero. This would require M2
P,11 ÁM4

P,12.

A careful analysis [291] shows that for negative µeff the values of A0 at the GUT

scale are bounded from below by the condition of the physicality of a1. This causes

a slight tension between mh1 and ma1 , since in order to obtain h1 which is SM-like

with mass about 125 GeV large negative values of A0 are preferred. For positive µeff

there is no such tension because A0 is relatively free, as long as the correct a1 mass

can be achieved by adjusting other free parameters. However, in practice according

to Eq. (7.2) this requires a non-unification of A0 with Aκ at the GUT scale, as

well as keeping κ as a free parameter. This can be realized in the GUT constrained

extension of the CNMSSM with non-universal Higgs masses (NUHM) mHu and mHd .

We will call this model CNMSSM-NUHM. Through the minimization conditions of

the Higgs potential mHu and mHd at the electroweak scale can be traded for the

parameters κ and tan β. Thus we will use the following set of free parameters

m0,m1{2, A0, tan β, sgnpµeffq, λ, κ, Aκ “ Aλ. (7.3)

Pseudoscalar signal rates The effective coupling of the lighter pseudoscalar a1

to two photons (see, e.g.,[59]), is dominated by a light chargino in the loops and can

be approximated by

Ceff
a1
pγγq »

ga1χ
˘
1 χ

˘
1

a?
2GF mχ˘1

Aa1

1{2pτ1q, (7.4)

where τ1 “ m2
a1
{4m2

χ˘1
. For τ1 ď 1, which is applicable here,14 the form-factor

Aa1

1{2pτ1q lies in the range 1 ă Aai1{2pτiq À 1.2 [57]. Assuming singlet-like a1 and

higgsino-like χ˘1 one can derive the upper limit

Ceff
a1
pγγq À λˆ

130 GeV

µeff

, (7.5)

for ma1 » 126 GeV and mχ˘1
» µeff.

The signal rates can be calculated with Eq. (6.31). For the bb̄h associated

production mode one obtains

Rbb
γγpa1q » |P

1
11|

2 λ2 tan2 β
´130 GeV

µeff

¯2 ´ 1

Γtotal
a1
{Γtotal

hSM

¯

, (7.6)

14We assume ma1 » 126 GeV, while the light chargino obeys the lower limit, mχ˘
1
ą 94 GeV [7]



106 Constrained supersymmetric models

Rbb
bb̄{τ`τ´pa1q »

|P 111|
4

Γtotal
a1
{Γtotal

hSM

, (7.7)

where

P 111 »
λpASUSY

λ ´ 2κsqv

µeffpASUSY
λ ´ κsq tan β

. (7.8)

As can be seen, all the three signal rates are enhanced for large λ and small µeff.

The dependence of the above expressions on tan β is not straightforward, since it

only enters indirectly through Γtotal
hSM
{Γtotal

a1
.

Both the bb̄ and the τ`τ´ decay channels show exactly the same behavior as

far as their signal rates are concerned, despite the fact that BRpa1 Ñ τ`τ´q is

considerably smaller than BRpa1 Ñ bb̄q. From an experimental point of view, the

bb̄ decay mode will result in four b-jets which may be quite challenging to tag owing

to the large hadronic background, although this mode has been visited in the past

[3]. The τ`τ´ decay mode, on the other hand, is subject to a much smaller leptonic

background.

Results We perform a scan over the CNMSSM-NUHM parameter space using the

same set of experimental constraints as in the CNMSSM study described in the

previous section, but we neglect the aµ constraint. We additionally require that

122 GeV ă ma1 ă 130 GeV similarly to the h1 mass. After applying all the con-

straints we find that the preferred parameter space of the CNMSSM-NUHM giving

an enhancement in the aforementioned signal rates due to the lighter pseudoscalar

with mass about 126 GeV can be divided into three main regions depending on

the composition of the lightest neutralino χ: the singlino-higgsino region, the pure

higgsino region, and the HB/FP region.

In the singlino-higgsino region χ is a mixture of a large higgsino component

and a smaller (20% ´ 30%) but important singlino one. Owing to the significant

singlino component the neutralino will interact very weakly with matter and will thus

typically have too large relic abundance. In order to satisfy the Ωχh
2 constraint one

then needs to consider small mχ and consequently large annihilation cross-section.

In practice we find in this region mχ „ 70 ˜ 80 GeV. The preferred region in the

parameter space spans a wide range of m0 and m1{2, while we obtain 0.4 À λ À 0.6

and 0.25 À κ À 0.4. The parameter λ is bounded from below by requirement

to enhance the Higgs signal rates, but it cannot be too large in order to obtain

SM-like h1. Small-to-intermediate values of κ are required to maximize the singlino

component of χ. The smallness in κ has to be compensated by large values of Aκ

for obtaining the correct value of the lighter pseudoscalar mass. A0 almost always

takes large negative values, which helps to maximize mh1 . tan β is typically between

10 and 40.
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In order to enhance the signal rates we need to keep µ noticeably smaller than

1 TeV. This has important consequences for the pure higgsino region in our anal-

ysis of the CNMSSM-NUHM in which one obtains too low DM relic density. How-

ever, as the primary aim of the analysis was to discuss the possible enhancement

in Rbb
Xpa1q, we will assume in this case that thermally produced neutralinos con-

tribute only partially to the total DM relic abundance, i.e., Ωth
χ h

2 » ξ ΩDM,totalh
2

with ξ ă 1.15 Another possibility would be that the entire relic abundance is due to

an alternative DM candidate, e.g., gravitino or axino. In the pure higgsino region

we once again obtain wide range of allowed m0 and m1{2. It is also true for λ, κ and

tan β, although signal rates are enhanced significantly only for large λ. A0 is again

confined to be typically large and negative, while Aκ appears to be more close to

zero.

When analyzing the HB/FP region we assumed negative µeff which helps to

satisfy the dark matter DD constraints as discussed above. The preferred values

of most of the parameters follow the discussion for the CMSSM. However, tan β in

this case is often limited to be not greater than about 15 since larger values would

enhance too much Yukawa couplings of h1 to bb̄ and τ`τ´. This effective upper

limit on tan β, in turns, causes an increase of ma1 above 126 GeV via the Aκ and

Aλ running (see a discussion in [291]). The upper bound on tan β is relaxed for A0

more close to zero, when the running is slower. The parameters λ and κ span wide

ranges, while Aκ is typically close to zero.

In Fig. 7.12 we show the range of mχ and the corresponding values of ξσSI
p across

all the regions for which an enhancement above one was obtained in a combined

signal rate for h1 and a1 R
bb
γγph1 ` a1q. The corresponding value of Rbb

γγph1 ` a1q are

shown in the right panel. The HB/FP region is characterized by relatively smaller

enhancement in the Higgs signal rates than the other two regions due to a heavier

chargino χ˘1 .

In Fig. 7.13 (left panel) we show the combined Higgs signal in the bb̄h production

mode for bb̄ and τ`τ´ decay channels for the pure higgsino region. As it is expected

the rate increases for larger λ and smaller µeff. On the other hand, in the HB/FP

region illustrated in Fig. 7.13 (right panel) Rbb
bb̄{τ`τ´

pa1q can have extremely large

values, even about 100. However, this should not be interpreted as a characteristic

feature specific to the HB/FP region, but as a result of negative µeff assumed

for this region. Rbb
bb̄{τ`τ´

pa1q increases as the denominator of |P 111|, A
SUSY
λ ` κs,

approaches zero. For small negative µeff and large positive λ, resulting in small

negative s “ µeff{λ, the size of the denominator reduces as κ grows. In Fig. 7.13

(right panel) we show how Rbb
bb̄{τ`τ´

pa1q enhances with increasing κ and decreasing

value of the above denominator term. Evidently a similar effect of negative µeff

15In the following we assume ξ “ 1 for the other two discussed regions in the parameter space
of the CNMSSM-NUHM.
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limits expected (at the time of analysis) from the LUX and XENON1T experiments.
Maroon squares denote the singlino-higgsino region, green squares the pure higgsino
region and yellow squares the HB/FP region. Right panel: The (mχ,σSI

p ) plane
showing the actual values of Rbb

γγph1 ` a1q in the preferred regions. Taken from
Ref. [291].

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100  200  300  400  500  600  700

λ

µ

122 GeV < mh1
, ma1

 < 130 GeVHiggsino χ1
0

CNMSSM-NUHM

1 < R
bb
ττ,bb < 1.15 

1.15 < R
bb
ττ,bb < 1.3 

1.3 < R
bb
ττ,bb < 1.45 

1.45 < R
bb
ττ,bb            

-500

-400

-300

-200

-100

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6

A
λS

U
S

Y
 +

 κ
s 

  
[G

e
V

]

κ

122 GeV < mh1
, ma1

 < 130 GeVFP region

CNMSSM-NUHM  µ < 0

1 < R
bb
ττ,bb < 2 

2 <  R
bb
ττ,bb <  5 

5 < R
bb
ττ,bb < 10 

10 < R
bb
ττ,bb          

Figure 7.13: Left panel: Enhancement in Rbb
bb̄{τ`τ´

ph1 ` a1q obtained in the pure

higgsino region as a function of the λ and µeff parameters. Right panel: Enhancement
in Rbb

bb̄{τ`τ´
ph1`a1q obtained in the HB/FP region as a function of κ and pASUSY

λ `κsq

(see text for details). Taken from Ref. [291].

should manifest in the other two regions also, but it would cause a tension between

ma1 and mh1 and would not allow both of these to be around 125 GeV.
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7.4 Fine-tuning and 1 TeV higgsino dark matter

The results presented in this section are based on [292].

As discussed in Section 4.7 the little hierarchy problem arises since current lower

limits on squark and gluino masses, as well as the measured value of the Higgs

boson mass suggest that the characteristic mass scale for the SUSY particles MSUSY

lies above 1 TeV. In this section we will study the issue of fine-tuning for the GUT

constrained models within the framework of the MSSM.16 In particular we will focus

on the phenomenologically interesting 1TH region for which µ » 1 TeV and therefore

the problem is often the most severe.

CMSSM Let us begin with the simplest GUT constrained model discussed so

far in this thesis, i.e., the CMSSM. In the CMSSM the fundamental GUT-scale

parameters to deal with when discussing the fine-tuning issue are m0, m1{2, A0, the

unified bilinear parameter, B0, and the high-scale Higgs/higgsino mass parameter,

µ0 (at the EWSB scale the last two are typically traded for tan β). Contributions to

the total fine-tuning ∆ that come from m0 and m1{2 are shown in Fig. 7.14. Another

contributions are typically smaller, beside ∆µ0 which will be discussed later. As can

be seen ∆ can easily reach large values (above 1000) in the 1TH region that appears

in the upper right corner of the plots for large m0 and m1{2.

Another (large) contribution to the total fine-tuning can be calculated by differ-

entiating M2
Z with respect to the top Yukawa yt. In the following, for simplicity, we

will fix yt at the experimental value and focus on a possible reduction of contribu-

tions to ∆ that come from the SUSY parameters.

Non-universal unification conditions The fine-tuning with respect to gaugino

and scalar mass parameters can be reduced by employing some non-universality

conditions at the GUT scale. This is illustrated in Fig. 7.15.

In particular, in the left panel we present the fine-tuning with respect to M3

(here defined at the GUT scale) for various unification patterns with non-universal

gaugino masses (NUGM). As can be seen, one can identify three well theoretically

justified patterns of M1 : M2 : M3, that is 19{10 : 5{2 : 1, 10 : 2 : 1, or ´5 : 3 : 1, for

which one obtains ∆M3 À 100 for a wide range of M3.17

In the scalar sector, the amount of fine tuning strongly depends on the high-scale

relation among m2
Hu

and the soft stop masses at the GUT scale [311]. In SUp5q (or

in SOp10q) the fermions and the Higgs bosons belong to different representations,

so that the corresponding soft-breaking masses are in general unrelated and the fine

tuning can become very large (since there is no possibility of cancellation between

16For a discussion of the fine-tuning in the CNMSSM see Section 7.2.
17The last two patterns appear in the context of SUp5q GUT unification (see [308, 309]), while

the first one can be obtained for SOp10q (see [310]).
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Figure 7.14: 95% CL regions in the CMSSM with contributions to the total
fine-tuning that come from m0 (left panel) and m1{2 (right panel). Taken from
Ref. [292].
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the corresponding fine-tuning contributions). However, if supergravity-inspired

universality conditions are imposed at the high scale, the fine tuning can be reduced

to the CMSSM levels.

By employing the RGEs evolution of mHu one can rewrite this parameter as a

function of its value at the GUT scale and m0 (assuming mHu ‰ m0 at high energy

scale)

m2
HupMSUSYq » ´0.571m2

0`0.645mHu`gaugino and trilinear contributions . (7.9)
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Figure 7.16: The 1TH 95% CL region obtained for two different non-universal GUT
unification patterns. Scalar (left panel) and gaugino (righ panel) mass contributions
to the total fine-tuning is shown with color. Taken from Ref. [292].

It is straightforward to see that one can obtain less fine tuning from the scalars than

in the CMSSM when mHu and m2
0 are related (but not simply unified) as

m2
Hu “ b2

Fm
2
0, with |bF | »

a

0.57{0.64 “ 0.94 . (7.10)

For simplicity we will consider bF to be positive. Remarkably, bF does not deviate

substantially from one, i.e., the value corresponding to universal scalar masses. In

Fig. 7.15 (right panel), we show the scalar fine tuning as a function of m0 for various

values of bF . The curves are drawn for fixed values m1{2 “ 1 TeV, A0 “ ´1 TeV and

tan β “ 30. As can be seen, one can obtain a significant reduction of the scalar ∆

for bF » 0.94. Smaller (or slightly larger) bF can also lead to very low fine-tuning,

especially for specific values of m0.

The impact of non-universality conditions on ∆m0 and ∆M3 in the 1TH region is

illustrated in Fig. 7.16 for some selected unification patterns. The lowest values of

both fine-tuning contribution separately can be lower than 10. Points shown in the

scatter plots were a priori obtained without imposing condition that would minimize

the fine-tuning. Interestingly, it appears that the 1TH region for a specific patterns

shown in Fig. 7.16 coincides spectacularly with the region of the lowest contributions

to ∆.18

The fine-tuning of µ Another substantial contribution to the total fine-tuning in

the CMSSM, which remains sizable in the partially non-universal models discussed

above, is associated with the µ0 parameter. It is commonly defined at MSUSY, and

18Black strips go along the middle of phenomenologically preferred regions in both plots.
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is related to its GUT-scale value, µ0, through RGE evolution. The running depends

on the Yukawa couplings of the third generation, yt,b,τ and the gauge couplings of

the SUp2qL and Up1qY groups, g2 and g1. In practice to some approximation

µ “ Rµ0 « 0.9µ0 . (7.11)

Since the corresponding derivatives of mHupMSUSYq and Σu
u with respect to µ0 vanish

(if µ0 is unrelated to m0) in the Barbieri-Giudice measure Eq. (4.47), one obtains

approximately
B lnM2

Z

B lnµ2
0

« ´2
R2µ2

0

M2
Z

“
´2µ2

M2
Z

. (7.12)

This shows the well-known fact that in the MSSM naturalness requires preferably

small values of µ “ Rµ0 .

However, one can effectively cancel this contribution with the one from m0

by imposing a unification condition between m0 and µ0. This can be realized,

e.g., within supergravity thanks to the Giudice-Masiero mechanism [312]. In its

minimal implementation one introduces a set of visible-sector superfields and at

least one additional set of hidden-sector superfields. If some symmetry forbids a

SUSY-conserving bilinear term in the superpotential of the visible sector, a naturally

small effective µ0 proportional to the gravitino mass can be generated through

interactions with hidden-sector fields. The same mechanism generates masses for

the scalar fields. As a result, one expects to obtain a correlation between the µ0 and

m0 parameters, µ0 “ Chm0, where constant Ch is determined by the hidden sector.

Combining this with Eq. (7.11) one derives

µ “ pRChqm0 “ cH m0. (7.13)

The Barbieri-Giudice measure of the fine-tuning for m0 related to µ0 now reads

B lnM2
Z

B lnm2
0

« 2
m2

0

M2
Z

"

´
Bµ2

Bm2
0

´
Bm2

Hu
pMSUSYq

Bm2
0

“

1`Op10´2
q
‰

*

« 2
m2

0

M2
Z

`

´c2
H ´ 0.64 b2

F ` 0.57
˘

. (7.14)

One can reduce this contribution to ∆ by proper adjusting bF and cH parameters.

We show examples of such adjustment for two choices of NUGM patterns in Fig. 7.17.

Note that it is necessary to have bF ă 1 to obtain low levels of m0 fine-tuning,

similarly to the cases where µ0 is a fundamental parameter (discussed above). One

way to control the amount of mHu{m0 splitting, which is discussed in [292], is to

employ RGE running above the GUT scale, if a larger GUT gauge group breaks

down to the SM group at MGUT. Additionally, we assumed there that the µ term in

the superpotential is forbidden by the anomalous Up1qA symmetry group introduced
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Figure 7.17: The 1TH 95% CL region in the pcH , bF q plane for two different gaugino
unification patterns. Taken from Ref. [292].

Figure 7.18: Left panel: The total fine-tuning in the 1TH region in the pm0,M3q

plane for NUGM(-5:3:1) and three choices of bF and cH . Points with the lowest
fine-tuning for each such choice are denoted by light blue dots. Right panel: Com-
parison of the total fine-tuning of three models shown in the left panel with the
CMSSM and the model without µ0 and m0 relation at the GUT scale. Taken from
Ref. [292].

in the Missing Partner mechanism [313, 314]. In particular, we referred to the model

described in [315].

In Fig. 7.18 (left panel) we present the total fine-tuning in the pm0,M3q plane

for NUGM condition ´5 : 3 : 1 and several choices of bF and cH . As can be seen, ∆

can be much reduced in comparison with the CMSSM (see also the right panel of

Fig. 7.18).





Chapter 8

MSSM and NMSSM

Having discussed properties of some GUT constrained SUSY models we now move

to an analysis of the MSSM (and the NMSSM) with some set of parameters defined

at low energy scale. After short description of the standard case we will focus on

the neutralino DM scenario with low reheating temperature of the Universe. This

chapter is based on the results published in [293].

8.1 Dark matter relic density Ωχh
2 in the MSSM

and the NMSSM

The p10MSSM model We begin with a short description of the neutralino DM

scenario within the MSSM in the standard cosmological scenario where freeze-out of

χ takes place in the RD epoch. In particular, we focus on the so-called p10MSSM

with the parameters and their ranges given in Table 8.1. This set of parameters

appears to be large enough to discuss all the important scenarios leading to the

correct value of Ωχh
2 and simultaneously the set remains small enough to allow us

to efficiently scan the parameter space. We perform a Bayesian scan of this model

taking into account constraints listed in Table 6.1.

Although the choice of parameters and their ranges given in Table 8.1 is quite

generous, one needs to mention its several limitations. For instance, it does not

allow to consider coannihilations of χ with selectrons or smuons. However, from the

point of view of our discussion it is enough to permit coannihilations with the lighter

stau and not to distinguish between different sleptons being mass-degenerate with

χ. Another important remark is such that in the following we will first put a special

attention to the issue of heavy neutralino DM (up to 5 TeV). This is justified by

the fact that a low mass regime has been already studied much more extensively in

the literature and, beside that, by the current experimental limits on the masses of
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Parameter Range

bino mass 0.1 ăM1 ă 5
wino mass 0.1 ăM2 ă 6

gluino mass 0.7 ăM3 ă 10
stop trilinear coupling ´12 ă At ă 12
stau trilinear coupling ´12 ă Aτ ă 12

sbottom trilinear coupling Ab “ ´0.5
pseudoscalar mass 0.2 ă mA ă 10
µ parameter 0.1 ă µ ă 6

3rd gen. soft squark mass 0.1 ă m
rQ3
ă 15

3rd gen. soft slepton mass 0.1 ă m
rL3
ă 15

1st/2nd gen. soft squark mass m
rQ1,2

“M1 ` 100 GeV

1st/2nd gen. soft slepton mass m
rL1,2

“ m
rQ3
` 1 TeV

ratio of Higgs doublet VEVs 2 ă tan β ă 62

Table 8.1: The parameters of the p10MSSM and their ranges used in our scan. All
masses and trilinear couplings are given in TeV, unless indicated otherwise. All the
parameters of the model are given at the SUSY breaking scale.

SUSY particles.1 Although such a heavy χ naturally leads to SUSY particles that

avoid detection at the LHC, we will show that in this case the lightest neutralino

can be often found in future dark matter DD (or ID) experiments. The issue of

fine-tuning for this mass regime may be potentially resolved after embedding the

p10MSSM into some GUT inspired theory similarly to the 1TH region case discussed

in the previous chapter. We will not treat this in the thesis.

Since we focus on heavy DM, it is typically rather difficult for us to satisfy the

aµ constraint which requires relatively light smuons. Since the primary aim of our

discussion is to present some properties of SUSY DM and the experimental error

associated with aµ is still substantial, we will neglect this constraint in the study.

Neutralino dark matter in the p10MSSM As it was discussed in Section 5.1.3,

the correct DM relic density for the lightest neutralino can be obtained in the

bulk region, or by employing several possible coannihilation mechanisms (e.g., with

the lighter stau, lighter stop or the lighter sbottom), or due to some resonant

annihilations (in the AF region or in the h- or Z-resonance regions). The special case

of 1 TeV higgsino dark matter is associated with efficient (co)annihilations between

three lightest SUSY species, χ “ χ0
1, χ0

2 and χ˘1 .

These regions with bino-like or higgsino-like χ are shown in Fig. 8.1 on the

pmχ, σ
SI
p q plane. The basic features of the mχ À 1 TeV mass regime was already

discussed for the CMSSM. The 1TH higgsino region in a more general framework of

the p10MSSM remain to a large extend testable in the future Xenon1T experiment,

1These limits are not so stringent for the neutralino, but rather for the gluino or squarks.
Nevertheless, we will focus on a possible scenario in which also the neutralino LSP is heavy.
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while in the case of bino-like neutralino σSI
p can vary by several order of magnitude

depending on its higgsino (subdominant) composition. On the other hand, as can

be clearly see, it is particularly difficult to obtain Ωχh
2 » 0.12 for χ heavier than

about 1 TeV. In particular, for the largest masses of our interest, this is possible

in presence of coannihilations with the lighter stop or the gluino accompanied by

the A-resonance condition. However, this requires a very specific mass pattern, e.g.,

mχ » mg̃ » 0.5mA. Note that few higgsino-like points obtained for mχ „ 2˜ 3 TeV

are within a reach of the Xenon1T experiment.

Wino DM is not shown in Fig. 8.1. It is because this scenario in the MSSM has

been recently claimed to be excluded by ID searches [316, 317, 318]. It is due to

an accidental overlap of the mass range corresponding to the correct relic density

and the region where the Sommerfeld enhancement of xσvy plays an important role.

In particular, the enhanced rates of present-day wino annihilations would give rise

to diffuse gamma ray background in the H.E.S.S. data [319]. It could also lead

to an excess in the antiproton signal from PAMELA [320]. Conclusions from such

analyses [316, 317, 318] can be summarized in the exclusion of wino DM for the

mass ranges below 800 GeV and between 1.8 TeV and 3.5 TeV when Einasto DM

profile is assumed in the center of the Galaxy. The exclusion generally holds also

for other DM profiles, except from the flat ones. On the other hand, wino DM with

mass smaller than 1.8 TeV or larger than 3.5 TeV generically cannot satisfy the relic

density constraint. Therefore a combination of the Ωχh
2 and ID constraints excludes

wino-like χ as a DM candidate in a standard cosmological scenario where wino DM

particles are produced thermally in the early Universe and freeze-out in the RD
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epoch. In the following, we will employ (as sharp cuts) mass bounds from [318]

from which we also take the SE factors needed to calculate Ωχh
2 in presence of the

SE.

One in principle obtains similar results in the case of the NMSSM. Important

additions are the singlino-like lightest neutralino and some singlino mixed states. In

the NMSSM, similarly to the MSSM, it is also very difficult to satisfy the relic den-

sity constraint for mχ Á 3 TeV. In particular, as it was mentioned in Section 5.1.3,

obtaining the correct relic density for χ with significant singlino composition re-

quires, e.g., coannihilations with the lighter stau or gluino or non-negligible mixing

between the singlino and the higgsino. Pure singlino DM is typically characterized

by very low DD rates as it was shown in the case of the CNMSSM in Section 7.2.

These rates can be enhanced to the level reachable by the Xenon1T experiment for

a mixed singlino-higgsino neutralino.

8.2 Low reheating temperature TR and heavy su-

persymmetric dark matter

As we will see it is particularly difficult to obtain Ωχh
2 » 0.12 for heavy neutralino

DM both in the framework of the MSSM and for the NMSSM. In this section we will

show how this can be circumvented if one assumes that the reheating temperature

of the Universe after a period of cosmological inflation was low enough so that DM

freeze-out took place in the reheating period (i.e., before the RD epoch).

8.2.1 Boltzmann equations and suppression of Ωχh
2

During the reheating period the total energy density of the Universe was dominated

by the contribution from a decaying inflaton field. One should then take this into

account when writing the set of Boltzmann equations needed to calculate the DM

relic density. In particular, Eq. (2.16) for radiation needs to be modified. Moreover,

it is necessary to add one more equation describing decays of the inflaton field

to radiation. On the other hand, Eq. (2.15) associated with thermally produced

DM remains unchanged for our discussion in this section. However, one needs to

remember that some of the quantities in this equation are modified in the framework

of SUSY as it was described in Section 5.1.1.

In principle we should also take into account a possibility that the inflaton field

will produce DM particles via direct or cascade decays. However, this will serve

as an additional source of DM different than a production in thermal equilibrium.

On the other hand, when we focus on heavy DM, we typically face the problem

of DM thermal overproduction. Thus we rather want to suppress Ωχh
2 and not to

introduce an additional production mechanism. For this reason in this section we
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will assume that such inflaton decays to DM contribute negligibly to the DM relic

density. We will treat these decays more accurately in the next section.

Thus the appropriate set of Boltzmann equations now reads:

dρφ
dt

“ ´3Hρφ ´ Γφρφ,

dρR
dt

“ ´4HρR ` Γφρφ ` 2xσvyeff xEyeff

`

n2
´ n2

eq

˘

, (8.1)

dn

dt
“ ´3Hn´ xσvyeff

`

n2
´ n2

eq

˘

,

where ρφ is the energy density of the inflaton field and Γφ is the inflaton decay rate.

At the beginning of the reheating period the temperature of the Universe rapidly

increases from T « 0 to some maximum value Tmax due to inflaton decays to

radiation.2 At later times radiation is still effectively produced, but the additional

entropy production, associated with decays of the inflaton field, leads to a decrease

of T . The rate of this decrease with increasing scale factor is approximately given by

T „ a´3{8. In other words, the same drop in the temperature corresponds to a faster

expansion of the Universe during the reheating period than in the RD epoch where

T „ a´1. This has a remarkable impact on the DM relic density assuming that

the freeze-out of the DM particles took place during the reheating period. Between

the freeze-out and the end of the reheating period the DM particles were effectively

diluted away due to fast expansion. As a result one obtains a reduced value of Ωχh
2

in comparison with the standard result obtained for freeze-out in the RD epoch.

This is summarized in Fig. 8.2.

The faster expansion of the Universe additionally result in a slightly earlier (in

terms of higher T ) freeze-out of the DM particles. This effect could potentially

lead to an increased DM production, as can be deduced form Fig. 8.2. However,

this increase is almost always by no means less important than the aforementioned

dilution. Thus final Ωχh
2 for low TR is reduced in comparison with the high TR

(standard) value [8]. In principle one might expect a slight increase of the DM

relic density, if freeze-out occurred just at the end of reheating period, since then

the dilution period would not be present. However, we found that the maximum

increase is at best a few percent, i.e., of the order of the error associated with this

type of calculations.

An approximate analytical treating of Eqs (8.1) leads to relation between the

standard value of the relic density Ωχh
2phigh TRq and the one calculated in the low

2The value of Tmax does not play a role in the determination of the DM relic abundance, since
ΩDMh

2 is set mainly by the the rate of (co)annihilation processes near freeze-out and typically
Tfo ! Tmax.
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TR regime Ωχh
2

ΩDMh
2
phigh TRq »

ˆ

mχ

TR

˙3 ˆ

Tfo

mχ

˙3

ΩDMh
2, (8.2)

with pTfo{mχq
3 factored out since its value changes only in a narrow range. From

(8.2) it immediately follows that in scenarios with low reheating temperatures,

TR ă Tfo, the DM relic abundance is suppressed with respect to scenarios with

high reheating temperatures. However, in a more accurate treatment Eq. (8.2) may

be slightly misleading, as it does not show a certain degree of correlation between

Tfo and ΩDMh
2phigh TRq.

In the following we rather solve Eqs (8.1) numerically. We obtain both xσvyeff and

xσvyeffxEyeff as a function of temperature with appropriately modified MicrOMEGAs.

We follow a general methodology from [8] described for a single particle DM. In

order to treat SUSY DM we additionally apply the freeze-out approximation (see,

e.g., [321]) modified to our non-standard cosmological scenario. Some details of this

are given in Appendix D. MicrOMEGAs v3.6.7 was used to obtain Ωχh
2(high TR), i.e.,

the relic density in the standard cosmological scenario, and σSI
p . We also checked

that in the high TR limit our numerical tool for solving the Boltzmann equations

reproduces Ωχh
2phigh TRq obtained with MicrOMEGAs.
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Figure 8.3: Contours (black dotted) of constant ΩDMh
2 “ 0.12 for different val-

ues of the reheating temperature TR in the MSSM (left panel) and the NMSSM
(right panel), for which only the (almost) pure singlino DM case is shown, in the
pmDM,ΩDMh

2phigh TRq q plane. The solid black horizontal line corresponds to the
high TR limit. Green squares correspond to the bino DM region, while red triangles
(blue diamonds) to the higgsino (wino) DM case. In the left panel dark (light) brown
triangles correspond singlino fraction ą 99% (between 95% and 99%). Taken from
Ref. [293].

8.2.2 MSSM and NMSSM at low TR

In this section we apply the methodology of solving the Boltzmann equations for

low TR to the p10MSSM and the p13NMSSM (with three additional parameters3,

λ, κ and Aκ). We follow Table 8.1 for the choice of parameters and their ranges4

and Table 6.1 for the constraints.

The main results of such study – but obtained without imposing the constraint on

the DM relic abundance and direct detection rates – can be summarized in Fig. 8.3.

We present there the lines of constant Ωχh
2 » 0.12 as a function of mχ obtained for

several values of TR “ 1, 10, 50, 100 and 200 GeV. The horizontal line corresponding

to the standard (high TR) scenario is also shown. As can be seen, the standard

result Ωχh
2phigh TRq can be suppressed by several orders of magnitude in the low

TR regime.

The upper limit on Ωχh
2phigh TRq in the left panel of Fig. 8.3 corresponds to

bino-like χ annihilating via t-channel slepton exchange. The relic density is then

given by Eq. (5.3) with maximum value of slepton masses in our scan that is about

10´ 15 TeV. In the low TR regime one can easily obtain Ωχh
2 » 0.12 for wide range

3Aλ is determined in terms of other parameters including µeff and mA.
4Additional parameters in the p13NMSSM have ranges: 0.001 ă λ ă 0.7, 0.001 ă κ ă 0.7,

´12 TeV ă Aκ ă 12 TeV.
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Color coding as in Fig. 8.3. Taken from Ref. [293].

of masses without imposing any other conditions on the SUSY mass spectrum. The

similar is true for singlino-like χ as shown in the right panel of Fig. 8.3.

In the case of higgsino DM one can obtain the correct relic density for masses

much heavier than 1 TeV. Remarkably, this happens only for TR „ 100 GeV. One

interesting consequence of this could be derived if in some combination of future

DM experiments one would be able to find the DM particle recalling the higgsino

but mass significantly exceeding 1 TeV. This could then be interpreted as a hint

for the low TR scenario with a value of the reheating temperature determined quite

precisely.

The other important advantage is that wino DM in the low TR scenario can

become again viable provided that TR „ 100 ´ 200 GeV. In this case the correct

relic density can be obtained for m
ĂW ą 3.5 TeV. Thus it escapes from current ID

exclusion limits, but may be potentially tested in some future ID experiments.

The dark matter DD rates σSI
p for several values of TR are shown in Fig. 8.4 for

bino and higgsino DM and Fig. 8.5 for wino DM. In particular, the heavy higgsino

DM scenario can be almost entirely tested in Xenon1T experiment within a few

years. Some part of the wino DM case is also testable. On the other hand, bino

(and singlino) DM remains to a large extend beyond the reach of DD searches.

8.2.3 Constrained MSSM at low TR

It is interesting to briefly discuss the impact of low TR on the allowed parameter

space in the CMSSM to compare this with the results shown in Section 7.1. In this
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analysis the ranges of parameters follow Table 7.2 (recent study), while experimental

constraints are given in Table 6.1.
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In particular in Fig. 8.6 (left panel) we present the 95% CL region in the

(m0,m1{2) plane obtained for TR “ 10 GeV. As it is expected from Fig. 8.3 for

such low reheating temperature only the bino can be a viable DM candidate.

The lower left corner of the preferred region in (m0,m1{2) plane corresponds to

stau coannihilation region, analogous to that obtained for high TR.5 For slightly

higher values of the mass parameters, the suppression of the relic density by stau

coannihilations is traded for low-TR suppression and we find acceptable points there.

In that region, the bino relic density for a fixed TR and a fixed bino mass (or m1{2)

depends on many factors, in particular, on stau masses (which depend not only on

m0, but also on tan β and A0), as well as on the small but non-negligible higgsino

fraction of the lightest neutralino.

In Fig. 8.6 (right panel) the spin-independent direct detection cross section σSI
p

is shown as a function of the neutralino mass for TR “ 10 GeV. As expected from

results obtained for the p10MSSM, in the CMSSM for TR “ 10 GeV prospects for

DM discovery are much worse than in the high TR case. Only a small fraction of

the allowed region can be covered by Xenon1T. In this case the higgsino fraction of

the bino-dominated DM goes up to even 5%.

8.3 Inflaton field decays to DM at low TR

We have so far assumed that the direct and cascade decays of the inflaton field to

DM species are negligible. In this section we will take into account this additional,

non-thermal contribution to Ωχh
2. Our analysis follows here the model-independent

approach used in [322, 323].

Direct and cascade decays of the inflaton field to superpartners of SM particles

correspond to an additional term in the Boltzmann equation (8.1) for n, which is

now given by,6

dn

dt
“ ´3Hn´ xσvy

“

n2
´ pneqq2

‰

`
b

mφ

Γφρφ , (8.3)

where b describes the average number of DM particles produced per one inflaton

decay and mφ is the inflaton mass.

We present our results in Fig. 8.7 in the (mχ, TR) plane in terms of the dimension-

less quantity η “ b ¨ p100 TeV{mφq for higgsino (left panel) and wino (right panel)

DM where along the lines we fix a value of the total relic density, Ωχh
2 » 0.12.7 As

5For such low WIMP mass values the suppression due to low TR is inefficient.
6The most important contribution from direct and cascade decays is associated with the period

between the freeze-out of DM particles and the end of the reheating period when n becomes
essentially equal to nχ.

7The total DM relic density contains both thermal and non-thermal contributions. The ther-
mal component corresponds to a production in thermal equilibrium (that lasts up to a time of
freeze-out). The non-thermal production, instead, corresponds mainly to a production after the
DM freeze-out, but before the inflaton field disappears completely. Decays of the inflaton field
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can be seen, the non-thermal contribution to the DM relic abundance in the low TR

regime can help to increase otherwise too low Ωχh
2. Examples of such cases include

the higgsino with mass below 1 TeV or wino with mass below 2 TeV.

The relic density of DM in this case is a sum of the thermal and the non-thermal

components. The thermal component increases with the reheating temperature (up

to a moment when the high TR regime begins). On the other hand, the magnitude

of the non-thermal component may depend, for fixed η and mχ, on the reheating

temperature in a non-monotonic way, as discussed in detail in [323]. When TR is

sufficiently low, non-thermal production leads to Ωχ „ TR, while for larger reheating

temperature DM relic density goes down with increasing TR.

The latter behavior corresponds to a shortening (with increasing TR) of a period

between the DM freeze-out and the end of the reheating period. The DM particles

produced from the inflaton decay before freeze-out can effectively thermalize. Hence

their number density will be adjusted to the thermal one and one will not observe

increase of the DM abundance from the inflaton decays. The situation changes

after the DM freeze-out, but before the inflaton field disappears completely, since in

this period newly produced DM particles will not thermalize and therefore indeed

contribute additionally to Ωχh
2. The shorter this period is, the less amount of the

additional DM produced. In other words the smaller fraction of the inflaton field

number density, F nφ “ F pρφ{mφq, with F ă 1, would decay effectively producing

additional (non-thermalized) DM particles.8 Hence Ωχh
2 increases with decreasing

TR for intermediate (but generally low) TR.

However, for very low TR the situation changes. In this regime one can safely

assume that non-thermal production of DM dominates (thermal one is highly sup-

pressed) and that a significant fraction of nφ could decay producing the DM particles

(as well as radiation in cascade decays), i.e., F is more close to unity. Therefore by

decreasing TR one cannot increase F much. In this regime, to some approximation,

one can describe the non-thermal DM production using the instantaneous reheat-

ing approximation. In particular, one can assume that the whole energy density of

the inflaton field was transformed into radiation9 ρφ “ ρR „ T 4
R in the (cascade)

processes that also produced the DM particles, i.e., ρχ » mχnχ » bnφ „ η ρφ. As a

result, one obtains [323]

Y0 “ Y RH
χ “

ρRH

sRH
„ η TR, for sufficiently low TR, (8.4)

to DM particles being still in thermal equilibrium are also taken into account when numerically
solving the Boltzmann equations. Their impact on the total relic density is limited, since produced
DM particles quickly thermalize, but in principle these decays can slightly change the moment of
freeze-out.

8In this regime F increases as TR decreases.
9For the purpose of a qualitative discussion in this section we neglect the difference between TR

and TRD mentioned in Section 2.2.
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Figure 8.7: Contours of constant Ωχh
2 “ 0.12 in the (mχ, TR) plane for different

values of the dimensionless quantity η “ b
´

100 TeV{mφ

¯

for higgsino (left panel)

and wino (right panel) DM. Solid black (dashed red, dot-dashed green, dotted blue)
lines correspond respectively to η “ 10´1 (10´6, 10´7, 10´8). In the wino DM case
we take indirect detection limits following [318]. For the reheating temperatures
above thin dashed black lines the freeze-out of the DM particles occurs after the
reheating period (i.e., in the RD epoch). The limit at „ 800 GeV comes from
antiprotons and the one around 1.8 TeV from the absence of a γ-ray line feature
towards the Galactic Center. taken from Ref. [293]

where we used sRH „ T 3
R (index RH denotes the value at the end of the reheating

period). Thus Ωχh
2 starts to decrease with decreasing TR for sufficiently low

reheating temperature.

This is summarized in Fig. 8.8 where we show Ωχh
2 (both from thermal and

non-thermal production) as a function of TR for several values of η and two masses

of higgsino-like neutralino. Consequently, each curve corresponding to a fixed value

of the relic density Ωχh
2 “ 0.12 and fixed η in Fig. 8.7 is C-shaped. As mχ increases

required values of the TR become larger (for the upper branches of C-shaped curves).

Finally they reach the level at which freeze-out occurs after the reheating period,

i.e., in the RD epoch, and therefore direct and cascade decays of the inflaton field

play no role in determining Ωχh
2.

For sufficiently large values of η, one can even generate too much DM from

inflaton decays. The corresponding upper bound on η 9 1{mφ can be translated into

a lower bound on the inflaton mass above which the direct production is negligible

even for a branching ratio BRpφ Ñ superpartnersq „ Op1q. In particular, for

η ă 10´9 we obtain no significant non-thermal production of DM particles. This

value corresponds to the inflaton mass mφ ą b ¨ 1013 GeV, as it is illustrated in

Fig. 8.9.
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Chapter 9

Gravitino and axino dark matter

In this chapter we will discuss in more details some specific scenarios with SUSY

EWIMP DM that were so far rarely studied in the literature. We begin with a

discussion of the case with gravitino DM and sneutrino being lightest ordinary

supersymmetric particle1 (LOSP) in the framework of constrained SUSY models (at

the GUT or other high energy scale). We then study the impact of low reheating

temperature on gravitino and axino DM scenarios within the p10MSSM. The results

presented in this chapter are partly based on [287, 293] and partly on currently

ongoing project.

9.1 Gravitino dark matter from sneutrino de-

cays in supersymmetric models constrained

at high energy scale

The results presented in this section are based on [287].

Gravitinos as the DM particles can be produced either thermally or

non-thermally as discussed in Sections 3.2.3 and 5.2.2. In particular, if the reheating

temperature of the Universe after a period of cosmological inflation TR is large, the

TP mechanism dominates and can easily lead to DM overabundance. This can be

translated into an upper limit on TR that depends mainly on the gravitino mass

m
rG and the gluino mass mg̃ as shown in Eq. 5.13. In this section we will examine

this limit in a scenario with the sneutrino LOSP taking into account the BBN and

the LSS constraints, as well as the recently measured value of the Higgs boson mass

mh for two selected, though as we will see in some sense representative, constrained

SUSY models.

1It is the lightest of all supersymmetric particles beside possibly lighter SUSY EWIMPs. In
the scenarios that we consider in this chapter, in which either the gravitino or the axino (but not
both at the same time) are lighter than all the other SUSY particles, the LOSP is the NLSP.
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Sneutrino LOSP in constrained SUSY To begin with we need to discuss the

conditions imposed on soft SUSY breaking parameters that lead to the sneutrino

LOSP scenario. From Eqs (4.39) and (4.40) one can easily derive a necessary

condition for the sneutrino to be lighter than stau τ̃1 written in terms of the

parameters evaluated at the SUSY scale

m2
t̃L
pSUSYq ´m2

t̃R
pSUSYq ą

m2
τ pµ tan β ´ Aτ q

2

m2
τ ´M

2
W cos 2β

`
3

2
M2

Z cos 2β ´M2
W cos 2β ´m2

τ

Á
m2
τ pµ tan β ´ Aτ q

2

M2
W

`M2
W ´

3

2
M2

Z , (9.1)

where in the second line we assumed that tan β is noticeably larger than one.

However, typically tan β cannot be too large, since then the term proportional to

µ2 tan2 β on the RHS could grow too much and it would be particularly difficult to

satisfy Eq. (9.1).

One can rephrase Eq. (9.1) in terms of the parameters defined at high energy

scale by solving the corresponding RGEs. Approximate, though accurate enough

for our discussion, solutions that one can obtain (for more details see Appendices A

and B) read2

m2
τ̃R

“ m2
τ̃R,0

` cR1M
2
1 ` c̃RUm

2
U,0 ´

1

11
D2

ˆ

1´
g2

1

g2
1,0

˙

` δ2
R,yτ (9.2)

m2
τ̃L

“ m2
τ̃L,0

` cL1M
2
1 ` cL2M

2
2 ` c̃LQm

2
Q,0 `

1

22
D2

ˆ

1´
g2

1

g2
1,0

˙

` δ2
L,yτ (9.3)

where by m2
S,0 (with an additional index 0) for S “ Q,U,D we denote third

generation soft squark masses at the high scale, while M1,2 are low-scale Up1q and

SUp2q gaugino soft mass parameters. The coefficients cR1 and cLi can be found by

solving the one-loop RGEs, whereas c̃RU , c̃LQ by solving the two-loop RGEs and

identifying the leading effects. They are given in Table 9.1 for some representative

choices for the high scale Q and the SUSY scale.3 D2 (denoted in literature also as

S0) is defined as

D2
“ S0 “ tr

“

YM2
scalars,0

‰

“ m2
Hu´m

2
Hd
`tr

“

m2
Q,0 ´ 2m2

U,0 `m2
D,0 ´m2

τ̃L,0
`m2

τ̃R,0

‰

,

(9.4)

2The approximate method of solving one-loop RGEs follows [100] and is valid for not too large
tanβ. This is however consistent with the requirement of having the sneutrino LOSP, as mentioned
above.

3We assume that at the high scales the soft supersymmetry breaking parameters are the same
for all three generations. Beyond that framework, e.g., in models with inverted hierarchy of soft
supersymmetry breaking masses, two-loop contributions proportional to squark masses can drive
m2
τ̃L

to values smaller than m2
τ̃R

, opening up a possibility for yet another example of sneutrino
LOSP [324] which we do not treat here.



9.1 Gravitino dark matter from sneutrino decays in supersymmetric
models constrained at high energy scale 131

MSUSY cR1 cL1 cL2 c̃RU c̃LQ
Q “ 1014 GeV

500 GeV 0.47 0.12 0.52 ´0.0027 ´0.0049
1000 GeV 0.45 0.11 0.51 ´0.0026 ´0.0048

MSUSY cR1 cL1 cL2 c̃RU c̃LQ
Q “ 1016 GeV

500 GeV 0.62 0.15 0.64 ´0.0038 ´0.0060
1000 GeV 0.59 0.15 0.62 ´0.0037 ´0.0059

Table 9.1: Numerical values of the coefficients cR1, cL1, cL2, c̃RU , c̃LQ in Eq. (9.2)
for two representative choices of the high scale Q and of the EWSB mass scale
MSUSY “

?
mt̃1mt̃2 .

where m2
i,0 are the 3ˆ3 sfermion mass matrices at the high scale, m2

Hu
and m2

Hu
are

the soft supersymmetry breaking masses of the Higgs doublets at the high scale, and

g1 pg1,0q is the Up1qY gauge coupling at the low (high) scale. Leading corrections

arising due to the τ Yukawa couplings are denoted by δ2
E,yτ

and δ2
L,yτ

. For small

and moderate values of tan β they are small and their only role is to make the

third generation of sleptons slightly lighter than the first two, but they can become

important, e.g., if the mass parameter
b

m2
Hd

at the high scale is much larger than
a

m2
L and

a

m2
E. Adding the leading two-loop contributions to the RGEs allows to

obtain Op10 GeVq accuracy in a mass determination.

Substituting (9.2) and (9.3) into (9.1), we see that the sneutrino can be the LOSP

in two (mutually not exclusive) cases.4 One possibility is to assume D2 ă 0, which

drives left slepton mass to m2
τ̃L
ă M2

1 . Moreover, in this case the sign difference

in the coefficients multiplying D2 in (9.2) and (9.3) can lead to m2
τ̃L
ă m2

τ̃R
. We

will discuss this scenario for the non-universal Higgs mass (NUHM) model, in which

mHu ‰ mHd and both of them are not unified to m0, while the remaining parameters

follow the CMSSM. The second option is to relax the gaugino mass universality.

This possibility is naturally realized in, e.g., generalized gauge mediation (GGM)

models.5

Allowed parameter space of the models We performed a grid scan over the

parameter spaces of the NUHM and the GGM (see Appendix C) models. The

values of the fixed parameters in each case were chosen so as to maximize the

allowed region with the sneutrino LOSP and simultaneously make it possible to

4Note that in models with D2 “ 0 and universal gaugino masses, such as the CMSSM for which
M2 « 2M1, and a high scale is greater than 1014 GeV, the sneutrino cannot be the LOSP, since it
is always heavier than the bino. The stau LOSP case in the CMSSM corresponds to the “right”
stau τ̃R.

5Another way would be to assume large mQ,0, since it would give a negative contribution to
m2
τ̃L

. However, this would lead to large µ, hence would increase the left-right mixing in the stau
sector and would thus make the lighter stau lighter than the sneutrino.
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Figure 9.1: Left panel: Slice of the NUHM model parameter space in the pm0,m1{2q

plane with the values of mHu “ 500 GeV, mHd “ 4000 GeV, A0 “ ´3 TeV fixed at
the unification scale and tan β “ 10, µ ą 0. Contours of constant LOSP (Higgs
boson) masses are shown as dashed (solid) lines. Unphysical regions are marked in
white. Right panel: Sections of the GGM model parameter space in the pΛ̃1, Λ̃2q

plane and with fixed ratio M1,0 : M2,0 : M3,0 “ 5 : 2 : 5 and fixed values of
tan β “ 10, the messenger scale Mmess “ 1013 GeV and Λ̃3 “ 20 TeV with µ ą 0.
Taken from Ref. [287].

obtain mh1 » 126 GeV. In particular for the NUHM model we keep mHu ă mHd

and therefore D2 ă 0, while for the GGM model it follows from (9.2) that sneutrino

LOSP is viable for M2{M1 À 2 at the electroweak scale.

Slice of the allowed parameter space in the pm0,m1{2q plane for the NUHM

model is shown in Fig. 9.1 (left panel). We present the LOSP identity and its

mass, as well as the mass of the Higgs boson. In the left panel the sneutrino LOSP

region is bounded from above at large values of m1{2. This can be easily understood

since, according to Eq. (9.3) and assuming gaugino mass unification at the GUT

scale, m2
τ̃L

grows faster with m1{2 than the bino mass squared M2
1 . As a result, for

sufficiently large m1{2, the bino becomes lighter than the sneutrino.6 On the other

hand, for too low m1{2 and m0 one obtains mτ̃L ă 0 (unphysical region) because large

negative contribution from D2 ă 0 is not compensated by other terms in Eq. (9.3).

Beside the large negative contribution to m2
U (proportional to D2) can drive, for

sufficiently small values of m1{2, the lighter stop mass below the sneutrino mass.

Thus we observe a lower bound on m1{2 Á 800 GeV. This also limits from below

acceptable gluino masses which has an important impact on the maximum TR as

discussed above. The lower limit on mg̃ even increases when one takes into account

the condition for the Higgs boson mass mh1 » 126 GeV. It is because M3 has a large

6The sneutrino mass also grows with m0. That is the reason why the bino LOSP region (green
area in the plot) increases for larger m0.
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40 and 250 GeV. For 6Li{7Li the stringent limit was used Eq. (6.56). The con-
servative limit is denoted by red dash-dotted line.

impact on the RGE evolution of the soft squark masses which, in turn, determines

MSUSY and therefore a size of loop corrections to mh1 .

In the case of the GGM model described in terms of the parameters given in

Appendix C we can utilize the possibility of non-universal gaugino masses. We adopt

M1,0 “ M3,0 (at high energy scale), while M2,0 is kept lower. More specifically, we

assume M1,0 : M2,0 : M3,0 “ 5 : 2 : 5, which predicts that the lightest gaugino-like

neutralino is a wino. A slice of the allowed parameter space in this case is shown in

Fig. 9.1 (right panel).

BBN and LSS constraints For the region with sneutrino LOSP shown in the

left panel of Fig. 9.1 for the NUHM model we calculate the abundances of light

elements and apply both the BBN and the LSS constraints. In Fig. 9.2 we show a

sample of such results for two masses of gravitino m
rG “ 40, 250 GeV. We find no

constraints for the gravitino masses smaller than 7.5 GeV. At mG̃ “ 40 GeV a part

of the parameter space corresponding to mν̃ Á 500 GeV is excluded because of too

large D/H abundance, but typically the bounds from 6Li{7Li are more stringent.

For large gravitino masses non-thermal gravitinos produced in sneutrino LOSP

decays will have present-day (after redshift) velocities much larger than those char-

acteristic for thermal distribution.Such fast moving dark matter particles tend to

erase small scales of Large Scale Structures (LSS), especially when they constitute a

sizable fraction of the dark matter density as discussed in Section 6.6.2. The impact

of this bound on the parameter space of the NUHM model is shown in Fig. 9.2 (right

panel) for mG̃ “ 250 GeV. At such large mG̃, the LSS bounds become more strin-

gent than the BBN ones. For mG̃ ą 270 GeV, we find that the LSS bounds exclude
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Figure 9.3: Left panel: BBN constraints shown in the τν̃ vs mν̃Yν̃ plane for the
sneutrino LOSP region shown in the left panel of Fig. 9.1. Dots show the results of
our scan with fixed mG̃ “ 2.5, 20 and 250 GeV. Right panel: The impact of different
estimates of hadronic energy release on the D/H bounds for mG̃ “ 20 GeV. For the
excluded region marked “simple Ehad” an approximation Ehad “ pmν̃ ´mG̃q{3 was
used, while the excluded region marked “full Ehad” corresponds to a computation
of Ehad involving integration over the full 4-body phase space.

the entire section of the parameter space in the NUHM model that we analyze here.

This has important consequences for the maximum reheating temperature, since

limits on TR become weaker with increasing gravitino mass according to Eq. (5.13).

In order to understand better the origin of the BBN constraints, we first project

all the analyzed points onto the τν̃ vs mν̃Yν̃ plane for several gravitino masses,

mG̃ “ 2.5, 20, 250 GeV. This is shown in the left panel of Fig. 9.3 where we also

present the D/H and 6Li{7Li bounds. As can be seen with increasing mG̃, the BBN

constraints first appear, next tighten up and then eventually become weaker.7

The D/H bound is quite sensitive to the hadronic energy release. In Fig. 9.3

(right panel) we compare the approximate estimate Eq. (6.61) and more exact

treatment Eq. (6.62). It turns out that the lower boundary of the respective excluded

region could shift downwards by as much as 100 GeV in the approximate treatment.

In other words, one would significantly overestimate the sneutrino LOSP region

excluded by the constraint.

In Fig. 9.4 we show regions in the pmG̃,mν̃q plane excluded in the case of the

NUHM model. Taking into account only the BBN constraints one finds two separate

allowed regions in the plot. The first one, for small mG̃ ă 10 GeV, corresponds

to relatively low values of the maximum reheating temperature, Tmax
R „ 107 GeV.

7This can be understood taking into account that the sneutrino lifetime τν̃ 9 m2
G̃
m´5
ν̃ for

mG̃ ! mν̃ and Ων̃h
2 9 m2

ν̃ . Interestingly, for mν̃ close to the bino mass we obtain an increase of
the sneutrino relic density; this is an example of scenario in which the LSP-NLSP mass degeneracy
causes an increase of ΩLSPh

2 that is discussed in Section 5.1.2.
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Figure 9.4: A summary of the bounds in the NUHM in the pmG̃,mν̃q plane. The
thick dashed line bounds the region excluded by BBN, the solid red line marks the
boundary of the region excluded by LSS. Thinner dashed lines show the maximum
reheating temperature, Tmax

R , and thinner dotted lines show the Higgs boson mass
corresponding to Tmax

R . For 6Li{7Li the stringent limit was used; the boundary of
the excluded region with the more conservative constraint for 6Li{7Li is represented
by a red dash-dotted line.

On the other hand, for larger mG̃, the region allowed by the BBN bounds is

characterized by the maximum reheating temperature of the order of 109 GeV when

mν̃ „ mG̃. However, imposing the LSS bounds closes this second region, thus slightly

reducing the maximum reheating temperature. It is further reduced when one add

a constraint from the Higgs boson mass. As can be seen, the requirement that the

Higgs boson mass is at least 125 GeV, brings Tmax
R down to below 108 GeV.

These bounds on maximum TR as a function of mG̃ are shown in the left panel

of Fig. 9.5 for the same sets of constraints. We impose there the BBN bounds

and we show the results with and without the LSS bounds and with and without

the requirement that the Higgs boson mass is at least 122 GeV (at the time of the

analysis we took into account theoretical error of mh in a quite conservative way).

We see that in each case the maximum TR lies close to 109 GeV. In the right panel

of Fig. 9.5 we show the maximum TR versus the Higgs boson mass with and without

BBN and LSS constraints.

In the GGM model we find a similar value of the maximum reheating temperature

when the Higgs boson mass and the BBN constraints are taken into account. The
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the BBN bound is (is not) applied.

LSS constraints are not important since in these models typically m
rG ! mν̃ which

is assumed to allow a natural suppression of the FCNC processes.8

9.2 Gravitino dark matter with low reheating

temperature

The results presented in this section were published in [293].

In this section we will analyze the impact of taking low values of the reheating

temperature on the scenario with gravitino DM. As we will show, in this scenario

a combination of the relic density and the BBN constraints allows one to derive a

lower limit on TR. This complements the study of the upper limit on TR discussed

above.

As it was shown in Eq. (5.12) gravitino relic density from thermal production is

suppressed for low TR and not too low m
rG. In particular, for TR ! 106 GeV and

m
rG Á 1 GeV, that we are interested in here, this component is much smaller than

the measured value of the DM relic density.9 In the following, we want to focus

8In gauge-mediated models the leading contributions to the soft masses are flavor-diagonal,
while the subdominant gravity-mediated contributions, of the order of m

rG, do not have to exhibit
any such structure.

9In fact, for such low values of TR that we employ there may appear additional reduction of
Ω

rGh
2 going beyond Eq. 5.11. It is due to a Boltzmann suppression of number densities of heavier
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Figure 9.6: Contours of constant Ω
rGh

2 “ 0.12 for different values of the reheating
temperature TR and for m

rG “ 10 GeV and 1 TeV in the p10MSSM with BBN
constraints imposed. Color coding as in Fig. 8.3.

on scenarios in which the gravitino constitutes the whole DM relic abundance. Its

relic density for low TR has to be then dominated by the non-thermal component.

In this case the gravitino abundance is related to the abundance of the LOSP by

Eq. (3.13) with ΩNLSPh
2 replaced by ΩLOSPh

2. The LOSP relic abundance has to be

calculated taking into account low values of TR following the methodology described

in Sections 8.2 and 8.3.

Long after they have frozen out, during or after BBN, the LOSPs can decay into

gravitinos and SM particles. Hadronic and electromagnetic cascades initiated in this

processes can change abundances of light elements and therefore possibly ruin an

agreement between the BBN predictions and current observational limits. We im-

plement the BBN constraints following the methodology described in Section 6.6.1.

Typical results for m
rG “ 10 GeV and 1 TeV obtained in the p10MSSM are

given in Fig. 9.6. In both figures we fix the gravitino abundance Ω
rG » 0.12.

This is achieved by a proper adjustment of the reheating temperature so that

ΩLOSPplow TRq » pmLOSP{mG̃qˆ0.12. The corresponding lines of constant reheating

temperature for different points in the pmχ,ΩLOSPh
2q plane are shown by dashed

black lines. The line corresponding to the correct NTP gravitino abundance in

high-TR case is naturally not horizontal in this plane, since it is described by

ΩLOSPphigh TRq » pmLOSP{mG̃q ˆ 0.12.10 We assume that the LOSP can be either

the lightest neutralino or slepton (in particular, the lighter stau or the tau sneutrino).

SUSY particles that produce gravitinos in their scatterings in thermal plasma (similarly to axino
DM case discussed in Section 5.3.2).

10An addition of TP for high TR would allow one to obtain the correct value of the gravitino
relic density also for points lying in the hatched regions labeled by “too low Ω

rGh
2”. We show only

the pure NTP case for a comparison with the low TR scenario in which TP is negligible.
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We note that the sneutrino LOSP is always mass degenerate with the lighter (left)

stau. Thus coannihilations do play an important role in determining Ων̃h
2. This

may result in ΩLOSPh
2phigh TRq smaller for the sneutrino LOSP than for the (right)

stau LOSP.

As long as m
rG À 100 GeV, the bino LOSP is the only possibility for gravitino

DM with Ω
rGh

2 » 0.12 in the low TR regime. In this case typically hadronic branching

ratio Bh „ 1. Additionally, ΩLOSPh
2plow TRq has to exceed 0.12 in order to keep

the correct value of the relic density for gravitino. Thus the BBN constraints are

quite severe. In order not to violate them one then simply requires that the LOSP

lifetime is less than about 0.1 s. According to Eq. (6.57) this leads to

mLOSP Á 1400
´ m

rG

GeV

¯2{5

GeV , (9.5)

which is consistent with the results shown in the left panel of Fig. 9.6.11

On the other hand, it follows from Fig. 9.6 that a lower bound on mLOSP can be

translated into a lower bound on TR. We show such bounds for the bino LOSP in

Fig. 9.7 (left panel) as a function of the gravitino mass assuming that the inflaton

field is heavy enough so that its direct and cascade decays to DM are negligible (see

a discussion in Section 8.3). As we argued in Section 8.2, the upper boundary of the

points in Fig. 9.6 corresponds to the maximum value of the stau mass. Therefore

the lower limits on TR with the bino LOSP are presented for three maximum values

of the stau mass: 5, 10 and 15 TeV.

On the other hand, when m
rG Á 100 GeV, the LOSP lifetime is typically so large

that the BBN bounds can only be evaded when Bh is small. Moreover, in the low

TR regime where the LOSP yield at freeze-out is suppressed one requires mLOSP Á 1

TeV to satisfy the relic density constraint for NTP gravitino. This naturally points

towards a scenario with the slepton LOSP which can be either the sneutrino or,

very rarely, for the lighter stau [276, 277]. We present typical result for m
rG “ 1 TeV

in the right panel of Fig. 9.6.12 Similarly to the bino LOSP case, for m
rG Á 100 GeV

we also find a lower bound TR Á 150 GeV, as can be seen in Fig. 9.7 (right panel).

The lower limits on the reheating temperature that we derive for gravitino DM

and both the bino or slepton LSP lie typically around TR „ 100 GeV if the gravitino

is not too light. Remarkably, it is much larger value than T „ 1 MeV characteristic

for the beginning of the BBN, which is often mentioned in the literature as the

theoretical lower bound on TR.

11One needs to notice that, for fixed m
rG, ΩLOSPh

2plow TRq is constant along the vertical lines
in Fig. 9.6 that correspond to mχ “ const. Along these lines we also obtain fixed values of the
LOSP lifetime and to a good approximation hadronic branching ratios Bh (for each of the possible
LOSPs separately). Thus the BBN bounds appear in Fig. 9.6 as sharp vertical exclusion lines.

12In our case the stau LOSP scenario is only slightly constrained by the possibility of forming
bound states with nuclei discussed in Section 6.6.1 due to a relatively low stau lifetime. For the
same reason the CMB constraint plays no role here.
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The aforementioned lower limits on TR become weaker if direct and cascade

decays of the inflaton field to the LOSP cannot be neglected, as can be seen in Fig. 9.8

for the bino LOSP. It is because thermal production of LOSPs (later decaying

to gravitinos) can be suppressed more by allowing low TR, while the condition

ΩLOSPh
2 “ pmLOSP{m rGqˆ0.12 will be maintained thanks to additional non-thermal

production of LOSPs. However, the weakened lower limits on TR typically remain

significantly larger than 1 MeV.
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9.3 Axino dark matter with low reheating tem-

perature

According to our discussion in Section 5.3.2 (see the right panel of Fig. 5.2) in the

axino DM scenario with mã Á 0.01 GeV we are naturally confined to assuming low

values of the reheating temperature TR À 103 GeV. However, this regime was so

far treated in the literature (see [26] and references therein) without taking into

account the details of the expansion of the Universe in the reheating period. The

non-thermal production of axinos can be described similarly to the gravitino DM

case discussed in the previous Section. In addition, axino interaction rates are much

less suppressed than the ones for the gravitino, since typically fa ! MP . As a

result, in contrast to the gravitino DM scenario, axino thermal production can play

a non-negligible (though still often subdominant) role in determining Ωãh
2 even for

low values of the reheating temperature.

In this section we will study the impact of taking low TR on the allowed values

of the axino mass. We will assume that the axino can be produced both thermally

and non-thermally from late-time LOSP decays.13 Both TP and NTP in general

depend on the SUSY spectrum. In order to take this into account we perform our

analysis within the framework of the p10MSSM (see Section 8.1).

Axino TP with non-instantaneous reheating Before we present the results

of our study we first briefly describe the impact of the reheating period on the axino

TP (for a more detailed discussion about a methodology see Appendix E). We will

focus on the KSVZ axino, but will give some remarks about the DFSZ one, too.

Although the impact of the non-instantaneous reheating on Ωãh
2 is generally

larger for low values of the reheating temperature, it is also non-negligible in the

high-TR regime (see [196]). In this limit scatterings associated with the SUp3q

group dominate Y TP
ã . In the standard cosmological scenario with an instantaneous

reheating the axino relic yield from TP is given by Eq. (5.17) with TR “ TRD (the

temperature at which the RD epoch begins). This contribution to Y TP
ã remains

intact when the non-instantaneous reheating is taken into account. However, in this

scenario there appears an additional contribution associated with scatterings taking

place during the reheating period, when the temperature of the Universe is higher

than TRD

Y TP,non-inst. reh.
ã pTRq “ Y TP,stand.

ã pTRDq ` Y
TP,reh.
ã pTRq. (9.6)

In the limit of high TR, to a good approximation the TP axino yield does not

depend on the SUSY spectrum, as discussed in Section 5.3.2. As a result, when one

estimates the excess of Y TP, non-inst. reh.
ã over the standard result, it depends only on

13We neglect possible other sources of relic axinos that can be associated, e.g., with saxion
decays [325].
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Figure 9.9: The ratio between Y TP
ã for the KSVZ axino obtained assuming instanta-

neous and non-instantaneous reheating in high-TR (left panel) and intermediate-TR
(right panel) regimes. For the intermediate values of TR we assume the gluino mass
and squark masses to be equal 1 TeV.

details of the evolution of the Universe. The excess turns out to be always about

1{6 of the standard result as can be seen in Fig. 9.9 (left panel) (see a discussion

in Appendix E). In other words, in the high TR limit axinos are produced with a

“constant rate” and therefore to a good approximation the longer the production

lasts, the larger is the final abundance. The presence of non-instantaneous reheating

before the RD epoch effectively extends the period of production and therefore

increases the axino yield.14

For intermediate values of the reheating temperature

102 GeV À TR À 104 GeV a phase space suppression of the scattering terms

associated with the heavy superparticles starts to play a non-negligible role. For a

given TRD such suppression is smaller for Y TP,non-inst. reh.
ã than for Y TP,stand.

ã because

of the additional contribution to the axino yield, i.e., Y TP,reh.
ã , which is associated

with the production at larger temperatures. As a result, the ratio between yields

calculated for both non-instantaneous and instantaneous reheating becomes larger

than 1 ` 1{6 obtained in the high-TR regime. This can be seen in Fig. 9.9 (right

panel).

14In [196] a constant reduction (instead of the increase) of Y TP
ã of the level of about 0.75 was

obtained. However, this is not in contradiction with our result. In [196] results obtained for
instantaneous and non-instantaneous reheating are compared for the same value of TR which is a
conventional parameter used in this kind of studies. However, we believe that it is more proper
to compare both yields assuming the same value of TRD which has an exact physical meaning for
non-instantaneous reheating in contrast to TR (see a discussion in Section 2.2). If we, instead, used
the same methodology as the one used in [196] we would obtain a similar level of reduction in the
yield.



142 Gravitino and axino dark matter

If the reheating temperature is smaller than about 1 TeV (for a reference point

with the gluino and squark masses mg̃ “ mq̃ “ 1 TeV), the contribution to the

TP axino yield from squark decays also becomes important. However, in the

case of decays the impact of the reheating period is generally smaller than for

scatterings. In principle, larger temperature during the reheating period leads to

a larger equilibrium number density of decaying squarks or gluinos and therefore

an increase of Y TP but this effect appears to be much less important than the one

associated with the phase space suppression for scatterings. Hence, as long as the

role of decays in determining Y TP
ã increases, the ratio in Fig. 9.9 (right panel) drops

down even below 1` 1{6.

The difference between the instantaneous and non-instantaneous reheating sce-

narios can become significantly larger for the low-TR regime with TR À 100 GeV.

This is in particular true if CaY Y “ 0 or if CaY Y is non-zero, but the lightest

neutralino is heavy enough (see the left panel of Fig. 9.10).15 The phase space

suppression of the SU(3) scatterings, which is responsible for a reduction of the

standard result Y TP,stand.
ã in the low TR regime, can then be partially avoided for

higher temperatures in the reheating period. On the other hand, if CaY Y is non-zero

and the lightest neutralino is relatively light, Y TP
ã is dominated by the U(1) con-

tributions (mainly decays,16 and only partially by scatterings) and the impact of

non-instantaneous reheating is much smaller (see the right panel of Fig. 9.10). In

practice, we observe in our p10MSSM analysis that the TP yield, if non-negligible,

is increased by of most about 50% in comparison with the standard cosmological

scenario.

Last, but not least, as it was mentioned above, the non-instantaneous reheating

modifies the scattering contribution to Y TP
ã rather than the decay one. Thus it plays

less important role in the framework of the DFSZ models, where TP is for wide range

of TR dominated by the higgsino decays (see a discussion in Section 5.3.2).

Results for the p10MSSM In the axino DM scenario possible lower limits on TR,

that could be derived in a way similar to the one described in the previous section,

are much weaker than for gravitino DM.17 In practice we find in our p10MSSM

analysis that even for the lowest values of TR » 1 GeV that we take into account,

we can obtain Ωãh
2 » 0.12 for some specific SUSY spectra by adding TP and NTP

contributions unless the axino is too light.

15In the case of the bino LOSP with mass mB̃ Á 500 GeV its decays to the axino in thermal
equilibrium contribute negligibly to axino TP. For the higgsino or the wino with a small bino
composition the Up1q decays become negligible for even lower masses of χ.

16This corresponds to the decays of neutralino being in thermal equilibrium and should be
distinguished from NTP in late-time decays of out-of-equilibrium neutralinos.

17This is because one can further suppress non-thermal production by reducing TR, since the
total relic abundance can be supplemented with the contribution from TP.
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Figure 9.10: The ratio between Y TP
ã for the KSVZ axino obtained assuming instan-

taneous and non-instantaneous reheating in the low-TR regime for negligible (left
panel) and non-negligible (right panel) contributions from the lightest neutralino
decays (in thermal equilibrium). We assume the gluino mass and squark masses to
be equal 1 TeV. The lightest neutralino is bino-dominated with mass mχ „ 140 GeV.

As discussed in Section 6.6.1, the BBN constraints for the axino are typically

mild. The lifetime of the neutralino LOSP decaying to the axino can hardly exceed

0.1 sec., unless one considers very light neutralinos or assumes a mass degeneracy

mã » mχ (see Eq. (6.58)). However, for light neutralinos one often obtains too low

Ωχh
2 that is further suppressed for low TR. This additionally weakens the impact

of the BBN bounds.18 The only exception is a scenario with a sufficiently light

axino and, simultaneously, light bino LOSP that is characterized by very large Ωχh
2

close to the upper boundary in Fig. 8.3 which is associated with annihilations via

t-channel slepton exchange. In this case axino TP is suppressed, but the correct

relic density can be achieved due to NTP given large Ωχh
2.19 Simultaneously, one

can obtain a large lifetime of the bino and it can be abundant enough to violate the

BBN constraints. That is the reason why we see in Fig. 9.11 a region excluded by

the BBN constraints for light (instead of heavy) axinos.

On the other hand, for too heavy axinos and TR Á 50 GeV the considered scenario

suffers from DM overabundance. It is because both TP and NTP contributions to

the relic density increase with increasing mã. In this regime TP plays a dominant

role when determining Ωãh
2. For values of the reheating temperature TR „ 50 GeV

NTP starts to play a major role and sets an upper limit on the axino mass. If

18It is because at late time there is not enough LOSPs decaying to axinos to effectively violate
the BBN bounds. The correct axino relic density in this case can be achieved thanks to TP if mã

is not too small.
19The smallness of the axino mass is required for these points to satisfy the relic density constraint

since Ωãh
2 9 pmã{mχq ˆ Ωχh

2 and Ωχh
2 is large even for low (but not too low) TR.
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non-instantaneous reheating is assumed this limit is weakened in comparison with

the standard cosmological scenario, as can be seen in Fig. 9.11. This is so due to a

suppression of NTP that appears if the LOSP freeze-out had taken place before the

RD epoch began.

For even lower values of the reheating temperature, TR À 50 GeV, NTP is

suppressed so much that in order to satisfy the relic density constraint one needs

to assume that the LOSP is characterized by very low xσvyeff (equivalently large

Ωχh
2phigh TRq). These can, however, be only obtained for the bino LOSP with not

too large mass mχ, as can be seen in Fig. 8.3. As a result, one obtains an effective

upper limit on the axino LSP mass from a condition mã À mB̃.
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Conclusions

Over the past eighty years after the first speculation about the existence of dark

matter many astronomical observations have confirmed this hypothesis. We have

learned a lot about the distribution of DM in galaxies and clusters of galaxies, as

well as about its relic abundance. However, the nature of dark matter particles

remains a puzzle.

Given current data and exclusion limits from both direct and indirect DM

searches, undoubtedly the lightest supersymmetric particle remains one of the most

popular DM candidates. In this thesis we discussed this scenario in more detail. We

showed preferred cases and prospects for their discovery.

In particular, we considered selected GUT constrained supersymmetric models

that are most commonly considered in the literature, i.e., the CMSSM and the

CNMSSM. We also discussed some non-universality conditions at the GUT scale

that could either open up interesting possibility associated with the measured signal

of the recently discovered Higgs boson or drastically reduce the overall amount of

fine-tuning. We conclude that such GUT constrained supersymmetric models with

neutralino DM often remain valid after applying many experimental constraints

within the framework of Bayesian statistics. In particular, it is also true for the

1TH region with 1 TeV almost pure higgsino DM, which was in the past treated

as not so appealing. However, in order to simultaneously find phenomenologically

interesting regions in the parameter space and satisfy the naturalness requirement,

one may be prompted to consider some special non-universality conditions at the

high energy scale that can be justified within the framework of a more fundamental

theory valid for the physics above the GUT scale.

In a more general framework of the MSSM with ten free parameters defined

at the low energy scale we find similar preferred regions in the parameter space,

including the 1TH region, which are accompanied by several other specific scenarios

that can lead to the correct value of the relic density. We showed that this can

be much improved by assuming low values of the reheating temperature TR of the

Universe after a period of cosmological inflation. In this scenario one can obtain
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Ωχh
2 » 0.12 for a wide range of masses and annihilation rates for the lightest

neutralino depending on its composition, as well as effectiveness of direct and cascade

decays of the inflaton field to DM. Remarkably, often the DM particles remain

detectable in future DD and ID experiments. In particular, it is true for the wino

DM scenario. This case is claimed to be excluded in the standard cosmological

scenario by dark matter ID due to Sommerfeld enhancement of the present-day

annihilation rate, but can become again viable for low TR and both larger and lower

masses than the ones typically considered.

Last, but not least, we discussed the other two supersymmetric DM candidates:

the gravitino and the axino. For gravitino DM originating from sneutrino LOSP

decays and thermal production we presented upper limits on TR in some represen-

tative GUT constrained models. We found that in the non-universal Higgs mass

model they can be close to the lower limit desired by thermal leptogenesis when one

takes into account theoretical uncertainties in the determination of the Higgs boson

mass.

Considering gravitino and axino DM scenarios in a regime of low reheating

temperature also allowed us to derive interesting results. In the case of gravitino DM

we obtained the lower bound on TR that is much larger than typically mentioned

value associated with the beginning of the Big Bang Nucleosynthesis. On the other

hand in the axino DM case we improved the existing simplified upper bounds on

the axino mass and found them to be either weaker or stronger depending on the

actual value of the reheating temperature.



Appendix A

Approximate solutions to the

1-loop RGEs of the MSSM

Approximate solutions to the one-loop RGE for soft mass parameters of the MSSM

can be obtained following the method from [100]. This leads to1

m2
Hd
ptq “ m2

Hd
p0q `

3
ÿ

i“1

ηHd,iMip0q
2
´DHd , (A.1)

m2
L,3ptq “ m2

L,3p0q `
3
ÿ

i“1

ηL,iMip0q
2
´DL, (A.2)

m2
ē,3ptq “ m2

ē,3p0q `
3
ÿ

i“1

ηe,iMip0q
2
´DE, (A.3)

m2
d̄,3ptq “ m2

d̄,3p0q `
3
ÿ

i“1

ηd,iMip0q
2
´Dd, (A.4)

m2
Huptq “

´

1´
1

2
y
¯

m2
Hup0q ´

1

2
y
´

m2
Q,3p0q `m

2
ū,3p0q

¯

´
1

2
yp1´ yq

´

A2
0 ´ 2A0

3
ÿ

i“1

ξ̂iMi

¯

(A.5)

`

3
ÿ

i“1

3
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jěi

!

δi,j ηHu,i `
1

2
y
“

´ pη̂i,j ` δi,j η̂j,iq ` p2´ δi,jqy ξ̂i ξ̂j
‰

)

Mip0qMjp0q ´DHu ,

1We assume that tanβ is not too large and therefore neglect the tau and the bottom Yukawa
couplings.
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3
q. The one-loop RGE solutions for the gauge couplings

read

α2
aptq “

α2
ap0q

1´ ba α2
ap0q t

, (A.14)

where a “ 1, 2, 3 for Up1q, SUp2q and SUp3q, respectively.
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Approximate 2-loop solutions to

the RGEs for slepton masses

In order to treat the RGE running of the supersymmetric parameters more precisely

than in Appendix A it is necessary to include at least the leading two-loop correc-

tions. As an example we will now discuss this issue for the third generation slepton

mass parameters mL,3 “ mL “ mτ̃L and mē,3 “ mE “ mτ̃R . The full two-loop RGEs

can be found in [99]. In this Appendix we will limit ourselves only to the terms that

play the most important role from a point of view of the analytical estimation of

the sneutrino and the stau masses in Section 9.1.

In the case of mL one can find that among various possible 2-loop contributions

the most important correction is typically connected with high mQ (“left” squark

mass). Simplified, though exact enough, treatment of this dependence is to take

into account term proportional to σ2 in the 2-loop RGE for mL from [99]. Moreover,

it is enough to consider only the part of this term that is proportional to mQ. In

order not to deal with the full second order equation, we use perturbative approach.

This means that we calculate mQ using the one-loop equation, and then integrate

it in order to obtain two-loop correction for the mL

m2
Lptq » m2

L,1-loopptq ´
9

8π

ż t

0

α2
2psq m̄

2
Q,1-looppsq ds, (B.1)

where the one-loop solution is given by Eq. (A.2), while is given by Eq. (A.7) with

DQ and p1 ´ y{6qm2
Q,3p0q replaced with 3DQ and p3 ´ y{6qm2

Qp0q, respectively.1

Collecting all the terms together one obtains

m2
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3
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2
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¯

, (B.2)

1Additional factors of 3 are connected with the first and the second generation masses.
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where the function c2 is given below.

The other mass parameter important in our considerations, which has a

non-negligible two-loop corrections, is mE “ mτ̃L . In this case one can identify

three important 2-loop contributions in the corresponding β function [99]

β
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ı

`
12

5

”

4 d1ptq ´
13

6
f1ptq

ı

+

m2
up0q

`
1

8π

#

102

25
c1ptq `

26

5
f1ptq

+

m2
Hup0q ´

1

8π

216

25
α1p0qα1ptq tm

2
dp0q,

where:

ciptq “

ż t

0

ypsqα2
i psq ds diptq “

ż t

0

Ytpsqα
2
i psq ds fiptq “

ż t

0

ypsqYtpsqα
2
i psq ds,

(B.5)

where Yt “ y2
t {4π. Both Yt and function y can be read from, e.g., from [100]. We

assumed m2
dptq “ m2

dp0q in the appropriate 2-loop correction to m2
Eptq.

2Once again we focus only on terms proportional to squark masses and neglect Yukawa couplings
other than the top one. In S1 we also neglect flavor mixing.



Appendix C

Mass parameters for generalized

gauge-mediation models

In GGM models, the soft supersymmetry breaking masses at the high scale in the

notation of [97] read

Ma “ pαa{4πqΛa for a “ 1, 2, 3 (C.1)

m2
Q “ p8{3qpα2

3{16π2
qΛ̃2

3 ` p3{2qpα
2
2{16π2

qΛ̃2
2 ` p1{30qpα2

1{16π2
qΛ̃2

1 (C.2)

m2
ū “ p8{3qpα2

3{16π2
qΛ̃2

3 ` p8{15qpα2
1{16π2

qΛ̃2
1 (C.3)

m2
d̄ “ p8{3qpα2

3{16π2
qΛ̃2

3 ` p2{15qpα2
1{16π2

qΛ̃2
1 (C.4)

m2
L “ m2

Hu “ m2
Hd
“ p3{2qpα2

2{16π2
qΛ̃2

2 ` p3{10qpα2
1{16π2

qΛ̃2
1 (C.5)

m2
ē “ p6{5qpα2

1{16π2
qΛ̃2

1 . (C.6)

The trilinear scalar couplings are all equal to zero and tan β, sgnpµq are free

parameters. The free parameters are related to xSy and xFSy as described in [97].





Appendix D

Solving Boltzmann equations for

low TR

We rewrite set of Boltzmann equations (8.1) in terms of dimensionless quantities

Φ “
ρφ
TR
a3, R “ ρRa

4, X “ nXa
3 and A “ a

aI

dΦ

dA
“ ´

c

π2g˚pTRq

30

A1{2Φ
b

Φ` R
A
`

XxEXy
TR

,

dR

dA
“

c

π2g˚pTRq

30

A3{2Φ
b

Φ` R
A
`

XxEXy
TR

`

c

3

8π

A´3{2MPlxσvy2xEXy
b

Φ` R
A
`

XxEXy
TR

“

X2
´X2

eq

‰

,

dX

dA
“ ´

c

3

8π

A´5{2MPlxσvyTR
b

Φ` R
A
`

XxEXy
TR

“

X2
´X2

eq

‰

. (D.1)

where, since none of the physical results will depend on the initial value of the scale

factor (at the end of a period of cosmological inflation), we fixed aI “ T´1
R .

D.1 Freeze-out approximation

The method which we use to deal with numerical integration of Eqs (D.1) is a

generalization of the freeze-out approximation used in the context of standard

cosmological scenario to the case with non-instantaneous reheating.

We can rewrite the Boltzmann equation for X in terms of

y “ 1`∆ “
X

Xeq

, (D.2)

and notice that y « 1, when X is in thermal equilibrium. Hence we do not have

to solve Boltzmann equation for y for intermediate values of Aeq ă A ă A˚, where

Aeq describes the moment, in which thermal equilibrium is established, while A˚
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describes the moment, when X starts to decouple (it corresponds to Tf,beg introduced

in Section 3.2.2). For these intermediate values of A we simply assume y ” 1.

Therefore the Boltzmann equation for radiation decouples from equation for X and

can be solved independently (with the equation for the inflaton field). For A ą A˚

we integrate the full set of equations (D.1) taking RpA˚q and ΦpA˚q as the initial

values.

To find proper A˚ we notice that in thermal equilibrium, since y « 1, to some

approximation

0 «
d ln y

dA
“ fpy, Aq, (D.3)

where function f is derived below. From Eq. (D.3) we find A˚ that corresponds to

y˚, which, in turns, is some arbitrary chosen value adjusted in numerical tests (in

practice we choose y » 1.01).

D.2 Equations and procedure of calculations

Equations In order to find fpy, Aq we rewrite the Boltzmann equation for X in

terms of y

d ln p1`∆q

dA
“
d ln y

dA
“

1

y

dy

dA
“

1

y Xeq

dX

dA
´

1

Xeq

dXeq

dA
. (D.4)

According to (D.3) we get

y «
dX

dA

´dXeq

dA

¯´1

, (D.5)

where

dX

dA
“ C X2

eq

“

y2
´ 1

‰

, with C “ ´

c

3

8π

A´5{2MPlxσvyTR
b

Φ` R
A
`

XeqxEXy

TR

. (D.6)

The total equilibrium number density n “ Σini used in the framework of SUSY can

be rewritten in terms of X and used to derive

dXeq

dA
“ 3

Xeq

A
` 3Xeq

d lnT

dA
`
d lnT

dA

A3

T 3
R

ÿ

i

gim
3
i

2π2
K1

`mi

T

˘

(D.7)

Note that it does not depend explicitly on y.

The temperature dependence on the radiation energy density Eq. (2.4) can be

used to derive
d lnT

dA
“

1
4

1
R
dR
dA
´ 1

A

1` 1
4
d ln g˚pT q
d lnT

(D.8)
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where the Boltzmann equation for radiation can be approximately simplified to

dR

dA
«

c

π2g˚pTRq

30

A3{2Φ
b

Φ` R
A
`

XeqxEXy

TR

(D.9)

Using (D.5) and (D.6) one can obtain

y « C X2
eq

“

y2
´ 1

‰

´dXeq

dA

¯´1

(D.10)

Thus

y «
1

2C X2
eq

#

dXeq

dA
´

c

´dXeq

dA

¯2

` 4
`

C X2
eq

˘2

+

(D.11)

It is the only positive root of the quadratic equation (D.10), since C ă 0.

Procedure of calculation The procedure of calculation is the following:

1. We solve full set of Boltzmann equations (D.1) for 1 ă A ă Aeq (till the

moment, when thermal equilibrium of the X particles is established). For

very early times X{Xeq ! 1 and then this ratio grows. We choose Aeq by

assuming, that it corresponds to X{Xeq “ 0.99.

2. For Aeq ă A ă A˚ we assume X “ Xeq. We solve only two Boltzmann equa-

tions for the inflaton field and radiation (with no impact of X). We calculate

y using (D.11). The end of the thermal equilibrium period corresponds to

A˚ “
1

COR
¨ Ay“1.01 (D.12)

The need of multiplication by correction factor 1{COR is described in the next

section.

3. For A ą A˚ we once again solve the full set (D.1) with the initial conditions

ΦpA˚q, RpA˚q and X “ 1.01XeqpA˚q.

Correction factor COR In the Fig. D.1 (left panel) X{Xeq and y dependence

on A and T is shown for some sample point from the p10MSSM parameter space.

In this figure X{Xeq is obtained by solving the full set of Boltzmann equations (D.1)

for the whole range of A, while y is calculated via approximate eq. (D.11). As can

be seen y given by the approximate formula starts to grow later than true X{Xeq.

Therefore Ay“1.01 overestimates the true value of A˚. In order to take this into

account we introduce the additional correction in Eq. (D.12). It can be estimated

semi-analytically to be typically of the order of COR» p6 ˜ 40q. In practice we

begin with COR“ 1 and than increase it gradually until the final result for the relic

density stabilizes. This is illustrated in Fig. D.1 (right panel).
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Appendix E

Axino thermal production (TP)

with low reheating temperature

In scenarios with a non-instantaneous reheating one has to take into account a

modified expansion rate of the Universe when calculating Y TP
ã . We briefly describe

below the methodology that can be used to calculate the axino TP yield.

E.1 Axino TP yield with non-instantaneous re-

heating

It results in a modification of temperature dependence on the scale factor T paq. The

Boltzmann equation (3.11) can then be rewritten as

dXã

dT

dT

da
“
a2

H

´

Σscat ` Σdec

¯

, (E.1)

where Xã “ a3 nã.. Thus Eq. (3.12) is now modified to

Yã,0 “
1

s0A3
0

ż Tup

T0

´

´ T
d lnT

dA

¯´1 A2

H

´

Σscat ` Σdec

¯

, (E.2)

where Tup corresponds to an effective upper limit in the integration,1, we used

A “ a{aI “ aTR (we put aI “ TR as in Appendix D) and d lnT {dA is given by

Eq. (D.8). One can verify that Eq. (E.2) is equivalent to (3.12) in the RD epoch

when T 9 a´1 and s 9 T 3.

1In practice it is enough to perform integration to Tup » p5˜ 10qTRD or even lower. For larger
temperatures TP of axinos is more efficient, but the fast expansion of the Universe in the reheating
period dilutes away all the axinos produced at that early times.
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E.2 The scattering term

In order to deal with the scattering contribution to Y TP
ã we substitute xσpi ` j Ñ

ã` . . .qvyni,eq nj,eq (from Σscat; see, e.g., [171]) into (E.2) and obtain

Y scat,i,j
ã,0 “

1

s0A3
0

gigj
16π4

ż Tup

T0

ż 8

pm1`m2q{T

dx

«

´

´ T
d lnT

dA

¯´1 A2

H

ff

ˆ

T 2K1pxqσpx
2T 2
q

”

`

x2T 2
´m2

1 ´m
2
2

˘2
´ 4m2

1m
2
2

ı

. (E.3)

We then change the order of integration and decompose the above integral into

Y scat,i,j
ã,0 “

1

s0A3
0

gigj
16π4

´

I´ II
¯

, (E.4)

where

II “
ż 8

pm1`m2q{T0

dx

ż T0

pm1`m2q{x

dT . . . « 0, (E.5)

since T0 « 0. From the remaining integral I one obtains

Y scat,i,j
ã,0 »

ḡ gi gjMPl

16π4

ż 8

pm1`m2q{Tup

dt t3K1ptq

ż tTup

m1`m2

dp
?
sq

fp
?
sqσpsq

`

s´m2
1 ´m

2
2

˘2
´ 4m2

1m
2
2

s2
, (E.6)

where ḡ “ 135
?

10

2π3 g
3{2
˚

and

fp
?
sq “

π

T 3
0A

3
0

c

g˚
30

´

´ T
d lnT

dA

¯´1 A2T 6

b

ΦT 4
R

A3 `
RT 4

R

A4

, with T “

?
s

t
. (E.7)

The whole correspondence of Eq. (E.6) to the non-standard cosmological scenario is

hidden in function f . In the RD epoch Eq. (E.6) reduces to the standard formula

from [171] (i.e., fp
?
sq becomes constant and equal to unity) obtained for the

instantaneous reheating approximation where we take Tup “ TRD “ TR. A careful

analysis of Eq. (E.7) in the reheating period shows that to some approximation

f 9 T 7.2 Thus Eq. (E.7) can be approximately rewritten as

f “

$

&

%

´

TRD{T
¯´a

pď 1q in the reheating period,

1 in the RD epoch,
(E.8)

2One could argue that this is in principle written explicitly in Eq. (E.7). However, one has to
remember about the “hidden” temperature dependence of other terms, d lnT {dA, A, Φ, R and g˚.
A careful verification shows that these dependences approximately cancel each other.
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where a » ´7 and TRD „ 0.5TR. In practice we find more exact values of a and

TRD numerically, but they depend only slightly on details of a SUSY spectrum.

High TR limit of the scattering term The integral (E.6) can be rewritten as

a sum of three integrals such that

Y scat,i,j
ã,0 „

ż pm1`m2q{TRD

pm1`m2q{Tup

ż tTup

m1`m2

`

ż 8

pm1`m2q{TRD

ż tTRD

m1`m2

`

ż 8

pm1`m2q{TRD

ż tTup

tTRD

“ A`B`C.
(E.9)

One can verify that A TRDÑ8
ÝÝÝÝÝÑ 0, since external range of integration shrinks to zero

(Tup ą TRD Ñ 8), while the integrand does not diverge as TRD Ñ 8. The second

integral B corresponds to the the standard result obtained for the instantaneous

reheating approximation. In the limit of high reheating temperature the inner

integral can be simplified to3

ż tTRD

m1`m2

dp
?
sq fpsqσps, tq

ps´m2
1 ´m

2
2q

2 ´ 4m2
1m

2
2

s2
»

ż tTRD

m1`m2

dp
?
sq 1ˆ σptq ˆ 1

» t σptqTRD, (E.10)

where we noticed that the integral is mainly determined by the values of the

integrand in high s limit in which, to a good approximation, σps, tq “ σptq.

For the third integral C we similarly note that inner integration leads to

ż tTup

tTRD

dp
?
sq fpsqσps, tq

ps´m2
1 ´m

2
2q

2 ´ 4m2
1m

2
2

s2
» σptq

ż tTup

tTRD

dp
?
sq fpsq “ p˚q.

(E.11)

In the integration range T “
?
s{t ą TRD and therefore

p˚q “ t σptq

ż Tup

TRD

dT
´TRD

T

¯7

»
1

6
t σptqTRD,

where we assumed Tup “ cTRD with c high enough so that effectively Tup can be

replaced by 8 in the integration. The remaining (external) integrals for both B and

C are the same. Hence

C
B »

1

6
» 0.17, for high TRD. (E.12)

Eq. (E.12) remains valid for each contribution to the scattering term.

3σ depends on t via meff (see, e.g., [181]).
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E.3 The decay term

In the case of the decay term we substitute xΓyneqi (see, e.g., [171]) into (E.2) and

obtain

Y dec,i
ã,0 “

1

s0A3
0

Γ gimi

2π2

ż Tup

T0

dT

ż 8

mi{T

dx

«

´

´ T
d lnT

dA

¯´1 A2

H

ff

T 2

b

x2 ´
m2
i

T 2

ex ¯ 1
.

(E.13)

Once again we change the order of integration and find that one term is negligible,

while the other leads to

Y dec,i
ã,0 »

ḡ gi ΓmiMPl

2π2

ż 8

m{Tup

dt
t4

et ¯ 1

ż tTup

mi

dE fpEq
1

E4

c

1´
m2
i

E2
, (E.14)

where f is given by Eq. (E.8) with
?
s replaced by E.

The inner integral

gmi,TRptq “

ż tTup

mi

dE fpT “ E{tq
1

E4

c

1´
m2
i

E2
, (E.15)

where mi{Tup ď t ď 8 can be calculated analytically. Depending on the value of t

one obtains:

1. for mi{Tup ď t ď mi{TRD

gmi,TRptq “ grehmi,TR
ptq “

T 7
RD t

7

m10
i

´1

3
w3
´

4

5
w5
`

6

7
w7
´

4

9
w9
`

1

11
w11

¯

ˇ

ˇ

ˇ

ˇ

ˇ

c

1´
“

mi{ptTupq
‰2

0

.

(E.16)

2. for t ě mi{TRD temperature can be either larger or smaller than TRD and we

can write

gmi,TRptq “ gRD
mi,TR

ptq ` grehmi,TR
ptq, (E.17)

where (tR “ mi{TRD)

gRD
mi,TR

ptq “
1

8m3
i

´π

2
´ arctan

tR
a

t2 ´ t2R
`
tR
t4
pt2 ´ 2t2Rq

b

t2 ´ t2R

¯

, (E.18)

grehmi,TR
ptq “

T 7
RD t

7

m10
i

´1

3
w3
´

4

5
w5
`

6

7
w7
´

4

9
w9
`

1

11
w11

¯

ˇ

ˇ

ˇ

ˇ

ˇ

c

1´
“

mi{ptTupq
‰2

c

1´
“

mi{ptTRDq

‰2

, (E.19)

One can verify that in the case of instantaneous reheating the standard result [171]

is rederived.
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