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THE ABSENCE OF STATIC, SMOOTH SOLUTIONS IN EINSTEIN-
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We study the existence of smooth, static nontrivial solutions to Einstein-Yang-Mills-
-Klein-Gordon equations. The absence of static solutions is proven if the Klein-Gordon field
is linear and the asymptotic falloff of goo to unity is quicker than 1/r. In the case when

1
goo=14+0 <— the system is shown to reduce to the pure gravity, under certain conditions.
r
Possible applications of bifurcation theory for finding solutions which are close to the trivial
one in the case when the scalar field is of Higgs type are discussed.
PACS numbers: 11.15.Kc¢

1. Introduction

The first nonexistence result in the sourceless Yang-Mills theory is due to Deser [1],
who has shown that there are no nonzero static finite energy solutions. Then many authors
[2, 3] proved nonexistence of time-dependent solitons in Yang-Mills theory. Glassey and
Strauss [3] demonstrated the absence of static solitons and solitary waves in Yang-Mills-
-Klein-Gordon theory. Recently Weder [4] proved the absence of nonsingular, localized
solutions to Einstein-Yang-Mills equations. His result needed a strong falloff of gy, at
infinity and therefore met a critique [5]. Deser [5] attacked the same problem in 2+1)
space-time dimensions, to get the desired nonexistence result. Finally in [6] it was shown
that the linear scalar (Schrodinger or Klein-Gordon) and nonlinear (under simple restric-
tions on the nonlinearities) field coupled to Yang-Milis fields has no static nonzero finite
energy solutions.

In what follows we continue this line of research and consider the gravitation-nonabe-
lian gauge-scalar system. We give, following the ideas outlined in [6], a simple nonexistence
proof of localized static finite energy solutions, supposing that goo = 1—M/r+o(r-1),
where M is either zero or negative. This is done in Section 2. We state this result for both
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linear and nonlinear scalar field under certain restriction imposed on the scalar selfinterac-
tion term.

In Section 3 we consider the case when the asymptotic conditions on gy are relaxed;
they correspond to the nonzero positive gravity mass. As well as nonexistence of nonzero
scalar fields we prove the absence of gauge fields sufficiently small in the norm of Sobolev
space W, 3, provided that the L, norm of the derivatives of the determinant \/— g is suf-
ficiently smali.

Section 4 is devoted to a local analysis of the existence problem. We briefly discuss
the possible applications of various methods of bifurcation theory for finding those solu-
tions which are close to the trivial one, in the case when the scalar field is of Higgs type.

2. Statement of the model

Let the gauge group be any compact semisimple Lie group G. Consider the G-algebra
valued connection one-form A and its curvature two-form F. In local coordinates the cur-
vature (a Yang-Mills strength field) tensor is defined as below

Fa, = 8,A5— 0,45+ gf A} AL, (1

where f°¢ are the structure constants of the Lie algebra G of the group G and g is
the coupling constant. The structure constants can be chosen to be completely antisym-
metric, because of compactness of G. The Greek space-time indices range from 0 to 3
while the latin (algebra) a, b, ¢, ... and (space) i, j, k, ... indices range from 1 to the
dimension of the algebra and from 1 to 3, respectively.

Let the symbols {¢°} designate the set of components of the scalar Klein-Gordon
field. The doubly covariant derivative is

D, =V,+g[A, "] ¥

where V, denotes the covariant derivative on the four-dimensional smooth pseudo-Rieman-
nian manifold ¥* and [4, ‘] denotes the commutator. The derivative D, acts on ¢ as
follows

(D,9)" = V,0"+gf A9 3)

here V,9* = 0,¢° of course. The Einstein-Yang-Mills-Klein-Gordon (EYMKG) equations
are

R, — 521-” R = T,(YM)+T,(KG), )
DiFiO = '_joa (Sa)
D, F* = —j*, (5b)

‘ ov
D;Dip+D,D°p— 0 =0, (6)
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where
o= gf™"D,9)s Tu(KG) = —FiFi+4 g, FosF™,

T, (KG) = (D,0)'(D,9)" — g“”

[(D.@)*(D*p)*+ V()]
The term V(@) describes selfinteraction of the scalar field, except for the case when it is
a bilinear or linear function of its argument.

For a stationary manifold ¥ there exists a system of local coordinates in which the
metric tensor is time-independent and g% > 0; if in addition, g% = 0 then the manifold
is said to be static. Let W, be the space-oriented section (x, = const) of such a system.
Then in W, one can choose a negatively definite metric tensor g;; and for every tangent

dx* b dx' dx’
2 we have g;— - —-

We will look for nontrivial solutions of Eqs. (3)-(5), i.e., solutions with nonvanishing
curvatures and nonzero ¢. It will be assumed that the space sections are noncompact
and that fields satisfy the following asymptotic conditions

vector < 0 (denotation is as in Weder’s paper [4]).

M 1 -M 1 oo .
goo =1——+o0o(—], |08l =—- +ol5 (M is either zero or negative),
r r r r

1 1
gk =0 <—) +hu, 108l = O (“2‘) s @)
r r

EHES =R S (8a)
[ 4
ol < r;i,, 0xp| < (8b)

These conditions ensure that the energy of the system is finite and all integrals appearing
below are also finite.

Remark 1. We suppose, following Weder, that at infinity the time component of a metric
tensor goo tends to unity like 1/7!*° (note: everything which is to be said below refers also
to the case with nonzero negative M). It is likely that under this requirement our result
(as well as Weder’s) follows from the positive energy theorems® [7]; this is the point of
view of Deser [5]. To check this one has to prove that the above condition on goo forces
also g;; to tend to 1 like 1/r' *%, implying the gravity mass to vanish. The absence of nonzero
energy solutions is then an immediate consequence of the mass positivity theorem. The
author does not see a simple explanation of the relation between asymptotics of goo and
g:;, although it could exist; note the asymptotic behaviour of the Schwarzschild metric,

! The author is grateful to Professor A. Staruszkiewicz for pointing out this fact and for several
illuminating discussions.
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for instance. In any case, the calculations which are to be made, considerably simplify
our system of equations. The simplified equations will be used in Section 3, where we will
weaken the conditions imposed on the metric.

Now we are going to establish:
Theorem 1. EYMKG system of equations does not possess static smooth solutions with
nonvanishing curvatures satisfying conditions (7), (8) if the following inequality holds

4
¢ a <0' (9)
oL

W3

Proof. Below we will show that a scalar field {¢°} vanishes, provided that the foregoing
inequality is satisfied. Then our equations reduce to the Einstein-Yang-Mills system and
the above proposition is the consequence of Weder’s results [4]. The equations to be used
are Gauss-like equations of Yang-Mills theory

DiFaiO - ngabc(pb./‘Cded0¢f V (10)
and the Klein-Gordon static equation

ov

(DiDi)a_*_ngabc‘AgfcdedO_ P
14

=0. (1)
Here the right hand side of (10) stands for the zeroth component of the Klein-Gordon
current. Let us multiply Eqgs. (10) and (11) by 43 and ¢° respectively. Then, integrating
by parts and omitting boundary terms, one comes to the system

- vé" gikFaiOFakOdV3 — _gZ vi[ (fabcAaO‘pb) (defAdo(Pf)dV3, (12)
3 3

. oV
J [-gm(D'tp)“(D"tr)“—tp" 37"] dvy = g* f(f"'”A"o«p”) (fYa%pNav,.  (13)
L

L&

Notice that the metric g;; is negative definite on W3, g°° > 0and go; = 0; hence one con-
cludes that the Lh.s. of (12) is weakly positive, while its r.h.s. is nonpositive. It follows that
both sides of (12), and consequently of (13) (since the r.h.s. of (13) is equal to the r.h.s.
of (12) with opposite sign), should vanish. Therefore the curvatures Fy; and the covariant
derivative D;p (because of (9)) also disappear. Let us analyze further the equation

(D;p)" = 0,9°+ gf ™ A}9° = 0. (14)
Let us multiply (14) by ¢” and sum over the free index a. Then we get
909" = 0(9°9%2) = —gf " Alp’y" = 0. (15)

Since at infinity the scalar field has to vanish, one concludes that ¢ = 0. Now the proposi-
tion follows directly from Weder’s results [4], because, as it was stated at the beginning
of the proof, the equations reduce to the Einstein-Yang-Mills system.
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av
A simple example of F(g¢) satisfying (9) is given by —6;“_ = F(lp|)¢p® where F <0

and |F(x)| < const as x — 0. This last condition is imposed in order to guarantee finiteness
of thel.h.s. of (13). It may be relaxed if the scalar field decreases faster at infinity, than it was
assumed in (8b).

As a direct consequence of the preceding theorem we get

Corollary. The EYMKG equations have no nontrivial static solutions satisfying boundary
conditions (7), (8), when the scalar field is linear.

ov
Proof. Tt suffices to check that ¢° e —m?¢°p® < 0, where m is the real mass; thus
@

(9) is satisfied.

3. Absence of small gauge fields

In the preceding Section we proved vanishing of the linear scalar field and of the time
component of Yang-Mills potential. That result does not depend on the specific behaviour
of a metric at infinity; the required falloff could be arbitrary.

Let us consider the Yang-Mills equations for remaining components of a potential,
They read

1 _ .
- ai(\/_ g8 dai)Aak"akaiAm

NET

— —fﬂbcAbiaiACk—Fﬁl(Faik—aiAak) —f"bcA?de. (16)

This system could be made elliptic supposing (as we do now) that divergence 9;,4“ vanishes.
We expect that its solutions are at least twice differentiable: as a matter of fact it could be
shown even more, that they are of class C”. The proof (which needs a sequence of Sobolev
regularity theorems) is left to the interested reader. Thus it makes sense to demand that
our solution A{ belongs to the Sobolev space W, ;. Let us remind that Sobolev spaces
W, are defined as the closure of smooth functions with the norm |||y, , = [J dV(l/*
+(@9))1"2. In addition we need 0,45} € L,, |4§| € L, N Lg, |I',] € Ly (here I}, is the
contracted Christoffel symbol).
One could define also covariant Sobolev norms, for instance

@l 5co0 = [ § dVa(@” + g*0:00:0)]">.

I make the conjecture that in our case the covariant W, ,(L,) norms are equivalent to the
usual W, (L,) norms (see Appendix for a discussion). The following estimate

fo%dv < e[ [ (@g)av]? a7

will be useful below. It isknown in Euclidean space [8] but it could be extended on Rie-
mannian manifolds as well [7] if the mean extrinsic curvature of W3 vanishes. Now we can
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estimate the curvature F

IF e, = [Z Jav(Fp 12 < 3 [f av(a,4)*]"?

a, i j
+ 3 (VP CMAATA) T < e[ IPAllL,+ Y. (§ dV (4]
e !
< c3ll0A flL,(1+ 1AL,). (18)

The first inequality is Minkowski while the second follows from the Holder inequality.
The last one is yielded by (17) (see (21) below). Now we prove the following resuit.

1 1
Theorem 2. Let the falloff of A4f, 9,47 at infinity be 4] = 0( l+s>’ 0, A} = 0(—7)
r

1
respectively. Suppose ['{, € Ly and let |g,, —n,,1 = O ( )at infinity. Then the system (16)

does not possess solutions A7 small in W, ;3 norm provided that the L, norm of I'}, is
sufficiently small.

Proof. Let us multiply (16) by A4;. Integration by parts and omission of boundary
terms yields

IBAIZ, = —§fAAY0,A%dV — | TEAYF™ —GA™)dV — [ fPALALF*dV.  (19)

Here and elsewhere below we use the equivalence of covariant and usuval L, norms. Using
the Minkowski and Holder inequalities one obtains

IOANIE, < calllANZHOALL,+ I I, Al IF i, + 10A L)+ YAIEIF 1,1, (20)

where |}y, = ZHF;‘;HLS. Holder inequalities and (17) yield an estimation on HAH,%4
HAIZ, = (& [ (4D* a2 <L (141 3(f (4D)av) ]2

< esllAll, 184, ey

Using the above estimates on ||F||.,, ||4]]l., and ||4]],, in (20) results in the following
inequality

10AIIE, < cslOANL (AL + 1Tl (1 + [[4ll,) + Al (1 + [14]lL,). (22)
Taking into account that
14ll, < ldllw,, 104, < l1Allw,,, (23)
we eventually come at a crude estimation:

I0AIIE, < 7 10ANE (1Al 2+ ii4llw,,)+ IT 1 (1+ 14w, .,)- (24)
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1 1
Supposing {|4llw,,, < — <1, lIl'l| < — = we obtain a contradiction

GC? 1
2c4( 1
c-;( " 607)

10412, < alldAll,, a<1; (25)

it implies the absence of (sufficiently small in W, ; norm) solutions of equations (16).
Remark 2. The assumption that I'f, is small in L; norm does not mean that the gravity
is weak. In the latter case one could prove absence of Yang-Mills fields which are not

1
necessary cubic integrable, as it was supposed above. Indeed, let 4] = 0<~——) and
r

1
F:"k =0 <—2> . Then we have
r
0= | AW/ ERT)x = | V=& (Tl )
= j _\/T._._g (T(;)"'xkré‘,‘TU“xkfgoToo)d:‘x. (26)

Here we used the conservation of the energy-momentum tensor. Rewriting (26), using
estimations on the metric tensor and on its derivatives and estimating 7;; by Ty, we have

[ V=g Tod®x < cgsup {|x;Tl} | /—g Tod . @n
xeR3

For sufficiently weak gravitational ficlds one concludes that both,sides of the inequality
have to vanish; thus Fj = 0.

Corollary. Let the nonabelian fields be sufficiently small in W, ; norm and let I'}, be small
in L,. Then the Einstein-Yang-Mills system reduces to the sourceless Einstein equations
and the 3-space if flat.

Proof. 1t remains to prove only the last assertion. Now the Einstein equations read
R, =0. (28)

From R = Qitfollows g% = 1 and therefore the vanishing of the Ricci tensor is equivalent
to the vanishing of the Ricci tensor of the three dimensional manifold #;. It implies
flatness of Wi.

4. The local analysis of the existence problem

In practice the criterion (9) is often useless. For instance there is an important class

-
= Mp*p®—a2)g®; i, a—reals, for which

a

of scalar field selfinteractions given by

it is not possible to determine the sign of 4 | ¢¢*(¢"¢" —2?)dV; without knowing a solu-
g}
tion. So the Theorem 1, global in its nature, is now not applicable. One can use, however,

certain local techniques taken from bifurcation theory.
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Let us describe briefly the procedure that can be used here. At the first stage there
should be chosen appropriate functional spaces, satisfying those boundary conditions,
which are implied by physics. They should be also suitable from the technical point of view.
On compact manifolds the most convenient are the Sobolev or Holder functional spaces.
On noncompact manifolds, which is the case here, appropriate are spaces of Nirenberg-
~-Walker and Cantor [9]. At the second step the equations should be linearized around
the solution which is known explicitly. The EYMKG system has one exact solution

1
-1 1
(g™} = -1 |, 4i=0, ¢ =0 (29)
0
~1

Linearization of (4-6) at (29) results in the following equations

oR =0, (30a)

464, = 0, (30b)

459" = —ia’¢" (30c)

Here 4R denotes the linearization of the Ricci scalar R and the r.h.s. of (30c) follows from
the linearization of %;—, with —(%? being specified above. The product o = i¢? can

now be treated as an eigenvalue of the operator defined by the L.h.s. of (17). In most known
versions of bifurcation theory the eigenvalues are supposed to be isolated. If it is so, then
the existence of eigenfunctions at some eigenvalue (say, g, = la?) is a hint for bifurcation,
i.e. for the occurrence of those solutions of EYMKG system, which at ¢ = ¢, coincide
with the trivial one, and for ¢ & 6, might be given by a series expansion. On bounded
manifolds with a boundary the eigenvalues are indeed isolated and then it follows from
some versions of the Krasnoselsky theorem that if an eigenvalue is of odd multiplicity,
there should appear bifurcating solutions. For the relevant information see [8] and [10].
In our case, however, the spectrum is continuous. There is a version due to Stuart [11]
that could be adapted to this instance. But it is out of the scope of the paper.

Remark 3. Recently the strong coupling (g > 1) regime in Yang-Mills theory with sources
has been investigated [12]. The 1/g expansion of nonabelian solutions was proposed in
the g — oo limit. This formalism can be extended also to scalar fields coupled to gauge

fields. It seems to be interesting to study the existence of solutions in this limit for the scalar
fields of Higgs type.

APPENDIX

We would like to show the equivalence of usual and covariant L, norms, that is we
wish to prove the existence of two positive numbers a4, b such that

all e, < U lipeor < BI Hinye (A1)
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Let us consider

1@lle, 0. = (J @°x =g (8"0,:00,9)" )" (A2)

Because of boundary conditions |g,,—7,,] = O(1/r) we conclude that outside a sphere
with a sufficiently large radius R following inequalities hold: \/=glg,,| < 2 and \/—glg,,|
> 1/2. The g,,’s are supposed to be smooth, therefore inside the sphere they attain their
maximal (minimal) values; let K, be such that |g,,| < K| for r <{ R. Similarly, there exists
a finite K, such that \/—g < K; inside the sphere. Thus let b = max {2, K; X K,}.

For physical reasons the eigenvalues £, of {g,,} should be nonzero; let 2 = min {1/2,
3 v —gllhol, 141, 111, |31} r < R}. Then we arrive at (Al).
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