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Abstract

In this thesis we study the connection between continuum quantum field theory
and corresponding lattice field theory, specifically for two cases: Landau gauge
fixing and ’t Hooft-Polyakov monopoles.

To study non-perturbative phenomena such as the confinement mechanism of
quarks and gluons and dynamical chiral symmetry breaking in Quantum Chromo-
dynamics (QCD), there are two major approaches: the Dyson-Schwinger equa-
tions (DSEs) approach, which is based on the covariant continuum formulation,
and lattice gauge theory. The strength and beauty of lattice gauge theory is due
to the fact that gauge invariance is manifest and fixing a gauge is not required.
In the covariant continuum formulation of gauge theories, on the other hand,
one has to deal with the redundant degrees of freedom due to gauge invariance
and has to fix gauge (most popularly, Landau gauge). There, the gauge-fixing
machinery is based on the so-called Faddeev-Popov procedure or more generally,
the Becchi-Rouet-Stora-Tyutin (BRST) symmetry. Beyond perturbation theory
this is aggravated by the existence of so-called Gribov copies, however, that sat-
isfy the same gauge-fixing condition, but are related by gauge transformations,
and are thus physically equivalent. When attempting to fix Landau gauge on
the lattice to make a connection with its continuum counterpart, this ambiguity
manifests itself in the Neuberger 0/0 problem that asserts that the expectation
value of any physical observable will always be of the indefinite form 0/0. We
explain the topological nature of this problem and how the complete cancellation
of Gribov copies can be avoided in a modified lattice Landau gauge based on a
new definition of gauge fields on the lattice as stereographically projected link
variables. For compact U(1), where the Gribov copy problem is related to the
classification the local minima of XY spin glass models, we explicitly show that
there still remain Gribov copies but their number is exponentially reduced in
lower dimensional models. We then formulate the corresponding Faddeev-Popov
procedure on the lattice, for these models. Moreover, we explicitly demonstrate
that the proposed modification circumvents the Neuberger 0/0 problem for lat-
tices of arbitrary dimensions for compact U(1). Applied to the maximal Abelian
subgroup this will avoid the perfect cancellation amongst the remaining Gribov
copies for SU(N), and so the corresponding BRST formulation is also then pos-
sible for generic SU(N), in particular, for the Standard Model groups.
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For higher dimensional lattices, the gauge fixing conditions for both the stan-
dard and the modified lattice Landau gauges are systems of multivariate non-
linear equations, solving which in general is a highly non-trivial task. However,
we show that these systems can be interpreted as systems of polynomial equa-
tions. They can then be solved exactly by computational Algebraic Geometry,
the Groebner basis technique in particular, and numerically by the Polynomial
Homotopy Continuation method.

’t Hooft-Polyakov monopoles play an important role in high energy physics
due to their presence in grand unified theories and their usefulness in studying
non-perturbative properties of quantum field theories through electric-magnetic
dualities. In the second part of the thesis, we study adjoint Higgs models, which
exhibit ’t Hooft-Polyakov monopoles, and have been extensively analyzed using
semi-classical analysis in the continuum. However, to study them in a fully non-
perturbative fashion, it is essential to put the theory on the lattice. Here, we
investigate twisted C-periodic boundary conditions in SU(N) gauge field theory
with an adjoint Higgs field and show that for even N with a suitable twist one
can impose a non-zero magnetic charge relative to each of N − 1 residual U(1)’s
in the broken phase, thereby creating ’t Hooft-Polyakov magnetic monopoles.
This makes it possible then to use lattice Monte-Carlo simulations to study the
properties of these monopoles in the full quantum theory and compare them with
the existing results in the continuum.
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Chapter 1

Introduction

1.1 Motivation

Quantum field theory [1] has provided the basis of the current understanding of
particle physics first developed in the quantization of electrodynamics. Subse-
quent developments of the covariant perturbation expansion and renormalization
made it clear that the local quantum field theory description of Quantum Elec-
trodynamics (QED) is very accurate and immensely useful in explaining Lamb
shift, higher order corrections to the elementary processes of electrons and pho-
tons etc. Since then this local quantum field theory approach has been applied
to elementary particles together with collision theory, or more specifically, the
so-called Lehmann-Symanzik-Zimmermann (LSZ) formalism, to theories such as
Quantum Chromodynamics (QCD), the immensely successful theory of strong
interactions. In the weak coupling regime of QCD, perturbative calculations in
this approach have been shown to impressively match with experiments. In fact,
there is now hardly a doubt that QCD is the theory of strong interactions [2, 3, 4].

Though the perturbative approach has been extremely successful, there are
many important physical phenomena which need a non-perturbative treatment:
the fundamental degrees of freedom of QCD, i.e., quarks and gluons have not
been detected as isolated particles experimentally. This is quite a challenging
puzzle, namely confinement, and a satisfactory understanding of the confinement
mechanism is yet to be achieved even after numerous attempts [5]. Another
example of a purely non-perturbative phenomenon which still needs to be better
understood is dynamical chiral symmetry breaking in QCD. To understand such
a non-perturbative phenomenon, a genuine non-perturbative approach to QCD
is essential.

An immensely useful approach to study such non-perturbative phenomena
is lattice field theory, which is a Euclidean space-time formulation of quantum
field theory on the lattice [6, 7, 8]. In this approach, firstly, the space-time is
transferred from Minkowski space to Euclidean space where time is imaginary.
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1.2 Landau Gauge-fixing

Then the Euclidean space-time is discretized, so the four-dimensional space-time
integral is replaced by a discrete sum over all lattice points while derivatives are
replaced by finite differences. Finally, methods used in statistical mechanics can
be applied to calculate the expectation values of observables and the physical
properties can be extracted using computer simulations on a finite lattice space-
time grid.

In the continuum, well-developed methods like perturbation theory, semi-
classical analysis or 1

N
-expansions can be used to study field theories in general [1].

However, in the non-perturbative domain, the connection between the continuum
and the corresponding lattice field theory is still under-developed. In this thesis
we study this connection in two specific cases in the continuum and on the lattice:
Landau gauge-fixing and ’t Hooft-Polyakov monopoles.

1.2 Landau Gauge-fixing

In the continuum, a promising approach to study non-perturbative phenomena in
QCD is to study truncated systems of Dyson-Schwinger equations (DSEs) [9], i.e.,
the equations of motion for QCD Green’s functions. Here, a truncation requires
additional sources of information such as Slavnov-Taylor identities, as entailed by
gauge invariance, to specify vertex functions and higher n-point functions in terms
of the elementary 2-point functions, i.e., the quark, ghost and gluon propagators.
The basic quantity here is the generating functional, which requires gauge-fixing
to remove redundant degrees of gauge freedom, in the so-called functional-integral
formalism. The investigation of the gauge-dependent QCD Green’s functions at
low momentum can give a coherent description of hadronic states and processes
and it is also important for an understanding of confinement in the so-called
Kugo-Ojima confinement scenario. Most of the work in relation to the Kugo-
Ojima scenario have been done in covariant gauges, more specifically, in Landau
gauge.

The standard approach of gauge-fixing in the perturbative limit is called the
Faddeev-Popov procedure [10]. There, a gauge-fixing device which is called the
gauge-fixing partition function, ZGF , is formulated. With an ideal gauge-fixing
condition, ZGF is equal to one. This unity is inserted in the measure of the gen-
erating functional so that the redundant degrees of freedom are removed after
appropriate integration. The generalization of the Faddeev-Popov procedure is
the Becchi-Rouet-Stora-Tyutin (BRST) formulation [11]. The assumption that
the gauge-fixing condition is ideal, i.e., the gauge-fixing condition has a unique so-
lution, is crucial here. A very important work of V. N. Gribov, in 1978, conveyed
that in non-Abelian gauge theories a generalized Landau gauge-fixing condition
would have multiple solutions, called Gribov copies [12, 13, 9]. In the perturba-
tive limit, where perturbations around the trivial configuration of gauge fields are
considered, the corresponding gauge-fixing condition has a unique solution, and

2



1.2 Landau Gauge-fixing

hence the BRST formulation in this limit is well-defined. In the non-perturbative
regime, however, the effects of Gribov copies should be properly taken into ac-
count.

Now, the DSE approach has an unprecedented advantage in the low mo-
menta region of QCD. However, lattice QCD provides an opportunity to do first
principle calculations of non-perturbative quantities in QCD: the approximations
involved in lattice QCD can be systematically removed, unlike the truncations
of DSEs. Thus, lattice simulations can provide an independent check on the re-
sults obtained in the DSE approach. A gauge field theory put on the lattice is
manifestly gauge invariant, i.e., one does not need to fix a gauge on the lattice
to calculate gauge invariant observables. However, to study the DSE approach,
Kugo-Ojima scenario and hadron phenomenology related to this approach on the
lattice, gauge-dependent quantities and hence gauge fixing on the lattice are de-
sired. Mainly for this reason, the lattice Landau gauge studies have gained a
huge amount of interest recently (see, e.g., Ref. [9, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25] for both continuum and lattice DSE studies).

On the lattice, Landau gauge fixing is nowadays formulated as a functional
minimization problem. That is, instead of solving the gauge-fixing condition, one
numerically minimizes a gauge-fixing functional, called the lattice Landau gauge-
fixing functional, whose first derivative with respect to gauge transformation is
the gauge-fixing condition. Numerical functional minimization for the lattice
Landau gauge-fixing functional can be done using variants and/or combinations
of Simulated Annealing, Overrelaxation, Fourier acceleration etc. It is important
to note that this is the same as finding minima, maxima or saddle points of a
classical Hamiltonian [26, 27, 28] of a spin glass system, and the extrema and
saddle points are Gribov copies of the lattice Landau gauge. Here one faces
a major computational problem: finding the absolute minimum of a spin glass
system becomes exponentially harder when increasing the lattice size.

There is one more obstacle on the lattice. A very important work of H. Neu-
berger conveyed that when performing the gauge-fixing procedure analogous to
the Faddeev-Popov procedure on the lattice, which needs to take all extrema of
the gauge fixing functional into account, the lattice analogue of the aforemen-
tioned unity, or ZGF , turns out to be zero [29, 30, 31, 32, 33, 34] due to a perfect
cancellation among Gribov copies. Thus, the expectation value of a gauge-fixed
observable turns out to be of the indeterminate form 0/0. This problem is known
as the Neuberger 0/0 problem. In other words, BRST formulations on the lattice
can not be constructed. This is a severe problem: the continuum DSE studies of
gauge theories are based on BRST formulations. But the Neuberger 0/0 problem
prevents us from constructing the BRST formulation on the lattice. The lattice
implementations of the Landau gauge are thought to have avoided this problem
because there one hopes to find the absolute minimum of the gauge-fixing func-
tional numerically. Since it is not feasible to find the absolute minimum, one
settles for local minima, the set of which is called the first Gribov region, among

3



1.2 Landau Gauge-fixing

which there is no cancellation. However, for the BRST formulation, sampling
from all the possible gauge-fixed configurations, an averaging (say, Monte-Carlo
averaging) over all extrema and saddle points of the gauge-fixing functional must
be performed which for the standard definition of the lattice Landau gauge (which
we call the standard lattice Landau gauge (SLLG)), will suffer from the Neuberger
0/0 problem.

Though early lattice studies of the gluon and ghost propagators for the SLLG
supported their infrared behaviour predicted by the DSE approach qualitatively
well, recently, large lattices have been used to study the finite-volume effects in
the SU(2) theory to study observed puzzling discrepancies1 in the infinite vol-
ume limit [36, 37, 38] and raised doubt on the Kugo-Ojima confinement criterion.
This study suggested that the finite-volume effects appear to be ruled out as the
dominant cause of the observed discrepancies between the continuum and lattice
DSE studies. This poses the obvious question whether there is something fun-
damentally wrong with our general understanding of continuum covariant gauge
theory or whether we are comparing two different scenarios, one in the continuum
and another on the lattice. Thus, it is very important to have a proper Landau
gauge-fixing procedure on the lattice for which the BRST formulation can be
constructed, and therefore to settle down the issues related to the Kugo-Ojima
confinement criterion from lattice studies [35].

The first important step in this direction was put forward by M. Schaden [39].
Schaden carried forward the Witten-type topological field theory on the lattice
to show that ZGF calculates the Euler characteristic χ, a topological invariant
which counts holes of a manifold, of the group manifold G, at each site of the
lattice in the SLLG. That is, for a lattice with n lattice-sites,

ZGF = (χ(G))n. (1.1)

For compact U(1) or any SU(N) the group manifolds are odd-dimensional spheres
for which χ is zero. Thus, ZGF = (0)n = 0, for all the Standard Model groups.
For SU(2) gauge theory, Schaden proposed to construct a BRST formulation
for the coset space SU(2)/U(1) for which χ(SU(2)/U(1)) ̸= 0. This has been a
remarkable achievement. This procedure can be generalized to fix the gauge of an
SU(N) lattice gauge theory to the maximal Abelian subgroup (U(1))N−1, since
χ(SU(N)/ SU(N − 1)× U(1)) ̸= 0 as well. This indicates that the Neuberger
0/0 problem for an SU(N) lattice gauge theory actually lies in (U(1))N−1, and
hence can be evaded if that for compact U(1) is evaded combined with Schaden’s
approach. For compact U(1), Gribov copy problem is purely a lattice artifact. In
the present study, we propose a modification of the group manifold of compact

1A discussion on the details about these discrepancies is beyond the scope of this thesis. The
reader is referred to Ref. [35] for a recent review. Note that in this thesis, we do not comment on
nor compare the results from both the continuum and lattice DSE scenarios. Instead, we simply
study the connection between the essential framework (BRST formulation) in the continuum
and on the lattice.
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U(1), i.e., a circle S1, via stereographic projection at each lattice site. For such
a stereographically projected manifold the corresponding χ is 1 and thus the
Neuberger 0/0 problem is completely avoided. Applying the same technique
to the maximal Abelian subgroup (U(1))N−1, the generalization to SU(N) lattice
gauge theories is possible when the odd-dimensional spheres S2k+1, k = 1, . . . , N−
1, of its parameter space are stereographically projected to the real projective
space RP (2k) which is the set of all lines in R2k+1 passing through the origin. In
the absence of the cancellation of the lattice artifact Gribov copies along the U(1)
circles, the remaining cancellations between copies in SU(N), which will persist
in the continuum limit, are then necessarily incomplete because χ(RP (2k)) = 1.
The precise implementation of the modified lattice Landau gauge (MLLG) is
described in this thesis. In particular, we will establish that the Neuberger 0/0
problem is completely evaded for an arbitrary dimensional lattice via the MLLG
for compact U(1). Furthermore, we will show that in lower dimensional models for
compact U(1), by solving the corresponding gauge-fixing equations analytically
for different boundary conditions, the MLLG suppresses the number of Gribov
copies compared to that for the SLLG.

The gauge-fixing equations for higher dimensional lattices are highly non-
linear and hence difficult to deal with. However, in this thesis we show that the
non-linearity of these equations is polynomial-like. That is, the system of equa-
tions can be transformed in terms of multivariate polynomial equations. Then we
can use some of the powerful results and algorithms of Algebraic Geometry and
demonstrate how these equations can be solved exactly. We, moreover, use the
Polynomial Homotopy Continuation method to solve these polynomial equations
numerically.

Note that the Landau gauge-fixing functional for the SLLG for compact U(1)
can be considered as the classical Hamiltonian of the random phase XY model
(RPXYM) in condensed matter theory (see, e.g., [40, 41]). The special case,
known as the trivial orbit case where all link variables are trivial, corresponds to
the classical XY model. The classical XY model stands alongside the famous Ising
and Heisenberg models as one of the most intensely studied models in statistical
mechanics and condensed matter theory. The model has been widely studied as
the simplest model of classical superconductivity and for several aspects of high-
Tc superconductors [42], to describe the XY magnet with random Dzyaloshinski-
Moriya interactions [43] or to describe a positional disordered Josephson junction
array [44, 45]. In all cases, the calculations (related to Domain Wall Renormal-
ization Group studies) again boil down to obtaining all local extrema of the above
Hamiltonian. The calculations require an exact form of the ground state energies
of this system with different boundary conditions and take the average of the
difference between them, ⟨δE⟩, called the defect energy [46, 47].
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1.3 ’t Hooft-Polyakov Monopoles

We move on to another problem where the lattice counterpart of the continuum
needs special attention. The so-called ’t Hooft-Polyakov monopoles [48, 49] play
an important role in high energy physics for two reasons: their existence is a
general prediction of grand unified theories and they provide a way to study
non-perturbative properties of quantum field theories through electric-magnetic
dualities [50]. In the continuum, the existence of ’t Hooft-Polyakov monopole
configurations have been demonstrated in Georgi-Glashow like models for any
SU(N) with adjoint Higgs fields. They were studied via continuum semi-classical
analysis [48, 49]. However, as a matter of fact, semi-classical continuum analysis
might not always be a good guide to what happens in the fully fluctuating quan-
tum ensemble as studied in Euclidean lattice field theory. There, the mass of ’t
Hooft-Polyakov monopoles in the three-dimensional SU(2) adjoint Higgs model
has been demonstrated to vanish in both so-called confinement and Coulomb
phases [51, 52]. We therefore study and generalize such a fully non-perturbative
description of ’t Hooft-Polyakov monopoles on the lattice for generic SU(N) and
its relation with the continuum counterpart.

On the lattice, non-trivial boundary conditions, called twisted boundary con-
ditions, can be chosen to insert ’t Hooft-Polyakov monopoles and then one can
study their nonperturbative quantum properties. This trick has been successfully
demonstrated for the SU(2) model [51, 52]. The generalization of this trick to
SU(N) is highly non-trivial since the elements of SU(2) group are quite special
in several ways, e.g., there exist various representations of SU(2) to parameterize
the corresponding S3 in 3 parameters, the change of sign of the adjoint SU(2)
Higgs field is a symmetry of the corresponding renormalized action density etc.
In SU(N), for N > 2, one has neither of them in general. We discuss these
aspects and explain our results. Specifically, we generalize this trick for all even
N and we prove rigorously that the twisted C-periodic boundary conditions do
not admit monopoles for odd N . We also relate the available continuum results
with the results on the lattice.

1.4 Structure Of The Thesis

The thesis is organized as follows. In Chapter 2, we briefly describe the general
Landau gauge fixing procedure both in the continuum and on the lattice. Af-
ter discussing Gribov copies and the Neuberger 0/0 problem on the lattice, we
explain their topological interpretation and provide the general idea behind the
proposed MLLG. In Chapter 3, we specialize to the compact U(1) case. For the
corresponding SLLG, we demonstrate the Gribov copy problem and the Neu-
berger 0/0 problem explicitly in lower dimensional models with both periodic
and anti-periodic boundary conditions. We then show how the MLLG circum-
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vents the Gribov copy problem in lower dimensional models and the Neuberger
0/0 problem in arbitrary dimension for compact U(1). We then summarize the
chapter.

Solving the lattice Landau gauge fixing equations for higher dimensional lat-
tices is a highly non-trivial problem. In Chapter 4, we transform the problem
in terms of Algebraic Geometry. We devote the chapter to introducing several
basic notions of Algebraic Geometry and the so-called Groebner basis technique,
and demonstrate their usefulness to solve the gauge fixing equations exactly. We
carry forward this discussion in Chapter 5 and introduce a numerical technique
which is called the Polynomial Homotopy Continuation method. There, we ob-
tain all solutions of the gauge fixing equations numerically for the SLLG on a
two-dimensional lattice and analyze the solutions. We also translate many other
problems in terms of Algebraic Geometry in a related Appendix for future work
and conclude the chapter.

In Chapter 6, we study how different boundary conditions on the lattice for ad-
joint Higgs Grand Unified models admit ’t Hooft-Polyakov monopoles in generic
SU(N) models, for even N . We work out several important results and discuss
the connection to the available continuum results.

Finally, in Chapter 7 we conclude the thesis and mention the related future
research directions.
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Chapter 2

Landau Gauge Fixing

In this chapter, we first introduce gauge field theories, describe the standard
Faddeev-Popov gauge-fixing procedure in the continuum and pose the Gribov
copy problem. After briefly introducing lattice field theory, we describe how
gauge-fixing is done on the lattice. There, in addition to Gribov copies, one en-
counters the Neuberger 0/0 problem. We explain the topological interpretation of
this problem. Motivated by the topological interpretation, we propose a modified
lattice Landau gauge and go through the topological arguments again to show
why we expect that this modification will circumvent the Neuberger 0/0 problem
on the lattice.

2.1 Gauge Field Theories

Quantum Electrodynamics (QED), the quantum field theory of electromagnetism,
has been remarkably successful in describing the interactions of electrons and
photons. The classical Lagrangian of QED possesses a local Abelian (U(1)) gauge
symmetry and hence QED is also called an Abelian gauge theory. The local U(1)
gauge symmetry approach of QED has been extended to SU(N) formally, for any
N , where the N = 3 case is known as Quantum Chromodynamics (QCD). QCD
very successfully describes the strong interactions, however, it is fundamentally
different than QED: the gauge boson of QED, the photon, does not carry any
electric charge and therefore does not interact with other photons. On the other
hand, the gluons, the gauge bosons of QCD, interact with each other and these
self interactions are known to be responsible for asymptotic freedom in QCD. We
briefly describe gauge field theory for SU(N) below [1].

Let T a be the generators of the Lie algebra of SU(N), where a = 1, . . . , N2−1,
with the commutation relations [T a, T b] = ifabcT c, where fabc are the totally
antisymmetric structure constants of SU(N). The normalization of the generators
is given by Tr(T aT b) = Cδab where the constant C depends on the representation
of the generators. We use the fundamental representation here. The general form
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2.1 Gauge Field Theories

of the Lagrangian density of a pure Yang-Mills gauge theory in the Euclidean
space, for SU(N), is

LG = −1

4
F a
µνF

aµν , (2.1)

where F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν are the field strengths, with Aµ = Aa

µT
a

and Fµν = F a
µνT

a. Note that for our discussion we are only interested in the pure
gauge Lagrangian density. This Lagrangian density is invariant under arbitrary
local gauge transformations g(x) = exp[igsω

a(x)T a] ∈ SU(N), where ωa are
spacetime dependent gauge transformations, i.e., under the transformation Aµ →
(Aµ)

g = g(x)Aµg
†(x)+ 1

gs
g(x)∂µ(g

†(x)), and gs is the bare coupling constant. This
local gauge-invariance has been a guiding principle to derive the QCD Lagrangian
density. The corresponding pure gauge action, SG[A], is

SG[A] = −1

4

∫
d4xF a

µνF
aµν . (2.2)

Now to quantize this theory we use the functional-integral formalism introduced
by Feynman [1]. There, the fields are taken to be c-numbers and the Lagrangian
density (or just Lagrangian) takes its classical form. Now, a quantum field theory
can be completely characterized by the infinite hierarchy of n-point functions (or
Green’s functions) which are a basis of the Dyson-Schwinger equations (DSEs)
approach. In the functional-integral formalism in Euclidean space, these Green’s
functions can be obtained by a so-called generating functional or the path inte-
gration, which in the above pure gauge theory is formally1 given as

Z =

∫
DA e−SG[A]. (2.3)

Moreover, a vacuum expectation value of some gauge-invariant observable O[A]
is formally defined as a functional integral, i.e.,

⟨O⟩ =
∫
DA O[A] exp[−SG[A]]∫

DA exp[−SG[A]]
. (2.4)

Here,
∫
DA is to be understood as an integration over all gauge fields. Now, due

to the gauge invariance of SG[A], the integration measure is ill-defined because
of an infinite number of gauge fields corresponding to identical action, i.e., for
each value of A there exists an infinite number of values Ag which give the same
action. Thus, in Eq. (2.4) the numerator and the denominator are both infinite,
giving ⟨O⟩ = ∞/∞.

Now, we say A and all Ag are equivalent and the set of all such equivalent
gauge fields to A form an equivalence class, called the gauge orbit of A. Two

1It is important to note that this is a sourceless generating functional. We omit a discussion
of the source term since the rest of the discussion is independent of it. The reader is referred
to Ref. [1] for related details.
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2.1 Gauge Field Theories

gauge fields lying on different orbits are called inequivalent gauge fields, say Aineq.
Thus, formally, the functional integral over A can be thought of as∫

DA =

∫
DAineq

∫
Dg. (2.5)

To get rid of the infinity in Eq. (2.4), the integration should be somehow restricted
to only one gauge field per gauge orbit. That is, one needs to introduce an
appropriate constraint into the integration that restricts the integral to one only
over Aineq. This can be done by introducing a constraint equation, say f [A] = 0,
called gauge-fixing condition, via a delta functional in the integral. Ideally, the
gauge-fixing condition should be satisfied at exactly one A per gauge orbit. With
such an ideal gauge-fixing condition, the corresponding integral becomes well-
defined. In practice, gauge fixing is done via the Faddeev-Popov procedure which
we describe below.

2.1.1 Faddeev-Popov Gauge-fixing Procedure

Here, we briefly explain the Faddeev-Popov procedure [53, 54, 55, 10]. Firstly,
recall from multivariable calculus the identity∫

dnf δ(n)(f⃗) = 1, (2.6)

where f⃗ is a vector of real numbers with n components and δ(n)(f⃗) is a n-

dimensional delta function. If f⃗ is specified by n functions fi(x⃗) of n variables
x⃗ = (x1, . . . , xn)

T , the integration is the product over integrations over all func-
tions fi and the above identity turns out to be∫

dnf δ(n)(f⃗(x⃗)) =

∫
dnx δ(n)(f⃗(x⃗))

∣∣∣ det ∂fi
∂xj

∣∣∣
f⃗=0⃗

= 1, (2.7)

where we have changed the integration variables from f⃗ to x⃗ and inserted the
absolute value of the Jacobian determinant for this change of variables. Note
that the last identity is true as long as f⃗(x⃗) has one zero within the integration
range. To generalize this to the functional integration, we begin with the identity∫

Df δ[f([A], x)] = 1, (2.8)

where Df is the functional integration measure and f([A], x) means that f is a
functional of A and a function of x. Now, changing the variables from f to gauge
transformation g in the above identity, we get∫

Dg δ[f([A], x)] ∆FP [A] = 1, (2.9)
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2.1 Gauge Field Theories

where ∆FP [A] is called the Faddeev-Popov determinant. ∆FP [A] is defined as
the determinant of the Jacobian for the change of variables MFP ([A]), called the

Faddeev-Popov operator, and defined as2 Mab
FP ([A], x, y) =

δf([Aa],x)
δgb(y)

|f=0.

A very crucial assumption in the above equation is that f([A], x) has exactly
one zero within the appropriate integration range.
Using the unity in Eq. (2.9), we get∫

DAineq =

∫
DAineq

∫
Dg δ[f([(Aineq)g], x)] ∆FP [(A

ineq)g]

=

∫
DA δ[f([A], x)] ∆FP [A]. (2.10)

Thus, the aforementioned path integration after inserting the unity of Eq. (2.9)
and using Eq. (2.10), can be written as

Z =

∫
DA δ[f([A], x)] ∆FP [A] e

−SG[A] , (2.11)

called the gauge-fixed partition function. Similarly, the gauge-fixed expectation
value of O[A] reads as

⟨O⟩ =
∫
DA O[A] δ[f([A], x)] ∆FP [A] e

−SG[A]∫
DA δ[f([A], x)] ∆FP [A] e−SG[A]

. (2.12)

Thus, both of them are now definite quantities. This is the essence of the Faddeev-
Popov procedure of gauge fixing. One can also express ∆FP in terms of Grass-
mann variables, for an ideal gauge-fixing condition, as

∆FP =

∫
Dc Dc exp

[(
−
∫

d4xd4y ca(x)Mac
FP ([A], x, y)c

c(y)
)]

, (2.13)

where c and c are Lorentz scalar, anti-commuting fields called Faddeev-Popov
ghosts. These additional fields violate the spin-statistics theorem and thus do
not correspond to physical particles.

Now, for the generalized Landau gauge f([A], x) = ∂µAµ(x)−k(x), with k(x)
being an arbitrary function, we arrive at the expression for the expectation value
of O[A] as

⟨O⟩ =
∫
DA Dc Dc O[A]e−SGF [A,c,c]∫

DA Dc Dc e−SGF [A,c,c]
, (2.14)

where

SGF [A, c, c] = SG[A]+

∫
d4x(

1

2ξ
(∂µA

a
µ)

2)+

∫
d4x d4y (ca(x)∂µDac

µ cc(y)) , (2.15)

2Note that usually ∆FP is defined as the absolute value of the determinant of the Faddeev-
Popov operator. However, for an ideal gauge fixing condition, the absolute sign can be ignored.
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2.1 Gauge Field Theories

with ξ being the width of the Gaussian which is introduced to perform a Gaussian
weighted average over the generalized covariant gauges. In the limit ξ → 0, the
Gaussian width vanishes and we recover the Landau gauge ∂µAµ = 0.

Now, introducing the so-called Nakanishi-Lautrup [56] auxiliary fields ba, we
can write down the gauge-fixed Lagrangian as

L(A, c, c, b) = −1

4
(F a

µν)
2 − ξ

2
(ba)2 − ba∂µA

a
µ + ca∂µD

ac
µ cc. (2.16)

This Lagrangian is no longer gauge invariant due to the addition of gauge-fixing
terms, i.e., the gauge invariance has been removed. This is what we desired in
order to remove the infinities from ⟨O⟩. However, this Lagrangian is invariant
under Becchi-Rouet-Stora-Tyutin (BRST) transformation [11],

sAa
µ = Dac

µ cc, sca = −1

2
gsf

abccbcc, sca = ba, sba = 0, (2.17)

where s is the BRST operator3 which is nilpotent, i.e., s2 = 0 [56].
The above Lagrangian can be obtained by starting from the ungauge-fixed ac-

tion and requiring BRST invariance. Thus, the BRST invariance can be thought
of as a generalization of gauge invariance because BRST symmetry implies gauge
symmetry, though the reverse is not true. However, a little thought reveals that
the expectaction value of any physical observable is independent of the gauge,
even though the BRST symmetric Lagrangian is not. Note that the assumption
of unique zero of the gauge-fixing conditions is perfectly fine in the perturba-
tive limit since there we deal with perturbation around A = 0 only and so the
Faddeev-Popov procedure or the BRST formulation works well.

2.1.2 Gribov Copies

We have been cautious about the assumption of an ideal gauge-fixing condition
in the above discussion. A remarkable result of V. N. Gribov conveyed that
for non-Abelian theories, even after fixing gauge with a generalized gauge fixing
condition f([A], x) = ∂µAµ(x) − k(x) with Landau or Coulomb gauge being its
special cases, there exist residual gauge copies which are physically equivalent
to each other and related by non-trivial gauge transformations [12, 57, 58, 59].
In other words, these gauge fixing conditions do not fix the gauge uniquely for
non-Abelian theories, or in general for a compact gauge group [13]. These copies
are called Gribov copies which are classified according to the eigenvalues of the
corresponding MFP : the set of Gribov copies at which MFP is positive definite
is called the first Gribov region, denoted as C0, and the set of Gribov copies at
whichMFP has exactly i negative eigenvalues is called the (i+1)th Gribov region,
denoted as Ci. The Gribov horizons are defined as the boundaries between two

3Strictly speaking, this BRST transformation is called the off-shell BRST transformation.
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consecutive Gribov regions where eigenvalues of MFP go through zero. Thus,
Gribov regions are separated by the Gribov horizons. The fundamental modular
region (FMR) is defined as the set of unique representatives of every gauge orbit
which is moreover convex and bounded in every direction.

Now, we should revisit the above mentioned Faddeev-Popov procedure. In
the presence of Gribov copies, instead of Eq. (2.9), we get [60, 61]

ZGF :=

∫
Dg δ[F ([A], x)] ∆FP [A] = nGC [A], (2.18)

where nGC [A] is an integer which counts the sign-weighted intersections of the
gauge orbit with the gauge fixing surface, and we have denoted the gauge fixing
device as ZGF . In the perturbative limit, the effect of Gribov copies can be
ignored. However, in the non-perturbative domain, Gribov copies should be
taken into account. In a continuum formulation of QCD it seems unlikely that a
systematic elimination of gauge copies is possible at all. However, their presence
may or may not be a serious problem, since gauge-fixing without elimination
of Gribov copies can be formulated systematically in terms of a (Witten type)
topological quantum field theory on the gauge group, on compact manifolds [9].
There, the standard Faddeev- Popov procedure of inserting unity into the unfixed
generating functional generalizes to inserting the above mentioned sign-weighted
average over all Gribov copies.

2.2 Gauge Field Theory On The Lattice

A gauge field theory can be successfully studied nonperturbatively by discretizing
the Euclidean space-time and putting the gauge and matter fields and observables
of the theory on a four-dimensional lattice space-time grid [6, 7, 8]. A lattice
grid consists of lattice nodes, called lattice sites, and joints connecting any two
adjacent nodes of length a in each direction, called links. The gauge fields are
usually defined through link variables Ui,µ ∈ G where the discrete variable i
denotes site index, µ is directional index and G is the corresponding group of the
theory. The gauge transformations gi ∈ G are defined at each lattice site. The
relation of the gauge-fields on the lattice to its continuum counter-part, with the
standard definition, is

aAµ(x) =
1

2i
(Ui,µ − U †

i,µ)|traceless . (2.19)

The classical action on the lattice can be constructed such that in the limit a → 0
it reproduces the classical action of the corresponding continuum theory. There
are infinitely many ways to define a lattice action for QCD. The fermionic part
of the action on the lattice is very subtle and we avoid the related discussion as
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the discussion in the rest of thesis is independent of it. For the remaining pure
gauge action on the lattice, a popular choice is the so-called Wilson action,

SG[U ] := β
∑
i

∑
µ<ν

(
1− 1

N
Re Tr �i,µν

)
, (2.20)

where i lables lattice sites and µ and ν take values from 1, . . . , d, with d being
the lattice dimension. N is the number of color charges, and β = 2N

g2s
where gs

is the bare coupling. �i,µν := Ui,µUi+µ̂,νU
†
i+ν̂,µU

†
i,ν is the plaquette at the ith site

in a µ-ν plane, where µ̂ and ν̂ are the unit vectors in the µ and ν directions
respectively. In the limit a → 0, SG[U ] tends to be the classical action SG[A] as
in Eq. (2.2).

The lattice expectation value of O is

⟨O⟩L =

∫ ∏
i,µ dUi,µ exp[−SG[U ]]O[Ui,µ]∫ ∏

i,µ dUi,µ exp[−SG[U ]]
. (2.21)

In Monte-Carlo simulations of a lattice gauge theory, a finite number of link
configurations [U j], j = 1, . . . , Nk are generated with a probability distribution
of exp[−SG[U ]]. Then, ⟨O⟩L is estimated as the average value of O over these
configurations, that is,

⟨O⟩L =
1

Nk

Nk∑
i=1

O[U i] (2.22)

whose statistical error decreases with larger Nk. To recover the continuum limit,
we take the limit a → 0 to obtain ⟨O⟩.

We should mention here that due to the finiteness of the lattice, one needs to
specify some boundary conditions on both the gauge fields and the gauge trans-
formations. The most popular choices are periodic and anti-periodic boundary
conditions. We will be more specific in defining boundary conditions in Chapter
3. There are also other non-trivial boundary conditions used for various purposes.
We will discuss them at length in Chapter 6.

2.2.1 Landau Gauge Fixing On The Lattice

The lattice formalism of a gauge field theory is manifestly gauge-invariant because
the gauge fields take values from the compact Lie group and the functional inte-
gration measure is well-defined. That is, gauge-fixing is not required on the lat-
tice. In particular, we can simply sample configurations in the numerical simula-
tions and can be sure that no finite ensemble will ever sample the same orbit twice.
However, gauge-dependent quantities are the basis of the different confinement
scenarios such as Kugo-Ojima and Gribov-Zwanziger [56, 12] scenarios and the
DSEs studies in general for the QCD hadron phenomenology [9] in the continuum
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and hence it is essential to have a lattice analogue of Landau gauge fixing to com-
pare the corresponding results: in practical calculations in the continuum DSE
approach where one has to deal with infinitely many integral equations, a trun-
cation scheme is used. On the other hand, the approximations involved in gauge-
dependent QCD Green’s functions calculations can be systematically removed on
the lattice, unlike the truncations of the continuum DSEs. So, the corresponding
lattice simulations can provide an independent check on the results obtained in
the continuum DSE approach [14, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].
Because the DSEs are studied mostly in Landau gauge, we are mainly interested
in the lattice analogue of Landau gauge here. Below we first re-formulate Lan-
dau gauge-fixing in the continuum as a functional minimization problem since
its lattice analogue is used in the lattice computations. We then describe how
standard Landau gauge-fixing is done in the actual lattice computations.

We can formulate the problem of solving Landau gauge conditions in the
continuum,

∂µAµ = 0 , (2.23)

as a functional minimization problem [62, 63]. Specifically, the first derivatives
of the functional, called norm functional or Landau gauge fixing functional,

∥ Ag ∥2 = −
∫

d4xTr((gAµg
† − g∂µg

†)2) (2.24)

with respect to gauge parameters g are shown to give Eq. (2.23), where Aµ is
the usual gauge field. The second derivative matrix, or the Hessian matrix,
of this functional is the Faddeev-Popov operator MFP . As mentioned above,
there appear many extrema and saddle points of the gauge-fixing functional, i.e.,
Gribov copies, in the non-perturbative domain. The first Gribov region C0 then
is the set of local minima. The set of absolute minima is the FMR which is
contained within C0. Moreover, Gribov copies are non-degenerate in the interior
of C0. However, at the first Gribov horizon, degenerate minima exist. Similarly,
the set of all saddle points at which the corresponding MFP has exactly i negative
eigenvalues is the (i + 1)th Gribov region Ci and the set of degenerate extrema
which constitute the boundary between Ci and Ci+1 is the (i + 1)th Gribov
horizons.

On the lattice, the corresponding lattice Landau gauge-fixing functional, that
is iteratively minimized with respect to the corresponding gauge transformations
gi, is

FU(g) =
∑
i,µ

(1− 1

N
Re Tr g†iUi,µgi+µ̂), (2.25)

where the sum runs over all lattice sites i and lattice directions µ and g†iUi,µgi+µ̂ ≡
U g
i,µ the gauge transformed link variables. The gauge-fixing equations on the lat-

tice are then the first derivatives of FU(g) with respect to the gauge transforma-
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tions, i.e.,

fi(g) =
∂FU(g)

∂gi
= 0 (2.26)

for each lattice site i. At each lattice site, these fi give the lattice divergence
of the lattice gauge fields defined in Eq. (2.19) and in the naive continuum limit
recover the Landau gauge ∂µAµ = 0. This is called the standard lattice Landau
gauge (SLLG). The corresponding Faddeev-Popov operator MFP is the Hessian
matrix of FU(g), with respect to the gauge transformations, and ∆FP = detMFP .
We can then use the well-established numerical methods of functional minimiza-
tion such as Simulated Annealing, Overrelaxation, Fourier acceleration, etc. to
minimize FU [g] [64, 65, 66].

On the lattice, the presence of Gribov copies has been explicitly established
[67, 68, 69] and the effects of Gribov copies on the lattice in various confinement
scenarios have been extensively studied (see [70] for a review). However, the
difference here is that since the lattice gauge fixing is usually done by numerically
minimising the gauge fixing functional, Gribov copies are restricted to C0 only.
One obvious way of fixing the gauge uniquely on the lattice is to find the absolute
minimum out of all minima found numerically. However, the number of minima
increases exponentially with increasing lattice size and so it becomes hopeless to
ever find the absolute minimum in practice.

It is important to mention at this point that to overcome the Gribov copy
problem, an alternative gauge to Landau gauge, called Laplacian gauge, was
proposed in Ref. [71]. However, there the renormalizability yet remains to be
shown explicitly.

2.2.2 The Neuberger 0/0 Problem

There is one more and rather crucial problem on the lattice: while fixing the
usual Landau gauge via the Faddeev-Popov procedure, the lattice analogue of
Eq. (2.9) turns out to be zero, for a compact U(1) or SU(N) theory. Specifically,
ZGF , with gauge parameter ξ = 0 in the lattice analogue of Eq. (2.15), on the
lattice turns out to be4

ZGF =
∑
i

sign (∆FP )i , (2.27)

where the sum runs over all Gribov copies and (∆FP )i denotes the value of ∆FP

evaluated at an ith Gribov copy. For compact U(1) or SU(N), ZGF = 0, called
the Neuberger zero. Consequently, the corresponding partition function itself be-
comes zero after inserting this gauge-fixing device and the gauge-fixed observables

4A full discussion related to the topological field theoretical derivation of this very interesting
result is avoided in this thesis as it is well-documented in the original papers cited in this
subsection and in Ref. [32].
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2.3 Topological Interpretation

are of the indefinite form 0/0. This means that the standard Faddeev-Popov pro-
cedure can not be performed on the lattice. This problem is called the Neuberger
0/0 problem [29, 30].

We should pause here and summarize the problem. As mentioned above and
in the Introduction, gauge-fixing on the lattice is essential to study related con-
finement scenarios and QCD Green’s functions that are fundamental building
blocks of hadron phenomenology in the continuum Landau gauge DSE stud-
ies [14, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. To study them on the lattice,
the lattice BRST formulation is essential since the continuum covariant formalism
of a gauge theory is based on BRST formulations. But the Neuberger 0/0 problem
prevents us from constructing the BRST formulation on the lattice. The lattice
implementations of the Landau gauge are thought to have avoided this problem
because the numerical procedures are based on minimizations of a gauge fixing
potential and one settles on the local minima which samples gauge copies from
C0 among which there is no cancellation. However, for the BRST formulation
sampling from all the possible gauge-fixed configurations, i.e., not only from C0

but an averaging (say, Monte-Carlo averaging) over all Gribov copies must be
performed [35]. But doing so for the standard definition of the Landau gauge
(i.e., with the standard lattice Landau gauge-fixing functional FU(g)) will leave
the expectation value of a gauge-fixed observable ill-defined and thus the results
in the continuum and on the lattice can not be compared straightforwardly. Be-
low we discuss the Neuberger 0/0 problem in terms of topology to get a better
understanding of the origin of this problem.

2.3 Topological Interpretation

Here, we briefly describe Morse theory and interpret Gribov copies and the Neu-
berger 0/0 problem in Morse theoretical terms. Specifically, with the Witten-type
topological field theory [72, 73] interpretation, the gauge-fixing partition function
ZGF for the lattice Landau gauge-fixing was shown, in Ref. [39], to be calculating
a topological invariant, namely the Euler characteristic χ of a manifold M (χ(M))
which is a topological invariant (i.e., it does not depend on the Riemannian met-
ric) that counts the number of holes in M. For more technical details on the
relation between topological field theory and ZGF the reader is referred to [32].
Following this interpretation, we will propose a modification to the SLLG.

2.3.1 Morse Theory and The Neuberger 0/0 Problem

Morse theory deals with functions called height functions, h(x⃗), defined from a
compact, differentiable and orientable manifold M to R, with x⃗ being a vector
consisting of the corresponding variables. The solutions to the equations obtained
by equating first derivatives of h(x⃗) with respect to all its variables to zero are
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2.3 Topological Interpretation

called the critical points of M. The second derivative matrix, or the Hessian,
of h(x⃗) is then used to classify the critical points: if the Hessian is singular at
a critical point, then the critical point is called degenerate, otherwise it is non-
degenerate. h(x⃗) is called a non-degenerate height function if all of its critical
points are non-degenerate.

Now, the Poincaré-Hopf theorem asserts that χ(M) is equal to the sum of
signs of Hessian determinants at all critical points of the function, i.e.,

χ(M) =
∑
i

sign (det(Hessian of h(x⃗)))i . (2.28)

for a non-degenerate h(x⃗), where the sum runs over all critical points. This is
a very interesting result since on the left hand side there appears a topological
invariant and on the right hand side there appears a quantity from analysis.

Now, in the aforementioned procedure of lattice Landau gauge fixing we can
immediately identify the gauge-fixing functional (2.25) as a height function, Gri-
bov copies as the critical points and MFP as the corresponding Hessian ma-
trix [39]. Thus, finally we can achieve

ZGF =
∑
i

sign (∆FP )i = (χ(M)) , (2.29)

where now M is the corresponding manifold depending on the boundary condi-
tions used for the lattice and the sum runs over all Gribov copies. On the lattice
with n lattice sites, M is the cartesian product space G×G · · ·×G where G is the
manifold of the gauge-transformed link variable at each site and the number of
factors in this expression depends on whether the global gauge freedom is fixed or
unfixed. Using the fact that for a cartesian product space of manifolds X and Y
we have χ(X×Y ) = χ(X)χ(Y ), Eq. (2.29) turns out to be Eq. (1.1) if the global
gauge freedom is fixed. With an unfixed global gauge freedom, ZGF = (χ(G))n−1.

For the compact U(1) case5 for the SLLG G = S1. It follows that because
(2.25) can be viewed as a height function from S1 × S1 · · · × S1 to R in this
case, and since χ(S1) = 0, we have ZGF = 0. For the compact U(1) case, as we
will explicitly see in Chapter 3, anti-periodic boundary conditions fixes the global
gauge freedom, so the corresponding manifold is (S1)n. For the periodic boundary
conditions case the corresponding manifold is (S1)n−1. Thus, for any boundary
conditions, we have ZGF = 0. In fact, for all the Standard Model groups the Euler
characteristic is zero as their group manifolds consist of odd-dimensional spheres,
e.g., χ(SU(2) ∼= S3) = 0, χ(SU(3) ∼= S3 × S5) = 0 etc., yielding the Neuberger
zero. Moreover, another important conclusion of this discussion is that the Euler
characteristic of the manifold at each site contributes to the Neuberger zero.

5We should note here that there are two alternatives for U(1) group: compact U(1) and
non-compact U(1). Though compact QED is not a physical theory, it exhibits most of the
features of an SU(N) on the lattice due to the compactness of the group manifold. We will
return to this in Chapter 3.
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2.3 Topological Interpretation

2.3.2 Modification Via Stereographic Projection

After interpreting the Neuberger 0/0 problem in terms of Morse theory, Schaden
proposed to construct a BRST formulation for SU(2) gauge theory within the
coset space SU(2)/U(1) for which χ(SU(2)/U(1)) ̸= 0 [39]. This procedure can
be generalized to fix the gauge of an SU(N) lattice gauge theory to the maxi-
mal Abelian subgroup, (U(1))N−1, since χ(SU(N)/ SU(N − 1)× U(1)) ̸= 0 as
well. This also indicates that the Neuberger 0/0 problem for an SU(N) lattice
gauge theory actually lies in (U(1))N−1, and can be evaded if that for compact
U(1) is evaded combined with Schaden’s approach. Thus, in this subsection we
concentrate on the lattice Landau gauge for compact U(1).

As seen in the previous section, since the Euler characteristic of the manifold
at each lattice site contributes to the Neuberger zero, we first note that the height
function for a single S1 is

h(t) = cos t. (2.30)

This function can be viewed as the standard lattice Landau gauge-fixing func-
tional (2.25) for the single lattice site case: in Eq.(2.25), for compact U(1) at an
ith lattice site, we have Ui,µ = eiϕi,µ and gi = eiθi where ϕi,µ and θi both take
values from (−π, π], and N = 1. So, U g

i,µ = ei(ϕi,µ+θi+µ̂−θi) where the exponent
here is defined modulo 2π. Thus, by identifying t as (ϕi,µ+θi+µ̂−θi) in the above
height function, we have cos t = Tr U g

i,µ. Note that since we are considering a
single lattice site here, we formally omit explicitly mentioning indices for t. Now,
h(t) is known to have two points at infinity: the north pole and the south pole.
They both are the critical points of this circle but have opposite sign of the Hes-
sian determinant, giving their sum to be 0. Our central idea is to modify this
height function in an appropriate way to resolve the Neuberger 0/0 problem.

We can immediately think of at least two choices. Firstly, we can project out
the south pole (equivalently, the north pole) to infinity stereographically6 7, called
stereographic projection [74]. Thus, the modified manifold is an open interval or
just R. The corresponding height function, or the lattice Landau gauge, is then

hs(t) = −2 ln(cos
t

2
) . (2.31)

It is easy to see that there is only one critical point for this case, which is when
tan t

2
= 0, i.e., t = 0 and at this point the Hessian determinant, sec2( t

2
), is 1.

Another choice is to take the absolute value of the height function as,

habs(t) = | cos t| , (2.32)

6Stereographic projection of a circle is a standard textbook topic and the reader is referred
to a standard textbook on topology, e.g., Ref. [74].

7It must be emphasized at this stage that this modification is on the manifold of the gauge-
transformed link angle at each site, i.e., the gauge group of the gauge transformations is, of
course, left unchanged here.
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2.3 Topological Interpretation

where again there is only one critical point here, which is when (tan t)| cos t| = 0,
i.e., t = 0 and the Hessian determinant | cos t| at this point is 1. However, we refer
to the former case as the modified lattice Landau gauge (MLLG) throughout this
thesis.

In practice, we will modify the corresponding term at each lattice site in the
SLLG, as discussed in Chapter 3, and will show rigorously that the MLLG indeed
evades the Neuberger 0/0 problem in an arbitrary dimensional lattice. However,
from the topological arguments, since χ(R) is non-zero at each lattice site, we can
clearly expect at this stage that there should be no Neuberger 0/0 problem in the
compact U(1) case with such a modification. Below, we continue extracting some
important results related to the number of Gribov copies using Morse theory.

2.3.3 Betti Numbers and Gribov Copies

Here, we show how the Morse theoretical interpretation of the lattice Landau
gauge can give a lower bound on the number of Gribov copies8 NGC . We briefly
explain the Morse indices, Betti numbers and their relationship with χ(M) via the
so-called Poincaré polynomial P (z) of M along with Morse inequalities. We then
obtain an expression for the lower bound on NGC at a given orbit and calculate9

it explicitly for compact U(1), SU(2) and SU(N). The ultimate goal of this
discussion is to show that the lower bound on NGC is exponentially suppressed
in the MLLG compared to the SLLG.

Let Ki be the number of critical points of a height function h(x⃗) with its
Hessian at these critical points having i negative eigenvalues. Then χ(M) =∑

i(−1)iKi, where now the sum over i runs from 0 to the dimension of M.
In addition to the Euler characteristic, the so-called Betti numbers are closely

related topological invariants of a manifold. Firstly, a Homology group is a mea-
sure of the hole structure of a manifold, or more specifically, a topological space.
There may be several Homology groups of a manifold. Now, an ith Betti number
bi is defined as the rank of the ith Homology group (the reader is referred to [73]
for details on Betti numbers and their relation to the Euler characteristic).

The Poincaré polynomial is defined as P (z) =
∑

i biz
i for an arbitrary real

variable z. Then, it turns out that

P (1) =
∑
i

bi & P (−1) =
∑
i

(−1)ibi = χ(M) , (2.33)

where the sum runs over the dimension of M.
Now, there are two types inequalities, called Morse inequalities, that relate

8Note that nGC is formally a sign-weighted sum of the Faddeev-Popov determinants over
all Gribov copies and NGC is the number of Gribov copies. They may or may not coincide.

9Here, we omit the explicit mention of the orbit-dependence of NGC .
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bi’s and Ki’s. The weak Morse inequality states that∑
i

Ki ≥
∑
i

bi (2.34)

and the strong inequality states that

Ki ≥ bi (2.35)

for all i. Now, due to the weak Morse inequality and using the fact that
∑

iKi is
the total number of critical points which is NGC for a lattice Landau gauge fixing
functional, we have

P (1) =
∑
i

bi ≤
∑
i

Ki = NGC , (2.36)

where the sum runs over all gauge-fixed variables, i.e., i = 0, . . . , n for the anti-
periodic boundary conditions case and i = 0, . . . , n− 1 for the periodic boundary
conditions case.

To calculate the corresponding P (z), first note that PX×Y (z) = PX(z)PY (z)
for a product space manifold X ×Y of X and Y , where PX(z) and PY (z) are the
Poincaré polynomials of X and Y respectively. For the SLLG for the compact
U(1) case with anti-periodic boundary conditions, the corresponding manifold is
(S1)n and the corresponding Poincaré polynomial is

P(S1)n(z) =
n∏

k=1

Pk(z) =
n∏

k=1

(1 + z) = (1 + z)n =
n∑

i=0

(
n

i

)
zi

∴ P(S1)n(1) = 2n ≤
n∑

i=0

Ki = NGC , (2.37)

where we have abbreviated Pk,S1(z) as Pk(z) and we have used the fact that
PS1(z) = 1 + z, with the Betti numbers b0 = 1 = b1 and all others being zero for
S1. Thus, NGC must be greater than or equal to 2n in this case. Moreover, we
can verify that P (−1) = (1− 1)n = 0 = χ((S1)n) as expected. Also, we identify
the Betti numbers of this n-torus as bi =

(
n
i

)
, for all i = 0, ..., n, by comparing the

above equation with Eq. (2.33). Similarly, for the periodic boundary conditions
case, the corresponding manifold is (S1)n−1, i.e.,

P(S1)(n−1)(z) =
n−1∏
k=1

Pk(z) =
n−1∏
k=1

(1 + z) = (1 + z)n−1 =
n−1∑
i=0

(
n− 1

i

)
zi

∴ P(S1)(n−1)(1) = 2n−1 ≤
n−1∑
i=0

Ki = NGC . (2.38)

So, the corresponding Betti numbers for (S1)n−1 are bi =
(
n−1
i

)
for i = 0, ..., n−1.
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For SU(2), the group manifold is S3 and the corresponding Poincaré polyno-
mial is PS3(z) = (1+ z3). Thus, for the SLLG with periodic boundary conditions
the corresponding Poincaré polynomial is

P(S3)(n−1)(z) =
n−1∏
k=1

(1 + z3) = (1 + z3)n−1

∴ P(S3)(n−1)(1) = 2n−1 ≤ N
SU(2)
GC , (2.39)

giving the same lower bound for the number of Gribov copies as that of the
compact U(1) case.

For a generic SU(N) with N > 2, the group manifold is S3 × S5 × ...S2N−1

and the corresponding Poincaré polynomial is (1+z3)(1+z5)...(1+z2N−1). Thus,
for the SLLG with periodic boundary conditions,

P(S3×···×S2N−1)(n−1)(z) = ((1 + z3)(1 + z5)...(1 + z2N−1))n−1

∴ P(S3×···×S2N−1)(n−1)(1) = 2(N−1)(n−1) ≤ N
SU(N)
GC , (2.40)

giving a larger lower bound than that of the compact U(1) and SU(2) cases.
On the other hand, the corresponding manifold for the MLLG is Rn for the

compact U(1) case with anti-periodic boundary conditions. Here, b0 = 1, for R,
and all other bi = 0 for i = 1, . . . . So the corresponding Poincaré polynomial,
with PR(z) = 1, is

PRn(z) =
n∏

k=1

(1) = 1n = 1

∴ PRn(−1) = PRn(1) = 1 ≤ NGC . (2.41)

Thus, the lower bound on the number of Gribov copies is exponentially suppressed
from 2n in the standard case to 1 in the modified case for compact U(1). Similarly,
with periodic boundary conditions,

PRn−1(z) =
n−1∏
k=1

(1) = 1n−1 = 1

∴ PRn−1(−1) = P(R)n−1(1) = 1 ≤ NGC . (2.42)

Furthermore, the corresponding Betti numbers of Rn−1 are b0 = 1 and bi = 0 for
i = 1, ..., n for the anti-periodic boundary conditions case and b0 = 1 and bi = 0
with i = 1, ..., n− 1 for the periodic boundary conditions case.

2.4 Remarks

1. We briefly revisit the definition of gauge fields on the lattice and point
out how the modification of the lattice Landau gauge corresponds to a
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new definition of the gauge fields on the lattice. The gauge fields in the
continuum in the standard definition is given by Eq. (2.19). In the proposed
modification, we have implicitly proposed a different lattice definition of the
gauge fields as

aAµ(x⃗) =
1

2i
(Ũi,µ − Ũi−µ̂,µ) , with Ũi,µ ≡ 2Ui,µ

1 + 1
2
Tr Ui,µ

, (2.43)

where Ui,µ ∈ G for G being compact U(1) or SU(N). For any of these lattice
definition of gauge fields, say aAµ(x⃗) = Xi,µ, the lattice Landau gauge at
each lattice site reads as

fi =
∑
µ

(Xg
i,µ −Xg

i−µ̂,µ) = 0, (2.44)

where Xg
i,µ is the gauge transformed Xi,µ. Thus, both definitions give the

divergence at each site for a lattice. Moreover, both definitions have the
same continuum limit.

2. In the SLLG, the corresponding ZGF is 0 independent of the orbit con-
sidered, i.e., random values of Ui,µ in Eq.(2.25). This is called orbit-
independence. For the MLLG, we need to show such an orbit-independence,
i.e., the corresponding ZGF for the MLLG is constant for a given lattice for
any orbit. In the lower dimensional models considered in Chapter 3 we
explicitly demonstrate such orbit-independence for the MLLG.

2.5 Summary

1. Gauge-fixing in the continuum is essential to remove the redundant gauge
freedom to study gauge-dependent quantities which are the basis of the
continuum covariant field theory formulation [56, 12] and the QCD hadron
phenomenology [9]. To study them on the lattice, it is essential to fix a
gauge.

2. The standard procedure for gauge-fixing in the continuum is the Faddeev-
Popov procedure, which suffers from Gribov copies in the non-perturbative
domain. On the lattice, an analogous procedure suffers from the Neuberger
0/0 problem, i.e., the expectation value of a gauge-fixed observable turns
out to be of the indefinite form 0/0, due to Gribov copies. Schaden in-
terpreted the Neuberger 0/0 problem in terms of Witten-type topological
field theory and asserted that the problem persists because the gauge fixing
partition function calculates the Euler characteristic χ of the group mani-
fold at each site of the lattice, which is zero for compact U(1) and SU(N)
for the SLLG. Schaden also constructed a BRST formulation for the coset
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space SU(2)/U(1), for the SU(2) case, for which χ is non-zero. We argued
that together with Schaden’s approach, the Neuberger 0/0 problem can be
evaded if that for compact U(1) is evaded. We proposed a modification of
the lattice Landau gauge-fixing definition, via stereographic projection of
the manifold at each lattice site, which is expected to evade the Neuberger
0/0 problem since χ is non-zero in this case.

3. We showed that a lower bound on the number of Gribov copies, NGC ,
on the lattice can be computed by calculating the corresponding Poincaré
polynomial. For the SLLG on a lattice with n lattice sites, we found this
lower bound to be 2n for the compact U(1) case with anti-periodic bound-
ary conditions, 2n−1 for compact U(1) and SU(2) with periodic boundary
conditions and 2(n−1)(N−1) for any SU(N) for N > 2 with periodic bound-
ary conditions, for a lattice with n lattice sites. This lower bound for the
MLLG for the compact U(1) case is exponentially reduced and is 1.
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Chapter 3

Lattice Landau Gauge For Lower
Dimensional Models

As discussed in Chapters 1 and 2, the Neuberger 0/0 problem can be evaded for
the SU(N) case if that for compact U(1) is evaded together with Schaden’s coset
space BRST formulation. In the present chapter, we discuss the SLLG and the
proposed MLLG for compact U(1) explicitly. In particular, we analytically solve
the corresponding gauge-fixing equations for both the SLLG and the MLLG with
anti-periodic and periodic boundary conditions on a one-dimensional lattice. We
demonstrate the presence of Gribov copies and the Neuberger 0/0 problem in this
toy model explicitly for the SLLG. We also show how the MLLG circumvents the
Neuberger 0/0 problem there. We then discuss the complete Coulomb gauge for
1 + 1 dimensions, use our results of the one-dimensional MLLG and formulate
the Faddeev-Popov gauge-fixing procedure for compact QED via the MLLG in
these lower dimensional models. Finally, we mention a few important remarks
and summarize the chapter.

3.1 Lattice Landau Gauge Fixing for Compact

U(1)

The group manifold of compact U(1) is topologically a circle S1. The gauge fixing
functional for the SLLG, Eq. (2.25), in this case reduces to

Fϕ(θ) =
∑
i,µ

(1− cos(ϕi,µ + θi+µ̂ − θi)), (3.1)

where µ̂ is a unit vector in the µ-direction, index i ≡ (i1, . . . , id) for a d-dimensional
lattice runs over all lattice sites, and µ runs from 1 to d. Here, we have used the
fact that for the compact U(1) case, Ui,µ = eiϕi,µ and gi = eiθi with ϕi,µ mod 2π ∈
(−π, π] and θi mod 2π ∈ (−π, π] being link-angles and gauge transformations
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3.1 Lattice Landau Gauge Fixing for Compact U(1)

respectively. Following on from the discussion in Section 2.3.2, the gauge-fixing
functional for the MLLG can be written as,

F s
ϕ(θ) = −2

∑
i,µ

ln(cos(ϕi,µ + θi+µ̂ − θi)/2). (3.2)

We should mention here that a given random set of ϕi,µ is called a random orbit
or a hot configuration. The special case when all ϕi,µ are zero is called the trivial
orbit, or cold configuration. The extrema and saddle points of a gauge-fixing
functional are referred to as the gauge fixed configurations or Gribov copies.
The gauge-fixing conditions are the first derivatives of the given functional with
respect to all gauge transformations equated to zero. That is, for the SLLG they
read as

fi(θ) = −
d∑

µ=1

(
sin(ϕi,µ + θi+µ̂ − θi)− sin(ϕi−µ̂,µ + θi − θi−µ̂)

)
= 0, (3.3)

for all i. For the MLLG, the corresponding gauge-fixing equations are

f s
i (θ) = −

d∑
µ=1

(
tan((ϕi,µ+θi+µ̂−θi)/2)− tan((ϕi−µ̂,µ+θi−θi−µ̂)/2)

)
= 0, (3.4)

for all lattice sites i.
The Faddeev-Popov operator is the Hessian of the gauge-fixing functional

with respect to all gauge transformations, and for compact U(1) for the SLLG it
is

(MFP )i,j =
∑
µ

(
− cosϕθ

i,µδi+µ̂,j + (cosϕθ
i,µ + cosϕθ

i−µ̂,µ)δi,j

− cosϕθ
i−µ̂,µδi−µ̂,j

)
, (3.5)

where ϕθ
i,µ = ϕi,µ + θi+µ̂ − θi mod 2π ∈ (−π, π]. Similarly, for the MLLG, the

Faddeev-Popov operator reads as

(M s
FP )i,j =

∑
µ

(
− sec2

ϕθ
i,µ

2
δi+µ̂,j + (sec2

ϕθ
i,µ

2
+ sec2

ϕθ
i−µ̂,µ

2
)δi,j

− sec2
ϕθ
i−µ̂,µ

2
δi−µ̂,j

)
. (3.6)

We should also note here that for periodic boundary conditions, in the compact
U(1) case,

θi+nµ̂ = θi, ϕi+nµ̂,µ = ϕi,µ, ϕ
θ
i+nµ̂,µ = ϕθ

i,µ , (3.7)
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and for anti-periodic boundary conditions,

θi+nµ̂ = −θi, ϕi+nµ̂,µ = −ϕi,µ, ϕ
θ
i+nµ̂,µ = −ϕθ

i,µ , (3.8)

with n being the total number of lattice sites in the µ-direction.
We concentrate on the one-dimensional case below. Though this model does

not have any dynamics, most of the features present in its higher dimensional
counterparts appear here.

3.2 Anti-periodic Boundary Conditions In One

Dimension

Consider a one-dimensional lattice chain of length n with gauge transformations
θi mod 2π ∈ (−π, π] at lattice sites and gauge transformed link variables ϕθ

i =
ϕi + θi+1 − θi mod 2π ∈ (−π, π] between neighboring sites, where i = 1, . . . , n,
with anti-periodic boundary conditions. We deal with the SLLG and the MLLG
separately below.

3.2.1 Standard Lattice Landau Gauge (SLLG)

According to Eq. (3.1), Fϕ(θ) in one dimension reduces to

Fϕ(θ) =
∑
i

(1− cos(ϕi + θi+1 − θi)), (3.9)

where now i = 1, . . . , n.
Similarly, the gauge-fixing equations for the one-dimensional SLLG are

fi(θ) = −
(
sin(ϕi + θi+1 − θi)− sin(ϕi−1 + θi − θi−1)

)
= 0, (3.10)

for all i = 1, . . . , n. Note that these equations are a variant of the Kuramoto
model which is a popular model to model synchronization in complex networks [75].

A simple way to solve these gauge-fixing conditions for the anti-periodic
boundary conditions case is first to change the variables to si = ϕi + θi+1 −
θi mod 2π ∈ (−π, π], for all i = 1, . . . , n, and then to solve the system for these
new variables. Anti-periodic boundary conditions for the new variables, i.e.,
sn+1 = −s1 and s0 = −sn, ensure that the Jacobian matrix M for this change of
variables is non-zero. In particular, det ∂si

∂θj
= det ∂(ϕi+θi+1−θi)

∂θj
= det(δi+1,j−δi,j) =

detMi,j. In fact, it can be easily seen that

detM = (−1)n+12. (3.11)

This non-singularity of M is simply because anti-periodic boundary conditions
rule out the global zero or the constant zero mode. The factor 2 here also reflects
the fact that the map is two-to-one when taken all si modulo 2π.
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3.2 Anti-periodic Boundary Conditions In One Dimension

Thus, Eq. (3.10) can be written as

f̃i(s) = −(sin si − sin si−1) = 0, (3.12)

for all i = 1, . . . , n. This can be written in matrix form as MS⃗ = 0⃗, where
S⃗ = (sin(s1), . . . , sin(sn))

T is a column vector, and 0⃗ is the zero vector. Since

M is non-singular here, this matrix equation only has a trivial solution, S⃗ = 0⃗,
i.e., sin si = 0 and hence si ∈ {0, π}, for all i = 1, . . . , n. Thus, after gauge
fixing, s⃗ = η⃗, where η⃗ is the vector consisting of only 0 and π as its elements and
s⃗ = (s1, . . . , sn)

T is a column vector. Thus, there are 2n possible configurations
which are Gribov copies [12]. It should be mentioned here that because there is
no dynamics in this one-dimensional model, effectively all 2n copies of the gauge-
fixed configuration s⃗ = 0⃗ are related to each other by permutations of 0’s and π’s
for all si’s, and so they are trivial copies of each other. In terms of θi’s, we get

θ⃗ = M−1(−ϕ⃗+ η⃗), (3.13)

where ϕ⃗ = (ϕ1, . . . , ϕn)
T and θ⃗ = (θ1, . . . , θn)

T are column vectors.

For the trivial orbit case, i.e., ϕ⃗ = 0⃗, we get

θ⃗ = M−1η⃗. (3.14)

After taking modulo 2π in the right hand side, it is easy to show that we have
two classes of solutions for θi’s, i.e., Gribov copies: (a) 2n sequences with all
θi ∈ {0, π} and (b) 2n sequences with all θi ∈ {π/2,−π/2}. There are thus
in total 2n+1 solutions in terms of θi’s. Type (a) solutions are easily seen to
always lead to a Gribov copy with an even number of si’s being π, while type
(b) solutions always leads to a Gribov copy with odd number of si’s being π.
Thus, the double counting of link configurations with 2π-periodicity corresponds
to identifying pairs of θi’s related by a swapping of all components, in each of the
two types separately.

Faddeev-Popov Operator and The Neuberger 0/0 Problem

For the one-dimensional lattice, using Eq. (3.5), we get

(MFP )i,j =
∂fi(θ)

∂θj
=

∂f̃i(s)

∂sk

∂sk
∂θj

= − cos siδi+1,j + (cos si + cos si−1)δi,j − cos si−1δi−1,j. (3.15)

Ideally we would prefer the usual diagonalization of MFP with some orthogonal
matrix since the diagonal elements of the resulting diagonal matrix are then the
eigenvalues ofMFP and a classification of the solutions would be straight-forward.
However, the explicit form of both the diagonalizing and the diagonal matrices get
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3.2 Anti-periodic Boundary Conditions In One Dimension

cumbersome for large n in this case. Moreover, for higher dimensional lattices, it
is very difficult to diagonalize MFP . We instead notice that MFP can be written
in the following form,

MFP = MTD(c1, c2, . . . , cn)M, (3.16)

where D(c1, c2, . . . , cn) or just D is a diagonal n×n matrix with entry ci = cos si
at the i-th diagonal position1. Thus,

detMFP = det(MTDM) = detMT (
n∏

i=1

ci) detM = 4
n∏

i=1

ci, (3.17)

where we have used the fact that detM = detMT = (−1)n+12. Now, out of
2n Gribov copies of the form s⃗ = η⃗ for 2n−1 Gribov copies detMFP is 4 and for
the remaining 2n−1 Gribov copies it is −4. Thus, following the topological field
theoretical interpretation of the lattice Landau gauge fixing procedure [39], in
this case, Eq. (2.18) gives

ZGF =
2n∑
k=1

sign (detMFP )
∣∣∣
s⃗=s⃗k

= (2n−1 − 2n−1)

= 0, (3.18)

where s⃗k is the k-th Gribov copy, and the factor 2 arising due to the over-counting
is ignored. This is the Neuberger zero [29, 30] which gives rise to the Neuberger
0/0 problem.

Here, since MFP is a real and symmetric matrix, all eigenvalues are real. A
very important consequence of the decomposition Eq. (3.16) is that MFP can be
viewed as congruent to the diagonal matrix D via the invertible real symmetric
matrix M . Now, Sylvester’s law of inertia states that in such a case the number
of positive (negative) elements of D is exactly equal to the number of positive
(negative) eigenvalues [76]. The possibility of having any ci = 0 is already ruled
out, and so is the possibility of zero eigenvalues. Thus, for the solution s⃗ = 0⃗, all
ci’s are +1 and MFP is positive definite. This configuration is the FMR which
corresponds to the absolute minimum of Fϕ(θ).

Now, take exactly one of the si’s in this FMR configuration, say sj, from 0
to π, and so the corresponding cj = −1. For such a new configuration, which is
also a Gribov copy, exactly one eigenvalue of MFP will be negative and all others
positive. The set of all n such Gribov copies with exactly one negative eigenvalue

1It should be emphasized here that this is not the usual diagonalization. The diagonal
elements of D here are not the eigenvalues of MFP . However, this is still very useful for our
purposes due to Sylvester’s law of inertia. I am thankful to Max Lohe for pointing out this
interesting result.
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3.2 Anti-periodic Boundary Conditions In One Dimension

is the second2 Gribov region C1. In general, the set of all
(
n
r

)
Gribov copies with

r out of n si’s being π and all remaining si’s being 0 is the (r+1)th Gribov region
Cr, at which MFP has exactly r negative eigenvalues.

In terms of θi’s, for the trivial orbit case, we can now observe the Z2 structure:
we can define a gauge transformation which when applied to any copy of type (a)
or (b) leads to a copy of the other type, and returns the original configuration
when applied twice. For odd n for example, a chequer-board gauge transformation

θ⃗+
(

π
2
,−π

2
, . . . , π

2

)T
changes every link by π and therefore swaps the overall sign of

MFP . For odd n, this then also swaps the sign of the Faddeev-Popov determinant
which gives the Neuberger zero. For even n, because we know all the solutions,
the Neuberger zero can be explicitly seen here. However, for higher dimensional
lattices where it is difficult to obtain all solutions, the issue related to the Z2

structure becomes more involved.

3.2.2 Modified Lattice Landau Gauge (MLLG)

The MLLG functional for the one-dimensional lattice is,

F s
ϕ(θ) = −2

∑
i

ln cos
(
(ϕi + θi+1 − θi)/2

)
, (3.19)

where the sum is over i = 1, . . . , n, and the corresponding gauge-fixing conditions
are

f s
i (θ) = −

(
tan((ϕi + θi+1 − θi)/2)− tan((ϕi−1 + θi − θi−1)/2)

)
= 0, (3.20)

for i = 1, . . . , n.
To solve these equations we use the same trick as before, i.e., change the

variables to si’s, to get

f̃ s
i (s) = −

(
tan

si
2
− tan

si−1

2

)
= 0, (3.21)

for i = 1, . . . , n, or equivalently, MS⃗s = 0⃗, with S⃗s = (tan(s1/2), . . . , tan(sn/2))
T .

We finally obtain si = 0 mod 2π, for all i = 1, . . . , n. Thus, the allowed unique
configuration is s⃗ = 0⃗, giving the FMR.

In terms of θi’s, the solutions are

θ⃗ = M−1(−ϕ⃗+ 0⃗). (3.22)

Thus, there are only two solutions in terms of the θi’s. For the trivial orbit
case, there are no type (b) solutions here, and only two solutions of type (a),

θ⃗ = (0, 0, . . . , 0) and (π, π, . . . , π) survive, both of which lead to the same trivial
link configuration modulo 2π. One can also show that for a random orbit, both
copies also lead to the same configuration. There are thus no more Gribov copies
for the one-dimensional MLLG with anti-periodic boundary conditions.

2Note that here the FMR and C0 are the same in this case.
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3.3 Periodic Boundary Conditions In One Dimension

Faddeev-Popov Operator and No Neuberger 0/0 Problem

The Faddeev-Popov operator for the MLLG in terms of new variables is

(M s
FP )i,j =

∂f s
i (θ)

∂θj
=

∂f̃ s
i (s)

∂sk

∂sk
∂θj

= − sec2
si
2
δi+1,j + (sec2

si
2
+ sec2

si−1

2
)δi,j − sec2

si−1

2
δi−1,j

(3.23)

for i, j = 1, . . . , n. For anti-periodic boundary conditions we can decompose M s
FP

as
M s

FP = MTDsM, (3.24)

where Ds = D(sec2 s1
2
, . . . , sec2 sn

2
) and detM s

FP = 4
∏n

i=1 sec
2 si

2
.

Thus, at s⃗ = 0⃗, Ds is the identity matrix and so M s
FP is positive definite

according to Sylvester’s law of inertia. In particular, detM s
FP = 4. So, the

corresponding ZGF = 1 (up to the trivial over-counting). Thus, the Neuberger
0/0 problem is solved in this toy model. In Appendix E we present another
alternative to modify the lattice Landau gauge.

3.3 Periodic Boundary Conditions In One Di-

mension

With periodic boundary conditions, the corresponding system of gauge fixing
equations has exactly one free parameter for the one-dimensional lattice from the
ungauge-fixed global gauge transformation. The general solutions can be simply

stated as sinϕθ
1 = · · · = sinϕθ

n for the equations (3.10) and tan
ϕθ
1

2
= · · · = tan ϕθ

n

2

for the equations (3.20), in the periodic boundary conditions case. However, this
is still of little help and we should solve the corresponding equations for both the
SLLG and the MLLG more explicitly.

We first note that, without loss of generality, we can get rid of a free vari-
able, say θn, by taking θn = 0 and removing a linearly dependent equation (nth
equation in this case) from the system. This eliminates the constant zero mode
and we are left with n − 1 equations in n − 1 variables. In Appendix B, the
corresponding equations are solved explicitly for both the SLLG and the MLLG.

3.3.1 SLLG

For the SLLG, as shown in Appendix B, the solutions are given as

ϕ̃θ
i =

(
qi−1 +

i−2∑
l=0

ql(
i−2∏
k=l

(−1)qk+1)
)
π + ϕ̃θ

n

i−1∏
l=0

(−1)ql , (3.25)
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3.3 Periodic Boundary Conditions In One Dimension

for i = 1, . . . , n− 1, with

ϕ̃θ
n =

n(ϕ− 2πr
n
)−

(∑n−1
i=1 (qi−1 +

∑i−2
l=0 ql(

∏i−2
k=l(−1)qk+1))

)
π

(
∑n−1

i=1 (
∏i−1

l=0(−1)ql) + 1)
, (3.26)

where all qi ∈ {0, 1} with q0 = qn, ϕ̃
θ
i = ϕθ

i + 2πli and ϕ̃i = ϕi + 2πli, and with li
being integers for all i = 1, . . . , n. Also, r runs from 0 to n − 1 and the average

link-angle is ϕ := 1
n

∑n
i=1 ϕi. There are

∑n−1
2

i=0 (n − 2i)
(
n
i

)
Gribov copies if n is

odd, and
∑n−2

2
i=0 (n− 2i)

(
n
i

)
Gribov copies if n is even.

After eliminating the constant zero mode, it is easy to show that for the SLLG
with periodic boundary conditions,

(MFP )ij =
∂fi
∂θj

, i, j = 1, . . . , n− 1, (3.27)

i.e.,

MFP =


c1 + cn −c1 0 . . . 0
−c1 c2 + c1 −c2 0

. . .
0 −cn−3 cn−2 + cn−3 −cn−2

0 · · · 0 −cn−2 cn−1 + cn−2

 , (3.28)

where ci = cosϕθ
i for i = 1, . . . , n. The determinant of this matrix can be

straightforwardly computed and is

detMFP = (
n∏

k=1

cosϕθ
k)(

n∑
i=1

secϕθ
i ). (3.29)

Now, for even n, the gauge transformation ϕθ
i → ϕθ

i + π satisfies the SLLG
conditions, if the ϕθ

i ’s do, because

fi(θ) = −(sin(ϕθ
i + π)− sin(ϕθ

i−1 − π))

= sin(ϕθ
i )− sin(ϕθ

i−1)

= 0, (3.30)

for all i = 1, . . . , n−1, where the last equality comes because the ϕθ
i ’s are assumed

to satisfy the gauge fixing conditions, and so using Eq. (3.29),

detM
′

FP =
( n∏

k=1

cos(ϕθ
k + π)

)( n∑
i=1

sec(ϕθ
i + π)

)
= −

( n∏
k=1

cosϕθ
k

)( n∑
i=1

secϕθ
i

)
= − detMFP . (3.31)
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3.3 Periodic Boundary Conditions In One Dimension

Thus, for even n, every Gribov copy comes in pairs with opposite signs of detMFP ,
and so the sum over all Faddeev-Popov determinants is a zero, i.e., ZGF = 0.
Thus, for even n, we have an exact symmetry in a certain sense because this ±π
chequerboard transformation flips the sign of the Faddeev-Popov determinant.
However, such an exact symmetry does not exist when n is odd since the cor-
responding MFP is an even dimensional matrix after eliminating the constant
zero mode. However, in this case, we can use the classification of Gribov copies
according to the number of negative eigenvalues of the corresponding MFP as ex-

plained in Appendix B.1.1. It is then easy to see that there are 1
2

∑n−1
2

i=1 (n−2i)
(
n
i

)
solutions for which detMFP is positive and for the remaining same number of
solutions it is negative, though the absolute value of detMFP may be different.
Thus the sum of signs of the Faddeev-Popov determinants is zero, even though
the determinants themselves may not add up to be zero.

3.3.2 MLLG

The solutions of the corresponding gauge fixing equations for the MLLG, as shown
in the Appendix B, are

ϕ̃θ
n = ϕ− 2πr

n
, (3.32)

for r = 0, . . . , n− 1, together with

ϕ̃θ
i = ϕ− 2π

n
r,

i.e.,

ϕθ
i = ϕ− 2π

n
r + 2πli, (3.33)

for i = 1, . . . , n − 1 and where li are integers. There are n Gribov copies in this
case.

The corresponding Faddeev-Popov operator3 is, after removing the constant
zero mode,

(M s
FP )ij =

∂fi
∂θj

, i, j = 1, . . . , n− 1, (3.34)

and

M s
FP =


t1 + tn −t1 0 . . . 0
−t1 t2 + t1 −t2 0

. . .
0 −tn−3 tn−2 + tn−3 −tn−2

0 · · · 0 −tn−2 tn−1 + tn−2

 ,

3Note that we use the superscript s for the stereographically MLLG.
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3.4 Topological Interpretation Revisited

where ti = sec2
ϕθ
i

2
for i = 1, . . . , n. It is easy to verify that

detM s
FP = (

n∏
k=1

sec2
ϕθ
k

2
)(

n∑
i=1

cos2
ϕθ
i

2
), (3.35)

which is strictly positive definite for ϕθ
i ∈ (−π, π) for i = 1, . . . , n so there can be

no Neuberger zero in this case.

In particular, for each r = 0, . . . , n− 1, detM s
FP = n

(
sec2(

ϕ− 2πr
n

2
)
)n−1

which
is positive definite. So,

ZGF =
n−1∑
r=0

sign
((

sec2(
ϕ− 2πr

n

2
)
)n−1

)
= n. (3.36)

If we define ϕr := ϕ− 2πr
n
, then the absolute minimum here is given by the copy

for which ϕr mod 2π ∈ (−π
n
, π
n
). The FMR here is the set of configurations with

constant link-angles of a value in this range, and its boundary is given by the
values ±π

n
. The boundary is reached along gauge orbits for configurations for

which the average link angle, before gauge fixing, happens to be ϕ = π
n
+ π

n
r for

r = 0, . . . , n − 1. Thus there are two degenerate absolute minima, the copies
for which ϕr = ±π

n
. This should be counted only once to have gauge orbit

space correspond to the ϕ-interval [−π
n
, π
n
) for the average gauge angle. In every

other case, before gauge fixing, ϕ ̸= π
n
mod 2π

n
, the gauge orbits pass through the

interior of the FMR and there is a unique absolute minimum as expected.
If we allow ϕ ∈ (−π, π], we will average over all Gribov copies which are the

set of all local minima (only minima because the functional is convex and only
bounded from below) of the modified functional along the gauge orbits. As we
will verify explicitly below, averaging over all copies is equivalent to restricting
to the FMR for the one-dimensional U(1) chain.

In Appendix A, we also prove that the Faddeev-Popov operator for the MLLG
is positive semi-definite and positive definite for any dimensional lattice with both
periodic and anti-periodic boundary conditions, respectively.

3.4 Topological Interpretation Revisited

In Chapter 2, we mentioned the topological interpretation of lattice gauge-fixing
in terms of Morse theory. Here, we explicitly show that all Gribov copies can be
classified in terms of Morse indices Ki i.e., the number of negative eigenvalues of
the corresponding Faddeev-Popov operator. We recall that Ki is the number of
Gribov copies in Ci. In general, following the discussion in Section 2.3, we can
state the strong Morse inequalities given in Eq. (2.35), as

Ki = γibi, (3.37)
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3.4 Topological Interpretation Revisited

with γi ≥ 1 for all i. We already know the Betti numbers for both the SLLG and
the MLLG from Section 2.3. Thus, we can compute Ki’s and figure out the γi’s
accordingly, as done below.

3.4.1 One-dimensional SLLG

Following the discussion below Eq. (3.18) for the one-dimensional SLLG with anti-
periodic boundary conditions, there are

(
n
i

)
Gribov copies at which the Faddeev-

Popov operator has i negative eigenvalues, i.e., Ki =
(
n
i

)
, for i = 0, . . . , n. The

sum over all Ki’s of course correctly (up to the trivial over-counting) returns the
total number of Gribov copies, NGC ,

NGC =
n∑

i=0

Ki =
n∑

i=0

(
n

i

)
= 2n, (3.38)

and similarly the Euler characteristic, defined as the signed sum over Ki’s, is

χ((S1)n) =
n∑

i=0

(−1)iKi =
n∑

i=0

(−1)i
(
n

i

)
= 0, (3.39)

where we have used the properties of binomial coefficients. And since in this case
bi =

(
n
i

)
for i = 0, . . . , n, we get

γi = 1, (3.40)

for i = 0, . . . , n.
Similarly, for the periodic chain, all Gribov copies for the SLLG for the one-

dimensional case are classified in terms of the negative eigenvalues of the corre-
sponding Faddeev-Popov operator, in Appendix B.1.1. Thus, for odd n,

NGC =

n−1
2∑

i=0

n
(
n+1
2

− i
)

n− i

(
n− 1

i

)
+

n−1∑
i=n+1

2

n
(
i− n−1

2

)
i+ 1

(
n− 1

i

)

=
n−1∑
i=0

Ki. (3.41)

The signed sum over these n− 1 Ki’s is 0, giving the correct Euler characteristic.
So,

γi =


n(n+1

2
−i)

n−i
if i = 0, . . . , (n−1)

2
n(i−n−1

2 )
i+1

if i = (n+1)
2

, . . . , n− 1,
(3.42)
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3.5 Faddeev-Popov Procedure for the MLLG

since bi =
(
n−1
i

)
for all i = 0, . . . , n− 1. For even n, similarly,

NGC =

n−2
2∑

i=0

n
(
n
2
− i
)

n− i

(
n− 1

i

)
+

n−1∑
i=n

2

n
(
i− n−2

2

)
i+ 1

(
n− 1

i

)

=
n−1∑
i=0

Ki. (3.43)

Thus,
∑n−1

i=0 (−1)iKi = 0, i.e., the Neuberger zero, and also,

γi =


n(n

2
−i)

n−i
if i = 0, . . . , (n−2)

2
n(i−n−2

2 )
i+1

if i = (n)
2
, . . . , n− 1.

(3.44)

3.4.2 One-dimensional MLLG

For the MLLG with anti-periodic boundary conditions, the corresponding Faddeev-
Popov operator is positive definite and there is only one gauge-fixed configuration.
Thus, K0 = 1 and all other Ki = 0 for i = 1, . . . , n− 1. Thus,

NGC =
n∑

i=0

Ki =

(
n

0

)
= 1. (3.45)

Now, since in this case, as shown in Section 2.3, b0 = 1 and bi = 0 for all
i = 1, . . . , n, we get γ0 = 1.

Similarly, for the periodic boundary conditions case, there are n solutions for
which the corresponding Faddeev-Popov operator is positive definite, i.e., K0 = n
and Ki = 0 for all i = 1, . . . , n− 1. Thus,

NGC =
n−1∑
i=0

Ki = n, (3.46)

and so, the corresponding γ0 = n.

3.5 Faddeev-Popov Procedure for the MLLG

The U(1) group is a special case where one can either choose to work with com-
pact U(1) or non-compact U(1). Now, the study of compact QED on the lattice
cannot be motivated to understand any physical phenomenon in particle physics.
However, compact QED on the lattice has been extensively studied (see, e.g.,
Ref. [77, 78, 79, 80, 81, 82]) for several reasons: (1) We first note that compact
QED is an Abelian gauge theory and may serve as the prototype for all com-
pact gauge theories on the lattice in 4 dimensions. (2) Compact QED exhibits
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3.5 Faddeev-Popov Procedure for the MLLG

a twofold phase structure, separated by a mass gap: one phase with a massless
photon, called the Coulomb phase and the other phase called the confining phase.
Though the QED confining phase is unphysical it shares many qualitative fea-
tures with QCD. (3) In the confining region, where the coupling becomes strong,
compact QED exhibits a rich structure of topological defects such as monopoles,
Dirac sheets, Dirac plaquettes etc. Their possible connection to the appearance
of zero modes of the Dirac operator is of special interest. With the results in
the previous section, we are now ready to formulate the Faddeev-Popov proce-
dure for the MLLG for compact QED in one dimension, with periodic boundary
conditions.

We first note that

ZGF =
1

n

n−1∏
i=1

∫ 2π

0

dθi

( n−1∏
k=1

δ(fk(ϕ
θ))
)
detM s

FP

=
1

n

n−1∑
r=0

( n−1∏
i=1

(∫ 2π

0

dθi δP (θi − θ
(0)
i +

2π

n
r)
))

= 1, (3.47)

where δP is the periodic delta function, and in the second equality we used

n−1∏
k=1

δ(fk(ϕ
θ)) detM s

FP =
n−1∑
r=0

( n−1∏
k=1

∑
m∈Z

δ(θk − θ
(0)
k +

2π

n
r + 2πmk)

)
=

n−1∑
r=0

n−1∏
k=1

δP (θk − θ
(0)
k +

2π

n
r), (3.48)

where mk are integers for k = 1, . . . , n − 1. We then integrate the n − 1 gauge
angles θi over an interval of 2π in each term.

Now, the partition function for the one-dimensional compact QED on the
periodic chain can be formally written as,

Z1d =
n∏

i=1

∫
S1

dUi e
−S1d[U ]. (3.49)

Inserting the unity from Eq. (3.47) into Eq. (3.49), using the gauge invariance of
measure, the action and the corresponding detM s

FP , and factorizing the volume
of the gauge group, we obtain

Z1d =
(2π)n−1

n

n∏
i=1

∫
S1

dUi

( n−1∏
k=1

δ(fk(ϕ))
)
detM s

FP e−S1d[U ]

=
(2π)n−1

n

n∏
i=1

∫ 2π

0

dϕi

2π

( n−1∏
k=1

δP (ϕk − ϕn)
)∣∣∣ det ∂f

∂ϕ

∣∣∣−1

detM s
FP e−S1d[U ],

(3.50)
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3.5 Faddeev-Popov Procedure for the MLLG

where the prefactor (2π)n−1 is the volume of the gauge group and arises from the
integration of the n− 1 gauge angles θi’s. In the second equality, we again used
the properties of the δ-function. Now,

∂f

∂ϕ
= −


t1 0 0 . . . 0
−t1 t2 0 0

. . .
0 −tn−3 tn−2 0
0 · · · 0 −tn−2 tn−1

 , (3.51)

where now ti = sec2 ϕi

2
for all i = 1, . . . , n− 1. So,

∣∣∣ det ∂f
∂ϕ

∣∣∣ = n−1∏
i=1

sec2
ϕi

2
. (3.52)

Moreover, since all ϕi = ϕn mod 2π because of the periodic δ-functions in Eq. (3.50),
we get ∣∣∣ det ∂f

∂ϕ

∣∣∣−1

detM s
FP = sec2

ϕn

2

( n∑
i=1

cos2
ϕi

2

)
= n. (3.53)

We can now simplify Eq. (3.50) as below,

Z1d =
1

2π

∫ 2π

0

dϕ e−S1d(ϕ), (3.54)

after integration of the n− 1 periodic δ-functions and renaming ϕn → ϕ. More-
over, we have taken Ui = eiϕ for all i = 1, . . . , n.

Here, we also need to specify the action S1d[U ] for the one-dimensional periodic
chain. In this case, since there is no plaquette, the only gauge invariant operator
is l =

∑n
i=1 ϕi and so

S1d[U ] = βn(1− cos(nϕ)) = βn(1− cos l), (3.55)

is the physical action in this case.
We can evaluate the partition function in Eq. (3.54) in two ways: restricting

the integration range to the FMR or taking all Gribov copies into account. With
the former approach,

Z1d =
n

2π

∫ π
n

−π
n

dϕ e−S1d(ϕ) =
1

2π

∫ 2π

0

dl e−βn(1−cos l) = e−βnI0(βn) , (3.56)

where I0(x) is the n = 0 Bessel function of the first kind (with I0(0) = 1 in agree-
ment with our normalization in the original partition function Z1d in Eq. (3.49)
which tends to 1 for β → 0).
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3.6 1 + 1 Complete Coulomb Gauge

The other way is to average over all n Gribov copies, i.e.,

Z1d =
1

2π

∫ 2π

0

dϕe−S1d(ϕ) =
1

2πn

∫ 2πn

0

dl e−S1d(
l
n
) = e−βnI0(βn), (3.57)

where the periodicity of the action in the loop l = nϕ and l
n
= ϕ have been used.

Thus, for the MLLG, exactly the same result can be obtained either by averaging
over all Gribov copies or when working within the FMR.

3.6 1 + 1 Complete Coulomb Gauge

It is a highly non-trivial task to solve the two-dimensional lattice Landau gauge-
fixing equations for both the SLLG and the MLLG. We will devote Chapters 4
and 5 to discuss the related issues for the two-dimensional case. However, a very
interesting application of the MLLG on a two-dimensional lattice using the one-
dimensional results is the complete Coulomb gauge in 1+1 dimensions. A d+1-
dimensional complete Coulomb gauge on the lattice means the following: first fix
the d-dimensional Coulomb gauge while leaving the time direction ungauge-fixed.
This is nothing but the d-dimensional Landau gauge in spatial dimensions. Then,
fix the residual gauge freedom for the temporal links in the spatial directions.
The Coulomb gauge studies have been of great importance in the Hamiltonian
formalism of lattice gauge field theories and in the Gribov-Zwanziger confinement
scenario [83, 84, 85, 86, 87, 88]. In particular, the Coulomb gauge in 1 + 1
dimensions has recently gained a renewed interest [89]. Here, we can use all the
results for the one-dimensional lattice Landau gauge obtained so far to study this
two-dimensional system. In this section, we discuss the 1 + 1 complete Coulomb
gauge with both periodic and anti-periodic boundary conditions and formulate
an analogous Faddeev-Popov procedure for the two-dimensional lattice.

3.6.1 Anti-periodic Boundary Conditions

First, we fix the spatial Coulomb gauge which turns out to be the one-dimensional
Landau gauge in each time slice. The corresponding gauge fixing functional for
the modified case for a nx × nt lattice, at each time slice t, is

(F s
ϕ (θ))t = −2

nx∑
x=1

ln cos(
ϕ(x,t),x̂ + θx+1,t − θx,t

2
), (3.58)

where we have slightly changed our notations: the lattice site index is (x, t) in x-t
plane, ϕ(x,t),x̂ is the link in the x-direction starting at the site (x, t) and θx,t is the
gauge transformation at site (x, t). The corresponding gauge fixing conditions,

f s
(x,t)(θ) = tan

(ϕ(x,t),x̂ + θx+1,t − θx,t)

2
−tan

(ϕ(x−1,t),x̂ + θx,t − θx−1,t)

2
= 0, (3.59)

39



3.6 1 + 1 Complete Coulomb Gauge

for x = 1, . . . , nx for each time-slice t. For the anti-periodic boundary conditions
case, as we already know, ϕθ

(x,t),x̂ = 0 mod 2π for x = 1, . . . , nx at each time slice
t. So, at each time slice there is no Gribov copy. We still have the residual gauge
freedom

ϕ(x,t),t̂ → ϕθ
(x,t),t̂

= ϕ(x,t),t̂ + θx,t+1 − θx,t (3.60)

for all x = 1, . . . , nx, all θx,t’s being spatially constant. This residual gauge
transformation basically just changes the spatial average over the t-links between
neighboring time slices. If ϕ̆(t),t̂ is the average over all t-links in a given time slice
t, then

ϕ̆(t),t̂ :=
1

nx

nx∑
x=1

ϕ(x,t),t̂ → ϕ̆θ
(t),t̂

= ϕ̆(t),t̂ + θx,t+1 − θx,t. (3.61)

To fix this residual gauge freedom, we can write the MLLG functional for this
one-dimensional chain of the time-link averages ϕ̆(t),t̂ as,

F̆ s
ϕ(θ) = −2

nt∑
t=1

ln cos(
ϕ̆(t),t̂ + θx,t+1 − θx,t

2
), (3.62)

with the corresponding gauge fixing conditions

f̆ s
t = tan

ϕ̆(t),t̂ + θx,t+1 − θx,t

2
− tan

ϕ̆(t−1),t̂ + θx,t − θx,t−1

2
= 0, (3.63)

for t = 1, . . . , n, finally giving, for anti-periodic boundary conditions in the time
direction, ϕ̆θ

(t),t̂
= 0 mod 2π, for all t = 1, . . . , n. Here, one can also consider

the SLLG and deduce that in the first step there are 2nx Gribov copies at each
time-slice and there are again 2nt Gribov copies in the second step. Thus in the
modified approach, the number of Gribov copies is exponentially suppressed in
each step of the complete Coulomb gauge in 1 + 1 dimensions.

3.6.2 Periodic Boundary Conditions

For the periodic boundary conditions case, the gauge-fixing functional for the
MLLG in the first step is the same as Eq. (3.58) and the gauge fixing conditions
as Eq. (3.59), formally. Here, we formulate the Faddeev-Popov gauge-fixing pro-
cedure for this case. In the first step, in terms of average over x-links at each
time slice, ϕ(t),x̂ = 1

nx

∑nx

x=1 ϕ(x,t),x̂, for all t = 1, . . . , nt, we have nx solutions at
each time slice t, as we already know. Thus, we had 2ntnx link variables (two for
each of nxnt sites) initially, out of which, after fixing this partial gauge, there are
nt(nx + 1) variables left, i.e., all ntnx t-links ϕ(x,t),t and nt x-links ϕ(t),x.

Such a partially gauge fixed partition function for 2d compact QED is

Z2d =
nt∏
t=1

∫ 2π

0

dϕ(t),x̂

2π

nx∏
x=1

∫ 2π

0

dϕ(x,t),t̂

2π
e−S2d(ϕ,ϕ). (3.64)
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3.6 1 + 1 Complete Coulomb Gauge

The partially gauge fixed plaquettes are

�(x,t) = ϕ(x+1,t),t̂ − ϕ(x,t),t̂ − (ϕ(t+1),x̂ − ϕ(t),x̂), (3.65)

and so the usual compact QED, up to a constant, can then be written as

S2d(ϕ, ϕ) = −β
∑
x,t

cos�(x,t)

= −β
∑
x,t

cos(ϕ(x+1,t),t̂ − ϕ(x,t),t̂ − (ϕ(t+1),x̂ − ϕ(t),x̂)). (3.66)

Now, there is still residual gauge freedom left as given in Eq. (3.60). To
fix these residual gauge transformations, we can write the MLLG for this one-
dimensional chain of time-link averages ϕ̆(t),t̂ as Eq. (3.62) and the gauge fix-
ing conditions as Eq. (3.63). And simply using the known results for the one-
dimensional chain, we get nt solutions,

ϕ̆θ
(t),t̂ = ϕ̆− 2π

nt

r + 2πqt, with

ϕ̆ =
1

nt

nt∑
t=1

ϕ̆(t),t̂ , (3.67)

for t = 1, . . . , nt. Here, r = 0, . . . , nt − 1 refers to the number of Gribov copies.
This constrains the nt spatial averages ϕ̆(t),t̂ over the t-links between neighboring

slices to be all the same, ϕ̆.
We can again insert a one-dimensional MLLG fixing partition function of the

form,

ZGF =
1

nt

nt−1∏
t=1

∫ 2π

0

dθx,t

( nt−1∏
k=1

δ(f̆ s
k(θ))

)
detM s

FP = 1, (3.68)

where now f̆ s
k(θ) are the gauge fixing conditions given in Eq. (3.63) for k =

1, . . . , nt − 1, with periodic boundary conditions after appropriately eliminated
constant zero mode. So, finally, the partition function for compact QED is

Z2d =

∫ 2π

0

dϕ̆

2π

nt∏
t=1

(∫ 2π

0

dϕ(t),x̂

2π

nx∏
x=1

∫ 2π

0

dϕ(x,t),t̂

2π
δP (ϕ̆(t),t̂ − ϕ̆)

)
e−S2d(ϕ,ϕ). (3.69)

Here, there are nt periodic δ-function constraints which will eliminate one ϕ(x,t),t̂

from each time slice t, i.e., in total nt variables are eliminated. However, finally
it has one independent average variable ϕ̆, and hence there are in total nt − 1
variables eliminated, i.e., there are

nt(nx + 1) → nt(nx + 1)− (nt − 1) = ntnx + 1 (3.70)
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3.7 Remarks

variables left.
This is almost as much as we can do in eliminating the redundant degrees of

freedom in the two-dimensional theory when fixing the gauge up to the global
gauge transformations. Thus, it is an only almost complete elimination of the
gauge freedom in that it still contains all Gribov copies of the two-dimensional
compact U(1) lattice gauge theory of which there are ntn

nt
x . This finalizes the

Faddeev-Popov procedure of the two-dimensional compact QED in 1+1 complete
Coulomb gauge. It is then straightforward to construct the corresponding BRST
formulation.

To restrict the theory to the FMR, as we did in the one-dimensional case, we
can alternatively write

Z2d = nnt
x nt

∫ π
nt

− π
nt

dϕ̆

2π

nt∏
t=1

(∫ π
nx

− π
nx

dϕ(t),x̂

2π

nx∏
x=1

∫ 2π

0

dϕ(x,t),t̂

2π
δP (ϕ̆(t),t̂ − ϕ̆)

)
e−S2d(ϕ,ϕ).

(3.71)

3.7 Remarks

1. In the one-dimensional lattice, since for the MLLG the corresponding NGC

is the same for all random orbits, i.e., random ϕi’s before gauge-fixing, we
used the prefactor 1

n
in the gauge fixing partition function in Eq. (3.47). In

the higher dimensional case, we have already shown that the Faddeev-Popov
operator is positive (semi-)definite, in Appendix A. However, what we have
not shown so far for the higher dimensional case is if the corresponding NGC

for the MLLG is orbit-independent. If it is, then in those cases too we can
use the prefactor 1/NGC in the expression of the corresponding ZGF , and
the Faddeev-Popov procedure can be elegantly formulated there. If not,
then it would be cumbersome to formulate an analogous procedure due to
the orbit-dependent prefactor. Establishing a precise statement in one way
or another will thus be very important.

2. We know that if all elements of an odd dimensional square matrix change
their signs, then the determinant of this matrix flips its sign leaving the
absolute value unchanged. We show in what follows that by taking the
so-called chequer-board transformation on a gauge-fixed configuration of a
lattice with odd number of sites with anti-periodic boundary conditions,
all elements of the corresponding MFP change the sign, and hence give an
opposite signed Faddeev-Popov determinant, for the SLLG. We define the
chequer-board transformation as adding and subtracting π to alternate link
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3.8 Summary

angles ϕθ
i,µ’s, i.e., ϕ

θ
i,µ → ϕθ

i,µ ± π and so

fi(θ) → −
d∑

µ=1

(sin(ϕθ
i,µ + π))− sin((ϕθ

i−µ̂,µ − π))

=
d∑

µ=1

(sinϕθ
i,µ − sinϕθ

i−µ̂,µ) (3.72)

where i runs over all lattice sites. Such a gauge-transformed configuration is
also a solution of the gauge fixing equations. Note that the same applies to
all the boundary points as well, taking proper care of anti-periodic boundary
conditions. Thus, the sum of all the determinants is always zero, yielding
the Neuberger zero. For an even number of lattice sites, this symmetry
does not flip the sign of the Faddeev-Popov determinant since there are an
even number of eigenvalues involved there. Finding such a sign-changing
transformation becomes much more involved in that case.

With periodic boundary conditions, the chequer-board transformation flips
the sign of the Faddeev-Popov determinant leaving the same absolute value,
for the even lattice sites case. This is because in this case the Faddeev-
Popov operator has an odd number of eigenvalues after eliminating the
constant zero mode.

3. Apparently, in one dimension, the solutions of the gauge-fixing equations
for the MLLG are a subset of the solutions of the SLLG case. Moreover, in
the anti-periodic boundary conditions case, the solution for the MLLG case
is the FMR (or C0, since both are the same in this case) of the SLLG. In the
periodic boundary conditions case, the solutions for the MLLG case are the
extrema of the SLLG, i.e., the saddle points of the SLLG are eliminated in
the MLLG in one dimension. This is a very important result and it would
be very interesting to see if it holds for higher dimensional lattices.

4. Recently, the MLLG for SU(2) has been used in lattice simulations [90,
91] and it has been shown that there is no advantage that the SLLG has
over the MLLG, as expected, since both have the same continuum limit
and so any differences between SLLG and MLLG at finite lattice-spacing
are only lattice artifacts. However, the most important advantage of the
MLLG is that it provides a way to perform lattice gauge-fixed Monte-Carlo
simulations sampling all Gribov copies of either sign of Faddeev-Popov
operator in BRST fashion.

3.8 Summary

We summarize the results obtained so far:
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3.8 Summary

1. The gauge fixing equations for both the SLLG and the MLLG can be solved
exactly for a one-dimensional lattice with n lattice sites. For the SLLG case,
we have explicitly demonstrated that the Neuberger 0/0 problem persists
in this simple toy model and there are exactly 2n Gribov copies in terms
ϕθ
i ’s with anti-periodic boundary conditions. For the proposed MLLG with

anti-periodic boundary conditions, we proved that there is no Neuberger
0/0 problem since the Faddeev-Popov operator is strictly positive definite.
There, we also showed that the corresponding NGC is 1 in terms of the ϕθ

i ’s.
Thus, NGC is exponentially suppressed in this case, compared to the SLLG.

2. For the periodic boundary conditions case in one dimension, we showed in

Appendix B that for the SLLG the corresponding NGC is
∑n−1

2
i=0 (n− 2i)

(
n
i

)
for odd n and

∑n−2
2

i=0 (n − 2i)
(
n
i

)
for even n. Moreover, the corresponding

Faddeev-Popov operator is an indefinite matrix and the sum of signs of the
Faddeev-Popov determinants is zero, i.e., ZGF = 0. In addition, we have
completely classified the Gribov copies in this case in terms of Morse in-
dices. On the other hand, for the MLLG with periodic boundary conditions,
we have shown that there are exactly n Gribov copies. Thus, NGC is ex-
ponentially suppressed compared to the SLLG. We also showed that there
the Faddeev-Popov operator is always positive semi-definite with exactly
one constant zero mode due to the global gauge freedom. Furthermore, the
Faddeev-Popov operator, after eliminating the global zero mode, is strictly
positive definite and so there is no Neuberger zero.

3. We have formulated the Faddeev-Popov gauge-fixing procedure on the lat-
tice for the 1- and (1 + 1)-dimensional compact QED, respectively, via the
MLLG.

4. Dealing with the gauge fixing equations for higher dimensional lattices is
highly non-trivial and the same techniques used for the one-dimensional
counter-part does not work any longer. However, in Appendix A we have
shown that the Faddeev-Popov operator for the MLLG is positive semi-
definite or positive definite for an arbitrary dimensional lattice with both
periodic and anti-periodic boundary conditions, respectively. That is, the
Neuberger 0/0 problem is solved for compact U(1).
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Chapter 4

Algebraic Geometry and Lattice
Landau Gauge Fixing

As we saw in the previous chapter, the Landau gauge fixing conditions corre-
sponding to both the SLLG and the MLLG are highly non-linear for higher
dimensional lattices. In general, systems of non-linear equations are difficult to
solve. However, in this chapter1 we translate the systems of equations arising
in the cases at hand to polynomial equations which can then use many of the
results from Algebraic Geometry. Here, we introduce some necessary concepts
of Algebraic Geometry. We will follow [92, 93] unless otherwise stated explicitly.
We will introduce a relatively recent field of Computational Algebraic Geometry
and show how the systems can then be solved using related techniques, specifi-
cally the Groebner basis technique. Moreover, we will show that this Algebraic
Geometry interpretation gives a deep insight to the Gribov copy problem on the
lattice in the standard and modified definitions. Though our goal is to solve the
gauge fixing conditions for higher dimensional lattices, we will mainly analyze the
one-dimensional case because: (1) we already know the exact solutions for this
case and so the results from the new approach will have a precise comparison,
and (2) the one-dimensional case, interpreted as an Algebraic Geometry prob-
lem, provides all the essence of the higher dimensional generalizations (unlike the
same case treated as a linear algebra problem as in Chapter 3). After making a
few remarks, we will conclude the chapter.

4.1 Landau Gauge Fixing Equations as Polyno-

mial Equations

Here, we explain the procedure of transforming the Landau gauge-fixing equations
into polynomial form. We start with restating the SLLG equations for compact

1I am thankful to Fernando Hernando for his critical and expert remarks on this chapter.
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4.1 Landau Gauge Fixing Equations as Polynomial Equations

U(1) in one dimension,

fi(ϕ
θ) = sin(ϕθ

i )− sin(ϕθ
i−1) = sin(ϕi + θi+1 − θi)− sin(ϕi−1 + θi − θi−1)

= 0 (4.1)

with i = 1, . . . , n. Using trigonometric identities, we can expand the equations
as,

fi(ϕ
θ) = cos(θi)(cos(ϕi−1) sin(θi−1) + cos(ϕi) sin(θi+1)

− cos(θi−1) sin(ϕi−1) + cos(θi+1) sin(ϕi))

+ sin(θi)(− cos(θi−1) cos(ϕi−1)− cos(θi+1) cos(ϕi)

− sin(θi−1) sin(ϕi−1) + sin(θi+1) sin(ϕi))

= 0. (4.2)

For simplicity, we take the trivial orbit case (i.e., all ϕi = 0), and writing cos θi ≡
ci and sin θi ≡ si, we get

fi(c, s) = ci(si+1 + si−1)− si(ci+1 + ci−1) = 0 , (4.3)

for all i = 1, . . . , n. This is merely a change of notation. However, we add
additional equations in the system for each site i,

gi(c, s) = s2i + c2i − 1 = 0, (4.4)

for all i = 1, . . . , n. Now, the combined system of all fi(c, s) and gi(c, s) is not
just a change of notation but all the ci and si are algebraic variables and the
equations are multivariate polynomial equations, i.e., the fact that ci and si are
originally sin θi and cos θi is taken care of by the constraint equations (4.4). For
example for the n = 3 SLLG case with anti-periodic boundary conditions, we get

f1(c, s) = −c2s1 − c3s1 + c1s2 − c1s3

f2(c, s) = c2s1 − c1s2 − c3s2 + c2s3

f3(c, s) = −c3s1 + c3s2 − c1s3 − c2s3

g1(c, s) = c21 + s21 − 1

g2(c, s) = c22 + s22 − 1

g3(c, s) = c23 + s23 − 1. (4.5)

Thus, our problem of solving the gauge fixing conditions in terms of θi is trans-
formed into that of solving a system of polynomial equations for variable si and
ci. In general, for the one-dimensional lattice with n lattice sites, we have in total
2n polynomial equations and 2n variables.

Similarly, for the MLLG via stereographic projection,

fi(ϕ
θ) =

tan(θi+1/2)− tan(θi/2)

1 + tan(θi+1/2) tan(θi/2)
− tan(θi/2)− tan(θi−1/2)

1 + tan(θi/2) tan(θi−1/2)
= 0 , (4.6)
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4.1 Landau Gauge Fixing Equations as Polynomial Equations

where we have taken the trivial orbit case for simplicity2. Now, since the tangents
of half angles can take values from −∞ to ∞ for angles in (−π, π], they can
readily be treated as algebraic variables. However, to get the equations in the
polynomial shape, we clear out the denominators after multiplying them with the
numerators appropriately. To ensure that none of those denominators is zero, we
also add one more constraint equation as 1− yx = 0, where x is the product of
all denominators. Thus, in the modified case we have to add only one additional
equation and one more variable, y. Then the equations are again polynomial
equations with variables Ti = tan θi

2
and y.

For the n = 3 trivial orbit case with anti-periodic boundary conditions, the
corresponding MLLG equations are

f1(ϕ
θ) = T2T

2
1 − T3T

2
1 + 2T2T3T1 + 2T1 − T2 + T3

f2(ϕ
θ) = −T1T

2
2 − T3T

2
2 + 2T1T3T2 − 2T2 + T1 + T3

f3(ϕ
θ) = −T1T

2
3 + T2T

2
3 + 2T1T2T3 + 2T3 + T1 − T2

f4(ϕ
θ) = 1− y(T1T2 + 1)(T1T3 − 1)(T2T3 + 1). (4.7)

We observe that the systems (4.5) and (4.7) have a striking difference. Though
the number of polynomials and variables in (4.5) is less than those in (4.7), the
degree of each polynomial equation is 2 in the former case and in the latter it is
3 for all equations except the additional equation that has degree 7.

In general, when transforming the equations of trigonometric functions to
equations in polynomial forms we must take care of a few things. Firstly, our
original equations are composed of trigonometric functions of some variable angles
θi. Since the ranges and the domains of trigonometric functions are defined over
R, the solutions of the equations are obviously in Rn (where n is the number of
variables). But the corresponding polynomial equations including the constraint
equations, can be defined over any field, e.g., R, C, Q, and the corresponding so-
lutions may be in Rn,Cn or Qn respectively. So, while dealing with such systems
of polynomial equations, we must specify a field over which the new variables are
defined. The obvious choice is to take all the new variables in Rn so that in the
end we can have a one-to-one correspondence between the solutions in terms of
the original trigonometric variables and the new algebraic variables. However,
Algebraic Geometry over the real variables, called Real Algebraic Geometry is a
highly complicated subject in contrast to Complex Algebraic Geometry. This is
mainly because of the Fundamental Theorem of Algebra which asserts that every
non-zero polynomial with complex coefficients can be decomposed into irreducible
components of degree one if defined over complex variables. For example, a poly-
nomial x2 + 1 is uniquely factorized if x ∈ C as (x + i)(x − i), but it is not
factorizable if x ∈ R. Mainly due to this important result, Algebraic Geome-
try has been traditionally studied extensively over complex variables and many

2For a random orbit case one follows the same procedure, simply remembering to use trigono-
metric identities to expand the trigonometric functions of the sum of three angles.
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4.1 Landau Gauge Fixing Equations as Polynomial Equations

important results are available therein. Thus, though Real Algebraic Geometry
is a fertile, exciting and rapidly emerging area of research in pure and applied
Mathematics, it has limited applications.

Having said that, we are still not in too much trouble. We can take each of the
corresponding polynomial variables from C, use all the well-developed techniques
in Complex Algebraic Geometry, and get all complex solutions which obviously
include real solutions. Then we can throw out the complex solutions while keeping
only real solutions and we are done. For example, for the equation x(x2+1) = 0,
all complex solutions are x = 0, x = i, x = −i and so its real solution is x = 0.
This is a standard procedure used in Robotics, Protein Folding, etc. and related
problems.

We introduce a few basic notions of Algebraic Geometry below. This technical
jargon will lead to a very useful result: we can transform a given system of
multivariable polynomial equations to another one which has the same solutions
but is easier to solve, roughly speaking. Here, the original system is considered
as a basis of an algebraic object, called an ideal, and then an important result,
that an appropriate change of this basis leaves the solution space unchanged, is
used.

Polynomial Rings

First of all, a polynomial f is defined as f =
∑

α aαx
α. Here, the sum is over

a finite number of m-tuples α = (α1, . . . , αm), aα ∈ K (for example, Q,R,C)
and xα = xα1

1 . . . xαm
m is a monomial with all αi being non-negative integers. The

coefficients aα, take values from a field, K. Similarly, the variables xi can, in
general, take values from Q,R, C, etc. Thus, each equation in (4.5) is a polyno-
mial in c1, c2, c3, s1, s2, s3 and each equation (4.7) is a polynomial in T1, T2, T3, y.
For a random orbit, where the parameters are in symbolic form sinϕi, cosϕi and
tan ϕi

2
, ideally K = R. However, to use the results of Algebraic Geometry to

its full extent, we choose K = C. This means that all allowed coefficients are
complex numbers having imaginary part zero.

Now, if K[x1, . . . , xm] is the set of all polynomials in variables x1, . . . , xm with
coefficients in K, then f can be viewed as a function f : Km −→ K where
Km is the affine space of all coefficients. Thus, the sum and product of two
polynomials is a polynomial, and a polynomial f divides a polynomial g if g = fh
for some h ∈ K[x1, . . . , xm]. Using this, it can be shown that under addition and
multiplication, K[x1, . . . , xm] satisfies all of the field axioms except, the existence
of multiplicative inverse because 1

x
is not a polynomial. K[x1, . . . , xm] is called a

commutative ring, or more precisely a polynomial ring (For a nice discussion on
related topics, the reader is referred to [92, 93].). Thus, the polynomial system in
Eq. (4.5) is defined in the polynomial ring C[c1, c2, c3, s1, s2, s3] and in Eq. (4.7)
is defined in the polynomial ring C[T1, T2, T3, y].
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4.1 Landau Gauge Fixing Equations as Polynomial Equations

Ideal

One can now view all the polynomials of a system of polynomial equations as
elements of a polynomial ring. From there on, one can also define a corresponding
vector space, called an ideal. More specifically an ideal, say I, is a subset of
K[x1, . . . , xm] with the following operations: (1.) 0 ∈ I , (2.) f + g ∈ I for
all f, g ∈ I and (3.) hf ∈ I for f ∈ I and h ∈ K[x1 . . . , xm]. Now, for all
hi ∈ K[x1, . . . , xm], i = 1, . . . , t, I = < h1, . . . , ht > is an ideal of K[x1, . . . , xm],
called an ideal generated by h1, . . . , ht, and if t is finite then I is called finitely
generated. The polynomials h1, . . . , ht then form a basis of I.

Thus, for the polynomials in Eq. (4.5), the corresponding ideal is

I3 = < −c2s1 − c3s1 + c1s2 − c1s3, c2s1 − c1s2 − c3s2 + c2s3,

−c3s1 + c3s2 − c1s3 − c2s3, c
2
1 + s21 − 1,

c22 + s22 − 1, c23 + s23 − 1 > . (4.8)

Similarly, for polynomials in Eq. (4.7), the ideal is

J3 = < T2T
2
1 − T3T

2
1 + 2T2T3T1 + 2T1 − T2 + T3,

−T1T
2
2 − T3T

2
2 + 2T1T3T2 − 2T2 + T1 + T3,

−T1T
2
3 + T2T

2
3 + 2T1T2T3 + 2T3 + T1 − T2,

1− y(T1T2 + 1)(T1T3 − 1)(T2T3 + 1) > . (4.9)

Affine Variety

So far we have introduced the algebraic counterpart of Algebraic Geometry. Now,
roughly speaking, the solution space of a given ideal is called a variety. Specifi-
cally, an affine variety of an ideal I = < h1, . . . , ht > is the set of common zeros
of polynomials h1 . . . , ht in affine space, denoted as V (h1, . . . , ht) or V (I).

All this technical jargon turns out to be very helpful. Interpreting the poly-
nomials hi as a basis of I, we can change the basis to, say, < H1, . . . , Hs >. Then
it can be shown that the solution space remains unchanged in an appropriate
change of basis, that is, V (h1, . . . , ht) = V (H1, . . . , Hs). So, we just look for a
basis that is easier to deal with than the original one, in a certain sense3. Such
a basis is called a Groebner basis.

3Our aim here is very practical: we wish to solve the system of polynomial equations.
However, the Groebner basis technique, introduced in the next section, helps to solve even
more general problems which are impossible to handle otherwise, for example, to check if
a polynomial is within the given ideal (ideal membership problem), parametrization of the
solution space, etc. For more details, the reader is referred to Ref. [92, 93].
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4.2 Groebner Basis

4.2 Groebner Basis

We have seen that we can change a basis to the one that is easier to solve, called
a Groebner basis, such that the corresponding variety remains unchanged. In
linear algebra, such a change of basis can be done via Gaussian-Elimination and
the new basis is of the so-called Row-Echelon form. In general, an algorithm to
obtain a Groebner basis performs a specific set of algebraic operations including
factorizing and dividing the polynomials. There, the division requires one to set
a preference among the variables. This is called a monomial ordering.

Formally, a monomial ordering is a relation, say ’≻’, on the set of monomials
xα, α ∈ Zn

≥0, satisfying: (1) the ordering always tells which of two distinct
monomials is greater, (2) the relative order of two monomials does not change
when they are each multiplied by the same monomial and (3.) every strictly
decreasing sequence of monomials eventually terminates [94].

There are different types of ordering, for example, lexicographic, graded lex-
icographic, graded reverse lexicographic, degree lexicographic etc. Some of the
most useful orderings are those which compare monomials by their degrees, that
is, if |α| > |β| then xα ≻ xβ, called graded orderings. The lexicographic orderings
will be primarily used throughout our discussion. To learn more about monomial
ordering, the reader is referred to [92, 93].

By fixing a monomial order, we get a leading term for each polynomial of a
given ideal, denoted as < LT (h1), . . . , LT (ht) >. One can always find a finite
subset G = < H1, . . . , Hs > of an ideal I, except for I =< 0 >, such that every
leading term of f ∈ I can be generated by < LT (H1), . . . , LT (Hs) > (where
f ∈ I means that f is an algebraic combination of h1, . . . , ht). Such a subset G
is called a Groebner basis with respect to the specific monomial order4.

There may be different Groebner bases for different monomial orderings for
the same ideal. However, it can be shown that for any given monomial order,
every nontrivial ideal I ⊂ K[x1, . . . , xm], has a Groebner basis and that any
Groebner basis for an ideal I is a basis of I. It can also be shown that V (I) can
be computed by any basis of I, and so the solutions of I are the same as that of
any of its Groebner basis for any monomial ordering.

There is a well defined procedure to compute a Groebner basis for any given
ideal and monomial ordering, called the Buchberger algorithm. It should be
noted that the Buchberger algorithm reduces to Gaussian elimination in the
case of linear equations, i.e., it is a generalization of the latter. Similarly it
is a generalization of the Euclidean algorithm for the computation of the Great-
est Common Divisors of a univariate polynomial. Recently, faster algorithms
have been developed to obtain a Groebner basis, e.g., F4 [95], F5 [96] and In-

4It should be noted here that a Groebner basis may not be unique for a fixed monomial
ordering. So, we call it a Groebner basis rather than the Groebner basis. However, the so-
called reduced Groebner basis is unique for a given monomial ordering. The reader is referred
to Ref. [92, 93] for more details.
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volution Algorithms [97]. Symbolic computation packages such as Mathematica,
Maple, Reduce, etc., have built-in commands to calculate a Groebner basis for a
given monomial. Singular [98], COCOA [99] and McCauley2 [100] are specialized
packages for finding a Groebner basis and Computational Algebraic Geometry,
available as freeware. MAGMA [101] is also such a non-free specialized package.
Rather than going into the details of the specifics and technicalities of this al-
gorithm, we dive into the practical applications of the Groebner basis technique
relevant to our problem and refer the reader to the above mentioned references
for further details.

4.2.1 SLLG

We now provide a practical example of how the Groebner basis technique can
be used for our systems. For the ideal in Eq. (4.8), a Groebner basis for the
lexicographic ordering c1 ≻ s1 ≻ c2 ≻ s2 ≻ c3 ≻ s3 is

G3 = < −s3 + s33, c3s3,−1 + c23 + s23,−s2 + s2s
2
3, c3s2, s

2
2 − s23, c2s3, c2s2,

−1 + c22 + s23,−s1 + s1s
2
3, c3s1, c2s1, s

2
1 − s23, c1s3,

c1s2, c1s1,−1 + c21 + s23 > . (4.10)

It can be shown that the leading term of every polynomial in I3 is generated
by the ideal generated by the leading terms of G3, with the chosen monomial
ordering. As noted earlier, the solutions of this system are the same as the
original system. Here, the first equation in G3 is a univariate polynomial in
variable s3 and solving it is simple because it can be factorized as s3(s

2
3 − 1) = 0

giving s3 = 0 and s3 = ±1. Using this and back-substitution, we can find all the
solutions as

(c1, c2, c3, s1, s2, s3) = {(0, 0, 0,±1,±1,±1), (±1,±1,±1, 0, 0, 0)}. (4.11)

Thus, V (G3) is the above mentioned set of 16 isolated points in a 6-dimensional
affine space.

From our discussion in Chapter 3, we already know the solutions for this case
in terms of θi’s, i.e.,

(θ1, θ2, θ3) = {all 23 permutations of 0/π}
∪ {all 23 permutations of −π

2
/π
2
}. (4.12)

All of these are correctly reproduced in Eq. (4.11) with si = sin θi and ci = cos θi.
For the periodic boundary conditions case after removing the global gauge

freedom, for the trivial orbit, n = 3 case, the corresponding ideal for the SLLG
is,

Ip3 = < −s1 − c2s1 + c1s2, c2s1 − s2 − c1s2, c2s1 − c1s2 − s2,

−c2s1 − s1 + c1s2, c
2
1 + s21 − 1, c22 + s22 − 1 >, (4.13)
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with θ3 = 0. A Groebner basis for c1 ≻ s1 ≻ c2 ≻ s2 lexicographic ordering is

Gp
3 =< 4s32 − 3s2, 2c2s2 + s2, c

2
2 + s22 − 1, s1 + s2, 2c1s2 + s2, c

2
1 + s22 − 1 > . (4.14)

Here, again, we find that the first polynomial is univariate. Solving it and the
remainder of the system using back-substitution we arrive at the solutions

(θ1, θ2) = {(0, 0), (0, π), (π, 0), (π, π), (−2π

3
,
2π

3
), (

2π

3
,−2π

3
)}. (4.15)

Thus, we reproduce the known results of Chapter 3.
This approach to solving the periodic boundary conditions case becomes much

more interesting as soon as we try to solve the n = 5 trivial orbit because with
lexicographic ordering c1 ≻ s1 ≻ c2 ≻ s2 ≻ c3 ≻ s3 ≻ c4 ≻ s4, the first univariate
polynomial (For a zero-dimensional ideal, with a lexicographic ordering one can
always find a Groebner basis in an upper diagonal form, analogous to the Gaussian
Elimination method, such that at least one polynomial is univariate and others
having increasing number of variables.) in a Groebner basis 64s74 − 128s54 +
80s34−15s4 is of degree 6, effectively, in s4. Now, the Abel-Ruffini theorem yields
that a polynomial of degree higher than 4 is not exactly solvable in terms of
the radicals of its coefficients [102], and we end up solving the first polynomial
numerically. However, numerical procedures to solve univariate polynomials are
well developed and highly accurate results can be obtained. We observe that for
the trivial orbit case with anti-periodic boundary conditions, the degree of the
univariate polynomial in a Groebner basis is 3 for any n, though we have not
proven this rigorously. However, for the periodic boundary conditions case with
trivial orbit, the degree of this univariate polynomial increases with larger n. We
will return to this in the remarks.

4.2.2 MLLG

For the MLLG ideal in Eq. (4.9), a Groebner basis with respect to lexicographic
ordering T1 ≻ T2 ≻ T3 ≻ y is < −1 + y, T3, T2, T1 > and solving it gives y =
1, T1 = T2 = T3 = 0. This reproduces the known result; tan(θ1/2) = tan(θ2/2) =
tan(θ3/2) = 0. We may now, of course, ignore the auxiliary variable y.

An important remark: from Chapter 3, we know that there are always two
solutions of the one-dimensional MLLG equations with anti-periodic boundary
conditions for any orbit in terms of θi’s. But here we find only one solution.
The reason is that the variables of these polynomial equations are tangents of
site angles, Ti = tan(θi

2
) and so whenever we have a solution where some of the

original θi are π, the corresponding Ti are ∞, i.e., a solution at infinity. This
infinity is difficult to handle computationally. A nice way out is to homogenize
the ideal by taking all Ti =

si
ci

and then clearing the denominator, and the same
for the constraint equation. The new equations are now homogeneous, i.e., each
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monomial of an equation has the same degree, in terms of si and ci. By adding the
constraint equations as c2i + s2i − 1 = 0 for each i = 1, . . . , n and then calculating
a Groebner basis for the corresponding ideal, one includes solutions where some
of the ci’s vanish, which correspond to solutions at infinity. Thus, all solutions
are recovered. In short, by homogenizing the equations by the above method,
one can obtain the solutions at infinity as regular solutions. There, one should
keep in mind that the si and ci are now sin θi

2
and cos θi

2
. We should mention here

that the trivial orbit case is quite a special case, where solutions at infinity will
occur, but for other random orbits this problem should not appear.

For the trivial orbit, periodic boundary conditions case, after removing the
global gauge freedom, for n = 3 the corresponding ideal is

Jp
3 =< −T2T

2
1 − 2T1 + T2,−T1T

2
2 − 2T2 + T1, 1− y(T1T2 + 1) > , (4.16)

and a Groebner basis for y ≻ T1 ≻ T2 lexicographic ordering is < T 3
2 − 3T2, T1 +

T2, T
2
2 + 2y − 2 > giving solutions

(θ1, θ2) = {(0, 0), (2π
3
,−2π

3
), (−2π

3
,
2π

3
)}, (4.17)

as expected.
We have obtained a Groebner basis for the one-dimensional systems with

n = 10, comfortably, on a desktop machine for both the SLLG and the MLLG.
However, since we have already solved these cases for any n analytically, we avoid
giving the details here.

4.2.3 Random Orbit Case

For a random orbit, i.e., ϕi ̸= 0, the corresponding equations become more com-
plicated. Moreover, due to factorization and division of the polynomials involved
in the Buchberger algorithm, the coefficients in a Groebner basis blow up. For
this and the related technical reasons, the Groebner basis technique is mainly
used for rational coefficients, i.e., for Q[x1, . . . , xm] and a random orbit case is
very difficult to handle.

A natural question to ask is if it is possible to get a Groebner basis for a given
monomial ordering in terms of the symbolic form of the coefficients in ϕi, valid
for all its special cases, called specializations, as well. In Ref. [103] the first step
was laid down to get such a Groebner basis, called a Comprehensive Groebner
Basis (CGB). Since then there has been much progress in this area although it
is computationally expensive and much more involved (see, e.g., Ref. [104, 105]).
Hence, so far it is restricted to smaller systems only5. In the next chapter, we
will show that this difficulty in dealing with a parametric system using symbolic

5I thank Antonio Montes and Akira Suzuki for their efforts in computing CGB for the
one-dimensional systems.
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techniques can be highly efficiently overcome with the help of the Polynomial
Homotopy Continuation method.

4.2.4 Higher Dimensional Lattices

Interpreting the gauge fixing equations in terms of Algebraic Geometry allowed us
to deal with the actual non-linearity of the equations, rather than treating them
as linear equations as shown in Chapter 3. Specifically, in this interpretation
the corresponding method does not make any distinction between the equations
arising from a one-dimensional lattice or those arising from a higher dimensional
lattice. In theory, as long as one can obtain a Groebner basis, the equations
can be exactly solved. However, obtaining a Groebner basis for a system of
gauge-fixing equations for bigger lattices is very difficult due to an algorithmic
complexity, known as Exponential Space complexity (we will explain this explic-
itly in the Remarks at the end of this chapter). In particular, on a regular single
desktop machine with 2 GB RAM, we could not obtain a Groebner basis for
the SLLG with trivial orbit (i.e., the classical XY model) and with anti-periodic
boundary conditions for a 3 × 3 lattice, using Singular3.2. The corresponding
system is made of 18 equations, each of degree 2, in 18 variables. However, a
bigger machine with larger RAM should be able to obtain a Groebner basis for
these systems. Recently6, V. Gerdt and Daniel Robertz have kindly computed a
Groebner Basis for us for this system over F2 = {0, 1} using a Linux machine with
AMD Opteron (TM) processor 285 2600 MHz, 4 cores, 16 GB memory and with
Magma (V2.14.14) in 31994.250s machine time with degree reverse lexicographic
ordering. This is a very important step towards solving the system. However,
since the computation is over F2 not all the solutions over C18 can be obtained.

For the MLLG with anti-periodic boundary conditions on a 3× 3 lattice with
the trivial orbit, the system consists of 10 equations in 10 variables including the
auxiliary one. This system has a smaller number of equations but each equation
has a higher degree compared to the aforementioned SLLG case. A Groebner
basis for this system can also not be obtained by our machine.

Although so far, this Algebraic Geometry method has not produced any new
results in our problem in the sense of solving the corresponding equations for
higher dimensional lattices, the Algebraic Geometry interpretation will prove to
be immensely helpful and we will be actually able to solve some of these systems
in the next chapter.

4.3 More About The Solution Space

Here, we discuss some features of the solution spaces, i.e., the variety of a given
ideal. With the help of the terminology introduced below, we then give an Alge-

6I am thankful to V. Gerdt and Daniel Robertz for their kind help.
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braic Geometry interpretation of Gribov copies and related issues that will prove
to be very helpful in the next chapter and in the future work.

Dimension of a Variety

The dimension of a variety is an important concept in Algebraic Geometry. In
linear algebra, we know that for n linearly independent equations in n variables
there exist isolated solutions. In other words, it is a zero-dimensional variety.
A system of n − 1 linearly independent equations in n variables has one free
parameter. The solution space is then a line in n-dimensional space, so it is a
one-dimensional variety, and so on. This linear independence can be checked by
calculating the Jacobian matrix of these equations: if the rank of the Jacobian
matrix is n, then all equations are linearly independent, and if it is r < n, then
there are n − r linearly dependent equations and the solution space is (n − r)-
dimensional.

When defining the dimension of a variety of a system of non-linear multivariate
polynomial equations, this intuition can be extended, except that now the linear
independence of the linear equations is replaced by an algebraic independence of
the polynomial equations. For an arbitrary variety V (h1, . . . , hr) ⊂ Cn, let the
rank of its Jacobian J(h1, . . . , hr) be r, then dimension of V (h1, . . . , hr) is n− r.
For r = n, the dimension is 0. It can also be said that the dimension of a variety
is the largest of the dimensions of its irreducible components. Moreover, it can
be shown that a variety consists of finitely many points, or isolated solutions, if
and only if its dimension is 0.

Thus, the variety corresponding to the Landau gauge fixing equations (for
both SLLG and MLLG) in terms of polynomial equations is zero-dimensional for
both the anti-periodic and periodic (after removing the global gauge freedom)
boundary conditions.

Multiplicity Of Solutions

The dimension of a variety at a point p, denoted as dim Vp, is also an important
concept for our purposes. If the rank of its Jacobian Jp(h1, . . . , hr) at a point
p ∈ V (h1, . . . , hr) is k, then the dimension of V (h1, . . . , hr) at p, denoted as dim
Vp, is n− (r + k) with n being the number of variables.

Now, for a univariate polynomial f(x) ∈ C[x], the multiplicity of a solution
x∗ ∈ V (f) is the integer µ > 0 such that f(x) = (x− x∗)µg(x) for a polynomial
g(x) with g(x∗) ̸= 0. Here, x∗ is called a multiple point. Similarly, for the
multivariate case, for a zero-dimensional variety, if at some solution p the rank of
Jp(h1, . . . , hr) is k, k > 0, then p is a singular isolated solution and thus a multiple
point. This multiplicity of solutions of polynomial equations corresponds to the
concept of degenerate critical points in Morse theory.
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For a positive-dimensional variety, dim Vp is the maximum dimension of an
irreducible component of V containing p. dim Vp = 0 means that p is a non-
singular point of the variety and lies on a unique irreducible component of the
variety.

One can similarly define the dimension of the tangent space of a variety at
a point p, denoted as dim TpV . Then a point p in the affine variety V is non-
singular provided dim TpV = dim pV , otherwise p is a singular point.

Radical of An Ideal

In general, by the radical of an ideal, we mean the ideal generated by radicals
of the polynomials of the original ideal, i.e., all solutions with multiplicity one.
Specifically, the set of all f ∈ K[x1, . . . , xm] for which fk ∈ I for any integer
k ≥ 1, then such an ideal is called a radical ideal, denoted as

√
I, and

√
I is also

always an ideal. E.g., the radical of the ideal I =< (x+1)2 > is
√
I =< x+1 >.

A little thought will reveal that we always have I ⊂
√
I. Moreover,

√
I has no

multiple solutions, i.e., have all solutions with multiplicity 1.

Number of Zeroes of An Ideal

For large systems, even after obtaining a Groebner basis it may be cumbersome
to solve the corresponding equations. In many cases, it may be sufficient to know
the number of solutions and not the solutions themselves.

Firstly, polynomials h, g ∈ K[x1, . . . , xm] are called congruent modulo I for
some ideal I, if h − g ∈ I. It can be shown that a congruent modulo is an
equivalence class relation on K[x1, . . . , xm]. So, all polynomials hi following hi −
g ∈ I are equivalent in this sense and are written as [g]. Now a set of all such
equivalence classes is called a quotient of K[x1, . . . , xm] modulo I, denoted as
K[x1, . . . , xm]/I. These equivalence classes can be obtained using Groebner basis
techniques. Now, if V (I) is a zero-dimensional variety and I is defined over an
algebraically closed field K, e.g., C, then the number of zeros of I in Kn is equal
to dim(K[x1, . . . , xm]/I), counted with multiplicity.

This is a very interesting result, though we shall refrain from any further
discussion on how this quotient ring is related to the number of solutions of the
original equations. The interested reader is encouraged to refer to [92] for details.

Using Singular3.2 for the ideal in Eq. (4.8), dim (C[s1, s2, s3, c1, c2, c3]/I) is
found to be 16, and for the ideal in Eq. (4.9), dim (C[T1, T2, T3, y]/I) is found to
be 1 as expected.

4.3.1 Gribov copies and Algebraic Geometry

Now, we are ready to pose the Landau gauge fixing problem, for compact U(1),
in terms of the terminology we have introduced:
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1. Firstly, dim C[{si, ci}]/IϕSLLG is the total number of real and complex solu-
tions7, where IϕSLLG is the ideal generated by the SLLG conditions for some
random orbit {ϕ} and variables si and ci for all lattice sites i. Moreover,
dim RR[{si, ci}]/IϕSLLG, i.e., the number of real solutions of IϕSLLG with all
its coefficients in R, is the number of Gribov copies for the SLLG. By cal-
culating this quantity, we count the corresponding NGC for the orbit {ϕ}.

2. dim C[{si, ci}]/IϕSLLG and dim RR[{si, ci}]/IϕSLLG both depend on the spe-
cific values of {ϕ} as we shall explicitly see in Chapter 5. This corresponds
to the orbit-dependence of NGC in the SLLG.

3. The set of all Gribov horizons is the set of real multiple solutions, called
the real singular locus of IϕSLLG.

4. For the SLLG for higher dimensional lattices at Gribov horizons dim TpV >
dim pV . That is, the tangent space has at least one flat direction at the
Gribov horizon.

5.
√
IϕSLLG is the corresponding ideal with each Gribov copy having multiplic-

ity one, i.e., the Gribov horizons of the SLLG are removed.

6. For the MLLG, since the Faddeev-Popov operator is positive (semi-)definite,
the ideal IϕMLLG with variables Ti and y and all the coefficients defined over
R is a radical ideal. However, the concept of a real radical ideal is more
involved and discussed in the remarks at the end of this chapter.

7. The topological field theory interpretation asserts that for the MLLG, ZGF

counts the number of solutions, since the Faddeev-Popov operator is always
positive definite. We now establish one more relation here:

ZGF = dim RR[{Ti, y}]/IϕMLLG. (4.18)

This is remarkable because it establishes a relationship between the lattice
topological field theory and Algebraic Geometry.

8. The orbit-independence would then mean that dim RR[{Ti, y}]/IϕMLLG is
constant with respect to {ϕ} for the MLLG case.

4.4 Remarks

1. For the SLLG in one dimension, we noted that the maximum degree of a
Groebner basis is 3 for the chosen monomial order, and this cubic univariate

7For the one-dimensional lattice all the solutions are real but this is not the case for the
higher dimensional lattice as will be shown in Chapter 5.
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equation is exactly solvable in terms of its radicals. However, in general it
is quite possible that the maximum degree of the resulting univariate poly-
nomial of a Groebner basis is 5 or more. Now, the Abel-Ruffini theorem
says that the solutions in terms of radicals of the univariate polynomial
equation of degree more than 4 can not be obtained. A natural question
now is if there is any restriction on the maximum degree of the univariate
polynomial for some monomial order that can be known from the original
ideal. If such a restriction implies that the maximum degree of the uni-
variate polynomial will be less than 5, then it will indicate that the whole
problem can be exactly solved at least in theory. There have been many
efforts to find such a precise restriction, but so far there are only a few up-
per bounds [106, 107, 108, 109] depending on the number of variables and
the degrees of each polynomial in the original ideal. These upper bounds
in our one-dimensional systems have turned out to be much higher than
the obtained ones. However, we recognize that further work is required to
refine these bounds for our systems.

2. The main problem in this Groebner basis scenario is that the Buchberger
algorithm and its variants are known to have exponential space complexity.
That is, the RAM required by the machine gets exponentially higher for
linear increase in number of variables or equations. For this reason, even
the simplest non-trivial cases of the two-dimensional SLLG or MLLG for
the trivial orbit case are not yet tractable. With a more powerful machine,
it is anticipated that the Groebner basis method is a very promising way to
exactly solve these cases as well as bigger systems for the two-dimensional
lattice. Moreover, the Burchberger algorithm is highly sequential. So, par-
allelization of the algorithm is highly non-trivial task.

3. Real Radical Ideal8: The concept of a real radical ideal is very subtle. If
we want to check if an ideal I is a real radical, we need to check if for
every sum of squares of polynomials pi ∈ R[x1, . . . , xm],

∑
p2i ∈ I ⇒ pi ∈

I [110]. There is an algorithmic way of checking this by verifying the
positive semi-definiteness of a so-called quasi Hankel matrix. Though an
efficient implementation of this algorithm still poses challenges, a promising
attempt is underway [111, 112].

4. Another interesting method for dealing with non-linear equations including
those with inequalities, is called Quantifier Elimination (QE). The so-called
Cylindrical Algebraic Decomposition (CAD) method, which is a special case
of the QE, specializes to polynomial equations including inequalities with
variables defined over R. For example, for the equation x2 + y2 − 1 = 0,
a CAD is −1 ≤ x ≤ 1 and y =

√
1− x2 or −

√
1− x2. The CAD ap-

8I am thankful to P. Rosaltski to clarify this important point to me.

58
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pears to be the most appropriate method for our purpose. However, the
complexity of the related algorithms severely affects its applicability in big-
ger systems [113]. Recently, a very sophisticated technique called the dis-
criminant variety, used to reduce the computation in the CAD method, is
developed which can give generic real solutions of a system of polynomial
equations for generic values of parameters [114, 115, 116]. A parametric
CAD for our one-dimensional systems for n = 3 for both the SLLG and
the MLLG with periodic and anti-periodic boundary conditions have been
kindly computed by Guillaume Moroz and Hirokazu Anai for us9. They
have also shown that the computation time is efficiently reduced with this
new method. This is a remarkable step towards obtaining all the real solu-
tions of a two-dimensional system. In particular, efforts to solve the MLLG
with anti-periodic boundary conditions on the 3 × 3 lattice and to ver-
ify if the number of solutions (NGC) depends on the values of parameters
(orbit-dependence) are underway.

5. We have turned several other systems in lattice field theory and condensed
matter theory into polynomial ones, several of which we have solved us-
ing the Groebner basis technique in Appendix C. This should serve in two
ways: for the particle/condensed matter theorists in general, this provides
a database of examples for transforming the equations in terms of poly-
nomials, while for the computational/numerical Algebraic Geometrists it
provides a rich test-suite for their respective algorithmic implementations.

6. It should be mentioned in passing that in the Dirac constraint formalism
and light cone Yang-Mills Mechanics [117, 118] and in finding the global
minimum of the Minimal Supersymmetric Standard Model Higgs poten-
tial [119, 120, 121], the Groebner basis techniques have been used suc-
cessfully. Both of them are interesting applications of the Groebner basis
techniques in general.

4.5 Summary

In summary:

1. We noticed that the nonlinearity of the gauge-fixing conditions, in both the
SLLG and the MLLG cases, for higher dimensional lattices is polynomial-
like. By using additional constraint equations, the combined system of

9I am grateful to Hirokazu Anai and Guillaume Moroz for kindly solving the systems for me
and their ongoing efforts for solving the corresponding systems for higher dimensional lattices.
It should be noted that this remarkable success has been reported just before submitting this
thesis.
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equations can be treated as a system of polynomial equations with all vari-
ables defined over C. Though we are interested in only real solutions of these
polynomial systems, we rather used Complex Algebraic Geometry concepts
over Real Algebraic Geometry due to the stronger results available in the
former.

2. To solve the systems for both the SLLG and the MLLG exactly, we used
an elegant algorithm, called the Buchberger algorithm, implemented on
various computer algebra packages. Though the algorithm works well for
the one-dimensional lattice, for the 3 × 3 lattice a more powerful machine
is required. Recently, a Groebner basis for the SLLG for anti-periodic
boundary conditions for the 3 × 3 lattice is computed by V. Gerdt and
D. Robertz with a more powerful machine, with a few constraints on the
system. We recognize that this is an important first step towards exactly
solving this system. For the corresponding MLLG ideal, we continue our
efforts with implementation on powerful machines, though we acknowledge
that for bigger lattices and in higher dimensions, even the currently most
powerful machines may not be able to solve the corresponding ideals due
to an algorithmic complexity issue.

3. However, we have laid down all the stepping stones to solve the two-
dimensional gauge-fixing equations so that we can subsequently use a very
recent method called Polynomial Homotopy Continuation which can give all
solutions of a polynomial system numerically. This method does not suffer
from the technical difficulties of the Buchberger algorithm or its sophis-
ticated variants, and in principle this method can solve the corresponding
ideals for both the SLLG and the MLLG for those which may be intractable
for the Groebner basis techniques. Specifically, we solve the ideal mentioned
in the previous point in the next chapter.
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Chapter 5

Polynomial Homotopy
Continuation Method

In the previous chapter we saw that the Algebraic Geometry interpretation of-
fers deep insight into the lattice Landau gauge fixing, and the Groebner basis
technique can be used to exactly solve the corresponding equations. For higher
dimensional lattices, however, it is difficult to compute a Groebner basis for
both the SLLG and the MLLG. Still, it turns out that interpreting the original
trigonometric equations as polynomial equations is of great help. In particular,
there exists a numerical method, called the Polynomial Homotopy Continuation
method1, that gives all solutions of a system of multivariable polynomial equa-
tions up to a numerical accuracy. The word all makes the difference here between
this and other numerical methods. We first introduce this method in general
terms starting from the univariate case, and then apply it to our problems, in
this chapter.

5.1 Polynomial Homotopy Continuation

For a single variable equation, f(x) =
∑k

i=0 aix
i, with coefficients ai and the

variable x both defined over C, the number of solutions is exactly k if ak ̸= 0,
counting multiplicities. This powerful result comes from the Fundamental Theo-
rem of Algebra. To get all roots of such single variable polynomials, there exist
many numerical methods such as the companion matrix trick for low degree poly-
nomials, and divide-and-conquer techniques for high degree polynomials. Here
we present another method called Numerical Polynomial Homotopy Continuation
(NPHC), which can then be extended to the multivariate case in a straightfor-
ward manner. We follow Refs. [94, 122] throughout this chapter unless specified
otherwise.

1I am very grateful to Jan Verschelde, the developer of PHCpack, for clarifying many of the
aspects of this method and related issues to me, with a great patience.
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5.1 Polynomial Homotopy Continuation

5.1.1 Homotopy Continuation

The basic strategy behind homotopy continuation is: first put the equation or
the system of equations to be solved into a family of problems depending on
parameters, then solve the problem for some appropriate point in the parameter
space where usually the corresponding system is easy to solve, and finally track
the solutions of the system at this appropriate point in parameter space to the
original problem. This approach can be applied to many types of equations (e.g.,
non-algebraic equations) which exhibit a continuous dependence of the solutions
on the parameters, but there exist many difficulties in making this method a
primary candidate method to solve any given equation or set of equations. How-
ever, for reasons that will be clear below, this method works exceptionally well
for polynomial equations.

To clarify how the method works, we first take a univariate polynomial2, say
z2 − 5 = 0, pretending that we do not know its solutions, i.e., z = ±

√
5. We first

define a family of problems as

H(z, t) = (1− t)(z2 − 1) + t(z2 − 5) = z2 − (1 + 4t) = 0 (5.1)

where t ∈ [0, 1] is a parameter. For t = 0, we have z2 − 1 = 0 and at t = 1 we
recover our original problem. The problem of getting all solutions of the original
problem now reduces to tracking solutions of H(z, t) = 0 from t = 0 where we
know the solutions, i.e., z = ±1, to t = 1. The choice of the piece z2 − 1 in
Eq. (5.1), called the start system, should be clear now: this system has the same
number of solutions as the original problem and is easy to solve. For multivariable
systems, a clever choice of a start system is essential in reducing the computation,
and the discussion about this issue will follow soon. Here, we briefly mention the
numerical methods used in path-tracking from t = 0 to t = 1. One of the ways
to track the paths is to solve the differential equation that is satisfied along all
solution paths, say z∗i (t) for the ith solution path,

dH(z∗i (t), t)

dt
=

∂H(z∗i (t), t)

∂z

dz∗i (t)

dt
+

∂H(z∗i (t), t)

∂t
= 0. (5.2)

This equation is called the Davidenko differential equation. Inserting (5.1) in this
equation, we have

dz∗i (t)

dt
= − 2

z∗i (t)
. (5.3)

We can solve this initial value problem numerically (again, pretending that an ex-
act solution is not known) with the initial conditions as z∗1(0) = 1 and z∗2(0) = −1.
The other approach is to use Euler’s predictor and Newton’s corrector methods.

2We have taken this example and the one in the next section from Ref. [94] to make this
discussion self-consistent. The reader is encouraged to refer to Ref. [94] for more details on the
NPHC method.
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5.1 Polynomial Homotopy Continuation

This approach works well too. We do not intend to discuss the actual path tracker
algorithm used in practice, but it is important to mention that in the path tracker
algorithms used in practice, almost all apparent difficulties have been resolved,
such as tracking singular solutions, multiple roots, solutions at infinity, etc. For
the sake of completeness, we should also mention here that in the actual path
tracker algorithms the homotopy is randomly complexified to avoid singularities.
This is called the gamma trick, i.e., taking

H(z, t) = γ(1− t)(z2 − 1) + t(z2 − 5) = 0, (5.4)

where γ = eiθ with θ ∈ R chosen randomly.
There are several sophisticated numerical packages well-equipped with path

trackers such as PHCpack [123], PHoM [124], HOMPACK [125] and HOM4PS2
[126, 127]. They all are available as freewares from the respective research groups.

In the above example, the PHCpack with its default settings gives the solu-
tions

z = (−2.23606797749979, 0.00000000000000)

z = (2.23606797749979, 0.00000000000000), (5.5)

where the first component is the real part and the second component is the
imaginary part in each solution, z. Thus, it gives the expected two solutions of
the system with a very high numerical precision.

5.1.2 Multivariable Polynomial Homotopy Continuation

We can generalize the NPHC method to a system of multivariable polynomial
equations, say P (x) = 0, where P (x) = (p1(x), . . . , pm(x))

T and x = (x1, . . . , xm)
T ,

that is known to have isolated solutions (i.e., a 0-dimensional variety). To do so,
we first need to have some knowledge about the expected number of solutions of
the system. There is a classical result, called the Classical Bezout Theorem, that
asserts that for a system of m polynomial equations in m variables, for generic
values of coefficients, the maximum number of solutions in Cm is

∏m
i=1 di, where

di is the degree of the ith polynomial. This bound is exact for generic values
(i.e., roughly speaking, non-zero random values) of coefficients. The genericity is
well-defined and the interested reader is referred to Ref. [94] for details.

Based on this bound on the number of complex solutions, we can construct
a homotopy, or a set of problems, similar to the aforementioned one-dimensional
case, as

H(x, t) = γ(1− t)Q(x) + t P (x), (5.6)

where Q(x) is a system of polynomial equations, Q(x) = (q1(x), . . . , qm(x))
T with

the following properties:
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5.1 Polynomial Homotopy Continuation

1. The solutions of Q(x) = H(x, 0) = 0 are known or can be easily obtained.
Q(x) is called the start system and the solutions are called the start solu-
tions.

2. The number of solutions of Q(x) = H(x, 0) = 0 is equal to the Classical
Bezout bound for P (x) = 0.

3. The solution set of H(x, t) = 0 for 0 ≤ t ≤ 1 consists of a finite number of
smooth paths, called homotopy paths, each parameterized by t ∈ [0, 1).

4. Every isolated solution of H(x, 1) = P (x) = 0 can be reached by some path
originating at a solution of H(x, 0) = Q(x) = 0.

We can then track all the paths corresponding to each solution of Q(x) = 0 from
t = 0 to t = 1 and reach P (x) = 0 = H(x, 1). By implementing an efficient path
tracker algorithm, we can get all isolated solutions for a system of multivariable
polynomials system just as in the univariate case.
The homotopy constructed using the Classical Bezout bound is called the Total
Degree Homotopy. The start system Q(x) = 0 can be taken as, e.g.,

Q(x) =


xd1
1 − 1

xd2
2 − 1
.
.
.

xdm
m − 1

 = 0, (5.7)

where di is the degree of the ith polynomial of the original system P (x) = 0.
Eq. (5.7) is easy to solve and guarantees that the total number of start solu-
tions is

∏m
i=1 di, all of which are non-singular. The Total Degree Homotopy is a

very effective and popular homotopy whose variants are used in the actual path
trackers.

The Total Degree Homotopy works fine for all cases, with negligible efforts
to solve the start system itself. The drawback of this homotopy is that it does
not take the sparsity of the system into account: the systems found in practice
do not have all the coefficients generic but many of them may be zero. Such
systems are called sparse: the total number of solutions for a sparse system can
be much lower than the Bezout bound, and so many of the solution-paths do not
end up being solutions of the original system. That is, the computation done for
many of the paths is wasted. A better strategy to solve such sparse systems is
to get a tighter bound for the number of solutions than the Bezout bound, and
construct a homotopy based on it. There have been many improved homotopies
developed other than the Total Degree Homotopy, such as Multihomogeneous
Homotopy, Linear Product Homotopy, Monomial Product Homotopy, etc. Here,
we will discuss the most important and efficient one, known as the Polyhedral
Homotopy.
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5.1 Polynomial Homotopy Continuation

5.1.3 Polyhedral Homotopy

As mentioned above, polynomial equations in polynomial systems arising in real-
life problems may contain zero coefficients. In general, the Bezout bound becomes
an upper bound on the number of solutions for such cases. What we are looking
for is a tighter bound that takes the sparsity of the system into account. There has
been a huge amount of work done on related issues using Resultants and Algebraic
Geometry, but the most important result for us is Bernstein’s theorem. In order
to state it clearly, we need to introduce three notions: Laurent Polynomials,
Newton Polytopes and Mixed Volume.

A Laurent polynomial allows negative exponents for the monomials, unlike
an ordinary polynomial. Due to that, none of the variables is allowed to be zero.
So, multiplication of any Laurent polynomial by a monomial does not change the
root count in (C∗)m = Cm/{0}. Formally, let Si ⊂ Zm be a set of vectors whose
elements are the exponents of the monomials of the ith polynomial. Si is called
the support of the ith polynomial. Then a polynomial (say, ith polynomial) of
the form fi(x) =

∑
α∈Si

ci,αx
α is called a Laurent polynomial. Here, ci,α ∈ C are

the coefficients of the monomial xα with x ∈ (C∗)m.
Now, a set of points is called a convex set if for every pair of points within the

set (or more formally, the mathematical object made by the set), every point on
the straight line segment that joins them is also within the set. The convex hull
of a set X is the minimal convex set containing X. We note that the convex hull
of support Si of a polynomial, say Qi = conv(Si), is called the Newton polytope
of fi(x).

For example, consider a two-variable system,

f1(x, y) = 1 + ax+ bx2y2 = 0,

f2(x, y) = 1 + cx+ dy + exy2 = 0. (5.8)

The Bezout bound of this system is 4 × 3 = 12, i.e., there can be a maximum
of 12 solutions for this system in C2. Now, the supports of these equations are
S1 = {(0, 0), (1, 0), (2, 2)} and S2 = {(0, 0), (1, 0), (0, 1), (1, 2)} respectively. The
Newton polytopes for f1(x, y) is Q1 = conv(S1) = {(0, 0), (1, 0), (2, 2)} and for
f2(x, y) it is Q2 = conv(S2) = {(0, 0), (1, 0), (0, 1), (1, 2)}.

A Minkowski sum of any two Newton polytopes can be defined as

Q1 +Q2 = {q1 + q2 : q1 ∈ Q1, q2 ∈ Q2}. (5.9)

The Minkowski sum is equivalent to multiplying the corresponding polynomials
algebraically.

Also, as is well-known, an m-dimensional volume of a simplex (i.e., roughly
speaking, an m-dimensional analogue of a triangle) having vertices v0, v1, . . . , vm,
is

Volm(conv(v0, . . . , vm)) =
1

m!
| det[v1 − v0, . . . , vm − v0]|. (5.10)
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5.1 Polynomial Homotopy Continuation

From there on, one can show that the m-dimensional volume Volm(λ1Q1 + · · ·+
λmQm), where 0 ≥ λi ∈ R, is a homogeneous polynomial of degree m in variables
λi. The mixed volume of convex polytopes Q1, . . . , Qm is defined as

M(Q1, . . . , Qm) =
m∑
i=1

(−1)m−i Volm(
∑
j∈Ωm

i

Qj), (5.11)

where the inner sum is a Minkowski sum of polytopes and Ωm
i are the combina-

tions of m-objects (i.e., m-dimensional geometrical objects made of m-simplices)
taken i at a time. Moreover, it can be shown that the mixed volume is always an
integer for a system of Laurent polynomials. For the case of two polynomials in
two variables,

M(Q1, Q2) = Vol2(Q1 +Q2)− Vol2(Q1)− Vol2(Q2). (5.12)

For the system in Eq. (5.8),

Vol2(Q1) = 1,

Vol2(Q2) = area of ∥-gram. made by {(0, 0), (1, 0), (0, 1), (1, 1)}
+ area of triangle made by {(1, 1), (1, 0), (1, 2)}

= 1 +
1

2
=

3

2
,

Vol2(Q1 +Q2) =
13

2
. (5.13)

Thus, the mixed volume for this system is 4. Why is it important? The Bernstein
theorem or Bernstein-Khovanskii-Kushnirenko theorem [128, 129, 130] says that
for generic coefficients, the number of solutions in (C∗)m of a Laurent system is
exactly equal to the mixed volume of this system counting with multiplicity for
generic coefficients and is an upper bound for it in general. This is also called
the BKK root count.

This result is very interesting. One can get a very tight upper bound, on the
number of solutions in (C∗)m of a polynomial system by knowing the exponent
vectors of monomials. This result originates from toric varieties and related issues
in Algebraic Geometry. We do not intend to go into further details, rather we
discuss its application to the problems at hand.

For the system in Eq. (5.8) there can be a maximum of 4 solutions in (C∗)m.
In contrast, the Bezout bound dictates a bound to be 12 in Cm.

What about a BKK-like count in Cm? An extension of the mixed volume,
is the stable mixed volume which is the corresponding root count3 in Cm. This

3Because of the highly technical nature of the stable mixed volume, the bound in Cm which
has been commonly used and implemented in the community is the bound given in Ref. [131].
This bound is quite easy to state: Add a constant term to polynomials in the system which do
not have constant term, and the mixed volume of the resulting augmented system serves as a
bound in Cm for the original system. The stable mixed volume is a little bit more general then
this augmented mixed volume. I would like to thank TY Li to clarify this point.
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ensures that we have all necessary solutions in Cm [132, 131, 133, 134]. A dis-
cussion on the stable mixed volume is beyond the scope of this thesis, although
its calculation is similar to that of the mixed volume with some formal complica-
tions. However, it should be noted that a highly sophisticated implementation of
an algorithm to calculate the mixed volume of a given system is MixedVol [126]
which is transplanted in HOM4PS2 and PHCpack.

Now, after calculating the stable mixed volume of the original system P (x) =
0, Polyhedral homotopy requires a start system, Q(x) = 0, such that Q(x) has the
same stable mixed volume, where of course solutions ofQ(x) = 0 should be known
or can be obtained easily. Such a homotopy is called the Polyhedral Homotopy.
The biggest advantage of this homotopy is that the number of paths to be tracked
is much less than that for the Total Degree Homotopy. The apparent drawback
here is that to solve the start system itself, the Polyhedral Homotopy requires
some computational effort. However, for large systems, the difference between the
number of paths to be tracked for both homotopies suppresses this drawback of
the Polyhedral Homotopy by saving a huge amount of computational effort. We
first performed the checks over the one-dimensional lattice for the SLLG and the
MLLG cases and reproduced the known results. However, rather than discussing
these cases, we go directly to the cases that we are interested in, i.e., the two-
dimensional lattice. We note that we were able to reproduce all the known results
for the one-dimensional cases for both the SLLG and the MLLG, with a very high
numerical precision.

5.2 Results

Here, we present our results obtained so far.

5.2.1 SLLG With Anti-periodic Boundary Conditions

We are now in a position to explore the simplest non-trivial case in higher dimen-
sional lattices, i.e., the SLLG on a 3 × 3 lattice with the trivial orbit and anti-
periodic boundary conditions. We can solve this case using PHCpack, Bertini or
HOM4PS2. The summary of results is given in the table (5.1) using HOM4PS2.

CBB SMV Reg. Real
262144 148480 10738 2968

Table 5.1: Summary of the 3 × 3 lattice, SLLG with anti-periodic boundary
conditions, trivial orbit.

Here, CBB denotes the Classical Bezout Bound, SMV denotes the Stable Mixed
Volume, Reg. denotes the number of all real and complex regular solutions and
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Real denotes the number of real solutions. The HOM4PS2 took around 65 min-
utes to run this system on a linux single-processor desktop machine4.

It is important at this stage to mention a few specifics about these solutions:

1. A solution here means that it satisfies each of the 18 equations with toler-
ances 1 × 10−10. All these solutions come with real and imaginary parts,
i.e., as a complex number. A solution is a real solution if the imaginary
part of each of 18 variables (i.e., all si and ci) is less than or equal to the
tolerance 1×10−6. We also verified that the original equations are satisfied
with tolerance 1×10−10 after si and ci are transformed back to θi. It is im-
portant to note that all these solutions can be further refined, if required,
with an arbitrary precision. This is a remarkable success of the method
because then these solutions are close to the exact solutions.

2. The sum of the Faddeev-Popov determinants at all 2968 real solutions is ∼
10−8, which is numerically zero. Similarly, in terms of θi variables, the sum
of the Faddeev-Popov determinants is ∼ 10−11, again giving the expected
Neuberger zero.

3. There are exactly 1152 real solutions which have zero Faddeev-Popov de-
terminant (equivalently the Jacobian determinant of the system) with tol-
erance 1× 10−8. These solutions constitute the set of singular locus or the
Gribov horizons5. They can be further classified in terms of the number
of zero eigenvalues of the Faddeev-Popov operator at each of the solutions.
This amounts to classifying the singular solutions of the polynomial sys-
tem in terms of their multiplicities. To study the multiplicity structure,
we need to use the so-called deflation technique6 for isolated singular solu-
tions [135, 136].

4. The remaining 1816 real solutions have nonsingular Faddeev-Popov deter-
minant. They constitute the set of all Gribov regions (excluding Gribov
horizons). We can classify all of them by the number of negative eigenval-
ues (Table 5.2), which shows the expected two-fold symmetry giving rise to
the Neuberger zero. Thus, we have obtained the Morse indices, Ki. Figures
(5.1) give a pictorial representation of the results..

4Note that we do not have any intention of comparing the efficiency of these available
packages.

5It is important to note that since there are degenerate solutions for the trivial orbit case, the
corresponding SLLG functional/Classical XY model is a Morse-Bott function. For a random
orbit, one does not encounter these Gribov horizons in general and so there, the function is a
usual Morse function.

6The work in progress in collaboration with the HOM4PS2 group.
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i 0 1 2 3 4 5 6 7 8 9
Ki 2 18 216 342 330 330 342 216 18 2

Table 5.2: Summary of the number of solutions with i negative eigenvalues, for
the SLLG, 3× 3 lattice, trivial orbit, anti-periodic boundary conditions.

500 1000 1500 2000 2500 3000

-1·106

-750000

-500000

-250000

250000

500000

750000

1·106

Figure 5.1: The horizontal axis denotes the solution number (arbitrarily given)
and the vertical axis has the polynomial version (the determinants for the trigono-
metric version differers by a constant factor only in any case) of the Faddeev-
Popov determinant, for the 3× 3 lattice for the SLLG, trivial orbit, anti-periodic
boundary conditions case. As with all other plots hereafter, this plot does not
include the two global maxima and two global minima, since these four points
have considerably higher magnitude, an obstacle to viewing the rest of the sym-
metry clearly. However, the Faddeev-Popov determinants at those solutions as
well cancel each other exactly.

Special Random Orbit Case

In our preliminary study, we take a special random orbit case, where the ϕi,µ

are constrained to take values from {−π
2
, 0, π

2
, π}. This ensures that the sine

and cosine of these angles, i.e., the coefficients of the system, are integers and
so contribute little to the numerical errors. The summary of this run is given in
Table (5.3).

CBB S.M.V. Reg. Real
262144 148480 17072 2688

Table 5.3: Summary of the solutions for the SLLG, 3× 3 lattice, special random
orbit, anti-periodic boundary conditions.

1. The sum of the Faddeev-Popov determinants at all the real solutions in

69



5.2 Results
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Figure 5.2: Special random orbit, 3 × 3 lattice, SLLG, anti-periodic boundary
conditions, with the polynomial version of the Faddeev-Popov determinant. The
randomness is now apparent here compared to the trivial orbit case.

terms of polynomial variables is ∼ 10−8 which is numerically zero, i.e., the
Neuberger zero. Similarly, in terms of θi variables, the sum of the Faddeev-
Popov determinants is ∼ 10−12, yielding the expected Neuberger zero. It
should be noted that in this case, there is no solution having zero eigenvalue
of the Faddeev-Popov operator, i.e., no Gribov horizon.

2. The summary of corresponding Morse indices is given in Table 5.4. (See
also Fig. (5.2)).

i 0 1 2 3 4 5 6 7 8 9
Ki 4 46 176 448 670 670 448 176 46 4

Table 5.4: Summary of the number of solutions with i negative eigenvalues for
the SLLG, 3×3 lattice, anti-periodic boundary conditions, special random orbit.

Random Orbit Case

Finally, we solve the equations for a random orbit case, i.e., all links ϕi,µ take
some random values from (−π, π] and the results are summarized in Table (5.5).
The sum of determinants is ∼ 10−8 for the polynomial version of the Faddeev-
Popov operator and ∼ 10−11 for the trigonometric version. The summary of the
eigenvalues is given in Table (5.6).
Again the two-fold symmetry is apparent here. Moreover, there is no solution with
zero eigenvalue. This result is quite remarkable: the Groebner basis technique
is too restrictive for the random coefficients in a system as discussed in Section

70



5.2 Results

CBB SMV Reg. Real
262144 148480 20558 2480

Table 5.5: Summary of the solutions for the SLLG, 3 × 3 lattice, random orbit,
anti-periodic boundary conditions.

i 0 1 2 3 4 5 6 7 8 9
Ki 2 58 202 402 576 576 402 202 58 2

Table 5.6: Summary of the number of solutions with i negative eigenvalues for
the SLLG, 3× 3 lattice, anti-periodic boundary conditions, random orbit.

4.2.3, whereas polynomial homotopy continuation works perfectly fine (see Fig.
(5.3)).

5.2.2 SLLG With Periodic Boundary Conditions

After eliminating the constant zero mode in the SLLG for the 3× 3 lattice case
with periodic boundary conditions, we have 14 equations and 14 variables. The
number of solutions is 270 out of which 218 are non-singular and 52 are singular
(see Fig. (5.4)). The sum of signs of the Faddeev-Popov determinants is zero,
with the following summary of eigenvalues of the Faddeev-Popov operator, which
is now a 7 × 7 dimensional matrix. The results are summarized in Table (5.7)
and Table (5.8).

i 0 1 2 3 4 5 6 7
Pi 1 7 38 56 42 38 28 8

Table 5.7: Summary of the number of solutions with i positive eigenvalues, de-
noted as Pi, for the SLLG, 3×3 lattice, trivial orbit, periodic boundary conditions.

Similarly, for a random orbit the number of real solutions is 224 and again
the sum of signs of Faddeev-Popov determinants is 0 with the summary of the
eigenvalues given in Table (5.9), Table (5.10) and Fig. (5.5).

5.2.3 MLLG

For both the trivial and random orbit cases for the MLLG on the 3×3 lattice, the
stable mixed volume is 814880. This is a large number compared to the stable
mixed volumes for which the current packages such as PHCpack and HOM4PS2
are scaled for. Moroever, the number of monomials in each equation is also very
large compared to SLLG for the current versions of the packages. These two
technical difficulties have made the results for the MLLG inaccessible to us so
far. This of course does not mean that the NPHC method is not capable of
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Figure 5.3: A random orbit, 3 × 3 lattice, SLLG, anti-periodic boundary condi-
tions, with the polynomial version of the Faddeev-Popov determinant.
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Figure 5.4: Trivial orbit, 3×3 lattice, SLLG, periodic boundary conditions, with
the polynomial version of the Faddeev-Popov determinant.
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i 0 1 2 3 4 5 6 7
Ki 8 28 38 42 56 38 7 1

Table 5.8: Summary of the number of solutions with i negative eigenvalues for
the SLLG, 3× 3 lattice, trivial orbit, periodic boundary conditions.

i 0 1 2 3 4 5 6 7
Pi 1 8 38 72 61 30 12 2

Table 5.9: Summary of the number of solutions with i positive eigenvalues, Pi,
for the SLLG, 3× 3 lattice, random orbit, periodic boundary conditions.

solving such systems, but that in general the current packages are made to deal
with smaller systems7.

5.3 Some Remarks

1. The NPHC method is strikingly different than the Groebner basis tech-
nique in that the algorithm for the former suffers from no known major
complexities. Moreover, the path tracking is embarrassingly parallelizable,
because all the start solutions can be tracked completely independently to
each other! This very feature along with the rapid progress towards the
improvements of the algorithms makes the NPHC well suited for physical
problems arising in condensed matter theory, lattice QCD, etc. In short,
though it may be very difficult or impossible to solve a system exactly,
in theory one can get all solutions for such systems numerically with the
NPHC method. This can also prove very useful in the recent studies of the
Potential Energy Landscapes of classical Hamiltonians and their relation to
the classical phase transitions [137, 138].

2. A new hybrid method has been developed to solve the polynomial equations
arising from trigonometric equations in Ref. [139]. This method is very
efficient, and has the potential to solve bigger systems. There, first a part
of the system is solved and then the results are used in the remaining part.

7There is a lot of work currently being done to make the respective packages compute these
systems. I am very grateful to the HOM4PS2 group, specifically Tsung-Lin Lee and Tien-Yien
Li, for their efforts towards solving these systems.

i 0 1 2 3 4 5 6 7
Ki 2 12 30 61 72 38 8 1

Table 5.10: Summary of the number of solutions with i negative eigenvalues for
the 3× 3 lattice, random orbit, periodic boundary conditions.
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Figure 5.5: Random orbit, 3 × 3 lattice, SLLG, periodic boundary conditions,
with the polynomial version of the Faddeev-Popov determinant.

For the case at hand, we are in the process of applying this method to
bigger lattices, e.g., the 4×4 SLLG with anti-periodic boundary conditions
which consists of 32 equations in 32 variables. It is important to note
that for the trivial orbit case 4 × 4 standard Landau Gauge, the stable
mixed volume is 878182400. This is quite a challenge for a single machine.
However, it seems achievable with the parallel version of the HOM4PS2,
called paraHOM4PS2.0, though the public version is as yet unavailable.

3. For many practical problems, e.g., motion planning of a robot or chemical
reactions, only real solutions are required. Thus, a huge amount of compu-
tational effort in getting the other types of solutions is wasted in the NPHC
method. It would be much more useful if there was a way of getting only
real solutions. However, a path tracker does not know if a given start solu-
tion will end up being a real solution of the original system, for a number
of technical reasons nicely discussed in Ref. [94]. Moreover, one can wonder
if a root count exists only for the real solutions of a system. The main
problem to be resolved there is in obtaining Descartes rule of signs for the
multivariate case [113, 140]. This, however, has yet to be achieved.

4. The NPHC Method and Minimization: Most of the usual methods to min-
imize a function are based on the Newton-Raphson method, where a start
solution is guessed and then is refined by successive iterations. By perform-
ing this algorithm several times on the functions, one can obtain several
minima of the original function. However, it does not give all extrema, even
after a huge number of iterations. There are also many efficient refinements
of this procedure such as Simulated Annealing to obtain global minima of
the functional. However, they are not always successful (it can easily get
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trapped at a local minimum instead of the global minimum). But if the
function has a polynomial-like nonlinearity, in theory the NPHC method
can give all extrema. It is then easy to separate out the global minima or
maxima. This is quite a remarkable achievement and justifies transforming
our problem, and other important particle physics and condensed matter
theory problems, into polynomial form, as done in Appendix C.

5. Recently Akino and Kosterlitz [47] have used a clever trick (first demon-
strated in lower dimensional models in Ref. [46]) to obtain the global mini-
mum of the RPXYM: first take a duality transform of the Hamiltonian and
then perform numerical minimization so that a minimization algorithm has
to find the global minimum from the space of the local minima only. Though
this method gives much more confidence in the final results with less nu-
merical effort, finding the global minimum still has to rely on the numerical
algorithms which are known to fail for larger systems. Thus, in addition to
the usual error from the numerical precision of the machine, there can be
an error of an unknown order. The present Algebraic Geometry approach
has a sharp difference there. Instead of finding the global minimum using
a numerical minimization method, we first try finding a Groebner basis
of the corresponding polynomial system, and then we can get the global
minimum, global maximum and all other extrema and saddle points ana-
lytically. Furthermore, for bigger systems, it is certainly difficult to get a
Groebner basis; however, using the NPHC method, one can get all the local
and global extrema and saddle points up to a numerical precision. Thus,
the numerical error in finding the global minimum is just the numerical
precision of the machine but no error of unknown order can be added8.

6. As we saw in the above examples, the stable mixed volume remains the
same for any random orbit including trivial orbit case for the SLLG for a
given lattice. Thus, it would be very interesting to verify if this number
can be used as a topological invariant for the gauge-fixing.

7. Cheater’s homotopy: In the previous chapter on the Groebner basis tech-
niques, we mentioned that our systems were parametric systems, say f(q⃗, x⃗)
where q⃗ are parameters and x⃗ are variables. To solve such a system alge-
braically, we discussed the CGB technique. There it was very difficult to
obtain a CGB. With the NPHC method, on the other hand, it is rather
easier to solve a parametric system. An important observation is that the
stable mixed volume remains constant for most values of parameters be-
cause the monomials themselves remain the same, except in special cases.
Ideally, our strategy should be first to solve the system for a specific value of
parameters, e.g., say f(q⃗ ∗, x⃗), by the usual homotopy continuation method

8I am thankful to J. M. Kosterlitz for clarifying these issues to me.
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with polyhedral homotopy. Then using f(q⃗ ∗, x⃗) as the start system and
its solutions as start solutions we can construct a general homotopy for all
other allowed random values of q⃗. Then we can get all solutions for dif-
ferent points in the parameter space using this homotopy [141, 142]. The
name, Cheater’s homotopy, is thus justified! Both the SLLG and the MLLG
have parameters as trigonometric functions of the link variables ϕi,µ and so
they are perfectly suited for the Cheater’s homotopy. We have not used
this trick in our above mentioned preliminary results so far, but identifying
those systems as parametric equations appears to be very useful.

8. For most of the systems of polynomial equations in practice, we do not know
the actual number of solutions from the beginning. So even after obtaining
all solutions through the homotopy continuation method, we would still
prefer to have some kind of verification of the solutions. For the SLLG,
we used the Neuberger zero as a necessary condition. However, this is
certainly not a sufficient condition and further checks may be required for
bigger systems. This is called certifying the solutions, which is recently
developed using the so-called Tropical Algebraic Geometry [143, 144]. We
anticipate that our results mentioned above will serve as ideal test systems
for all such new ideas.

9. To solve the corresponding equations for the periodic boundary conditions
case, another method is to leave the constant zero modes in the system
and use the Numerical Algebraic Geometry (NAG), which we explain in
Appendix C. However, the NAG implemented on the available packages
requires improvements to obtain positive dimensional real solutions, though
the first step is already laid down [145].

5.4 Summary

We conclude this chapter:

1. We have shown that the multivariate polynomial version of the gauge fixing
equations can be numerically solved, up to a numerical precision, with the
so called NPHC method: for a given system of polynomial equations that
are known to have only isolated solutions, the NPHC method gives all
solutions numerically.

2. We demonstrated that the 3 × 3 SLLG anti-periodic boundary conditions
system for the trivial and a random orbit, which were previously intractable,
can be solved using the NPHC method. We have also shown the exact
cancellation (not only the signs) of the Faddeev-Popov determinants in this
case, i.e., the Neuberger zero. We classified all the solutions in terms of
their Morse indices.
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5.4 Summary

3. The MLLG on the 3×3 lattice is not yet tractable by the available packages.
However, the NPHC method does not have any restriction, in theory, for
these systems and our work is in progress to solve these systems. Solving
these systems will directly clarify if the number of Gribov copies for the
MLLG on the two-dimensional lattice is orbit-independent.
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Chapter 6

’t Hooft-Polyakov Monopoles In
Lattice SU(N)+adjoint Higgs
Theory

Another case where the continuum and lattice formulations need special attention
is ’t Hooft-Polyakov monopoles1. ’t Hooft-Polyakov monopoles [48, 49] play an
important role in high energy physics for two reasons: their existence is a general
prediction of grand unified theories, such as SU(N)+adjoint Higgs theory, and
they provide a way to study non-perturbative properties of quantum field theories
through electric-magnetic dualities [50]. However, most of the existing studies
of monopoles in non-supersymmetric theories have been restricted to the level
of classical solutions. Calculation of even leading-order quantum corrections is
difficult, and can usually only be done in simple one-dimensional models [146].
Lattice Monte Carlo simulations provide an alternative, fully non-perturbative
approach [147].

There are two general approaches to calculating properties of monopoles in
Monte Carlo simulations. One can either define suitable creation and annihila-
tion operators and measure their correlators [148, 149, 150], or one can impose
boundary conditions which restrict the path integral to a non-trivial topological
sector [151]. The former approach is closer in spirit to usual Monte Carlo simula-
tions and in principle it gives access to a wide range of observable including, e.g.,
the vacuum expectation value of the monopole field. However, monopoles are
surrounded by a spherical infinite-range magnetic Coulomb field and so it is dif-
ficult to find a suitable operator and separate the true ground state from excited
states. Though the non-trivial boundary conditions provide access to a more
limited set of observables, they ensure that the monopole is always in its ground
state. Early attempts to simulate monopoles were based on fixed boundary con-

1I am grateful to Arttu Rajantie for inviting me to Imperial College London for this work
and kind and continuous support. I thank Tanmay Vachaspati for helpful suggestions and
comments. A special thanks goes to Samuel Edwards for his collaboration in this work.
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6.1 Magnetic Charges In The Continuum

ditions, but this introduced large finite-size effects. To avoid them, one needs to
use boundary conditions which are periodic up to the symmetries of the theory.
Such boundary conditions were introduced for the SU(2) theory in Ref. [51], and
they were used to calculate the mass of the monopoles in Refs. [52, 152]. They
are used also in various related contexts (see, e.g., [153, 154, 155, 156, 157]).

Here, we generalize this result to SU(N) gauge group with N > 2. This is
important for several reasons. Many analytical results are only valid in the large-
N limit, and for grand unified theory monopoles one needs SU(5) or larger groups.
The SU(2) group is also somewhat special, and a richer theoretical structure
with new questions arises for N > 2. For example, there can be several different
monopole species and unbroken non-Abelian gauge groups.

In the SU(2) case, monopoles were created on the lattice by boundary con-
ditions which consist of complex conjugation and topologically non-trivial gauge
transformations. Here we generalize this to SU(N) but only for even N . The
boundary conditions treat all monopole species in the same way, so we cannot
single out one for creation. Instead of actually fixing the magnetic charge, we can
only choose between odd and even charges. However, even with these limitations,
the boundary conditions make it possible to measure the monopole mass.

Here, we first review the definitions of the magnetic field and magnetic charge
in the SU(N)+adjoint Higgs theory in the continuum and on the lattice, re-
spectively. We then show how the monopole mass is expressed in terms of par-
tion functions for different topological sectors. We introduce twisted C-periodic
boundary conditions and show that they can be used to calculate the monopole
mass, and describe our results.

6.1 Magnetic Charges In The Continuum

The most general renormalizable Lagrangian for the SU(N) gauge field theory
Aµ with an adjoint Higgs field Φ is

L = −TrGµνGµν + Tr[Dµ,Φ][D
µ,Φ]

−m2TrΦ2 − κTrΦ3 − λ1(TrΦ
2)2 − λ2TrΦ

4, (6.1)

where we have used the covariant derivative and field strength tensor defined by

Dµ = ∂µ + igAµ, Gµν = − i

g
[Dµ, Dν ] (6.2)

respectively, and g being the coupling strength. Both Φ and Aµ are Hermitian
and traceless N × N matrices, which can be expanded in terms of the group
generators2 TA,

Φ(x) = ϕA(x)TA, Aµ(x) = AA
µ (x)T

A, (6.3)

2Notations have been slightly changed here to be consistent with the literature. We use
lower case Latin letters for a = 1, . . . , N and upper case Latin letters for A = 1, . . . , (N2 − 1).
Greek letters represent Lorentz indices.
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6.1 Magnetic Charges In The Continuum

with real coefficients ϕA and AA
µ . The fields can therefore also be thought of as

N2 − 1 component vectors.
For N = 2, the group generators can be chosen to be the Pauli matrices,

TA =
σA

2
. (6.4)

Because of the properties of the Pauli matrices, TrΦ = TrΦ3 = 0 and (TrΦ2)2 =
2TrΦ4, and therefore we can choose κ = λ2 = 0 without any loss of generality
and λ1 = λ.

In the broken phase, where m2 < 0, the Higgs field has a vacuum expectation
value

⟨TrΦ2⟩ = 1

2
⟨ϕAϕA⟩ = m2

λ
. (6.5)

The SU(2) symmetry is spontaneously broken to U(1). To represent the direction
of symmetry breaking, we define

Φ̂(x) =
Φ(x)√
2TrΦ(x)2

, (6.6)

which is well defined whenever Φ ̸= 0. Following ’t Hooft [48], we use this to
define the field strength

Fµν = 2TrΦ̂Gµν −
4i

g
TrΦ̂[Dµ, Φ̂][Dν , Φ̂]

= ∂µ(ϕ̂
AAA

ν )− ∂ν(ϕ̂
AAA

µ ) +
ϵABC

g
ϕ̂A(∂µϕ̂

B)∂νϕ̂
C . (6.7)

Fixing the unitary gauge, in which Φ ∝ σ3, makes this definition more trans-
parent. The gauge fixing is achieved by the gauge transform R(x), such that the
transformed field Φ̃ is diagonal

Φ̃(x) ≡ R†(x)Φ(x)R(x) =
√
2TrΦ2

σ3

2
. (6.8)

In terms of the transformed gauge field,

Ãµ = R†AµR− i

g
R†∂µR, (6.9)

the field strength tensor has the usual Abelian form,

Fµν = ∂µÃ
3
ν − ∂νÃ

3
µ. (6.10)

Alternatively, we can express this in terms of the diagonal elements of the trans-
formed gauge field,

F a
µν = ∂µÃ

aa
ν − ∂νÃ

aa
µ . (6.11)
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This defines a two-component vector of field strength tensors, but tracelessness
of Aµ implies F 2

µν = −F 1
µν . The conventional field strength Fµν is given by

Fµν = F 1
µν − F 2

µν .
The conserved magnetic current corresponding to the residual U(1) group is

defined as
jaµ = ∂ν⋆F a

µν , (6.12)

where ⋆F a
µν is the dual tensor,

⋆F a
µν =

1

2
ϵµνρσF

a ρσ. (6.13)

Like the field strength, the magnetic currents satisfy j2µν = −j1µν , so there is only
one monopole species.

Substituting Eq. (6.7), one finds

j1µ =
1

4g
ϵµνρσϵABC(∂

νϕ̂A)(∂ρϕ̂B)(∂σϕ̂C) = −j2µ. (6.14)

This vanishes when Φ ̸= 0, but is generally non-zero when Φ vanishes. The
magnetic charge inside volume V bounded by a closed surface S that encloses a
zero is

Q =

∫
V

d3x j0 = ±2π

g
(1,−1). (6.15)

This can be generalized to SU(N) [158]. The matrices {TA} in Eq. (6.3)
are now the generators of SU(N) in the fundamental representation, and we
assume the usual normalization TrTATB = 1

2
δAB. As in Eq. (6.8), consider a

gauge transformation R(x) that diagonalizes Φ(x) and places the eigenvalues in
descending order,

Φ̃(x) = R†(x)Φ(x)R(x) = diag(λ1, . . . , λN), (6.16)

where λ1 ≥ λ2 ≥ · · · ≥ λN .
In classical field theory one usually finds that there are only two distinct

eigenvalues, and consequently only one residual U(1) group. In that case one
can use Eq. (6.7) to define the corresponding field strength. However, as we will
discuss in Section 6.2, in lattice Monte Carlo simulations all the eigenvalues are
distinct. In that case, Φ̃(x) is invariant under gauge transformations generated
by the N − 1 diagonal generators of SU(N). Thus we are left with a residual
U(1)N−1 gauge invariance corresponding the Cartan subgroup of SU(N). It is
then convenient to follow ’t Hooft [158] and define the residual U(1) field strengths
by Eq. (6.11), with a ∈ {1, . . . , N}. The corresponding magnetic currents jaµ are
then given by Eq. (6.12). They satisfy the tracelessness condition

N∑
a=1

F a
µν =

N∑
a=1

jaµν = 0, (6.17)
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so that there are only N − 1 independent U(1) fields and magnetic charges.
The set of points in which two eigenvalues coincide λj = λj+1 is generally

pointlike in three dimensions and behaves like a magnetic charge with respect
to the SU(2) subgroup involving only the jth and (j + 1)th components of a
fundamental representation [158]. That is, it behaves like a magnetic monopole
with charge Q = ±q̂j, where the elementary magnetic charges are

q̂aj =
2π

g

(
δa,j − δa,(j+1)

)
, (6.18)

or in vector notation

q̂j =
2π

g

 j−1︷ ︸︸ ︷
0, . . . , 0, 1,−1,

N−j−1︷ ︸︸ ︷
0, . . . , 0

 . (6.19)

6.2 Magnetic Charge On The Lattice

On the lattice, the Higgs field is defined on sites3 x⃗ while the gauge degrees of
freedom are encoded in SU(N) valued link variables Uµ(x⃗). The Lagrangian is
given by

L =
1

g2

∑
µν

TrUµ(x⃗)Uν(x⃗+ µ̂)U †
µ(x⃗+ ν̂)U †

ν(x⃗)

+2
∑
µ

[
TrΦ(x⃗)2 − TrΦ(x⃗)Uµ(x⃗)Φ(x⃗+ µ̂)U †

µ(x⃗)
]

+m2TrΦ2 + κTrΦ3 + λ1(TrΦ
2)2 + λ2TrΦ

4. (6.20)

Again, we diagonalize Φ by a gauge transformation R(x⃗),

Φ̃(x⃗) = R†(x⃗)Φ(x⃗)R(x⃗). (6.21)

Link variables are transformed to

Ũµ(x⃗) = R†(x⃗)Uµ(x⃗)R(x⃗+ µ̂). (6.22)

The diagonalized field Φ̃ is still invariant under diagonal gauge transformations,

D(x⃗) = diag (ei∆1(x⃗), . . . , ei∆N (x⃗)),
N∑
a=1

∆a = 0, (6.23)

which form the residual U(1)N−1 symmetry group.

3The lattice site index is changed from i in the previous chapters to x⃗. Lattice spacing is
taken to be 1 for simplicity.
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6.2 Magnetic Charge On The Lattice

To identify the corresponding U(1) field strength tensors, we need to decom-
pose Ũµ [159],

Ũµ(x⃗) = Cµ(x⃗)uµ(x⃗), (6.24)

where uµ(x⃗) represents the residual U(1) gauge fields and transforms as

uµ(x⃗) → D†(x⃗)uµ(x⃗)D(x⃗+ µ̂). (6.25)

Cµ(x⃗) represents fields charged under the U(1) groups.
This decomposition is not unique on the lattice [159]. A simple choice is to

define Abelian link variables as the diagonal elements of Ũµ in direct analogy
with Eq. (6.11),

uµ(x⃗) = diag Ũµ(x⃗). (6.26)

In practice, it is often more convenient to work with link angles and define an
N -component vector

αa
µ(x⃗) = arg uaa

µ . (6.27)

As angles, these are only defined modulo 2π, and we choose them to be in the
range −π < αa

µ ≤ π. As in the continuum, the angles αa
µ satisfy∑

a

αa
µ(x⃗) = 0 mod 2π. (6.28)

Therefore it has only N−1 independent components, corresponding to the N−1
residual U(1) gauge groups.

Next, we construct plaquette angles as

αa
µν(x⃗) = αa

µ(x⃗) + αa
ν(x⃗+ µ̂)− αa

µ(x⃗+ ν̂)− αa
ν(x⃗) (6.29)

which are the lattice analogs of the Abelian field strength. In the continuum
limit, they are related by

F a
µν =

1

g
αa
µν . (6.30)

Because the links αa
µ are only defined modulo 2π, the same applies to the plaque-

tte, and again, we choose −π < αa
µν ≤ π.

Using Eq. (6.29), the corresponding lattice magnetic currents are

jaµ =
1

g
∆να

a⋆
µν (6.31)

where

αa⋆
µν =

1

2
ϵµνρσα

a
ρσ (6.32)

These are integer multiples of 2π, because each contribution of αa
µ(x⃗) is cancelled

by a −αa
µ(x⃗) modulo 2π.
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6.3 Monopole Mass

In particular, the Abelian magnetic charge inside a single lattice cell is given
by

qa(x⃗) = ja0 =
1

2g

∑
ijk

ϵijk

(
αa
ij(x⃗+ k̂)− αa

ij(x⃗)
)
. (6.33)

Each component of this vector is an integer multiple of (2π/g), and they all
add up to zero. The elementary charges, corresponding to individual monopoles,
are the same as in the continuum (6.19). Other values of the charge vector q
correspond to composite states made of elementary monopoles.

The diagonalization procedure in Eq. (6.16) is ill defined whenever the Higgs
field has degenerate eigenvalues, but on the lattice the set of field configurations in
which this happens has zero measure in the path integral. Physically this means
that the core of the monopole never lies exactly at a lattice site. Therefore these
configuration do not contribute to any physical observable and do not have to be
considered separately.

6.3 Monopole Mass

The Abelian magnetic charge Q of any lattice field configuration is well defined
by adding up the contributions (6.33) from each lattice cell,

Q =
∑
x

q(x⃗). (6.34)

Because it is discrete, one can define separate partition functions ZQ for each
magnetic charge sector. The full partition function is simply the product

Z =
∏
Q

ZQ.

The ground state energy of a given charge sector may be defined by

EQ = − 1

T
ln

ZQ

Z0

, (6.35)

where Z0 is the partition function of the charge zero sector and T is the length
of the lattice in the time direction.

The mass Mj of a single monopole q̂j is given by the ground state energy of
the corresponding charge sector

Mj = Eq̂j . (6.36)

In order to calculate the energies EQ, we need to impose boundary condi-
tions which enforce non-trivial Abelian magnetic charge. It is important that
these boundary conditions preserve the translational invariance of the system,
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6.4 Twisted Boundary Conditions

because otherwise our calculations are tainted by boundary effects. Because they
are generally proportional to the surface area they will completely swamp the
contribution from a point-like monopole which we want to measure.

Gauss’s law rules out periodic boundary conditions since they fix the charge
to zero. However, translational invariance only requires periodicity up to the
symmetry of the Lagrangian (6.20). Since the magnetic current is conserved, we
only need to consider spatial boundary conditions.

For SU(2), it was found in Ref. [51] that the following boundary conditions
force an odd value for the magnetic charge,

Φ(x⃗+ nȷ̂) = −σjΦ(x⃗)σj = (σ2σj)
†Φ∗(x⃗)(σ2σj)

Uµ(x⃗+ nȷ̂) = σjUµ(x⃗+ nȷ̂)σj = (σ2σj)
†U∗

µ(x⃗)(σ2σj). (6.37)

These are examples of twisted C-periodic boundary conditions, as introduced by
Kronfeld and Wiese [160]. Note that twisted C-periodic and twisted periodic
boundary conditions are equivalent for the gauge links. On the other hand, the
Higgs field requires an additional anti-periodicity when we convert from one form
to the other. Physically, this means that the charge conjugation is carried only
by the Higgs field in SU(2). We will come back to this important point when we
discuss the boundary conditions in terms of the flux sectors of pure SU(2) gauge
theory.

It turns out that untwisted C-periodic boundary conditions (no σj’s) are com-
patible with any even value of magnetic charge [51]. Assuming that monopoles
do not form bound states, the weight of the multi-monopole configurations in the
path integral is exponentially suppressed

ZQ = e−MTZ0, (6.38)

where M is the monopole mass. In the infinite-volume limit, T → ∞, only
the configurations with the minimum number of monopoles contribute to the
path integral. So the partition function Zodd for twisted C-periodic boundary
conditions will be dominated by configurations with a single monopole, while the
partition function Zeven will be dominated by configurations with no monopoles.
Therefore the monopole mass is given my

M = − lim
T→∞

1

T
lnZodd/Zeven. (6.39)

This was used to calculate the non-perturbative mass of the ’t Hooft-Polyakov
monopole in Ref. [52, 152], with good agreement with classical expectations.

6.4 Twisted Boundary Conditions

Let us now generalize the boundary conditions (6.37) to SU(N) with N > 2.
To avoid boundary effects, the boundary conditions must preserve translation
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invariance, and they will therefore have to be periodic up to the symmetries
of the theory. In the case of Eq. (6.20), the available symmetries are complex
conjugation of the fields and gauge invariance. When κ = 0, reflection of the
Higgs field Φ → −Φ is also a symmetry, but in general it is not, and so we do not
consider it. The appropriate extension of (6.37) is then a combination of complex
conjugation and gauge transformations.

6.4.1 Fully C-periodic Boundary Conditions

It is natural to impose complex conjugation in all three spatial directions, in
which case we have

Φ(x⃗+ nȷ̂) = Ω†
j(x⃗)Φ

∗(x⃗)Ωj(x⃗),

Uµ(x⃗+ nȷ̂) = Ω†
j(x⃗)U

∗
µ(x⃗)Ωj(x⃗+ µ̂), (6.40)

where the SU(N) gauge transformation matrix Ωj(x⃗) can in general be position
dependent. We refer to these as (fully) C-periodic boundary conditions [160].4

To avoid contradiction at the edges, it should not matter in which order the
boundary conditions are applied. Therefore, the gauge transformations must
satisfy [160]

Ω†
j(x⃗+ nk̂)ΩT

k (x⃗)Φ(x⃗)Ω
∗
k(x⃗)Ωj(x⃗+ nk̂)

= Φ(x⃗+ nȷ̂+ nk̂)

= Ω†
k(x⃗+ nȷ̂)ΩT

j (x⃗)Φ(x⃗)Ω
∗
j(x⃗)Ωk(x⃗+ nȷ̂),

(6.41)

and

Ω†
j(x⃗+ nk̂)ΩT

k (x⃗)Uµ(x⃗)Ω
∗
k(x⃗+ µ̂)Ωj(x⃗+ nk̂ + µ̂)

= Uµ(x⃗+ nȷ̂+ nk̂)

= Ω†
k(x⃗+ nȷ̂)ΩT

j (x⃗)Uµ(x⃗)Ω
∗
j(x⃗+ µ̂)Ωk(x⃗+ nȷ̂+ µ̂).

(6.42)

Since our fields are blind to center elements, Eq. (6.41) implies the cocycle con-
dition

Ω∗
iΩj = zijΩ

∗
jΩi, zij = eiθij ∈ ZN. (6.43)

The antisymmetric twist tensor zij = z∗ji consists of Nth roots of unity and
therefore we can write

θij =
2πnij

N
mod 2π, nij ∈ Z. (6.44)

Furthermore, Eq. (6.42) implies that zij has to be independent of position.

4In fact, in the terminology of Ref. [160], these correspond to C-periodic boundary conditions
with C = −1, and C = 1 corresponds to boundary conditions without complex conjugation.
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All choices of Ωj(x⃗) which give the same twist tensor zij are gauge equiva-
lent [160], and therefore we can assume without any loss of generality that the
matrices Ωj are independent of position.

Let us now consider the effect of the boundary conditions (6.40) on the resid-
ual U(1) fields. Because the eigenvalues of the Higgs field Φ are real, they are
unaffected by the boundary conditions, and therefore the diagonalized field Φ̃
defined in Eq. (6.21) is periodic. Therefore,

Φ(x⃗+ nȷ̂) = Ω†
jΦ

∗(x⃗)Ωj

= Ω†
j

(
R(x⃗)Φ̃(x⃗)R†(x⃗)

)∗
Ωj

= Ω†
jR

∗(x⃗)Φ̃(x⃗+ nȷ̂)RT (x⃗)Ωj. (6.45)

Compatibility with

Φ(x⃗+ nȷ̂) = R(x⃗+ nȷ̂)Φ̃(x⃗+ nȷ̂)R†(x⃗+ nȷ̂) (6.46)

then implies the boundary conditions for R(x⃗),

R(x⃗+ nȷ̂) = Ω†
jR

∗(x⃗). (6.47)

When we have multiple translations, we find a different transformation depending
on which boundary condition we apply first,

R(x⃗+ nȷ̂+ nk̂) = Ω†
jΩ

T
kR(x⃗) = zkjΩ

†
kΩ

T
j R(x⃗)

= zkjR(x⃗+ nȷ̂+ nk̂). (6.48)

This does not mean an inconsistency because both transformations have the same
effect on the fields, but in our calculations we have to choose one or the other
consistently. Hereafter we will always choose the x direction first, followed by y
and then z.

Applying this to the gauge fixed link variables we find that the twist is ab-
sorbed for all links

Ũµ(x⃗+ nȷ̂) = R†(x⃗+ nȷ̂)Uµ(x⃗+ nȷ̂)R(x⃗+ µ+ nȷ̂)

= RT (x⃗)U∗
µ(x⃗)R

∗(x⃗+ µ̂)

= Ũ∗
µ(x⃗), (6.49)

except for those spatial links at the corners whose endpoints involve two transla-
tions as in Eq. (6.48). For them, we obtain for any two directions ı̂ and ȷ̂

Ũj(x⃗+ nı̂+ (n− 1)ȷ̂)

= R†(x⃗+ nı̂+ (n− 1)ȷ̂)Uj(x⃗+ nı̂+ (n− 1)ȷ̂)×
×R(x⃗+ nı̂+ nȷ̂)

=

{
Ũ∗
j (x⃗+ 0ı̂+ (n− 1)ȷ̂) if i < j

zijŨ
∗
j (x⃗+ 0ı̂+ (n− 1)ȷ̂) if i > j.

(6.50)
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x

z

y

Figure 6.1: Integration curve used to calculate the flux through half of the box.

where the notation i < j denotes ordering for ı̂ and ȷ̂ directions in the chosen
ordering.

6.4.2 Magnetic Flux

If the decomposition (6.24) commutes with complex conjugation, the boundary
conditions (6.40) imply anti-periodicity of αa

µ(x⃗). So, the Abelian projected fields
inherit the boundary conditions

αa
µ(x⃗+ nȷ̂) = −αa

µ(x⃗), (6.51)

except for the special cases

αa
j (x⃗+ nı̂+ (n− 1)ȷ̂) =

{
−αa

j (x⃗) if i < j

θij − αa
j (x⃗) if i > j

. (6.52)

It follows that the fluxes

αa
µν(x⃗) = αa

µ(x⃗) + αa
ν(x⃗+ µ̂)− αa

µ(x⃗+ ν̂)− αa
ν(x⃗) (6.53)

are always anti-periodic, since the twist angles θij cancel when we compare fluxes
on opposite sides of the lattice. This means that when we cross the boundary we
enter a charge conjugated copy of the same lattice from the opposite side.

To determine the magnetic charge we repeat the trick of [51]. The curve
shown Figure 6.1 divides the boundary into two halves. We denote the magnetic
flux through them by Φ+ and Φ− choosing the positive direction to be pointing
outwards. The two halves are related by the boundary conditions, and in partic-
ular, the anti-periodicity (6.53) of the field strength implies that they are equal
Φ− = Φ+. The magnetic charge inside the lattice is given by the total flux, which
is the sum of the two contributions, i.e.

Q = Φ+ + Φ− = 2Φ+. (6.54)
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Applying Stokes’s theorem, we can write

Φa
+ =

1

g

(
n−1∑
x=0

αa
1(x, n, 0)−

n−1∑
y=0

αa
2(n, y, 0)

+
n−1∑
z=0

αa
3(n, 0, z)−

n−1∑
x=0

αa
1(x, 0, n)

+
n−1∑
y=0

αa
2(0, y, n)−

n−1∑
z=0

αa
3(0, n, z)

)
. (6.55)

When we apply the boundary conditions, all terms cancel except those involving
the special cases (6.52),

Φa
+ =

1

g
(αa

1(n− 1, n, 0)− αa
2(n, n− 1, 0)

+αa
3(n, 0, n− 1)− αa

1(n− 1, 0, n)

+αa
2(0, n− 1, n)− αa

3(0, n, n− 1))

=
1

g
(θ21 + θ13 + θ32) mod

2π

g
, (6.56)

where because the link angles αa
µ are defined modulo 2π, the flux is only defined

modulo (2π/g). Therefore we find

Qa =
2

g
(θ21 + θ13 + θ32) mod

4π

g
. (6.57)

6.4.3 Allowed Magnetic Charges

It is obvious from Eq. (6.57) that the possible charges one can create using the
boundary conditions is quite restricted. As in the continuum (6.19), the compo-
nents are quantized in units of 2π/g. This can be seen explicitly by considering
the effect of the cocycle condition (6.43) on the product ΩiΩ

∗
jΩk [160]. On one

hand, we have

ΩiΩ
∗
jΩk = zjkΩiΩ

∗
kΩj

= zjkzkiΩkΩ
∗
iΩj

= zjkzkizijΩkΩ
∗
jΩi, (6.58)

but applying the condition in the opposite order we find

ΩiΩ
∗
jΩk = zjiΩjΩ

∗
iΩk

= zjizikΩjΩ
∗
kΩi

= zjizikzkjΩkΩ
∗
jΩi. (6.59)
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Therefore the twist tensor must satisfy the constraint

z2jiz
2
jkz

2
ki = 1, (6.60)

which implies
2(θ21 + θ13 + θ32) ∈ 2πZ. (6.61)

Substituting this into Eq. (6.57) gives the charge quantization condition

Qa =
2

g
(θ21 + θ13 + θ32) ∈

2π

g
Z. (6.62)

On the other hand, because the right hand side does not depend on a at all,
every component Qa has to have the same charge, modulo (4π/g). Combining
this with Eq. (6.62), we conclude that in terms of multiples of 2π/g, either every
component Qa is odd,

Qa =
2π

g
mod

4π

g
for all a, (6.63)

in which case there is an odd number of each magnetic monopole species, or every
component is even,

Qa = 0 mod
4π

g
for all a, (6.64)

in which case there is an even number of each magnetic monopole species. As
was discussed in Section 6.3, the former case always corresponds to one monopole
in practice, and the latter to no monopoles.

However, the components of the magnetic charge vector must add up to zero,∑
a

Qa = NQa = 0 mod
4π

g
. (6.65)

If N is odd, Eq. (6.63) violates this constraint, which means that with the bound-
ary conditions in Eq. (6.40), the number of monopoles is always even (i.e., zero).
If N is even, both (6.63) and (6.64) satisfy this constraint.

A convenient choice for an odd number of monopoles with Eq. (6.63) is

Ω1 = diag(iσ3, . . . , iσ3)

Ω2 = diag(I, . . . , I)

Ω3 = diag(iσ1, . . . , iσ1). (6.66)

These are simply the SU(2) matrices from Eq. (6.37) repeated in block diagonal
form. They satisfy

Ω∗
iΩj = −Ω∗

jΩi, i ̸= j, (6.67)
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corresponding to a π twist angle in each plane. An even number of monopoles,
corresponding to Eq. (6.64), is obtained by simply choosing

Ω1 = Ω2 = Ω3 = 1. (6.68)

We have therefore found that the twisted boundary conditions (6.40) allow
us to impose a non-zero magnetic charge, but with several restrictions. It is, in
fact, fairly natural that we cannot specify the exact charge but only whether it is
odd or even. To avoid boundary effects our boundary conditions have to preserve
translation invariance, but in order to be compatible with Gauss law, they must
include charge conjugation. If we had a way to fix the magnetic charge to some
particular value Q, a translation by n would therefore change it to −Q, but then
translation invariance requires Q = −Q and therefore Q = 0. Another way to
see this is to imagine picking one monopole and moving it through to boundary
so that it appears from the opposite side of the lattice with the opposite sign,
changing the magnetic charge by two units.

The other restriction, that all the charges must have the same value, arises
because our boundary conditions are linear operations on the fields. The transfor-
mation matrices Ωj are therefore independent of the direction of symmetry break-
ing Φ, which defines the different residual U(1) groups. Therefore the boundary
conditions cannot treat any U(1) group differently from the others. It may be
possible to avoid this restriction by considering non-linear transformations. In
practice, one can specify the boundary conditions in the unitary gauge in which
the different U(1) groups can be treated separately. However, it is not clear if it
is possible even then to impose translation invariant boundary conditions which
give different values to different magnetic charges.

Imposing complex conjugation in all three directions has the advantage of
preserving the invariance of the theory under 90-degree rotations. However, it
is not necessary for a non-zero magnetic charge. It is enough to have complex
conjugation in one direction, so that the flux can escape through at least one face.
However, it turns out that with such mixed boundary conditions, the allowed
magnetic charges are constrained exactly as in Section 6.4.3. The proof, which is
very similar to that above, is given in Appendix D.

In spite of their limitations, the boundary conditions (6.40) allow us to define
the partition functions Zodd and Zeven in Eq. (6.39) using the gauge transformation
(6.66) and (6.68), respectively. The ratio Zodd/Zeven gives the difference in the
ground state energies between the two sectors of the theory, i.e., the lightest
states compatible with the odd or even magnetic charges. It is obvious that
Zeven will give the vacuum state, but the interpretation of Zodd is slightly more
difficult. If there is only one residual U(1) group, only the monopole species which
corresponds to it is massive, and therefore Eq. (6.39) gives the monopole mass,
just as in SU(2). If there are several residual U(1) groups, Zodd represents a state
that contains one of each monopole species. Depending on which configuration
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has the lowest energy, they may either be as separate free particles, in which case
Eq. (6.39) gives the sum of their masses, or as a bound state in which case it
gives the energy of the bound state.

6.4.4 Relation To The Continuum and Zeroes of Higgs

It is interesting to see how twisted C-periodic (and mixed) boundary conditions
relate back to Abelian magnetic charge in the continuum theory. Here we look
at how the charge forcing boundary conditions translate in the continuum SU(2)
case.

Recall that Abelian projected magnetic charge is located at zeroes of the Higgs
field in the continuum. Thus, boundary conditions which force an odd number of
monopoles must force an odd number of zeroes of Φ. This is easiest to see for the
case of C-periodic boundary conditions with twist in each direction. First write
these boundary conditions in the form

Φ(x⃗+ nı̂) = −σiΦ(x⃗)σi. (6.69)

It is then clear from the anticommutativity properties of the Pauli matrices that
the components of the Higgs field in the adjoint representation Φ = ϕ⃗ · σ⃗ inherit
the boundary conditions

ϕ1(x⃗+ n1̂) = −ϕ1(x⃗),

ϕ2(x⃗+ n2̂) = −ϕ2(x⃗),

ϕ3(x⃗+ n3̂) = −ϕ3(x⃗), (6.70)

while all other components are periodic. This is as we should expect, as the Higgs
field should have a hedgehog configuration near the boundary.

The boundary conditions (6.70) ensure that ϕ1 has an odd number of zeroes
on every line through the box in the x direction. By continuity, these combine to
form surfaces pinned to the boundary in the orthogonal plane. Similarly, there
are an odd number of surfaces through the other two directions where ϕ2 and
ϕ3 are respectively zero. Because of their relative orthogonality, these surfaces
intersect in an odd number of points where all three components are zero. So we
have an odd number of monopoles.

To see how this works, first consider the surfaces where ϕ1 and ϕ2 are zero.
These intersect to form an odd number of lines in the z direction on which ϕ1

and ϕ2 are both zero. By (6.70) there must be an odd number of points on each
of these lines where ϕ3 is zero, and hence an odd number of points in total where
ϕ⃗ vanishes.

It is straightforward to check that all of the boundary conditions which force
an odd magnetic charge have this property. Conversely, those with trivial mag-
netic charge modulo 4π are found to permit only an even number points where
the Higgs field is zero.
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This can extend to forcing degenerate number of eigenvalues for Higgs corre-
sponding to the appropriate SU(2) subgroups when we go to SU(2N). There the
twist is just SU(2) twist in block diagonal form. It is not quite so trivial though
since we have to partially diagonalize the Higgs first and further work is required.

6.5 Summary

In summary:

1. ’t Hooft-Polyakov monopoles are studied extensively using continuum semi-
classical analysis, however, to understand their non-perturbative properties
it is essential to put the concerned theory on the lattice. In this chapter, we
studied an extension of anti-periodic boundary conditions for SU(N) which
are called C-periodic boundary conditions. C-periodic boundary conditions
for SU(N) have very rich structure. These boundary conditions with non-
trivial gauge transformations were used to insert magnetic monopoles in the
SU(2)+adjoint Higgs theory to study the deconfinement phase transitions
in the so-called Grand Unified Theories on the lattice in Ref. [51].

2. We have shown how C-periodic boundary conditions (6.40) consisting of
complex conjugation and gauge transformations can be used to impose a
non-zero magnetic charge in SU(N)+adjoint Higgs theory while preserving
translation invariance. This method has significant restrictions: it only
works for SU(N) with even N , the charges can only be constrained to be
odd or even, and every residual U(1) group has to have the same charge.
Nevertheless, even with these restrictions, the boundary conditions make it
possible to study magnetic monopoles in lattice Monte Carlo simulations.
In particular, it will be straightforward to measure the monopole mass in the
same way as in Ref. [152] and to compare the results with their continuum
counter-part.
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Chapter 7

Conclusions

There is little doubt that Quantum Chromodynamics (QCD), which is based on
the quantum field theory framework, is the theory of strong interactions. For
continuum quantum field theory, known reliable methods include perturbation
theory, semi-classical expansions or large N expansions. However, to study many
important physical phenomena such as confinement and dynamical chiral symme-
try breaking in QCD, a fully non-perturbative approach is essential. Lattice field
theory is such a non-perturbative approach that has been immensely successful
in practical calculations of non-perturbative quantities in QCD. However, in the
non-perturbative domain, the connection between the lattice and the continuum
methods is still under-developed. The main aim of this thesis was to study this
connection, specifically in two cases: Landau gauge fixing and ’t Hooft-Polyakov
monopoles.

Landau Gauge Fixing

There are two major approaches to studying non-perturbative phenomena in
QCD: the Dyson-Schwinger Equations (DSEs) approach, which is based on a co-
variant continuum formulation, and lattice gauge theory. In the covariant contin-
uum formulation of gauge theories, one has to fix a gauge, most popularly Landau
gauge, to remove the redundant degrees of freedom. There, gauge-fixing is based
on the so-called Faddeev-Popov procedure, or in more sophisticated language, the
Becchi-Rouet-Stora-Tyutin (BRST) formulation [9]. In non-Abelian field theo-
ries, however, this procedure does not fix the gauge uniquely but leaves copies
of physically equivalent gauge fields, called Gribov copies [12]. In the perturba-
tive limit, where perturbations around the trivial configuration of gauge fields
are considered, the corresponding gauge fixing condition has no Gribov copies.
However, in the non-perturbative domain, Gribov copies do appear. Lattice field
theory, on the other hand, offers an opportunity to perform first principle cal-
culations of physical quantities in the non-perturbative domain. However, when
following an analogous gauge fixing procedure on the lattice, one encounters, in
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addition to Gribov copies, the Neuberger 0/0 problem [29, 30]: the expectation
value of a gauge-fixed observable turns out to be of the indefinite form 0/0.

In Chapter 2, we explained the Morse theoretical interpretation of Gribov
copies and the Neuberger 0/0 problem on the lattice. That is, the standard
lattice Landau gauge (SLLG) fixing device, which needs to be inserted in the
gauge-invariant measure of the theory in the Faddeev-Popov procedure, calculates
the Euler characteristic of the group manifold for the gauge-fixed link variables
at each site, which is zero for compact U(1) and a generic SU(N) [39]. We argued
that the Neuberger 0/0 problem can be solved for SU(N) if that for compact U(1)
is solved together with Schaden’s coset space BRST formulation which fixes the
gauge to the maximal Abelian group U(1)N−1 [39]. We proposed a modification of
the gauge-fixing functional via stereographic projection of compact U(1) circles
of each gauge-fixed link angles, which has no difference with the SLLG in the
continuum limit but resolves the Neuberger 0/0 problem for the compact U(1)
case. Moreover, the modified lattice Landau gauge (MLLG) restricts the lower
bound on the number of Gribov copies NGC to polynomial increase with respect
to the lattice size as compared to exponential increase for the SLLG.

In Chapter 3, we worked with lower dimensional lattice toy models employ-
ing either periodic or anti-periodic boundary conditions, for compact U(1). We
analytically solved the gauge fixing conditions corresponding to both the SLLG
and MLLG. For the SLLG, we explicitly demonstrated the topological origin of
the Neuberger 0/0 problem in these simple toy models, by classifying all Gribov
copies in terms of Morse theory, and also showed that NGC exponentially grows
with the lattice size. For the MLLG, we showed that NGC increases polynomially
with the lattice size and so is exponentially suppressed compared to the SLLG, in
these lower dimensional models. Furthermore, we constructed the corresponding
Faddeev-Popov procedure for these lower dimensional models via the MLLG. For
the MLLG, we also showed that there is no cancellation among Gribov copies for
an arbitrary dimensional lattice and so the Neuberger 0/0 problem is no longer
present in the compact U(1) case. It is then straightforward to construct the
corresponding BRST formulations for these models.

The gauge-fixing equations for higher dimensional lattices are highly non-
linear and hence difficult to solve. In Chapter 4, we transformed these (trigono-
metric) equations to polynomial equations and interpreted the problem in terms
of Algebraic Geometry. This interpretation then allowed us to use sophisticated
Computational Algebraic Geometry techniques, specifically the Groebner basis
technique. This technique computationally solves a system of polynomial equa-
tions exactly. Though the corresponding algorithm suffers from the so-called
Exponential Space complexity and solving large systems is difficult, we reported
that the simplest non-trivial case of the SLLG on a two-dimensional lattice (i.e.,
a 3 lattice with anti-periodic boundary conditions) has been recently solved in a
restrictive sense, in collaboration with V. Gerdt and D. Robertz. Furthermore,
we interpreted Gribov copies and related issues in terms of Algebraic Geometry
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terminology. We have also pointed out that this method can be applicable to
many problems in particle physics and statistical mechanics such as solving the
classical equations of motion for compact QED on the lattice, representations of
Lie groups etc.

The Algebraic Geometry interpretation of the lattice Landau gauge fixing
equations opens up an opportunity to use a very recent method, the Numerical
Polynomial Homotopy Continuation (NPHC) method, to solve the corresponding
system numerically. Using the NPHC method, up to a numerical precision, one
can obtain all solutions of a system of multivariate polynomial equations. In
Chapter 5 we introduced the method and then solved the above mentioned 3× 3
lattice case, for the trivial orbit and for random orbits with both periodic and
anti-periodic boundary conditions. The NPHC method looks very promising for
lattice field theory computations where it promises to find all the local and global
extrema and the saddle points if the given functional is in the polynomial form.
Moreover, this method is readily parallelizable.

’t Hooft-Polyakov Monopoles

’t Hooft-Polyakov monopoles have been studied extensively using continuum
semi-classical analysis. However, to understand their non-perturbative properties
it is essential to study them on the lattice. On the lattice, non-trivial bound-
ary conditions, called C-periodic boundary conditions, were used to ensure the
presence of ’t Hooft-Polyakov monopoles inside the lattice in Ref. [51]. This
construction then was used to study the deconfinement phase transitions in the
so-called grand unified theories, such as adjoint Higgs models, for the SU(2) ad-
joint Higgs model. In Chapter 6, we studied an extension of C-periodic boundary
conditions to SU(N). C-periodic boundary conditions for SU(N) have a very rich
structure. We showed how C-periodic boundary conditions, consisting of complex
conjugation and gauge transformations, can be used to impose ’t Hooft-Polyakov
monopoles in the SU(N) case while preserving the translation invariance. This
method has significant restrictions: it only works for SU(N) with even N , the
charges can only be constrained to be odd or even, and every residual U(1)
group has to have the same charge. Nevertheless, even with these restrictions,
the boundary conditions make it possible to study magnetic monopoles in lat-
tice Monte Carlo simulations for the SU(N) model with N > 2. In particular,
it will be straightforward to measure the monopole mass in the same way as in
Ref. [152].

Future Research Plans

With the proposed MLLG, it should now be possible to implement the gauge-fixed
Monte-Carlo simulations on the lattice: the current gauge-fixed Monte-Carlo
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simulations done via the SLLG, samples the first Gribov region, i.e., the set of all
local and global minima of the gauge-fixing functional, and do not take the rest
of the Gribov copies into account. By using the MLLG, one can sample from all
Gribov copies without encountering the Neuberger 0/0 problem. It will be very
interesting to compare the existing results in the continuum DSE approach to
those obtained on the lattice with the gauge-fixed Monte-Carlo simulations via
the proposed MLLG [35].

Solving the lattice Landau gauge fixing equations for higher dimensional lat-
tices is essential to studying Gribov copies and the Neuberger 0/0 problem in
both the SLLG and the MLLG. Moreover, the SLLG is studied extensively as
a spin-glass system in statistical mechanics and condensed matter theory, where
Gribov copies are the extrema and saddle points of the classical Hamiltonian
of the corresponding spin-glass system. In principle, the Groebner basis tech-
nique and the NPHC method can solve the corresponding polynomial equations,
and efforts are currently underway to do this. Most importantly, it will clarify
if the gauge fixing partition function (i.e., NGC in this case) for the MLLG is
orbit-independent.

It is highly desirable to solve the problems translated to the systems of polyno-
mial equations in Appendix C via these methods. Most importantly, the classical
equations of motion for a pure gauge theory on the lattice can in principle be
written in terms of polynomial equations and then we can get all solutions nu-
merically using the NPHC method. Note that since for compact U(1) and SU(2)
group parameterizations are available, converting the corresponding equations
of motion to polynomial ones is straightforward. For the SU(3) case, firstly, to
obtain a suitable parameterization of the group matrices is required. We have
already stated and discussed this problem in Appendix C in context of both the
Groebner basis technique and the NPHC method, though further work is re-
quired to get the corresponding parametrization. It should then be possible to
write down the corresponding equations of motion for the SU(3) case too.

Our findings in Chapter 6 generalizes the results obtained for SU(2) in Ref. [51],
and will, most importantly, allow us to calculate the non-perturbative quantum
mass of ’t Hooft-Polyakov monopoles for SU(N) theories on the lattice, with even
N .
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Appendix A

No Neuberger 0/0 Problem in
Higher Dimensional Lattices

Theorem: There is no Neuberger Zero problem in the MLLG for any
dimension with anti-periodic boundary conditions.

With anti-periodic boundary conditions, the Faddeev-Popov operator for the
MLLG can be decomposed, in the same way as the one-dimensional case, as

M s
FP =

d∑
µ=1

(MµD
s
µM

T
µ ), (A.1)

whereDs
µ’s are diagonal matrices with the diagonal entries sec2((ϕi,µ+θi+µ̂−θi)/2)

with i running over all lattice sites and µ running over the lattice dimension d.
Now, it can be shown that the non-singular matrices M1,. . . ,Md are permuta-

tions of each other. That is, M2 = P2M1P
T
2 , . . . , Md = PdM1P

T
d , where Pµ’s are

the permutation matrices containing exactly single entry 1 and all other entries
0 in any given row or column, i.e., they only reorder the corresponding matrices
Mµ’s. Moreover, their determinants are ±1, and so

M s
FP =

d∑
µ=1

((PµM1P
T
µ )

TDs
µ(PµM1P

T
µ )), (A.2)

where we have taken P1 as the identity matrix to be consistent with the notations.
Now, since the diagonal entries of all Ds

µ are positive definite real numbers for
ϕθ
i,µ = ϕi,µ + θi+µ̂ − θµ mod 2π ∈ (−π, π), all Ds

µ are positive definite matrices.
Moreover, since Mµ are non-singular matrices, all MµD

s
µM

T
µ are positive definite

matrices for all µ = 1, . . . , d, according to Sylvester’s law of inertia. Because the
sum of positive definite matrices is also a positive definite matrix, M s

FP in this
case is strictly a positive definite matrix. So, for all solutions (though they are not
known yet), there is no cancellation of signs of the corresponding Faddeev-Popov
determinants, i.e., no Neuberger zero.
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6.5 Summary

We can use the same arguments for the Faddeev-Popov operator in Eq. (E.3)
for the modification via orbifolding case where the diagonal entries of the diagonal
matrices Dabs

µ are | cosϕθ
i,µ| which are always positive definite numbers for ϕθ

i,µ ∈
(−π, π]. So again there is no Neuberger zero.

Theorem: There is no Neuberger Zero problem in the MLLG for
any dimension with periodic boundary conditions.

With periodic boundary conditions, a decomposition of the corresponding
M s

FP is not available so far and so we use another method here. We first separate
M s

FP for different µ in Eq. (3.6), i.e., M s
FP =

∑
µ(M

s
FP )µ for a d-dimensional

square lattice. Now, we consider the quadratic form for the symmetric matrices
(M s

FP )µ with an nd × 1 vector y⃗ ̸= 0⃗ whose elements are yi where now i =
(i1, . . . , id) with i1, . . . , id running over 1, . . . , n for the square lattice. Thus, it is
easy to check that for any µ,

y⃗T (M s
FP )µ y⃗ =

∑
i

sec2
ϕθ
i,µ

2
(yi+µ̂ − yi)

2, (A.3)

which is 0 only if all yi are equal, which is the constant zero mode and is strictly
positive for all other cases. Also, these yi are taken to be following the periodic
boundary conditions, in this expression. Thus, the matrix (M s

FP )µ is positive
semi-definite for all µ = 1, . . . , d. Since the sum of positive semi-definite matrices
is a positive semi-definite matrix, M s

FP is also a positive semi-definite matrix.
Thus there is no Neuberger zero since there exists no cancellations among the
Faddeev-Popov determinants.
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Appendix B

One-dimensional Periodic
Boundary conditions

Here, we deal with the gauge-fixing conditions with periodic boundary conditions
for both the SLLG and the MLLG.

B.1 SLLG

Since with periodic boundary conditions there is one free variable, the system of
gauge-fixing equations for the SLLG is

sinϕθ
1 = sinϕθ

n

. . .

sinϕθ
n = sinϕθ

n−1. (B.1)

Out of these n equations n− 1 are linearly independent. To eliminate it, without
loss of generality, we can set θn = 0 so that there are n− 1 independent variables
in the system. Also notice that then nth equation can safely be removed from
the system since it is a linearly dependent equation. Thus, we are left with n− 1
equations in n− 1 variables θi. The new system, with θn = 0, is

sinϕθ
1 = sinϕθ

n

. . .

sinϕθ
n−1 = sinϕθ

n−2, (B.2)

which in turn gives

ϕθ
1 + 2πk1 = ϕθ

n or π − ϕθ
n

. . .

ϕθ
n−1 + 2πkn−1 = ϕθ

n−2 or π − ϕθ
n−2. (B.3)
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B.1 SLLG

Now, instead of n − 1 variables ki, we take n variables pi as 2kiπ = pi − pi−1

with constraints
∑n

i=1 pi = 0, and with the periodic boundary conditions, i.e., as
p0 = pn. Thus, we get

ϕθ
1 + p1 = ϕθ

n + pn or π − (ϕθ
n + pn)

. . .

ϕθ
n−1 + pn−1 = ϕθ

n−2 + pn−2 or π − (ϕθ
n + pn−2). (B.4)

Here, pi is always an integer multiples of 2π up to a constant contribution which
is an integer multiple of 2π

n
, say 2π

n
r. Thus, for fixed r = 0, 1, . . . , n − 1, and for

integers li,

pi = 2πli +
2π

n
r, (B.5)

with i = 1, . . . , n. Also using
∑n

i=1 pi = 0 we get

n∑
i=1

li = −r, −
n−1∑
i=1

li − r = ln. (B.6)

The original n− 1 independent ki each runs over all integers when n constrained
integers li do. After relabelling ϕ̃θ

i := ϕθ
i + 2πli = ϕ̃i + θi+1 − θi, Eq. (B.4), for a

fixed r = 0, . . . , n− 1, becomes

ϕ̃θ
1 = ϕ̃θ

n or π − ϕ̃θ
n

. . .

ϕ̃θ
n−1 = ϕ̃θ

n−2 or π − ϕ̃θ
n−2. (B.7)

We should instead choose to write it as

ϕ̃θ
1 = (−1)qnϕ̃θ

n + qnπ

. . .

ϕ̃θ
n−1 = (−1)qn−2ϕ̃θ

n−2 + qn−2π, (B.8)

where all qi ∈ {0, 1} with q0 = qn (we choose to leave qn−1 to be 1 here but our
results are independent of it). In terms of ϕθ

i variables, there are still n variables
in n− 1 equations and so it would be better to transform the ϕ̃θ

i of Eq. (B.8) in
terms of ϕ̃θ

n on the right hand side. This can be done by substituting the first
equation in the second and the resulting second equation to the third and so on
in Eq. (B.8), and finally we get

ϕ̃θ
i = (qi−1 +

i−2∑
l=0

ql(
i−2∏
k=l

(−1)qk+1))π + ϕ̃θ
n

i−1∏
l=0

(−1)ql , (B.9)
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B.1 SLLG

for i = 1, . . . , n− 1. Now, summing over Eq. (B.9) for all i = 1, . . . , n− 1, we get

n−1∑
i=1

ϕ̃θ
i =

n−1∑
i=1

(
(qi−1 +

i−2∑
l=0

ql(
i−2∏
k=l

(−1)qk+1)
)
π + ϕ̃θ

n

i−1∏
l=0

(−1)ql
)

=
n−1∑
i=1

(
qi−1 +

i−2∑
l=0

ql(
i−2∏
k=l

(−1)qk+1)
)
π + ϕ̃θ

n

n−1∑
i=1

( i−1∏
l=0

(−1)ql
)

=
n−1∑
i=1

(
qi−1 +

i−2∑
l=0

ql(
i−2∏
k=l

(−1)qk+1)
)
π + (ϕ̃n + θ1)

n−1∑
i=1

( i−1∏
l=0

(−1)ql
)

(B.10)

where in the last equality we have used ϕ̃θ
n = ϕ̃n + θ1 with ϕ̃n = ϕn + 2πli. Now,

using ϕ̃θ
i = ϕ̃i + θi+1 − θi for i = 1, . . . , n− 1,

n−1∑
i=1

ϕ̃θ
i =

n−1∑
i=1

(ϕ̃i + θi+1 − θi) =
n−1∑
i=1

(ϕ̃i)− θ1. (B.11)

Using this in Eq. (B.10) and adding ϕ̃n on both sides, we get

n∑
i=1

ϕ̃i =
n−1∑
i=1

(
qi−1 +

i−2∑
l=0

ql(
i−2∏
k=l

(−1)qk+1)
)
π + ϕ̃θ

n

( n−1∑
i=1

(
i−1∏
l=0

(−1)ql) + 1
)

∴ n(ϕ− 2πr

n
) =

n−1∑
i=1

(
qi−1 +

i−2∑
l=0

ql(
i−2∏
k=l

(−1)qk+1)
)
π + ϕ̃θ

n

( n−1∑
i=1

(
i−1∏
l=0

(−1)ql) + 1
)

∴ ϕ̃θ
n =

n(ϕ− 2πr
n
)−

(∑n−1
i=1 (qi−1 +

∑i−2
l=0 ql(

∏i−2
k=l(−1)qk+1))

)
π

(
∑n−1

i=1 (
∏i−1

l=0(−1)ql) + 1)
,(B.12)

where, we have defined ϕ := 1
n

∑n
i=1 ϕi. Thus, we finally have an expression for

ϕ̃θ
n which appears on RHS of all the equations in Eq. (B.9). Together with (B.12)

we get all the ϕ̃θ
i for i = 1, . . . , n, in terms of single variable, namely average of

links angles before gauge-fixing, ϕ. Here, different values of positive integers qi
give different solutions. Since the term in Eq. (B.9) multiplied with π can take
only integer values, it can only be either 0 or 2π modulo 2π.

After straight-forward though tedious combinatorics we find that for odd n

NGC =

n−1
2∑

i=0

(n− 2i)

(
n

i

)
, (B.13)

and for even n

NGC =

n−2
2∑

i=0

(n− 2i)

(
n

i

)
. (B.14)

Thus, NGC in this case exponentially grows with the number of lattice sites.
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B.1 SLLG

B.1.1 Classification Of Gribov Copies of The SLLG

For the one-dimensional lattice with periodic boundary conditions, we should
classify all the Gribov copies presented in the appendix B according to the number
of eigenvalues of the Faddeev-Popov operator. For the anti-periodic boundary
conditions case, this was relatively straight-forward with the help of Sylvester’s
law of inertia. However, the decomposition of the Faddeev-Popov operator in
Eq. (3.28) is much difficult. Instead, we use another trick here. Consider an
arbitrary vector y⃗ = (y1, . . . , yn) ̸= 0⃗. Now, we use the Faddeev-Popov operator
including the constant zero mode that is given in Eq. (3.5) for µ = 1 and

y⃗TMFP y⃗ =
n∑

i=1

ci(yi − yi+1)
2

= cn

n∑
i=1

(−1)qi(yi − yi+1)
2, (B.15)

where ci = cosϕθ
i and qn = 0. In the second equality we have used the fact that

for the gauge-fixed configurations sinϕθ
i = sinϕθ

n for all i = 1, . . . , n − 1 and so
cosϕθ

i = (−1)qi cosϕθ
n for all i = 1, . . . , n − 1 with qi ∈ {0, 1} and qn = 1. The

case where y1 = · · · = yn represents the constant zero mode and we disregard this
in our discussion and the case cn = 0 at which MFP is a matrix with all entries
zero. At all other solutions, MFP is a non-singular matrix. Now, the number of
negative (positive/zero) eigenvalues ofMFP is the same as the number of negative
(positive/zero) signs of the above quadratic form, according to Sylvester’s law of
inertia (see Ref. [76] for more details on the quadratic form version of Sylvester’s
law of inertia).

Now, for the class of solutions with all (−1)qi = 1, all n−1 non-zero eigenvalues
are positive definite numbers when cn is positive, and negative definite numbers
when cn is negative. There are total n Gribov copies for this class in terms of ϕθ

n

labelled by r = 0, . . . , n− 1 as shown above. These are the maxima and minima
(both global and local) of the SLLG functional. With some combinatorics, we
can deduce that in the class of solutions for which there are exactly i negative

eigenvalues there are
n(n

2
−i)

n−i
Gribov copies for i = 0, . . . , (n−2)

2
(corresponding

to cn being a positive number, formally) and
n(i−n−2

2 )
i+1

(
n−1
i

)
Gribov copies for

i = (n)
2

(
n−1
i

)
, . . . , n − 1 (corresponding to cn being a negative number, formally)

for even n. Similarly, there are
n(n+1

2
−i)

n−i

(
n−1
i

)
Gribov copies for i = 0, . . . , (n−1)

2

and
n(i−n−1

2 )
i+1

Gribov copies for i = (n+1)
2

, . . . , n − 1 for odd n, with i negative
eigenvalues for odd n. Thus, we have classified Gribov copies in terms of Gribov
regions here.
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B.2 MLLG

B.2 MLLG

In this case, analogous to Eq. (B.4) we have, after eliminating the global gauge
freedom,

tan
ϕθ
1

2
= tan

ϕθ
n

2
. . .

tan
ϕθ
n−1

2
= tan

ϕθ
n−2

2
, (B.16)

i.e.,

ϕ̃θ
1 = ϕ̃θ

n

. . .

ϕ̃θ
n−1 = ϕ̃θ

n−2, (B.17)

where we follow exactly the same steps that lead to Eq. (B.8) in the SLLG above
except in the last step where we use the fact that the tangent function is strictly
monotonous for the (−π, π) range. Thus there is no qi variables unlike the SLLG.
In Eq. (B.12), the denominator is now n and in the numerator the π term turns
out to be 0 mod 2π for the MLLG. So, we are left with

ϕ̃θ
n = ϕ− 2πr

n
, (B.18)

for r = 0, . . . , n− 1 which gives all ϕ̃θ
i as

ϕ̃θ
i = ϕ− 2π

n
r,

i.e.,

ϕθ
i = ϕ− 2π

n
r + 2πli. (B.19)

Thus, for the MLLG in the one-dimensional lattice with periodic boundary con-
ditions there are n Gribov copies

Let us now write Eq. (B.17) now as,

θ2 − θ1 = ϕ− ϕ̃1, θ3 − θ2 = ϕ− ϕ̃2 . . . ,−θn−1 = ϕ− ϕ̃n−1, (B.20)

Now, there are n − 1 variables θi and n − 1 linear equations. Writing these
equations in matrix form and solving them finally gives, for i = 1, . . . , n− 1,

θi =
n−1∑
j=i

(ϕj − ϕ) + 2π
n−1∑
j=i

lj +
2π

n
r(n− i), (B.21)
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B.2 MLLG

for each r = 0, . . . , n− 1. To write this in more convenient form, we define

θ
(0)
i :=

n−1∑
k=i

(ϕk − ϕ), (B.22)

then

θi = θ
(0)
i + 2πmi −

2π

n
ir , (B.23)

for each r = 0, . . . , n− 1 and integers

mi =
n−1∑
j=i

lj + r , (B.24)

with r = 0, . . . , n− 1 labelling the n Gribov copies. Thus solutions (B.21) can be
written as,

θi = θ
(0)
i + 2πmi −

2π

n
ir , (B.25)

again for each r = 0, . . . , n− 1.
The integers m guarantee that for each r, there is precisely one solution with

all θi in the range [0, 2π). All n Gribov copies here are related to one another by
gauge transformation of the form,

θk =
2π

n
rk mod 2π, k = 1, . . . , n− 1. (B.26)

This changes all link angles by 2πr
n

modulo 2π, i.e.,

ϕθ
i = ϕi +

2π

n
r mod 2π, for i = 1, . . . , n− 2 ,

ϕθ
n−1 = ϕn−1 −

2π

n
r(n− 1) = ϕn−1 +

2π

n
r mod 2π,

ϕθ
n = ϕn + θ1 = ϕn +

2π

n
r. (B.27)

The average link angle, ϕ, changes from one copy to the next by the same amount

ϕ =
1

n

n∑
i=1

ϕi 7→ ϕ+
2π

n
r (B.28)

This means that n−1 independent gauge angles θi just can rotate every link angle
ϕi along the chain to equal one of the n copies of ϕ, i.e., ϕr = ϕ − 2π

n
r mod 2π.

This fixes the one dimensional gauge freedom up to the constant gauge rotations
which remains unconstrained.
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Appendix C

Miscellaneous: Algebraic
Geometry

C.1 Transforming Problems To Algebraic Ge-

ometry

Here, we transform several theoretical physics problems to polynomial systems
in order to be able to use computational and numerical Algebraic Geometry to
solve them.

Ising Model

The classical Ising model Hamiltonian is,

H = −
∑
i,µ

Ji,µ̂σi+µ̂σi (C.1)

where for Ji,µ̂ > 0 the interaction is called ferromagnetic, for Ji,µ̂ < 0 the in-
teraction is called antiferromagnetic and for Ji,µ̂ = 0 it is called non-interacting.
Moreover, σi’s can be ±1.

To transform it to polynomial form, we use the Lagrange multipliers trick and
set the Hamiltonion as

H = −
∑
i,µ

Ji,µ̂σi+µ̂σi +
∑
i

λi(σ
2
i − 1) (C.2)

To obtain all extrema of this Hamiltonion, we equate first derivatives of H
with respect to all σi’s to zero, i.e.,

∂H

∂σi

= 0

∂H

∂λi

= 0. (C.3)
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C.1 Transforming Problems To Algebraic Geometry

These will give equations at each site, i, as

2λiσi +
∑
µ

(Ji,µ̂σi−µ̂ + Ji+µ̂,µ̂σi+µ̂) = 0

σ2
i − 1 = 0, (C.4)

which ensures the combined system is a system of polynomial equations. It
must be noted that Ji,µ can be treated even as algebraic coefficients and the
Comprehensive Groebner Basis can be calculated in theory or the polynomial
homotopy continuation methods can be very useful here.

Adding the magnetic field term, the Hamiltonion is now,

H = −
∑
i,µ

Ji+µ̂,iσi+µ̂σi +
∑
i

hiσi, (C.5)

and the corresponding equations are modified to:

2λiσi +
∑
µ

(Ji,µ̂σi−µ̂ + Ji+µ̂,µ̂σi+µ̂ + hi) = 0

σ2
i − 1 = 0. (C.6)

This is again a polynomial system with all variables and parameters taking values
from the real field. It should be noted here that the periodic and anti-periodic
boundary conditions can be used in all or some variables and coefficients here.

Compact QED and Instantons

The standard plaquette-action for compact QED [161] on lattice is1

S = β
∑
i,µ<ν

cos(ϕi,µ + ϕi+µ̂,ν − ϕi+ν̂,µ − ϕi,ν), (C.7)

where µ and ν are directional indices and i is site index. β is the lattice coupling
constant. To get all extrema of this action, we take first derivatives of it with
respect to all ϕi,µ’s

fi,µ =
∂S

∂ϕi,µ

= 0. (C.8)

Here, there are always dnd equations and dnd variables. Again by expanding all
the trigonometric terms, writing sinϕi,µ = si,µ and cosϕi,µ = ci,µ and adding
constraint equations we get 2dnd equations and 2dnd variables and hence we
obtain the corresponding ideal, I. β can be treated as a parameter of the system.
Now, what we are interested in addition to several other things, is to get all

1I am thankful to Peter Moran for explaining this problem to me.
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C.1 Transforming Problems To Algebraic Geometry

instanton solutions, i.e., those solutions of these equations at which S = 8kπ2

g
.

These are called instanton solutions. By using the Groebner Basis method or
Polynomial Homotopy method which is introduced in Chapter 5, we can get all
solutions of the above mentioned equations and then it will be trivial to check at
which solutions the action satisfies this instanton condition.

We may also use another trick to get exactly those solutions for which, say S =
8π2

g
, 16π

2

g
etc. In the above mentioned 2dnd equations, add one more equation S−

8π2

g
= 0 with S as in Eq. (C.7) in terms of si,µ and ci,µ. Here, dim R[{ci,µ, si,µ}]/I

will give the number of instanton solutions with instanton charge 8π2

g
etc.

Abelian Higgs Model On The Lattice

The classical action for the Abelian Higgs model [161] on lattice is

S = β1

∑
i,µ<ν

cos(ϕi,µ + ϕi+µ̂,ν − ϕi+ν̂,µ − ϕi,ν)

+β2

∑
i,µ

(R2
i +R2

i+µ̂ − 2R2
iRi+µ̂ cos(ϕi,µ + θi+µ̂ − θi))

+β3

∑
i

(R2
i − f 2)2, (C.9)

where Rie
iθi ’s are Higgs fields and ϕi,µ are gauge fields. The βj, for j = 1, 2, 3, are

coupling constants. To obtain instanton solutions of this model, we again take
first derivatives of this action with respect to all variables, i.e.,

∂S

∂θi
=

∂S

∂ϕi,µ

=
∂S

∂Ri

= 0. (C.10)

Here, again after expanding them in trigonometric functions, it becomes a
system of polynomial equations in variables cϕi,µ, s

ϕ
i,µ, ci, si and Ri, with the Ri’s

already being algebraic variables. And

β1 =
1

a2g2
, β2 = 1, β3 = λa2, (C.11)

after appropriate renormalization.

SU(2)

SU(2) group is a set of complex matrices U such that det U = 1 and U †U = I.
The Groebner basis technique can be used to solve these two constraints and to
obtain a general form of an SU(2) matrix. Let U be any 2× 2 complex matrix,

U =

(
a+ ib c+ id
e+ if g + ih

)
, (C.12)
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C.1 Transforming Problems To Algebraic Geometry

with a, b, c, d ∈ R. Now,

det U = −ce− ide− icf + df + ag + ibg + iah− bh = 1

1 = −ce+ df + ag − bh

0 = −de− cf + bg + ah = 0. (C.13)

The second constraint UU † = I finally giving equations to be solved after com-
paring real and imaginary parts as,

−ce+ df + ag − bh− 1 = 0

−de− cf + bg + ah = 0

a2 + b2 + c2 + d2 − 1 = 0

ae+ bf + cg + dh = 0

ae+ bf + cg + dh = 0

e2 + f 2 + g2 + h2 − 1 = 0

be− af + dg − ch = 0

−be+ af − dg + ch = 0.

A Groebner Basis for lexicographic ordering a b c d e f g h is

GSU2 =< e2 + f 2 + g2 + h2 − 1, d− f, c+ e, b+ h, a− g > (C.14)

whose solutions are,

d = f

c = −e

b = −h

a = g

e2 + f2 + g2 + h2 − 1 = 0. (C.15)

So any SU(2) matrix U is now, for e =
√

−f2 − g2 − h2 + 1,

U =

(
g − ih if −

√
−f2 − g2 − h2 + 1

if +
√

−f2 − g2 − h2 + 1 g + ih.

)
(C.16)

Thus this group can be parameterized by three real numbers.

SU(2): Another Approach

A more useful way for solving constraints on SU(N) is by treating complex con-
jugate variables as independent variables and we show this trick at work in the
SU(2) case. Let us take an arbitrary matrix U as

U =

(
a b
c d

)
(C.17)
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where now a, b, c, d are complex variables, unlike the above mentioned case where
they were real variables. Now, the constraint equation detU = 1 = detU † gives,

ad− bc− 1 = 0

a∗d∗ − b∗c∗ − 1 = 0 (C.18)

and UU † = I gives

aa∗ + bb∗ − 1 = 0

ac∗ + bd∗ = 0

ca∗ + db∗ = 0

cc∗ + dd∗ − 1 = 0, (C.19)

and U †U = I gives

aa∗ + cc∗ − 1 = 0

ba∗ + dc∗ = 0

ab∗ + cd∗ = 0

bb∗ + dd∗ − 1 = 0. (C.20)

Now, computing a Groebner basis for a ≻ b ≻ c ≻ d ≻ a∗ ≻ b∗ ≻ c∗ ≻ d∗

lexicographic ordering, we get

< −b∗c∗ + a∗d∗ − 1, d− a∗, c+ b∗, b+ c∗, a− d∗ > (C.21)

and so we finally get

d = a∗

c = −b∗ (C.22)

giving,

U =

(
a b
−b∗ a∗,

)
(C.23)

as is well known.

SO(2, R)

SO(2, R) group is a set of matrices U with det U = 1 and UUT = I with real
entries in it. Let

U =

(
a b
c d

)
. (C.24)
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Then the constraints give equations as

−bc+ ad− 1 = 0

a2 + b2 − 1 = 0

ac+ bd = 0

ac+ bd = 0

c2 + d2 − 1 = 0. (C.25)

A Groebner basis with respect to lexicographic ordering a b c d is

GSO(2,R) =< c2 + d2 − 1, b+ c, a− d > . (C.26)

After solving these simple equations, we obtain a general form of an SO(2, R)
matrix as (

d −
√
1− d2√

1− d2 d

)
, (C.27)

which is parameterized by a single parameter.

SO(3)

For higher gauge groups, we have more free parameters and so we may not have
such a simple final matrix expression in the end. However we work out the case
for SO(3) which consists of 3× 3 matrices U with det U = 1 and UUT = I. Let

U =

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 . (C.28)

The two constraints give equations,

0 = −1 + a21 + a22 + a23
0 = a1 ∗ b1 + a2 ∗ b2 + a3b3

0 = −1 + b21 + b22 + b23
0 = a1c1 + a2c2 + a3c3

0 = −1− a3b2c1 + a2b3c1 + a3b1c2 − a1b3c2

−a2b1c3 + a1b2c3

0 = b1c1 + b2c2 + b3c3

0 = −1 + c21 + c22 + c23. (C.29)
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A Groebner basis with respect to a1 ≻ a2 ≻ a3 ≻ b1 ≻ b2 ≻ b3 ≻ c1 ≻ c2 ≻ c3,
with lexicographic ordering

GSO(3,R) = < −1 + c21 + c22 + c23,

1− b22 − b23 − c22 + b23c
2
2 − 2b2b3c2c3 − c23 + b22c

2
3,

−b1 − b2c1c2 + b1c
2
2 − b3c1c3 + b1c

2
3,

b1c1 + b2c2 + b3c3,

−(b1b2)− c1c2 + b23c1c2 − b2b3c1c3

−b1b3c2c3 + b1b2c
2
3,

c1 − b22c1 − b23c1 + b1b2c2 + b1b3c3,

−1 + b21 + b22 + b23, a3 + b2c1 − b1c2,

a2 − b3c1 + b1c3, a1 + b3c2 − b2c3 > . (C.30)

Eliminating b2, b3, c1, c2, c3 and getting all equations in the rest of the variables
we get,

a1 = b2c3 − b3c2

a2 = b3c1 −
c1c3(b2c2 + b3c3)

c22 + c23 − 1

a3 =
−b2c1c

2
3 + b3c1c2c3 + b2c1
c22 + c23 − 1

b1 =
c1(b2c2 + b3c3)

c22 + c23 − 1
. (C.31)

SU(3)

Let us take an arbitrary 3× 3 matrix with complex entries a, b, c, d, e, f, g, h, k as

U =

 a b c
d e f
g h k

 . (C.32)

Now, this matrix to be an SU(3) matrix should satisfy detU = I = detU∗ and
UU † = I = U †U , i.e.,

−ceg + bfg + cdh− afh− bdk + aek − 1 = 0

−c∗e∗g∗ + b∗f ∗g∗ + c∗d∗h∗ − a∗f ∗

h∗ − b∗d∗k∗ + a∗e∗k∗ = 0 (C.33)

and
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aa∗ + bb∗ + cc∗ − 1 = 0

ad∗ + be∗ + cf ∗ = 0

ag∗ + bh∗ + ck∗ = 0

da∗ + eb∗ + fc∗ = 0

dd∗ + ee∗ + ff ∗ − 1 = 0

dg∗ + eh∗ + fk∗ = 0

ga∗ + hb∗ + kc∗ = 0

gd∗ + he∗ + kf ∗ = 0

gg∗ + hh∗ + kk∗ − 1 = 0

aa∗ + dd∗ + gg∗ − 1 = 0

ba∗ + ed∗ + hg∗ = 0

ca∗ + fd∗ + kg∗ = 0

ab∗ + de∗ + gh∗ = 0

bb∗ + ee∗ + hh∗ − 1 = 0

cb∗ + fe∗ + kh∗ = 0

ac∗ + df∗ + gk∗ = 0

bc∗ + ef ∗ + hk∗ = 0

cc∗ + ff ∗ + kk∗ − 1 = 0. (C.34)

Now, a Groebner basis for a ≻ b ≻ ... ≻ h∗ ≻ k∗ lexicographic ordering is

< −c∗e∗g∗ + b∗f∗g∗ + c∗d∗h∗ − a∗f∗h∗ − b∗d∗k∗ + a∗e∗k∗ − 1,

b∗d∗ − a∗e∗ + k,−c∗d∗ + a∗f ∗ + h, c∗e∗ − b∗f ∗ + g,

−b∗g∗ + a∗h∗ + f, c∗g∗ − a∗k∗ + e,−c∗h∗ + b∗k∗ + d,

c+ e∗g∗ − d∗h∗,

b− f ∗g∗ + d∗k∗, a+ f∗h∗ − e∗k∗ > . (C.35)

One can now solve this new set of equations in terms of the independent
variables. However, since there are 8 free parameters, it is still cumbersome to
write down all equations in terms of these free parameters unlike the SU(2) case.
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SU(4)

Consider an arbitrary 4 × 4 matrix with complex entries a, . . . , r. Imposing
constraints detU = detU∗ = 1 and UU † = U †U = I,

dglo− chlo− dfmo+ bhmo+ cfno− bgno− dgkp

+chkp+ demp− ahmp− cenp+ agnp+ dfkq − bhkq − delq + ahlq

+benq − afnq − cfkr + bgkr + celr − aglr − bemr + afmr − 1 = 0

aa∗ + bb∗ + cc∗ + d∗d− 1 = 0, a∗e+ b∗f + c∗g + d∗h = 0

a∗k + b∗l + c∗m+ d∗n, a∗o+ b∗p+ c∗q + d∗r = 0

ae∗ + bf ∗ + cg∗ + h∗d = 0

e∗e+ f ∗f + g∗g + h∗h− 1 = 0, e∗k + f ∗l + g∗m+ h∗n = 0

e∗o+ f∗p+ g∗q + h∗r = 0, ak∗ + bl∗ + cm∗ + n∗d = 0

k∗e+ l∗f +m∗g + n∗h = 0, k∗k + l∗l +m∗m+ n∗n− 1 = 0

k∗o+ l∗p+m∗q + n∗r = 0, aa∗ + e∗e+ k∗k + o∗o− 1 = 0

ba∗ + e∗f + k∗l + o∗p = 0, ca∗ + e∗g + k∗m+ o∗q = 0

a∗d+ e∗h+ k∗n+ o∗r = 0, ab∗ + f ∗e+ l∗k + p∗o = 0

bb∗ + f ∗f + l∗l + p∗p− 1 = 0, cb∗ + f ∗g + l∗m+ p∗q = 0

b∗d+ f ∗h+ l∗n+ p∗r = 0, ac∗ + g∗e+m∗k + q∗o = 0

bc∗ + g∗f +m∗l + q∗p = 0, cc∗ + g∗g +m∗m+ q∗q − 1 = 0

c∗d+ g∗h+m∗n+ q∗r = 0, ao∗ + bp∗ + cq∗ + r∗d = 0

o∗e+ p∗f + q∗g + r∗h = 0, o∗k + p∗l + q∗m+ r∗n = 0

ad∗ + h∗e+ n∗k + r∗o = 0, bd∗ + h∗f + n∗l + r∗p = 0

cd∗ + h∗g + n∗m+ r∗q = 0, d∗d+ h∗h+ n∗n+ r∗r − 1 = 0

o∗o+ p∗p+ q∗q + r∗r − 1 = 0

d∗g∗l∗o∗ − c∗h∗l∗o∗ − d∗f∗m∗o∗ + b∗h∗m∗o∗

+c∗f ∗n∗o∗ − b∗g∗n∗o∗ − d∗g∗k∗p∗ + c∗h∗k∗p∗

+d∗e∗m∗p∗ − a∗h∗m∗p∗ − c∗e∗n∗p∗ + a∗g∗n∗p∗

+d∗f ∗k∗q∗ − b∗h∗k∗q∗ − d∗e∗l∗q∗ + a∗h∗l∗q∗

+b∗e∗n∗q∗ − a∗f ∗n∗q∗ − c∗f∗k∗r∗ + b∗g∗k∗r∗

+c∗e∗l∗r∗ − a∗g∗l∗r∗ − b∗e∗m∗r∗ + a∗f ∗m∗r∗ − 1 = 0

(C.36)
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we get and with lexicographic ordering a ≻ b ≻ ...q∗ ≻ r∗, a Groebner basis is

< d∗g∗l∗o∗ − c∗h∗l∗o∗ − d∗f∗m∗o∗ + b∗h∗m∗o∗ + c∗f ∗n∗o∗ − b∗g∗n∗o∗

−d∗g∗k∗p∗ + c∗h∗k∗p∗ + d∗e∗m∗p∗ − a∗h∗m∗p∗ − c∗e∗n∗p∗ + a∗g∗n∗p∗

+d∗f∗k∗q∗ − b∗h∗k∗q∗ − d∗e∗l∗q∗ + a∗h∗l∗q∗ + b∗e∗n∗q∗ − a∗f ∗n∗q∗

−c∗f∗k∗r∗ + b∗g∗k∗r∗ + c∗e∗l∗r∗ − a∗g∗l∗r∗ − b∗e∗m∗r∗ + a∗f ∗m∗r∗ − 1,

c∗f ∗k∗ − b∗g∗k∗ − c∗e∗l∗ + a∗g∗l∗ + b∗e∗m∗ − a∗f∗m∗ + r,

−d∗f ∗k∗ + b∗h∗k∗ + d∗e∗l∗ − a∗h∗l∗ − b∗e∗n∗ + a∗f ∗n∗ + q,

d∗g∗k∗ − c∗h∗k∗ − d∗e∗m∗ + a∗h∗m∗ + c∗e∗n∗ − a∗g∗n∗ + p,

−d∗g∗l∗ + c∗h∗l∗ + d∗f ∗m∗ − b∗h∗m∗ − c∗f∗n∗ + b∗g∗n∗ + o,

−c∗f ∗o∗ + b∗g∗o∗ + c∗e∗p∗ − a∗g∗p∗ − b∗e∗q∗ + a∗f ∗q∗ + n,

d∗f ∗o∗ − b∗h∗o∗ − d∗e∗p∗ + a∗h∗p∗ + b∗e∗r∗ − a∗f∗r∗ +m,

−d∗g∗o∗ + c∗h∗o∗ + d∗e∗q∗ − a∗h∗q∗ − c∗e∗r∗ + a∗g∗r∗ + l,

d∗g∗p∗ − c∗h∗p∗ − d∗f∗q∗ + b∗h∗q∗ + c∗f∗r∗ − b∗g∗r∗ + k,

c∗l∗o∗ − b∗m∗o∗ − c∗k∗p∗ + a∗m∗p∗ + b∗k∗q∗ − a∗l∗q∗ + h,

−d∗l∗o∗ + b∗n∗o∗ + d∗k∗p∗ − a∗n∗p∗ − b∗k∗r∗ + a∗l∗r∗ + g,

d∗m∗o∗ − c∗n∗o∗ − d∗k∗q∗ + a∗n∗q∗ + c∗k∗r∗ − a∗m∗r∗ + f,

−d∗m∗p∗ + c∗n∗p∗ + d∗l∗q∗ − b∗n∗q∗ − c∗l∗r∗ + b∗m∗r∗ + e,

−g∗l∗o∗ + f ∗m∗o∗ + g∗k∗p∗ − e∗m∗p∗ − f ∗k∗q∗ + e∗l∗q∗ + d,

c+ h∗l∗o∗ − f∗n∗o∗ − h∗k∗p∗ + e∗n∗p∗ + f∗k∗r∗ − e∗l∗r∗,

b− h∗m∗o∗ + g∗n∗o∗ + h∗k∗q∗ − e∗n∗q∗ − g∗k∗r∗ + e∗m∗r∗,

a+ h∗m∗p∗ − g∗n∗p∗ − h∗l∗q∗ + f∗n∗q∗ + g∗l∗r∗ − f ∗m∗r∗ >

(C.37)

Again we can solve these equations for few of the independent variables.

C.2 Special Appearance: Numerical Algebraic

Geometry

In Chapters 4 and 5, we have been working on systems which have isolated
solutions (zero-dimensional varieties). For positive dimensional varieties, since
there are infinitely many solutions, one needs a proper representation of the
solutions. The important first question to be asked is how we need to represent
the solutions. For a 0-dimensional variety, the solutions are just a finite set of
points, so they can be represented by complex numbers. For positive dimensional
varieties the situation is more involved. The solutions in this case form curves
or hypersurfaces. For nonlinear algebraic equations such parameterizations are
rare [162]. A way to represent the solutions is to use the defining equations for

115



C.2 Special Appearance: Numerical Algebraic Geometry

the solutions. However, this is also computationally expensive. The reader can
find a nice discussion about it in Ref. [92].

Numerical Algebraic Geometry (NAG) cleverly uses another approach2 in
which the solutions are represented as Witness Sets. We start with the fact that
the number of points at which a curve or a hypersurface defined by an irreducible
component, say of dimension d[i] in m-dimensional affine complex space, of a
system of polynomial equations intersects with a random hyperplane of dimension
c[i] = m − d[i] is equal to the degree of the hypersurface. For example, a cubic
curve in 3 dimensions intersects with a two-dimensional random hyperplane at
exactly three points. These intersection points are called Witness points. Here,
a random hyperplane means a hyperplane defined by c[i] linear equations with
random coefficients. After computing the Witness points, one needs to slide
this random hyperplane around to obtain as many points on the hypersurface as
needed. This is now a parameterization of the hypersurface, called the Witness
sets representation.

Often the varieties have several irreducible components of different dimen-
sions, i.e., the solution space is made of more than one hypersurface with differ-
ent dimensions. Witness sets representation can be easily carried forward in such
cases as well, by first obtaining intersection points of the whole variety with a
dimensional line. This will give the Witness points on an n− 1 dimensional com-
ponent of the variety. Then we obtain intersection points of the variety with a
two-dimensional plane and get Witness points on a n−2 dimensional component
of the variety and so on.

One of the most interesting starting examples [94] for particle physics is that
of the constraint equations for an SO(3) matrix, say A, i.e., detA = 1 and
AAT = I as listed in Eq. (C.29). Here there are 7 equations in 9 variables. We
used a NAG package called Bertini for this purpose. Of course, all other packages
mentioned above also deal with the positive dimensional components, however
Bertini is distinguished in the sense that it gives full classification of all positive
dimensional components according to their degree as shown in the Table (C.1).

Dim. Degree Components
3 8 1

Table C.1: Summary of the solutions for SO(3).

Thus, solution-space of these constraint equations is a curve in three dimen-
sions of degree 8. This is expected for SO(3) because there are three independent
variables. Bertini also gives the random complex hyperplane of dimension 3 and
a point intersecting with the 3 dimensional degree 8 solution curve. Then, Bertini
can give as many points on this three-dimensional curve as one wants, by sliding

2I am very grateful to Daniel Bates, Jonathan Hauenstein and the whole Bertini group for
very useful comments on the NAG and help on various related issues.
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the complex hyperplane through the curve. In other words, one can get as many
SO(3) matrices as needed once the constraint equations are solved. We also solve
the SU(2) case below.

C.2.1 SLLG and NAG

For the one-dimensional, n = 3, trivial orbit, periodic boundary conditions,
SLLG case without eliminating the global zero mode, we end up having a one-
dimensional variety. NAG can deal with such systems (see Table (C.2)).

Dim. Degree Components
1 2 6

Table C.2: Summary of the solutions for the SLLG with periodic boundary con-
ditions for the one-dimensional n = 3 lattice, from NAG. Note that this summary
remains valid for both the trivial orbit and random orbit cases.

For the 3× 3 lattice with periodic boundary conditions and the trivial orbit,
the stable mixed volume is of course the same as the anti-periodic boundary
conditions trivial orbit case since they have the same monomials, i.e., 148480.
The number of actual solutions are 8428. However, to get the actual information
about the solution space, we need to know the dimensions and degree of individual
components and a complete classification is underway.

C.2.2 Discussion

Having briefly explained NAG, we should mention that these results are not very
helpful for our purposes. Since our original system is made of trigonometric
functions for both the SLLG and the MLLG, we are only interested in the real
solutions of the corresponding polynomial system. For systems having only iso-
lated solutions, the PHC method can give all complex and real solutions. But
for the positive dimensional varieties, the Witness sets are obtained by intersect-
ing complex planes of respective codimension and the probability of getting real
intersection points is practically zero. In other words, using NAG one can ob-
tain complex solution curves of positive dimension but not real curves in general.
Moreover, finding real components from the complex curves is an extremely dif-
ficult task. This is a very important problem and a lot of research is underway.
Some useful results have already arisen via [145] but the practical implementation
is still in progress.

Numerical Algebraic Geometry For SU(2)

We here solve the positive dimensional ideal made of Eqs. (C.18) and (C.19)
using NAG with Bertini. The variables involved are a, b, c, d, a∗, b∗, c∗, d∗ and all
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of them are treated as independent variables. Solving them using Bertini gives
the following summary:

1. The solution curve is a 3-dimensional curve in 8 dimensional complex space.
Moreover, the degree of this curve is 2 as expected for a three dimensional
sphere in complex space.

2. Bertini gives a complex hyperplane of codimension 5 which intersects the
solution curve at 2 points generically.

3. After obtaining this information, Bertini can also be used to obtain as many
sample points as required out of this solution curve, e.g.,

a = (0.5546545584451108253732531,−0.67600440845477946280)

b = (0.9123189562160420763443641, 0.583475112027970414594× 10−2)

c = (0.1221371509751447876319489, 0.426812269970270574382)

d = (0.115166043074885518857118× 101, 0.702872152644067855306)

a∗ = (0.115166043074885518857118× 101, 0.702872152644067855)

b∗ = (−0.1221371509751447876319489, 0.42681226997027057)

c∗ = (−0.912318956216042076344364, 0.5834751120279704× 10−2)

d∗ = (0.5546545584451108253732531,−0.6760044084547794628)

(C.38)

Here, the known results such as a = d∗ and b = −c∗ are apparent.
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Appendix D

Mixed Boundary Conditions and
Magnetic Monopole Charge

D.1 Mixed boundary conditions

D.1.1 z Direction C-periodic and x,y Directions Periodic

Suppose that we employ boundary conditions with a single C-periodic direction,
chosen to be the z direction. These boundary conditions can be written as

Φ(x⃗+ n1̂) = Ω†
1Φ(x⃗)Ω1, Uµ(x⃗+ n1̂) = Ω†

1Uµ(x⃗)Ω1

Φ(x⃗+ n2̂) = Ω†
2Φ(x⃗)Ω2, Uµ(x⃗+ n2̂) = Ω†

2Uµ(x⃗)Ω2

Φ(x⃗+ n3̂) = Ω†
3Φ

∗(x⃗)Ω3, Uµ(x⃗+ n3̂) = Ω†
3U

∗
µ(x⃗)Ω3.

(D.1)

Consistency of the boundary conditions requires

Ω1Ω2 = z12Ω2Ω1,

Ω∗
1Ω3 = z13Ω3Ω1,

Ω∗
2Ω3 = z32Ω3Ω2, (D.2)

where the zij = eiθij ∈ ZN are center elements as always. Note that charge
conjugation only ever happens on one side of the equation.

It is straightforward to derive the corresponding boundary conditions for the
Abelian projected fields (6.27),

αa
i (x⃗+ n1̂) = αa

i (x⃗),

αa
i (x⃗+ n2̂) = αa

i (x⃗),

αa
i (x⃗+ n3̂) = −αa

i (x⃗), (D.3)
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Figure D.1: Integration curves for one and two C-periodic directions.

except for the special cases

αa
1(x⃗+ (n− 1)1̂ + n2̂) = θ12 + αa

1(x⃗+ (n− 1)1̂)

αa
1(x⃗+ (n− 1)1̂ + n3̂) = −θ13 − αa

1(x⃗+ (n− 1)1̂)

αa
2(x⃗+ (n− 1)2̂ + n3̂) = −θ23 − αa

2(x⃗+ (n− 1)2̂).

As expected, it follows that, that the Abelian field strength tensors αa
ij(x⃗) in

Eq. (6.29) are periodic in the x and y directions, but anti-periodic in the z
direction. Therefore, we only have net flux through the faces of the lattice per-
pendicular to the z direction.

The contribution to the total magnetic charge from the x and y directions
cancels, and the both ends of the lattice in the z direction give equal contributions.
The total charge charge is therefore given by

Q = 2Φ+, (D.4)

where Φ+ is the flux through the curve shown in the left panel of Fig. D.1. To
calculate it, we need to integrate αa

i (x⃗) around the curve. Applying the boundary
conditions, we find that all of the links αa

i (x⃗) cancel with those on the opposite
side of the boundary, except for the far corner, which gives

Φ+ =
αa
1(x⃗+ (n− 1)1̂)− αa

1(x⃗+ (n− 1)1̂ + n2̂)

g
=

θ12
g
. (D.5)

The total charge is therefore

Q =
2θ12
g

. (D.6)

It would be interesting if the twist angle in the mixed plane θ12 were permitted
to be a phase other than 0 or π, though unfortunately this is not the case. The

120



D.1 Mixed boundary conditions

proof of this involves permutations of the twist matrices as before. Comparison
of

Ω1
∗(x⃗)Ω∗

2(x⃗+ n1̂)Ω3(x⃗+ n1̂ + n2̂)

= z23Ω
∗
1(x⃗)Ω3(x⃗+ n1̂)Ω2(x⃗+ n1̂ + n3̂)

= z23z13Ω3(x⃗)Ω1(x⃗+ n3̂)Ω2(x⃗+ n1̂ + n3̂)

= z23z13z12Ω3(x⃗)Ω2(x⃗+ n3̂)Ω1(x⃗+ n2̂ + n3̂)

, (D.7)

with

Ω1
∗(x⃗)Ω∗

2(x⃗+ n1̂)Ω3(x⃗+ n1̂ + n2̂)

= z21Ω
∗
2(x⃗)Ω

∗
1(x⃗+ n2̂)Ω3(x⃗+ n1̂ + n2̂)

= z21z13Ω
∗
2(x⃗)Ω3(x⃗+ n2̂)Ω1(x⃗+ n3̂ + n2̂)

= z21z13z23Ω3(x⃗)Ω2(x⃗+ n3̂)Ω1(x⃗+ n2̂ + n3̂)

, (D.8)

yields
z212 = 1. (D.9)

Therefore

θ12 =

{
0 for N odd

0 or π for N even.
(D.10)

It follows that the allowed charges are exactly those we found for fully C-
periodic boundary conditions.

D.1.2 y,z Directions C-periodic and x Direction Periodic

We can also consider boundary conditions with two C-periodic directions, chosen
to be the y and z directions. Then the consistency conditions are modified to

Ω∗
1Ω2 = z12Ω2Ω1,

Ω∗
1Ω3 = z13Ω3Ω1,

Ω∗
2Ω3 = z23Ω

∗
3Ω2, (D.11)

with zij = eiθij ∈ ZN . The Abelian projected fields inherit boundary conditions
with anti-periodicity in both C-periodic directions,

αi(x⃗+ n1̂) = αi(x⃗),

αi(x⃗+ n2̂) = −αi(x⃗),

αi(x⃗+ n3̂) = −αi(x⃗), (D.12)

except for the special cases

α1(x⃗+ (n− 1)1̂ +N 2̂) = −θ12 − α1(x⃗+ (n− 1)1̂)

α1(x⃗+ (n− 1)1̂ +N 3̂) = −θ13 − α1(x⃗+ (n− 1)1̂)

α2(x⃗+ (n− 1)2̂ +N 3̂) = θ23 − α2(x⃗+ (n− 1)2̂). (D.13)
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D.1 Mixed boundary conditions

To find the total flux we now need to integrate αa
i (x⃗) around the boundary of

two of the faces orthogonal to the y and z directions and double the result. Con-
tributions from the sides related by periodicity in the x direction automatically
cancel. We are left with

Q =
2

g

(
n−1∑
n=0

αa
1(n1̂ + n3̂)− αa

1(n1̂ + n2̂)

)
=

2

g
(α1((n− 1)1̂ + n3̂)− α1((n− 1)1̂ + n2̂))

=
2

g
(−θ12 + θ13),

where we have applied the boundary conditions (D.12) in the second line and
(D.13) in the third line.

Again, we find that the twist angles in the mixed planes are restricted. Com-
parison of

Ω1
∗(x⃗)Ω2(x⃗+ n1̂)Ω∗

3(x⃗+ n1̂ + n2̂)

= z32Ω
∗
1(x⃗)Ω3(x⃗+ n1̂)Ω∗

2(x⃗+ n1̂ + n3̂)

= z32z13Ω3(x⃗)Ω1(x⃗+ n3̂)Ω∗
2(x⃗+ n1̂ + n3̂)

= z32z13z21Ω3(x⃗)Ω
∗
2(x⃗+ n3̂)Ω∗

1(x⃗+ n2̂ + n3̂)

, (D.14)

with

Ω1
∗(x⃗)Ω2(x⃗+ n1̂)Ω∗

3(x⃗+ n1̂ + n2̂)

= z12Ω2(x⃗)Ω1(x⃗+ n2̂)Ω∗
3(x⃗+ n1̂ + n2̂)

= z12z31Ω2(x⃗)Ω
∗
3(x⃗+ n2̂)Ω∗

1(x⃗+ n3̂ + n2̂)

= z12z31z32Ω3(x⃗)Ω
∗
2(x⃗+ n3̂)Ω∗

1(x⃗+ n2̂ + n3̂)

, (D.15)

yields
z221z

2
13 = 1. (D.16)

So

−θ12 + θ13 =

{
0 for N odd

0 or π for N even.
(D.17)

Once more, we are left with the same possibilities for the Abelian magnetic
charges. We conclude that the allowed charges are identical whether we have one,
two, or all three directions charge conjugated.

122



Appendix E

Another Approach To Modify
Lattice Landau Gauge

Instead of stereographic projection, we can also modify lattice Landau gauge by
modifying orbifolding (S1/Z2) at each link, i.e., by identifying all the points of
the lower half of S1 circle to those of the upper half of it. The corresponding
gauge fixing functional, following the discussion in section 2.3.2, is

F abs
ϕ (θ) =

∑
i,µ

| cos(ϕi,µ + θi+µ̂ − θi)|, (E.1)

where ϕi,µ ∈ (−π, π] and θi ∈ (−π, π].
The corresponding gauge fixing conditions are

f abs
i (θ) =

∑
i,µ

| cos(ϕi,µ + θi+µ̂ − θi)| tan(ϕi,µ + θi+µ̂ − θi)

−| cos(ϕi−µ̂,µ + θi − θi−µ̂)| tan(ϕi−µ̂,µ + θi − θi−µ̂)

= 0, (E.2)

where i runs over all lattice sites and µ = 1, ..., d with d being the lattice dimen-
sion.

The Faddeev-Popov operator is then

(Mabs
FP )i,j = −

∑
µ

(| cos(ϕθ
i,µ)|(δi+µ̂,j − δi,j) + | cos(ϕθ

i−µ̂,µ)|(δi,j − δi−µ̂,j)) (E.3)

and with anti-periodic boundary conditions it can be decomposed as

Mabs
FP =

d∑
µ=1

(MµD
abs
µ MT

µ ), (E.4)

where the non-singular matrices Mµ’s are the same as the standard case, and the
diagonal matrices Dabs

µ ’s contain the diagonal elements | cos(ϕi,µ + θi+µ̂ − θµ)|’s
which are always positive definite numbers for ϕθ

i,µ = ϕi,µ + θi+µ̂ − θµ ∈ (−π, π].
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D.1 Mixed boundary conditions

In one dimension, after changing the variables to si with anti-periodic bound-
ary conditions, same as in Chapter 3, these equations can be written in matrix
form as

MS⃗abs = 0⃗, (E.5)

where

S⃗abs = (| cos(s1)| tan(s1), | cos(s2)| tan(s2), ..., | cos(sn)| tan(sn))T . (E.6)

Due to the non-singularity ofM , only trivial solution exist, i.e., | cos(si)| tan(si) =
0 and so all si ∈ (−π, π] are 0 or π. But since π is identified with 0, there is only
one gauge-fixed configuration, i.e., s⃗ = 0⃗ and all remaining combinations of 0’s
and π’s are just the trivial copies of this configuration, leaving no Gribov copy.

Thus,
Mabs

FP = MTDabsM, (E.7)

where
Dabs = D(|c1|, |c2|, |c3|, ..., |cn|), (E.8)

with ci = cos si for i = 1, ..., n. The determinant Mabs
FP is 4

∏n
i=1 |ci| and so for

the gauge-fixed configuration, it is 4. Thus, Mabs
FP is positive definite and there is

no Neuberger zero nor any Gribov copies.
An important remark: Although this modification works well too, the Euler

characteristic of an orbifold is a more involved issue [163, 164]. It still needs to
be verified explicitly if the straightforward application of Poincaré-Hopf theorem
calculates the actual orbifold Euler characteristic or some another topological in-
variant. So, we only concentrate on the modification via stereographic projection
and we refer as the modified lattice Landau gauge (MLLG) to the same.
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Appendix F

Published Articles of Author

1. Lattice Landau gauge via Stereographic Projection, L von Smekal, A Jorkowski,
D Mehta, and A Sternbeck, Talk presented at the 8th Conference Quark
Confinement and the Hadron Spectrum September 1-6, 2008, Mainz, Ger-
many. e-Print: arxiv: 0812.2992 [hep-lat] [165].

2. Modified Lattice Landau Gauge, L von Smekal, D Mehta, A Sternbeck,
and A G Williams, PoS LAT2007:382, 2007. e-Print: arXiv: 0710.2410
[hep-lat] [166].

3. ’t Hooft-Polyakov monopoles in lattice SU(N)+adjoint Higgs theory, S. Ed-
wards, D. Mehta, A. Rajantie, L. von Smekal, accepted in Phys. Rev. D.
e-print:arXiv: 0906.5531 [hep-lat] [167]
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