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FOREWORD

The International Centre for  T heoretical P hysics has maintained an 
in terd iscip linary  character in its research  and training program  so far as 
d ifferent branches o f theoretical physics are concerned. In pursuance of 
this aim  the Centre has organized extended research  cou rses  with a 
com prehensive and synoptic coverage in varying d iscip lin es. The first 
o f these — on P lasm a P hysics — was held in 1964; the second in 1965 was 
concerned with the physics o f particles; the third in 1966 covered  nuclear 
theory; the fourth in 1967 dealt with condensed m atter. The proceedings 
of all these cou rses w ere published by the International A tom ic Energy 
A gency. The present volum e record s  the proceedings o f the fifth course, 
held from  7 January to 31 March 1969, which was concerned with the study 
of m icro sco p ic  nuclear structure and the m any-body approaches to nuclear 
theory.

The program  o f lectures was organized by P ro fe sso r  G. Alaga of 
Yugoslavia and P ro fe sso r  L . Fonda o f Italy. The course itse lf and its 
program  w ere orig inally  conceived by the late P ro fe sso r  J. Sawicki who 
trag ica lly  died in an a ir  crash  in September 1968. We all m issed  his 
dynamic and passionate involvem ent with the subject. This book is dedicated 
to his m em ory.

Abdus Salam



EDITORIAL NOTE

The papers and d iscu ssion s incorpora ted  in the p roceed in gs published  
by the International A tom ic E nergy A gen cy  a re  edited by the A gen cy 's  ed i
torial s ta ff to the exten t considered  n e c e s sa ry  fo r  the r ea d er 's  a ssistan ce. 
The view s exp ressed  and the gen era l s ty le  adopted rem ain, h ow ever, the 
resp on sib ility  o f  the named authors o r  participants.

F o r  the sake o f  speed  o f  publication the p resen t P roceed in gs have been  
printed by com position  typing and p h oto -o ffse t lithography. Within the lim i
tations im posed  by this m ethod, e v e r y  e ffo r t has been m ade to maintain a 
high editorial standard; in particular, the units and sym bols em ployed are  
to the fu llest p racticab le exten t those standardized o r  recom m ended  by the 
com petent international sc ien tific  bodies.

The a ffilia tions o f  authors a re  th ose g iven  at the tim e o f  nom ination.
The use in th ese  P roceed in gs o f particu lar designations o f countries or  

te r r i to r ie s  d oes not im ply any judgem ent by the A gen cy  as to the legal status 
o f  such cou n tries o r  te r r i to r ie s , o f  th eir  authorities and institutions o r  o f  
the delim itation o f  th eir  boundaries.

The m ention o f  sp ec ific  com panies o r  o f  their products o r  brand-names 
d oes not im ply any en dorsem en t o r  recom m endation  on the part o f  the 
International A tom ic E nergy  A gency.
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NUCLEON-NUCLEON INTERACTIONS 

D .M . BRINK
Department o f  Theoretical Physics,
University o f  Oxford,
Oxford, United Kingdom

Abstract

N U CLEO N -N U CLEO N  IN T E R A C TIO N S.
1 . In tro d u ct io n ;' 2 . G e n e ra l sy m m e trie s  o f  n u c le a r  fo r ce s ; 3 .  N u c le o n -n u c le o n  sca tter in g ; 

4 .  P o te n t ia l m o d e l s . .

1. INTRODUCTION

A ll m icro sco p ic  m odels o f nuclear structure assum e that nuclei are 
com posed o f neutrons and protons, and that nuclear properties can be 
understood in term s o f the interactions between nucleons. In this paper 
we d iscuss our present state o f knowledge and understanding o f the in ter
nucleon interactions.

P hysica l laws satisfy  a num ber o f general sym m etry princip les which 
lead to well-know n conservation  laws such as those concerning the co n se r 
vation o f energy and mom entum . In a nuclear system  these sym m etries 
p lace som e restriction s on the form  o f the nucleon-nucleon interactions.
Any m odel o f internucleon interactions should satisfy  these restr iction s .

Soon a fter the developm ent o f a cce lera tors  in the early  1930s it was 
established that the fo rce s  between two protons are different from  a pure 
Coulomb interaction, and that there is a strong interaction  between neutrons 
and protons. C ross -se ction s  fo r  proton-proton  and neutron-proton 
scattering w ere m easured . N ucleon-nucleon scattering experim ents 
have now been extended o v e r  a very  wide range o f energies and m ost o f 
our quantitative inform ation about the tw o-nucleon interaction  com es from  
an analysis o f these experim ents.

In 1935, Yukawa made his fundamental assum ption that the fo rce s  
between nucleons are due to the exchange o f m eson s. The m eson  theory 
o f nuclear fo rce s  has been developed and although there is no com plete 
quantitative theory m any qualitative features are now w ell understood 
Developm ents in elem entary particle  physics, esp ecia lly  the d iscovery  
o f  heavy m esons, have contributed to our understanding o f the orig in  o f 
nuclear fo r c e s .

F o r  the purposes o f  investigating nuclear structure it is  convenient 
to try  to represent internucleon interactions by a potential. V arious po
tential m odels fo r  the tw o-nucleon  interaction have been proposed and 
param eters 'in the m odels fitted using the results o f nucleon-nucleon sca tter 
ing experim ents. It is  interesting to know the extent to which the results 
o f  scattering experim ents determ ine the potential.

If the potential energy V o f a system  o f A nucleons can be written as
V = Zv v „ where the term  v^ depends only on the co -ord in ates o f the i-th  

i <  j
and j-th  nucleons then one speaks o f a tw o-body fo r c e . A contribution

3



4 BRINK

V3 = 2  V to the potential energy where each term  depends on the 
i < j < к 11

co-ord in ates o f  three nucleons would be associated  with a th ree-body  fo r ce . 
In the sam e way one can conceive o f  4 -body  o r  m any-body fo r c e s . We can 
learn  som ething about the tw o-body component o f the nuclear fo rce  by 
studying the deuteron o r  nucleon-nucleon scattering. It is  n ecessary  to 
make experim ents with m ore  com plex system s to obtain inform ation about 
3 -body  o r  m any-body fo r c e s . Such experim ents are  difficult to interpret 
and at the mom ent we know alm ost nothing about the strength o f  the 3-body 
o r  m any-body component o f nuclear fo r ce s .

2. GENERAL SYMMETRIES OF NUCLEAR FORCES

We begin this section  by listing the various sym m etries and conservation 
laws which are important fo r  nuclear fo r ce s .

i) C onservation o f energy, momentum and angular m om entum : These
conservation  laws are associated  with sym m etry operations o f translations 
in tim e and space, and o f rotations. They seem  to hold exactly fo r  nuclear 
system s.

ii) G alilei invariance: N ucleon-nucleon interactions should be in 
variant under L orentz transform ations. It is  usual to discuss-the structure 
o f  nuclei in a n on -rela tiv istic  approxim ation. If this approxim ation is  
valid Lorentz invariance reduces to G alilei invariance. It requ ires that 
the interaction o f two nucleons should not depend on the m otion o f their 
c e n tr e -o f -m a s s .

iii) C onservation o f parity : This conservation  law is  not exact. Parity
is  not conserved  fo r  so -ca lle d  weak interactions, fo r  exam ple in ß -decay , 
and weak interactions should give a sm all contribution to the fo rce  between 
nucleons. How ever, the "stron g" part o f the interaction between nucleons 
is  expected to con serve  parity and experim ents testing parity selection  
ru les suggest that the parity-violating part o f the interaction is  very  
sm all [1 ] .

iv) T im e reversa l invariance: This sym m etry leads to the principle
o f re c ip roc ity  in reactions. E xperim ents with nuclei show no evidence 
fo r  v iolation  o f tim e rev ersa l invariance [2] .

v) Charge independence: P hysica lly  this hypothesis means that the
fo rce s  between a ll pairs o f nucleons are the same and that the m asses o f 
neutrons and protons are equal. In a m athem atical form alism  this is 
equivalent to saying that the Hamiltonian for a nuclear system  can be 
written in term s o f space and spin variables only and does not differentiate 
between neutrons and protons ( i .e .  it should be com pletely  sym m etric in 
these co -ord in a tes ). N ucleon-nucleon interactions are not exactly charge- 
independent. The Coulomb interaction  between protons violates charge 
independence, and there are probably sm all violations in the specia lly  
nuclear part o f  the fo rce s  between nucleons. E xperim ents suggest that 
these term s are sm all [3] . (The sm all m ass d ifference between neutrons 
and protons also violates charge independence).

Charge independence in a tw o-nucleon  system  consisting o f a neutron 
and a proton requ ires that the Hamiltonian should be invariant fo r  in ter
charge o f  the space and spin co -ord inates o f the tw o-p a rtic les . This
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exchange sym m etry is  important in the analysis o f neutron-proton 
scattering.

Although som e o f the conservation  laws mentioned above do not hold 
absolutely the parts o f the internucleon interaction violating the laws 
seem s to be sm all. The main features o f nucleon-nucleon scattering, 
nuclear structure and reactions should be given by the parts o f  the nuclear 
fo rce  satisfying the conservation  law s. The non-conserving parts o f  the 
interaction  give r is e  to sm all perturbations which can be important fo r  
som e sp ecific  e ffects .
Unitarity: This means that the equations fo r  a nuclear system  should
con serve probability o r  that the nuclear Hamiltonian should be Herm itian. 
Unitarity re str icts  the general form  o f the nucleon-nucleon scattering.

3. NUCLEON-NUCLEON SCATTERING

N ucleon-nucleon scattering has been a subject o f intensive study fo r  
many years, and m ost o f our quantitative inform ation about nuclear fo rces  
com es from  analysis o f tw o-nucleon  scattering experim ents. In these 
lectures we give a very  b r ie f review  o f  the subject and fo r  m ore  detailed 
inform ation, re fe r  to books by M oravcsik  [4] and W ilson [5 ], a review  
a rticle  by Signall [6 ] and orig inal papers by M acG regor et a l. [7] giving 
the m ost recent analysis o f experim ental data.

3 . 1 .  Consequences o f conservation  laws

The conservation  laws listed in section  2 place restriction s on.the 
general form  o f the nucleon-nucleon scattering amplitude which are  im 
portant fo r  the analysis and interpretation of scattering experim ents. The 
general form  o f the scattering amplitude is d iscussed  in the book o f 
M oravcsik  [4] . We outline the results in this section .

G alilei invariance and conservation o f momentum requ ire that the 
tw o-nucleon  scattering amplitude depends only on their relative m om enta 
f ik ; and-Kkf in the initial and final states.
C onservation o f energy gives |Iti| = |ïtf| =k.

The asym ptotic form  o f  the wave function fo r  scattering from  an 
initial spin state a to a final spin state ß is

^ W ~ 6 aße ik2 + Mßae ik7 r  (3.1)

The scattering amplitude M is  a 4X 4 m atrix acting on the spin co -ord inates 
o f  the two nucleons. (Each nucleon has spin and the two nucleons to 
gether have 4_possible spin states).

If k¡ and kf are the wave v ectors  o f relative m otion in the initial and 
final states we can define a mutually perpendicular set o f unit vectors

P =
kj+kf

K =
kr kf

N = P X  К (3 .2 )
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And if  <Уг are  the Pauli spin m atrices fo r  the first nucleon then the 4 m atrices

1 , • P , 0  ̂ • К , ax • N

form  a com plete set o f 2X 2 m atrices acting on the spin co -ord inates o f 
the first nucleon. We denote these m atrices  by m 10, m 21, m 12 and m 13 
to obtain a condensed notation. The d irect products o f  m atrices  m -ц with 
the corresponding m atrices  m 2j fo r  the second nucleon form  a set of 
16 independent 4X 4 m atrices т и m 2j which act in the vecto r  space o f 
spin co -ord inates o f the two nucleons. The m ost general amplitude M 
can be expressed  as a linear com bination o f  these 16 m atrices with co e f
ficien ts gjj depending on k¡ and k f

M = ^  kf) m-Lj m 2k (3.-3)

jk

Each o f the m atrices  mjj m2kis  a sca la r  fo r  rotation o f axes; hence, if 
M is  rotationally invariant, the coefficien ts gjk must be sca la r  functions 
o f Sj and k f . T herefore  g j k can depend only on к = |к; | = |kf| and the scattering 
angle б defined by íc¡ • ícf = k2 cos в, (0 S  в S  it) . The exchange sym m etry 
requirem ent com ing from  charge independence gives gj^ = gig .

I f  we make an inversion  o f co -ord inates then a-»a, k j-» - lq , k f - * - k f ,  
p  p . K >  - K, N-*N. The corresponding tim e reversa l transform ations 
are a a, k¡ - -  k f , kf -> -k ¡, P - - P ,  K-*K, N - - Ñ .  The coefficien ts gjk 
in E q .(3 .3 ) depend only on к and are invariant under tim e reversa l and 
parity operations. The m atrices  m ^  and m 2i are either invariant o r  
change sign under parity and tim e rev ersa l. The transform ation properties 
are shown in Table I. Requiring tim e reversa l invariance and parity con ser 
vation excludes all term s т 14 m2j from  expression  (3. 3) which are not 
invariant with respect to both operators. The m ost general amplitude 
m atrix  M consistent with all these restriction s is

M = a + ib (ctj +CT2 ).N+g(cr1 • P )(a2 . P) + h(a1 .K)(ff2 .Ю  + т ^  • JST) (a2 • N) (3 .4 )

where the 5 coefficien ts a, b, g, h, m are com plex functions o f к and a ¡ . 
Hence we require 5 com plex functions o f energy and scattering angle to 
sp ecify  M com pletely . Unitarity gives 5 non-linear relations between these 
5 com plex functions [4] .

TABLE I. TRANSFORMATION PROPERTIES

т с(0= 1 m a i  “  ° oí- p m a 2 ° a eK- т а з "  ° a  * ^

Parity + - - +

T im e  rev ersa l + + +
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We m ay conclude from  this analysis that a m easurem ent of the 
d ifferentia l c ro ss -s e c t io n  fo r  nucleon-nucleon scattering (one rea l function 
o f  к and 6) can not by itse lf fix  the 5 com plex.functions a, . . . ,  m . A range 
o f  re la tively  com plicated polarization  experim ents is needed. The d if
ferent kinds o f experim ent are described  by M oravcsik  [4] . We only want 
to em phasize here that the n ecess ity  fo r  perform ing com plicated polarization 
experim ents m akes it difficu lt to determ ine the scattering amplitude M 
experim entally.

3 . 2 .  P artia l-w ave analysis

In an angular-m om entum  representation  a state o f relative m otion of 
two nucleons can be written as j k, is jn ij, T, T3X  The quantum num ber к 
is  the magnitude o f the wave vecto r  o f relative m otion. The quantum 
num bers Í ,  s, j are the magnitudes o f the relative orb ita l angular m om entum , 
the total spin and the total angular momentum (j = i  + s), respective ly , and 
m is the eigenvalue o f  j z . The quantity T is the total isospin  and 
T3 = (Z -N )/2 . Becau&e o f the generalized  Pauli princip le T = 1 states are 
a n ti-sym m etric  in space-sp in  co -ord inates, and T = 0 states are sym 
m e tr ic . In other w ords on ly states with T + s + 1 odd are allowed. The (p, p) 
and (n, n) system s have only T = 1 states, while both T = 0 and T = 1 states 
can o ccu r  fo r  the (n, P) system . The first few allowed states are

One can specify  the tw o-nucleon  scattering amplitude by giving m atrix 
elem ents o f  the scattering m atrix  S in the angular momentum representation.

The m atrix  elem ents o f S are diagonal in к because o f energy con ser 
vation, they are diagonal in j and independent o f  m because o f conservation  
o f  angular m om entum , and they are diagonal in T because o f charge 
independence. The parity ir o f  a state o f relative m otion is jt = (-1)^ and 
and conservation  o f  parity requ ires that Í.-S.' is  even. These restriction s 
together with the generalized  Pauli principle give that s - s ' is  even and 
since s, s ' = 0 o r  1 it follow s that s = s ' .

In som e cases  there is  only one state with a given j and T, e .g .  1P j .  
Such a state is a sim ple state and has no o ff-d iagon al m atrix  elem ents o f  S 
with other states. By unitarity the corresponding diagonal scattering 
m atrix  elem ent is  a com plex num ber o f modulus unity and can be re p re 
sented by a phase shift 6{sj ,

< k , i s j ,  T IS I k, £' s'  j, T> (3.5)

<k, Í  s j, T js j  k, Í  s j, T>= exp {2 i6£sj (k)} (3.6)

In other cases there are two states with the same j, and T but different 
SL = j ± l .  The corresponding scattering m atrix is  a 2X 2 m atrix  where
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a(ß) = 1 re fe rs  to the & = j-1  state and a(ß) = 2 to the i  = j + 1 state. The 
m atrix  SaS is unitary (S S1' = S^S = 1) because o f unitarity and sym m etric 
(S„g = Sßa) because o f tim e reversa l invariance. Three rea l param eters 
are needed to specify  the com ponents Saß. Two ways o f introducing these 
param eters are by

In the representation (a) the quantities 6. and 6+ are eigenphases o r  Blatt 
and Biedenharn [8 ] phases. The quantities "ô , and F in the second 
representation  (b) are called "b a r" phases and m ixing param eters. This 
representation  was introduced by Stapp et a l. [9] and is  now used fo r

convenient than the eigenphase representation because Coulomb effects 
in (p, p) scattering can be allowed fo r  m ore  easily .

The Coulomb interaction  between two proton s is  much weaker then the 
nuclear interaction, but it is  important in proton -proton  scattering because 
o f  its long range. The proton -proton  S -m atrix  elem ents contain con tr i
butions from  the nuclear and the Coulomb fo rce s  and the two contributions 
can only be separated in a sim ple way [9] if  the WKB approxim ation is 
valid fo r  the Coulomb fie ld . Then the bar phase shifts can be written as 
a sum o f nuclear and Coulomb parts, and charge independence means that 
the nuclear part o f  the bar phases and m ixing param eters fo r  (p, p) scattering 
are equal to the T = 1 bar phases fo r  (n, p) scattering.

3 .3 . Results o f  phase shift analysis

A phase shift analysis o f nucleon-nucleon  scattering data re lies  on 
unitarity, invariance princip les and the short range o f  the nuclear fo r ce . 
Phase shifts corresponding to a large relative orbited  angular momentum 
i  are set at the values required by the one pion exchange m odel (c f . section  4) 
and phases with sm aller  SL are adjusted to give a best X2 -fit to the experi
m ental data. The p ion -nucleon coupling constant is  a lso  taken as a pa
ram eter in the search  procedure and the analysis gives a value fo r  this 
quantity. T here are o v e r  2000 p ieces o f  experim ental data at energies 
below  350 M eV . The pion production threshold is at about 290 MeV and 
above this energy allowance must be m ade fo r  a m odification  o f the unitarity 
restr iction . M ost recent phase shifts are given by M acG regor et al. [ 7] .  
Signell evaluates the present stage o f our knowledge o f phase shifts in a 
recent review  a rtic le  [6 ] . B rie fly  the situation seem s to be as fo llow s:

i) The phase param eters fo r  (p, p) scattering are w ell determ ined up 
to 350 M eV and even beyond. A ssum ing charge independence this gives 
the T = 1 part o f  the S -m atrix .

ii) The (n, p) scattering data is  not com plete enough to be analysed by 
itse lf. If charge independence is  assum ed and T = 1 phase param eters are

a)

b)

alm ost a ll phase shift analyses o f scattering experim ents. It is  m ore
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taken from  the analysis o f  (p, p) scattering data, then the (n, p) data can 
be analysed to give the T = 0 phase param eters. The T = 0 phases a re  le s s  
accu rately  determ ined than the T = 1 phases and the phase shifts in the 

, 3D1 states and the associated  m ixing p a ra m e te r ?  are  not w ell de
term ined . Even the sign o f e is  uncertain at low en erg ies .

iii) The best value o f the OPE coupling constant is  g2 = 14 ± 2  [7] in 
good agreem ent with the value found from  pion-nucleon  scattering 
experim ents.

4. POTENTIAL MODELS

4 .1 . Isosp in  dependence

F o r  the purposes o f calculating nuclear properties it is  convenient 
to try  to represent the nucleon-nucleon  interaction by a potential. B efore 
d iscùssing the general form  o f such a potential we look  at different 
ways o f  representing the spin and isosp in  dependence in the case o f a 
lo ca l central potential

where U(r) is a function o f the relative separation o f the two interacting 
nucleons. Pm and P0 a re  orb ita l and spin exchange opera tors  and w, m, 
b, h are constants. Introducing an isospin  exchange op era tor PT and using 
the generalized  Pauli princip le

V = U (r )(w + m P m+bP 0 +hP mP0 ) (4 .1 )

(4.2)

and the relations

it is  possib le  to w rite the interaction  (4 .1 ) as

V = U(r) (w +bP 0 - hPT - m P0 P T) (4 .3 )

We m ay a lso  use the relations

pa = l ( 1 + 3 r ? 2 ) , P ^ K I + t - l  - t 2 ) (4 .4 )

to write,the potential (4 .1 ) as

V = U(r) (a+ß  CTj .a 2 +ут1 - t 2 + 6(CTj -ст2 )(т2 -r2 ) (4 .5 )

where a = w +¿ b -  1 h - \ m etc . The three interactions (4 .1 ), (4 .3 ) and 
(4 .5 ) are identical. In the form  (4.1)  V depends on space and spin c o 
ordinates on ly . The form s (4 .3 ) and (4 .5 ) show an explicit isospin  de-
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pendence. The relation (4 .2 ) expressing the generalized Pauli princip le 
allow s one to w rite the same interaction in severa l different w ays. It is 
always possib le  to w rite an expression  fo r  a charge-independent in ter
action in a way which does not show an explicit isospin  dependence.

4 .2 . G eneral form  fo r  the spin dependence o f  the tw o-nucleon  potential

The m ost general form  o f the tw o-nucleon  interaction potential con 
sistent with the conservation  laws listed  in section  2 can be found by making 
a com parison  with the general form  (3 .4 ) o f the scattering amplitude M .
We let r, p, S. denote the relative position, momentum and angular m o 
mentum (Jf=rX p) o f the two nucleons. The sca la r  quantities c?-p, ст.г,
o.S. have the sam e transform ation  properties with respect to tim e r e 
v ersa l and parity as cr.P, ст.К, ct.N in su b -section  3.1 .  Hence the 
general form  o f V invariant, under rotation, parity, tim e reversa l, and 
exchange sym m etry is  analogous to the form  (3.4)  o f M:

V = | (V 1 +V2 (CT1 +a2 ) .£ + V3 (a 1.£ ) (a 2 .l)+ V 4 (^ j.p )  (ff2 . p)+V5(a1 . r) (or2 . r)

+V6 a 1.a2 ) + H erm itian conjugate (4.6)

In E q .(4 .6 )  the V¡ are general sca la r  functions o f  r, p and 1 o r , equiva
lently, general n on -loca l sca la r  functions o f the relative co -ord in ate .

The term  V j is a central fo rce  and V6 . a2 is a spin-dependent 
central fo r c e . A tensor fo rce  is contained in a com bination o f the term s 
V5 and V6

V T ® 1 2  = V T  (~ 2  ^ 1 - r )  ( ^ - r ) - ? ! . ? ^  ( 4 . 7 )

The term  V 2(ct1 + ct2 )•? = \ V2S . l  is  a sp in -orb it fo rce  and VjÍCTj . í)(ct2 . 1) 
is  a quadratic spin orbit fo r ce . One o f  the term s V j . . . V 6 is redundant 
and can be expressed  in term s o f the other five . F o r  a m ore  com plete 
d iscu ssion  o f the m ateria l outlined in this section  the reader is  re ferred  
to the review  a rtic le  by Okubo and M arshak [10] .

The scattering amplitude fo r  nucleon-nucleon scattering m ay be 
expressed  by giving M in the form  o f E q .(3 .4 ) with five arb itrary  functions
o f  k and 6, a (k, в), b(k, 0 ) ................  A lternatively  one m ay specify  M by
giving the phases and m ixing param eters (3.5)  as functions o f k. In an 
analogous way E q .(4 .6 ) gives the potential V between two nucleons in 
term s o f the functions V¡ and general spin dependent term s. One may 
a lso  specify  the interaction by giving the potential in each partial wave 
state, that is , by giving the m atrix  elem ents

<r,je s j ,  T | v | r ' , i '  s ' j , T >  (4.8)

The m atrix  elem ents are diagonal in s, j and T because o f exchange 
sym m etry, rotational invariance and charge independence. C onser
vation o f parity requ ires S.-V to be even. F o r  each j we m ay have s = 0, 
1 = 1 ' s = l ,  Í  = i ' = j, j ± l ;  s = l , i = j ,  Jß1 = j-1 ; that is,th ere  are 4 diagonal
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m atrix  elem ents in s, S. and j and one off-diagonal m atrix  elem ent. Hence 
we need five non -loca l functions o f r to specify  the interaction in each state 
o f  angular momentum j .  The values o f T are lim ited by the requirem ent 
o f  the generalized Pauli princip le that ( -1 )1 + S+T= -1 .

4 . 3 .  The radial part o f the potential

The potential m atrix  elem ents (4 .8 ) can be general n on -loca l functions
V (r , r 1) o f the relative co -ord in ate . In this section  we give som e specia l 
exam ples o f n on -loca l sca la r  operators which have been used in potential 
m odels o f  the nucleon-nucleon interaction . A n on -loca l operator is an 
integral operator

Уф = J v {r ,  г 1) ф(г') d3 r ' (4 .9 )

and the function V (r, r 1) is  the m atrix  element <(r| v| r 1̂  o f  V in the c o 
ordinate representation . If V is  Herm itian then V (r , r ')  = V *(r , r 1).

i) A loca l potential is a specia l case with

V (r , ? ')  =v(r) ó ( r - r ')

Уф = v ( r ) j  ô ( r - r ')  ф(r')  d3r ' = v(r) ф(r) (4 .10)

ii) An orb ita l exchange lo ca l potential is a specia l case with 

V (r, r 1) = v(r) 6(r + r ')

V$=v ( r )  J ' 6( r + r ')  ф(г') d3r ' = v(r) ф(-г) = v(r) Pm ф(г)

The operator Pm exchanges г г and r2 . Hence r = r 1- r 2 - r .
iii) The potential V (r, r ')  = -X f(r ) f* (r ')  where f(r) is a function o f r  = |'?| 

only is  separable and acts in relative s-sta tes  on ly. If

Vi ( ? . ? ) » - A f t (r )f* (r ')^ '5 Ç m (в,ф )Г*т(в',ф ')
ш

then V£ is  separable and acts only in states with relative orb ita l angular 
momentum SL.

^We m ay jilw ays write a n on -loca l potential У (гл r ')  as a function o f 
W ((r + r ') /2 ) , r - r 1). If Y (r , r ')  has a short range o f non -loca lity  the a 
m atrix elem ent <(ф | v| фУ can be evaluated approxim ately by expanding 
<Hr L and ^ (r1) as a ^ow er se r ie s  about the point R ^ i r + r ' ) .  We have 
(r -R ) = \( r - r 1 ) and r ' -R  = ^ (r1 -r )  so that
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<Mr) = ¿ (R )+ ¿ (r '- ? ) .V ¿ (R )+  . .

and sim ilar ly  fo r  ф[r 1). Substituting these expansions in the integral for 
the m atrix  element

<ф IV10> = < ф IV0 |^> + ¿ < < H p 2-V1 +V1 p V >  + <(/i|V2 12\ф У + . .  (4.10a)

is  called a mom entum -dependent o r  velocity-dependent potential.
Equation (4.1 Ob) shows that a n on -loca l potential is approxim ately equivalent 
to a velocity-dependent potential.

4 . 4 .  M eson theory o f nuclear fo rces

At present, there exists no com plete quantitative theory o f nuclear 
fo r ce s , but it is generally  believed that the fo rce  between nucleons has 
its orig in  in m eson  exchange p ro ce sse s . The h istory  o f the development 
o f m eson theory is  review ed in R ef. [11 ], and there is  inform ation about 
the present states o f  the m eson theory o f nuclear fo rces  in R ef. [ 12] .

In boson exchange theories o f nuclear fo rce s  the m eson  responsible 
fo r  the interaction  obeys B ose-E instein  sta tistics . The range, spin and 
isosp in  dependence o f  the exchange interaction depends on the properties 
o f  the boson producing the interaction . B osons m ay be characterized  by 
spin, isospin  and in trinsic parity:

sca la r  boson spin 0 parity +

pseudo-scalar boson 0 - e .g .  ir(T = l ) ,  rj(T = 0).

v e cto r  boson 1 - e .g .  w(T = 0), p(T = l ) .

One boson exchange (OBE) theories assum e that the m ost im portant part o f 
the tw o-nucleon  fo rce  is  due to exchange o f a one boson at a tim e. If the 
interaction  is calculated in low est-o rd er  perturbation theory in a static 
m odel (fixed nucleons) the potentials are 
fo r  sca la r  bosons:

one finds that

<Ф |V| ф> = <Ф IV0 \ф> +| < ф |P2 V j +Vj P 2k >  + <ф I V2J V >  (4. 10b)

where V0(R) = W (R , S )d 3s etc. 

A potential o f the form

V = V0 (rJ + i t P 2^  (r)+V x (r )P 2) + V2 ( r ) P + .  . .

V = - f 2-hc(e‘ M7 r ) (4 .11)
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fo r  p seu d o-sca la r  bosons;

j  ( e - " 7 r ) (4 .12)

fo r  ve cto r  bosons:

v = vc+vt

v{= ffh c (e * Mr/r ) (4 .13)

In these form ulae the factors f are  coupling constants and ( i = m c / i  where 
m is  the m ass o f  the exchanged boson . The potentials should be m ultiplied 
by a fa ctor  1 fo r  a T = 0 boson and a factor i 1 , t 1 fo r  a T = 1 boson.

V ector  boson exchange gives an interaction (4 .13) with two coupling 
constants f { and f (J because the spin o f the boson m ay be polarized lon g i
tudinally o r  tran sverse ly  with respect to its d irection  o f em ission . Each 
m ode o f polarization  has its own coupling constant. We m ay w rite the 
various possib le  form s o f  a non -re la tiv istic  m eson -nucleon  interaction 
in term s o f field  operators ф+,ф fo r  the nucleons and ф fo r  the m eson s. 
They are

sca la r  ф*фф

p seu d o -sca la r  ф оф.Х?ф

vector , longitudinal coupling ф+ф$-ф

The ch aracteristic  range o f a OBE interaction  is l /ц = fi/m c; it is 
in verse ly  proportional to the boson m ass. Hence the lon gest-range part 
o f  the tw o-nucleon  interaction potential is  due to pion exchange and has 
the pseudosca lar ch aracter (4 .1 2 ).

N on-static and other correction s  m odify the potentials (4 .11 ) (4 .13) 
and in particu lar vector  boson exchange gives r ise  to a sp in -orb it fo rce .

4 . 5 .  Uniqueness o f  the potential

M ost o f our quantitative inform ation about nuclear fo rce s  com es from  
analysis o f tw o-nucleon  scattering experim ents. This ra ises  the question 
o f  the extent to which the tw o-nucleon  scattering data determ ine the nucleon- 
nucleon potential. The scattering data do not determ ine the interaction 
potential uniquely. It is always possib le  to find an inifinite num ber of d if
ferent potentials which produce exactly  the sam e phase shifts.

To see this result we con sid er the sim ple case o f  scattering o f  spin- 
le s s  particles by two different potentials V and V . We suppose that

tran sverse  coupling ф+оф-ЧХ ф

H = T + V ,  H = T + V and H = U^HU
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where U is a unitary operator which does not affect the scattering wave 
function at large  distances. Then the phase shifts 6 (k) as functions o f к are 
identical fo r  V and V . We look in m ore  detail at a sp ec ific  exam ple o f 
an operator U with the required p rop erties .

We put

U= 1 - 2P

where

g * (? ')  ф(г') d3 r 1, J |g(r)|2d3 r = l  (4 .14)

and

g(r) = 0 if  r  > b (4 .15)

Then P is  a pro jection  operator,

UTU = U 2 = (1 - 2P )2 = ( 1 - 4 P + 4 P 2) = 1

and the operator U is  unitary. Let ф(r) be a scattering, solution o f the 
Schrödinger equation Нф = E ф, then Х5ф=ф is a solution o f  the equation 
Нф = 'Еф with the sam e energy.
At large  distances

ф( r) = sin (kr+ôi(k)) and ф(г) = sin (kr + 6(k)) (4 .16)

Using E q .(4 .1 4 ) we have

ф (г )-ф {r ) - 2g(r) J g* (r ')  ф(г') d3 r '

= ф(r), i f  r>  b , because o f  (4 .1 5 ). (4 .17)

Combining Eqs (4 .16) and (4 .17) we see that 6 (k) = 6 (k). Thus,the potentials
V and V have the sam e phase sh ifts. Another exam ple o f a unitary tran s
form ation  U which leaves phase shifts invariant has been given by Baker [13]. 
Two potentials like V and V which have the sam e phase shifts d iffer  in 
th eir  o ff -e n e rg y -sh e ll behaviour. The d ifferen ces could show in system s 
o f  m any nucleons but at present we do not know how important the o ff-  
shell behaviour o f  the nucleon-nucleon  interaction  is  fo r  the properties 
o f  nuclei.

4 . 6 .  Phenom enological potentials

The 1S0 (T = 1) phase shift changes sign at 240 MeV laboratory  energy.
A purely attractive potential can never produce this effect, and it proves 
the existence o f  som e repulsive component in the interaction . In early  
potential m odels this repulsive component was represented by a hard core

РФ = g(?) f
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in the tw o-nucleon  interaction  potential. H a rd -core  potentials have been 
fitted to scattering data by Hamada, Johnston [1 4 ], a Y ale group [15] and 
by Ried [16] . In these potentials the two nucleon interaction  potentials 
becom e infin itely repulsive fo r  internucleon separations le ss  than a hard 
core  radius r c . "S o ft -c o re "  potentials have a strong repulsion  at sm all 
internucleon separations which is  m athem atically less  singular than the 
h a rd -co re  potentials. F o r  exam ple,a fin ite -co re  potential has been used 
by B re sse l and Kerm an [17], and a Yukawa core  by Ried [16] .

A ll the potentials m entioned so far are too singular to be used d irectly  
in nuclear-structure  calcu lations. A separable potential fittedbyT abakin  [18] 
gives quite a good fit to scattering data and is non-singu lar enough to be 
used in nuclear ca lcu lations. V elocity-dependent potentials have also 
been tried  [19] but there is  no such potential which g ives a good fit to 
the scattering.
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Abstract

EXPERIM ENTAL ASPECTS OF NUCLEAR IN T E R A C T IO N .
1 , In tro d u ctio n ; 2 . Basic features o f  n u c le a r  in te ra c tio n ; 3 .  H ow  a ccu r a te  is ou r present k n o w le d g e  

o f  phase p a ra m eters ?  4 .  E x p er im en ta l p ro b le m s  in  N -N  sca tter in g  stud ies; 5 . N -N  p o te n t ia l m o d e ls ;
6 . S o m e  o p e n  p ro b le m s  in  n u c le a r  in te ra c t io n  stud ies.

1'. INTRODUCTION

In 1953, Bethe estim ated that in the preceding quarter of the century 
m ore  m an-hours o f w ork had been  devoted to the problem  of nuclear fo rce  
than to any other scien tific  problem  in the h istory  of mankind [Be 53] .
Yet, the problem  had not been solved and G oldberger stated in 1960:
"T h ere  are few  prob lem s in m odern theoretica l physics which have 
attracted m ore  attention than that o f trying to determ ine the interaction 
between two nucleons. It is also true that s ca rce ly  has physics owed 
so little to so many . . .  In general, in surveying the fie ld  one is  oppressed  
by the unvelievable confusion and con flict that ex ists. It is hard to b e 
lieve that many of the authors are talking about the sam e problem , or , 
in fact, that they know what the proble is "  [Go 60 l. ' In the last ten 
years a significant p rog ress  has been achieved and sum m arizing the 
N ucleon-N ucleon Interaction C onference (G ainesville, 1967) W olfstein  
concluded that an extrem ely  im pressive  amount of inform ation about 
nucleon-nucleon  interaction had been accum ulated, and "F u rth erm ore , 
w hereas b e fore  there w ere no potentials to fit the data other than purely 
phenom enlogical m odels requiring som e 20 to 50 adjustable param eters, 
now it would appear that we have quite a number of potential m odels rooted 
in m eson  fie ld  theory that fit the data. . . A lso , a ll of the m eson  theoretic 
m odels represent re latively  m inor variations of a com m on physica l them e" 
[Gr 67].

The study of nuclear fo r ce s  led to the d iscovery  of the pion, and even
tually resulted in the vast fie ld  of hadron ph ysics . In 1935, Yukawa ex 
plained the short range of nuclear fo r ce s  in term s of the exchange of a 
quantum having a finite m ass of approxim ately 250 - 300 e lectron  m asses.
A quantum of m ass is v irtually  emitted by a nucleon. During the time 
At ~  h/Д Е  ~  ñ /m ^ c 2 the quantum can travel a distance r 0 ~  cA t ~ п / т „ с  
and within that range be absorbed by another nucleon. The nuclear in ter
action at largest distances is represented by the exchange of the lightest 
quantum, sp ecifica lly , by the exchange of one such quantum. The lightest 
particle  that could be a n u c lea r -fo rce  quantum is a pion, which was d is 
covered  in 1947.

The cru cia l step in the developm ent of the m eson theory of nuclear 
fo r ce s  was made in 1951 by Taketani, Nakamura and Sasaki [Ta 51], who

17
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divided nuclear interaction into three regions: 1 . c la ss ica l (static) region; 
p r î L l . 5 ,  where ц = m ^c/ñ ; 2 . dynamic region, 0 . 7 ^ / u r £ l . 5 ,  and
3. phenom enological region , p r £ 0 . 7 ,  and who proposed an approach to 
the n u clea r-fo rce  problem  from  the outside of the nucleon. The outside 
region  is dominated by the one-p io n -exchange p rocesses  (OPEP) and 
should be treated on the basis of m eson theory. A s the distance between 
two nucleons d ecreases , tw o-pion  exchange p ro ce sse s  (TPEP) and exchange 
of heavier bosons contribute (region II), and finally  at very  short distances 
the structure of elem entary particles  may becom e important (region III). 
The inner region  should be treated phenom enologically. The su ccess in 
understanding the inner region  depends on the reliab ility  of our knowledge 
of the outside region . The b asic  philosophy of the Taketani approach is: 
"W e consider that the phenomenon of nuclear fo rce  is  a rare  example 
which enables us to pick  up the OPE phenomena purely. . . . the OPE tail 
o f  nuclear fo r ce  has a correspondence to the c la ss ica l fie ld , which makes 
its treatment sim ple. On the contrary, it is  difficult to study the pheno
mena of absorption and em ission  of rea l pions, because these are involved 
with b ig  energy ju m p ." [Ta 56]. The rem arkable results of this approach 
lie  in establishing quantitatively the validity of OPEP in region  I, and in 
determ ining the value of the pion-nucleon coupling constant and the pseudo
sca lar nature of the pion.

The increasing number of experim entally established hadrons caused 
many attempts to develop a class ifica tion  of particles on the assumption 
that som e are m ore  "elem entary" than the others. In 1949 F erm i and 
Yang tried  to regard the pion as com posed of a nucleon-antinucleon pair.
In 1956 Sakata proposed a m odel [Sa 56] in which hadrons are considered 
to be com posite particles  of the fundamental p articles : proton, neutron 
and lambda, and their an tiparticles. The quark m odel [Ge 64] con siders 
a ll hadrons to be com posed of three quarks and three antiquarks. If this 
m odel is c o rre c t , one can speculate that strong interaction should be 
derived from  the fundamental interaction between fundamental particles 
(e .g . qu ark s?), and indeed the com plexity of strong interaction might be 
an indication that the interaction between pions and nucleons resu lts from  
the pro jection  of the fundamental interactions (com pare the interaction 
between two atom s and the fundamental Coulomb force '.). This m odel 
"strong  interaction" should be valid in the region .where the structure of 
elem entary ( i .e .  com posite) p articles  is  not e ffective .

The development in the fie ld  of particle  physics is  re flected  in the 
form ulation of the one-boson -exchange m odel (OBEM) [Ho 62, Sa 62,
B r 63, Sc 63, etc. ]. The essence of this m odel is  the assum ption that 
hadronic interactions are w ell determ ined by low est-ord er p rocesses  
(i. e. d iagram s involve no hadron closed  polygon), sp ecifica lly  that the 
nucleon-nucleon interaction is  represented by the exchange of one boson .
In a m ore  conservative version , one allow s also the TPEC besides the 
OPE and OBE contributions.

The nuclear fo rce  problem  is not only the central theme in nuclear 
physics, but also the organic link with particle  physics.

In this review  we shall d iscuss the experim ental inform ation deter
mining the b a sic  feature of nuclear interaction (section  2), the accuracy  
of our present knowledge of phase param eters (section  3), experim ental 
problem s in nucleon-nucleon (N-N) scattering studies (section  4), N-N 
potential m odels (section  5), and som e open problem s in nuclear in ter-
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action: o ff-e n e rg y -sh e ll interaction, neutron-neutron fo rce , charge 
sym m etry and charge independence.

2. BASIC FEATURES OF NUCLEAR INTERACTION

The very  fact that nuclei exist im plies the n ecessity  fo r  som e N-N 
fo r ce , which at least in a certain region  of relative N-N distances has to 
be attractive. The reg ion  where nuclear fo rce  should be attractive is of 
the order of the size  of atom ic nuclei ~  10"12cm .

To keep the nucleons within the atom ic nucleus, the nuclear potential 
should be at least 20-30 MeV deep.

Nuclear interaction  certainly does not extend to large distances.
If it is extended much beyond nuclear radius, it would m anifest itself 
through the m odification  of the m olecular behaviour. Indeed, nuclear 
fo rce  should have a very  short range. This can be shown by com paring 
the binding energies of the lightest nuclei [Wi 33]. The binding energy 
o f the lightest nuclei in creases faster than linearly  when the num ber of 
bonds in crea ses . A lárge number of bonds per particle  im plies that p a r 
tic le s  are pulled c lo se r  together. The fact that the binding energy depends 
so strongly on the spacing between nucleons indicates that the range of 
nuclear fo r ce  is of the sam e ord er of magnitude as the s ize  of the lightest 
nuclei.

A com parison  of the binding energies of deuteron and triton shows 
that nuclear fo rce  cannot have zero  range. Thom as' theorem  [Th 35] 
proves that the binding energy of the triton, even neglecting the neutron- 
neutron fo r c e , tends to infinity as the range of the neutron-proton (n-p) 
fo rce  tends to zero , and its strength is adjusted to give the co rre c t  
deuteron binding energy. Thus, nuclear fo rce  has a short, but finite 
ran ge.

The quadrupole mom ent of the deuteron dem onstrates that nuclear 
fo rce  contains a lso  a tensor term  besides the central one.

M ost of our knowledge about the N-N fo rce  com es from  the study of 
N-N co llis ion s . In scattering experim ents one prepares two p articles  in 
certain  states p r io r  to scattering and subsequently m easures the states 
of the p articles  after scattering. A nucleon has spin 1 /2 , and one can 
m easure the d ifferential c ro ss -s e c t io n , polarization components o f the 
scattered  and the r e c o il  nucleons, and the corre la tion  of two final-state 
spin d irection s. B esides, either p ro jectile  or target p artic les , or  both, 
can be polarized  yielding a total of 256 possib le  experim ents at each angle 
fo r  every  energy. The sym m etry properties of the tw o-nucleon system  and 
the conservation  of the num ber o f particles severe ly  re str ic t  the number 
of experim ents n ecessa ry  to d escribe  the N-N scattering com pletely , e . g .  
half o f 256 observables are p seu d o-sca lars  and hence vanish identically if 
parity  is conserved . Indeed, only 5 experim ents at each angle and fo r  
each energy, among which at least one should be with n on-parallel planes 
e . g .  <?(0), P (6), D(0), Cnn, R (6) or  Cw, are enough to specify  the N-N in ter
action on the energy shell com pletely  [Pu 57]. F or  the proton -proton  (p-p) 
system  it is  enough to m easure the region  OS 0 s  ir/2, while fo r  the n-p 
system  one needs 0 S 0 s 7r. Above the pion production threshold, a com 
plete set of experim ents contains 11 m easurem ents [Sc 61].
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The spin state of a tw o-rjucleon system  is  determ ined by the expecta
tion values of 16 independent m atrices  On -  £1£ z; ¡¡-i0 2; o 1&2, o 1u 2. Six
teen in itial states can be prepared <(On )>¡ (n = 'l, 2, . . . 16) and in the final 
state 16 m easurem ents of (m = l , 2, . . .  16) are p ossib le , yielding
256 experim ents. The expectation value ^ On >̂f = <̂ сг̂ сг® X  (o r, ß = 0 ,  x, y, z) 
can be expressed  as

< ff“ a 2 >f = T F ^ Tr[Pf {CT“ CT2) f ] (2 Л )

where pf is  the final state density m atrix, connected with the initial state 
■te i

density m atrix p¡ =  S  4 T r (P¡ )  <  ° n ) ° n  ЬУ 
n - 1

pf = M pjM * (2.2)

E xpression  (2. 1) becom es

16

< a i ff2 >f = 4 ® ( Й  X < ° n > i T r (M ° n M4 4 ß) (2 . 1 ) '
n -  1

M is  the 4 X 4  m atrix which depends on the incident and outgoing momenta 
к and k1, respective ly , and on and c?2 . Introducing p = k + k1, q = к1 - к 
and n = k X k 1, and assum ing that the N-N interaction is invariant under 
space reflection , rotation, tim e rev ersa l and assum ing the validity of 
charge independence, the m ost general M m atrix is

M = A + BfcTjnXCTgnJ + CítJj + crgJn + EfCTjqJfcFgqJ + FícXjpHOgP) (2.3)

А , В , С, E and F are com plex functions of energy and angle. The uni
tarity  requirem ent of the; S m atrix im plies five  relations between c o e f
fic ien ts  A , . . .  F and leaves 5 independent rea l param eters to be deter
m ined fo r  each angle and energy.

If parity is  not conserved  M a lso contains the term s R (°i - cr2)p 
and SKffjnH ffgp)-(ffjpN o-jn)].

If tim e rev ersa l does not hold, the term  T[(a1 p)(a2q) - (ff1 q)(cr2p)] 
should be added.

If both parity  and tim e rev ersa l are violated two additional term s are 
P(ffi - <r2)q and Q[(CT!q)(CT2n) - (<Tjn)(cr2q)].

The connections between the form alism  and the observables are: 
D ifferentia l c ro ss -s e c t io n :

s  -  ё ( м  = i  т г ( м м *)

Spin expectation value after scattering of an unpolarized beam  from  an 
unpolarized target:

CT0 < ? 1 >f = ^ T r  (MM’ f j  ) (2.4)
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A fter calculating the indicated trace  in Eq. (2 .4 ), one is  left with functions 
of к and k ' , and the only axial vector  one can form  is k X k 1. T h ere fore , 
the scattering produces polarization  perpendicular to the scattering plane. 
The spin d irection  can be rotated with the m agnetic fie ld  (which a lso  bends 
the tra je cto ry  o f the charged p article , but at a different angle so  that 
the ov era ll e ffect is  that the spin is turned with resp ect to the d irection  
of particle  m otion ). In this way one can obtain the beam  with any desired  
orientation of polarization  by scattering an unpolarized beam  from  a su it
able target and using an appropriate magnet.

The d ifferentia l c ro s s -s e c t io n  fo r  the scattering o f a polarized  beam 
on an unpolarized target is

а(в) = j  [Tr(M M *) + < a >. Tr(McrM*)]

On the basis  of tim e re v e rsa l and parity  conservation  we have T r  (McrM*) = 
T r  (MM’:‘ct) proportional to n, and the polarizing and the analysing pow ers 
of the nuclear p ro ce ss  are equal.

T rip le -sca tte r in g  experim ents determ ine the manner in which second 
scattering changes d irection  and magnitude of the polarization  of the in 
cident p article . F irs t  scattering serves  as a p o la r ize r  and third scattering 
as an analyser.

Form ula (2 .1 ) g ives
3 •

Ï < er“  > = I  T r  (MM*er“ ) + ^  i T r  (Mcr®M*CT“) < 0 ß >. (2 .5 )

8 = 1
with

3

I = | т г ( М М * )  +Ŷ  ^T r ( M ff fM *)  <cjJ>. 
ß -i

The mom enta of the incident and the scattered particle  in the second 
scattering are denoted by k2 and k ’2, resp ective ly . It is convenient to 
introduce two co-ord in ate  system s: one, n 2 = k2X k ,2 , k2 a n d x 2 =n2 X k2, 
and the other, n2, k '2 and s 2 =n2Xk£.

E xpression  (2. 5) can be written as

1 < a i > f  = CT0(2) { [ p 2 + r ) < & Y n 2l n 2 +  t A  <  cr> . k 2 +  R  <  c r > 1( n 2 X  fcg)] s 2

+ [A ' <CT>.k2+ R ' < a > ¡ (п2 Х к 2) ]Ц }  (2 .6 )

The depolarization  param eter, D , and the rotation param eter. A , 
can be m easured by  a sim ple su ccess ion  of three scatterings. If the 
analysing plane is p ara lle l to the second scattering plane, i . e .  n 3 p ara lle l 
to n 2, one m easures P 2 + D a)>j -n 2 (see F ig . 1), If the beam  is p r e 
pared with its polarization  in d irection  x 2 (i. e. the polarizing  plane p e r 
pendicular to the second scattering plane: nj perpendicular to n2), and 
if the analysing plane is  perpendicular to the second scattering plane and 
n 3 para lle l to s2, one m easures R . M easurem ents of R ' , A and A 1 requ ire
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n I

the use of m agnetic fie ld s  since scattering can neither produce nor detect 
the polarization  in the d irection  of m otion. The m easurem ent of A r e 
qu ires the m agnetic fie ld  betw een the fir s t  and the second scattering, and 
n 3 should be p ara lle l to s 2 (F ig . 2). S im ilarly , the m easurem ent of R 1 
requ ires the m agnetic fie ld  between the second and the third scattering, 
(F ig .3 ) and the m easurem ent of A 1 two m agnetic fie ld s , one between 
the fir s t  and the second, and the other between the second and the third 
scattering.

F rom  the invariance under tim e re v e rsa l it fo llow s that A , R, A ' 
and R 1 are  not independent and that the follow ing relation  holds

A + R ' = (A 1 - R) tan 0/2

The corre la tion  between the polarization  of the scattered and re co il  
nucleon produced in the unpolarized-projectile -unpolarized-target sca tter 
ing is

^ < ^ 2>f = ! T r ( M M * a “aß)

R eferrin g  to the laboratory  co-ord inate system  k, k ' , n = k X k ', s = n X k '  
and k" (momentum of the re co il  nucleon) and t = n X k ", one defines

<?оС пп = | т г ( М М * а Э Д )  

t f o C k p  = | т г ( М М * < 7 » « т » )

(2 .7 )

a0 C pp = ± T r ( M M * a ^ )

% C kk Л т г ( М М * а * а ^ ’ )

”k"where cr2 = - Cnn is  m easured when two analysing planes are
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F IG .3 .  M a g n e t ic  f ie ld  a fte r  se co n d  s ca tte r in g , 

p ara lle l to the f ir s t  scattering plane, and Ckp is  m easured when two 
analysing planes are mutually perpendicular and perpendicular to the 
scattering plane (F ig . 4). The m easurem ents of Cpp and require 
the use of m agnetic fie ld s .

The corre la tion  param eters C aß can be determ ined a lso  from  ex p eri
ments using polarized  p ro je ct ile s  and polarized  targets . The c r o s s -  
section  Iag fo r  the polarized  beam  with polarization  along the d irection  о
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F IG .4 .  S ca tterin g  e x p e r im e n t .

scattered from  the polarized  target with polarization  along the d irection  ß 
is  from  Eq. (2 .1 ) '

I „ e = \  T r  (MM*) + i  T r  (M afM *) < a “ >. + i  T r  (M agM *) < ag >,

+ | т г ( М с т “ а ® М* ) < а “ а 8>. (2.8)

and i  T r  (Ма“ ст|м*) = сг0А а6. The coefficien ts  A ag are related to C ag , 

sp ecifica lly :
ß ¿ 0

A nn = C nn and A xx = s in e  C kp +.COS 2 Gpp+ sin -  Ckk

with X = nXk.
We shall not d iscuss higher rank sp in -corre la tion  param eters C aßy- 

and CaByà and re fe r  the reader to E efs [Ho 68] and [Ja 68].
The study of N-N co llis ion s  yields the follow ing inform ation:

1. N uclear fo rce  is a short-range fo r c e . The argument is  based on 
the m easurem ents of the angular distribution in n -p  and p -p  scattering. 
The isotropy  o f n -p  scattering up to 10 MeV im plies from  ftL = pb that 
the range b is  ~ 1 0 ‘ 13 cm . F rom  the angle and from  the energy at which 
p -p  scattering deviates from  the Coulomb scattering, one estim ates
the range of the N -N  fo r ce  to be ~  10"13 cm .

2. The n -p  angular distribution from  30 to 300 MeV has a U-shape 
alm ost sym m etric about a c . m .  angle of 90° indicating that nuclear
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fo r ce s  in odd-parity  states are weaker than those in even parity states 
(Serber-type fo r ce ) . The p -p  angular distribution is , except fo r  the 
Coulomb scattering part, isotrop ic  up to ~400 M eV, and this cannot be 
explained if a ll partia l waves in even states in terfere constructively  
( i . e .  equal sign fo r  even-state phase sh ifts). Jastrow  [Ja 51] assum ed 
that the х8 0 phase shift changes its sign as a result of the hard co re .
Thus the 1S0 wave destructively  in terferes with other even -parity  w aves, 
resulting in an isotrop ic  angular distribution. The d irect confirm ation 
that the 1S0 phase shift d ecreases and becom es negative at about 250 MeV 
cam e from  the energy-dependent phase-shift analysis.

The idea that nuclei might have a highly com pact structure at sm all 
distances was ra ised ;by  Rutherford already in 1927 [Ru 27], and was 
subsequently considered  by M orse [Mo 36] ,  B reit [Br 37], and others 
[Fe 41, Pa 48].

At present, there is no evidence against the assum ption that the N-N 
interaction contains the repu lsive inner region in a ll N-N states. How
ever, evidence fo r  the repu lsive interaction is sound only fo r  the 1S0 
state, it is probable that the 3S1 state and may be even the ^P state also 
contains the inner repulsion  (the 3Sj phase shift at higher energies,
~  350 M eV, becom es negative). F or  other states, there is no evidence 
fo r  or against, and one should mention that the im pact param eters fo r  
D and F waves are 0 .4  fm  at as high energies as 3. 2 GeV and 6 . 2 GeV, 
respective ly .

Q ualitatively, the effect of the repulsive core  is  to make the effective 
interaction weaker as the relative energy in crea ses . Such an effect can 
be produced by the h a rd -co re , s o ft -c o r e  or a velocity-dependent interaction. 
Indeed, fo r  each h a rd -co re  potential m odel there exists a fam ily  of v e loc ity - 
dependent potentials which equally give a good fit to the N-N scattering 
data. H a rd -core , s o ft -c o re  and velocity-dependent potential m odels which 
produce identical (or very  s im ilar , and thus from  the experim ental point 
of view , equivalent) phase param eters could be d iscrim inated by in vesti
gating the o ff-e n e rg y -sh e ll interaction (see R ef. [Ot 68]).

3. N uclear fo r ce s  are spin-dependent. The n-p  system  has à bound 
state, the deuteron. If one assum es that the n -p  scattering can entirely 
be d escribed  by the param eters characterizing the ground state of the 
deuterori, fo r  the zero -en erg y  n -p  c ro ss -s e c t io n  one obtains values b e 
tween 2. 33 and 9. 32 mb, depending on the value of the n -p  effective  range. 
The experim ental c ro s s -s e c t io n  is  20. 36 ± 0 . 10  m b' The problem  was 
solved by W igner [Wi 36], who pointed out that the spins of n and p in
the deuteron are corre la ted  and, in fact, parallel, while the spins in the 
scattering experim ent are uncorrelated . Thus, the c ro s s -s e c t io n  is 
(3 /4 )a t + ( l / 4 ) a s, where t and s indicate triplet and singlet states, and 
only CTt can be related to the properties  of the deuteron. The ex p eri
m entally determ ined zero  energies crs and a t d iffer by alm ost an order 
of magnitude, which im plies that the N-N fo rce  is  spin-dependent.

4. The outer region  of the N-N interaction is OPE. The static 
OPEP is

Static (OPEP) = ^ M(Tl T2) e'__1_
X 3 (a l ° 2) + Sl l  + ^  +X  x z

(2.9)

where /u is  the pion m ass, x = ц г , f =gß/2№ , and M is the nucleon m ass.
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The proof that the outer region  is dominated by OPE consists in 
including the OPEP in the phase-sh ift analysis fo r  higher partia l waves 
in much the sam e way as the Coulomb interaction  is custom arily  included.
In such a calculation the OPEP contribution has one free  param eter: the 
nucleon -p ion  coupling constant. The m odified phase-sh ift analysis [Cz 59, 
Gr 59] p roves that phase shifts indeed approach 6(OPEP) as L and E in
c rea se . The coupling constant determ ined from  the analysis is in a g ree 
ment with that determ ined from  p ion-nucleon  scattering. In addition, the 
phase shift solution fo r  L < L 0 (for L § L 0 one uses OPEP) becom e unique 
if one uses O PE P.

The study of the deuteron by Iwadare et al. [Iw 56] established the 
validity of OPEP in 1956. Since the deuteron is a loose ly  bound structure, 
it is  expected that its static properties  depend very  little upon the inner 
part of the potential. In the outer region  (x > 1) the ch a racteristic  of 
OPEP is the dominant tensor feature and from  the quadrupole moment 
they determ ined the coupling constant f  2/ 47í = 0. 065 - 0. 09. Glendenning 
and K ram ers [G1 62] showed that various potentials are consistent with 
the deuteron data providing the ta il  is described  by OPEP. The predicted 
quadrupole mom ent and the D state probability  turn out to be 2. 80 S Q 
S 2 . 8 8 X 1 0 "27 c m 2 and 5 . 4 § P D S 7. 5%, resp ective ly . The experim ental 
value fo r  Q is 2. 80 ± 0 . 01 X10 ' 21 cm 2 (Wi 63), though the other analysis 
[Na 66] gave 2. 7965±0.  005 Х Ю '^  cm ?

5. N uclear fo r ce  contains the sp in -orb it (LS) term . The m easurem ent 
of the depolarization D (0 = 45° - 90°) at 150 MeV was the c lea r  evidence 
requiring the LS fo r ce , which had to reduce the large value of 6( 3P 0) at
E = 150 M eV predicted  by the OPEP tensor fo r c e . Hoshizaki and Machida 
[Ho 62a] investigated the non-static OPE and TPE contributions and found 
that the LS fo r c e  due to TPE is weaker than phenom enologically needed 
in trip let odd states. It has been known fo r  a long tim e (see , e . g .  R ef.
[Ro 48] )  that the LS fo rce  can be derived from  the exchange of the vector  
a n d /or  the sca la r  m eson . Since the experim ental N-N scattering data 
at higher energies (100 - 300 MeV) indicated a rather strong LS fo r ce  in 
reg ion  II, many authors attributed this fo r ce  to the exchange of the sca lar 
o r  vecto r  bosons [Gu 59, Sa 60, B r 60]. It seem s that the outer part of 
the LS fo r ce  is m ainly described  by the ОВЕС (boson other than pion) 
though TPE can a lso  contribute. The short range of the LS fo rce  seem ed 
to be indicated by the fact that the splitting of 3Fj phase shifts ex p eri
m entally found is  not o f the LS type even at E = 310 M eV. H ow ever, if the 
range of the LS fo r ce  is too short the polarization  P(0) at E ~  150 MeV 
is  too sm all.

6 . F o r  singlet even L = 0, L = 2 and L = 4 phase shifts, phase-sh ift 
analysis yielded values which could not be explained by using the central 
potential only (the tensor and sp in -orb it potentials vanish in singlet states). 
The static potential gave too large a value at 100 MeV fo r  6( 1D2) and the 
d isagreem ent becam e 40% at 300 M eV. The OPEP including the ( p / M )2 
n on-static correction  [Ho 62a] is
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V(OPEP) = L . ^ ( T l T2 ) ^ - 3 1 O7! 0̂ ) + S12 1 + з + Л
X  X  “

- (CT1 CT2 )L (2 . 10)

The minus sign correspon ds to the p seu d o-sca la r  (pseu do-vector) coupling 
with the Lagrangian density

f  —
L = i — ф 7 7 . 7  ф Ъ ф

Ц  ex 5 fJ fJ a

and the plus sign correspon ds to the pseu d o-sca lar  (pseudo-vector) 
coupling with

L = Щфта у 5уф а

The fir s t  term  in Eq. (2. 10) is  the well-known static O PE P, and the 
(ju/M)2 term  is the so -ca lle d  quadratic sp in -orb it fo r c e , which does not 
vanish in singlet even states. Although the non-static term  in OPEP 
provides the th eoretica l standard fo r  the asym ptotic behaviour and the 
ord er  of magnitude, its sign and strength should be considered  pheno- 
meno log ica lly .

The inclusion  of the quadratic sp in -orb it term  m akes the problem  of 
the range o f the sp in -orb it term  le ss  seriou s.

7. N uclear fo r ce s  are to a large extent charge independent (C l).
The charge sym m etry (CS) of nuclear fo rce s  was postulated by H eisenberg 
in 1932 [He 32] and the com parison  between low -en ergy  n -p  and p -p  
scattering data led B reit [Br 36; Br 36a] to the suggestion of CL N uclear- 
structure data con firm  the CL The N -N  scattering data a lso  con firm  that 
Cl is  valid within sev era l p e rce n ts . The validity of Cl can be checked 
separately fo r  lo w -L  and h igh -L  partia l w aves. The investigation of 
lo w -L  states con sists in varying non-O PEP phase sh ifts. T = 1 phase 
shifts obtained from  the analysis of p -p  data w ere used in n -p  analysis 
and T = 0 phase shifts w ere determ ined by fitting the n -p  data. T = 1 phase 
shifts w ere then re leased  so as to obtain the best-fit to the n -p  data. The 
conclusion  was that T = 1 phase shifts fo r  p -p  and n -p  data w ere the same 
within experim ental uncertainties (which, how ever, are not always sm all).

V ery  accurate and extensive data on p -p  and n-p  scattering around 
210 MeV w ere used [Mi 68] to perform  an energy-independent phase-sh ift 
analysis , and an attempt was made to determ ine whether the data requ ire 
any charge splitting in the 1 S0 state. The n -p  and p -p  phase shifts 
w ere allowed to be independent and the splitting found was 3 . 3°  ± 4 . 5 ° .
A sim ilar  analysis was perform ed  by M acG regor et al. [Ma 68] resulting 
in 0 . 06°  ± 0 .  74°. Both resu lts are  consistent with no splitting, but the 
second lim its the magnitude of any possib le  splitting to le ss  than 0 . 8°, 
while the firs t  allow s as much splitting as 7 . 8 ° .  The reason  is  that Signell 
et a l. [Mi 68] com pare ô ( 1S0) fo r  p -p  with 6( 1S0) fo r  n -p , while M acG regor
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et al. [Ma 68] com pare the 6( 1S0) determ ined from  p -p  with that deter
m ined from  p -p  and n -p , and the rather inaccurate n -p  data com bined 
with accurate p -p  data cannot yield  the result much different from  ô ( 1SQ) 
fo r  p -p . The uncertainty in the n -p  phase shift around 210 MeV is 
10 tim es la rger than in the p -p  phase shift: 6( 1S0) fo r  p -p : 5. 43 ±0 . 4 4 ,  
and for  n-p 2.13 ±4 .  50, Additional n -p  data are needed.

The analysis of high L states con sists in the study o f OPEP phases. 
The pion exchanged in n -p  and p -p  interactions is  a neutral one, while 
n -p  can interact by exchanging either charged o r  neutral p ions. The 
m asses of charged and neutral pions d iffer and, in princip le , the coupling 
constants might be d ifferent. To account fo r  these d ifferen ces, OPEP 
should be written as

V(OPEP) = g 2±W ( m ni , г ) [ г 1 Ъ -г\т\] + g l ^ { r n vt,v )T \T Z2 (2.11)

where g 00 and g 0i are the coupling constants fo r  neutral and charged 
p ions, resp ective ly . F or  the T = 1 p -p  and n -n  system  тг т 2 =1 and 
Ti T2 = 1 yielding only the term  due to neutral pion exchange. F o r  the 
T = 1 n -p  system  тг т2 = 1, and r f r | = - l  yielding 26(m jr±) - ófm ^,). F or  
T = 0, TjTj = -3 and one has - [26(m jr±) + ô f m^) ]  . The phase-param eter 
analysis a ffords the possib ility  of determ ining g 2 and thus testing C l.
The YLAM  analysis fo r  p -p  and L i  5 gave goo / 4 ^  ~  13.5 ± 0.9,  
YLANZM  fo r  n -р., and L ë 5 gave 14.5 ± 1 . 1  [Br 60a] . The 
analysis AM VII [Ma 68a] yields 14 . 7 2 ± 0 . 8 3  from  p -p  data, and Y -IV  
yields 1 5 . 9 9 ± 0 . 6 2  f or  p -p  and 1 3 . 7 6 ± 0 . 7 4  fo r  n -p  data [Br 67]. The 
coupling constant determ ined from  charged p ion-nucleon  scattering is 
14. 636 ± 0 . 34. It should be mentioned that the values of the coupling 
constant derived  from  the m ost recent Yale analysis of n -p  and p -p  data 
d iffer by m ore  than the uncertainties, while the older values as w ell 
as the pion -nucleon  scattering value are mutually com patible.

8 . The study of N -N  scattering gives inform ation on the validity of 
tim e re v e rsa l and parity conservation . T here is  a number of experim ents 
in n u clea r-rea ction  studies which provide quite low upper lim its fo r  parity 
non-con serv in g  (PNC) and tim e rev ersa l non-invariance (TRNI) term s 
in the N-N interaction . It is desirab le , how ever, to study the validity 
of these b a sic  conservation  laws investigating N-N scattering ( e . g .  PNC 
and TRNI interaction  can be energy-dependent).

If PNC holds,then the d ifferentia l c ro s s -s e c t io n  fo r  the scattering of 
the polarized  beam  on the unpolarized target is

a = ct0 [1 + < 3 > ¡ n A n+ < a>j x A x + <a> ¡ k A k] (2 .12)

The spin expectation value after the scattering of the unpolarized beam  
from  the ùnpolarized target is

< ? > f = Pn n + P s s + Pk,k' (2 .13)

and-if PC holds then P s = Pk. = A x = A k = 0, and^if TR-invariant^then
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We sum m arize som e experim ental inform ation (see R e f.[T h  65]):

P - A  = 0 . 0 2 9 ± 0 . 0 1 8 ,  at 30°, 210 MeVn n

= 0 . 0 0 7 ± 0 . 0 2 3 ,  31°,  176 MeV

= 0 . 0 1 1 ± 0 . 0 2 2 ,  50°, 179 MeV

A x = 0. 008 ± 0 . 033, at 57°, 210 MeV

= 0 . 02 ± 0 . 0 4 ,  45°, 315 M eV, from  p - 12C scattering.

The longitudinal polarization  from  p+  9Be at 0 °, 350 M eV is less  than
4 X 1 0 '3 .

The data on N-N scattering do not give any evidence fo r  parity an d /or  
tim e re v e rsa l violation . H ow ever, the upper lim its fo r  TRNI are sm aller 
than those fo r  PNC.

3. HOW ACCURATE IS OUR PRESENT KNOWLEDGE 
OP PHASE PARAM ETERS?

E xperim ental data on N-N scattering can be param etrized  in term s of 
phase param eters: phase shifts and coupling param eters. The states of 
the tw o-nucleon  system  are:

T = 0 ,  even trip lets : 3 S x and 3D X, coupling param eter ; SD 2;

3D3 and 3G 3, coupling param eter e3 ; 3G4; . . .

T = 0, odd singlets: 1P 1j 1 H4, . . .

T = l ,  even singlets: 1 S0, 1D2, 1 G4, . . .

T  = 1, odd trip lets: 3P<j; 3P i ; 3p2 an!  ̂ 3 -̂ 2 > coupling param eter e2, . . .

Owing to the short range of nuclear fo r ce s , it is  possib le  to d escribe  the 
scattering in term s of a rela tively  sm all num ber of phase shifts.

The experim ental a ccu racy  determ inès to som e extent the number of 
phases, e . g .  better angular resolution  requ ires m ore  phase sh ifts. The 
relationship Lmaxfi= b p  indicates that L max = 2 fo r  40 M eV, and 6 fo r  350 M eV. 
This s e m i-c la s s ic a l argument should not be taken litera lly , at least fo r  
low L, where the correspondence princip le cannot be applied.

Below  the pion threshold, the phase shifts are rea l. Above 400 - 
500 MeV the total p -p  c r o s s -s e c t io n  appreciably d iffers from  the total 
e lastic  p -p  c ro s s -s e c t io n  indicating the large contribution of m eson p ro 
duction.

In 1957 Stapp, Ypsilantis and M etropolis perform ed  the phase-sh ift 
analysis at 310 MeV where the m ost com plete data exist. They obtained
5 sets of phase param eters [St 57]. The reduction of the ambiguity was 
achieved using the m odified analysis which incorporated the OPEC. Only 
two of SYM solutions w ere consistent with the OPEP behaviour of la rg e -L  
phase shifts. The phase-sh ift analysis was a lso  p erform ed  fo r  the 210 MeV
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data and again led to the solutions s im ilar to SYM and evidence was found 
supporting SYM 1.

In I960, the Yale group started the energy-dependent analysis including 
the data from  9 .7  to 345 M eV. The advantages of energy-dependent 
analysis are:

1) P hase-sh ift analysis at one energy can yield  many solutions, and 
the theoretica l guides fo r  energy dependence can distinguish reasonable 
from  unreasonable solutions.

2) S wave dominates at low energy and higher L should appear su cce s 
sively  as energy in crea ses .

3) E xperim ental id iosyncrasis  can be revealed.
The form  of the energy dependence can be chosen so as to have enough 

freedom  to match the data (Yale approach) or to have a plausible form  from  
the th eoretica l standpoint (L iverm ore  approach). Two approaches are 
in p ractice  quite c lose  since both are flex ib le  and both have som e theo
retica l justification . The phase-sh ift form  used in the L iverm ore  analysis 
is

N

6s/  = ô^ 1 (T)+ £  0 ¡ ( S , J ) F M (T) (3.1)
i = 1

where T is  the kinetic laboratory energy, and a are the coefficien ts 
searched fo r . F or  S waves, 6 00 is taken from  the effective-ran ge theory, 
and fo r  other waves 6i0 is  taken from  OPEP.

rM <*»> = <*«
0

2
where x o = 1 + 4 p / M T ,  ц is  the pion m ass, and Q is the Legendre function 
of the second kind.

3 . 1 .  P roton -proton  data below  400 MeV

The L iverm ore  phase-sh ift analysis AM VII included 1084 data points 
[Ma 68а]. A few  sm all-angle  data w ere om itted since they contained ob 
vious system atic e r r o r s . The criterion  fo r  the data selection  was based 
on se lf-con s is ten cy . A ll data from  1 to 400 MeV w ere considered , and 
a subset of data was form ed  of those data having x 2S 1 per data point.
This set consisted  of 43 9 data and was considered to be a new b asic  set 
fo r  re-exam in ing a ll data. This tim e all data with x 2 < 1.55 w ere in 
cluded form ing a new b a sic  set. This set was used to make a final s e le c 
tion which contained 839 data points. Thus, 245 data points w ere discarded 
as "bad" data. Exam ples of data not included in the analysis are
a) a (6 = 1 0 ° -4 1 ° ) , E = 98 M eV, uncertainty 3% (H arwell 1960)
b) P(0 = 31 ° - 67°), E = 107 MeV, uncertainty 5% (Harvard 1958).

The phase shift solutions w ere obtained using 20, 23 and 30 fre e  para
m eters in Eq. (3.1) .  The num ber of fre e  param eters fo r  each partial 
wave and the total x 2 are given in Table 3. 1 (from  AM VII).

F igure 5 shows som e phase param eters from  the solution AM -VII 
together with the "c o r r id o r  of e r r o r s "  which in creases at higher incident 
energies.
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EN E R G Y  (M eV ) E NE RGY (M e V )

E NE RGY (MeV) ENE RGY (MeV)

ENERGY (M eV ) E N E R G Y  (MeV)

F IG . 5 . S o m e  phase pa ra m eters .
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TABLE 3. 1 .  NUMBER OF PARAMETERS FOR EACH 
PAR TIAL WAVE AND T O TA L x2

N u mb e r  o f  paramet ers  

2
X

30

810

23

858

20

874

‘ S o 4 4 4

■d 2 3 2 2

'G „ 2 1 1

4 2 2 2

3 P, 4 2 2

3 P2 3 3 3

«2 3 2 2

3 ?2 2 1 1

3 Fг 3 2 1 1

3 F "  4 1 1

3H 4

3Н 5

ч

1

1

1

1

1

1

1

1

1

TABLE 3. 2 .  COMPARISON OF NEW AND OLD PHASE PARAMETERS

Phase p aram eters ч 1D 2

new 3 8 .1 2  i  0 .4 7 1 .8 1  ± 0 .1 1 -  1 .8 9  ± 0 .1 4

o l d 3 7 .5 0  i  0 .7 8 2 .1 6  ± 0 .2 7 -  2 .2 7  ± 0 .3 6

The Yale phase-sh ift analysis used 886 data and the results are given 
in Ref .  [Br 67] and go under the name Y -IV . The Y -IV  represent a sign i
ficantly  better fit than YRB1 (Ko) o r  YLAM , the ea rlie r  Yale analyses.

The effect of the very  accurate m easurem ent at 49. 4  MeV 
[Ba 67] on the phase-sh ift analysis is  shown in the analysis of P erring 
[Pe 67]. Since the experim ental accu racy  o f 0. 5% represents an im p rove
ment of an ord er  o f magnitude over the older data, a significantly m ore 
accurate phase shift could be obtained (see Table 3.2) .  P errin g  concluded: 
"T he phase shifts are now so accurately  known that there seem s to be 
no m otive fo r  further p -p  experim ents at 50 MeV2"

3 . 2 .  P roton -proton  data, energies above 400 MeV______

D ifficu lties of the phase-sh ift analysis above 400 MeV are:
1. Inelastic effects are im portant, e . g .  at 660 MeV alm ost half of 

the scattering events are in e la s tic ;.
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2 , many partia l waves have to be taken into account;
3, extensive elastic  scattering data exist only at a few  energies 

( e . g .  430 and 650 MeV) and inelastic data are quite p oor.
The approach to the analysis consists of
a) estim ating the im aginary part of the phase shifts from  the data on 

pion production using the (3,3)  resonance m odel fo r  p ion -production  [Ma 58];
b) determ ining the rea l part of the phase shifts on the basis  of the 

extrapolation of w ell-determ ined  solutions below  400 M eV. This method 
was su ccessfu lly  used fo r  the 600 MeV analysis [Ho 63, Ho 63a] and then 
extended up to 1 GeV [Ha 64].

A bove 1 GeV the condition a) should be m odified since the Mandelstam 
m odel is not valid there. The im aginary phase shifts w ere calculated on the 
basis  of the OPE m odel fo r  pion production with the use of unitarity [Am 67] . 
Thus at E k, 1 GeV a) should be rep laced  by a '):

a ') The im aginary phase shifts with L > L c r it ica l should be taken 
from  the A m aldi m odel [Am 67].

An additional constraint can be taken;
c) The interm ediate and long range part of nuclear fo r ce  is  r e p re 

sented by OBE.
The analyses at 1, 2 and 3 GeV have shown som e validity of this ap

proach  [Ha 65, Ha 66].
The L iverm ore  analysis AM -VIII [Ma 68b] included 599 data between 

358 and 736 MeV coupled with the set of data representing the region  b e 
low 400 M eV. The energy-dependent form  (3.1)  was used with 31 and 38 
fre e  param eters. A lso  the explicit inclusion of a, p and u exchange con tr i
bution was considered  together with 20 and 25 fre e  param eters. The r e 
sult of the analysis indicates that the inclusion of OBE does not give any 
im provem ent. A lso , the addition o f m ore fre e  param eters did not yield 
sm aller x 2.

F igure 6 shows som e phase param eters from  solution AM -VIII (taken 
from  Ref .  [Ma 68b] ) .  The inelasticity  part fo r  a ll solutions was taken from  
the Am aldi m odel. Solutions 1 and 2 are with 31 and 38 fre e  param eters, 
and 3 and 4 include OBE with 20 and 25 param eters, resp ective ly . A lso  
shown are analyses at sp ec ific  en erg ies. Solution 1 y ields x 2 =1 . 3  per 
data point. Some problem s revealed  by this analysis are;

i) The treatm ent of inelastic scattering is  not sa tisfactory . The 
A m aldi m odel is valid around 1 GeV, and.at 600 MeV pred icts the total 
reaction  c r o s s -s e c t io n  which is  one half of the experim ental one.

ii) The experim ental accu racy  is  poor. One needs 5% accurate tr ip le 
scattering data, and it seem s that the effective  target polarization  ’is  
20% wrong. An order-o f-m agn itu de im provem ent of the present accu racy  
o f data is needed if  the analysis around 500-700 M eV is to be as accurate 
as those below  400 M eV.

TABLE 3. 3 .  VALUES OF SOME PHASE SHIFTS

'So xd 2
3 p

Ko
N u m ber 
o f  data X 2 D (9 0 e) A x x (7 0 e)

S o lu tion  1 -  5 0 .8 1 6 .0 -  6 5 .9 60 6 1 .8 0 .7 0 -  0 .0 9

S o lu tio n  2 -  3 6 .6 1 0 .5 - 4 6 . 5 60 4 0 .7 -  0 .3 1 -  0 .5 1
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ENERGY (M eV)

ENERGY (MeV)

E N E R G Y  (M e V )

E NE R G Y (M eV )

F IG . 6 . S om e phase param eters o f  so lu tio n  A M -V II I .
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TABLE 3.4.  ANALYSIS OF p -p  DATA AT 2 GeV AND 3 GeV

The analysis [Ho 68] o f 970 MeV data from  Saclay and Birmingham 
yields two solutions. Further experim ents are needed to d iscrim inate the 
c o rre c t  solution, and the m ost valuable m easurem ents are D(90°) and 
A xx(70°) .  Table 3 .3  shows the values of som e phase shifts fo r  these 
solutions together with the predicted  D and A >K. The analysis of p -p  
data at 2 GeV and 3 GeV also yield ambiguous solutions, which correspond 
to the solutions at 970 M eV. The results are given in Table 3 . 4 .

The phase-sh ift analyses from  400 MeV to 3 GeV showed:
1 . iS^Sq) d ecreases m onotonically with energy even at as high energies 

as 0 .6  to 2 GeV. Since the ■'■Sq state does not su ffer any seriou s inelastic 
e ffect, this monotonie d ecrease  suggests that the repulsive co re  exists
up to these en erg ies.

2 . 6 ( 1D 2) is strongly influenced by inelastic e ffects  and one cannot 
deduce d irectly  inform ation on rea l potentials from  its rea l phase shifts. 
H ow ever, solution 1 at 2 and 3 GeV is consistent with the hard core , 
and solution 2 is inconsistent. The two solutions could be d iscrim inated 
by the m easurem ents of C nn and C^p at 1 . 5 - 3  GeV.

3. The P -w ave interval: [ó ( 3P0 ) - 6( 3P i )] / [ó( 3P: ) - 6 ( 3P2 )] in the
660 MeV phase-sh ift analysis is  ( 0 . 1 ---- 0 . 1 ) ± 0 . 4  in agreem ent with LS
type potentials (0. 5) and in disagreem ent with tensor type potentials ( -2.  5). 
H ow ever, the potentials having besides the central and tensor also the LS 
term  predict too large a 6( 3F4 ) at 660 MeV. The reduction of the LS fo rce  
on F waves can be achieved by the non-static quadratic LS.

3.3 .  N eutron-proton data

N eutron-proton data are rather incom plete and considerably  less  
accurate than p -p  data. The phase-sh ift analysis can yield meaningful 
unique resu lts only if one assum es Cl and takes T = 1 phase shifts from  
p -p  data. M acG regor et a l. [Ma 68] attempted the analysis of 140 MeV 
n -p  data only, but essentia lly  found an infinite number of solutions.

The L iverm ore  analysis o f n -p  data A M -IX  [Ma 68] uses 912 n-p 
data in the 0 - 400 MeV interval, and 95 data in the 410 - 750 MeV interval 
and assum es T = 1 p -p  phase sh ifts. Owing to s ca rc ity  of n -p  data, no 
se lf-con s is ten cy  criterion  can be applied, and only a few  obviously in
co rre c t  data w ere re jected . Exam ples of the data with large uncertainties, 
but nevertheless included in the analysis are:

P  (в = 21° -101° ) ,  E = 30 M eV, uncertainty 50%, H arw ell 1965 
R (0 = 4 2 ° -8 4 °), E = 137 M eV, uncertainty 80%, Harvard 1962

A fter determ ining T = 0 phase param eters (T = 1, fixed  from  p -p ), a



(d
e
g

re
e
«

) 
*

0
}

(d
e

g
re

e
s
) 

E
, 

(d
e
g

re
e
«

) 
*Р

, 
(d

e
g

re
e

s
)

36 SLAUS

( a)

<d)

<9 >

E N E R G Y  (MeV) 

( b)

ENERGY (M eV) 
(e)

<h)

ENERGY (MeV)

(C)

ENERGY (MeV)(f)

F IG .7 . T  = 0 e n e rg y -d e p e n d e n t  so lu tion s o f  A M -I X .
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search  was made releasing  a lso  T = 1 phase param eters, but both sets 
w ere essentia lly  identical, im plying that n -p  data are consistent with 
p -p  T = 1 phase shifts.

Energy-dependent analysis up to 750 MeV was perform ed  using T = 1 
p -p  phase param eters and assum ing T = 0 phases to be wholly e lastic over 
the entire energy region , since the isospin  conservation  prevents T = 0 
phases to be coupled to (3. 3) resonance that seem s to dominate T = 1 in 
e lastic  scattering near the threshold.

The final data used in A M -IX  consist of 901 n -p  data from  14 to 
730 M eV. Phase param eter solutions w ere obtained using 29, 22 and 
19 param eters. The X2 values w ere 1134, 1172 and 1360, respective ly , 
and the preferab le  solution is the 22-param eter solution. F igu re 7 shows 
the T = 0 energy-dependent solutions of A M -IX .

The com bined T = 1 phases from  AM -VIII and T = 0 from  A M -IX  used 
1147 p -p  and 901 n -p  data. X2 p er data point was 1.34,  when 53 pheno
m enolog ica l param eters w ere Used to represent 14 free  T = 1 and 11 free  
T = 0 phases.

F IG .8 . Phase p a ra m e te r  so lu tion s .

F igu res 8 and 9 represent phase-param eter solutions obtained by 
the L iverm ore  (solid  curves) and Yale (dashed) groups. The squares are 
from  the analysis of Hoshizaki (50 M eV) and c ir c le s  are due to P erring 
(25, 50 and 140 M eV). 6 (S) has the ordinates on the left, and P and D on 
the right. The ordinate scaling fo r  e, F and G is  4 tim es as large, and 
fo r  H is  8 tim es as large . The energy-dependent L iverm ore  and Yale 
analyses are , in general, in very  good agreem ent except fo r  e\ and 
at low en erg ie s . The Yale analysis fixed  phases tob e  OPEP at low energies, 
while the L iverm ore  analysis has not such a restriction  and the L iverm ore  ej 
and 1P1 strongly deviates from  their OPEP values. Thus, one can say 
that there is  nothing in the data that requ ires and : Р: to have the OPEP 
behaviour in 10-25 MeV range. H owever, the sign of the quadrupole moment 
of the deuteron im plies > 0 at very  low energies contrary to the L iverm ore  
resu lt.
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3.4.  Conclusion of the phase shift analyses

The p -p  T = 1 phase shifts up to 400 MeV are quite accurately known. 
In the 400 - 750 MeV interval the accuracy  of phase param eters is , at 
least, an order of magnitude in ferior, and because of the uncertainties 
in the handling of inelasticities, might even be w orse . The phase para
m eters in the interval 1 - 3  GeV are much w orse .

The n -p  data are insufficient and quite inaccurate, which is reflected  
in large uncertainties in T = 0 phases even when Cl is assum ed. Even 
at low energies 10 - 100 MeV n -p  data are p o o r . 1 The knowledge of T = 0 
phase param eters below  400 MeV is bad to fa ir , particularly  poor is ej 
and 1P1 . At energies above 400 MeV T = 0 phase param eters are very  
badly known.

3 .5.  L ow -energy p -p  and n -p  data

A number of very  accurate p -p  scattering experim ents have been p e r 
form ed in the energy region  between 0. 3 and 15 MeV.

a) Relative cro ss -s e c t io n s  have been m easured to an accuracy  of 1% 
at six energies between 0.33766 and 0.40517 MeV at 9c.m.= 90°.  The 
destructive in terference between Coulomb and nuclear fo r ce s  causes a 
pronounced minimum in a(90°) around 400 keV. The c ro ss -s e c t io n  is

2 1 9 ^1 - — sin ô g * cos  e + sin Ô 0J (3. 2)

1 An e x a m p le  is the 1 P j phase a t 25  M eV  w h ich  is -  2 . 06 ± 2 .6 6  (L iv e r m o re ) or -  6 . 2 1 ± 1 .2 8  
(P errin g  [P e  6 7 ] ) .  OPEP is -  7 .0 2 .  T h e  c r u c ia l v a lu e  is o (1 8 0 e) / o ( 9 0 e) .  T h e  present analyses had to 
dep en d  on  the o ld  m ea su rem en t o f  o (0 )  at 2 7 .2  M eV  [B r 5 1 ] .

a(90°) 2e¿
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where 77 = e2/h v  = 0.1581 (EMeV) , e = 60 - r\ In 2 and in the v icin ity  of 
the m inimum, 77 = 6, cos  1. E nergy m easurem ent determ ines the phase 
shift. A ve locity  m easurem ent [Br 64] enabled a very  accurate m easu re
ment of the energy, to an accu racy  of 0. 2 keV: E (min) = 382. 43 ± 0. 20 keV, 
com pared with a previous accu racy  of 1. 5 keV. This a ccu racy  perm itted 
the determ ination of the phase shift to an accu racy  of 0 . 0 1 °, which im 
plied that the shape param eter P in the effective range expansion can be 
determ ined to an accu racy  o f ± 0 . 0 2 .

b) D ifferentia l c ro s s -s e c t io n s  have been m easured at 13 angles at 
1.397,  1.855,  2. 425 and 3. 037 M eV. An accu racy  of 0. 1 to 0. 3% has 
been achieved [Kn 59, Kn 66]

c) The angular distribution at 9. 69 M eV, with an accu racy  of 0. 7%
[Jo 59] .

d) A y y / A xx at 90° at four energies between 11.4 and 26.5 M eV [Ca 67].
e) T here also exist ea r lie r  angular distribution data which extend 

up to 4. 2 MeV [Wo 53] and recent data at 6 . 141, .8 . 097 and 9. 918 MeV 
[SI 68], the accu racy  o f which has been questioned.

To extract very  accurate S phase shifts, one has to make certain  a s 
sumptions about h igh er-L  phase shifts. The analysis of data c) and d)
[No 67] shows that i) higher phase shifts are sm all and consistent with 
their OPE values, in particu lar 6( 1D2) is within 30% of its OPE; ii) one 
cannot obtain a unique solution of the 4 -param eter (one S and three P) 
phase-sh ift analysis; iii) the quantities Дс , A T and A LS are linear co m 
binations of 61,0, ôi.i and 61.2 and in the Born approxim ation they are 
proportional to the m atrix elem ents of the central, tensor and sp in -orb it 
potentials. The analysis y ields a very  sm all A ls / A t ~  0.07 - 0 . 15 which 
can be understood in term s of the short-range LS fo rce ; iv) if one fixes 
A ls/A T in the range 0.07 - 0 . 1 5  one can uniquely determ ine 60 , Д с and 
Дх at 9. 69 and 11.4 M eV.

p -p  scattering is not only influenced by nuclear fo r ce s  but also by 
Coulomb fo r c e s , m agnetic interaction and vacuum polarization  (VP) 
e ffects . The VP potential fa lls  off exponentially at large distances with 
a range corresponding to the Compton wavelength of an e lectron -p ositron  
pair (193 fm ):

1)1,1
1

where a ' 1 = 137 and Кё1 = 386.2 fm .
The m agnetic interaction  fa lls  off as r ’ 3 and they both influence a 

large num ber of L. The phase shifts in p -p  scattering are defined by:

Rl (r) = cos ÓL SL (r) + sin ô£ T L (r), r  »  jjL

R L(r) = c o s K l F l  ( r )+ s in K LGL(r), r  »  (2Ke)_1

K L =  « L  + T L

where tl  is  the phase shift produced by the electrom agnetic potential with 
resp ect to the Coulomb functions FL and GL.
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The e ffective -ran ge  expansion fo r  p -p  6q is 

[C 2k/(1  - Ф0 )Н(1 + X 0) c °t  So - tanTol + 2nk[h(rj) + jf0(rj)]

= ' Í  + | r ok 2 - P r ok4 + Q r ok 6 + -- (3-3)

С 2, T] and h(rj) are  param eters which a r ise  in a pure Coulomb problem , 
while Хо» Фo> To anc* ^ о are n°n -C oulom b electrom agnetic param eters.

The phase 6  ̂ at 382. 43 keV is 14 . 6 1 1± 0 . 011° .
The 1SQ e ffective -ran ge  param eters extracted from  the low -energy  

p -p  data are given in Table 3.5.
The analysis of Slobodrian [SI 68] d iffers from  other analyses. In 

particu lar, it has em ployed the data e). The quadratic fit is very  sa tis 
fa ctory . The fact that P > 0 is further evidence fo r  OPEP since various 
potential m odels which include OPEP pred ict P > 0 .

The analysis of the low -energy  n -p  data [No 63] g ives: a np= - 23.678 
± 0 . 028  fm ; rnp = 2. 5166 ± 0.1036 fm if one takes into account the rather 
recent c r o s s -s e c t io n  of Engelke et a l. [En 63]. The analysis which does 
not include Engelke1 s data would yield rnp = 2 .7  fm . This resu lt has been 
essentia lly  con firm ed by B reit et a l. [Br 65], but they have pointed out 
that rnp = 2 .7  cannot be excluded. The number of e rro rs  has been con 
sidered  [Br 65] : dynam ic effects of m olecu lar e lectrons in n-p scattering 
at energies above the epitherm al region, the participation of m olecular 
structure of hydrocarbons, etc . M ore experim ental work is needed to 
settle rnp ..

Czibok, Hrehuss and collaborators [Cz 69, Hr 69] m easured 
cr(6p = 0 ° ) / a(30°)  in n -p  scattering at 2. 5, 2 .7  and 2. 8 MeV and found
1 . 0 7 ± 0 . 0 2 ,  1 . 0 7 ± 0 . 0 2 ,  and 1. 033 ± 0. 012, respective ly . The anisotropy 
of the n -p  angular distribution together with the fine-stru ctu re  in energy 
dependence of both total and d ifferentia l c ro ss -s e c t io n s  observed  fo r  
E n<6  M eV should be carefu lly  investigated experim entally.

4. EXPERIM ENTAL PROBLEMS IN N-N SCATTERING STUDIES

4 . 1 .  P roton -proton  scattering

V arious types of a cce lera tors  produce protons with energies up to 
ten GeV region  (70 GeV). The advent of high-intensity m achines (SF 
cyclotrons) so lves the problem  of beam  intensity. The beam -energy  
resolu tion  is adequate fo r  N-N scattering studies.

The energy of the incident particle  has been m easured by ve locity  
(very  low energy, accu racy  0. 2 keV), t im e -o f-flig h t (at 50 MeV achieved 
an accu racy  of ~ 0 . 1%), m agnetic and e le c tr ic  fie ld s , and at higher en er
g ies by the range (which at E > 100 MeV som etim es included e r r o r s  as 
large as 1 - 2 M eV ).

P o larized  beam s can be obtained by i) nuclear scattering and re a c 
tions, and ii) production of slow  polarized  protons in a specia l ion source 
and the subsequent acce leration  to higher en erg ies . Two m ost com m on 
e r r o r s  in (particu larly  older) experim ents involving polarized  beam s are:
a) carbon was very  often used as a p o la r izer , and the polarized  beam 
also  contained the inelastic com ponent. When this effect was rea lized
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TABLE 3. 5 .  XS0 EFFECTIVE-RAN GE PARAMETERS EXTRACTED 
FROM LOW-ENERGY p -p  DATA

a ( fm ) r0( fm )  • P 0 Fit xz R e fe re n ce s

-  7 .8 0 4  ± 0 . 0 0 6 2 .7 4 8  ± 0 .0 0 8 0 0 lin e a r 1 6 .8 [H e  6 7 ]

-  7 .8 1 6  ± 0 .0 0 7 2 .8 1 0  ± 0 .0 1 8 0 .0 3 5  ± 0 .0 0 9 0 q u ad ra tic 1 .1 1 [H e  6 7 ]

-  7 .8 1 9  ± 0 .0 0 9 2 .8 2 0  ± 0 .0 4 4 0 .0 4 3  ± 0 .0 3 4 0 .0 0 8  ± 0 .0 3 1 c u b ic 1 .0 5 [H e  6 7 ]

- 7 . 8 1 5  ± 0 . 0 0 4 2 .7 9 9  ± 0 .0 1 6 0 .0 2 9  ± 0 .0 1 2 0 qu ad ra tic [B r 6 8 ]

-  7 .7 8 5 6  ± 0 .0 0 7 8 2 .8 4 0  ± 0 .0 0 9 0 .0 7 2  ± 0 .0 0 5  ' 0 .0 3 4  ± 0 .0 0 4 cu b ic [S I  6 8 ]

som e of the older data had to be renorm alized  by 2 - 3%; b) the alignment 
is  the cru cia l point in polarization , tr ip le -sca tterin g  and sp in -corre la tion  
experim ents. Significant p rog ress  has been achieved using the solenoid. 
Thus, the data obtained without the solenoid are subject to a la rger s y s 
tem atic e rro r .

At low energies the uncertainties in target thickness and in un iform i
ty (except fo r  a gas target) might contribute a large e r r o r . In the h igher- 
energy region  the hydrocarbon targets are the m ost com m on type and the 
elim ination of p -C  scattering is  achieved by m easuring p -p  co in ciden ces, 
by subtraction, o r  by energy discrim ination . Liquid targets have also 
been used. The gas and liquid target assem bly should be carefu lly  d e 
signed in ord er to avoid scattering due to the container w alls.

Rem arkable p rog ress  has been achieved in producing polarized  ta r 
gets. To be useful fo r  scattering experim ents the polarized  target should 
have the follow ing features: i) P olarization  should be maintained in the p r e 
sence of the incident beam . Since, e . g .  a beam  of 1010 p ro ton s /s  each 
losing 1 MeV in the target, d issipates approxim ately 1 mW , all the 
methods which use extrem ely  low tem peratures are ru led  out. ii) The 
target m ateria l should be dense enough and re la tive ly  sim ple. The su c
cess fu l polarized  target has been developed by the Saclay group: 
La2M g3 (N 0 3) 12 • 24H 20  in which 1% La is rep laced  by Nd. The amount 
of hydrogen is  only 3%, but a large polarization  has been obtained 
Pp ~20  - 60%. The follow ing problem s have been experienced  with the 
present polarized  targets: a) large system atic e r ro rs  in the determ ina
tion of target polarization  (PT ), typ ically  ±10% ; b) non-uniform ity in 
PT — a d ifferen ce  as large as a fa ctor  of 2 from  the centre to the edge 
o f the target; c) radiation damage of the target which causes the decrease  
o f PT by a fa cto r  o f 2 after 1012 p ro to n s /cm 2 exposure. It would still be 
advisable to use not only so lid -sta te  but also nuclear m ethods to determ ine 
Px and to p erform  these PT calibrations in tim e intervals sm all in com 
parison  with the damage rate.

The advantage that polarized  beam s — polarized  targets o ffe r  over 
the conventional techniques is  best seen when one com pares, e . g . ,  the 
Tokyo m easurem ent of C nn at 52 M eV, 20 counts/h , random /true = 10%,
P 2 = 0 .15,  with the Saclay m easurem ent of А уу at 26 M eV, with 10 cou n ts/s , 
random /true = 0.1% , PB PT = 0. 45 - 0 . 15  im plying that the same statistical 
a ccu racy  can be achieved during half an hour of the Saclay m easurem ent 
as in one month of the Tokyo experim ent.
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A b rie f review  of som e experim ental data is given as an illustration 
of various experim ental p rob lem s.

F igure 10 shows the p -p  polarization  around 600 MeV, and F ig . 11 
around 700 M eV. Betz and Dost used polarized  targets and PT was 
determ ined using so lid -sta te  m ethods. A shgirey  obtained a polarized  
beam  by scattering from  hydrogen, and thus, no inelastic scattering 
d ifficu lties w ere present. Ho.wever, the sam e method used by Dost gave 
a mean polarization  by 15% low er than what was expected from  p -p  sca tter
ing at that energy. P articu larly  bad agreem ent between various data is  
at 600 MeV.

F igure 12 shows the polarization  in p -ca rb o n  scattering at 6° indicat
ing that the m easurem ent which used a carbon p o la rizer  can cotitain 
non-negligib le uncertainties particu larly  above 350 M eV.

The maximum polarization  in p -p  scattering as a function of energy 
is  shown in F ig . 13.

F igure 14 shows the data on Cnn at 600 M eV. Dost used a polarized 
target and a polarized  beam  produced by scattering from  hydrogen.
Coignet also used a polarized  target and a polarized  beam  produced by 
p -C  scattering. The d ifference is  40%.

4. 2 .  N eutron-proton scattering (for an extensive discussion  
see also Ref.  [SI 68a])

In the past ten years only half as many n-p  data as p -p  data have 
been accum ulated. The experim ental inform ation on n -p  scattering is 
m eagre, incom plete and often inaccurate. The m easurem ents of n -p  
scattering are m ore difficu lt and m ore time consum ing. It should be



IAEA-SMR- 6/47 43

SCATTERING ANGLE - OEG REES CM

F I G . l l .  p*p  p o la r iz a t io n  near 7 0 0  M e V .

L A B O R A T O R Y  E N E R G Y  -  M eV  

FIG . 1 2 . P o la r iza t io n  in  p -c a r b o n  sca tter in g  at 6e la b .

stressed  that it is  extrem ely  im portant to perform  accurate n -p  scattering 
studies, and that many older m easurem ents should be repeated with better 
techniques now available.

The developm ent of intense charge particle  beam s has opened the p o s 
sib ility  of producing neutrons of an arbitrary  energy up to severa l GeV.
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Tp (GeV)

F IG . 1 3 . M a x im u m  p o la r iz a t io n  in p - p  sca tter in g  as a fu n c tio n  o f  e n e rg y .

FIG . 1 4 . P ro to n -p ro to n  sca tter in g  <fnn 6 0 0 -  7 00  M e V .

The prob lem s to cope with are: i) the neutron-beam  intensity which is 
determ ined by the current the a cce lera tor  can supply to the target, by 
the properties  of the target, and by the c ro s s -s e c t io n  fo r  the particular 
neutron producing reaction , ii) the energy spectrum  of the neutron beam . 
Even at low energies (E n < 3 0  MeV) the neutron beam  is not m onoenergetic
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because o f the energy loss  and scattering of the charged particle  producing 
neutrons, and the geom etrica l conditions. H igh-energy neutrons norm ally 
have a large energy spread (20-30%) and a low  energy ta il o f intensity 
com parable with the main com ponent. This low -en ergy  ta il can be e lim 
inated by the tim e -o f-flig h t condition, if the neutron energy is  not too high 
(En £  150 M eV). V ery  usefu l reactions to produce "m on oen ergetic" neu
trons in 100 MeV regions are D(p, n) and TLi(p, n).

The m easurem ent of the energy and intensity of the neutron beam  is 
typ ica lly  one to two ord ers  o f magnitude w orse than fo r  proton beam s.

P olarized  neutron beam s have been produced using various m ethods:
i) neutrons from  various reactions are already polarized . High p o la r iza 
tion has been  obtained; ii) unpolarized neutrons have been scattered from  
carbon, and typ ical polarizations obtained are up to ~50%; how ever, the 
neutron energy resolution  is  quite poor and the intensity is  rather low;
iii) the D (p,n) reaction  at 0° using polarized  protons produces polarized  
neutrons. The d ifficu lties are ; polarization  tran sfer below  250 MeV is 
low , typ ica lly  0. 25 - 0. 5 and the low -en ergy  ta il has the opposite p o la r iza 
tion to the peak.

In view  of d ifficu lties related to the use of neutron beam s many n -p  
scattering data have been accum ulated using deuterium as a neutron target. 
The processp  + d-*p + n + p can yield  reasonably meaningful p -n  scattering 
data if one has ensured that the proton in the deuteron acted as a spectator 
during the scattering event. Such p ro ce sse s  are ca lled  quasi'-free sca tter- 
in p ro ce sse s  and have been indeed observed  from  very  low  energies (5 MeV 
incident energy) up. A q u a s i-free  p rocess  can be treated in an im pulse 
approxim ation which m akes it possib le  to relate the experim ental c r o s s -  
section  to the n -p  data. This sim ple m odel can be im proved in various 
ways: i) introducing double scattering co rrection s , ii) final state in ter
action, iii) the c ro s s -s e c t io n  is  actually related to the o ff -e n e rg y -sh e ll 
m atrix  elem ent and one should take this into account, iv) from  the ex p eri
mental point of view  the scattering out of the scattering plane should be 
investigated since detectors often have a finite s ize . The e ffects  i) - iv) 
can amount from  a few  percent (at E ~200 MeV) to an order of magnitude 
correction  (at E ~ 10  M eV). The validity of m odels to treat q u a si-free  
scattering has been investigated by com paring free  and q u a s i-free  p -p  
and n -p  scattering. F igure 15 shows the d ifference ДР between fre e  
p -p  and q u a si-free  p -p  polarization  data against the opening angle between 
the counters. The data are com pared with the final state interaction  c o r 
rection . F igure 16 shows n -p  fre e  and qu a si-free  polarization  m easu re
ments at 140 MeV and the m axim a d iffer by 20%, while the com bined e rro r  
is  only 8%. Q u a si-free  and fre e  p -p  data com pared in the region  between 
300-700 MeV show a disagreem ent of ~10%.

The use of q u a s i-free  scattering to obtain the n -p  data can be sum 
m arized  as fo llow s: i) the im pulse approxim ation m odel corrected  fo r  
the fina l-state  interaction can be used to extract n -p  data if the energy 
is  not low (E > 100), and if the fina l-sta te-in teraction  correction  is  sm all 
(£  20%). Then the extracted n -p  c ro ss -s e c t io n s  are probably accurate 
to 10%; ii) the m odel is  much better fo r  polarization  and tr ip le -sca tterin g  
data, since they involve the ratio of c ro s s -s e c t io n s . The extensive 
d iscu ssion  of q u a si-free  p ro ce sse s  and procedures to extract free -sca tte r in g  
data is  found in [Cr 63, Ko 64, SI 68b],
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F IG . 1 5 . ДР d i f fe r e n c e  b e tw e e n  p - p  and q u a s i-fr e e  p o la r iz a t io n  data a ga in st o p e n in g  an gle  
b e tw e e n  cou n ters .

F I G .1 6 . n -p  free  and q u a s i- fr e e  p o la r iz a t io n  m ea su rem en ts .
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5. N -N  POTENTIAL MODELS

The m ost general n on -re la tiv istic  N-N potential contains the central, 
tensor, sp in -orb it and quadratic sp in -orb it fo r ce s :

V = V0 (r) + («7 a ¿V „(r) + s12 VT (r) + LS VLS (r)
(5.1)

+ (CTiL)(a2L)VQLS (r)

Vo< V 0 ,  V T  and V q LS have the OPEP tail, and the m odification  in the 
inner regions (II and III regions) is  given by term s of the form  (1 + a (e"x/x )
+ b (e"2x/ x 2)) introduced by Hamada [Ha 62]. The outer part of VL3 should 
be given by OBEP or T PE P .

The quantitative nature of the potential in region  II has been established 
fa ir ly  w ell [Ta 67]. The approach to understand region  III depends on the 
reliab ility  of our knowledge of region  II.

In the follow ing we sum m arize our present knowledge of the NN 
potential [Ta 67]:

Region II. ( 0 . 7 < x < 1 . 5 )

Singlet even; 1V ¿ is  strongly attractive. Using the 6( 1S0) below  50 MeV 
one can accurately  determ ine the strength of the Hamada type : V  ̂
potential, because other parts o f the potential do not contribute.

The non-static VqLS should be present to d ecrease  6(1D 2), but it 
is  difficu lt to separate the contribution of region  I and region  II to 
this potential.

T rip let odd: T a il of 3V£S is negative and the strength is  about SV [S 
(x = 0. 7) = - 50 M eV. Its range param eter ~  1 /5 .  5 determ ined by 
the m ass of the vector  boson . 3V¿ is weakly attractive: 3VJ
(x = 1.0)  = - 3 - 5  M eV. 3V f is positive, but weaker than O PE P.

T rip let even: Negative 3V.f is  weaker than O P E P . 3Vç is strongly 
attractive. 3V lS is uncertain.

Singlet odd: Repulsive JV " is  weaker than O PE P.

Region III. (x £ o .7)

Singlet even: Repulsive co re  in 1So and its radius is x c = 0. 35 - 0. 20
(for  f 2/ 47r~ 0. 08 - 0. 06) fo r  h a rd -co re  potentials. F o r  the Gaussian 
soft co re , its height is la rger than 2 GeV.

T rip let odd: 3V¿S is abruptly strong: 3Vfs (x = 0.5)  < - 200 M eV. 3V,Z
is  not strongly attractive, but positive or weak. 3 V¿ is not strongly 
positive , but negative o r  weak. The effective repu lsive potential is 
n ecessa ry  at short distances so as to can cel the attraction due to 
3V£S in 3P2 and 3F4 states.

T rip let even: 3V¿ is  strongly attractive, although ®УТ+ is uncertain.

Singlet odd: R epulsion is probably strong.
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A number o f potential m odels has been developed:
i) h a rd -co re  potentials: Ham ada-Johnston (or Y ale); x c = 0.343
ii) s o ft -c o re  potentials: B resse l-K erm an  Rouben [Br 69] when the soft 

c o re  is the finite square w ell of radius xc =0.4852.  Outside of the 
soft co re  the potential is of Hamada type. The height of the soft core  
is , e . g .  670 fo r  1V ¿.
soft (Yukawa) core : Reid [Re 68]. This type of the soft core  produces 
quite a different wave function near r = 0 than the BKR potential, e . g .  •
0 .8  fm

f  u2( r ) dr  fo r  the ®S wave function fo r  the BKR potential d iffers from  
о

the Reid potential as much as the Reid potential pred iction  d iffers from  
the h a rd -co re  potential.

iii) v e locity  dependent potentials
iv) separable unlocal potentials, e . g .  Tabakin [Ta 64] and Mongan [Mo 68]
v) o lder potential m odel such as the G am m el-Thaler
vi) OBEP m odels. The N -N  data requ ire the follow ing m esons [Og 67] :

a) T =0, the sca lar m eson is  required  in a ll analyses. Its m ass 
should be between 2 and 5 mn and the coupling constant g^ /4  = 1. 2 to 4 .0 .  
T here is  a relationship between m s and g^ and when m s approaches
the m ass o f the vecto r  boson, g 2 in creases since there is a large 
cancellation  between v ector  and sca lar m esons in OBE. There is  no 
c lea r  evidence regarding the existence of the T = 0 sca lar boson . It 
could be a phenom enological substitute fo r  the ж - it interaction in 
T = 0, J = 0 states.
b) T = 1, the sca la r  m eson indicated in the analysis of Bryan and 
Scott [Br 64a], but not in other analyses. There is  no experim ental 
evidence fo r  the existence of such a boson.
c) T =0, the pseudoscalar boson  is a well-known n, m^ = 550 MeV, 
and g 2/ 47r from  4 to 12. Its sign ificance in the N-N interaction is  not 
very  c lea r.
d) T = 1, v ector  boson  and T = 0 vecto r  bosons are required by N-N 
data. V ector  bosons p (T = 1), и (T< = 0) and ф (T = 0) are firm ly  
established experim entally, m asses 765, 753 and 1020 MeV, r e s p e c 
tively , spin parity 1 ". The p and и bosons play a cru cia l ro le , while 
the contribution of ф is  not c lea r . Coupling constants g 2/ 4 2 to 21. 5, 
f 2/ 4  0 to 3.1;  f j g w 0 to 1.2,  g2 /4;r 0.31 to 2, f2 / 47r 1 .8 to 7; 
fp/gp 1.5 to 3.5.
e) The effect of 2+ isosca la r  and isovector  bosons in the m ass region  
1200 - 1500 MeV is  not quite c lea r .
V arious potential m odels are com pared in Table 5. 1 with the results 

of the phase-sh ift analysis of 71 p -p  and 54 n -p  data at 210 MeV.
BKR and HJ give the best fit. Actually, HJ is  in ferior only in 3P2 

phase.
The coupling param eter ej is  correla ted  with the ratio of central and 

tensor potentials in 3S1 - 3D 1 and is a very  important quantity in nuclear 
physics ( e . g .  the binding energy of nuclear m atter). The values of Cj 
are given in Table 5 .2.

The Green-Sawada [Gr 67a] and B rueckner-G am m el-T haler potentials 
which give better nuclear m atter binding energy yield  had ej —  1.0.  R e 
sults fo r  various potential m odels w ere com patible with the A M -IV  phase- 
shift analysis, but accurate n -p  data used in Ref .  [Mi 68] ruled out any •
€j sm aller than 5.0.
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TABLE 5.1.  VARIOUS POTENTIAL MODELS AND RESULTS OF 
PHASE-SHIFT ANALYSIS [Mi 68]

P h ase -sh ift
a nalysis

BKR HJ Y a le R eid '

x z 91 257 398 529 759

TABLE 5. 2. VALUES OF ej [Mi 68]

Phase sh ift analysis 
[M i  6 8 J

A M -IV BKR HJ Reid Y a le

6 .6  ± 0 .7 2 .9 1  ± 3 .2 1 4 .2 4 .8 5 .0 6 .5

TABLE 5 . 3 .  VARIOUS POTEN TIAL MODELS [No 67a] X2/648

A M -IV IRB (K 0 ) Y a le HJ Y a le  p o te n t ia l OBEM
S c o t t i -W o n g

1 .3 8 1 .9 4 3 .0 8 3 .9 1 2 .5 3

B ry a n -S co tt Reid BKR T a b a k in BGT

3 .9 0 2 .9 2 . 0 28 106

In T able 5.3,  potential m odels w ere com pared using a se lected  set 
o f 648 p -p  data in the 9-330 MeV region.

The B ryan-Scott potential was m odified by including the latest 1S 0 
L iverm ore  phases. The value fo r  Reid used 652 data and OPE fo r  J>  2 
[YÓ 67]. The BKR potential is the best representation  of the data. On
the contrary, the Tabakin and BGT potentials are  very  p oor.

6 . SOME OPEN PROBLEMS IN NUCLEAR INTERACTION STUDIES

Our present understanding of nuclear interaction fo r  the purpose of 
n u clear-ph ysics  studies is insufficient at least in the follow ing:

a) neutron-proton  T = 0 phase param eters,
b) N -N  o ff-e n e rg y -sh e ll interaction,
c) neutron-neutron interaction  and the degree of validity of C l and 

charge sym m etry, and
d) the im portance of th ree-body , few -body and m any-body fo r ce s .
W e shall b r ie fly  review  problem s b) and c).

6 . 1 .  O ff-en ergy -sh e ll interaction

The properties  of nuclear system s containing m ore  than two particles  
depend upon the o ff-e n e rg y -sh e ll interaction. The sim plest p ro ce sse s  to
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m easure o ff-e n e rg y -sh e ll m atrix elem ents are nucleon-nucleon b re m s- 
strahlung (NNB) and th ree -body  breakup p ro ce sse s . Inform ation about 
the o ff -e n e rg y -sh e ll interaction  has so far been extracted only from  NNB:

N + N N + N + Y

The n -p  В is expected to have the largest c ro s s -s e c t io n  due to the dominant 
E l transition . The total e le c tr ic  dipole mom ent fo r  the p -p  system  is 
zero , and it rem ains zero  if the r e c o il  due to the gamma ray is neglected . 
In this sim ple n on -re la tiv istic  approxim ation E l does not contribute to 
ppB.

TABLE 6 . 1 .  ct(3 0 °, 30°) VALUES

Energy E x p er im en ta l v a lu e
HJ [M a  69] B rya n -S cott OBE

(M e V ) ( i ib /s r 2)
N o C o u lo m b W ith  C o u lo m b [M a  69 , Br 6 7a ] [B a 6 9 ]

3 .2 0 .1 5  *
0 .1 7
0 .1 5

[S i  6 8 ] 0 .2 9 0 .1 0

10 0 .4 2 [J o  6 8 ] 0 .5 8 0 .4 4

1 0 .5
+

0 .5
0 .7
0 .5

[C r  6 8 ] 0 .6 0 0 .4 6 0 .1 2

3 3 .5 3 .6  ± 1 .1 [S I  6 6 ] 1 .4 7 1 .3 2

46 3 .8  ± 0 .7 [S I  6 6 ] 2 .0 6 1 .8 9 1 .9 1

4 7 .1 1 .3 7  ± 0 .2 9 [M a  6 8 c ] 2 .1 2 1 .9 4

48 2 .6 8  ± 0 .4 5 [W a  6 6 ] 2 .1 7 1 .9 9 1 .7 3

6 1 .7 2 .0 4  ± 0 .2 4 [H a  6 8 ] 2 .9 0 2 .6 6 3 .2 4 2 .6 3 2 .6 0

65 2 .3 4  ± 0 .3 8 [M a  6 9 ] 3 .0 8 2 .8 2 2 .8 0

99 5 .1 4  ± 0 .2 2 [S a  6 8 ] 5 .0 3 4 .7 5 5 .2 7

158 1 0 .2  ± 1 .7 [G o  6 7 ] 8 .4 6 8 .1 2 8 .0 6 9 .4

2 0 4 1 3 .0  ± 2 .4 [R o  6 7 ] 1 1 .0 7 1 0 .5 9 1 0 .7 1 0 .7 1 3 .3

The resu lts of m easurem ents of ppB are sum m arized in T ables 6 . 1 
and 6. 2 .  B esides, there are data at E = 65 M eV: о(в1 = 02 = 25) = 2. 21 ± 0. 35; 
ct(6j = 25 , 02 = 35) = 1. 98 ± 0 . 23; at 99 MeV a ( 6̂  = 02 = 25) = 3. 77 ± 0. 23,
<7 (0! = 02 = 40)= 18. 83 ±1 . 15 ;  at 158 MeV a (0X = 02 = 40) = 37; at 200 MeV 
a (0i = 02 = 40) = 2 9 . 0 ± 6 . 0  цЬ/ s r 2 . M ost of the m easurem ents w ere done 
by detecting two protons at angles 0j and 02 satisfying 0j + 02 < 7t/2. The 
present status of experim ental art is  such that ppB c ro s s -s e c t io n  m easu re
ments could be done with an absolute accu racy  o f better than 5 - 10% (for 
and extensive d iscu ssion  see Ref .  [SI 68b]).

The npB data are m eagre and inaccurate. There are som e p-nucleus 
В data which are in mutual disagreem ent and often give only the upper 
lim it. The reliab le  npB data are given in Table 6 . 3 .  M easurem ents of 
npB are just becom ing fea sib le . A ccu ra cies  of 20 - 30% can be achieved.

The NNB cro s s -s e c t io n  depends on p ro ce sse s  in which the N -N  in ter
action is  follow ed o r  preceded  by the em ission  of the gamma ray, and the
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p ro ce ss  in which the N-N interaction  exists p r io r  and after the em ission  of 
the gam m a ray (the so -ca lle d  rescattering  tim e). It is obvious that the 
NNB cr o s s -s e c t io n  depends on the o ff-e n e rg y -sh e ll interaction . There is 
no a p r io r i reason  that m odels which adequately represent on -th e-en ergyr 
shell interaction should adequately represent o ff-th e -en erg y -sh e ll in ter
action. NNB appears as a test fo r  the NN interaction  m odels, and sp e c i
fica lly  as a cr iterion  which can d iscrim inate between m odels equivalent 
on the energy shell.

Part of the NNB amplitude is m odel-independent, i . e .  independent 
of the o ff -e n e rg y -sh e ll interaction. It is possib le  to w rite the ppB c r o s s -  
section  as (А /к т) + B + 0 (k y ), where A and В are given in term s of m atrix 
elem ents fo r  non-radiative co rrection s  [Ny 67, He 68]. The m odel- 
independent calculation accounts fo r  70% of m easured ppB at 150 - 200 MeV

TABLE 6.2.  ct(35°, 35°) VALUES

Energy
(M e V )

E x p e r im e n ta l v a lu e  
CfJb/sr2 )

HJ [M a  6 9 ] 
N o C o u lo m b

Bryan- S co tt  
[B r 6 7 a ]

OBE 
[B a 69]

M o d e l 
in d e p e n d e n t 

[N y  6 7 ]

20 1 .3  ± 0 .4  [B a  6 8 ] 1 .4 9 1 .4 7 0 .7 7 1 .1 1

30 2 .1 0  ± 0 .2 8  [T h  67] 2 .0 6 1 .9 7 1 .4 5 1 .7 1

48 3 .9 3  ± 0 .5 7  [W a  6 6 ] 3 .2 6 2 .9 3 2 .9 3 3 .0

52 3 .6  ± 1 . 4  [S a  6 8 a ] (a t  3 3 ° -3 3 ° )

99 9 .0 1  ± 0 .3 3  [S a  6 8 ] 7 .2 7 7 .8 8

158 1 4 .7  ± 2 . 5  [G o  6 7 ] 1 2 .3 1 2 .3 1 4 .0 1 1 .8

2 04 1 4 .0  ± 2 . 7  [R o  6 7 ] 1 6 .4 1 6 .4 2 0 .4 1 5 .3

The resu lts of various calculations of ppB are shown in T ables 6 .1 
and 6 . 2 .

Several calculations using HJ [Br 67a, Ma 69, Dr 68] are in very  good 
agreem ent: e . g .  a t E  = 61.7 MeV a{30°, 30°) pred ictions are 2.98,  2,90 
and 2. 89 цЪ/ sr2, resp ective ly . The inclusion of Coulomb fo r ce s  is  found 
to reduce the c ro s s -s e c t io n  (Table 6.1)  by about 10% at 50 M eV, but much 
m ore at very  low en erg ies . The calculation using the OBE m odel [Ba 69] 
found only a 3% d ecrease  when Coulomb fo rce s  w ere added at 60 M eV.

Table 6 . 1 revea ls  the d ifferen ce  between the h a rd -co re  potential and 
the B ryan-Scott velocity-dependent potential. The calculations [Br 67a 
and Ma 69] are not in agreem ent. One should favour R ef. [Ma 69] which 
was able to reproduce e la stic -sca tter in g  phases found by Bryan and Scott.

The com parison  between various potential m odels cannot be done until 
they are indeed equivalent on the energy shell. HJ gives a considerably 
better fit to 25 - 50 MeV pp scattering data. In addition, there are gauge 
correction s  which have to be made fo r  the velocity-dependent potential.

C alculations w ere done using the Tabakin potentials [Pe 67a, Ma 69], 
and the resu lt d iffers depending upon the values of e2 . If one assum es 
e 2 = 0 one obtains, e . g .  a t E  = 61.7,  a (30° ,  30°) ,  2 . 2 j u b / s r 2, and with 
OPE fo r  C2 one Obtains 3 .4  [Ma 69]. If one uses the Tabakin potentials 
with the HJ fo r  L> 2 one obtains 2. 83 which is  very  c lose  to 2. 9 found 
in T ables 6 .1  fo r  HJ.



52 SLAUS

Brown [Br 67a] investigated the re -sca tter in g  effects and found that 
it contributes 0. 2% at 62 M eV and in creases  to 15% at 300 M eV. The r e 
scattering correction  depends on the angle of gamma ray em ission  (0! 
and 62 f ix e d ).

A ll calcu lations give the quadrupole shape of the gamma angular d is 
tribution. This feature is  m odel-independent. When вг = в% d ecreases 
a flattening o f the angular distribution o ccu rs  as a consequence o f going 
further off the energy shell.

TAB LE  6 .3 . RESULTS OF npB CALCULATIONS

Energy

(M e V )
(0p. e n)

C r o ss -s e c t io n  ( p b / s r 2 )

OBE E xperim en t

1 0 .5 3 0 ,3 0 24

200 (3 0 ,3 0 ) 46 5 0  ± 15  [B r 6 8 a ]

200 (3 5 ,3 5 ) 60 55  ± 15  [B r 6 8 a ]

200 ( 3 7 .5 ,  3 7 .5 ) 92 110  ± 15  [B r 6 8 a ]

Energy
C M

C r o s s -s e c t io n  d o / d f i y  ( f ib /s r )

(M e V ) У OBE E xperim en t

200 60е 2 .8 3 .4  ± 1 . 0  [ К о  6 7 ]

200 108° 1 .9 2 .5  ± 0 . 8  [ К о  67]

2Ö0 147° 0 .9 1 .8  ± 0 .5  [ К о  6 7 ]

NNB c ro s s -s e c t io n s  w ere calculated using the OBE m odel in a fu lly 
re la tiv istic  and gauge-invariant manner [Ba 69]. The resu lts are given 
in Tables 6 .1  and 6 . 2. The exchange of sca lar , p seu d o-sca la r  and 
v ecto r  bôson s with T = 0 and T = 1 w ere con sidered . The same m odel 
was used to calculate npB. The exchange of charged bosons and gauge 
invariance requ ires  the inclusion of diagram s in which the photon is  emitted 
from  internal m eson  lines and from  vertice s  if they contain gradient 
couplings. The typ ica l npB angular distribution of gamma rays has the 
E l shape. The coplanar npB sym m etric c ro s s -s e c t io n  d ecrea ses  as Einc 
d ecrea ses  opposite to the resu lt of P ea rce  et al. [Ре 67а]. The results 
o f npB calcu lations are given in Table 6 .3 .

The total c r o s s -s e c t io n  at 200 M eV is 35±12  /лЪ and the theoretica l 
pred iction  is  30 jjb [Ba 69].

M ore npB m easurem ents are needed.

6 .2 . N eutron-neutron interaction

F rom  the experim ental viewpoint our understanding of the nn fo rce  
is  restr icted  to som e attempts to determ ine the scattering length ann .
The sum m ary of various m easurem ents using the D (n,p)2n reaction  are 
given in T able 6 .4 .

The resu lts extracted from  studying m ore  com plex reactions are 
given in Table 6 .5 .
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TABLE 6 .4 . VARIOUS MEASUREMENTS USING THE D(n, p)2n 
REACTION

Energy
(M e V ) a nn ( fm > R e fe re n ce

1 4 .4 -  2 2  ± 2 [11 6 1 ]

1 4 .4 - 2 1 . 7  ± 1 [C e  6 4 ]

1 3 .9 - 2 3 . 6  ± 2 [V o  6 5 ]

22 '  17 < a nn < "  15 [D e  6 6 ]

1 3 .9 - 1 4  ± 3 [B a  6 7 a ]

1 4 .1 -  22  ± 3 [S h  6 8 ]

8 to  28 -  1 6 .8  ± 1 [B o  6 8 ]

14 - 2 0 - 2 3 [B o  6 9 ]

TAB LE  6 .5 . RESULTS FROM MORE COM PLEX REACTIONS

R e a ctio n
Energy
(M e V )

an n (fm ) R e fe re n ce

3H ( n ,d )2 n 1 4 .4 -  18  ± 3 [ A j  6 5 ]

1 5 .1 -  17 ± 2 [F u  6 8 ]

3H ( d ,  3H e) 2n 22 -  22  (5 °) [M a  6 9 a ]

- 1 4  (8 °)

SH ( SH , o t)2 n 22 - 1 6  ± 3 [G r  6 8 ] .

None of these values is  reliab le  (see R ef. [SI 68b ] ) .  The reaction  
7r* + d — 2n + Y is  a considerably  better candidate to extract ann , since 
there is  only one strong fina l-state  interaction: n -n . The available data 
show som e inconsistency: ann = - 12 ± 5 fm [SI 65], - 16. 9 ^ 'g  fm  [Ry 64],
- 16. 5 ± 1 .3  fm  [Ha 65a], - 18. 4 ± 1. 5 fm  [Ny 68] and - 13. 1;|;| [Ni 68].
In addition, there are th eoretica l uncertainties which optim ists estim ate 
to be ~ 1  fm .

The com parison  procedure [SI 68b] has been suggested to extract ann 
and, particu larly , it has been recom m ended to use kinem atically com 
pletely  determ ined m easurem ents in the com parative analyses. In a not 
v e ry  r igorou s m anner, the com parative procedure was applied to obtain 
ann by com paring 3H(d, 3He)2n and 3He(d, 3H)2p p r o c e s s e s :-16 .1  ± 1. 0 
[Ba 66] and D(n, p)2n and D(p, n)2p ann: -1 6 .7 Î§ ;§  fm  [SI 68с ]. r nn was 
a lso  determ ined: 3. 2 ± 1 . 6 fm  [Ba 66], which is  indeed stretching things 
too far!

K inem atically com plete m easurem ents w ere a lso  perform ed  fo r  the 
D(n, 2n)p reaction  at 14 MeV yielding ann = - 24 ± 4  fm  [Ni 65], - 25 ±3  fm 
[Pe 67b] and -1 8 .8 ^ * ;®  [Ho 68a] at 18. 5 MeV ann = - 1 6 .4 ± 2 . 9 [Ze 69]. 
The study of the D (p,pp)n  reaction  gave fo r  anp = - 23. 9 ± 0 . 8 [Va 69] in 
agreem ent with the experim entally known anp and, thus, there it is
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possib le  to determ ine ann from  the com parison  procedure applied to com 
plete experim ents.

A com parison  of p -p  and n-p  data indicates that Cl is broken by 
~3%  as is  expected from  the m ass d ifference between charged and neutral 
boson s. The question of ch arge-sym m etry  v iolation  is  opened. Radia
tive co rrection s  to boson-nucleon  vertices  and ir-r¡ and р-и-ф m ixing 
could cause the ch arge-sym m etry  breakdown ~ 1% and the data do not 
exclude it. The com parison  between a,,,, and the nuclear part of app r e 
fle cts  not only the departure from  charge sym m etry, but a lso  the type 
of the N -N  potential used to c o rre c t  e lectrom agnetic e ffects . Strictly 
speaking, e lectrom agnetic and nuclear interaction effects cannot be 
separated com pletely , e .g .  nuclear fo rce  depends on the m asses of the 
boson  and the splitting is believed  to be of electrom agnetic origin , and 
anomalous m agnetic m om ents result from  nuclear fo rce s  [He 67]. The 
predictions fo r  nuclear effective range param eters using h a rd -core  
potentials are :

a = - 17.067 fm , r = 2 .933 , P = 0 .02  [Та 67], 
a = -1 6 .7  fm  [He 64], and fo r  velocity-dependent potentials 
a = - 19. 3 fm  [Si 64].

The present knowledge of the nn-interaction is inadequate and much 
m ore experim ental and th eoretica l studies are required.
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Abstract

N UCLEAR BINDING ENERGIES A N D  DENSITIES.
1 . In tro d u ct io n ; 2 . Saturation  and n u c le a r  m a tte r ; 3 . P roperties o f  n u c le a r  m a tte r  ; 4 .  B inding 

e n e rg ie s  o f  fin ite  n u c le i .

1. INTRODUCTION

In these lectures we let B(N, Z ) denote the total binding energy o f a 
nucleus with N neutrons and Z protons and M(N, Z) denote the total atom ic 
m ass o f the corresponding atom m easured in energy units. Neglecting the 
e lectron ic  binding energy com pared with the nuclear binding energy we have

M (N , Z ) = ZM H + NMn - B (N , Z ) (1 .1 )

where MH is the m ass o f the hydrogen atom and Mn is  the neutron m ass.
W = - B(N, Z) = <KE + PE^> is the total energy o f the nucleus excluding m ass 
energy. T heoretica l prob lem s associated  with nuclear binding energies 
include the follow ing:

i) To understand the variation  o f B(N, Z) with N and Z, 
ii) To predict m asses o f yet unknown nuclei, and 

iii) To predict lim its of stability o f nuclei against a-  and (3-decay, 
nucleon em ission  and fission .

P rob lem s o f nuclear binding energies and m atter distributions are 
c lose ly  connected. We denote the nucleon density distribution by p(r) 
norm alized so that /p (r )d 3r = A; p^r) and pz(r) are the corresponding 
neutron and proton densities, p= pn + p2 .

2. SATURATION AND NUCLEAR MATTER

T here are about 127 0 nuclei whose m asses are known [1 ]. The m ost 
rem arkable aspect o f the experim ental m asses is  the approxim ate constancy 
o f B(N, Z )'/A . Except fo r  nuclei with A £ 10, В /A  always lies  between 7. 4 
and 8 . 8  M eV. E xperim ents m easuring the charge and m atter distributions 
in nuclei suggest that nuclear radii R are related to the atom ic weight A by

R = r0 A V3 (2 .1 )

w here rn is  a constant whose value depends on the p rec ise  definition o f the
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nuclear radius (rQ = 1.1 X 10’ 13 cm ). Equation (2 .1 ) shows that the nuclear 
volum e is  approxim ately proportional to A or , equivalently, the m atter 
density is  nearly constant in all nuclei. The approxim ately constant binding 
energy per nucleon, and constant m atter density in nuclei led to the idea of 
nuclear m atter.

The idea o f nuclear m atter was recogn ized  by H eisenberg [2] and 
M ajorana [3] in their first papers on nuclear structure. In 1933 M ajorana 
[3] says that: "One finds at the centre o f an atom a sort o f m atter which has 
the same property of uniform  density as ordinary m atter. Light and heavy 
nuclei are built up from  this m atter and the d ifference between them depends 
mainly on their different content o f nuclear m atter". The relation 
R = r 0 A1/S seem s to have been suggested by Gamow [4] and the idea o f nuclear 
m atter may have originated in his a -p a rtic le  m odel [5 ].

Stable even nuclei with A < 30 tend to have N = Z . This is a consequence 
o f the approxim ate charge sym m etry o f nuclear fo rce s  {(n, n) fo rce s  equal 
(p, p) except fo r  Coulomb e f fe c t s } . On the other hand, stable heavy nuclei 
all have a large neutron e x cess . The Coulomb energy o f a nucleus is 
proportional to Z 2/R  o r  Z2 / A ^ 3. It is  rather sm all in light nuclei (~15 MeV 
in O16), but in creases  as Z 2 and is  very  important in heavy nuclei (~  600 MeV 
in lead). This energy is  responsible fo r  the neutron excess  o f heavy nuclei 
and fo r  the instability o f heavy nuclei against » -d e ca y  and fission . The 
Coulomb energy per nucleon is  not a constant and does not have the saturation 
property o f nuclear fo r c e s . When discussing the properties o f nuclear 
m atter it is  the custom to neglect Coulomb fo rce s  and to add them only in 
finite nuclei.

3. PROPERTIES OF NUCLEAR MATTER

The total energy per nucleon E = - B /A  = W /A  in nuclear m atter depends 
on the nucleon density p and the neutron-proton d ifference x = (N -Z )/A , 
i . e .  E (p , x2). In nuclear m atter it is assum ed that p and x are independent 
o f position . E is  a function o f x2 because o f charge sym m etry.

The equilibrium  state o f nuclear m atter is  found by m inim izing E as a 
function o f p and x. If the minimum occu rs  at x = 0 and p = p0 then, near 
equilibrium , we have

E (p ,x 2)= E 0 + !  K {(p -p 0) /p 0} 2 + ß x 2 (3 .1 )

At equilibrium  nuclear m atter is  characterized  by an equilibrium  density 
p0 and an energy per nucleon E 0 . Deviations from  equilibrium  are ch arac
terized  by a com p ressib ility  К and sym m etry energy ß.  If R0 is  the radius 
o f  a large finite nucleus and pg is  its density then

K = T T  = q Ro = I  K' (3 - 2)O d p 2 9 0 d R 2 g

Some authors use K1 = R^(d2E /d R g ) as a definition o f com pressib ility . 
Values o f the param eters E 0, p0 , К and ß can not be found d irectly  from
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experim ent because nuclear m atter does not ex ist. T heir values can only 
be in ferred  by extrapolation from  properties o f finite nuclei. M ost authors 
give E0 =! 16 MeV and jS~25 - 30 MeV. An equilibrium  density p0 -  0.22 fm "3 
corresponds to a radius param eter (E q .(2 . 1)) o f r0 s  1.1 fm . The value o f 
the com pressib ility  param eter К is  very  uncertain and could be anything 
between 100 and 300 MeV.

3 .1 . F erm i theory [6 ]

The sim plest m odel fo r  nuclear m atter is  a m odel o f  non-interacting 
nucleons moving in a uniform  average potential. Each nucleon occu p ies a 
plane-w ave state with momentum k. All states are occupied  up to к =kf by 
neutrons and protons ( i .e .  pn = pz o r  N - Z ) .  Under these conditions the 
nucleon density is

If the radius is R = r0 A1/3, then (r0kf )3 = 9tr/8 o r  r0kf = 1.51. Hence if  
r0 = l . l f m ,  kf = 1 .3 9 fm _1; r0 = 1.2 fm corresponds to kf = 1.26 fm . One may 
calculate the sym m etry energy ß in F erm i theory by assum ing different 
values o f kf fo r  neutrons and protons. The result is

ß =-| ef , where ef = (h2k2/2  m) = 40 MeV if  kf = 1.39 fm "1 

The average kinetic energy per nucleon in F erm i theory is 

< K E > /A  = y~  (h2 k2/2  m) = I  ef = 24 MeV

3 .2 . Landau theory [7 .8 ]

This theory extends the results o f F erm i theory by including the effects 
o f nucleon-nucleon in teractions. A very attractive feature is  that the theory 
is  rather general, and the equations hold fo r  many approxim ate descriptions 
o f nuclear m atter. The relations we give have hold fo r  H artree -F ock  
theories as w ell as many m ore general theories which give r ise  to som e 
effective nucleon-nucleon interaction in nuclear m atter. Landau theory 
supposes that the energy o f the system  is a function o f the occupation 
numbers n(k) o f  single-particle  (o r  single qu asi-particle ) states. If the 
quantities 6 n(k) re fe r  to deviations o f these occupation numbers from  their 
equilibrium  values then the change in energy is

6W = WQ + ^ e ( k ,  сс)бп(к, a) + ^  ^  Ф(ка',к' о 1) бп(к, сс)бп(к' , а 1) (3 .4 )
к кк’аа*

The е (к ,a) are s in g le -p artic le  energies and Ф(ка, к 'а 1) represent effective 
interactions, a stands fo r  spin and isospin  quantum num bers.
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The velocity  o f a particle  v (k ) is related to its s in g le-particle  energy by

v ( k ) 4 f f  (3 .5 )

and one can define an effective m ass by

m*(k) = tik /v (k ) (3 .6 )

The e ffective m ass m* depends on wave number к and has a value m* at 
the F erm i level kf . If wê put

e 0 = h2 k2/2 m *  (3 .7 )

then e0 defines a ch a racteristic  energy for the system . The density of 
s in g le -p artic le  states i/0 at the F erm i level is

(3 .8 )

Here is  the density o f states fo r  neutrons o r  protons and we assume 
pn = pz. Thus the characteristic  energy e0 o r  the effective m ass m f deter
m ines the density of states at the F erm i level.

The effective interaction  Ф depends on momentum, spin and isospin  
quantum num bers (к, ct, t )  = (k, a)

Ф(Ёстт, £ ' сг1 т ')  = F + F 't t 1 + G стог1 + G1 т т 1 cfct' (3 .9 )

w here F, G, F ' , G' depend on к and k1. At the F erm i surface ( |kj = k f) 
they depend only on 0, the angle between 1? and k1. Using the density of 
states i/0 (Eq. 3 .8 ) one can define dim ensionless interaction constants by the- 
relations

f = i/„F. g = i/0 G, f ' =" o F ' -  S' = " o G (3 •1 °)

These d im ensionless coefficien ts  depend on 0 and can be expanded

f ( £ ,  Й 1 ) = P j  ( C O S 0 )

to give dim ensionless interaction  constants f£, gjf, f'{ , g '{ .
Landau theory shows that the sym m etry energy /3, the com pressib ility  

К and the effective  m ass m* are related to the residual interaction 
constants f { , etc. by

m f = m ( 1 + | f l )  K = | eo ( 1 + 2fo)> ß = I  c0 ( l  + 2 f»)
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Single-particle energies e(k), effective m ass and residual interaction 
constants are also quantities which can be used to ch aracterize  properties 
o f nuclear m atter.

4. BINDING ENERGIES OF FINITE NUCLEI

4. 1. Surface energy

We assum e i) that the density o f nucleons p0 in the in terior  o f the 
nucleus is  a constant, and ii) that there is  a surface layer of nucleons 
with a surface density a which do not make their full contribution to the 
nuclear binding energy. Then the total interaction energy o f the nucleus is

2W = AE(p, x ) + cr ax (su rface  area) (4. 1)

w here a is  the binding energy defect per surface nucleon. F o r  a nucleus 
with A nucleons and density pQ the surface area is  proportional to A2/ 3. 
Hence

W = A E  (p, x2) + b s f (shape) A2/3 (4 .2 )

F o r  a sphere we take f(shape) = 1 and for an arbitrary  shape f is defined as 
f (shape) = surface a rea /su r fa ce  area o f a sphere with sam e volum e (see 
R ef. [9]). Always f (shape) ä 1. The coefficient bs is  called the surface 
energy and may depend on the proton-neutron ratio x.

4 .2 . Coulomb energy

The Coulomb energy o f a nucleus E has a d irect term

plus an exchange term . The orig in  o f the exchange term  is as fo llow s: 
physically  the Pauli principle introduces correla tion s in the nuclear wave 
function which give zero  probability  fo r  two protons with the sam e spin to 
be at the same point in space. The effect of these corre la tion s is  to reduce 
the Coulomb energy. M athem atically in an independent particle  m odel

E = \  ^ (< a ß | v c |aß> - <oß|vc |ßö > )  (4 .4 )
aß

where a - (cr, u) stand fo r  the quantum num bers o f a proton state. The sum 
in E q .(4 .4 )  is taken over all occupied proton states. The quantity a stands 
fo r  a spin quantum num ber o f a proton state while u is  an orb ita l quantum 
num ber. If each orb ita l state is  occupied  by two protons the spin sum in
(4 .4 ) can be calculated to give the result
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E.'с

(4 .5)

where the m ixed density

p (r i ,r 2) = 2 ^ ^ r i ) 0ufr2) (4 .6 )
u

The exchange contribution always has the sam e sign so that Ec < Ec(J. F or 
a charge density distribution

Including a surface correction  due to the finite surface thickness d and an 
approxim ate form  fo r  the exchange correction  gives (see  R efs [9] [12]).

The quantity g depends on the shape o f the nucleus; g = 1 fo r  a spherica l 
shape and g < 1 fo r  a deform ed shape.

4 .3 . M ass form ulae

A m ass form ula aim s at accounting fo r  the variations o f nuclear binding 
energies \yith N and Z . F rom  an analysis o f available nuclear m asses 
von W eizsäcker [lO ]an d  Bethe and Bacher [ l l ]  w ere able to identify four 
term s which accounted fo r  the average variation o f B(N, Z) with N and Z,

p(r) = const, r < Rc , p(r) = 0, r  > Rc

the d irect contribution is

,(“ > _ 3 Z 2e2

2
(4 .7 )

W = - В = A(E0 + /Зх2) + bs A2/S + |  Z2e 2/R c (4 .8 )

T ypical values fo r  the param eters (P reston  [6 ]) áre

3 e 2E„ = - 15.835 MeV, (3 = 23.20 MeV, bs = 18.33 MeV, -  — = 0.714M eV
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We have d iscu ssed  the orig ins o f the four term s in the introduction to 
section  3 arid in 4.1 and 4 .2 . A generalization  o f this form ula to describe  
other shapes o f the nucleus than the spherical shape is  usually called a 
liqu id -drop  form ula. It involves studying the shape functions f and g in 
form ulae (4.2) and (4. 7).

A liqu id -drop  form ula does not include effects o f the shell structure on 
binding en erg ies. These effects have their orig ins in a s in g le -p artic le  
m odel. M ass form ulae including shell correction s  have been d iscussed  
recently  by M yers and áwiatecki [9] and by N ilsson  [12].

-M ass form ulae are im portant fo r  questions related to nuclear stability 
and have recently  becom e very  im portant fo r  the study o f fiss ion  and 
questions related to the existence o f superheavy nuclei.

An approach to the study of nuclear m asses which is  based on arguments 
quite different from  those leading to the liquid-drop form ula has been used 
by Garvey and Kelson [13] . In a m ore recent article  Garvey et al. [13] 
give som e relations between m asses o f neighbouring nuclei:

M(N+2, Z - 2 ) - M( N, Z)+M(N, Z -1 )-M (N +1, Z -2)+M (N +l, Z)-M (N +2, Z -1 )=0

(4 .9 )

M(N+2, Z )-M (N , Z -2 )+M (N +l, Z -2 )-M (N +2, Z-1)+M (N , Z -1 )-M (N +1, Z ) = 0

(4 .10)

F orm ula  (4 . 9) gives relations between m asses o f nuclei with N, N +l,
N+2 neutrons and Z, Z - l ,  Z -2  protons. T erm s (1) and ( 6) in this form ula 
re fe r  to the m asses o f nuclei with the same number (N+2) o f neutrons, but 
different num bers (Z -2  and Z - l )  o f protons. If the neutron configuration 
does not depend on the num ber o f protons then the neutron-neutron (n, n) 
in teraction  in a nucleus with N+l neutrons should cancel between these two 
term s. In the sam e way, the (n, n) interaction  should cancel between term s
(2) and (3), and between term s (4) and (5). By a s im ila r  argument, the 
proton -proton  (p, p) interactions should cancel between the pairs o f term s
(1) and (4), (2) and (5), (3) and (6 ). Hence, all (n, n) and (p, p) interactions 
cancel in form ula (4. 9). In a rather crude shell m odel p icture neutron- 
proton (n, p) interactions also cancel. A ll the nuclei in form ula (4. 9) 
consist o f severa l neutrons and protons outside a co re  with N neutrons and 
Z -2  protons. The n-p  interactions between co re  neutrons and protons all 
cancel i f  the core  configuration is the sam e in each nucleus. Interactions 
between external neutrons and core  protons cancel between the pairs of 
term s ( l )  and (6 ), (2) and (3), (4) and (5). Interactions between external 
protons and core  neutrons cancel between the term s (1) and (4), (2) and (5),
(3) and ( 6). The only term s containing both external neutrons and protons 
are (5) and ( 6 ). There the in teraction  o f two neutrons with one proton 
cancels the interaction  o f one neutron with two protons. The cancellations 
are illustrated in the diagram  (F ig . 1) in which the lines represent single
particle  lev e ls ; c ir c le s  represent neutrons and cro sse s  protons. F orm ula 
(4. 10) can be checked in a s im ilar  way.

Am ongst known m asses there are 621 tests of E q .(4 .9 ) . The average 
deviation is 198 keV. Amongst 755 cases o f E q .(4 . 10) the average deviation
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FIG . 1 . D ia gra m s illu stra tin g  the ca n c e l la t io n s  in  E q . ( 4 .9 ) .

is 189 keV. This agreem ent is rem arkably good in view o f the rather crude 
arguments which are used to derive the form ulae. The m ass relations 
(4. 9) and (4 .10 ) can be looked on as recu rsion  relations for  the nuclear 
m asses. These are solved by the form ulae

M(N, Z ) = gj(N) + g2(Z ) + g3(N+Z) fo r  (4 .9 )

M(N, Z ) = f^N) + f2(Z ) + f3(N -Z ) fo r  (4. 10)

where g ; and f¡ are arbitrary  functions. Garvey et al. [13] have constructed 
a m ass table by fitting the g¡ to known m asses. They predict the m asses of 
many unknown nuclei.
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Abstract

BASIC C O N C E P TS A N D  PROPERTIES OF CO LLECTIVE M O T IO N  A N D  THE SINGLE-PARTICLE S T A T E S  IN 
DEFORMED NUCLEI.

1 . C h arge  and m a tter  d istr ib u tion  in  n u c le i ;  2 .  S e m i-e m p ir ic a l  m ass fo r m u la ; 3 . In d iv id u a l n u c le o n  
m o t io n  in  the n o n -s p h e r ic a l p o te n t ia l f i e ld ;  4 .  P o la r iz a b ility  o f  the n u c le a r  c o r e .  M ethods fo r  th e  d e te r 
m in a tio n  o f  n u c le a r  sh a p e ; 5 . T h e  on set o f  n u c le a r  d e fo rm a tio n . 6 . N u cle a r  ro ta t io n a l m o t io n ; 7 .  R ota tion a l 
s p e ctra ; 8 .  R o ta tion a l in ten sity  ru le s ; 9 . O ther a p p lic a t io n s  o f  the ro ta t io n a l c o u p lin g  s ch e m e  ; 1 0 . Further 
d e v e lo p m e n ts  in  the ro ta tio n a l c o u p lin g  s c h e m e . 1 1 .  H ea vy  n u c le i .  F iss ion ; 1 2 . S u perheavy  e le m e n ts .

1. CHARGE AND MATTER DISTRIBUTIONS IN NUCLEI

V arious methods are used to determ ine size  and distribution o f m atter 
in nuclei. The electrom agnetic interaction of charged particles with nuclei 
serves as the best tool for investigating the distribution o f e le ctr ic  charge 
o f the protons in the nucleus. On the other hand, the methods involving 
strongly interacting particles  provide us with inform ation on the d istribu 
tion o f nuclear m atter. By com paring the d ifferences between the two 
groups o f methods one can, in princip le, attempt to estim ate the d istribu 
tions o f protons and neutrons separately. This chapter is not meant to 
give a review o f the experim ental methods used in the determ ination of 
nuclear size and density distributions (see R efs [1 ,2 ] ) .  We shall rather 
confine ourselves to a short d iscussion  o f e lectron  scattering. However, 
let us only mention that the m easurem ents o f д -o n ic  atom s, isotope shifts, 
X -ra y  fine structure, nuclear-particle  scattering etc. provide us with 
very  valuable inform ation.

One o f the m ost fruitful experim ents is the elastic  scattering of 
e lectrons by nuclei. The scattered electrons usually have re lativ istic 
energy so that their w ave-length is

*  = ÎL£- = 197 fm n  n
E E (MeV) 1 '

F o r  low -en ergy  electrons the scattering is  mainly caused by the 
Coulomb field  outside o f the nucleus so that the scattering is that o f a point 
charge. F o r  energies o f the ord er o f 20 MeV, we begin to observe the 
fin ite -s ize  effects o f heavy nuclei, while for about 100 MeV the observation  
o f the details o f the nuclear.charge distribution becom es possib le .

In general, there is  no sim ple relation between the scattering am pli
tude f ( 6) and the density distribution o f nuclear charge. The standard

67
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phase-sh ift procedure involves usually m ore than one hundred partial 
waves that prove to be significant in the analysis. The form alism  is 
developed in such a way that a certain  expression  for the nuclear e le ctr ic  
charge density is assum ed. Then, the e lectrostatic potential o f the nucleus 
is  derived by solving the P o is s o n 's equation. Finally, the param eters o f the 
expression  fo r  density are varied as to get the best fit in the differential 
c ro s s -s e c t io n  for  the e lastica lly  scattered e lectrons.

Let us d iscu ss the relationship between the scattering amplitude f ( 0) 
and the density o f nuclear charge p(r) in the Born approximation which is 
by no means valid in m ost physical situations in our case . The differential 
c ro s s -s e c t io n  o f a rela tiv istic  e lectron  obeying the Dirac equation is

oo

= CtS2 f  l / s i n ( q r ) V ( r ) r d r |2 (1 .2 )
0

where hq = 2hk sin (1 /2 )0  is the momentum transfer. Using P o isson 1 s 
equation

AV( r ) ^ p ( r V )  = 4i e 2 z p ( r ) (1 .3 )

which relates the density per particle  p (r )  to the potential V (r) we finally 
get

~ 2  4  2 1Z e cos —i d a  2
d U . „ 2  . 4 14 E sm  —

~  J  s in (q r) p (r) r  d r |2 (1 .4 )
о

The expression  da/df2 as plotted versus 0 exhibits minima and maxima 
o f the d iffraction  type. The d ifference between two su ccessive  m inima o r  
m axim a can be used fo r  the first rough estim ate o f the nuclear s ize :
A (qR) «  it.

To obtain full inform ation on p (r ) we should know the form  factor

CO

F (q ) = 7 7  / s in (q  r ) p ( r ) r d r  (1 .5 )
4 о

appearing in expression  (1 .4 ) in the whole region of q. However, the 
observation  o f dcr/díí is  difficult both at sm all angles 0 and large q. C onse
quently, we do not know too much about p(r) either fo r  large distances r, 
o r  in the central part o f the nucleus. This conclusion, which follow s directly  
from  the B orn approxim ation, is also approxim ately valid in the m ore 
general case .

F igure 1-1 shows the exam ple o f the fit in the density param eters for 
the da /d f2  curve [3 ]. The m ost com m only used expression  fo r  the density 
p(r) is  the F erm i distribution

P ( r ) " ' } г - ъ \  t1- 6)1 +expl
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FIG . 1 - 1 .  D if fe re n t ia l c r o s s -s e c t io n  fo r  e la s t ic  sca tte r in g  o f  1 5 3 -M e V  e le c tro n s  on  A u . C urves A  and В 
corre sp o n d  to  u n ifo rm  d en sity  d istr ib u tion  and F erm i d istr ib u tion , r e s p e c t iv e ly .  C u rve  С  represents the 
sca tte r in g  on  a p o in t  c h a rg e .

where R is  the half-w ay radius and a determ ines the surface thickness. The 
experim ents on e lectron  scattering give the best fit fo r

fo r  all nuclei beyond oxygen. This result is also consistent with other 
m easurem ents. We now use the norm alization condition

P0 = 0. 17 nucleons /  fm 3 

a = 0. 54 fm
(1 -7 )

( 1 . 8 )

so that p (r )  = A p (r ) , where p (r) enters Eqs (1. 3 - 1. 5). This last 
equation can be obtained from  the m ore general F erm i integral [1] :

1 + exp(x - k)
x" dx (1 .9 )

о

fo r  large k.
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F rom  Eq. (1. 8 ) and the estim ates (1 .7 ) we obtain

1 /3  -1 /3R = 1.12 A - 0.33 A (1 .10)

By calculating the mean square radius we get another convenient 
estim ate o f the nuclear s ize .

F inally, the Coulomb energy requ ires another type of the average:

Г ,  p ,  P (i\ )p (r2)
/dV d4 — T Td J p - r*

t - f
d3 r p ( r)

The fa ctor 5 /6  appearing in this equation leads sim ply to the equality 
Rc = R where R is  the radius o f a constant-density nucleus with a sharp 
su rface . The calculation o f the average (1. 11) with the F erm i density (1.6) 
g ives [3]

„  _  ________________ R ___________ ' , „ „  . 1 / 3

\  TT2 ( -------- P -  5 4 _____1 /3 4
b V l. 12X 100

M ost o f the conclusions derived from  the analysis o f various exp eri
ments have been sum m arized in R ef. [ 11 . It appears that the density of 
nucleons in the nucleus is  approxim ately constant (A - independent). The 
radial distribution may be o f the F erm i type, however, this is  not too 
certain  esp ecia lly  in the central part o f the nucleus. The thickness o f the 
surface region  is  approxim ately constant fo r  m ost of the nuclei and much 
less  than the half-w ay radius R . The latter quantity is roughly proportional 
to A 1/ 3 . M ost experim ents seem  to indicate that the neutron distribution 
is  not very  much different from  proton distribution.

2. SEM I-EM PIRICAL MASS FORMULA

An atom ic nucleus is a system  o f many interacting nucleons. Its total 
energy and m ass depend essentia lly  on the m otion o f nucleons in the nucleus 
and on their in teractions. Until a satisfactory  theory fo r  such a motion is 
developed we are bound to use sim ple sem i-em p ir ica l expressions fo r  the 
calculation of the total nuclear m ass as a function o f the neutron and proton 
num bers, Z  and N. V arious expressions fo r  the nuclear m ass have been 
suggested. H ere, we shall use the expression  o f M yers and Swigtecki [4] 
that is fa ir ly  com plicated but re fle cts  co rre ctly  m ost o f the properties o f 
the nuclear binding energy. The form ula has the follow ing structure

B(N, Z) = (volum e energy) + (su rface energy) + (Coulom b energy) 2 ^
+ (pairing energy correction ) + (shell energy correction )
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w here B(N, Z) denotes the (negative) binding energy o f the nucleus defined 
as the d ifference between the total nuclear m ass M(N, Z ) and the sum of 
nucleon m asses, tim es c 2

Here MN and MH are m asses o f the neutron and o f the hydrogen atom, 
respective ly .

F o r  nuclear m atter, -  an infinite medium filled  uniform ly with 
neutrons and protons, -  we expect that the volum e energy is  the only term  
responsib le  fo r  the existence o f nuclear binding. As the nuclear density 
proves to be constant fo r  the central part o f m ost nuclei we can conclude 
that the main part o f the volum e energy is  a negative constant. As neutrons 
and protons obey the Pauli principle, they should -  roughly saying -  
populate the low est available leve ls . We can then expect that the nuclear 
binding is  m ost effective  fo r  N = Z . F or  N -Z ^ tO  correction  term s should 
appear which firs t o f all ought to weaken the binding and, secondly, should 
not depend on whether Z > N o r  Z < N. In other w ords, if we introduce the 
nuclear asym m etry param eter I = (N - Z ) /(N  + Z) = (N - Z ) /A  we can expect 
that to second ord er  we obtain

where a¡ and kv are positive constants.
A nucleon located on the nuclear surface is  le ss  bound than those of 

the central part o f the nucleus. This statement is  valid provided the range 
o f nuclear attractive fo rce s  is short com pared to the size o f the whole 
nucleus. The sam e situation preva ils  in the drop o f an in com pressib le  
liquid and gives the explanation o f the existence o f surface tension. As the 
nuclear radius is  proportional to A1/ 3 we may w rite down the follow ing 
expression  fo r  the surface energy:

where we also have used the expansion in I2. The last factor f in expression
(2 .4 ) accounts, fo r  the possib ility  o f nuclear deform ation: if  the nucleus is 
deform ed its surface in crea ses . Using a general expression  fo r  the nuclear 
surface

one can calculate the in crease  o f nuclear surface caused by deform ation. 
As the result o f a purely geom etrica l calculation we obtain

(2 . 2)

volum e energy = - a ^ l  - /cv I2) A (2 .3 )

2 2 /3surface energy = a^fl-Kgl ) A f(shape) (2 .4 )

(2 .5 )

( 2 . 6 )
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This expression  is valid to the second ord er  in the "su rfa ce  co -ord in ates" 
а Хц. In the case o f a sim ple quadrupole (axially sym m etric distortion)

R = R0( l  +aP2 (cos  0)) (2. 7)

the above expression  fo r  f reduces to

2 оf( shape) = 1 + — a (2 . 8)

The Coulom b-energy term  can be calculated from  the integral

л3 J  d ri d r2 (2 .9 )

It can be easily  seen that this term  is o f the ord er of Z2/A 1',3i The inte
gration can be carried  out explicitly  fo r  a uniform ly charged sphere. Then 
we get (3 /5 )/(e2/ r  )(Z 2/A li/3) where r0 is  the nuclear radius param eter 
(R = r0 A1/<3). If the nucleus is  deform ed this expression  has to be corrected  
with another shape factor g (shape). The appropriate expression  fo r  g can 
be obtained in the secon d -ord er  in the quantities a X)1 entering E q .(2 .5 ) :

g (shape) = 1 - X  J S + l )  К /  <2 - 10)
X(i

In the case when the nuclear shape is  determ ined by Eq. (2. 7) one gets 

g(shape) = 1 - -jr a 2 (2 . 1 1 )

We see from  the above expressions that the d istortion  of the nucleus 
tends to dim inish the (positive) Coulomb energy. As we have learned in the 
previous lecture, the nuclear surface is  not sharply defined. This effect 
tends to dim inish the value o f the Coulomb energy. The corresponding 
co rrection  goes actually beyond the sim plest version  o f a liquid-drop 
m odel. If we denote by p the m odification  o f the density due to the d if
fuseness o f the surface

p  = p  -  p  ( 2 . 1 2 )  
d iffu se  sharp

we can estim ate the magnitude o f the corresponding correction  in the 
Coulomb energy. By choosing a co -ord inate n as varying in d irection  
perpendicular to the nuclear surface we obtain

ДЕ C o u l. <ppd t ds / dn (2 .13)
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where cp is the 
gives

electrostrati с potential. The expansion of cp in pow ers of n

ДЕ C o u l = © dscp(O) dn p +J> dsI ds Ш)/'dnnp (2 .14)

now the first term  vanishes as Jdnp = 0, while the second term  factorizes  
into two parts. The first part is proportional to the total nuclear charge. 
We see, th erefore, that the effect is  o f the order of Z 2/A . The detailed 
calculation o f M yers and Swiatecki [4] gives

ДЕ
C o u l 2 r0 A (2 .14)

Let us observe that this part o f the Coulomb energy is independent o f 
the nuclear shape.

The final expression  fo r  the Coulomb energy is therefore

Coulomb energy c3-g (shape) - c 4 — (2 .15)

The pa iring-energy  correction  appearing in expression  (2. 1) c o r r e 
sponds to the well-know n fact that even nuclei are m ore bound than odd -A  
ones, while the odd -A  nuclei are m ore bound than odd nuclei. The relative 
d ifferen ces turn out to decrease proportionally to \fA. Thus we have

Pairing energy correction  = 6

-Д /  «/A fo r  even nuclei 

0 fo r  odd -A  nuclei

Д / \FÄ fo r  odd nuclei

(2 .16)

Finally the shell correction  term  has been added to the liqu id -drop  m ass 
form ula in ord er  to account fo r  the well-know n fact that there exist nuclei 
with "m a gic" num ber o f protons a n d /or  neutrons for which the binding 
becom es especia lly  strong. These numbers are

Z = 2, 8 , 20, 28, 50, 82 and probably 114 

N = 2, 8 , 20, 28, 50, 82, 126 and probably 184 (2 .17)

One can now attempt to w rite down an expression  that gives a negative 
contribution fo r  every  Z o r  N equal to a m agic number, while a positive 
one fo r  Z and N in between. A convenient expression  fo r  the shell correction  
has been derived in R ef. [4] by assum ing that it com es from  the d ifference 
between a continuous spectrum  of energy levels o f a F erm i gas and the 
spectrum  obtained by "bunching" the levels so as to obtain m agic num bers. 
The sh e ll-co rre ct io n  term  obtained in such a way fo r  a spherica l nucleus 
has the form  o f a tw o-param eter quantity
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F (N ) + F ( Z ) .  л д1/5 
(A /2 )

S (N, Z) -  C г/;  ' - C A - 7  (2 .18)

with C and с being adjustable param eters. The function F is determ ined 
between each pa ir o f two adjacent m agic num bers M; l and M¡ as

3 МГ 3 - MÍ 'Í  3 (  5/3 5/3^
F ( N) = s  ^ -- - ■-; - - ( N - M i) - - ( N  - M U1)  (2 .19)

l i - l  4 '

f or

M S N ä M i -1 i

The expression  o f F (Z )  is  analogous.
In the deform ed nucleus the single-nucleon  states depend on the d is 

tortion , and they may m ix so that the bunching responsible fo r  shell stru c
ture becom es le ss  effective . T herefore , the shell energy term  has to be 
corrected  by the attenuating factor. The final expression  fo r  the shell 
correction  becom es

- (< 5 R )V a 2
sh ell-en ergy  co rrection  = SfNjZJe ( 2 . 20)

where a is a new adjustable param eter and ( 6R )2 denotes the quantity 
R ( -Û, Ф )  - R 0 squared and averaged over d irections. It follow s from  relation
(2 .5 ) that

i 2

while in the s im p ler case o f Eq. (2. 7)

(6R)2 =R 0| 0 2 ( 2 . 22)

The final m ass form ula is  then obtained by substituting expressions
(2 .3 ), (2 .4 ), (2 .15), (2 .16 ) and (2. 18) into E q .(2. 1).

Not all o f the param eters o f the m ass form ula have been treated as 
fre e . Let us firs t  list those that have been taken as known from  other 
sou rces : 6, and the m agic num bers Mj have been treated as fixed. A lso 
C3 and C4 are not independent as we treat r0, e and d as known quantities. 
F inally a relation  kv = ks was assum ed in Ref .[4]. The deform ation param eter 
a has been determ ined analytically by m inim ization o f B(N, Z) with respect 
to a.  The alternative way o f determ ining a would consist o f using the 
m easured quadrupole mom ents Q o f nuclei. The seven rem aining para
m eters a¡, a2 , к , С, с c 3 and a have been adjusted as to get best agreem ent in 
nuclear m asses.
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The resu lts are

a.1 = 15.677 MeV 
a 2 = 18.56 MeV 
к = /Су = (Cs =1 .79

C3 = 0.717 MeV (this fixes r 0 = 1.2049 fm and _ (2 .23 )
C4 = 1.21129 MeV)

С =5.8 MeV 
с = 0.26 MeV 
a /r 0= 0.27 ..
The quantity Л entering E q .(2 . 16) was chosen to be equal to 11 MeV.
With these param eters it has been possib le  to fit about 1200 nuclear 

m asses, som e 240 quadrupole mom ents and som e o f 40 fiss ion  b a rr ie rs .
The results seem  to agree rem arkably w ell with the system atic trend in 
nuclear p roperties .

In the follow ing, we shall try  to report on som e new developm ents 
that attempt to im prove the m ass form ula and justify  som e o f its coefficien ts . 
V arious approaches have been considered. We shall only mention som e 
o f them. F irs t o f all, attempts have been made to calculate the coeffficients 
such as volum e energy o r  surface energy from  m ore b asic  th eories . We 
shall not review  them here as they are the top ic of many other papers in 
these P roceed in gs. Let us only mention the interesting results obtained by 
Naqvi [5 ]. Using a nuclear version  o f a T h om as-F erm i m odel he was able 
to obtain reasonable estim ates fo r  surface and sym m etry energy fo r  nuclides 
with a very  high neutron excess .

Another way has been tried  by M yers who follow s essentially  the ideology 
o f a liqu id -drop  m odel and manages to avoid its m ajor shortcom ings. The 
new e ffects  included in his droplet m odel [6 ] are

1) the finite curvature o f the surface (~ A 1/ 3),
2 ) com p ressib ility  o f nuclear matter,
3) d ifferen ce  between neutron and proton distributions, and
4) higher pow ers in I 2 = [ (N -Z ) /A ] 2 .

The im portance o f the new term s in the m ass form ula (as w ell as the 
old ones) can be seen best i f  we arrange different term s in an array ordered  
with respect to pow ers ofboth  A"V3 and I2(Table I):

TABLE I. ORDERS IN A ' 1/3

A Аф A l / 3

I 2A I 2A 2/ 5

i4a

oHere the A term  denotes volum e energy, I A is  the volum e sym m etry 
energy. A2/ 3 correspon ds to the surface energy. The last three term s 
A1/ 3, i2A2/ 3 and I4A would then correspond to surface curvature correction , 
surface sym m etry energy and the anharm onicity co rrection  to sym m etry
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energy. As a result o f a variational procedure used by M yers one sees 
that there are also other contributions to the last three term s stem m ing 
from  another orig in  (for exam ple, the d ifference between neutron and 
proton d istributions). The final expression  fo r  the nuclear binding energy

contains many new param eters such as K, a3, Q, L, M that can either be 
adjusted experim entally o r  calculated from  a m ore basic  approach. In 
R ef. [6 ] these param eters are estim ated from  the T h om as-F erm i m odel.

3. INDIVIDUAL NUCLEON MOTION IN THE NON-SPHERICAL POTENTIAL
FIELD

In the previous chapter we saw that nuclear binding energies can be w ell 
d escribed  by m ean s 'o f a sim ple m ass form ula justified  partly on the basis o f 
the liqu id -drop  m odel o f the nucleus. H owever, many nuclear p roperties , 
especia lly  those connected with nuclear ground state and low -en ergy  excita 
tions may be very  su ccessfu lly  represented by the individual nucleons moving 
in an average fie ld . It appears that fo r  many purposes a spherically  sym 
m etric  field  is  sa tisfactory . N evertheless, the assum ption o f spherical 
sym m etry is  not a basic  one and does not have to be generally valid . In 
fact, there are im portant situations with considerable deviations from  
sph erica l sym m etry o f the nucleus itse lf and, th erefore , o f the nuclear 
average potential, as w ell.

Let us d iscuss the possib le  existence o f regions o f nuclides exhibiting 
large d istortions o f spherica l shape. A nucleon in the j-s h e l l  inthe spherical 
potential is  characterized  by the j -  and m-quantum num bers. Several 
nucleons m oving near the equatorial plane in the nucleus w ill then tend to 
produce d istortion  o f the total fie ld . We easily  find that in such a distorted 
field  degeneracy with respect.to  the m-quantum num ber w ill be rem oved 
and -  in case o f many shells lying c lose  to each other the I  and j quantum 
num ber w ill be m ixed. The only quantum num ber rem aining good is  , 
the p ro jection  o f the total angular momentum j on the sym m etry axis o f the 
fie ld  (we use Г2 instead o f m ). Owing to t im e -re v e rsa l invariance o f the 
Hamiltonian, the ± E states w ill be degenerate. (We shall always assum e 
that f2>0 . ) In the m ore  general case o f a non-axial field  the s in g le-particle  
states w ill becom e m ixtures o f various Г2- states but the double degeneracy 
w ill rem ain (C ram ers degeneracy). We shall assum e axial sym m etry in 
our considerations.

We shall la ter see that nuclei with totally filled  shells w ill rem ain 
sph erica l while those lying fa r  from  closed  shells w ill be the best candidates 
fo r  large d istortion s. F igure 3-1 illustrates the possib le  regions o f large

(2 .24 )
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F IG .3 - 1 .  P ossib le  re g io n s  o f d e fo rm a tio n s .

deform ations. The fact that m ost o f the known nuclei lie close  to the stable
nuclei "v a lley " lim its the number o f large deforrjied regions

1) L ight-elem ent region  ( A ~  24)
2) R are-E arth  region  (150 < A < 190)
3) Actinide reg ion  (A > 220).

H owever, one may also want to look for new deform ed regions o ff the 
stability va lley . The neutron-deficient region  with both Z and N lying 
between 50 and 82 has been suggested [7] as one o f the new candidates.
A lso such regions as the neutron-deficient region  with 28 < (Z  and N) < 50 
o r  the n eutron -rich  region  28 < Z < 50 and 50 < N < 82 can be investigated.

A th ree-d im ensional h. o . (harm onic osc illa tor ) potential is the sim plest 
potential to be used fo r  the m ore detailed d iscu ssion  o f the eigenstate and 
eigenenergy properties  in the deform ed field . The on e-particle  Hamiltonian 
is

H0 = T + M
, ,2 y 2 цх х U2y 2 ш2 22

(3 .1 )

w here T denotes the kinetic energy o f a nucleon. Now, the dependence o f 
the h .o . frequencies ux , coy, uz on deform ation should be chosen in such a 
way that the effective  "attractive pow er" o f the potential is  deform ation- 
independent. This can be ensured by the requirem ent that the equipotential 
su rfaces always en close  the same volum e. This condition can be expressed  
sim ply by the relation

4 uy “ z = û o ( 3- 2)

where &0 is  a deform ation-independent constant. It should be determ ined 
from  the condition that the nucleus has a p rop er s ize . F o r  this reason  we 
have to calculate the average square radius o f  the nucleus
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А<г!>'м I [¿(n» + D+¿-(ny + i)+t(n- + 2
nx ny n z

ti
Mu5; I  ( N + f )

(3 .3 )

Since the num ber o f particles  in an N h. o. shell is (N = 1) (N + 2) the 
quantity

X ( N+f )  = X ( n + ! > +i)(n+2) <3-4)
P p  N

is  o f the ord er  o f N4, while the num ber o f particles

■I (3 .5 )

is  o f the ord er  o f N . Thus, if  we use the equation

(3 .6 )

we can see that hu0 has to be proportional to A"1̂ 3. The num erical value 
fo r  actual nuclei is

h£)0-  ^ 7 3  MeV (3 .7 )

Now, in the axially sym m etric a .h . o. (an isotrop ic h. o . )  we can 
introduce a deform ation param eter [8 ] e :

u x  = “ y  = u x  = шо ( е )  б  + | e ) u z  = ' I e )  ( 3 - 8 >

Then from  the volu m e-conservation  condition (3 .2 ) we obtain

/  \ 1/3 /  \

V e) ^oC1 - з е2 ' h e3)  +i g2+ " ‘ )  (3-9)

The eigenstates and eigenenergies in the pure a .h . o. case can be 
w ritten in a sim ple form . However, our aim is  to add additional term s to 
ou r a .h .o .  potential to get a m ore rea lis tic  m odel (N ilsson  m odel [8 ]) . 
In such a m ore  general case it is  convenient to use H0 (= the iso trop ic  part 
o f the Hamiltonian (3 .1 )) as a diagonalization basis . In this case we have 
two sim ple poss ib ilities  fo r  diagonalization:



1̂  Use o f the original (x, y, z) co-ord inate system . Then we would 
have H0(= kinetic energy) plus a spherica l part o f the potential V . The 
n on -spherica l part o f V rem ains then to be diagonalized.

2) Use o f the fully "stretch ed " co-ord inates (x 1, y 1, z ' ). Then, in 
these co -ord inates the potential would becom e iso trop ic  but the kinetic 
energy T would have a n on -isotrop ic part.

It turns out that the m ost convenient method is  to use "the stretched 
co -ord in a tes" which are only half stretched com pared to case 2). T h ere 
fore  we choose:

3) "the stretched co -ord in a tes" (d im ensionless) defined by

ti
(3 .10)

In these co -ord inates we have

H = H + H + H £ i) С (3 .11)

with
1 к (  &= — Tí I.) I ----- 

(3 .12)

and

E = hu, K  + 2 ) ifiuA ny+ b  + huz K  + f (3 .13)

Instead o f the quantum num bers r^, ny, r^, it is m ore convenient to use 
the total h. o. quantum number N and n z together with the p ro jection  Л o f 
the orbita l angular momentum l t on the Ç - axis (where Jt is  expressed  by 
(1.П , Ç) co -ord inates instead of. (x, y, z ). In this way we obtain a Hamiltonian 
that separates into two parts: (i) a one-dim ensional h. o . along Ç-axis and, 
(ii) a tw o-dim ensional h. o. in the ( f , n)- plane

Hj. |nj .A > = fiwx(nx + !)  |n± A >  (3 .14)

where

(*t)c К л> = л |п ±л>
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Including.furtherm ore, a sp in -pro jection  quantum number Ew e shall 
label the states by

It is a property o f the tw o-dim ensional h. o. that the Л-quantum number 
d iffers  from  n by an even integer

One can prove this statement and obtain a convenient method o f ca lcu 
lating m atrix elem ents o f various operators in the a. h .o . representation 
by using a very  convenient set o f creation  and annihilation operations [9] .

We first introduce fam iliar boson operators fo r  creating and annihi
lating a single h .o . quantum:

(3 .16)

where

n± + n z = N 

Л + £  = П (3 .17)

nx - Л = 0, 2, 4, 6, • • • (3 .18)

(3 .19)

Then usual conmutation relations hold

while (3 .20)

F o r  the one-d im ensional m otion in the Ç-direction we then get the 
standard h .o .  representation:
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with

r z+ lnz> = ^n z +  1 I nz + x>

F I n У = %/ n I n - O  z I z /  z I z '

In the ( i ,  Ç)-plane it is  m ore convenient to use S and R operators

(3 .22 )

S+ = - j = ( Г + - i r  + ) R += r ++ iT  +
42 V x yz 42 \ x y

S = rz- ( Г + i Г  ) R = -~r I Г - i r  
• 42  V x y j  42 V x y,

(3 .23 )

Then we get

and

so that

[S, S ] = 1; [R ,R  ] = 1 

[S ,R ] = [S , R+] = [R , S+] = 0

Hx = h co±(R+ R + S+ S +.1)

E± = h 'u ^ n ^ +1) = ftux(r  + s +1)

r  + s = n,

Now, it is  easy to show that

and th erefore

( l t ) c = R R - S S

Л = r  - s

(3 .24)

(3 .25)

(3 .26 )

(3 .27)

(3 .28)

Here r  and s denote quantum num bers associated  with the two separated 
o sc illa tors

R+ I г У = \l r +1 I r +1 У

R I r >  = 4r~ |r- 1>
(3 .29)
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and

S+ I s У = n/ s +1 I s + 1 У
(3 .30)

S I s C> = "/s~~ | s - O  

F rom  Eqs (3. 26) and (3 .28 ) we obtain

г = \  (nx + Л)
(3 .31)

s = \  (n± '  Л)

Since r  and s are integers E q .(3 . 18) is proved. Taking the norm al
ization  into account we obtain an expression  fo r  the h .o . states

П̂ -Л n_L+A
(S+) 2 (R + ) 2 |0> (3 .32)

The above representation  can be used very  conveniently in the ca lcu 
lation o f various m atrix elem ents. The physical operators are built o f x, y, z 
co -ord in ates o r  the corresponding mom enta. By means o f the above 
form alism  we have to express them in term s o f IJ , 1̂  , S, R, S and R . 
Then the m atrix elem ents are computed with Eqs (3 .22 ), (3 .29 ) and (3 .3 0 ).

The a .h .o .  o sc illa to r  potential has been used by S. G. N ilsson [8 ] as 
a basis fo r  a m ore rea listic  m odel fo r  the deform ed s in g le -particle  field .
We have seen that the nuclear-structure properties require the inclusion of 
a strong S.. s coupling into the potential. It is  convenient to w rite this term  
in the form  (l t • s) using j£t rather than a rea l angular momentum i ;  the 
d ifferen ce between l t and 1  is actually quite negligible [8 ] . F urtherm ore, 
the radial dependence o f a rea lis tic  nuclear potential is  different from  that 
determ ined by h. o . The potential has to give m ore binding at the nuclear 
su rface . In the h .o . potential there is  no sharp surface but the addition o f 
a term  proportional to Î 2 with a negative coefficien t w ill generally tend to 
produce the desired  e ffect. The total N ilsson Hamiltonian has the form

H = H0 + C i t • s + D i t2 (3 .33)

with H0 given by E q . ( 3. 1 ).
Now the eigenstates and eigenvalues cannot be obtained in close  form . 

T h ere fore , an iso trop ic  h .o . is  used as a basis o f the representation 
(in Ç,r) , Ç- variab les)

I n± л > =
1 (n± + Л) (n± - Л)

Й о-= Í b u o ( ^ ( - A U.r,.C) + ^ (3 .34)
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w h e re .

î2 + -n2 + t2 (3 .35)

The H - H0 part is then diagonalized.
The resulting N ilsson states are linear com binations o f the eigenstates 

o f Й0

I  ä A « w Y, A ^ V V  <3-36>
I A I  

(A+I=fi)

where the coefficien ts afA have been tabulated [8 ] .  It is  a great advantage 
o f the stretched co -ord inates that the non-diagonal part H - Hg does not 
involve the o ff -sh e ll m atrix  elem ents ( i . e .  those fo r  which N'=/=N).

It is  also convenient to use another expansion fo r  the N ilsson  states

V  is
X  = )  C : R  &  (3 .37)L, 1 N£ jo  ' >

it

where

Yi Â E

The new coefficien ts  c¡ are then related to the old ones by the relation

£  a|A< i ^ A £ | j  П> (3 .38)С
J

Л1
Л+

We shall d iscu ss the meaning o f these coefficien ts later on.
Now, the resu lts o f the N ilsson  procedure are very  rem arkable. 

P ra ctica lly  all the ground-state properties such as spins, level o rd er etc. 
are fa ir ly  w ell understood in term s o f the N ilsson m odel. Extensive d iscu s 
sions have been done starting with the c la ss ica l w ork by M ottelson and

1 3 4 0 -------------------------------^  -  [5 1 2 ]

1 22 4 ------------------------------- -  [521]

1031----------------------- ^  -  [ 510]

6 3 7 -------------:----------------- \  -  [5 1 4 ]

3 9 9 --------------------------------  [  !521]

3 51 ------------------------------- -| + [6 3 3 ]2
F IG .3 - 2 .  L e v e ls  o f  I7,3-Y b  „  5
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N ilsson  [10]. H ere, we shall give only one exam ple o f the level assign 
ments by using an a .h .o .  representation. The levels are shown on F ig s . 3-2 
(see  R ef. [11]). A ll o f them can be found in the N ilsson  diagram  o f the 
eigenenergies plotted versus deform ation e.

4. POLARIZABILITY OF THE NUCLEAR CORE. METHODS FOR THE
DETERMINATION OF NUCLEAR SHAPE

It is  interesting to analyse the factors tending to change the shape of 
the nucleus. The c lo se d -sh e ll nuclear core  obviously tends to restore  
sph erica l sym m etry. On the other hand, a single nucleon moving in its 
individual orbit w ill produce a deviation from  spherica l distribution. Then 
by the interaction  o f the single outside nucleon with the nucleons in the 
core , a certain  change o f shape in the core  m a y  develop which might be 
a m easure o f the core  d istortion . We shall discussithe phenomena o f this 
type by investigating the (E 2 ) interactions in the nucleus and the nuclear 
quadrupole m ovem ent. F or  a single nucleon moving in a j-s h e l l  we obtain

fo r  the m ass quadrupole m om ent. Now we want to estim ate to what extent 
nuclear co re  is  deform ed by the existence o f the external nucleon. One 
possib le  way o f handling the polarizability  problem  is  to em ploy the se lf- 
consistency  condition, i . e .  to requ ire that the distortion  o f the nuclear 
potential be equal to that o f the nuclear-den sity  distribution. Let us write 
down explicitly  this condition fo r  a three-d im ensional a .h . o'. [3 ]. We may 
use a Hamiltonian o f the form

" 2j +2
(4 .1 )

(4 .2 )

The se lf-con s is ten cy  problem  reduces then to the relations

(4 .3 )
J .

Now, we may use the follow ing notation

(4 .4 )

where

(4 .5)
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Then condition (4 .3 ) reduces to

v v v l M X '
However, using the volum e-conservation  condition (see chapter 3)

o 3и и u = u. (4 .7 )
x  y z  0 v ;

we may find that
1 /3

и ,  =  to.
I I I

X у  z
X w0 Г - l  '  шуI. ; u = . . .  etc. (4 .8 )

Now, in Ex, Ly, Lz we may indicate separately the contributions from  
closed  shells and those com ing from  the last partic le . The fo rm er ones are 
equal fo r  the x, y, z degrees o f freedom , while the latter ones depend on 
the h .o . quantum numbers nx, ny, nz . We have therefore

where

0 —x i“ y
c lo s e d  c lo s e d  c lo s e d
sh ells  shells shells

Now, let us calculate the total nuclear-m ass quadrupole moment

Q=I « 2 z2 - x2- =t r (2 ' u )  (4Л1)j . 7. X У

We then can separateth e contributions from  closed  shells and those 
from  the external nucleon

Q  = i L i y  f i . i a V i  / i  V I '  -  v l  -  V i 4)  ( 4 1 2 )
Q M 3 ¿ 0U Z - V  Wx uy /  .
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Using this equation we can show d irectly  that both the term s 
appearing in Eq. (4 .12 ) are equal to the first ord er. F or  this purpose, 
we have to use an approxim ation ux «  «  u2 in the second term . We see
that the induced m ass quadrupole moment in the core  is  equal to that o f the 
external nucleon. This seem s to be a specia l property o f an h .o . potential, 
If we introduce the core  polarizability  y by the relation

we shall obtain y  = 1 fo r  h. o.
Now, let us turn to the e le c tr ic  quadrupole m om ents, i. e. to quantities 

that are determ ined experim entally. F o r  the total e le c tr ic  quadrupole 
mom ent we obtain

We can conclude that fo r  light nuclei with Z =(1 /2 ) A we shall expect 
that a nucleus with one neutron outside the core  w ill exhibit a quadrupole 
moment o f the ord er o f one half o f the single particle unit (4. 1), while in 
case o f a proton the enhancement factor w ill be of the ord er o f 3 /2 . In 
heavier nuclei the situation seem s to be m ore com plicated. F irst o f all, we 
have Z <  (1 /2 ) A, but, on the other hand, the nuclear potential d iffers m ore 
considerably from  the h .o . one. In this case we may expect that the 
polarizability  7  in creases [12]. Roughly speaking, there is  an approximate 
agreem ent between the results o f this consideration and the experim ental 
data. We may also expect that the same mechanism can be em ployed in 
the descrip tion  o f the (E 2 ) electrom agnetic transitions in the nuclei con 
taining one single neutron o r  proton outside the core . In this case we should 
use the effective charge eeff to account for  the core  contributions. From  
Eq. (4. 14) we can see that

Sim ilar nuclear properties can be observed  for the Ml transition and 
the nuclear m agnetic mom ents [3 ].

We shall now d iscuss various experim ental methods for the determ i
nation o f the nuclear shape. F irst o f all, we can state that the existence of 
rotational bands in nuclei is a qualitative indication o f the existence of 
nuclear d istortion . S im ilarly, the c ro ss -s e c t io n  for the E2 Coulomb 
excitation may be seen to be proportional to the square o f the intrinsic 
quadrupole moment Q0 . These considerations follow  from  the properties 
o f  the nuclear rotation and we shall analyse them later. Now, we shall 
lim it ou rselves to the m ore d irect methods.

Thé sim plest and m ost d irect effect one could think o f would be the 
shifting o f the e lectron ic  energy levels in atoms caused by the non-spherical

Q,'c o re
-  7 Q P (4.13)

e Q(e) = e Q + = e Q + ^ i r y Q
p p A  co r e  p  “ p a  p

(4 .14)

where

e.
p

e fo r  a proton 
0 fo r  a neutron (4 .15)

eZe „  = e + —r~ 7e f f  p A (4 .16)
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distribution of the e le c tr ic  charge in the nucleus. This is  usually re ferred  
to as-.the.hfs ( = hyperfine structure) in atom s. The c la ss ica l expression  for 
the Coulomb interaction between the e lectron ic and nuclear charge has a 
w ell-know n form  :

r P N { ^ ) P e C( ? )  3 3  'E int = / " drd- .g (4Л7)
J r - i

where | and r are nuclear and e lectron ic co -ord in ates, respective ly . Now 
we may expand the interaction  operator 1 /  | r - Ç | in the region outside of 
nucleus

р т ; = X  p< (cosr -  ? rI '"I { = 0

00

I
+ Í

с É
(4 .18)

4тг Г  V
2 7 + 1  L  V ' V  W

The 1 = 0  part o f this interaction when integrated over the nuclear c o 
ordinates is proportional to nuclear charge and gives the pure Coulomb part 
o f the e lectrosta tic  potential o f the nucleus. The 1=1 part vanishes and 
the 1=2  part appears to be proportional to the nuclear quadrupole moment Q

(2) 4т V  Г 3 2 1
H (4Л 9) 

p

Now we have to integrate it with the e lectron ic wave functions in the coupling 
schem e

F = /  + I - (4 .20)

where F is  the spin (= total angular momentum) of the atom a.ndß, I denote 
angular m om enta o f the electrons and the nucleus, respective ly . The 
reduced m atrix elem ent o f expression  (4. 19) is

< [ÿ ]  F 11 H II [I^ ]F >

• (4 .21)
1+ / +F, OT, , S$Y  l\  /  II (2) i( - 1 ) (2F.+ 1 J Í '  * К Л 1  H

F rom  this equation we can see the energy dependence on the total 
atom ic spin F :

I I - /  I s F S I + ß  (4 .22)
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We expect the e lectron ic  levels in atom to be split (21 + 1) o r  (2^ +1) 
tim es and this explains the hfs in the atom [13]. The above calculation holds, 
o f  cou rse , in firs t-o rd er  perturbation theory, providing the interaction is 
weak.

V ery  s im ilar  arguments can be used in the case when the external 
e le c tr ic  field  with a non-vanishing gradient is  em ployed to produce the 
interaction  with the nuclear quadrupole moment.

A lso , s im ilar arguments are used when the experim ents on ¿í-on ic  
atoms are em ployed to look fo r  inform ation on nuclear shape. Here, the 
situation is  m ore favourable since the /u-onic orbits are o f a much sm aller 
size  (m ore  than 200 tim es sm aller) than the e lectron ic ones. The ц - on is 
then a much m ore sensitive probe in the investigation o f the non-sphericity  
o f nuclear e le c tr ic  charge. The fir s t -o rd e r  perturbation theory is  in 
sufficient in this case and one has to diagonalize a m atrix o f the type of 
expression  (4. 20) with various I' s and^ ' s [14] .

The methods described  above are mainly based on the determ ination o f 
the nuclear quadrupole moment Q. This quantity is  obviously related with 
nuclear deform ation. F o r  a uniform  distribution o f nuclear density the 
relation  between Q and the deform ation param eter e (see  chapter 3) is

Q0 = f z R %  ( l  + (4 .23)

The existence o f anomalous isotope shifts in som e regions can also 
serve as a check fo r  the nuclear deform ation. The "standard unit" fo r  
the isotope shift is  given [3] by considering the in crease o f the average 
square radius in the nucleus

< r 2> ~ §  ( r 0A 1/3)  (4 .24)

From  this we obtain

6<r2>td - !  <r2> <«■«)
F ig . 4-1 illustrates the isotope shifts near the neutron number N = 90. 

N orm ally the values o f 6^ r2)> are o f the ord er, o r  even low er than, 6 <(r2)> 
standard. H owever, in the N = 90 region ,a  sudden in crease o ccu rs . This 
behaviour can be understood in term s o f nuclear deform ation. The equation 
fo r  the nuclear surface is

R =RoO ’L +i3Y2o) <4-26)
where the second term  follow s from  the condition o f volum e conservation. 
Now, the in crease  o f nuclear deform ation causes the in crease  o f the quantity 
<r-2> :

R(&. <p)

- / i n

(4 .27 )
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Hence

F IG .4 - 1 .  Iso tope  shifts near neutron  n u m b er N -  9 0 .

<*>-- ( i+ b n < r\ (4 .28)

Now, i f  we assum e that in 150Sm we have 0. 032 fo r  ß2, which com es from  the 
zero -p o in t vibration, while the corresponding quantity is  0.084 (as derived 
from  the stable deform ation) we get in 152дт

6 <r2>
152Sm  -

6 < r >
I T T  6 0s2) (4 .29)

std .

This quantity is  o f the ord er  o f 2 .4  which seem s to be in a reasonable agree- 
ment with the observed  value [3] (see  P ig .4 -1 ).

Some further m ethods of nuclear-shape determ ination and further 
re feren ces  can be found in a review article . R ef. [15 ].

5. THE ONSET OF NUCLEAR DEFORMATION

The considerations o f this chapter w ill be partly based on a review 
article . R ef. [16 ]. They w ill m ostly concern  the d iscu ssion  o f various 
tendencies in nuclear m otion responsib le  fo r  the onset o f nuclear deform ation.

1) Energy o f c losed  sh e lls . This part o f the total energy is  the main 
contribution tending to stabilize the spherica l shape. In the N ilsson m odel 
(see  chapter 3) this tendency follow s d ire c t ly  from  the volu m e-conservation  
condition. The e-dependence o f this term  is

&, ~~ fiu  (e) ~  1 + x  e2 (5 .1 )
c lo s e d  sh ells  0 9  '

as follow s from  (3 . 9 ).
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2) Energy o f the nucleons outside o f closed  shells. As the single
particle  orbits split in the deform ed potential and som e o f them decrease 
rapidly with e it is always m ore convenient fo r  the nucleons to occupy the 
low er states at large deform ation. T herefore, this term  strongly tends 
to produce deform ation. Roughly fo r  sm all e we have

^ e x te rn a l n u c leon s e  ( 5 .  ¿

with a negative proportionality constant.

3) Short-range pairing fo rce s  acting between the nucleons. These 
fo rce s  tend to couple the nucleoris in pairs with the total angular momentum 
1 = 0. Such a coupling proves to be m ore effective  in spherical nuclei than 
in deform ed ones. T herefore , at sm all deform ations, pairing fo rce  w ill 
rather strongly tend to restore  spherical sym m etry. At large deform ations, 
however, pairing fo rce s  have the only result o f washing out the little cusps in 
the energy curve com ing from  the in tersections o f various N ilsson levels . 
Thus, they are o f m inor influence fo r  large e . The total sin g le -particle  
energy sum is m odified in presence o f pairing fo r ce s . The expression  is

*  =I €, 4 2 - A' / G - GX \  (5-3)
V . V

in standard notation.

4) Coulomb energy

«  (e) = S ( 0) ■ f(e) (5 .4 )

where $  ( 0) is  the energy o f a charged sphere while

2 1/3

<5 - 5>

Here e denotes e llipsoidal excentricity  and is  connected with the deform ation 
param eter e by the relation

2e 1 2 
3 e i+!e (5 .6 )

Using the above relations we get fo r  sm all e

We can conclude that the onset o f deform ation is a m atter o f a very  detailed 
balance among many term s.

M ottelson and N ilsson [10] have perform ed the total energy calculation 
as a function o f deform ation including only term s o f 1) and 2). Later on, 
follow ing the B elyaev method [17], pairing and Coulomb term s have been
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also included [18] with rather good agreement with experim ent (see  also 
R ef. [19 ]).

However, in the transition  region  between spherical and deform ed 
nuclei (fo r  example at N = 90, in the vicinity o f the A = 150 nuclei o r  at 
Z = 88 , in the vicinity  o f A = 220) it was very  hard to obtain the balance 
between the four term s d iscussed  above, and for som e nuclei the total energy 
was strongly decreasing with deform ation showing no minimum in the energy 
curve. As a rem edy to this, artific ia l shifts, o f the main h .o . shells were 
applied [18] which seem s to be an unsatisfactory procedure. This serious 
difficulty has been solved by Gustafson et al. [20] who have noticed that the 
s in g le -particle  potential has to be im proved in ord er to obtain the co rrect 
behaviour of the total energy as a function o f the deform ation. The D 
term  (see  chapter 3) with D  < 0  leads to an a rtific ia l d ecrease  at the distances 
between the main h .o . sh ells . This is  indeed the case, because the average 
value o f the operator 1  in the h .o . shell is  not constant but in creases with 
N. We have

< i t2 >N = N(N + 3) /2  (5 .8 )

The original distance between the m ajor h .o . shells is  not an arbitrary 
constant but fixed by E q .(3 .7 ) .

T herefore  Gustafson et al. [20] suggested the replacem ent o f the 
D i t term  in the N ilsson potential (3. 33) by the term

D ( Ï 2 - < Ï 2>n ) (5 .9 )

Now, with the new term  included the schem e of the s in g le-particle  
levels has been calculated again with all the param eters re-ad justed , to 
obtain good agreem ent fo r  the ground-state spins, energies o f the low -lying 
states etc . M ost probably, the new Nilsson schem e obtained in such a way 
gives also a b etter  base fo r  many other nuclear properties . As fo r  the 
ground-state deform ations in the transition region the obtained energy 
curves have how the co rrect behaviour (F ig. 5 -1 ).

FIG . 5 - 1 .  T o t a l  en e rg y  for the 152Sm  n u c le u s  p lo tte d  versus d e fo rm a tio n  p a ra m eter e . C urve (a )  corresp on ds 
to the 195 5  N ilsson  p o te n t ia l w ith ou t an y  m o d if ic a t io n s .  C urve (b )  in c lu d e s  the le v e l  shifts, in  a d d it io n .
C urve ( c )  corresp onds to  the new  N ilsson  p o te n t ia l .  P airing in te ra ctio n s  h a ve  b e e n  in c lu d e d  in  a ll  the three 
ca se s .



92 SZYMAriSKI

FIG . 5 - 2 .  T o t a l -e n e r g y  cu rves p lo tte d  for s o m e  n u c le i for n e g a tiv e  and p o s it iv e  v a lu e s  o f  the d e fo rm a tio n  
p a ra m e te r  ß = S 2 . T h is  fig u re  is ta k en  from  R ef. [ 2 1 ] .

The existence o f higher than quadrupole components in the nuclear 
shape seem s to be another important feature o f the nuclear structure. A lso 
the non-axial quadrupole deviations have been investigated [21]. F igures 5-2 
and 5-3 show that fo r  nuclei in the rare -earth  region  there is neither a big 
chance fo r  the onset o f an oblate shape, nor fo r  the non-axial deviations [2 0 ] .

As fo r  the higher m ultipoles, the hexadecapole A. = 4, and perhaps som e 
o f the X = 6 m ultipoles seem  to play a role  in nuclei. Including also a 
possib ility  o f the octupole (X = 3) term  we may w rite the m odified N ilsson 
Hamiltonian in the form

H A + 
P

I  p2 e P2 (c o s 0 t ) + 2e4p2P4 (cos  et)

+ 2 e6 p2 P6 (cos  0t) + 2e 3 p2 P3 (cos  0t )
(5 .10 )

3Ç2 a ç 2 Эг)2 ) }+ C£t • s + D

Up to now, only e4 and partly e6 have been included in rea l calculations 
[22, 2 3 ]. It has been found that nuclei in both c la ss ica l regions o f d e for
m ation (rare  earths and actinides) are unstable with respect to e4 and partly 
to e6 . The equilibrium  e4 are illustrated in F igs 5-4 and 5 -5 . The experi
mental values have been determ ined by Hendrie et al. [24] by the m easure
ment o f the inelastic scattering o f alpha p articles . The agreem ent seem s to 
be rem arkably good as there are no free  param eters to be fitted.
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F I G .5 - 3 .  T o t a l  e n e rg y  p lo tte d  versus n o n -a x ia l  d e fo rm a tio n  p a ra m e te r  y fo r  s o m e  n u c le i .  C urves
1 , 2 . . . .  7 corre sp o n d  to  the fo l lo w in g  n u c le i  174H f, l76H f, 178H f, 180H f, 1S6G d, 154 G d , 152 G d , r e s p e c t iv e ly .  T h is
fig u re  is ta k en  from  R e f. [ 2 1 ] .

F IG . 5 - 4 .  T h e  e q u il ib r iu m  h e x a d e c a p o le  d e fo rm a tio n  fo r  n u c le i in  the rare  ea rth  r e g io n . S o lid  lin e  w ith  
b la c k  c i r c le s  re fers  to  the th e o r e t ic a l resu lts . O pen  c i r c le s  corresp on d  to  the e x p e r im e n ta l v a lu e s  o b ta in e d  b y  
H end rie  e t  a l .  [2 4 ]  . T h is  fig u re  is  ta k en  from  R e f .[2 2 ]  .

F IG . 5 - 5 .  T h e o r e t i c a l  results fo r  the e q u il ib r iu m  h e x a d e c a p o le  p a ra m eters  fo r  the a c t in id e  r e g io n . T h is 
fig u re  is  ta k en  fr o m  R e f. [ 2 2 ] .
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6 . NUCLEAR ROTATIONAL MOTION

So far we have been discussing only the m otion o f nucleons in the non- 
spherica l w ell. The corresponding wave function x (x1 ) is not characterized  
by the total angular momentum quantum number I. The x wave function 
depends therefore  on the positions o f the main nuclear axes with respect to 
the "labora tory  fram e" indirectly  as the body-fixed  co -ord inates x 1 re fe r  to 
the nuclear axes. We may indicate this by w riting explicitly  \ (x 1 (a ,ß,  7 )) 
where a ,ß ,  7  are variab les that define the positions o f nuclear axes in the 
original x -fra m e . The variab les a ,ß ,  7  may be chosen fo r  exam ple as the 
fam iliar E uler angles o f x ' -fra m e with respect to x -fra m e . Now,
X a ( x 1( a ,  ß, y ) )  is  obviously  a degenerate state with respect to a,ß ,  7 . We 
may take the wave packet

* =  /* ( « ,ß .T ) X  (x> (a> ß> 7 )) d (a, ß, y) (6 .1 )J fí

Now, we may choose $ ( a , ß , y )  such as to obtain Ф as an eigenstate o f 
the total angular momentum ? 2and its p ro jection  on the z -a x is  M,

In the follow ing, we shall use a s im p ler approach by assum ing that 
the two groups o f the degrees o f freedom  are independent [3] :

фм ~  $ (o ,ß ,V )  Xfi (x ' ) (6 .2 )

_*2
The function Ф must be a sim ultaneous eigenfunction o f I and I2 . F or  

an axially sym m etric system  also the p ro jection  o f I on the nuclear 
sym m etry axis, I3, is a good quantum num ber and may be used sim ulta
neously with l 2and Iz to label the states. This is  possib le  as it turns out 
that each o f the body-fixed  projections I1( I2, I3 o f  I com m utes with each 
o f the operators Ix , Iy , Iz :

[ Ik. I J = 0  (6 .3 )

fo r  к = 1, 2, o r  3 and a = x, y , o r  z.
These relations can easily  be proved by observing that Ik is essentially 

a sca la r  product o f I with a unit vector  e (k) along the к-th  axis

I. = Ï  ' e (k) (6 .4 )к

R elations (6 . 3) follow  im m ediately after em ploying the well-know n 
relations fo r  the com m utators o f I with an arb itrary  v ector

[I , v. ] = ie  V (6 .5 )
a  8  a B y  у

Sim ilarly , we may prove the comm utation relations among the I , I2 
and I3 components

[I, , I J  = - i e I (6 . 6)к f kfm m
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which d iffer from  the ordinary relations fo r  angular m om enta by the 
existence o f a minus sign on the right-hand side o f E q .(6 . 6 ). T herefore 
we have

(Ij =F i l 2) |IK> = J ( I |  K)(I ± K  + 1) I I К ±1 > (6 .7 )

while fo r  the Ix and Iy components

(Ix ± i  Iy)|lM> = J ( I T M ) ( I ± M  + 1) | I M ± 1 >  (6 . 8 )

We conclude that 9 ( a , ß , y )  must be a sim ultaneous eigenfunction o f the 
operators I 2, I and I3

Î 2 Ф = 1(1 + 1). Ф
(6 .9 )

Iz Ф = M Ф; 13 Ф = К Ф

•fulfilling sim ultaneously Eqs (6 .7 ) and (6 . 8 ). It can be shown that the above 
conditions are fu lfilled  by the w ell-know n rotational DjjK(a, ß , 7 ) wave function 
o f  the sym m etrica l top. The sam e function is  also defined as a transition  
m atrix fo r  the sph erica l harm onics when they are rotated

= I  Y|m,(0.<p, ) (6 .10 )
mm*

We shall assum e that the properties o f the D -functions are known [25]. 
We can then conclude that the structure of the wave function Ф^к is

Ф1 ~  D 1 (a,ß,y)x (xM  (6. 11)
М К  M K  v '

The sim ple form  (6 .1 1 ) has to be m odified in ord er to account fo r  the 
additional sym m etry with respect to re flection  on the plane perpendicular to 
the sym m etry axis. F o r  an axially sym m etric system  this is equivalent 
to the rotation R through 180° with respect to the axis perpendicular to the 
sym m etry axis. We shall choose the "2 "  axis fo r  this purpose. Now, the 
transform ation  R can be perform ed  in two w ays:

1) Rotation Re o f the "123" axes. The corresponding operator is  then

Re = e ilrI* (6 .12)

2) Rotation R¡ o f  the in trinsic system

(6 .13)
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Н еге, ^ 2  is  the " 2" p ro jection  o f the in trinsic angular momentum 
Together with the co llective  part o f the angular momentum R they 

form  the total nuclear angular momentum

R + /  = ï  (6.14)

Now it is c lea r  that both ways 1) and 2) must give the same result 
so that

R ^R .  = 1 (6. 15)

This relation  is  not an identity but should rather be understood as a 
condition im posed on the wave function .

Let us examine m ore c lose ly  the result o f this condition. We have

i6 ' 16)

as follow ing from  the properties o f the D -functions. Let us now turn to 
R j , assum ing first that 0. Then we have

e V / . °  ' I  (6Л”

~*2where x j  n is  the eigenfunction o f and . Now, we shall choose the
phases o ’f x fi in such a way that x _ß is defined (fo r  Л > 0) as

RiX n=  e " *  =  X .n (6 .18 )

fo r  П > 0 .
F o r  half in teger Í2 o r  К we must observe  that

R  ̂ = ( - l )21 and R j = ( - 1 )21 (6 .19 )

Em ploying the above relations we obtain (using also the norm alization) 
fo r  0

•ж- x-„}

Now both fo r  К ф  0 and К = 0 we must have

Í2 = К (6 .21 )

as resült o f the required rotational invariance with respect to the rotation
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about the "3 "  axis, i . e .  we assume that should not change i f  we rotate the 
system  about this axis; this gives

( V / 3) 4  = o <6-22)

so that (6 . 21) follow s im m ediately. F or  К Ф 0 then (6 . 20) becom es

I6 - 23)

fo r  К > 0.

F o r  К = 0 Eq. (6 .16 ) still holds while fo r  the in trinsic part xK=0 we may write

Ri X0 = r  X0 (6 .24)

where r = ± 1 is a quantum number related to the operation R j. In this case 
we obtain fo r  a norm alized wave function

0 *0 (1  (6 - 25>

Now, we shall w rite the Hamiltonian fo r  our system  in the form

H  = T ro , +  H in t, ( * '  )  ( 6 - 2 6 )

where Trot is  rotational energy:

ft2 R 2 ft2 R 2 ñ2R 2
T rot = " ¿ y  +  - J J -  +  J J ~

*1 R 2 J É -  - I Î V 2
3

(6 .27)

where £  and ./3 are mom ents o f inertia . The last term  in E q .(6 .2 7 ) must 
vanish since R 3 = I3 - ^ 3 has always the eigenvalue equal to zero  as a result 
o f Eq. (6 .2 1 ). We have not introduced any coupling between the two groups 
o f the degrees o f freedom  in E q .(6 .2 6 ) as we assum e that the coupling is 
very  weak. The separation  in the wave function Ф in the form  o f expression  
(6 . 2 ) is  only possib le  i f  the rotational m otion is slow as com pared to the 
in trinsic m otion and if  the deform ation in \ (x1 ) is  w ell pronounced. Using 
expression  (6 .14 ) we máy transform  our Hamiltonian (6 . 26) in the form

H = H0 + HRPC+ H'imr (6 .28)
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where

' )
(6 .29)

H R P С  "  2$■ (6 . 30)

H' = H +
in tr intr

(6 .31)

where J3 = I 3 = К and I ±, operators are given by

I = I, ± i l  ± i 2

} (6 . 32)

We can see that H0 is the part determ ining the rotational energy, HRPC 
defines a rotation -particle  coupling (although we have not introduced any 
prim ary coupling in expression  (6 .26 )) and H'intr corresponds to the motion 
o f particles  in a deform ed rotating potential. The part HRPC has the structure 
o f a C orio lis  coupling.

7. ROTATIONAL SPECTRA

In the last lecture we have form ulated fundamental princip les under
lying the structure o f rotational motion in deform ed nuclei. We have 
arrived at the form  o f the wave functions (6 .23) o r  (6 .25) and o f the rota 
tional Hamiltonian (6 .2 8 ). Now, we shall turn our attention to the d iscu s
sion o f the main consequences o f the above assum ptions. In this lecture, 
we shall be m ostly  concerned with the rotational spectra  o f the even-even 
and odd -A  nuclei.

The ground-state rotational band in an even nucleus is characterized  by 
the wave function (6 .25)

satisfying the antisym m etry requirem ent. We shall now investigate the 
properties  o f the function x 0 with respect to rotation through 180° about

(7 .1 )

The in trinsic wave function x 0 is constructed from  pairs o f nucleons 
occupying pairw ise the N ilsson orbitals +K and -K . F or  two nucleons we 
have

(7 .2 )
К
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the "2 " -a x is .  F o r  this purpose we apply the operator (6 .1 3 ). The result is

e ‘ V , Xo' = Х С к ( ' ф-к<1>фк ( 2 > + Ф-к<2 ) V 1) ) ^  <7 - 3)
к

THis form ula follow s from  the fact that fo r  positive К we must have

e iff̂  Ф_к = - фк; (K > 0 ) (7 .4 )

in accordance with relations ( 6 . 18) and (6 . 19). We conclude that r = +1 
fo r  the ground-state rotational band.

Slightly m ore general considerations hâve to be applied to rotational bands 
due to the vibrational К = 0 states, such as the ß -v ibration al state, i. e.
Kir = 0+ ( 7T=parity), octupole vibration Kn = 0 , etc. E ssentially, K  = 0 
vibrations involve states built up from  pairs o f quasi-particles coupled to 
К = 0. The general structure o f a tw o-body wave function can be expressed 
in the form  of

* o = Y  < t ’ K |m JtK >  (фт , к(1)фг к (2) - Фт. к(2)Фт к (1 ) )
г г ‘ К

= У  < т* к | м  |тк>(ф  ( 1 ) Ф  (2 ) - Ф (2 ) ф п Л  (7 . 5 )
1 Л1 \ т ’ К  - r - К  т * К  т - К  J

т т * , К > 0

+ Y  <Т' - К | м х | т -К > (ф т._ к (1)фтк(2) - ФТ. . К(2)ФТК(1))

т  г 1 К> 0

where is a tensor operator o f rank X . Now, there exists a definite 
relation between the m atrix .elem ents o f Мл when the sign o f К is  changed

< t ’ - k |m J t -K >- = p (-1  )X < r ' k |M |tK> (7 .6 )

where p denotes a certain  phase fa ctor  independent o f m ultipolarity X. The 
use o f the operator R¡ given by expression  (6 .13 ) in the wave function (7. 5), 
taking account o f relation  (7 .6 ) gives

R , X 0 = - P(-.1)XX„ (7.7)

We can fix the phase p by considering the case X = 0 fo r  which M = 1 and 
the wave function reduces to (7 .2 ); then p= -1 so that finally we obtain in 
expression  (7 .1 )

r = ( - 1)X (7 .8 )

It follow s im m ediately from  the above value o f r and E q .(7 . 1) that for  the
ground-state and the vibrational Кж = 0+ bands in even nuclei only even values
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o f the total nuclear angular momentum I can o ccu r . On the other hand, the 
odd-parity  rotational bands with Kw = 0" (and the vibrational character) we 
have only odd I-va lues. Now looking at the Hamiltonian (6 .29 ) and the wave 
function (7. 1) we see that the follow ing spectra  of the rotational type can 
occu r  in even nuclei:

The m ost d irect verifica tion  o f the validity o f the rotational m odel and 
form ula (7 .9 ) consists o f calculating the ratios o f the excited-state energies 
observed  in deform ed nuclei. F o r  exam ple, in the ground-state band the 
energy ratios should be *

The agreem ent o f these predictions with observation  is rem arkable, and 
the deviations occu r  at the boundaries o f the deform ed-nuclei regions where 
the rotational m odel itse lf is not so w ell founded.

As an illustration  o f the occu rren ce  of rotational bands in even nuclei

state rotational band as w ell as the other two К = 0 bands: 1) of positive 
parity (J3 -v ibrational quadrupole states) and 2 ) o f negative parity (octupole, 
К = 0 vibration). The fourth, highest band (a quadrupole 7 - vibration) is 
characterized  by Kw = 2* quantum num bers. As К §  0 we have no restriction  
on the values o f I fo r  this band, and its wave function is  given by E q .(6 . 23) 
instead o f E q .(6 .2 5 ). The levels  presented in F ig . 7-1 have been obtained by 
Coulomb excitation  [26 ]. Another example o f a single band in the 170Hf 
nucleus is given in F ig . 7 -2 . This band has been observed  [27] due to the 
heavy ion excitation method. Heavy ions are able to transfer rather large 
units o f  angular momentum to the target nucleus and the multiple Coulomb

(7 .9 )

with

In  = 0+, 2 +, 4 +, . . fo r  the ground state and even-parity  К = 0 
vibrations

and
I tг = Г ,  3 ' ,  5 fo r  the negative-parity К = 0 vibrations

(7 .10)

let us take the 238U nucleus (F ig . 7 -1 ). We can easily  recogn ize the ground

excitation becom es p ossib le . The occu rren ce  o f all the spins up to Iw = 18+

1127

1039
994

1162
4 +

2* 1062

4*
3*
2*

0+

724 3 -
1-- 679

163------------- 4*
FIG . 7 - 1 .  R o ta tion a l bands in  238U .
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. 3761 ■ • 18*

3U 7 • •16*

2564 — :— ----------- 14*

2013 • ■12*

1503------------------ 10*

F IG .7 - 2 .  S in gle  b an d  in  1,0H f n u c le u s . Ю 4 ) ___________________ g*

641------ --------------- 6»

321---------------------- 4*

100-------------------- 2*
0  Or

170

7 >

is quite im p ressive . Let us turn our attention to the odd-A  nuclei. Here 
we expect the existence o f many s in g le -particle  states with half integer K, 
which are essentia lly  N ilsson  orb ita ls. Each o f these states generates a 
rotational band with I = K, К +1, K + 2, . . . .  Again the energy ratios in such 
a band would be determ ined by the 1(1 + 1) rule follow ing from  relation (7 .9 ). 
T here is one im portant deviation from  this rule fo r  К = 1 /2 . In this case, 
there ex ists a n on -zero  contribution (diagonal) com ing from  the НррС part 
(6 . 30) apart from  the norm al term  which follow s from  H¿ given by relation  
(6 .2 9 ).

The non -zero  diagonal contribution derived from  relation  (6 . 30) is 
possib le , owing to the existence o f the two term s in the wave function (6 .23 ). 
The in terference term s in question are

h2 21 + 1 [  ,T i t \
'  2 J  1 6 l 2 О  M K X J  - / j  M - K X - K^

+ , , Л 1 >

Now

x 11 £ ID x /
N M K  К  -  / + '  M - K  - к

■ I n r i n /ü  + K H I-K  + 1 ) V  .
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The other elem ent in expression  (7 .1 1 ) gives

\j (I + K) (I - K + l) " ^
21 + 1 -к. K+i<x J  /Jxk> (7 .13)

In the above calculations we have used E q .(6 . 7). Now the application of 
the R; (unitary) operator to the m atrix elem ents appearing in (7. 13) gives

Finally, the expectation value o f the Н№С operator (6 .3 0 ) in the state 
(6 .23 ) is  obtained

as it is  obvious that the term  (7 .13 ) and (7 .1 4 ) are different from  zero  only 
i f  К = 1 /2 . In E q .(7 . 17) there appears a param eter a, called the decoupling 
param eter:

which depends only on the details on the in trinsic structure and can, fo r  
exam ple, be calculated with N ilsson wave functions.

The total energy including the additional contribution (7 .17 ) is

Owing to the additional term  in the K= 1 /2  bands, the energy levels 
tend to bunch in p a irs . It turns out that fo r  a •£ -1  the level with 1 = 3 /2  goes 
below the 1 = 1 /2  level, whereas for a >1 the 1 = 5 /2  level goes below the 
1 = 3 /2  level.

As an exam ple, let us see the leve l spectrum  in the odd -A  nucleus 
Щ н о  (F ig . 7 -3 ). The ground-state band is  built on a single-proton  state 

labelled by the N ilsson  quantum num bers 527 7 /2  (see  Eq. 3 .1 6 )). The

-1
(7 .14)

(7 .15)

H ere we have em ployed the follow ing relations

<' x- r I Rí+ = " ^xk I fo r  K > 0

(7 .16 )

(7 .17 )

a = (7 .18)

E = E (7 .19)
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F I G .7 -3 .  L e v e l sp ectru m  in  'I^H o n u c le u s .

other s in g le -p artic le  states 411 3 /2 , 404 7 /2 , 411 1/2 and 413 5 /2  have 
also been observed  and produce other rotational bands. In the К = 1 /2  band 
(411 1 /2 ) the obvious deviation from  the I ( I + i )  can be seen. They can be 
w ell understood in term s o f the generalized  energy form ula (7. 19). We can 
also turn our argument around and use expression  (7. 19) in ord er  to fit 
the two in trinsic param eters: moment o f inertia, I, and decoupling para
m eter ,^  from  the observed  energies in the (411 1 /2 ) band. In F ig . (7 -3 ) we 
can also see the two bands due to the two in trinsic states at 514 keV and 
687 keV. The structure o f these states is  understood as a result o f a 
coupling o f the s in g le -p a rtic le  state 523 7 /2  to the quadrupole 7 -v ibration  
with Kit = 2+ . The two resulting К values equal to 11/2 and 3 /2  follow  from  
the para lle l and antiparallel coupling o f К = 7 /2  to К = 2. The above example 
presented in F ig . 7-3 has been taken from  the lectures by S .G . N ilsson  [28]. 
Many other exam ples in this paper have been taken from  this re feren ce .

8 . ROTATIONAL INTENSITY RULES

Up to now, we have only been interested in d iscussing  the positions of 
the energy levels  in various rotational bands. In this lecture we shall 
consider another very  im portant conclusion  follow ing d irectly  from  the 
assum ptions o f the rotational m otion: the ru les governing various transitions 
in nuclei. We shall d iscu ss only the electrom agnetic (gam m a) transitions. 
H owever, the ru les are also valid in other cases such as, fo r  exam ple, 
beta -decay  transitions.

Let us take a gamma transition  o f m ultipolarity X. The electrom agnetic 
operator fo r  such a transition  (E X o r  M A) is  a ten sor o f the rank A and 
tran sform s with the Dx m atrices  [25] ï

= J T c j Î H ® ,  0 - 7 ) «О

V

(8 . 1)
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where ^ '( X ,  v) denotes the operator re ferred  to the body-fixed  fram e of 
re feren ce  determ ined by the E uler angles a , ß , y .

To calculate the transition  probability we have first to start with a 
m atrix elem ent o f computed between two nuclear states: final

4 >i
фм гК(- anc* in itial ф м к .- Using expression  (6 .23 ) fo r  the wave functions 
and separating various parts o f the operator (8 . 1 ) we obtain

M if = < * MfKf I ^ ( ^ ) | * m íK ¡>

n/ ( 2 I.+ 1 ) (2 If +1)

1 6  7Г
1 >

L + K, + If + Kf If
+ ( - 1)1 S 4 f<D fM - I Dx IQKj.1 i¡v  I M j - K j X-Kfluf* PLI/)|-Kj> ( 8 . 2 )

+ ( - 1 ) 1?+Кг< 0^  Kf i D j j D ^ ^ X - K H u f ' i X . j l K , ) }

Using the relations

< D If I Dx ID 4  > = ^ 7 7  < I.X M .Ai|lfMf><I.XK .i/|lfKf> (8 .3 )N Mf Kf 1 ¡IV ' m¡k¡ 2If +l i r 1 f I'  N i i I f К  v '

and

< -K f I u f ' f X i / j l - K , )  = ( - l ) X+Ki' Kf<K f | ^ '(X ,i / )| K .>  (8 .4 )

(the first o f these relations can be found in any textbook on angular m om en
tum [25] ; the second relation is  obtained by expanding the states in term s 
o f spherica l orbitals and applying the W igner-E ckart theorem ) we com e to 
the conclusion  that the firs t and second term s in the curly bracket of 
E q .(8 .2 )  are equal. The third and fourth term s are equal by sim ilar 
argum ents. Thus we finally get by also em ploying relation  (8 . 3)

Mif - Щ <IiX M M|lf Mf > |<L X K ll.| l{Kf>

I, + K;
X  < K f I (Xv) IK j>  + ( -1) X l i X - K H l f K f )  (8 .5 )
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We have om itted the summation over v since always v = Kf ^ K ¡ .
In many cases o f interest we have X< K¡ + K f . Then the second term  

in expression  (8 .5 ) vanishes and we obtain

M i f  = < I i X M i ^ l I f M f > < I i X K i 1 / l I f K f > < K f l  ^ > ) | К ( >  ( 8 . 6 )

Introducing the reduced m atrix elem ent by the W ign er-E ckart form ula

<̂ MfKfU ^ ) l % Ki>

< i a m .m|l i Q  , j . ,
-  ' ' < < l l - « - w l l * ‘ ' >

•Æ17T T  Kf K‘

we can also w rite down relation  (8 . 6 ) in the form

(8 .7 )

<\ fH ll»£>K f  Kj

= n/2Ij + 1 <IiX K i!/|lf K f><Kf | (Xi )̂ I K¡>

(8 . 8 )

In case o f K¡ = 0 an additional fa ctor  \/2~ o ccu rs  in this equation. The reduced 
transition  probability  В (X) is  defined as

В (X, IjKj -» If Kf ) £  |M ¡ f |2 (8 .9 )
M{ (P)

o r  equivalently in term s o f the reduced m atrix elem ent

В  (X, I ¡  K j - ’’ I f K f ) = ^ T T < 4 ff ll W l l * £ >  ( 8 Л 0 )

If E q .( 8 . 6) is valid we obtain from  these definitions

B (X ,L K  -  If Kf) = <(L XKjt11 If Kf >2 I <Kf I Л (X, i/) I Kj> 12 (8 .11)

A rem arkable property  o f the transitions follow s from  this form ula. If we
have two transitions from  state (IjKj) to the two m em bers I f and I'f o f  the 
same rotational band the ratio o f the corresponding В (X) turns out to be a 
purely geom etrica l factor

В (X, I.K  -* I1 К ) <1 X К 1/ 11* К >2
—  (8 . 12)

В (Х ,Г К . - I f Kf) <IiX Kji/1 If Kf >

determ ined by the sector-add ition  cqefficien ts. Sim ilar relations would 
hold fo r  two transitions starting from  two m em bers o f one initial rotational
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band and ending on the same final state If Kf . Equations (8 .12 ) are widely 
known and used as the Alaga, A lder, Bohr and M ottelson intensity rules [29] .

The m ost important conclusions follow ing from  the above consideration  
are the follow ing:

1) The branching ratios (8 . 12) may be used in ord er to determ ine 
experim entally the К -value fo r  a band given.

2) In case o f X < | K¡ - Kf | the transition becom es forbidden !within the
fram ew ork o f the schem e. As the wave functions (6 .23 ) are only approximate 
we shall expect the transition to occu r  in nature but retarded. This fact is
confirm ed in many cases and known as the approximate К -se le ction  rule.

3) The e le c tr ic  quadrupole transitions calculated between the states of 
the same rotational band provide us with an additional important conclusion. 
The E2 operator is

^ ( E 2 , 0 )  = e £  r 2Y20(S y  (8 .1 3 )
protons

We have written down only the ß = 0 component, since the others w ill not 
contribute. The B (E 2) calculated in this case is

B ( E 2 , I . K - I  K) = f f ^ < I . 2 K 0  |l K>2 Q 2 (8 .14)
1 I 1 b  7Г 1 I o

where Q 0 is the static in trinsic quadrupole moment calculated as the 
expectation value o f the operator

1/2(nr) I rX ,n»>
proton

with the in trinsic wave functions. In particular the Coulomb excitation o f 
the first excited 2+ state is  determ ined by

B (E 2 , 00 -*• 20) = (5е2/16тг) Q2 (8 .15)

R elations (8 . 15) o r  (8 . 14) have been used extensively in the determ i
nation o f the in trinsic quadrupole moment Q 0 and, th erefore, the nuclear 
deform ation (see E q .(4 .2 3 )).

Let us now d iscuss brie fly  the m agnetic properties o f rotational nuclei. 
The operator o f the m agnetic moment ß is com posed o f two parts, a c o lle c 
tive one and s in g le -particle  one:

** = ^ o o l l  + ^ s . p .  ( 8 Л 6 )

where

i c o u 'ß R 5  <8 Л 7 >

V Л» *■  ̂ ш -°л 
" . . р. = L  ve* í y + g s s ;  

j
(8 .18)
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The appearance o f /исо11 in (8 . 16) is  connected with the additional 
contribution to the m agnetic moment due to the nuclear rotation. This 
contribution is proportional to the total collective  angular momentum 
R = I - J (see  E q .(6 .1 4 )). F or  a s in g le -particle  state (J =j) we have

= gRÏq + t S A  + gsSq ) - gRjq (8 - 19)

where we have written/^ as the q-th component o f the fir s t -o rd e r  tensor 
(rank 1). Now, the m atrix element of in the rotational-type state 
contains expressions like

< d ’  y  Im J d 1 y  >
N м к л к '  Ч'  МК ЛК

= У <d’ Id1 I d 1 X x  In' |x > (8.20)
L ,  N M K 1 q q ’ ' М К  К q '  К  ’

q*

О  — 2

= ^ Y T I  < I 1 M 0  I м > < н К О  I i k X x k U ¿  |xk >

Let us define a "s in g le -p a rtic le "  factor g by the relation

< x k I m ' J x k >  = g K K

g£K + (g s - gt) <K |s0 I K>

(8 . 21 )

W orking with the full wave function (6 .23) we obtain finally 

M ” ^ФМК l^ql^MK = I

'= { g RM,+ <H M 0 I IM X H K O  I IK > K (g K - gR)| M = l (8 .22)

^R1 + I +1 " gR )

This form ula is  valid in all cases except fo r  К = 1 /2 . In the case o f 
К = 1 /2  there are additional cro ss  term s sim ilar to those in the energy 
form ula (7. 19) fo r  the К = 1 /2  bands. The com plete form ula is  given below * 
without derivation

"  = Sr1 + ift  (gK - O í 1 + *Ki  ( - l ) I + i (2I + l )  b0}  (8 .23)
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where b0 is a quantity s im ilar  to the decoupling param eter (see  E q .(7 .1 8 ));

(gK- g R) b0 = <xK|-(gf i t + g ss+ - gRj+)|x.K> (8.24)

We can expect that roughly the follow ing estim ate o f the gyrom agnetic 
ratio gR is valid:

gR ~ Z / A  (8 .25)

Let us finally turn to the d iscussion  o f the Ml transition  in rotational 
nuclei. The corresponding operator is

>  = ^ ^ { g Rl + ( g|i  + g l ) -  %ï }  (8 .26)

Now, em ploying the sam e procedure as before , we arrive at the 
expression  fo r  the reduced transition  probability within a band

/  \ 2
B ( M l , I 1 K - I I K )  =  | r ( g K - g R )

x ( w z )

valid in the case К ф

i i 2 /  т>+  ̂
X O i 1 2 o l : f¥ >  0 + V - 1)

(8 .27)

(8 .28 )

where

I = max (I. , I )> ' i f '

The above form ulae fo r  the В (Mi) and ц work very  w ell in m ost o f the 
deform ed nuclei. As an exam ple, let us choose the 1{sTm nucleus [30].
As its ground-state band is  К = 1/2 we have to use the m odified form ulae 
containing b0 . Thus, we have to fit three param eters: b0, gR and gK .
Using three m easured quantities to determ ine them, we can predict the other 
data and com pare them with experim ent. Table II illustrates the results 
[31 ] . The asterisk  means that the value has been used to determ ine the 
param eters bQ, g R, g K.
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TABLE II. RESULTS FOR THE 169Tm NUCLEUS

I E
( e h / 2 M c )

В ( M l ,  I + l - » - I )  

( e h / 2 M c ) 2

E x p er im en ta l P re d icte d E x p e r im e n ta l P re d icte d

1
2

0 ' - 0 .2 2 9 * 0 .0 5 5 0 .0 4 5

3
2

8 .4 + 0 .5 3 4 % .0 .1 1 5

5
2

1 1 8 .2 + 0 .6 4 + 0 .7 0 0 .0 8 0 0 .0 5 9

7
2

1 3 9 .9 + 1 .3 7 + 1 .4 2 - -

M ost o f the d iscu ssions in this chapter as w ell as in chapters 6 and 7 
are taken from  R ef. [3 ].

9. OTHER APPLICATIONS OF THE ROTATIONAL COUPLING SCHEME

In this lecture we shall d iscu ss two different top ics . F irst  o f all, we 
shall d escribe  a very  interesting method o f verify ing the in trinsic structure 
in the nuclear deform ed orb ita ls. It is often re ferred  to as a method o f 
" f in g e r -p r in ts " . Then we shall return to the d iscussion  o f rotational 
spectra  and com plete it by a non-triv ia l case o f odd-odd nuclei.

We have seen that the deform ed single-nucleon  orbita ls in nuclei are 
very  w ell understood in term s o f an individual nucleon m otion in the d e 
form ed nuclear potential (see  chapter 3). In particular, the widely used 
N ilsson  m odel [8 , 10] has been em ployed to explain even very  fine details 
o f nuclear spectra . We have seen that the N ilsson  deform ed orbita ls can 
be represented as superpositions o f the sph erica l nuclear orbita ls (see 
E q .(3 .3 7 )). Now, it turns out that the investigation o f the one-nucleon  
tran sfer  reactions may provide us with a very  interesting check o f the in 
tr in s ic  structure o f the N ilsson  orb ita ls . Our considerations w ill be based 
on the rotational coupling schem e as outlined in chapter 6 . Let us consider 
a stripping reaction  such as (d, p), (d, n), (t, d) etc . In such a p rocess , an 
in itial nucleus with angular momentum Ij captures one nucleon with an 
angular momentum j and form s the final nucleus with a total angular 
momentum I 2. The c ro s s -s e c t io n  fo r  such a p rocess  may be written as [3 ].

d a ( î 1 +j - î 2)  = (.2-- ; A .¿- ; -- < i a||at ( j )||ii >2 dg|jpj( + 3) (9 Л )

The second fa ctor <[l2| | a* (j) 111̂  ̂)>2 is  determ ined by the overlap between 
the two nuclear states after having added a(j)-nucleon  to the in itial nucleus. 
We shall lim it ou rse lves to the d iscu ssion  o f this term  without going into 
further details o f the reaction  p ro ce ss . The fa ctor  itse lf is  proportional 
to the sp ectroscop ic  fa ctor, which is  d iscussed  in many other papers in
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these P roceedings (see papers by Cindro and Frahn). F orm ally  the factor 
<(l2| [ a+ ( j ) I j I  j is a reduced m atrix elem ent o f the tensor operator and can
be shown, by the W igner-E ckart theorem , to be proportional to the m atrix 
elem ent o f the aj^ creation  operator calculated between the two rotational 
states (see  E q .6 .2 3 ))

This m atrix elem ent can be evaluated by means o f a procedure outlined 
in chapter 8 leading to the intensity ru les. A fter a transform ation to the 
in trinsic fram e o f re feren ce  the expression  (9 .2 ) is seen to be proportional 
to the elem ent between the intrinsic states

< K2 |gJ+m |K1> (9 .3 )

The d iscussion  becom es especia lly  sim ple when the target nucleus is 
even -even  (in the ground-state). Then the final state \К2У may be under
stood to be on e-p a rtic le  state (plus an even-even  core ) and can be expanded 
in term s o f sph erica l orbitals

|K2> =  ^  си |згк2> (9 .4 )
j

(Thus is  exactly  the e'xpansion (3. 37). )
Substituting relation  (9 .4 ) into the m atrix elem ent (9 .3 ) we finally obtain

d a ^  = 0) + f - I 2)  ~  (cj{2) _ (9 .5 )
1 2

In the experim ent various states I2 are populated as the final states 
o f the nucleus. If they belong to the sam e rotational band, Eq. (9. 5) enables 
us to determ ine d irectly  various coefficien ts c J{ o f the expansion (9 .4 ).
In this way we are in a position  to check whether the coefficients. Cjf ca lcu 
lated correspond to reality . In the m ore refined version  o f the theory with 
pairing correla tion s included, the coefficien t сД appearing in E q .(9 .5 ) has to 
be com pleted by the standard coefficient u? ch aracteristic  o f the theory with 
pairing fo r c e s . The coefficien t u? determ ines the degree to which the j-th  
leve l is  empty.

S im ilar considerations may be applied in the case o f pick-up reactions 
such as (p, d), (n, d), (d, T) etc. Here, the ro les  o f the in itial and final 
states are interchanged and the coefficient u .2 has to be replaced by
V *  = 1 - U ? .

V arious experim ents o f the type described  above have been made [32] . 
A ty p ica l exam ple is  given [32, 28] in Table III. Of cou rse , the ex p eri
m ental determ inations have been norm alized so that only the ratios o f the 
coefficien ts are relevant. N evertheless, the agreem ent o f the N ilsson 
results with experim ent is rem arkable. This means, that in spite o f the 
very  great s im plicity  o f the N ilsson potential (see  chapter 3), its results



TABLE III. COEFFICIENTS OBTAINED FROM (d, p) EXPERIMENT

IAEA-SMR 6/4 1 1 1

T h e o ry Ífi9yb 171 Y b 173 Y b

5 /2 0 .0 1 0 .0 2 0 .0 3 0 .0 3

7 /2 0 .7 9 0 .7 2 0 .6 6 0 .6 1

9 /2 0 .1 4 0 .1 8 0 .1 7 0 .1 8

1 1 /2 0 .0 6 0 .0 9 0 .1 4 0 .1 8

are quite relevant to the rea l angular structure of the in trinsic s in g le 
particle  states in deform ed nuclei.

Let us turn now our d iscussion  to the spectra  o f odd-odd deform ed 
nuclei. .The low -lying states are constructed from  the individual states of 
the odd proton and odd neutron lying outside the even co re . Suppose that 
the low est states o f the proton and the neutron are ch aracterized  by the ■ 
p ro jection  o f the angular momenta f2p and f2n> respectively . We can expect 
the existence o f two rotational bands due to the two K -states with

К = Q + Q , o r  I Çî - Q I (9 .6 )
n p ’  I n p 1 1 '

The splitting between the two bands depends m ostly  on the properties  of 
the residual neutron-proton interaction. An em pirica l rule d iscovered  by 
Gallagher and M oszkowski [33] states that out o f the two configurations 
(9. 6) the low er one is  characterized  by the paralle l spin projections

w here the quantum num ber Z has been defined in chapter 3 (see  Eq. 3 .17 ). 
Pyatov [34] has shown th eoretica lly  that the G allagher-M oszkow ski rule can 
be explained with the use o f the short range spin-dependent neutron-proton 
residual fo rce . A ccord ing  to Pyatov, the only exception from  this rule may 
be expected fo r  f2n = f2p and opposite parities o f the two states. In this case 
the rule does not have to hold. Such a situation seem s to be observed  in 
166Ho where two bands [35] separated by very  sm all energy («= 8 keV) exist.

Let us take 2®°Bk (F ig . 9 -1 ) as an illustration  o f the level structure in an 
odd-odd nucleus. One can see here various rotational bands [36-28] built

2¿8 263 
' 7'  193

«♦
169 7*
99 ■6' 131 6*
n 52lf

•5- 79
36-----

5*
4*

24 0 ___________9 ,  n 6 4 2 |

, 5 §----- -8*  p 6 1 3 j

86 -7*
,  3 ---------- 3_  n 6 З З 7

7 0 --------------- ■ 2 -
p  6 1 3 т  »  » _  ci

2 n 6 33|  n 521 f  2

p620i p620i

F IG . 9 -1 .  L e v e l sp ectru m  in  an  o d d -o d d  n u c leu s  ( ^ B k ) .

8*5 2 5

46Q________7 »

406________g
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on tw o-particle  configurations. One can also see that the Gallagher- 
M oszkowski rule works in all the cases.

Now, let us d iscuss m ore closely  an interesting specia l case o f Í2n = Г2р. 
Then, accord ing to expression  (9 .6 ) one o f the bands is characterized  by 
К = 0. The intrinsic wave function in this case may be constructed o f the 
proton and neutron orbita l in two ways:

хГ  = 7 г { хй(р)х-«(п)Тх-,(р)хп(п)}  . (9-7)

The two com binations have different behaviour with respect to rotation 
through 180° a b o u t" 2" -a x is :

R¡ Xo*’ = * X (i) (9 -8 )

A ccording to considerations from  chapter 6 we actually have here 
two different bands with the r quantum number equal +1 o r  -1 . The two 
bands are described  by two different rotational wave functions

4», = ^/13Л+)(l+(-)I)DIMo (9'9)
with I = 0, 2, 4, . . .  .

and

4 * 0  = n / Щ Г ^ - ’ C - i - ) 1 )  d L o ( 9 Л ° )

with I = 1, 3, 5, . . .  .

As the in trinsic structure o f the two bands d iffers there may be sub
stantial d ifferen ces between them (fo r  example,the mom ents o f inertia or 
energy positions may be different).

As an exam ple of such a situation, let us consider the odd-odd nucleus 
l70Tm. Its level spectrum  has been observed experim entally [37 ]. The 
assignm ents fo r  odd proton and neutron are (41l|) and (521 -5-), respectively . 
A ccording to what we have said we should expect the existence o f the three 
rotational low -lying bands in this nucleus:

1) The Кж = 1 band from  the parallel total p ro jection s:

2) The Кж = 0 band with r = +1 and 1ж = 0 , 2 , 4 , • ■ •
3) The 'Кж = 0 band with r = -1 and 1ж = 1 , 3 , 5 , • • • •
The fact, that = Г2П = 1 /2  causes further com plication: the 1-band

may be strongly couplted by the C oriolis  interaction (6 . 30) to both the
К = 0 bands. The m atrix elem ents o f the C orio lis  interaction  may be
expressed  by the decoupling param eters fo r  the neighbouring odd -A  nuclei
exhibiting (41 l j ) -p r o to n  and (521-|)-neutron orb ita ls. The examination of



IAEA-SMR 6/4 113

1 9 6 0 -------
K = 3

1052---- ;-----• ( 3—)
963---------- (2-)

920— ---- ( I- )
K=1

610-----------7 -

411------------6 - 300 4 -  350
F IG .9 -2 .  L e ve ls  in  ‘ " T m .  3 2 0 __________ 5 -  ---------------------- --------------3 ‘

220 ,  Ш -------- 1-
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K = 0
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3 9 -----------2 -  r =  1
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the decoupling param eters, however, shows that only the r  = +1 band 
interacts strongly with the К = 1’  band. This causes sm all disturbances 
in the odd-sp in  part o f the К it = 1 band. The leve l schem e o f 170Tm is 
shown in F ig . 9 -2 .

Apart from  the three rotational bands d iscussed  above one can see 
other bands o r  levels o f different instrinsic structure:

10. FURTHER DEVELOPMENTS IN THE ROTATIONAL COUPLING
SCHEME

In this chapter we shall d iscuss the deviations from  the rotational 
coupling schem e as form ulated in chapters 6 -9 . 'We shall see that there 
are som e regular, system atic features in these deviations so  that they can 
be w ell understood in term s o f the correction s to the schem e itse lf. We 
shall treat the form alism  developed up to now as a z e ro -o rd e r  form ulation. 
Now, we shall try  to extend the theory to a kind of firs t  o rd er  stage in order 
to explain the system atics o f the observed deviations [3 ].

Let us start with the d iscussion  o f the rotational spectra . By examining 
num erous rotational spectra  in deform ed nuclei we can notice that the 
1(1 + 1) rule (see  E q .(7 .9 ))  holds only approxim ately. We may try  to co rre ct 
it by adding higher pow ers of 1(1 + 1 ) to the energy expression

E = AI (I + 1 ) - BI2(I + 1)2 - C I3(I + 1)3 - ------ (10-1)

where A = h2/2J 1 We have used the minus sign fo r  the second and third 
term  in ( 1 0 . 1) since then it turns out that they usually give a negative 
contribution (so  that B > 0 , C > 0 ). We can now treat A, B, Ç. . . as param eters 
and determ ine them from  the energies o f the first states in the rotational 
bands. In this way we generally get that:

A is  o f the ord er  o f severa l keV 
В is  o f the ord er  o f severa l eV 
С is  o f the ord er o f severa l 1013 eV
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H owever, this procedure does not seem  to be too satisfactory  since the 
positions o f higher levels are poorly  predicted  from  the knowledge o f 
A, В and C. T herefore , expansion (10 .1 ) may be understood only as an 
approxim ation o f the firs t ord er.

The other method o f param etrization consists o f dropping h igh er-ord er 
term s В, C. . . and treating the A -coe ffic ien t (o r  e lse  the moment of 
inertia  J ) as I-dependent. Let us take the ground-state rotational band 
in 170Hf (F ig . 7 -2 ) as an exam ple. The distance between two neighbouring 
levels is

fo r  1 = 0

E „ r E, - 2 J -< 4 I+ 6 > 35 h
(1 0 .2 )

fo r  1 = 16

The corresponding two determ inations o f the moment o f inertia  J . 
i n 170Hf are J = 0.030 ft2 M eV "1 and J=  0.057 ft2M e V '1, respective ly . We 
can see that the in crease in the moment o f inertia  is quite considerable 
in the band.

Let us now brie fly  review  the theories o f the mom ents o f inertia . The 
sim plest assum ption concerning the structure o f nuclear rotation is a 
hydrodynam ical picture (The irrotational flow o f an inviscid  and in com pres
sible liquid). The estim ates o f the moment o f inertia, j itr obtained in this 
way are about 5 tim es too low than the observed  ones. Let us now turn to 
the alternative descrip tion  currently called the cranking m odel [38 ]. In this 
m odel, a slow c la ss ica l rotation is  applied to the whole nucleus. Then, the 
nuclear states are slightly m odified owing to this rotation. The pertur
bation calcu lation  with respect to angular velocity  o f the rotational motion 
Г2 g ives the energy to second ord er in Q as

E = I  J П2 (10 .3 )

where the coefficien t is  identified as the mom ent o f inertia . A final form ula 
obtained for  J in case o f the independent particle  motion in the nucleus is

J = 2 fi2
vit

with j being a p ro jection  o f the particle  angular momentum j on the axis 
perpendicu lar to the nuclear sym m etry axis. The summation in E q .(1 0 .4 ) 
extends ov er  all s in g le -p artic le  configurations fi and v fulfilling the 
conditions e v > eF and < eF where ep denotes the F erm i energy. The 
calcu lation  o f J accord ing to E q .(1 0 .4 ) fo r  the independent particle  motion 
gives as a result [39]

J «  J (10. 5)
r ig id

where J rigid *s the rig id -body  moment o f inertia  o f the nucleus. This
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result overestim ates the values o f J with a factor o f the ord er  o f two. The 
m ost satisfactory  theory o f mom ents o f inertia  seem s to be based on the 
cranking m odel com bined with the introduction o f the short-range pairing 
interaction  between nucleons in the nucleus [3, 40, 4 1 ]. ' The form ula (10.4) 
is  m odified in this case

are the elem entary excitations o f the nucleus with pairing corre la tion s 
present. The calculation o f J based on Eq. (10.6) g ives aquite good a gree 
ment with experim ent [41] . P airing correlations reducing the value o f 
J by a factor about two create the nuclear state, the structure o f which is 
very  s im ilar  to the e lectron  structure o f the superconducting m etal.

Let us now d iscuss the deviations in the intensity rules [3 ,42 ] . Here 
again, by an examination o f the experim ental data, we com e to the conclu 
sion that the rotational intensity rules only hold approxim ately. In som e 
cases such as the E ltra n s it ion s  the rules described  in chapter 8 becom e a 
very  poor too l in the explanation of the m easured intensities o f various 
transitions. Let us consider a sim ple schem e as is  to be faced in m ost
o f the typical intensity m easurem ents. An initial state |ф  ** K )> decays

to the two final states anc* Kf ^ belonging to the sam e rota-
tional band. The branching ratio ( i .e .  the ratio o f  the intensities of the 
two transitions Ij If and I j^ I f) is  given in the z e r o -o r d e r  approxim ation 
by the form ula (8 . 12). However, with m ore accurate experim ents, syste 
m atic deviations from  this rule have been observed . They can be under-

characterizing  rotational bands. Let us see what kind o f couplings cause 
the adm ixtures o f the other К-bands to the band given. The type o f ad
m ixture depends on the value o f the other К-quantum numbers to be ad
m ixed. F o r  exam ple the ДК = 1 admixtures are caused by the fam iliar 
C orio lis -typ e  coupling HRpc (see  E q .(6 .3 0 ))

Here the operators I acting on the D ^K part o f the rotational wave 
function (6 .23 ) change the value o f К by unity. The operators h ±1 act on 
the in strin sic  part o f the wave function (6 .2 3 ). In this chapter we shall not 
be in terested  in the details of in trinsic m otion and only attempt to obtain 
the explicit I-dependence due to the It operators acting on the D e p a r t .
A ll we have to know about the h±1 operators is  their properties with respect 
to Herm itian conjugation

Now, fo r  ДК = 2 o r  ДК = 0 we can write down expressions s im ilar  to 
expression  (10. 7)

( 10 . 6 )

2 * 2 2  where is  the probability that the state ц is  occupied , u„= l - v „ ,  and Ey

stood in term s o f possib le  adm ixtures in the wave functions

(10 .7 )

h + = h , 
+ 1 _1

(10 . 8 )

h I2 + h I 2 fo r  ДК = 2 
+2 -  -2  +

(10.9)
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and

ty Il + I2> f°r ЛК = 0 (10. 10)

Let us d iscuss the correction  to rotational intensity rules in case o f the 
E l transitions acting between two rotational bands with = K¡ +1 . In this 
case the ДК = 1 adm ixtures to both final and initial states are relevant. We 
shall w rite the perturbed states in the form

where e ± are the operators creating the adm ixtures. They are defined by 
the first o rd er  perturbation theory

We shall not be interested  in the particu lar form  o f the in trinsic 
m atrix elem ents (1 0 . 1 2).

Now, to calculate the intensities we need the m atrix elem ent (see 
chapter 8 )

In case o f K¡ = K f +1 only term s containing I+ contribute to E q .(10 . 14), 
apart from  the z e r o -o rd e r  term s. T herefore , we can drop the I_ -term s in 
this case . We are then left with the correction s  containing products of 
I+ and 1+ tim es som e in trinsic operators . E xpressing both of
them by a com m utator and an anticom m utator

IIMK> ( l + e  + I_ + e_I+) |Ф^К> ( 10 . 11)

(10 . 12)

with
+ (10. 13)e e
±

< i f Mf Kf | ^ Xm |i . m . k .>

(10. 14)
V

(10 .15)

we can rew rite the right-hand side o f E q .(1 0 . 14) in the form  o f
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where Ov and Öv are the in trinsic pperator constructed from  the operators 
and the The z e ro -o rd e r  term  in expression  (10 .16) gives a non
vanishing contribution only if  v = -1 in case o f K¡ = K f + 1. The com m utator 
term  produces exactly the sam e type term  containing D ^ . j  and no If o r  I¿ 
dependence. This can be seen from  the relation

(10. 17)

in which we have to consider only the case o f v - 1 = - 1 .
T h ere fore , the only non-triv ia l m odification  o f the intensity rule can 

com e from  the anticom m utator in expression  (10. 16). Now, owing to the 
relations

I D X }  = I DX + DX I +1 fii/J + Ji0 p 0 + (10 .18)

fo r  V = 0

and
- 2  l
I , D . ’ fi-i

•J~2 i 42 
~2 I+D(i0 + ~Y

(10. 19)

(term s containing only D1 T tim es IQ) (fo r  X = 1)

we see that apart from  the term s containing only D¿.j (which can be in co r 
porated in the z e r o -o r d e r  term ) expressions (10 .18) and (10 .19 ) give the 
sam e contribution to the m atrix elem ent (10. 16). We can sum m arize the 
above considerations by saying that the operator o f transition  ( 1 0 . 16) is 
o f the form

V -1
( 1 0 . 2 0 )

in case o f an E l transition  (X = 1) in which K¡ = K f + l .  In expression  (10.20) 
the operators M i and M 2 act on the in trinsic degrees o f freedom . Instead 
o f expressing them in term s o f e* and as w ell as and calculating
the m atrix elem ents with the N ilsson  wave functions we shall rather treat 
the m atrix elem ents as param eters. Substituting expression  (10 .20) into 
E q .(1 0 . 16) and calculating the m atrix elem ents we obtain

= (M j + Mg Д )  < 1,1 к .  - 1 I IfKf ><Ij I M .ji I If Mf>

(10. 21)

where Mj and M2 are param eters and

д  = i f ( i f + i )  - y L  + i) ( 10 . 22 )
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The reduced transition probability follow ing from  the above m atrix 
elem ent is  (see  chapter 8 )

В (E l, I К -  I K )
Kf = V 1 (10.23)

= (M j + M g A ^ C l j l K j - l l l f K f ) 2

We see [42] that the square root o f В (E l)  should be a linear function of 
A fo r  all the transitions between the two bands *. F igure 10-1 taken from  
R ef. [42] illustrates this relation  as applied to the particular case . Sim ilar 
relations [42] can be deduced fo r  other than ДК = 1 transitions (such as 
£ K  = 2, £ K  = 0 e t c . ) .  The very  sim ple form  of Eq. (10. 23) has bee-n obtained 
in a general case owing to the calculations by M ichailov [43].

FIG . 1 0 - 1 .  I llu stra tion  o f  E q .( 1 0 .2 3 ) .

Let us now com e back to the d iscussion  o f the deviations in the rota- 
tional spectra  and try to see what can be deduced from  the knowledge of the 
m odified intensity ru les. Com parison o f E q .(1 0 .2 3 ) with experim ent enables 
us to estim ate the adm ixtures to the given rotational band. These ad
m ixtures also cause the deviations from  the 1(1 + 1) rule in the band. In 
this way various contributions to the coefficien t В from  E q .(10 . 1) can be 
calculated. Such contributions to the ground-state rotational band in the 
even nucleus' com ing from  the other low -lying bands (K = 2, К = 0, etc. ) 
have been calculated.

В = B 2 + B 0 + ------ (10 .24)

Now, it turns out that B0 and B2 contribute only to 10-20% o f the total B. 
The rem aining part o f the effect has to be explained by other reasons.
There may be at least two e ffe tts  able to explain this fact:

1) The centrifugal stretching o f the nucleus, causing the in crease  o f 
the e ffective moment o f inertia  J in the band.

2) The C oriolis-an tipa iring  (CAP) e ffect. When the nucleus rotates 
the superconducting-type corre la tion s in the nucleus are weakened so that 
the moment o f inertia  is  rather described  by Eqs (10 .4 ) and (10 .5 ) than by 
Eq. (10. 6 ).

1 si B (E l) should b e  d iv id e d  b y  the C le b s ch -G o r d a n  c o e f f i c ie n t  a p p ea rin g  in  E q .(1 0 .2 3 ) .
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V ariational-type calculations perform ed recently  [44] seem  to suggest 
that the CAP may be m ore important than centrifugal stretching in heavy 
nuclei.

11. HEAVY NUCLEI. FISSION

In this chapter we shall d iscuss the properties o f heavy nuclei lying 
beyond lead. N uclear fiss ion  is one o f the most striking phenomena 
occu rrin g  in this domain. To explain the properties of nuclear fiss ion  we 
shall have to extend our knowledge o f nuclear structure into the states o f 
very  highly distorted nuclei. Recently, very  fascinating p rogress  has been 
made which gives us m ore inform ation on the properties of fission ing nuclei.

The nuclear liqu id -drop  m odel has been used alm ost exclusively  in the 
investigation o f the low -energy  fission  phenomena. In spite o f its numerous 
su ccesses , however, this approach must be considered far from  satisfactory 
as it consists o f a very  crude sim plification  o f a nuclear p icture. F irst of 
all, the stable shape o f a liquid drop is a sphere while m ost o f the heavy 
fission ing nuclei are w ell known to be highly deform ed in their equilibrium . 
Secondly, various properties of fiss ion  such as b a rr ie r  height, spontaneous 
fiss ion  h a lf-life  and m ass asym m etry have been observed as strongly de
pendent on the fine details o f nuclear structure.

We have seen that the addition o f a sh ell-stru ctu re correction  to the 
liqu id -drop  m ass form ula (see chapter 2 ) im proves the results very  much. 
A ccord ing  to M yers and Swig.tecki [4] this approach can be also extended to 
the non-spherica l deform ation o f the nucleus. Unfortunately, in the m ore 
detailed investigations of nuclear fiss ion  we need m ore o f nuclear-structure 
inform ation than that given by a schem atic shell co rrection  in the form  
derived in R ef. [4] . In princip le, we can start from  the other extrem e point 
o f view , i . e .  we may try  to apply the s in g le -particle  m odel of the deform ed 
nuclei (c f . Lecture 3) and extrapolate its results into the region  o f the very  
large d istortions. We shall see that this method has not been su ccessfu l 
up to now, yet. N evertheless we shall present its results shortly.

The starting point is the Hamiltonian (5 .10 ) of the independent particles 
in the deform ed field  characterized  by the deform ation param eters 
€2, e4 , e 3, e 6 . . . . Now, we can solve the eigenvalue problem  fo r  a de
form ation  given, fo r  a s in g le -particle  energy. The sum of all single- ' 
particle  energies gives us the total s in g le -particle  energy as a function of 
deform ation. This quantity is  m odified (not very  significantly) by the 
existence o f pairing interactions (see chapter 5). The total nuclear energy $  
is  then obtained by adding the Coulomb energy calculated fo r  the deform ed 
shape. Such a procedure has been developed by S .G . N ilsson et al. [20,
22, 23, 45] and seem s to give excellent agreem ent with experim ent in the 
v icin ity  o f the nuclear equilibrium . However, at very  large deform ations 
the energy surface S (e2 , e4 , . . . ) shows an unnatural in crease fo r  large e2, 
so that no fiss ion  b a rr ie r  is  obtained [45] . This "d isbehaviour" o f $  is  • 
m ost probably connected with the drawbacks o f the s in g le -particle  potential
(5 .1 0 ). In particular, the 2 2 term  (com pare E q .(5.9)) that has been added 
is  suspected to cause the unphysical in crease  o f the total energy with 
e2 [45] . This can be concluded from  the fact that analogous calculations with 
a pure anisotropic h .o . potential ( i .e .  without the Î 2 term ) show proper 
behaviour (d ecrease  with e 2 very  large e2 ).
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T o obtain the prop er behaviour of the total energy surface we, there
fore , have to com e back to the idea o f calculating the sh ell-stru ctu re 
co rrection  to the liqu id -drop  m ass form ula and investigate its deform ation 
dependence. On the other hand, we want to have a rea listic  m odel without 
the sim plifications o f M yers and áwi^tecki made fo r  the sh ell-stru ctu re 
part o f the calculation. Both the above requirem ents can be fulfilled by 
the application of the method suggested by Structinsky [46]. The method 
consists o f the follow ing procedure. F irst, the total energy S '  is  ca lcu 
lated as a sum o f the s in g le -particle  energies (possib ly  including pairing 
interaction). Then another quantity é >n is  calculated in the follow ing 
m anner. We attach a definite width 7  to each s in g le -particle  level ev, that 
is , we rep lace a single d iscre te  level e„ by a continuous (say Gaussian) 
distribution

W 7 exp ( П Л )

Then we sum up all the term s (11. 1) com ing from  different e v and finally 
integrate over the variable e. The quantity é ’ "  obtained in this way has the 
meaning o f the energy averaged over an energy range 7 large enough as to 
wash out the short-range fluctuations of the s in g le-particle  leve ls . If in the 
sam e tim e 7  is sm all as com pared to the long-range fluctuations in the 
spectrum  the d ifference ■

S = < $ ' - £ "  ( 1 1 . 2 )
sh . co rr .

gives us the shell co rrection  fo r  which we w ere looking. This quantity 
is  then com pleted by the addition of the liqu id-drop energy S ¡ d (see 
chapter 2 )

<*, r = S , ‘ '+ S'. ( 1 1 - 3)tot l . d .  sh . c o r r .  '  ’

The total energy S lov may be then calculated for, every  deform ation 
point (e2, e4,;. . . ) and the energy surface is  then obtained.

The Strutinsky procedure as described  above has been applied to the 
potential (5. 10) by S .G . N ilsson et al. [47, 23] . T ypical results o f these 
calculations are illustrated in F igs 11-1 and 11-2. F igure 11-1 gives the 
shell co rrection  calculated by the procedure described  above and com pared 
with experim ent. Then rather good agreem ent o f the calculation with 
experim ent can be seen. F igure 11-2 gives the c ro ss -s e c t io n  o f the energy 
surface along the "s teepest-d escen t" patch (very  roughly with e2).

The interesting behaviour o f this curve, showing two m axim a is m ost 
probably connected with recent fascinating developm ent in fiss ion  physics 
within last few yea rs . The whole developm ent was started by the d iscovery  
made in Dubna [48] o f the isom ers  o f som e nuclei (m ostly odd-odd o r  odd-A  
nuclei) that are characterized  by a very  short h a lf-life  fo r  a spontaneous 
fission . No electrom agnetic decay o f these states to the ground state was 
observed . The existence o f these states leads to the suggestion that they 
may be bound states ô f the nucleus corresponding to the second w ell in 
the potential energy curve as shown in F ig . 11-2 . Strutinsky has first 
suggested [46] the possib ility  o f the existence o f the secondary minima in the
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FIG . 1 1 - 1 .  C o m p a r iso n  o f  c a lc u la te d  sh e ll c o r r e c t io n  w ith  e x p e r im e n ta l v a lu e s .

FIG . 1 1 - 2 .  C r o s s -s e c t io n  o f  en e rg y  surface  a lon g  

the path  o f  "s teep est d e s c e n t " .

potential energy su rface . F o r  the new developm ent in the resea rch  fo r  the 
spontaneously fission ing isom ers  see Refs [49, 50 ].

. The existence o f the second w ell in the potential energy surface leads to 
other interesting consequences that can be checked experim entally (and have 
been observed , in fact). The additional structure in the curve o f the c ro s s -  
section  versus energy fo r  fiss ion  induced by the sub-threshold neutrons is 
one o f the exam ples o f the phenomenon o f this type. Another exam ple is  
provided by the stripping-induced fission , (d, pf). The penetration function



122 SZYM AÑSKI

in this case exhibits bumps when plotted versu s energy tran sferred  to the 
nucleus. A m ore detailed d iscussion  o f these phenomena may be found in 
R efs [51, 52] .

12. SUPERHEAVY ELEMENTS

In the previous chapters we d iscussed  the properties o f deform ed nuclei. 
We have seen to what extent our knowledge o f nuclear structure perm its us 
to explain the behaviour and various features o f the nuclei. In the last 
chapter we made an attempt to extrapolate our knowledge o f the physics 
involved into the region  o f very  large d istortions such as to be able to de
scrib e  nuclear fiss ion . We have seen that the results of such an investigation 
w ere com patible with the new development in fiss ion  physics showing a 
com plicated structure o f nuclear potential energy at large distortions. In 
this chapter we shall try  to make another extrapolation into the region  of 
superheavy nuclei characterized  by proton num ber Z > 110 and neutron 
num ber N «  184.

T here is  a deep minimum in the nuclear binding energy in the region 
o f Pb (at A = 208) in excellent agreem ent with experim ent. However, there 
is  another dip at A «  300 corresponding to Z lying around 110 to 124, showing 
that nuclei in that region  may also be relatively  stable. The strong nuclear 
binding observed  from  the theoretica l curve in this region is connected with 
the properties  o f the nuclear potential.

The calculations o f Sobiczew ski et al. [53] and M eldner [54] (see  also 
R efs [4, 23] and [47] show that fo r  m ost o f the reasonable potentials used 
in the transuranic region  and extrapolated tow ards the heavier nuclei, the 
proton num ber Z = 114 and neutron num ber N = 184 appear to be m agic.
Another sem im agic number seem s to occu r  at Z = 124, so that the whole 
region  between Z = 114 and Z = 124 is  characterized  by strong binding.

To decide whether there is  any chance fo r  nuclei in the above region to 
stay stable fo r  a tim e long enough we have to answer two principal questions:

1) What is  the shape o f the potential energy b a rr ie r  against fission  
(what is  the height and width of the b a rr ier )?

2) What would be the estim ate o f the life -t im e  with respect to spontane
ous fission ? The answer to the second question depends on the answer to 
the first question and on the knowledge of the effective inertia l param eter В 
corresponding to the co llective  nuclear m otion in the fission  channel. The 
answer to the firs t question is that there exists a b a rr ie r  about. 8 MeV high, 
with a rather narrow maximum at e «  0 .2 . This answer com es from  the 
calculation made [55, 23, 47] on the basis o f the N ilsson  m odel [8 , 20] 
based on the Strutinsky method [46], as described  in the previous lecture.
The b a rr ie r  calculated is  shown in F ig . 12-1.

The answer to the second question is that the inertial param eter В 
is  o f the ord er of

В «  900 h2 M eV *1 (12 .1 )

This rough estim ate has been obtained as an average from  the theo
retica l calculations [56] o f the m icroscop ic  character based on the method 
suggested by B ohr and M ottelson [3 ]. By examining the resu lts o f this
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FIG . 1 2 - 1 .  C a lc u la t io n  o f  p o te n t ia l en e rg y  based 

on  the N ilsson  m o d e l .

calculation we can expect that the inertial param eters В are o f the ord er 
o f 4 to 11 tim es la rger  than the B irr obtained in the liqu id -drop  m odel. 
They are -  very  roughly speaking -  linear functions of deform ation and 
depend very  sensitively  on the strenght o f the pairing fo rce  acting between 
the nucleons.

Combining our knowledge o f the potential energy b a rr ie r  with the 
estim ates fo r  В one can try  to estim ate the spontaneous fiss ion  h a lf-life

1/2 from  the fam iliar WKB form ula

1/2

-l n e (1 2 .2 )

where n, the number o f b a rr ie r  assaults, can be estim ated to be

ir , 21 -110 s (12 .3 )

from  the knowledge o f the vibrational energy in heavy nuclei (ft u “ 1 MeV).
To make a very  rough estim ate let us assum e that the m ass param eter В 

entering E q .(1 2 .2 ) is deform ation-independent (which is  not the case as we 
have seen above). Let us also assum e that the variation  o f В with the m ass 
number A is  roughly given by the relation

(12.4)
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F IG . 1 2 - 2 .  C a lc u la t io n  o f  versus V b / A 5^3 .

B/A ( fi M eV

In this case it follow s from  E q .(1 2 .2 ) that the In o f h a lf-life  Ty2 
linear function o f the square root o f В divided by the square root o f A' 
various nuclei:

is  a 
5 /3 for

In Tj/2 = const, 5 /3 (12 .5 )

where the proportionality constant depends on the height and width o f the 
fiss ion  b a rr ie r  o f the individual nuclei. The results o f such a calculation 
are shown [55] in F ig . 12-2 . The result is  rem arkable: nuclei with Z = 114 
and N 'lying in the vicinity  o f 184 have a very  large ha lf-life  with respect to 
spontaneous fission . Further calculations with the inclusion o f the linear 
dependence o f В on deform ation [23] show that in the region  of nuclei in 
the transuranic region, where r1/l2 is known experim entally, we may fail in 
the estim ate o f тг/2 by 4 to 6 o rd ers  of magnitude. N evertheless, even 
with such an e r r o r  included we can still claim  that the Z = 114 and N = 184 
nuclei have t j / 2 g reater than the age o f the earth ( 109 y e a rs )1.

Of cou rse , the other decay m odes may change our conclusion. F irst of 
all, the requirem ent o f beta stability lim its the number o f stable nuclides 
to few isotopes fo r  each elem ent only. Secondly, the nuclei in this region 
are m ost probably all instable against alpha decay. Alpha and beta stability 
combined with spontaneous fiss ion  has been discussed by Nilsson, Thom pson 
and Tsang [57] . The conclusion o f this d iscussion  is best sum m arized in 
F ig . 12-3 (taken from  R ef. [57], showing the lines of constant with 
respect to spontaneous fission  (solid  lines) and alpha decay (broken lines)
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F IG . 1 2 - 3 .  L ines w ith  a con stan t r  

w ith  re s p e ct  to  fission  and o c -d e c a y .

N
178 180 182 184 186 188

sim ultaneously. The squares corresponding to b e ta -stable nuclei are 
shaded. One can see from  this figure that only one nuclide seem s to exist 
that should be relatively  stable with respect to all the decay m odes. This 
is the Z = 11 0 and the N = 184 nucleus which should be called ekaplatinum 
accord ing to its location  in the M endeleyev table. Its h a lf-life  is still 
com parable with the age o f the earth so that it could be, in princip le, looked 
fo r  in the earth (possib ly  in the platinum o re s ). The experim ents [58] 
started fo r  this purpose have not yet brought positive resu lts.

The double-m agic nucleus 2981 14 o r  any other neighbouring nuclei 
should not be detectable in the earth accord ing to the estim ates o f Ref. [57 ] . 
This seem s to be in line with the negative results o f the experim ents made 
recently  by F le ro v 's  group in Dubna [59] . However, there are good 
chances that they may be produced artific ia lly  in the future with the help of 
heavy ions in heavy-ion  a cce lera tors .

P ossib ly , superheavy nuclei may also be observed  in cosm ic  rays [60] . 
A ll nuclei with Z > 83 have been m ost probably produced in the r -p ro ce s s  
o f neutron capture (fo r  the description  o f this p rocess  see R ef. [61] com m only 
quoted as B2FH) occu rrin g  probably in som e exploding stars such as super
novae o r  quasars. Recently, very  heavy nuclei have been detected in cosm ic 
rays [62, 63] . P articles  with Z > 104 or even heavier [63] seem  to be seen.
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Abstract

FU N D A M EN TA LS AN D  ELEM ENTARY OUTLIN E OF THE M A N Y -B O D Y  THEORY OF NUCLEAR M A T T E R .
1 . In trod u ction ; 2 . N u c le a r  m a tter ; 3 . F erm i gas ; 4 . P erturbation  th eory ; 5 . S e co n d  q u a n tiza tio n ;

6 . C a lc u la t io n  o f  ДЕ w ith  th e  h e lp  o f  W ick ’ s th e o re m ; 7 . D ia g ra m s; 8 .  L in k e d -c lu s te r  th e o re m ;
9 . M o m e n tu m  rep resen ta tion . T im e  in te g ra tio n ; 1 0 . L ow -d en s ity  a p p ro x im a tio n ; 1 1 . H o le  s e l f -e n e r g ie s ;
1 2 . S o lu tio n  o f  th e  К -m a tr ix  e q u a tio n ; 1 3 . T h e  B ru e ck n e r -G a m m e l c a lc u la t io n ;  1 4 . T h e Q = l  
a p p ro x im a tio n ; 1 5 . C o n v e rg e n c e  o f  th e  th eory ; 1 6 . B e th e 's  trea tm en t o f  th e  th r e e -b o d y  e n erg y ;
1 7 . R e v ie w  o f  n u c le a r -m a tte r  c a lc u la t io n s .

1. INTRODUCTION

One o f the main problem s o f nuclear theory is to deduce the properties 
o f atom ic nuclei starting from  the description  o f the nucleus as a system  of 
A interacting nucleons. In such a form ulation o f  the problem  we tacitly 
assum e that we may elim inate from  the description  of the nucleus the 
m eson ic field  whose only effect is  the inter-nucleon  interaction . F urther
m ore , we shall assum e that the interaction V between the nucleons inside 
o f the nucleus is the sum o f tw o-body interactions v¿j :

where v¡j is the same as the interaction between two free  o r  isolated 
nucleons, i .e . two nucleons outside the nucleus.

Now, the average distance between nucleons in nuclei is  o f the same 
ord er  o f magnitude (~ 2fm) as the range o f Vij , and it would not be easy 
to justify our assum ptions a p r io r i. N evertheless,w e shall accept these 
assum ptions fo r  reasons o f s im plicity . By com paring the consequences 
o f these assum ptions with the observed  properties o f nuclei we shall try 
to justify the assum ptions a p oste r io r i.

The knowledge of the nucleon-nucleon  interaction v¡j is .o f  fundamental 
im portance in the problem  stated. As can be seen from  B r in k 's  paper [1] 
in these P roceed ings, v¡j is a com plicated  interaction: it depends on spin, 
parity, angular m om entum , possib ly  on velocity , and is strongly repulsive 
at sm all.in ter-nucleon  distances. In spite o f the trem endeous efforts of 
so many*'physicists, our knowledge o f v^ is not com plete. We then face 
the firs t  seriou s difficulty o f not knowing exactly the input data of our 
prob lem . In this situation the calculation o f nuclear properties should 
shed som e light on the proper form  o f v¡j . And it rea lly  does, though the 
conclusions concerning v¡¡ are not easy to achieve, because the way from  
Vy to nuclear properties is not a sim ple one-.

(1.1)
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To rea lize  the d ifficu lties encountered in solving the nuclear m any- 
body problem , let us mention that a co rre c t  theory should explain two 
seem ingly contradictory features o f nuclei:

i) the shell structure, which indicates that, approxim ately, nucleons 
behave like independent particles in nuclei;

ii) strong nucleon-nucleon corre la tion s, as exhibited by the high- 
energy nuclear photoeffect, 7r-meson absorption and other experim ents 
indicating the presence o f high-m om entum  nucleons in nuclei [2 ].

2. NUCLEAR M ATTER

In face o f the d ifficu lties posed by the nuclear m any-body problem  we 
shall firs t try to solve a sim plified  problem , i .e . the problem  of nuclear 
m atter. F rom  Szym anski1 s paper [3] we learn that atom ic nuclei have 
a w ell-defined  surface, and that their volum e is proportional to the number 
o f nucleons, A . We may picture the nucleus as a drop o f practically  
in com pressib le  nuclear m atter, which does riot appear in an infinite 
size  only because o f the Coulomb repulsion between the protons. We then 
define the hypothetical configuration o f nucleons called nuclear m atter by 
the follow ing operations:

1) Switching o ff the Coulomb forces ,
2) Switching o ff the surface e ffects,
3) Increasing the number o f nucleons infinitely:

A -  аз

We believe that the central part o f sufficiently large nuclei is a good 
approxim ation o f nuclear m atter. This enables us to determ ine ex p eri
mentally the param eters o f nuclear m atter [3]:

Equilibrium  density:

p = —̂  (where the denominator is the volum e per nucleon): fm .

r ro
Volum e energy: evol = [15-16] MeV.

Sym m etry energy: esym= [50-60] MeV.

The two energies produce together the energy o f nuclear m atter E

i 2 
E  / A  -  -  e v o i  +  2 e sym  a

where the neutron excess  param eter a=  (N - Z ) /A . F or the main part o f 
our considerations we shall assum e the number o f neutrons N equal to the 
number o f protons Z . Usually, by nuclear m atter one understands a 
system  with N = Z = A /  2.

C om pressib ility : 1^= r 2 (d 2/d r 2 ) /(E /A ) = 70 - 300 MeV,

m easured at equilibrium  density.
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The main problem  o f the theory o f nuclear m atter is the calculation 
o f the param eters r 0 , evol , , Kq only on the basis  o f our knowledge
o f  the nuclear fo rce  vij . The general procedure is to compute E /A  for 
severa l values o f r 0 . In this way one obtains a curve as shown in F ig .l .  
The value o f  r 0, fo r  which the curve has a minimum, determ ines the 
equilibrium  density, and the value o f  E /A  at this point is  equal to - e Vol • 
The curvature at the minimum determ ines K0 . If one wants to calculate 
esym, one has to repeat the whole procedure fo r  values a f  0 .

E / A

F IG . 1 .  E /A  versus r0 .

_ e vol

M ost im portant fo r  the developm ent of the theory o f nuclear m atter 
has been the work o f K .A . B rueckner, supplemented subsequently by the 
work o f other physicists, notably by J. Goldstone, N.M. Hugenholtz, and 
H .A .B ethe. This approach to the theory o f nuclear m atter, often called  
the B rueckner theory, w ill be the subject o f  these lectures.

The subject has been treated in severa l review  artic les  and books 
(see , in particular, R efs [4 -10]) among which the excellent review  by 
B ell and Squires [5], the c lea r  exposition by Day [8 ] and the review  of 
the latest developm ents by Rajaram an and Bethe [9] are highly 
recom m  en dable.

3. FERMI GAS

The starting point fo r  our theory is  the system  o f non-interacting 
nucleons, i .e . the F erm i gas. The best way o f treating an infinite system  
is  to put the A nucleons into a cubic box o f volum e Г2. Eventually, we go 
to the lim it A -*■«>, keeping the density p = A/Q= const. It is assum ed
that fo r  sufficiently large fi the p rec ise  boundary conditions are unimportant, 
and we im pose the m ost convenient period icity  conditions. The perm itted 
states o f the i-th  nucleon (i = 1, ..., A) are then plane waves

‘p£(q i ) = ¿ - eÍ?'n x 5 (^ )?t(T 1) = <P? ( ? ) x sK ) 5 t (Ti ) (3.1)

with momentum vectors

P = ( P X. Py. Pz ) =-ñI73(nx< V  nz } (3.2)
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where nx , Пу, nz are positive o r  negative in tegers. We apply the notation

p = p ,  s, t, q ^ r j . t T j .T j  (3.3)

where s, t are the third components o f spin and isotop ic spin o f the nucleon, 
and ffi , T¡ are the corresponding co -ord in ates.

Since in the region  ДрхДруД2 there are ДпхДпуДп2 = (Г2/27г)3ДрхДруДр2 
plane-w ave states (without counting the spin and isotop ic spin states), for 
su fficiently large Í2 we make the replacem ent .

P

The wave function Ф o f the whole system  is a determinant constructed 
from  the single-nucleon  wave functions (3 .1). In the ground state Ф0 all 
states with m om enta (in units o f f ! )  |p| s k f (kF is the F erm i momentum) 
are occupied , each with four nucleons (s = ±|, t = ±|).

F rom  now on we shall denote by m m om enta for  which | m | SkF, by 
Í  mom enta for which | к | > kF , and by p any momenta (p £ к p).

A sim ple relation  holds between k F and p:

!I  = 4I  = 4(áV/tó=4^ ^ k
Í2 47Г , 3 

( 2 jr } 3  ! T k F

_  m

and we get

.  (ЪТТ 2рЧ /3 М 1/3 ' I - ,  en ‘ I ,0=4
kF = l  2 J =Ы  r o - 1-5 2 r o <3 ' 5>

The ground-state energy, E 0, is  the sum o f the single-nucleon  kinetic 
energies

^ , V  m2 _ . О. Р , -  m2 . 1 П . k|
E° ¿ 2uf (2ip  J  2иГ 2M (2Ï )3 v 5

Ш

and with the help o f relation  (3.5) we obtain

~  ,л - 3  ,, s _3  1 f Зтг2^ 3 2 /3  R
o /A 5 e (kF) 5 2ж \ 2 )  P  ̂ ^

w here we have used the general notation

е(р) = р2/2 ^ Г  (3.7)

fo r  the kinetic energy o f the p state.
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In all our form ulas we denote by Л  the m ass o f the nucleon divided 
by fi2 , i .e . Л  = 0.0241 M eV ' 1 frn 2 .

Let us a lso  w rite the expressions for-the com pressib ility  o f our 
F erm i gas

18
K0 : -e(kF) (3.8)

With rQ =1.12 fm we find

kF = 1.35 fm. (3.9)

e (kp) = 38 MeV 

E 0/A= 23 MeV

(3.10)

(3.11)

K0 = 138 MeV (3.12)

Since the experim ental value o f E /A =  - e voi is about -16 MeV, we 
expect the contribution o f the potential energy to E /A  to be about -40  MeV. 
We see that the net value of E /A  is a d ifferen ce .o f á b ig  kinetic part,
E o/A , and a b ig  potential part. To obtain then evoi with an accuracy  o f 
1 MeV we have to calculate the potential part with an accuracy  o f about 2-3% .

4. PERTURBATION THEORY

Let us denote by H the total Hamiltonian, by Ë the ground-state energy, 
and by Фо the ground-state wave function o f a system  o f A nucleons. We 
have to solve the Schroedinger equation

(H -E )*0 = O (4.1)

Now

H= H „+ V

where H0 is  the kinetic energy o f the system , and V is the interaction b e 
tween the nucleons given in E q .( l . l ) .  F rom  chapter 3 we know the solution
o f  the ground-state problem  for H0 :

(Н „ -Е 0)Ф0=О (4.2)

From  Eq.(4.1) we obtain

<Ф0|Н-Е |*0> = 0

o r , by applying Eq.(4.2)

< * o l H o +  v - E l V  = < $ o l E o + v - E K >  = .

= (E0 - E) <Ф0| % >+ <£>o| VI % y=Q
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and thus we get

<® „M V
ДЕ = Е - Е 0 =------------------  (4.3)

<®JV
To make the form ula for  ДЕ practica lly  useful we must work out a method 
o f calculating \i0. The method we are going to apply is  the perturbation 
expansion. We shall sim ply assum e that the perturbation expansion for 
ДЕ is converging to the true value, although the problem  o f the applicability 
o f the perturbation is not sim ple (see, e .g . R efs [11 -13]).

Although we have a stationary problem  the easiest way (but by no means 
the only one) o f obtaining the proper form  o f the perturbation expansion is 
to apply the tim e-dependent approach, as has been shown by Goldstone [14]. 
(The essentia l ideas for  the approach are due to Salam [15]). The basic  
idea in the tim e-dependent approach is to start o ff with a non-interacting 
system  in the ground state Ф0 at, say, t = - <*, switch on the interaction 
slow ly and sm oothly (adiabatically) and wait till, say t = 0, when the 
interaction  reaches its full strength, and when ф0 evolves' into the ground 
state o f the interacting system , Ф0 . ' The details o f the sw itching-on are 
not im portant, and to be sp ec ific , we shall switch on very  slow ly, i .e . we 
rep lace  the orig inal tim e-independent V by

V - V a =V eHt| a ^ +0 (4.4)

We then solve the tim e-dependent Schroedinger equation (in the 
follow ing considerations we put.I1! = 1 )

[ H o + V j ^ t ^ i l ^ t )  . (4.5)

with the in itial condition

< ( - * ) = * „  (4 -6)

and expect that the ground-state wave function o f interacting system , Ф0, 
is

\t0 = lim  * “ (0) (4.7)
a -*• 0

Goldstone [14] proves the correctn ess  o f this procedure in the sense 
that Ф0 given by Eq.(4.7) sa tisfies the Schroedinger equation (4.1) with E 
given by E q.(4 .3 ). That these Ф0 and É correspond  to the rea l ground 
state, w ill sim ply be assum ed here.

M ost convenient fo r  solving the Schroedinger equation (4.5) is  the 
interaction  representation  which involves the follow ing substitutions:

« “(t) = eiH» 4 “(t) • (4.8)

Va (t)= eiH° V ae 'iHot (4.9)
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which change Eq.(4.5) to

Í |t ^ ) ^ а ( ‘ ) ^ ( ‘ ) (4Л °)

The in itial condition is  assum ed in the form

* “ ( - * )  = 4>0 (4; 11)

which d iffers from  E q.(4.6) only by an irrelevant phase fa ctor .
By integrating E q .(4 .10 ) we obtain

t
¿ 0(t) = ®0 - i j " d t 'V a ( t ' ) í 0a(t ')  (4.12)

_ «о

л а  а
We solve this equation by iteration, and get ^ o (t= 0) = ^o(O)» Taking 

the lim it Q'-'-O, we obtain fo r  Ф0, E q.(4 .7), the follow ing result:

Ф0= и ®0 (4.13)

where

U= lim  £  ( - i f j  dtnJ d t n_1 . . . J d t 1Va (tn) . . .  Va (ti) (4.14)
n =  0  '

Instead o f Va (t) we shall use in the future V(t)

V(t) = elH||t Ve"lH,t (4.15)

The fa ctors  eat and the sym bol lim  shall be not indicated explicitlya-*-o
in E q.(4 .14). F rom  now on we shall write sim ply

со 0 2̂u= X И)П I dtn-/dt 1̂п) -  V (ti) (4.16)
n=0 -■»

and we shall understand that each time integration must be perform ed  with 
the "sw itching on" o f the factor exp at and that in the end the lim it a -*• 0 must 
be taken.

Let us introduce the Dyson ch ron olog ica l-ord erin g  operator P, defined 
with resp ect to any operators r¿¡(t¡) by

P t O ^ )  ... i\ ( tk)] = « pi(tpi) ... n „k( t h ) (4.17)
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With the help o f P we may put Eq.(4.16) in the m ore convenient form

n 0 0

U= X  ^  / d 4 - / dtQ P[V (tl)...V (^ )] (4.18)
n =0 " 00 -  00

This equation, together with E q.(4 .3), which may be written

ДЕ = <Ф0 1у и|ф0> / <Ф0|и |Фо> (4.19)

form  the basis  o f our perturbation theory.

5. SE COND QUANTI ZA TION

Undoubtedly, we could calculate ДЕ, E q.(IV .19), with the Ф-functions 
in the form  o f Slater determ inants. H owever, it is easy to im agine how 
com plicated it would be to deal with Slater determinants in computing 
h igh -ord er term s. It is  much sim pler to introduce the occupation-num ber 
representation and the creation  and annihilation operators, explained in 
the paper by Frahn [16] in these P roceed ings. (A very  neat presentation 
o f the second-quantization form alism  may be found in R ef.[17].)

A Ф-state o f non-interacting nucleons w ill be specified  by a set o f 
occupation num bers N^ , where N£ = 1 if the single nucleon state p is 
occupied , i .e . it is present in Ф, and = 0 otherw ise. F or instance, the 
ground state Ф0 w ill be specified  by Nm = 1 and Nk = 0;

V  I 1 ' x > -  №кр= 1* ° ' 0 ’ •••>4_______  - F ■  ̂ _ )y ^

p == kF p>kf

The annihilation operator a^ when acting on a state Ф with N£ = 1 
produces a state with N¿ = 0 (with a proper sign), i .e . a£ annihilates the 
nucleon in the p state. When Np= 0 in the Ф state, then a£ Ф= 0. The action 
o f the creation operator aj> is the opposite one: it creates a nucleon in 
the p state. Important for us are the anticommutation relations:

a|>1 ~ ' Í -
(5.1)

[a£ , a£#] = [a ¿ , a¿(] = 0 

and the expression  fo r  V in the occupation-num ber representation

v = è (5-2>

b £ i

where
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With the help o f the fie ld  operators

<P(q ) =X a£^£ (q); #,t(q )=X a^ '4 ‘ (q) (5.4)
£

we may rew rite  Eq.(5.2) as

У - i f  dq1dq2f ( q 1) p \ q 2)v(q1q2)p (q2)p (q 1) (5.5)

In the interaction representation we have

V(t) = i Y f P ^ J v l p ^ J a ^  (t)â f (t)â^ (t)â^(t) (5.6)
1 1 2 4 32

where

- /4Л - iH«t "íh»1 -a£( t ) - e  а£е - e  а£ (5.7)

“ (PH t 
а р(Ч -  e  a p

w here, e .g . the validity o f the fir s t  equation becom es obvious if we let it 
act on a state with Np = 1. The anticom mutation relations take the form

[âp(t), âp.( t ') ]  = 6pp.ei£® (t" t' ) (5.8)

with other anticom m utators vanishing. 
S im ilarly , we may write

V(t) -  I  / dq1 / dq2pT(qt)pt(q ,t)v(qq ,)jp(q't)(p(qt) (5.9)

where

f(qt) <pp(q)âp(t); pf(qt) =Ŷ  <?p(q)âp(t) (5.io)
£ £

W hile in the ground state Ф0 there is a large number A o f nucleons, 
in the im portant excited  states there are only a few nucleons excited  from  
their states in the F erm i, sea to states above the F erm i lev e l. It is  then 
s im p ler to keep track o f the excited  nucleons only, and to consider Ф0 
as the vacuum in fie ld  theory. F or  this reason  we introduce the b operators 
defined by

r ak > ~ a m

kk “ at > ^m -  ащ (5 .1 1)

We interpret Ьщ as creation  operator o f a hole in the m state o f the 
F erm i sea, and bm as annihilation operator o f the hole. M ost important 
for us is  the relation

b P h > = o (5.12)
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The anticom mutation relations o f the b 1 s are the sam e as those o f the 
a 1 s . The only change o ccu rs  in the interaction representation where for 
p S kF we have instead o f Eq.(5.7)

Ьш(Ч = ek(" %  

b ^ t )  = ei£(mV m
(5.13)

and instead o f Eq.(5.9)

b JE, ( f ) ]  = ô!üai.e'l£Wlt- t‘ ) (5.14)

F or  the field  operator <p we have now the expression

(5.15)

6 . CALCULATION OF ДЕ WITH THE HELP OF WICK’ S THEOREM

With the help o f E q.(5 .9) we may rew rite  Eq.(4.19) fo r  ДЕ in the 
form

where

where

Nn

ДЕ = N /D  (6.1)

7 i N" ; D - Z - i T i D" (6 -2>
n = 0 n =0

„ 4 )  <*ol f  « ! . . .  dtn T [V (0)V (t l ) ... V (t„)] I Фо> (6.3)

° п = ( г ) П<Ф°1 /  d t i -  dtn T [V (t l ) ... V (tn)] |ф0> (6.4)

To sim plify  the considerations o f this chapter we have rep laced  the 
Dyson ch ron olog ica l operator P in Eq.(4.18) by the W ick chronologica l 
operator T which is  defined by the follow ing equation (com pare with 
E q.(4 .16)):

T tO iiti) ... n^tfc)] = 6PnPi(tPi) -  i\,k(tpk) (6.5)



IAEA-SMR 6/12 141

The Í2¡ operators are supposed to be constructed with the help o f the 
operators b o f  chapter 5. To convert Í2X... Œk into f2Pi ... Í2pk we have 
to make Zp interchanges b b 1 ->b'b, and we define 6p as

+ 1 for  even Zp

- 1 fo r  odd Zp
(6 .6)

Since the V operators are sums o f term s each o f which contains four 
b op era tors , E q.(5 .6), we always have 6P =+1 in the T operator in Eqs (6.3), 
(6 .4 ). Hence,in this ca se ,T  = P.

If we express the V(t¡) operators in Eqs (6.3) (6.4) by means o f the 
¿ W i ) ,  ¿ (q ^ i)  op era tors , Eq.(5.9) we get

Nn dt-. ... dtn dq0dq '0 ... dqndq'n iv (q 0q'0) 2i v (q iq ,1)

2i (̂qnqn)]<$0lT {  ¿ V 0o) (̂q0°) (̂q0°)

x  r t(q it 1)(Pt (q,i ti ) ^ q,it i ) ^ ci i ti ) - "  pt (q ntn )^ t(q ntn )x

x  riq'ntn) ^ (qnt „ ) }  I «o> (6.7)

D n = / d t ^ .d t , ,  d4 l ...dq ' 2TV(q i q '3 2T v (q nq n)

x < ^ o lT { A q 1t1 ) . . . f ( q ntn) ]  1ф0> (6 .8)

We are faced  here with the difficulty o f T acting on the product of
both taken at the sam e tim e. Since [jpt 0 the action

o f  T is not defined. To avoid this difficulty we rep lace everyw here

(6.9)

This m akes the operation o f T unambiguous. Eventually, we take the 
lim it e -*+0. We shall keep this procedure in mind but, in general, 
shall not indicate it in our form ulas.

To compute the expectation values appearing in Eqs (6.7), (6 .8) we 
shall use W ick 1 s theorem . To state this theorem  we have to introduce 
the idea o f a norm al product and o f  a contraction.
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The norm al product o f the operators bp, bp, is a product o f these 
op era tors  in which all the creation  operators b^f appear on the left side 
o f all the annihilation operators bjj. By N we denote the operator which 
changes any product o f the b 1 s and b^' s into a norm al product, with a 
proper sign . We have

N { . . . b p . . .b p '. . . }  = 6p { ...bp- . . . b p . . . }  (6.10)

w here 6p is  defined as b e fore  in E q .(6 .6).
The N operators obey the distribution law, and we have, e .g .

N ^ q t l f V t ' ) } ' ^  X Vm(q)ÈI (t)
m

+ £ [ X ^  }
к m‘

+ I  )]}= £  I  ) í  (f
ni m*

+ I I  vm( q ) ^ ( q ' ) b l ( t ) b j ( f )
m  kf

■II
к m f

k m 1

- H i (q- )<Pk (q )b kr,(t* ) b k (t)

к1 к

Let us notice that Eq.(5.12) im plies that

<Ф0 I N { p (qt) jpT (q 't ' ) }  I Ф0> = 0

(6 .1 1 )

(6 .12)

Sim ilarly , the expectation values o f the products o f the ¡p and 
op era tors  appearing in Eqs (6.7), (6 .8) would vanish if  the products w ere ' 
put into a form  o f a norm al product. It is then essentia l to know the 
d ifferen ce  between a tim e-ord ered  and norm al product. F or two operators 
ÍÍ!, ÎÎ2 we caU this d ifference the contraction o f Q1; £22 and denote it by

2

= T ^ i i j )  - N ( ^ ^ 2) (6.13)

M ost im portant fo r  us is  the contraction between p and tp'' which we 
shall denote by G and ca ll the propagator o f Green function. With the
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help o í Eq.(6.11) we easily  obtain

G(qt, q 1 t' ) = <®0|T{p(qt) f f (q 't ' )} | ®q> = jp(qt) jpT( q 't '  )

-HI -  <\ n *  -ie(k) (t - 1*)
= - #>T(q' t' ) spiqt)= ö(t- f  )¿_¡ <pk(q)<pk(q' )e

к

- 0 ( t ' - t ) V ^  ( q ) /  (Ч- ) е '1£(т)(1' Г,) (6.14)
/  i m  m  
m

It is  a lso  easy to see that

fptf) = f  jp = 0 (6.15)

In ca ses , like that o f  E q.(6.14), when the contractions are c-num bers 
(i.e . the £2' s are linear in the b 1 s), let us define a norm al product with 
contraction

N { « ^ 2 .. . £2¡ .. . Q £. . .Q n.. .Q r} = ... N {n x . . . £2r} (6.16)

where 6p is again defined by E q .(6 .6) with Zp being the num ber o f  in ter
changes n ecessary  to go from  the left-hand side ord er  o f  the operators , 
£21£22 ...£ 2t t0 'the right-hand side ord er , £22£22 ...£2t .

Now, we are ready to state W ick 1 s theorem  fo r  the operators £2i=£21(ti ) 
which are linear in the b 1 s and b^1 s

= N {íí1. . .n n} + N {ÍV 22 . . . í 2n} + 

+ . . .+  N{í21f22, , , £2¡. . .  £2n } + ...+Ж£2^£22. . Д  . . . ^ n} +  ..(6 .1 7 )

On the right-hand side o f W ick 1 s theorem  we have fir s t  the norm al 
product and then the sum extends over the norm al products with all 
possib le  contractions o f the £2' s .

F or  n = 2 the theorem  reduces to the definition o f contraction,
E q .(6 .13). F or  n > 2  one proves W ick 's  theorem  by induction (see, 
e .g . [18]).

We are now in a position to calculate the perturbation expansion o f 
ДЕ, term  after term . Nam ely, to compute the expectation values in 
Eqs (6.7), (6 .8 ), we,apply W ick 1 s theorem . We notice that only those 
norm al products appearing in the theorem  give non-vànishing contribution, 
in which all the p 's  and ^ ' s  operators are contracted . This is so 
because the expectation value with resp ect to Ф0 o f a norm al product o f 
the <j>'s and s vanishes (see E q .(6 .12). Even m ore : because o f
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E q .(6 .15),only those among the fully contracted term s contribute in which 
each f  is contracted with a fit . Hence Nn and Dn are sim ply sums of 
products o f the G propagators, E q.(6.14).

7. DIAGRAMS

Diagram s are an essential tool in analysing the perturbation se r ie s . 
To understand the present state o f the theory o f nuclear m atter we have 
to spend som e time, on explaining the diagram m atic language in which 
physicists working on nuclear m atter com m unicate nowadays.

L et us firs t  compute the firs t  term s o f  the perturbation expansion 
o f ДЕ, E q s .(6 .1 -2 , 7 -8 ).

F irst o rd er (n = 0)

Equation (6 .8) gives

(7.1)

and Eq.(6.7) gives

where

I(q 0q'0) -  ? v (q oq'0)< $ 0| T { p t (qo0 )p t (q io0)p(q 'o0)jp(qo0)} | $0> (7.3)

By applying W ick ’ s theorem  we get

f I С-----------L L
4 % 4 'Q) = i v ( q QqJi ) | < ® 0 | N { ^ t { q 00 ) ¿ T( q ’0°) ÍpW$) к<100)}\ф̂ >

+ < ф 0 | Ш ^ ( Ч 0 °) íP^q'o 0 ) f ( q 'o ° )  f ( q 0° ) } I фо > }

= | v (q 0q-0) {G (q 00, q / j G ^ O ,  q ' /  ) - G(q'„0. qoOT)G (q 0O. q - / ) }

(7.3a)

w here the 0  ̂ values o f the tim e variable rem ind us of the procedure
(6.9).

Second order (n = 1)

Here we get
о

(7.4)
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where

I(qi>qi.t i) = 2i v (q i q 'i){G (q i t i ' q i tîi )G(q iti ' q 'i tit ) - G(q,i ti.q i tTi )G (q i ti ' q i t 'i)}

and

Ni = f dti f  dqo/ dq,o f  d̂ f  i(q0qo;qi qi t i)

(7.5)

(7.6)

where

I(q0qV qi q,iti) = ' ( q oq P < $ 0|T{pt(q oO) ,pt(q'oO)

X p(q¡,0) #>(qQ0) ¡ р % Д )  (p T fq ^ ) ^(ql1t 1) jp(qi t1 )} | *0>- (7.7)

The W ick 's  theorem  applied to the last expectation values produces 
41 = 24 term s resulting from  all possib le  contractions between the four 
qA' s and the four <p's. Thus we have

! в д ;  q 1q'1t 1)= £  (7.8)
a  = l

Let us compute one o f the 24 term s, e .g . the term

ia 0 (qq'0; q ^ W "  ^ v (q 0q ö) 2i v ( q ^ i )

x  < ф 0 l N i  ^ T ( q 0 ° )  ¿ ’ V o 0 ) ^ ( q ’o 0 ) ¿ ( q o 0 ) i , t ( q 1 t i ) <p t ( q i t i ) ^ q i t i ) ^ q i t i ) H V

=+ èv(q 0q '0) è v(qiql> G(q „O q^ G fq^ O JG iq^ O qJt^ G iqJ  t^ q'oO)

(7.9)

In a s im ilar  fashion we m ay compute a ll the rem aining 23 term s.
This kind o f p rocedure, how ever, becom es unpleasant. E specia lly  for 
higher n values it is d ifficu lt to keep control o f all o f the (2n + 2)'. term s 
o f  Nn as w ell as o f the (2n) i term s o f Dn. Fortunately, we are able to 
associa te  with a ll term s o f the perturbation expansion proper pictures 
ca lled  diagram s which shall help us considerably in writing a ll the con tri
butions to Д Е. A t the sam e tim e, they w ill give us a better insight into 
the physical meaning o f different term s o f the perturbation expansion.
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Let us start with No. We draw the t-a x is  going upwards and a 
horizontal axis fo r  the q variab les . With the firs t  (direct) term  o f 
Eq.(7,5) we associa te  the diagram  shown in F ig .2a , with the second 
(exchange) term  the diagram  in F ig .2b . The way o f associating the 
parts o f the diagram  with the factors o f I(q 0qJ,) is  indicated in F ig .2. 
The right sign o f the d irect and exchange part o f I(q0q'0) is  obtained by 
associa tin g  a minus sign, (-1 ), with each closed  loop . To get N 0 we 
have to integrate over q 0 and q '0.

( a )  N0(d ir e c t )  (b) N0 (e xch a n g e )

F IG .2 .  (a ) D ia g ra m  a sso c ia te d  w ith  th e  first (d ir e c t )  te rm  o f  E q . (7 .5 ) ;  (b )  d ia gra m  a sso c ia te d  w ith  the
se c o n d  (e x c h a n g e )  te rm  o f  E q .( 7 . 5 ) .

( a )  D] (d ir e c t )  ( b ) D ,(e x c h a n g e )

F IG .3 .  D ia g ra m s a sso c ia te d  w ith  Dr ( E q . ( 7 .5 ) ) .

The two diagram s associa ted  with D i, E q.(7 .5), are shown in 
F ig .3 a -b . N otice the (1 /i)  factor m ultiplying v . To the D i we have to 
integrate over q 1( q j 1 and over tj. from  - to 0 .

One o f the 24 contributions to N i, the contribution a0 , E q .(7 .9 ),is  
described  by the diagram  shown in F ig .4. To get [Nil a0 we have to 
integrate ov er  q ^ V l ^ ' i  a.nd tx from  - » t o  0 .

F rom  now we shall not draw the horizontal q -a x is . If n ecessary  
we shall indicate the q -co -o rd in a te  at the ends o f the dotted interaction 
lines (see F ig .5). Eventually, we. shall not draw the time axis either, 
keeping in m ind our convention o f the tim e increasing upwards.
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[Nll(ï„

F IG .4 .  D ia g ra m  d e p ic t in g  th e  co n tr ib u t io n  a  Q (E q . (7  . Э>. F IG .5 . A n  a -d ia g r a m  w ith ou t q -a x is  draw n.

By now it should becom e obvious how to use the diagram s in com 
puting N n and Dn. Nam ely in computing Nn we proceed  as fo llow s:

We draw n+1 horizontal broken interaction lines and join  the ends 
o f these interaction lines by d irected  solid  lines such that one line enters 
and one line leaves each o f every  interaction line (F ig .5). T here are 
(2n+2)'. ways o f doing it and thus we get (2n+2)l diagram s. Each 
diagram  a (e = 1, (2n+2)l) represents a contribution to N-n:

(N
и и

n J H= / d t l  —  /  dtn f  d40...fdq'ala(qQq,0i414'1tli...qnq'nt¡)

and
(2 n + 2 )!

Nn = X (Nn )«
a  = l

(7.10)

(7.11)

The integrand IH is  a product o f the factors associa ted  with a ll the 
elem ents o f the a diagram  in the way shown in Table I.

In computing Ц, we follow  the sam e procedure except fo r  the t= 0
interaction line q0_______  q '0 which does not o ccu r  in the D diagram s.
Consequently, there are (2nyi diagram s contributing to Dn.

In F ig . 6 all the 24NX diagram s are shown.
A ctually the num ber o f  diagram s which m ust be considered  in ca lcu 

lating ДЕ substantially reduced because o f the lin ked -clu ster theorem  and 
a lso  because o f  momentum conservation .

8 . LINKED-CLUSTER THEOREM

We ca ll the firs t  four diagram s in F ig . 6 disconnected (unlinked) b e 
cause they are  com posed  o f two disconnected (unlinked) parts. If all 
elem ents o f a diagram  are connected (by a nucleon line <•—►-/ o r  by an 
interaction  l in e ----------- — ) we ca ll it a connected diagram . A ll the r e 
m aining 20 diagram s in F ig . 6 are  connected.
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TABLE I. RELATIONSHIP OF DIAGRAM ELEMENTS AND FACTORS IN I„

E lem ents o f  a d ia gra m F a cto r  in  I
a

M  ^

q i  q 'i
(w ith  th e  i  m issin g  fo r  th e  t = 0 in te r a c t io n

l in e  (£  = 0 ))

у ч Т

/■ ------------- <--------
G (q t ,  qtfy

q t

О

( - 1 )

- О r r - i T p  0 — 0  Ф

■ 0 - ~ i 0уя, ч;'- 
1(a) 2  (ß )

O - v - O
3

13

^ : ; oо

— о  о — ^  о  о —

u

17
- — o

18

15

o - я  A --0

12

o -

16

- - o

- o  o —
20 F IG .6 .  A l l  N i d ia gram s (2 4 ) .
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Let us com pute the contribution o f the diagram  a o f F ig . 6 to

Ni:
о

( N l ) a = f  d t l  /  d q 0d 4 'o dcl l d q ,l Í v ( q oqlo ) ¿ - v ( 4 1 q i ) G ( q 0O q 0 0 ) G ( q '0O q '00 )

= /  dq0dq'0|v(q0q'0)G (q0Oq00)G(q'0Oq'00)

: N0 (d irect) X D 1 (d irect). (8 .1)

If we add a s im ila r  resu lt for the contribution o f the diagram  ß o f 
F ig . 6 we find:

(N i ) « + (Ni)e  =No (d irect) X Ц  (d ire ct)+

+ N0 (d irect) X D x(exchange) = N0 (direct)

X [Dx (direct) + D j(exchange)] = N0 (d irect) X 

If we add the contribution N0 (d irect) F ig .2a  to it we obtain

N0 (d ire c t)+ — N0 (d irect) X D j = N0 (direct) 

= N Q(direct)

1 + ITDl

d o + H Di

(8 .2 )

(8.3)

C onsidering a ll those h ig h er-ord er  (n > l) contributions to Nn which 
are represented  by disconnected diagram s having the disconnected t = 0 
part o- - - - -o would lead us to the total contribution to N

N0 (d irect) Do+tí Di+_è D2+- = Nq (direct) X D (8.4)

Hence, the contribution to ДЕ, E q.(6 .1), o f a ll those diagram s which 
are com posed  o f the t = 0 part Ó- - - - -o  plus a d isconnected  rem aining 
part, is  given sim ply by

N0 (direct) X D /D  = N0 (direct) (8.5)
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The sam e argument holds fo r  any connected diagram  7 . If we con 
sider together with this 7  diagram  all the disconnected diagram s com posed 
o f y  plus a part not connected with y we find that the total contribution 
o f all these diagram s to N is equal to the contribution to N o f the 7  
diagram , Ny , m ultiplied by D, This shows that in calculating ДЕ we 
have to con sider connected diagram s only and d isregard  in E q.(6.1) the 
denominator D which is  exactly cancelled  by the om itted disconnected 
diagram s in the num erator N. We have then:

where the subscript L means that only connected o r  linked diagram s should 
be considered . This im portant lin ked -clu ster theorem  was dem onstrated 
fir s t  by B rueckner in the firs t  four ord ers  o f the perturbation expansion 
[19]. The firs t  general p roo f was given by Goldstone [6 ].

As one can easily  see the contribution of a linked diagram  is p ro 
portional to Í2. We then obtain fo r  ДЕ - in fact for  each separate term  
o f our expansion — the desired  result: Д Е ~ £ 2.

Linked diagram s have the follow ing two properties : (A) by in ter
changing q^"—* q'i (for i^= 0) we get a distinct diagram which gives the 
same contribution; (B) by permuting the labels 1, .. ., n o f interactions 
we get a distinct diagram which gives the sam e contribution. Hence we 
shall re s tr ic t  ou rselves to diagram s which cannot be transform ed into 
each other by means o f (A) and (B) and shall drop the factor 1 /2  for the 
interactions at t^ O  and the 1 /n l factors in Eq.(6.2) for  Nn. F or  instance 
in computing Nx we shall consider only one o f the diagram s 2 1 , 22 and 
only one o f  the diagram s 23, 24 o f F ig .6 .

9. MOMENTUM REPRESENTATION. TIME INTEGRATION

The propagator G(qt, q 111 ) may be w ritten ,according to E q.(6.14), 
in the form

If we use the expression  (9.1) fo r  G(qt, q ’ t1 ) in computing Nn, 
E q.(7.10), the integration over the q variab les may be perform ed , and 
as the resu lt o f this integration we obtain m atrix elem ents o f v, E q.(5.3). 
Instead o f the q integrals sum s over p 1 s appear. F or  instance, fo r  the 
contribution to Ni of the oq diagram , Eqs (7 .6 ,9 ), we get

ДЕ = <Ф0|уи| Ф0> L (8 .6)

(9.1)
£

where

(9.2)
- 0 (t’ -t) for  pákp

0

(9.3)

X G (px, t 1 -0 )G (p 2, ^ - 0 ) 0 ( р 3, 0 - ^ ) 0 ( р 4, 0 - t x)
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F IG . 7 .  D ia g ra m  rep resen tin g  th e  co n tr ib u tio n  

to  N [ o f  th e  a 0-d ia g r a m .

TABLE II. RELATIONSHIP OF DIAGRAM ELEMENTS AND FACTORS 
IN Ia IN MOMENTUM SPACE

(w ith  th e  i  m issing  fo r  th e  t = 0 in te r a c t io n  
lin e )

G (P . t . - t j )

This contribution may be represented by the diagram  shown in F ig .7.
It looks exactly as the diagram  in F ig .4. The only d ifference is , that in
stead o f attaching q values to the ends o f interaction lines, now we attach 
p values to each solid  line. This is so because during a free  propagation 
o f a nucleon its p value is con served . The general ru les fo r  computing 
the contribution o f the new p diagram s, like that of F ig .7, are the same 
as those explained in chapter 8 , except fo r  the follow ing m odifications: 

Equation (7.10) changes into 
о о

Y, M P l — Р 2 П + 2 .  t l — t n ) ( 9 - 3 ' )

Pr --_P2n+2

and Table I is  changed into Table II.
O f cou rse , the rem arks concerning the fa ctors  1 /2 , 1 /n ! fo r  linked 

diagram s made at the end o f chapter 8 rem ain valid.
It is im portant to notice that the interaction o f two nucleons does not 

change their total m om entum , i.e . the m atrix  elem ent

(P1E 2M P 3P4 )
contains a factor ô=* , r» ;?+;?■

Pi Г 2 •Рз P4

INn]a - f  dtx... J  dtn

G(p3,0- t , )  / \ _ G < p 2,t,—0>

e<p, . » f O 'A Z - P L g i i  !L '!i!_ s
1/2i<P3P JV | P ,  P 2>

[n ,] a,
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Now, the ea rliest interaction line o f any diagram  looks always like

E l

and because o f the 6 factor we have р ^ р 2 = p3 +P4 . We may proceed  to 
later tim es, i .e . go upwards in the diagram  and we find at any level of 
a diagram  that the total momentum o f the up-going lines is  equal to the 
total momentum o f the down-going lin es. O r, to put it in a different 
way: the total momentum o f the whole system , being zero in the Ф0 state, 
rem ains zero at any stage o f the interaction p ro ce ss . (N otice that because 
a dow n-going line represents a hole in the p state [see E q.(9.2)] it con tri
butes the mom entum -p  to the total momentum o f the whole system .)

This mom entum conservation  substantially reduces the num ber of 
diagram s which give a non-vanishing contribution. F or instance, all 
the 18 diagram s 5 -20 o f F ig . 6 give a vanishing contribution.

We now want to p erform  the tim e integrations in E q .(9 .3 ‘ ). A fteç all, 
we should be able to elim inate the t variable which has been introduced 
artific ia lly  into our stationary problem . To do this, we have to apply the 
explicit form  o f G(p, tj - ti) o f E q.(9 .2).

In the diagram s which we have drawn so far the relative positions o f
the t\s w ere irrelevant (the only restriction  was that ti< 0 (i=  1 ....... n)),
because, anyhow, in the calculation o f the contributions represented by
these diagram s, the integration /  d tr  was involved. These diagram s are 
ca lled  Feynman diagram s. However, the propagator G(p, tj - t¡) has d if
ferent form  fo r  positive and negative values o f t j -  t¡., and consequently, 
perform ing the tim e integration, one has to consider separately each 
ord er  o f the tim es t^  t 2, . . .,  tn, o r , in other w ords, one has to split 
the tim e intervals 0 > ti>  - 00, . . ., 0 > t n> - 00 into nl intervals in which the 
d ifferen ces tj - t¡ have definite signs. Each Feynman diagram  fo r  Nn 
gives the nl distinct contributions, one fo r  each possib le  ord er  o f t i , . . . ,  tn.- 
D iagram m atically, we shall represent these nl contributions by the tim e- 
ord ered  o r  Goldstone diagram s, in which the relative positions o f the 
t ¡ - s ,  i .e ., o f  the interaction lines are significant. Now, fo r  tj - ti>  0,
G(p, tj - ti) d iffers from  zero only for p>kF, and fo r  t j - t i < 0 ,  G(p, t j - t i )  
d iffers from  zero only fo r  p S kF . This means that in a Goldstone diagram 
a so lid  line going upwards (particle line) always represents the propa
gation o f a nucleon with p > k F and a line goine downwards (hole line) 
always represents the propagation o f a hole with p S k F. An exam ple o f 
how a Feynm an diagram  is  equal to a sum o f Goldstone diagram s is shown 
in F ig .8 .

t A

0

FEVNHAN DIAGRAM
V

GOLDSTONE DIAGRAMS

FIG . 8 .  E x a m p le  sh ow in g  h ow  a F eyn m a n  d ia g ra m  is e q u a l t o  a sum  o f  G o ld s to n e  d ia gram s.
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Now we are ready to actually perform  the time integration. Let us 
con sider, e .g . the diagram  [N ila 0 o f F ig .4. This very  sim ple Feynman 
diagram  is identical to the Goldstone diagram  since n = 1 and only one 
tim e ord er is  p oss ib le . A fter the preceding d iscussion  we may denote 
the nucleon lines o f this diagram  m ore  p rec ise ly , as shown in F ig .9a .

(а) (Ы

F I G .9 . D ia g ra m  d e s cr ib in g  th e  se co n d -o rd e r  te rm  o f  th e  pertu rb ation  e x p a n s io n  o f  ЛЕ.

The contribution [N 1]<Xo is , a ccord ing  to Eqs (9.2, 3), (see also the rem arks 
follow ing Eq.(9.16)) given by

[N i U o =  £ 2 (™ l™2 | k ¿ 2 ) [ l ( k l k 2 In h ib í) ]
k i k 2 m . m 2

X lim
OÍ-S-0+ - '

dtxe
- i e im i )  ti -ieC m giti " ie( kx ) t! кг ) t2

-e -e e e (9.4)

N otice that we dropped the 1 /2  factor at the second  v, and thus we do not 
have to con sider separately the diagram  22 o f  F ig .6, as m entioned at the 
end o f  chapter 8 . N otice a lso  the minus sign fo r  each hole line. The tim e 
integral gives

( - 1)2 lim  ®
a-»0+

[ i i e i k j )  + е (к г )  - £ ( 1̂ )  - 6 ( m 2J) + a ] t  

i(e (k i) + e(k2) - е ^ ^ - ^ т з Ц + в
t =  0  

t =  - 0 0

_____________ i________________
e(m i )  + e(m 2 ) - e ( k i ) - e ( k2)

and for  [N 1]ct() we get

I N ,] « . “ \ Y  (m i m 2 lV lkl k2)(k l k 2 lV lm i m2 ) / ( e (mi)+6 (m2) - e (kl ) - e (k2))
— 1 ГП1 Ш 2

(9 .4 ')
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P roceeding in the sam e way with any Goldstone diagram  we find that 
in general the time integration produces a factor

^ 'e ( m ) - ^ e ( k )
(9.5)

fo r  each interval between two interaction lines, where the sum £e(m)
m

runs over a ll hole lines and Ee(k) over a ll particle  lines present in the
к

corresponding interval o f the diagram . One may find all these lines by 
looking fo r  the lines cross in g  any horizontal line drawn between the two 
adjacent lines (see F ig .9a). Let us notice that E e(m ) - £e(k) is equal to

the negative excitation energy of the system  in the interval. We see that 
the i factor in the num erator o f (9.5) cancels the 1 /i  factor at each v for 
t< 0 / and we may forget about the i factors altogether. As seen from  
E q.(9.2) there is an extra (-1 ) factor for  each hole line o f a diagram , and 
we get altogether a ( - l ) h factor, where h is the number o f hole lines of
the diagram . L etfus notice that we may ignore the l o o p ----------- O m and
its hole line in fixing the sign fa ctor  because it produces the factor 
( - 1)1 + 1 = + i (one minus for the loop  and one minus for the hole line).

By applying these ru les we are able to w rite expressions for  all 
term s o f the perturbation expansion o f A E . F or instance, let us write 
the second ord er term  (ДЕ)г. It is  com posed o f only the two diagram s 
(a) and (b) o f  F ig .9. We obtain

' [ A E ] 2= |  Y  (£̂ 1.£2.21 v |k1k 2) 1e (m l ) + e (m 2) - e (k i) - e(k2)
к ! kp m ! ГП2

x  [ ( ^ х ^ г М ^ т г )  - (k xk 2 М п ^ т ^ ) ]  (9.6)

The last factor may be written shortly as

(k ik 2 |v|m im 2 - m 9m ^

10. LOW-DENSITY APPROXIMATION

We shall not spend any tim e on d iscussing a straight application o f 
the perturbation expansion in calculating the properties o f nuclear m atter, 
becau se a ll the attempts in this d irection  have fa iled . The reason  for  it is 
that a nucleon-nucleon  interaction reproducing the tw o-body scattering 
data (the change o f sign o f 5(1 S 0) at about 200 MeV) is  so singular at sm all 
d istances that the perturbation se r ie s  fo r  ДЕ is  converging very  slow ly. 
This is  best seen in the case o f the often applied nuclear fo rce s  with a 
hard co re , for  which each term  o f the perturbation ser ies  (each m atrix
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elem ent o f v for that m atter) is  infinite. In this case it is  obvious that to 
deal with finite quantities (instead o f the infinite m atrix elem ents o f v) we 
have to perform  a partial summation o f properly  se lected  d iagram s. 
"P rop erly  se lected " m eans that: (i) we are able to calculate their sum,
(ii) the sum is finite, and (iii) they are the physically m ost im portant 
d iagram s.

We shall try to satisfy  the three requirem ents by selecting  those 
d iagram s which are m ost im portant for  low -density  nuclear m atter.
As we shall see the requirem ents (i), (ii) w ill be satisfied . As far as 
the requ irem ent (iii) is  concerned, the situation does not look encouraging 
at firs t  sight. Low density m eans that the average spacing between the 
particles  o f the system  is large com pared io  the range of interaction . 
How ever, the average nucleon-nucleon distance between the nucleons in 
nuclear m atter is  about the sam e as the range o f nuclear fo r c e s . At this 
stage, we m ight say that we consider the low -density  lim it only to be a 
convenient starting point in a system atic procedure in which term s of 
higher ord er  in the density w ill be included in the next steps. Thus we 
have a w ell-defin ed  procedure and we know — as we shall see — which 
diagram s to se lect  at each step o f the p rocedu re . In fact, how ever, the 
situation seem s to be much better. We shall d iscuss it la ter on in detail 
(see chapter 15), where we shall argue that the param eter determ ining 
the convergence o f  our procedure is , in fact, the ratio o f the range o f the 
short singular part o f  the fo rce s  to the average distance between nucleons, 
and this param eter is  much sm aller then unity.

The possib ility  o f convergence in pow ers o f the density p has been 
suggested by Hugenholtz [20]. A ccording to Hugenholtz the dominant tim e- 
ord ered  diagram s at low  density are those with the least num ber o f hole 
lin es, because each hole line introduces into ДЕ an integration over 
m om enta m ¡< k F and a corresponding factor o f the ord er  o f  kp~p (see 
E q .3 .5 ). Since there are, at lea:st, two hole lines in any diagram , in the 
low -density  lim it we have to se lect all the diagram s with two hole lin es. 
The two hole lines produce a factor ~p2 in ДЕ or  a factor ~p  in Д Е /А  
(notice that ДЕ ~  Í2).

o — o +ГП m
+  - .  (Л Е )

DIRECT

+

F I G .1 0 . L adder d iagram s.
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The se lected  diagram s, ca lled  ladder diagram s, are shown in F ig .10 . 
Let us write the contribution o f the d irect diagram s (first line in Fig.10) 
to ДЕ

(AEW  = k X
rrii m  2

e (k i) -e(k 2)
(k ik 2 |v|m.im2)

к, ko

)  (m, m 9 I v I k, k „) —------— —— —-----  — -----  —- (kn k 9 I v  I к „к ,)^  2 1- 1- 2' e (m 1) + e(m2) - e ( k 1) - e ( k 2) v- i - 2 | ' —3—

e(m 1) + e (m 2) - e ( k 3) - e ( k 4) зк 4 1v I ^ liE b  ) + •••• J (10 .1)

Let us introduce the К -m atrix , defined by the equation 

(£ 1E 21K (z) IEiP2) = (P1E 21v IEiEa) +

Z .'« P'2|v к ,k  ) — - 1 - 2' z ■
k i k 2

e (k1) -  e (k2 ■(k¿ 2lK(z) E iE2)

(10 .2)

D iagram m atically, this equation is shown in F ig .11 where the wavy line 
represents the effective  interaction K. Now, the sum of the infinite series  
in the { } brack ets , E q .(lO .l), is  nothing e lse  but an iterative solution of 
Eq.(10.2) fo r  (m jm j |K(e(m ,) + e(m 2) |m1;m 2). If we proceed  sim ilarly  
with (Д Е)^ o f F ig .10 , we finally get the result

(Д Е )П (m 1 m Q |K( e (m 1) + e(m 2)) l ^ m ^ m ^ )  (10.3)
ГП1 ГП 2

which diagram m aticaly is  shown in the last line o f  F ig .10.
If the param eter z = e(P i) + e(P2) we say that (p^p^lKfz) | pxp 2) is  on 

the energy sh ell. O therw ise we speak o f the o ff  energy shell elem ents o f 
the К -m a trix . We see that the expression  (10,3) for (ДЕ)р->о contains the 
o n e -en erg y -sh e ll elem ents o f the К-m a tr ix  only.

Let us notice that F ig.10 contains all diagram s o f the firs t  and second 
ord er  in v, and^thus^the correction s to ДЕ, E q.(10.3), start from  the third- 
ord er  term s in v .
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£.' Р'г £i Pj £,' Pi

) ---------*  ) ------------------------- ^  *
£. b  £, £2

£, £2

F I G .1 1 . D ia gra m s rep resen tin g  E q . (1 0 .2 ) .

The whole perturbation se r ie s  in v may be rearranged  into a pertur
bation se r ie s  in K. We sim ply rep lace  in a ll diagram s the broken in ter
action lines by the wavy К -lin es , and drop those diagrams in which 
consecutive К-lin es  appear joined by two particles  lines, as, e .g . the 
diagram  (a) shown in F ig .12 (but not the diagram  12(b)). Consequently, 
in the perturbation expansion in К there are no se con d -ord er  contributions. 
The z-value in K(z) in the rearranged perturbation se r ie s  depends on the 
p lace in which the wavy К -lin e  appears in the diagram . This is  a delicate 
problem  which we shall d iscuss la ter.

F IG . 1 2 . D ia g ra m s fo r  pertu rb ation  ser ies in  K .

11. HOLE SELF-ENERGIES

No doubt, in any rea lis tic  theory o f nuclear m atter we have to go 
beyond the low -density  lim it.

The next step in our system atic procedure which starts with the 
ladder approxim ation (chapter 10) is  to include all diagram s with three- 
hole lin es. Am ong the tw o-h ole -lin e  diagram s considered  in chapter 10 
there w ere diagram s o f all ord ers  in v . S im ilarly, among the three-hole  
diagram s o f our rearranged  perturbation se r ie s  there are diagram s of 
a ll o rd ers  in K . We shall divide the th ree -h o le -lin e  diagram s into three 
c la ss e s . R epresentatives o f a ll the three c la sses  may be already found 
among the th ird -ord er diagram s in K. T ypical th ird -order  diagram s in 
К are shown in F ig .13: the "h o lé -se lf-e n e rg y "  diagram  (a), the "hole- 
h o le -sca tter in g " diagram  (b), the p a rtic le -h o le -sca tter in g " diagram  (c) 
and the "p a r t ic le -s e lf-e n e rg y "  diagram  (d). In this chapter we shall d is 
cuss the c la ss  o f  th ree -h o le -lin e  diagram s represented by the "h o le -s e lf-  
energy" diagram  (a). The other two c la sses  represented, respectively , 
by the diagram  (b) and by the diagram s (c), (d) o f  F ig .13 w ill be d iscussed 
la ter, and we shall show that they are le s s  im portant than the "h o le -se lf-  
energy" c la ss .

Let us d iscuss now the z-value in the argument o f  the K -m atrix , 
represented  by the m iddle wavy line o f the diagram  (a) o f F ig .13 . To do
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( a )

(с)

(Ь )

td)

FIG . 1 3 . T y p ic a l  th ird -o rd e r  d ia gram s in  K .

l a )  <p> <Y>

FIG . 1 4 . S o m e  o f  th e  v -d ia g r a m s  th e  sum  o f  w h ic h  is rep resen ted  by  th e  (a ) d ia gram  o f  F ig . 1 3 .

it,we draw in F ig .14 som e of the v -d iagram s the sum o f which is  r e p re 
sented by the (a) diagram  o f  F ig .13. Their contribution to ДЕ is givey by

I
jHiEh
kik2

■ I
к  о к з

I &.ÍE 2I v ) I
[e(m i) + e(m 2) - e ( k i) - G(k2)J2

S,̂(m2m 3 |v|m2m 3)

(m 2m 3 I v I k'gk'g^k^k^ | v | m 2m 3) 

e (n ix) + efuij ) - e fk ^  - e(k2) + e(m 2) + e(m 3) - e(k '2) -  e(k '3

(11 .1)

Now, the se r ie s  in the { } bracket is the iterative solution o f E q .(l 0.2) 
fo r  (m 2m 3 |K(z)|m2m 3) fo r  г = б ( т 1) + е ( т 2) - е (к 1) - е ( к 2) + £ ( т г ) + е ( т 3). 
This is  an o ff-e n e rg y -sh e ll К -m atrix  with a negative shift o ff the energy 
shell equal to е ^ )  + e(m 2 ) - efkjJ - e (k 2), i .e . to the negative excitation o f 
the re s t  o f  the system  during the interaction between the m j and m 3 
nucleons. This would com plicate the calculation o f "h o le -se lf-e n e rg y "  
d iagram s. How ever, B rueckner and Goldman [12] have noticed  that there 
is  another fou rth -ord er diagram  o f the sam e type as the diagram  (ß) o f 
F ig .l4 .w h ich  shouldbe considered  together withthelßldiagram. This diagram 
is  shown in F ig .15 . Its contribution is  the sam e as that o f the(ß)diagram 
except fo r  the energy denominator which is

l / [ £(m i) + e (m2) - е (к : ) - e(k2) ] [e (m i ) + e(m 2) - е (к х) - e(k2

+ e (m 2) + e(m 3) - e(k'2) - e (k '3 )] [e (m 2) + e(m 3 ) -  e(k'2 ) - e(k£ )] (11.2)
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FIG .1 5 .  A n oth er fo u r th -o rd e r  d ia g ra m  o f  th e  sa m e  ty p e  

as t h e ( S )  d ia g ra m  o f  F ig . 1 4 .

If we add this energy denom inator to the energy denom inator o f the ß 
diagram  (see E q .( l l . l ) )  we obtain

l / [ e (m i )  + e (m 2) - e(k: ) - e(k2) ] 2 ) + efn^ ) - e(k '2 ) -  e (k '3 ) ]

(11.3)
S im ilarly  we m ay add two diagram s to the diagram  (7 ) o f F ig .14 which 

d iffer from  the 7  diagram  only by the relative positions o f the interaction 
lin es. And fo r  the sum o f all the three diagram s we get an energy denom i
nator which is  analogous to that o f E q.(11.3). Extending this procedure to 
h ig h er-ord er  diagram s we find that fo r  the sum o f a ll these diagram s we 
get instead o f E q . ( l l . l )  an equation in which the se r ie s  in the { } brackets 
represen ts the on -en erg y -sh e ll m atrix  (m 2m 3 |K(z = e(m 2 ) + e (m 3)) |m2m 3).

This resu lt may be generalized  to the follow ing B B P theorem  [22]
(see R e f.[23] fo r  a sim ple proo f): The contribution o f the h o le -se lf  - 
energy diagram  o f the third ord er in K, calculated with the on -en ergy - 
shell К -m atrix  is  equal to the sum o f the contributions o f the entire class 
o f th ree -h o le -lin e  diagram s shown in F ig .16. (The sam e applies to the 
corresponding exchange diagram s.)

FIG. 1 6 . H o le -s e l f -e n e r g y  d ia gra m  o f  th e  th ird ord er in  K .

We shall show now that the contribution to AE o f the diagram  (h) of 
F ig .16, and o f the corresponding exchange diagram s is  autom atically 
included in the follow ing expression  fo r  ДЕ (com pare E q.(10.3)):

A E - !  )  (n ^ m j iq e t m , ) + е ( т , ) ) | т , т ,  - т 8т ,  ) (11.4)
m  1 m  2

where

e (m i) = e(m 1) + V(mi ) (11.5)

where the sin g le-h ole  potential V is given by

V (m , ) = y  (т , - т ', | к (е (т 4) + e(m| )) | гп^тД - т ' , т , ) (1 1 .6 )
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To prove this relation , let us w rite the identity 

( P ,1 P ,2 |K ( z ) | P i P 2 ) = ( P ' i P 2 ) K ( z o ) | P i £ 2 )  +

+ > (p1 p ' |K(z ) I к к H ------- -т— - — -r—  (11.7)— i — 2 ' 0 ' 1 —1—2  ̂ [z  -  е(к1) - е(к2) ' '
к,к1¿*2

1
z0 - е (к х) - е(к2) (k ik 2 |K (z)|p 1p 2)

which follow s d irectly  from  the К -m atrix  equation (10.2), and which may 
be looked upon as an integral equation fo r  K (z). F irst two term s o f the 
iterative solution o f this equation are

(p'1 p '2 |K(z)|p1p 2) = (p\ p '2 |K(z0)|p1p2) + У  (P,1P,2 |K(z0)|k1k2)
Í51 i i  2

X ----- ГГТГ2 + •••) (i£ik2 |K(z0)|p1p2)+  . (1 1 .8)
I l z 0 - e ( k 1) - e ( k 2 )] J

where we have expanded the propagator d ifference in the { } brackets in 
pow ers o f z - z0 .

Let us apply E q .(l 1 .8) for  z = e (m 1) + e(m 2) and z0 = e (m j) + e(m2 ) i .e .
for

2

z - z 0= V (m 1) + V(m2)= ^  ^  (m jm 3 | K (e(m ¡) + e(m 3 )) | т ^ 3 - m 3m ¡ ) (11.9)

1 = 1 г а з

If we introduce the expansion (11.8) into Eq. (11.4) we obtain, with an 
accu racy  to term s o f third ord er in K,

ДЕ = !  Y  (H lH l2 lK (em1 + e m2 )|ElEÜ2 -EEL2™ l)
m  i  m  2

2

- i  X  Z  l £ ¿ 2 lK (em1 + em2 )Iî£iEÎ2 - E : 2Î £ i ) | 2 (1 1 . 10)
i  — 1 m i nig rüg ki k 2

t o  l K ( e m i +  e m 3 ) l i E i H Í 3  -  H l s E l i )

X -------- :------------------------------------------~
[e (m 1) + e (m 2) - e (k i) - e(k2)]

The fir s t  term  represents the contribution o f the two diagram s in the 
last line o f F ig .10 , and the second term  the contribution o f  the diagram  (h) 
o f F ig .16 and o f the corresponding exchange diagram s for  i=  2 and o f the 
corresponding diagram s with bubble insertion in the m i line fo r  i= 1 .

It is  obvious from  our derivation o f E q .(l l.lO ) that ДЕ given by 
Eq.(11.4) contains m ore  than the contribution o f a ll tw o -h o le -lin es diagram s
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and o f the c la ss  o f three-h ole  lines diagram s shown in F ig .16. A detailed 
d iscussion  o f this point is given in R efs [5] and [24-27].'

F rom  now on we shall denote by wavy lines the K(z) interaction  with 
z expressed  with the help o f the hole energies e in place o f  the previous 
kinetic energies e.  To sim plify  our notation we shall sim ply write

in a ll cases where it is  obvious that we use the on -en erg y -sh e ll K -m atrix .
Equations (11 .4-6) together with the К-m atrix  equation (11.2) form  

the b a sic  equations fo r  our theory. They pose a se lf-con sistency  problem , 
because the equation fo r  К contains the sin g le-h ole  potentials V (m i) which 
in turn are expressed  through the К m atrix elem ents. Let us notice that 
Eqs (11 .4-6) involve the on -en erg y -sh e ll elem ents o f the К-m a tr ix  only.

We may w rite Eq.(11.4) in the form  fam iliar in H artree -F ock  theory

where the fam ous factor 1 /2  prevents the tw o-body interaction from  being 
counted tw ice.

12. SOLUTION OF THE K -M A TR IX  EQUATION

To sim plify  the presentation, we shall ignore from  now on the spin 
and the isotop ic spin o f nucleons.

If we introduce the relative and the ce n tre -o f-m a ss  momenta

(£ iE 2 lK (e (m i )  + e (m 2)) Ie í i— 2) = (P iE 21K íEl 1ÍH2) (11Л1)

(11 .12)

P = ( P i - P 2 ) / 2 P i = Í P + P

(12 .1)

P = P 1 + P 2 5 2 = i P - P

we have, because o f momentum conservation

(P’1 P,2|v|p1P2) = 6p^. (p1 I v I p) (12 .2)

where

(12.3)

where r  = r  ̂ - r 2 is the relative co -ord inate  o f nucleons 1 and 2 . 
S im ilarly , we have

Ф p2> |K(z)\pxp2) = 6̂ ( p' |K(z)?  15) (12.4a)



162 D^BROWSKI

as one can verify  easily  by inspecting the iterative solution o f the K -m atrix  
equation.

In the relative and c .m . mom enta, Eq.(10.2) for |К |iAj_3®L2) (these
are the only m atrix elem ents which we need in the approxim ate theory 
derived in chapter 11) takes the form

where obviously z = e (m 1) + e(m 2). In Eq.(12.4) we have indicated explicitly 
the range o f summation over к by introducing Q(M, k) defined by

The P auli-princip le  operator Q takes care  o f the two nucleons with total 
momentum M in the interm ediate state (with relative momentum k) being 
outside the F erm i sea in which all states are occupied by other nucleons. 

At this point it is  useful to introduce the follow ing notations:

If we rep lace  the sum over Tc in Eq.(12.4) by an integral, E q.(3.4), 
we get

к (12.4b)

1 for  |fM + k|>kp and ||M -k|>kF 

0 otherw ise
(12.5)

1 i p 'r 
(r lp) =- ñ r e = <Р-ЛГ)\J £2 p

(12.6)

(12.7)

< P '  | v | p >  = - ^ p - ( p ' | v | p ) (12 .8 )

(12.9)

W hereas the (r|p) functions are the plan« waves norm alized  in the 
box o f volum e S7, the <( r |p)> functions are plane waves norm alized  in 
the whole space accord ing to

(12 .10)

(1 2 .11 )
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The standard way o f solving E q .(12.11) (a n ecessary  one if v has a 
hare core ) is to go over to configuration space. We introduce the two- 
body wave function by the equation

< р | к й | т >  = <р|у |ф^> (1 2 .12 )

Û
The wave function \I>-s d escribes the relative m otion o f two nucleons in m
nuclear m atter, and depends on the relative as w ell as on the total 
momentum o f the two nucleons. Eq.(12.11) may be written as the follow ing 
equation for

< g | ¿ > -  6 (p -  S,)+  < g |y | ^ >  ( 1 2 . 1 3 )

which m ultiplied by r |p^ and integrated over p gives the follow ing 
equation fo r  <̂ r|\I>5j^= Ф ^(г):

Фй (г) =< r |m>+ / d p < p | r > ——j-Q (M ,p)
z -£ e (M )-2 e (p )

X / d r '^ p | r ' У < r '  (12.14)

which m ay be written in the form

M /  i
^ = 4 2 7

3 /2 °  M  M
d r 'G i j ( r , r ' ) v ( r ' ) i 5 ( r ' ) (12.15)

where the Green function

M  -  _ f  l  у  Г -  i p - ( r - r ' )
° й ( г . г ' )  = ( - ^ )  /d p e  Q (M ,p)

4 ¿7 ry J  z - é e (M ) -2 e (p )  {12ЛЬ>

—» . . . iThe function ^ ^ (r )  has an im portant healing property , i .e . it
b ecom es asym ptotically  identical with <(r|m)>. The interaction v changes
the unperturbed wave function < r  |m)> at sm all values o f r . This change
(or "w ound"), how ever, is  quickly "healed" and approaches <^r|m)>
within a "healing d istance" [28].

We shall show this "healing p roperty " firs t  in the case o f the low -
density lim it, i .e . for  z = E jm j) + e(m 2). In this case Eq.(12.13) shows
that except fo r  the unperturbed relative momentum m the function
has only those F ou rier  com ponents which correspond to the m om enta o f the
two interacting nucleons outside the F erm i sea (because o f the Q operator).
In the unperturbed state the two nucleons are inside the F erm i sea, and
their total energy is  le ss  than the total energy o f the two nucleons outside
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the F erm i sea. We then see that has no F ou rier  components which
would correspon d  to a state with a relative momentum different from  the 
in itial momentum m and with an energy equal to the initial energy. This 
obviously prevents any rea l scattering, i .e . Ф ^(г) - <(r | m У decreases 
faster than 1/ r  with increasing r . R esponsible fo r  this "healing" is the 
exclusion  princip le operator Q.

In the case  o f the se lf-con sisten t theory we may ignore the Q operator, 
and still we have the healing. To see it let us notice that if we put

Since z= e (m i) + e (m 2) is negative (as we shall see later) we have in 
E q.(12.19), the square root o f a positive num ber. The "nx" subscript 
at G stands fo r  "no exclusion  prin cip le" (Q= 1). If we insert the Gnx 
into E q.(12.15), we notice that fo r  r -*• <*

The negative sign o f z is here responsib le  fo r  this healing, i .e . the inclusion 
o f the sin g le -h ole  potentials into the sin g le -h ole  en erg ies.

Equation (12.15) fo r  may be solved  d irectly  with the present-day 
com puters and this has been the standard procedure o f B rueckner and his 
group [20]* One starts with an approxim ation fo r  the Q operator. This 
operator introduces into the integrand in Eq.(12.16) a dependence on the 

'angle between p and Й , and consequently the resulting Green function 
G ^ (r , r ' ) is not m erely  a function o f | r - r 1 |, i .e . Gm (r, r 1 ) is not 
rotationally invariant (1Й introduces a distinguished direction ). A partial- 
wave expansion o f Ф would lead to a system  o f coupled equations for 
different values o f the orb ita l angular momentum £ [30]. To avoid this 
difficulty and to res to re  the rotational invariance we approxim ate Q(M, p) 
by its angle average

Q(M, p) = 1 (12.17)

we m ay easily  calculate G

(12.18)

where

(12.19)

фт ( г ) - \ r  |m >~e / r (12 .20)

Q (M ,p) = Q(M, P) = - ¿  f  dM Q (M ,p )/ (12 .21)

which m ay be com puted easily  with the resu lt

0 fo r  p < (kF - 1 M ) 

Q(M, p) = •{ 1 for p > iM  + kF

2 1 2 1 /2

(12 .22)

It is  shown in R ef. [31] that the approxim ation (12.21) is  fa irly  accurate.
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With the approxim ation (12.21) we may expand GÍÍ(r, r ’ ) E q.(12.6), 
into sph erica l harm onics

G*j ( ? . ? ' ) = £  (2í + l )G i ( r , r ' ) Y 10( ^ , í ) ( 2g r ) 1/2 (12.23)
S. = 0

where

Л  V  Г 2 -  j s (pr) j^ p r ' )
' ) = ( 2^ ) 4ТГ / dpp2Q (M ,p) ..  ;  — --------  (12.24)

J  z . H M 1 . 2 e ( p )

Sim ilarly  we expand Ф and <( r  |m> into partial waves

m í  i 1 i--------------
* а ( 2 ) =\ л )  L  'J (2*+1')4”  u i ( r )Y io (m ? ) (i 2.25)

Ê

3/2

<?|m>=Q^) Y  \j4n(2f + 1) (rm)Yi0 (12.26)

When all these expansions are introduced into E q .(12.14) we get the follow ing 
equations fo r  the radial functions ux:

u £(r) = j^ m r) + 4-irJ1 d r 1 r ,2 G£(r, r 1 )v (r ' )u t(r ' ) (12.27)

We may now w rite <^р|К й|т^, E q.(12.12), in term s o f the functions 
un fo r  p= in, which is the only value o f p which we need. We sim ply use 
the expansions (12.25) and (12.26) and get

<“ Ik mI“ > = ( ¿ )  £(2*+ 1)4wf d rr2j i (m r)v (r)u 1(r) (12.28)
fi

The whole problem  o f computing the K-m atrix is thus reduced to the 
problem  o f solving E q s .(12.27) for uц and o f computing the integrals in 
E q.(12.18). In fact, the problem  is  m ore  com plicated because the G i1 s 
in Eqs (12.27) depend on the value z= e(m 1) + e(m 2), and the single-hole  
energies e(m ¡) may be determ ined only if  we know the K -m atrix,
Eqs (12 .5 -6 ).

In practice  one starts with any reasonable ansatz for  e(m¿) = e 0 (m¡ ), 
com putes the Green functions G t , Eq.(12.24), so lves Eq.(12.27) for u£, 
com putes the K -m atrix, E q.(12.18), and finally com putes e(m i), E qs(1 1 .5 -6 ), 
which we shall denote by e i(m ¡) . This we ca ll the m ajor iteration . We 
repeat now the m ajor iteration with e 1(mi ) as starting sin g le -h ole  energies
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and at the end of the second m ajor iteration , obtain e 2 (m i). We repeat the 
procedure till we get e n(m ¡) = en. 1(m i) i .e . till se lf-con sisten cy  is  achieved. 
At this m om ent we may compute the energy

Е = Е 0 +ДЕ = Е 0+ |  ^ [ e n(m¡) - е ( т ; ) ]  (12.29)

mi
By repeating the hole calculation for different values o f the density 

p we find the equilibrium  density and binding energy (see F ig .l ) .
In actual calculations spin and isotop ic spin o f nucleons must be 

con sidered . The only com plication appears then in the case o f the states 
which are coupled in the presence o f tensor fo r c e s . F or  exam ple, the u 
functions in the 3S1 and 3D1 states satisfy  coupled equations instead o f 
two independent equations (12.27).

13. THE BRUECKNER-GAM M EL CALCULATION

The method described  in chapter 12 has been applied firs t  by 
B rueckner and Gam m el [29] in 1958. Actually they have added sin g le 
p article  potentials to the kinetic energies e (k ¡) in the interm ediate 
states. H ow ever, we shall not d iscuss this delicate point here.

By applying the B rueck n er-G am m el-T haler potential (B G T )v, they 
obtained:

r 0 = 1.02 fm , evoi = 15.2 MeV (13.1)

To see the im portance o f the h o le -se lf-en erg y  insertions the ca lcu 
lation was also done without these insertions (z = e (m i) + e (m 2) in the Green 
function) with the result: r 0 = 0.98 fm , evol = 34.4 M eV, which c learly  indi
cates the im portance o f these insertions.

The healing property is best revealed  by the behaviour o f the 1S state 
function, u0 , com pared to j 0(m r) for m = 0.128 fm  (corresponding to two 
nucleons m oving near the bottom  o f the F erm i sea), shown in F ig .l 7. We 
see that at a mean in ter-p a rtic le  distance ~ 2 ro the function u0 which des
cr ib es  the relative m otion o f two nucleons in nuclear m atter, is essentially 
identical with the function j0 o f  two non-interacting nucleons.
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This explains the su ccess  o f the sh e ll-m od el approxim ation in which 
nucleons m ove independently. At the sam e tim e, there are strong nucleon- 
nucleon correla tion s within a distance o f the ord er  o f the h a rd -co re  radius, 
c, in the nucleon-nucleon  interaction. These correla tion s are n ecessary  
for the description  o f the h igh -energy reactions mentioned in chapter 1 .

F IG . 1 8 . S in g le -n u c le o n  

en e rg y  sp ectru m .

Pl/k F

The curve u0c in F ig . l7 represents the u0 function fo r  a pure hard
core  nucleon-nucleon interaction . We notice that the d ifference between 
u0 and u 0c is  very  sm all: s 15-20% . We may say then that the attractive 
part o f v is  weak in the sense that it does not change appreciably the two- 
nucleon wave function in nuclear m atter (at equilibrium  density).

V ery  im portant fo r  our further considerations is  the single-nucleon  
energy spectrum , shown in F ig .18. The value o f the sin g le-h ole  potential 
V (m i) at the bottom  and at the top o f the F erm i sea is, respective ly :
V(0) -  -112 MeV and V(kF) -  - 70 M eV.

If one approxim ates V (m x) by a quadratic function -A  + B m 2 , one may 
add Bm* to e(m 1). In this way one gets the follow ing approxim ate 
expression :

e ( P i ) :

-  - A for  p s k

fo r  p> kF

(13.2)

where the effective  m ass

= 0.7^T (13.3)

and

A = -112 MeV (13.4)
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As has been mentioned, Brueckner and Gam m el included a single
particle  potential into their definition o f e (k i). Their e (k i) spectrum  is 
represented by the broken curve in F ig .18. Notice that it practically  
coincides with the so lid  e fk ,) curve for  k1^,2kf = 3 fm . This is im portant 
since we shall show in the next chapter that m ost im portant in the ca lcu 
lation of the К-m atrix  is  the range 3 fm' 1 < kl ¿ 5  fm' 1 in the s in g le -particle  
energy spectrum  e (k 1).

14. THE Q = 1 APPROXIMATION

The d irect method o f solving the К -m atrix  equation poses num erical 
problem s which may only be m astered with large com puters. To avoid 
these large com putations, approximate m ethods o f solving the K -m atrix  
equation have been invented. They allow us to obtain approxim ate results 
in a sim ple way, and are extrem ely helpful in acquiring better insight into 
the theory.

The approxim ate method which we are going to d iscuss now amounts 
to the approxim ation

Q= 1 (14.1)

in the К -m atrix  equation (10.2), i.e . to neglecting the" Pauli princip le in 
the interm ediate states. Thus we allow nucleons to be excited  also to the 
orig inally  forbidden interm ediate states whose energy spectrum  is  shown 
by the dotted line in F ig .l 8 .

Let us explain why Eq.(14.1) is expected to be a reasonable 
approxim ation.

F irs t  o f all the healing property is  p reserved  in this approxim ation 
as has been explained in chapter 12. The second point is that the energy 
denominator in the К -m atrix  equation, which corresponds to the transitions 
to those orig inally  forbidden states, is large because o f the energy gap 
in the single-nucleon  energies (the d ifference between the dotted and the 
solid  curve for  p ^ k j. â 1 in F ig .18). The third point is  that — as we shall 
see — the range o f im portant momenta in the interm ediate states extends 
till kl ~ 5 fm ’ 1 for  which the volume in momentum space is  much b igger 
than the volum e (4 / 3 )7rk| corresponding to the forbidden states.

To get an idea about the e rro r  introduced by the approxim ation (14.1) 
let us quote the results obtained by B rueckner and M asterson [32] for the 
B rueckn er-G am m el-T haler tw o-body fo r ce . They find that the approxi
mation (14.1) in creases evol by about 2 MeV and decreases ro by about 0.1 fm. 
(This is a  rough estim ate as it includes also the effect o f the s in g le-particle  
potential for the states above the F erm i sea. The last effect is probably 
respon sib le  for the appreciable shift in r 0).

The approxim ation (14.1) has been used extensively by Bethe and his 
group [22] who call it the re feren ce -sp ectru m  m ethod. By re feren ce  
spectrum  they mean the energy spectrum  e(p1) = e(p1) for 0 < p 1 <°o, i.e . 
the partly dotted and partly so lid  curve in F ig . l8 . The content o f this 
chapter is  mainly based on R ef. [22].

With the approxim ation Q= 1 we are able to calculate the Green 
function G^Gnx , E q .( l2 .8 ),analytically. Let us note that G^ (r , r ' )„* 
does not depend explicitly  on the total momentum ÏVÎ, and we shall write 
sim ply (G ,J(r, r ')nx . How ever, there still rem ains in Gnx the dependence



IAEA-SMR 6/12 169

on z - (1 /2 ) e(M) fo r  z = + e(m 2). We have z -(1 /2 )e (M ) = 2e(m)+V(m1)+V(m2)
and this quantity depends on Й .

Since the Gm satisfy  the equation

(ЛГ -Т 2)С Й (?, ? ' ) nx = u f 6 ( ? - ? ' )  (14.2)

we get — by acting on both sides o f E q .(12.16) with the operator ( Д у - 7 2) — 
the follow ing d ifferential equation for (?) = (? )nx :

(Дг - 7 2)?й ( ? ) = - ^ ( г  )* - ,( ? )  (14.3)

where the d ifference function Ç is  defined by:

/  ,  \ 3 / 2

f-b(?> V277 eimr ' * - (?) (14,4)

The partial-w ave expansions,E qs (12 .25-26), lead to the follow ing 
system  o f  differential equations:

d ÍÍÍ  + 1) 
Г1 -  II ' r ^ ( r )  =  - ^ V ( r ) u £ ( r ) (14.5)

where

(14.6)

By solving Eqs (14.5), which are as easy to solve as ordinary 
Schrödinger equations fo r  partial waves, we obtain U ((r) which we insert 
into Eq.(12.28) and get the approxim ate value o f the K -m atrix , 
" (m lK lm ^ n x . To calcu late the K -m atrix , < (т | К м | т ^ , which satisfies 
the orig inal "ex a ct"  E q.(12.11), we apply the equation (com pare E q.(11.7)):

<( m| К-» I rhy -  <( in IК I m )> + /dp<(m |K |p)>
M

x  ------ Q(M, P) - 1----  <5|K -j|m > (14.7)
z -* c ( M ) -2 e (p )

which may be solved  by iteration .
M ost pow erful in d iscussing the qualitative features o f  the theory is 

the Q = 1 approxim ation. Let us d iscuss the m ost im portant S-wave. As 
we have noticed in chapter 13 the tw o-body wave function u0 is  w ell 
approxim ated by the tw o-body wave function u0c fo r  a pure h a rd -core  
potential v . This has been con firm ed within the Q = 1 approxim ation in 
R e f.[22]. Now, fo r  a pure h a rd -co re  interaction with the h a rd -co re  radius 
с we have from  Eq.(14.5) for  the S-wave

( ï ï ? ' 72) rÇOc<r ) =0 forr>c (14.8)
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and

S0c (r) = V m r) f o r r S c  (14.9)

since u0c (r) = 0 fo r  r < c .  Equation (14.8) with the boundary conditions

has the solution

= j 0(m r) for  r = с

-* 0 fo r  r-» <x>

■ T(t-c)

(14.10)

Ç0c (r) -  c j 0(m c)e" л / r f o r r > c  (14.11)

To get an average value o f у  we put in Eq.(12.9)

z = z = 2 < e > av (14.12)

^ M 2 = i  < M 2>av=0.3 k2 (14.13)

To calculate <̂ ê >av, we notice, [33], that at the equilibrium  density we
should have (com pare with E q .(12.29)

- evol=<T >av+ i ( < e > av- < T  >ay) (14.14)

w here <( J Xv = E<j/A is the average kinetic energy. Thus, we have

< e > a v = - « T > a v  +  2 e v o 1)  " <1 4 - 1 5 )

By inserting into Eqs (14.13) and (14.15) the em pirica l values o f evoi and 
k F (chapters 2 ,3 ) we obtain

< e> av= -5 3 M e V  (14.16)

and

У ~ \ /4 К. M 2 \  = 1.7 fm  1 , y i = 0.6 fm

The typical behaviour o f Ç0c is  shown in F ig .19. The value o f y '1= 0.6 fm 
is a m easure o f the healing distance which obviously is sm aller than the 
average nucleon-nucleon  spacing = 2 rD= 2 fm .

We have m entioned b e fore  that m ost im portant in the calculation 
o f the К -m atrix  are those interm ediate states whose m om enta k¿ are with-
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F IG . 1 9 . T y p ic a l  b eh a v iou r  o f  С oc -

in the range 3 fm’ 1 < k ¡ <5  fm ’ 1 . This may be made plausible in the 
follow ing way. F irs t let us notice that, accord ing to E q .(12.11), m ost important 
are those relative m om enta к in the interm ediate states for  which 
{Q /[ z -(1  /2 )e (M ) - 2e(k)]} <( !c|i?jj|m^ is  large. F rom  Eq.(12.13) we have

r : < p I к Ja > = < gl * g > - < i?| ft >

= < р ! фЙ>пх - < p|m >= - <Р |?Й > (14.17)

where

/  i X3/ 2г
<plÇS>= V2̂ J J  d?e‘

-ip-r
(14.18)

If we only keep the m ost im portant S-wave part o f  Çjg(r) we obtain

< p | ? a  > s ¿  I  J  d r ( s i n  P r ) r M r ) (14.19)

Now, the fact that Ç0 = Ç0c and F ig .19 indicate that the integral in Eq.(14.19) 
w ill be largest fo r  sin pr having a maximum at r  = c, i .e . for

(14.20)

Since Р-Ц2) = ( 1 /2 ) Й ± р  and the average value o f M /2  is about 0.7 fm ' 1 ,
E q .(14.13), we may neglect the total momentum com pared to 
P = I  px - P2 I  /2 - A i m 1 and obtain fo r  the s in g le -p artic le  momenta

pi = p 2 = 4 fm ' 1 (14.21)

We may state this resu lt in the follow ing way (see E q .(14.17)): К ¡3 
acting on the nucleons in the F erm i sea excites them m ostly to states 
around 4 fm"1 .
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So far, we have not considered  higher partial waves (1 > 0) which, 
how ever, have very  sm all d ifference functions , because fo r  the 
relative m om enta o f two nucleons in the F erm i sea the centrifugal b a rr ie r  
is  su fficiently  strong to prevent the unperturbed function from  differing 
appreciably from  zero in the co re  region .

O bviously, fo r  a pure h a rd -co re  potential we have the exact expression :

\  3 /2

Sm W  eimr f o r r S c  (14-22)

in which, how ever, the S-w ave part dom inates.

15. CONVERGENCE OF THE THEORY

In chapter 10 we have outlined the general procedure o f the theory.
It con sists in considering at each stage o f  the calculation a ll K -d iagram s 
with a fixed  num ber o f hole lin es. Within the Q = 1 approxim ation we are 
in a position  to estim ate quantitatively the convergence o f this p rocedure.
We shall add an extra К -interaction  line to a given diagram  and obtain a 
new diagram . We shall show that:

(i) if the new diagram  d iffers from  the original one by a la rger  number 
o f particle  lines and otherw ise has the sam e num ber o f hole lines then its 
contribution is  essentia lly  equal to that o f the orig inal diagram;

(ii) i f  the new diagram  has one independent hole line m ore  than the 
orig in a l diagram  then its contribution is  essentia lly  sm aller than the 
contribution o f the orig inal diagram  (by a factor determ ining the con 
vergence o f  our general procedure).

We shall follow  here the argum ents given by Day [ 8 ] and Rajaram an 
and Bethe [9 ]. We start with an arb itrary  diagram  which at som e level 
has two particle  lines i?i, £2 as shown in F ig .20(0).

The b lobs in the p icture represent the upper and low er parts o f  the 
diagram .

(i) Adding particle  lin e s . A s an exam ple let us con sider a new diagram , 
F ig.2P (i), obtained from  the original (0) diagram  by adding one K -in ter
action between lines lq and k2 . The new (i) diagram  is o f one o rd er  in

F I G .2 0 . ( 0 ) :  arb itrary d ia g ra m  w ith  tw o  p a r t ic le  lin e s ;
( i )  : th e  sa m e  as (0 )  + o n e  K -in te ra ct io n

( i i ) :  th e  sa m e  as (0 ) + a  h o le  lin e
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K higher than the orig inal (0) diagram , but the num ber o f hole lines is 
the sam e in both diagram s. B ecause o f  the additional К interaction in (i), 
the contribution o f (i) is

f d S '12 Q(k i 2»k 'i2 )---------< £ fc| K j. ( z ) | £ 1 2 >  (15.1)
J z e (k 12) - 2e (k '12)

tim es that o f (0). In writing (15.1) we have exploited the m om entum con 
servation k i2 = k ' i 2 . The value o f z is  equal to minus the excitation 
energy o f the rest o f the system  (i.e ., except fo r  particles  k1( k2 ) in the 
interval between the two b lob s . Strictly speaking, the upper blob o f (i) is 
different from  the upper blob in (0) because the incom ing lines k 1( k 2 have 
been changed to k^, k '2. To get a rough estim ate we neglect this d ifferen ce. 
Now, in the Q= 1 approxim ation (see E q.(14.17)), the expression  (15.1) is 
equal

-  f t '12< к ' 12 I ? f  u >  = -  ( 2*)3/2f  d k ' 12<  ?  = 0 1 k ' 12 >  <  к '121? >

= -(2тг)3/ 2 < ? = 0 | ^ 12> = -1 (15.2)

where we have used the fact that (27г)3//2 <( r = 0 I k 1̂ ^  = E q.(12 .7), and
a lso E q.(14.22), valid  fo r  the h a rd -co re  nucleon-nucleon interaction . We 
com e then to the conclusion

contribution o f (i) _
contribution o f (0) . ( • )

(ii) Adding a hole lin e . As an exam ple let us con sider a new diagram .
F ig . 20(ii) obtained from  the orig inal (0) diagram  by attaching a К interaction 
between k^ line and an additional mo hole line (bubble). The contribution 
o f (ii) is  equal to the contribution o f (0) tim es thfe factor

I i -e (m 0) - e ( k 1) <“ <>£i W r n o ^ )

z - i e ( P 10) - 2 e ( p 10) Q
i7 ? < P lo | K | p 1o> (15.4)

where we have rep laced  mo by an average value in the F erm i sea (we
have then E= A ), and where we have used the notation ? 1o= iT1 + m o> m0
P i o =  (^ i - m 0) /2 .  The p rec ise  value o f z (connected with the excitation 
energy o f  the system  in the interval between the two b lobs) should not be
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im portant. S im ilarly  as in case (i) we may approxim ate expression  (15.4) 
as

~(A/Q)(2wf < p 10|f_»^ > = -p(2n)3/2J d r ¿ 1P"  (?) (15.5)

A ccord in g  to E q .(14.22), we have

3 /2  - i f f • r*
(27r) e 1 (r) = 1 for r  S с (15.6)

1̂0

and the contribution to the integral in Eq.(15.5) o f the co re  region

(2jr)3/2jT dr e ^10 (г )= | тгс3 (15.7)
t < с

The contribution o f the region outside the co re  is not so triv ia l, but 
the shape o f f 0c, F ig . 19, shows that the resu lt should be o f the same^ order 
as the co re  contribution. Rajaraman and B ethe1 s [9] estim ate is about 
(2X (4 / 3 )7tcs . Adding it to Eq.(15.7) we get

(27t)3̂ 2 / d r e 1Po1 (г) = 47гс3 (15.8)
J Poi

This estim ate inserted into expression  (15.5) leads to the conclusion

where the last number is obtained for с = 0.4 fm , r 0 = 1.1 fm .
Equations (15.3) and (15.9) form  the quantitative basis fo r  our quali

tative d iscussion  o f chapter 10 which led  us to the general procedure of 
considering at each stage o f the calculation all diagram s with a fixed 
number o f hole lines. Equation (15.3) c learly  indicates that the pertur
bation se r ie s  in К is  not converging, and what we have to do is to sum all 
diagram s with a given number o f hole lin es . The possib ility  o f such a sum 
which includes diagram s o f all ord ers  in К — being finite is  connected 
with the fact that contributions o f su ccessive  ord ers  in К alternate in sign, 
E q .(15 .3). C rucial for  the convergence o f the procedure o f grouping 
diagram s accord ing  to the number o f hole lines is E q.(15.9). It shows that 
by in creasing the num ber of hole lines by one we reduce the magnitude of 
the corresponding contributions by a fa c t o r ~ 3 (c /r 0). This leads to an 
expansion in pow ers o f the density because 3 ( c / r 0) 3 = р<Ус , where the 
corre la tion  volum e 9  ̂с ls determ ined predominantly by the co re  volum e 
(4/3)ггс3 (9 .̂ = 3 (4 /3 )7гс3). The expansion param eter o f the whole procedure, 
3 ( c / r 0)3s  0.14, is reasonably sm all.

E ssentia l for  our estim ates is the hard co re . This is  the hard core  
which leads t o f  = 0 and Ç = 1 at sm all d istances. F urtherm ore, we have
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exploited the weakness o f the attractive part o f  the nucleon-nucleon  in ter
action. This weakness, which causes a rapid healing outside o f the hard 
core , allow s us to approxim ate Ç by the pure hard core  -Ç and to obtain 
the estim ate (15.8).

16. B E T H E 'S  TREATM ENT OF THE THREE-BODY ENERGY

Am ong the th ree -h o le -lin e  diagram s only the c lass  o f the "h o le -s e lf -  
energy" d iagram s, F ig .l3 (a ), has been included in our theory by the 
proper definition o f  the hole en erg ies, Eqs (11 .5 -6 ). Now, we want to 
calcu late the contribution o f the two rem aining c la sses  of the th ree -h o le - 
line diagram s d escribed  at the beginning o f chapter 1 1 .

(hh)

F IG .2 1 . S u m  o f  con tr ib u tio n s  o f  th e  e n t ir e  c lass  o f  ’ h o l e -h o le "  sca tter in g  d ia gram s e q u iv a le n t  t o  th e  
c o n tr ib u t io n  o f  th e  th ir d -o rd e r  d ia gra m  (b) ( f r o m  F ig . 1 3 ).

IG> ( R )

F IG .2 2 . A  t y p ic a l  e x a m p le  o f  a fo u r th -o rd e r  th r e e -b o d y  d ia gra m .

The "h ole-hole  scatterin g" class , represented  by diagram  (b) in F ig .13, 
contains four hole lines but, because o f momentum conservation , only three 
o f them are independent. This c lass  is  s im ilar to the "h o le -s e lf-e n e rg y " 
class in the sense that the contribution o f the th ird -ord er diagram  (b) 
calculated with the K -interaction between the two holes on the energy shell 
is  equal to the sum o f  contributions o f the entire c la ss  o f "h ole -hole  
scattering" diagram s [8 ]. This is shown diagram m atically in F ig .21.

The contribution o f the diagram  21 (hh) is  o f the sam e ord er  o f m agni
tude as that o f the se lf-en erg y -in sertion  diagram  16(h) except fo r  a statisti
cal fa ctor  1 /8  and a ph ase-space  factor —1 /4  [34]. Thus,the contribution 
o f  the h o le -h o le  scattering c la ss  should be about 32 tim es sm aller than that 
o f  the "h o le -se lf-e n e rg y "  c la ss . Consequently, in our d iscussion , we shall 
ignore the "h o le -h o le  scatterin g" class .
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W e a re  le ft  then w ith the c la s s  o f  the th ree  h ole  lin es  d ia gram s r e p r e 
sen ted  in F ig .13 by  d ia gra m s (c ) and (d ). D iag ra m s be lon g in g  to th is c la s s  
w e sh a ll c a ll  th re e -b o d y  d ia g ra m s. N ow , in any o r d e r  in К  th ere  a re  such 
d ia g ra m s . A  ty p ica l exam p le  o f  a fo u r th -o r d e r  th re e -b o d y  d ia gram  is  shown 
in F ig .22. Thus we a re  fa ce d  with the v e r y  d ifficu lt  p ro b le m  o f  a pa rtia l 
su m m ation  o f  th re e -b o d y  d ia gram s in the p ertu rbation  s e r ie s  in K . An 
ap p rox im a te  so lu tion  o f  th is p ro b le m  has been  found by  B ethe [35 ], [3 6 ] , [9 ]. 
(The p o s s ib ility  o f  su ch  a so lu tion  w as f ir s t  n o tice d  by R a jaram an  [37 ].

T =

(a )

TfT, nrT, nrf,

m , гп л m .

rrT, rffj ÍT¡*2 
(b )

m, rnj m

m, m j  m, 

w \ .

f i f 2 m*3

(c)

m, m 2 

( d )

w i
w

rn ̂  m 2 m j 

(e)

w
w v

rn « rn •) m «

F IG .2 3 . '  S o m e  o f  the 

th r e e -b o d y  d iagram s.

(f)

rrfj fffj 

(g)

-1

The R a jaram an  d ia gram s [37] a re  m o s t  help fu l h e re . They a re  obtained  
by  b rea k in g  a ll h o le  lin e s  in the co rre sp o n d in g  G oldstone d ia g ra m s . F o r  
ex am p le , the fo u r th -o r d e r  G old ston e  d iagram  (G) takes the fo rm  (R) o f  the 
co rre sp o n d in g  R a ja ra m an  d ia gram , F ig .22. N e e d le ss  to sa y , ex ce p t fo r  
in itia l and fin a l sta tes m j ,  m 2, m 3 a ll o th er  sta tes in the R a jaram an  
d ia gra m s shou ld  be  ab ove  the F e r m i se a , and no two s u c c e s s iv e  K -m a tr ice s  
shou ld  r e fe r  to the sa m e p a ir  o f  in term ed ia te  sta tes .

S ince the m o s t  im portan t in term ed ia te  sta tes m om enta  p ^  7t/ 2 c = 4 fm  
E qs ( 1 4 . 2 0 - 2 1 ) ,  w h erea s  m ¡ S kp -  1. 4  fm ”1 , we sh a ll ap prox im a te  Ä !  , m 2 , m 3 
b y  z e r o  m om en ta . F u rth e rm o re , we sh a ll apply the Q = 1 ap prox im a tion .

L e t us denote by  T  the sum  o f  a ll the th re e -b o d y  d ia g ra m s. Som e o f  
them  a re  show n in F ig .23. If we add to the d ia gram s o f  F ig .23 th ose  o b 
ta in ed  fr o m  them  by  c y c l i c  p erm u tation s o f  iñ i ,  m 2, m 3 and a ll the 
exch an ge d ia gra m s (one gets them  by  perm u tin g , e .g . the bottom  m om enta 
fñ i ,  rh.2, Й 3, w hile k eep in g  the upper on es fixed), w e get a ll the d iagram s 
o f  the th ird  o r d e r  in K . (T o  s im p lify  the p resen ta tion  we sh a ll d is re g a rd  
the exch an ge d ia g ra m s.) A ctu a lly  on ly  the d ia gram s in the se co n d  lin e  o f  
F ig .23 a re  r e a l th re e -b o d y  d ia g ra m s . The d iagram  23(a) is  s im p ly  the 
fundam ental tw o -b od y  d ia gram  o f  ou r  th eory , and the d ia gra m s 23 (b -c )  
van ish  b e ca u se  o f  m om entum  co n se rv a tio n  (b e fo re  we in trod u ce  the Q = 1 
ap p rox im a tion ). N e v e rth e le ss , w e in clude  the f i r s t  lin e o f  d ia gram s into 
ou r  T  to obtain  s im p le r  equations fo r  T . O bv iou sly , in com pu tin g  the 
th r e e -b o d y  en erg y  w e m u st su btra ct the con tribu tion  o f  the d ia gram s 2 3 (a -c ) .

N ow , the d ia g ra m s o f  F ig .23 look  e x a ctly  as d ia gram s rep resen tin g  
the sca tte r in g  o f  th ree  p a r t ic le s , and to p e r fo rm  the su m m ation  o f  these 
d ia gra m s we apply the F ad d eev  [38] tech n iqu e. W e w rite

rp _ r j i( l)  fp(2) _|_ rp(3) (16.1)
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w h ere  T^1* is  the sum  o f  a ll th ose  d ia gram s in w hich  the i-th  n ucleon  is  
the sp e cta to r  o f  the la s t s ca tte r in g . A ll the d ia gram s o f  F ig .23 be lon g  to 
Т (ц . If w e look  at the p a rts  o f  the d ia gram s (b), (d), (e) b e low  the dotted 
lin es  w e n o tice  that they a re  the th ree  f ir s t  d ia gram s o f  T (3>, w h ereas the 
parts b e low  the dotted lin e s  o f  d ia gram s (c ) ,  (f), (g) a re  the f ir s t  three 
d ia gra m s o f  T . Thus we a re  le d  to the fo llow in g  equation:

T (1) = K 23+ K 23i  ( T (2)+ T (3)) (16.2)

and to s im ila r  equations fo r  T ^  and T ^ .  The den om in ator a is  equal to m inus 
the ex cita tion  en erg y  o f  the in term ed ia te  state .

S im ila r ly  as we have in trod u ced  the tw o -b od y  w ave fu nction , • E q .(12 .12), 
w e in trod u ce  now the th re e -b o d y  w ave functions

-(D I E>̂> = К 2з I^ ^ X  and c y c l ic  perm u tation s (16.3)

w h ere  |ф^ is  a th re e -n u c le o n  p la n e-w av e  state with rñ 1 = m 2 = m 3 = 0 . 
Equation  (16 .2 ) takes the fo rm

i UK i v 1 i (2K 1 i (3)|ф > =  |ф>+ -  K 13 > + - К 12 |ф > (16.4)

o r

|*(1) -Ф > = ^ к 13|ф> + “  к 12 |ф>

+ ¿  К 13|ф(2)-  Ф >  + 1 к 12| *(3)- ф >  (16.5)

W e p r o c e e d  with th ese  equations s im ila r ly  as in chap'ter 12 with the 
К -m a tr ix  equation , n am ely , we go o v e r  to the con figu ra tion  sp a ce . With 
the notations

(i) . (i) (i)
< г 1г2 г з 1ф > =ф (г 1г2 г з) = ф (16.6)

< ?1^ 2?з1  Ф> = < г 1 |m i > < r 2 |m2 > < r 3 |m3 > =Ф (16.7)

we m ay  w rite  E q .(1 6 .5 ) in con figu ra tion  sp a ce

Ф(1>-Ф =  < г 1г 2г 3 | | к 13|ф >+ . . .  (16.7a)

A c c o r d in g  to ch apter 14 (s e e  E q .(14 .17)) we have

< ? 1 ? 2? з | | к 1з 1ф> = < ? 2 1й 2 > < £34 £ á li“ 1+ iS3 >

X < r i  -  r 31 i  K j  m i 2~ Шз > -  - S0 (r 13 ) - ? 0с(Г1з ) ф ^ -  ? (г 13 )ф (16.8)

N otice  that a ll m om enta  m ¡ a re  z e r o , and the d iffe re n ce  function  r e 
d u ces to its  S -w a ve  p a rt. N otice  a lso  that when K 13/a  a cts  on | Ф} the
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se co n d  n ucleon  is  not e x c ite d  and we m ay  apply the estim a te  o f  the 
p a ra m e te r  7 = 1.7 fm "1 o f  ch apter 14.

The situation  with the la s t two te rm s  in E q .(1 6 .5 ) is  m uch  m o r e  d i f f i 
cu lt. The cru d e st  ap prox im a tion  app lied  by B ethe am ounts to putting

< ? 1Г 2? 3 | ^ К 13|Ф(2)-Ф > =  - Г ( г 13 ) < г 1 ? 2 г 3 |ф ( 2 ) -  Ф> (16.9)

w h ere  Ç d if fe r s  fr o m  Ç on ly  by the value o f  the y  p a ra m eter :

y -  3.5 fm  1

T o m ake ap p rox im a tion  (16.9) p lausib le .,le t us n o tice  that i f  w e expand 
фУ into p la n e-w av e  state then the states P j - f f /2 с  dom inate . On the 

o th er  hand, w e know how the o p e ra to r  K 13/a  a cts  on a p la n e -w a v e  state, 
E q .(1 4 .1 7 ). The la r g e r  value o f  у  is  con n ected  with the ex cita tion  o f  a ll 
the th ree  n u cleon s at the m om en t o f  the K13 in te ra ctio n . A  m o r e  deta iled  
d is cu ss io n  o f  the ap prox im a tion  (16.9) is  g iven  in the re v ie w  a r t ic le  by 
R a ja ra m an  and B ethe [9 ], who a lso  d e s c r ib e d  an im p ro v e d  and m o re  
co m p lica te d  ap p rox im a tion  than e x p re s s io n  (16 .9 ).

W ith the ap prox im a tion  (1 6 .8 -9 ), equation  (16 .7a) takes the fo rm

Ф-Ф(Ч = ? (г 13)Ф + ?(г 12)Ф -Г (г 13)[Ф -Ф (2) ] - ? ( г 12)[Ф -Ф (3)] (16.10)

T h is  equation  tog e th er  with an alogous equations fo r  Ф- Ф̂ 2' and Ф - 1̂  
fo r m  a sy s te m  of* lin ear  a lg e b ra ic  equations w hich  m ay be  so lv e d  
im m e d ia te ly  fo r  Ф-Ф^1'.

L et us c o n s id e r  the p a rticu la r  ca se  w h ere  r 12= r 13 = r 23 = r  fo r  w hich

< I 6 - U >

The expan sion  o f  E q .(1 6 .11 )

Ф -Ф (1)= 2Ç - 4ÇÇ + 8ÇÇ2 -  . . . (16.12)

co r r e s p o n d s  to the expan sion  in p ow ers  o f  K .
H ow ever , fo r  Ç( r ) > 1 /2  the g e o m e tr ic  s e r ie s  (16.12) is  d iverg in g , 

although its sum  is  f in ite . (N otice  that Ç(r) = 1 fo r  r <  c ) .  Thus., we en 
cou n ter  o n ce  m o r e  the d iv e rg e n ce  o f  the p ertu rbation  expan sion  in p ow ers  
o f  K .

T o  ca lcu la te  the con tribu tion  o f T^1' to the th re e -b o d y  en erg y  w e use
not
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but

< Ф | К 23  | * (1 ) -  Ф> = <ф \щ 3±К13 | * >

+ < ф | К 2 з ^ К 1 2 | ф > +  < Ф | К 2 3 ^ К 1 3 | ¿ 2 , - Ф >

+ <Ф|К23^ К 12 |Ф(3) -Ф >  (16.13)

and in th is w ay we get r id  o f  the con tribu tion  o f  the d ia gram  23 (a). T o  get 
r id  o f  the d ia gram s 2 3 (b -c )  w e d rop  the two f ir s t  te rm s  on the r igh t side 
o f  E q .(1 6 .6 ) and get

Д Е 3 ;  Y  H K 2 3 i K l 2 l * ( 3 ) - * )  ( 1 6 . 1 4 )

m j m 2 m 3

If w e apply E q .(1 6 .8 ) to the fa c to r  (ф|к23-^) and ap p rox im a te  K 12 b y  a 
function  o f  r 12, we m ay re d u ce  the e x p re s s io n  (16 .14) fo r  Д Е 3 to a double 
in te g ra l o v e r  r 23 and r 3 . D eta ils  o f  the ca lcu lation  m ay be  found in R e f .[9 ].

The f ir s t  n u m e rica l estim a te  b y  Bethe [35] w as A E 3 /A =ä0.6 M eV  (fo r  
the s o f t - c o r e  potentia l o f  W ong [39 ], [40 ]). T h is r e su lt  w as su pp orted  by 
a s im p le  v a r ia tio n a l estim a te  by  M oszk ow sk i [41] who obta in ed  
Л Е 3/А ^ 0 .4  M eV (fo r  the sa m e W ong p oten tia l). The ca lcu la tion  by 
D ahlblom  [42] fo r  the R e id  h a r d -c o r e  potentia l [43] p rod u ced  the resu lt : 
Д Е 3 /А ^ 1 .1  M eV fo r  ce n tra l in te ra ctio n , and Д Е 3/А ^ - 0 .6  M eV with 
te n so r  in tera ction  taken into a ccou n t (se e  a lso  R e f. [44 ]).

A l l  th ese  re su lts  — w hich  o s c illa te  around ze ro  — show  that the tota l 
con tribu tion  o f the th re e -b o d y  d ia gram s is  v e ry  sm a ll. T h is r e su lt  
e s ta b lish e s  the c o r r e c t n e s s  o f  the fo llo w in g  p ro ce d u re : W e ca lcu la te  the
K -m a tr ix  with s e l f -c o n s is te n t  e n e rg ie s  o f  the h ole  sta tes and with pure 
k in etic  e n e rg ie s  o f  the in term ed ia te  p a rt ic le  sta te s . W e determ in e  the 
en erg y  o f  n u c lea r  m a tter  to f ir s t  o r d e r .in  th is K -m a tr ix . The r e su lt  thus 
obta in ed  is  ex p e cte d  to have an a c c u r a c y  o f  about 1 M eV p er  n u c leon . The 
rem a in in g  th r e e -h o le  lin e  d ia g ra m s, i .e .  the th re e -b o d y  d ia gram s (and 
the h o le -h o le  s ca tte r in g  d ia gra m s) m ay be taken into accou n t as a p e r tu r - 
ba tive  c o r r e c t io n ,  e .g .  in the fash ion  in d icated  by  B eth e . (The fo u r -b o d y  
d ia gra m s are  ex p ected  to g ive  a n e g lig ib le  contribution  [44 ].)

17. R E VIEW  OF N U C LE A R  M A T T E R  CALCU LATIO N S

W e want to p re se n t h e re  the re su lts  o f  n u c le a r -m a tte r  ca lcu la tion s  
p e r fo rm e d  w ithin the sch e m e  ou tlin ed  in ch a pters 11, 12, p o s s ib ly  including  
est im a tes  o f  the sm a ll c o r r e c t io n s  d is cu ss e d  in chapter 16. H ow ever, r igh t 
now , th ere  a re  not m any p u blish ed  ca lcu la tion s  o f  th is type, and thus ou r 
re v ie w  w ill not be  a lon g  on e . U nfortunately , in s e v e r a l o f  the ca lcu la tion s  
p e r fo rm e d  in the la s t few  y e a r s ,  the s in g le -p a r t ic le  e n e rg ie s  o f  the e x c ite d  
sta tes (with m om enta  above  the F e r m i lev e l) have been  trea ted  in an 
e rro n e o u s  w ay. T h ese  ca lcu la tion s  sh a ll not be m en tion ed  h e re . C onnected  
w ith  th ese  e r ro n e o u s  ca lcu la tio n s  w e re  s e v e r a l e st im a te s  o f  the e sse n tia l
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in c r e a s e  in the binding en ergy  due to the re p la ce m e n t o f  the h a r d -c o r e  
poten tia ls by  the s o f t - c o r e  poten tia ls . T h ese  est im a tes  sh all not be  rev iew ed  
h e re , e ith e r . On the o th er  hand, we sh a ll in clude the com pu tation s o f  the 
type d e s c r ib e d  in chapter 13 in ou r  re v ie w , b e ca u se  the s in g le -p a r t ic le  
potentia l in trod u ced  in th ese com pu tation s d oes  not a ffe c t  the im portan t 
ran ge  o f  in term ed ia te  sta tes with m om enta  Pj, -  4 f m '1 , e sta b lish ed  in 
chapter 14.

T A B L E  III. SU M M ARY O F  RESU LTS O BTAIN ED  B Y  VARIOUS AUTHORS

r0(fm ) ^ vol (M e V ) €s y m (M e V > K 0 (M e V ) P o ten tia l R e feren ces

1 .0 2 1 5 .2 5 6 . 0 ( l - 0 . 6 7 o ? ) 172 BGT^ B rueckner, G a m m e l [ 2 9 ]  
Brueckner, C o o n , D ^brow sk i [ 4 6 ]

1 .2 8 8 .3 - - Y A L E Î Brueckner, M asterson  [3 2 ]

0 .9 2 1 4 .3 - 119 BGT A z z iz  [ 5 0 ]

1 .1 3 8 .3 - 105 HJ A z z i z  [5 0 ]

- 1 . 2 ~ 8 - - REID HC Sprung e t  a l .  [ 5 3 ]

~ 1 .1 - 1 0 - - REID SC Sprung e t  a l .  [5 3 ]

0 .9 8 1 5 .4 7 - - OBEP Ingber [ 5 1 ]

1 .1 1 1 7 .8 - - OBEPÏ Ingber [5 1 ]

t  w ith  s in g le -p a r t ic le  p o te n t ia l insertions

L et u s now d is cu ss  the re su lts  shown in T ab le  III. The re su lts  fo r  the 
B G T potentia l, d is cu ss e d  in  ch apter 13, a re  in good  a g reem en t with the 
e m p ir ica l v a lu es  o f  the n u c le a r -m a tte r  p a ra m e te rs . H ow ever, a fte r  1958, 
new re su lts  o f  n u c le o n -n u cle o n  sca tte r in g  have been  a ccu m u la ted . To get 
an im p ro v e d  fit to a ll th ese  data B r e it  and h is c o lla b o ra to r s  [47] have in tro 
du ced  the Y a le  potentia l w hich  d iffe r s  fr o m  the B G T  potentia l by  a la rg e r  
c o r e  ra d iu s , a s tro n g e r  o d d -s ta te s  rep u ls ion , qu ad ratic  s p in -o r b it  te rm s , 
and a w eak er e v e n -t r ip le t  cen tra l f o r c e .  E sse n tia lly  s im ila r  to the Y a le  
potentia l is  the H am ada-Johnston  (HJ) potentia l [48] (see  a lso  R e f. [49] fo r  
c o r r e c t io n s  in the HJ p oten tia l).

N ow ,the ca lcu la tion  by  B ru e ck n e r  and M a sterson  [32 ], w hich  w as a 
s ligh tly  s im p lifie d  v e rs io n  o f  the B ru eck n er  and G am m el ca lcu la tion , but 
p e r fo rm e d  with the Y a le  potential, y ie ld e d  evol = 8.3 M eV , i .e .a b o u t  7 M eV 
sh o rt o f  the e m p ir ica l va lu e , and too low  an equ ilib r iu m  den sity . T h ese  
re su lts  fo r  e voi e ss e n tia lly  a g ree  with the r e ce n t re su lts  o f  A z z iz  [50] who 
has ap p lied  the r e fe r e n c e  sp ectru m  ap p rox im ation  in so lv in g  the K -m a tr ix  
equ ation s. The h igh er eq u ilib r iu m  d en sit ies  obta in ed  by A z z iz  fo r  both  the 
B G T  and HJ potentia ls a re  p roba b ly  con n ected  -  at le a s t  pa rtly  — with the 
s in g le -p a r t ic le  potentia l u se d  in R e f. [29] (this is  exh ib ited  by  the two 
r e su lts  obta in ed  by  In gber [51] and shown in T ab le  III).
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A z z iz  poin ts out that the m ain  re a so n  fo r  the lo w e r  bind ing  en ergy  
g iven  b y  the HJ in te ra ctio n  co m p a re d  to B G T  is  the d iffe re n ce  in the 3S1 — 
state con trib u tion . N ow , the fit  to the 3Si phase sh ift is  equ a lly  g ood  in 
the c a s e  o f  both  the B G T  and HJ p oten tia ls . T he two p oten tia ls  d iffe r  
m a in ly  in th e ir  v a lu es  o f  the m ix in g  p a ra m e te r  e j w hich  m e a su re s  the 
cou p lin g  betw een  the 3S1 and 3DX sta tes  resu ltin g  fr o m  the te n so r  fo r c e .
The HJ potentia l p ro d u ce s  b ig g e r  v a lu es  o f  than d oes  the B G T  potentia l,
i .e . ,  the HJ potentia l has a r e la t iv e ly  s tro n g e r  te n so r  part than the B G T  
poten tia l. H ow ever, the e! p a ra m e te r  w as d eterm in ed  in  the Y a le  p h a se - 
sh ift a n a ly s is  [52] w ith a high u n certa in ty . A z z iz  su g gests  that one cou ld  
p rob a b ly  u se  a HJ potentia l with the 3Si + 3D i in tera ction  re p la c e d  b y  the 
c o rre sp o n d in g  B G T  in te ra ctio n . T he fit  to the phase sh ifts  w ould not be 
w o r s e  but one w ould  p rob a b ly  get the r igh t value o f  the bind ing  en erg y  o f  
n u c le a r  m a tte r .

L e t u s state  h e re  the w e ll-k n ow n  p ro p e rty  o f  te n so r  f o r c e s .  The c o n t r i
bution  o f  the te n so r  fo r c e s  to the binding  en erg y  o f  n u c le a r  m a tter  is  partly  
(sp in -)  a v e ra g e d  out and con sequ en tly  a tw o -b o d y  in te ra ctio n  w ith a b ig g e r  
ce n tra l to te n so r  ra tio  g iv e s  s tro n g e r  bind ing . B e ca u se  o f  the av erag in g  — 
out p ro p e rty  the te n so r  fo r c e  con trib u tion  to the n u c le a r  b ind ing  is  a 
s e c o n d -o r d e r  e f fe c t  (in a p ertu rb ation a l ap p roa ch ), and b e c o m e s  le s s  
im portan t at h igh er  d e n s it ie s , i . e .  at h igh er  v a lu es  o f  kF, w h ere  in te r 
m ed ia te  sta tes  a re  sh ifted  up in en erg y  and thus a re  le s s  a c c e s s ib le  to 
the tw o in tera ctin g  n u c le o n s . C on sequen tly , te n so r  fo r c e s  satu rate at a 
co m p a ra tiv e ly  lo w e r  den sity  and sh ift the w hole equ ilib r iu m  tow ards a 
lo w e r  den sity  (c o m p a re , e .g .  the b eh av iou r  o f  the 3S1 + 3D 1 cu rv e  co m p a re d  
to the 1S0 cu rv e  in F ig .24).

A  v e r y  ex ten siv e  ca lcu la tio n  — s t i l l  in p r o g r e s s  — is  that r e p o rte d  by 
Sprung [53 ]. The p oten tia l ap p lied  in th is ca lcu la tion  is  the R e id  potentia l
[43 ]. T h is potentia l has a d iffe re n t ra d ia l depen den ce in each  n u c le o n - 
n ucleon  sta te . The h a r d -c o r e  rad iu s  o f  the o r ig in a l R e id  p oten tia l has been

F IG .2 4 .  C on tr ib u tion s  o f  th e  d iffe re n t  states 

in  th e  c a s e  o f  th e  R eid  H C  p o te n t ia l .
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r c = 0.42 fm  in a ll sta tes ex cep t fo r  the 3S 1 + 3D 1 state fo r  w hich  rc = 0.52 fm . 
T h is  o r ig in a l h a r d -c o r e  potentia l (HC) has been  m o d ifie d  la te r  to fit  the 
deu teron  qu adru pole  m om en t. An oth er v e r s io n  o f  the potentia l (SC), with 
the hard- c o r e  be in g  re p la c e d  by a so ft  c o r e ,  has a lso  been  co n s id e re d .
The ra tio  o f  c e n t r a l-to -te n s o r  fo r c e  o f  the R e id  potential is  p roba b ly  even 
s m a lle r  than in the HJ poten tia l, and th is ce rta in ly  a ffe c ts  the ca lcu la ted  
bind ing  en erg y  o f  n u c lea r  m a tte r . A s the fin a l r e su lts  o f  the ca lcu lation  
has n ot b een  published  y e t, on ly  ap prox im ate  n u m bers a re  show n in 
T ab le  III. T hey in clude  c o r r e c t io n s  due to th re e -b o d y  d ia g ra m s. T h ere  is  
an u n certa in ty  in the con trib u tion  o f h igh er p a rtia l w a v es . The s iz e  and 
even  the sign  o f  th is con tribu tion  depends on w hether —within the p h a se -sh ift  
a p p rox im a tion  (Q s l and е ( т ; ) ^ £ ( т ^ )  — one ap p lies  the o n e -p io n  exchange 
poten tia l (O P E P ) o r  the p h en om en o log ica lly  d eterm in ed  phase sh ifts . One 
m ay hope to get with the ca lcu la ted  value o f  eVoi as high as to about 12 M eV 
fo r  the SC p oten tia l. The d iffe re n ce  o f  about 2 M eV betw een  the HC and SC 
poten tia ls  is  not v e r y  la rg e  and m o re  o r  le s s  a g re e s  with the estim a te  o f  
W ong [40 ]. A c co r d in g  to Sprung, the con trib u tion s o f  the in tera ction  in 
m any o f  the n u c le o n -n u cle o n  states ca n ce l ap p rox im a te ly  and on e is  le ft  
e sse n t ia lly  w ith the con trib u tion s o f  the 1S0 , 1D2 , 3SX + 3D1 states on ly .
The con trib u tion s o f  the d iffe ren t states in  the c a se  o f  the R eid  HC potential 
is  show n in  F ig ,24, taken fr o m  R e f. [53 ],

A t th is point one m ight e x p re s s  so m e  co n ce rn  w hether a potential like 
the R e id  potentia l — d iffe ren t in each  n u cleon -n u cleon  state — is  a r e a lis t ic  
r e p re se n ta tio n  o f  the n u c leon -n u cleon  in teration , o r  is  it ju st a p a ra m e tr i-  
za tion  o f  phase sh ifts . T he le a s t  one should  do is  to ch eck  how such  a 
poten tia l w ork s  in p r o b le m s  lik e  the p r o to n -p ro to n  b re m sstra h lu n g , o r  triton  
grou nd  state , o r  n eu tron -d eu teron  sca tte r in g  w here the know ledge o f  the 
o f f -e n e r g y  sh e ll s c a t te r in g -m a tr ix  e lem en ts  is  n e c e s s a r y . On the o th er hand, 
in con stru ctin g  the n u c le o n -n u cle o n  potentia l one should p rob a b ly  try  to u se  
so m e  th e o re t ica l guidance supplied  by  m e so n  th eory . T h is m ethod  o f 
con stru ctin g  the n u c le o n -n u cle o n  potentia l has turned out to b e  v e r y  s u c c e s s 
fu l in r e ce n t  y e a r s .  The m ain  p r o g r e s s  h ere  is  con n ected  with the p o s s i 
b ility  o f  ap prox im atin g  the m u lt ip le -pion  exchange b y  an exchange o f  the 
o b s e r v e d  re so n a n ce  sta tes o f  p ion s . In th is way we obtain  the s o - c a l le d  o n e - 
b o s o n  exch an ge potentia l (O BEP) [1 ]. A s an exam ple  le t us m ention  the 
w ork  o f  In gber [51] who c o n s id e r s  the exchange o f  a ll known m eson s  with 
m a s s e s  s m a lle r  than 1 B e V /c 2 plus the h ypothetica l ct m e so n . A ltog e th er  
he u s e s  8 fr e e  p a ra m e te rs  (som e  o f the m eson  m a ss e s  and coupling  
constan ts p lus two cu t-o ff p a ra m eters ) and obtains an o v e r a ll  fit to the 
phase sh ifts  o f  e sse n t ia lly  the sam e quality  as that obta in ed  in the c a s e  o f  
the Y a le  potentia l with about 80 fr e e  p a ra m e te rs . The c h a ra c te r is t ic  
fe a tu re s  o f  th is potentia l a re : (i) a stron g  m om entum  depen den ce, (ii) a 
b ig  c e n t r a l-to -te n s o r  ra tio . The re su lts  o f  n u c le a r  m atter ca lcu lation  
obta in ed  b y  In gber with h is potential w ould be  en cou ragin g  i f  it w as not fo r  the 
fa c t that h is p oten tia l fa i ls  ba d ly  in re p ro d u c in g  two im portan t lo w -e n e r g y  
data. N am ely , I n g b e r 's potentia l lea ds to the deuteron  binding, 
ed = 8.09 M eV , and to the deuteron  quadrupole  m om ent, Q D= 0.212 fm 2 . 
w h e re a s  the ex p erim en ta l v a lu es  a re : e D= 2.222 M eV and Q D= 0.274 fm 2 .
T o sa y  anything defin ite  about the cap a b ility  o f  O B E P  o f  rep rod u cin g  
n u c le a r  m a tter  p a ra m e te rs  we have to w ait fo r  re su lts  obta in ed  with an 
O B E P  fitted  p r e c is e ly  to a ll the lo w -e n e rg y  n u c leon -n u cleon  data.
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R ight now  the situ ation  is  such  that, by  applying  a th eory  ex p e cte d  to 
w ork  w ith an a c c u r a c y  o f  about 1 -2  M eV , we get a b inding  en erg y  o f  n u c lea r  
m a tter  about 5 M eV  sh o rt  o f  the e m p ir ic a l  va lu e .

W hat to do about the d is c r e p a n c y ?  No doubt, w e sh ou ld  try  to ex p lo it 
the p o s s ib ility  o f  ch o o s in g  the p ro p e r  fo r m  o f  tw o -b od y  in te ra c tio n . H ere , 
h o w e v e r , w e en cou n ter the d ifficu lty  that even  the phase sh ifts  a re  not 
y e t d e term in ed  w ith su ffic ie n t  p r e c is io n . A t the m om en t it  w ould  b e  m o s t  
im p ortan t to know m o r e  about the b eh a v iou r  o f  the m ix in g  p a ra m e te r  e! . 
A t v e r y  low  en erg y  e i = Q o k 2, and thus e i  m u st b e  p o s it iv e . At e n e rg ie s  
h igh er  than so m e  200 M eV  a ll the p h a s e -sh ift  a n a lyses  in d ica te  that e 1> 0 .  
H ow ever , the va lu e o f  is  not d e term in ed  u nam bigu ou sly  in the ran ge  o f  
n u cleon  la b o ra to ry  e n e rg ie s  betw een  about 25 and 100 M eV . T h is  is  ju st 
the ran ge  e sse n t ia l fo r  n u c le a r -m a tte r  ca lcu la tio n s ’ w h ere  m o s t  h eav ily  
w eigh ted  a re  e n e rg ie s  w hich  c o r r e s p o n d  to a n ucleon  la b o ra to ry  en ergy  
arou nd 50 M eV . The r e ce n t  L iv e r m o r e  p h a s e -sh ift  a n a lys is  [54] su ggests  
a n ega tive  va lu e o f  e ! in  th is ran ge o f  e n e r g ie s . H ow ever, p oten tia ls  lik e  
HJ o r  Y a le  p rod u ce  a p o s it iv e  and in cre a s in g  ej in the w hole  en erg y  range 
betw een  0 and 300 M eV . In n u c le a r -m a tte r  ca lcu la tion s  a potentia l w hich  
w ould  re p ro d u ce  the o s c illa t io n s  o f  around ze ro  su g gested  in R e f. [54] 
w ould  ce rta in ly  g ive  m o r e  binding s in ce  = 0 c o r r e s p o n d s  to pure ce n tra l 
f o r c e s .  One shou ld  point out tiiat the m om entum  depen den ce o f  the O B E P  
sh ou ld  enable  one to in co r p o r a te  the te n so r  fo r c e  in su ch  a w ay that one 
w ou ld  get the ex p e rim e n ta l va lu e o f Q D and the o s c i l la t io n s  o f  e 1 around 
ze ro  at in term ed ia te  e n e r g ie s . (In a c c o rd a n c e  w ith th ese  re m a rk s  the 
p oten tia l o f  M ongan [55] is  a p ro m is in g  candidate fo r  n u c le a r -m a tte r  
ca lcu la tio n s  s in ce  it h as b een  fitted  to the L iv e r m o r e  ph ase sh ifts . S ince 
it i s  a se p a ra b le  p oten tia l, the n u m e rica l w ork  w ould  b e  co m p a ra tiv e ly  
s im p le .)

T h e re  is  alw ays another p o s s ib le  s o u r c e  o f  d isa g re e m e n t betw een  
the ca lcu la te d  and the e m p ir ica lly  e st im a ted  v a lu es  o f  the n u c le á r -m a tte r  
p a ra m e te r s . W e sh ou ld  b e  aw are o f  the p o s s ib ility  that the b a s ic  a s 
sum ption  o f  the in te ra ctio n  betw een  n u cleon s in n u c le a r  m a tter  b e in g  ju st 
the sa m e tw o -b od y  in te ra c tio n  as that betw een  two fr e e  n u c le o n s , m ight 
b e  w ro n g . R ight now , the qu estion  to w hich  extent the in te ra c tio n  betw een  
n u cleon s is  changed  by  the p r e se n ce  o f  o th er  n u cleon s in n u c le a r  m a tter, 
is  v e r y  m u ch  an open  p r o b le m . L et u s  m en tion  two re ce n t e s t im a te s  o f  
the th r e e -b o d y  fo r c e s  in n u clea r  m a tter  [56 , 57] w hich  co m e  to op p os ite  
c o n c lu s io n s  (s e e  a ls o  R e f. [58] fo r  an est im a te  o f  fo u r -b o d y  f o r c e s ) .

R E F E R E N C E S

[ 1 ]  BRINK, D . M . ,  th ese  P ro ce e d in g s .
[ 2 ]  BRUECKNER, K . A . ,  EDEN, R .J . ,  FRAN CIS, N . C . ,  Phys. R e v . 98  (1 9 5 5 ) 1 4 4 5 .
[ 3 ]  S Z Y M A N S K I, Z .- ,  th ese  P ro ce e d in g s .
[ 4 ]  BRUECKNER, K . A . ,  T h e  M a n y -B o d y  P ro b le m , Les H ou ch es  (1 9 5 8 ) 4 7 .
[ 5 ]  BELL, J .S . ,  SQUIRES, E . J . , P h il. M a g . S u p p l. 1 0 (1 9 6 1 )  2 1 1 .
[ 6 ]  PETSCHEK, A . G . ,  A n n . R ev . N u c l. S e i .  1 4  (1 9 6 4 ) 2 9 .
[ 7 ]  K U M A R , K . ,  P erturbation  T h e o ry  and th e  N u cle a r  M a n y -B o d y  P ro b le m , A m ste rd a m  (1 9 6 2 ).
[ 8 ]  D A Y , B .D . ,  R ev . m o d . Phys. 39  (1 9 6 1 ) 7 1 9 .
[ 9 ]  R AJARA M AN , R . ,  BETHE, H . A . ,  R ev . m o d . Phys. 39 (1 9 6 7 ) 7 4 5 .

[ 1 0 ]  BRAND O W , B .H . ,  R ev . m o d . Phys. 39  (1 9 6 7 ) 7 7 1 .
[ 1 1 ]  K O H N , W . ,  L U TTIN G ER, J .M . ,  Phys. R e v . 118 (1 9 6 0 ) 4 1 .



184 D 4BRO W SKI

[ 1 2 ]  L U TTIN G ER, J . M . , W AR D, J . C . , Phys. R ev . 118 (1 9 6 0 ) 1 4 1 7 .
[ 1 3 ]  BAKER, G . A . ,  Phys. R ev . 131  (1 9 6 3 ) 1869 .
[1 4 ]  G O LD ST O N E , J . ,  P ro c . R oy . S o c .  A 2 93  (1 9 5 7 ) 2 6 7 .
[ 1 5 ]  S A L A M , A . ,  P rogr. th e o r . Phys. 9 (1 9 5 3 ) 5 53 .
[ 1 6 ]  FRAH N , W . E . , th ese  P ro ce e d in g s .
[1 7 ]  VILLARS, F . ,  P ro c . S . I. F . , C ou rse  2 3 , N ew  Y o rk -L o n d o n  (1 9 6 3 ) .
[ 1 8 ]  BETHE, H . A . , de  H O FFM AN N , F . , M esons and F ie ld s  1 , Evanston (1 9 5 5 ).
[ 1 9 ]  BRUECKNER, K . A . ,  Phys. R ev . 1 00  (1 9 5 5 ) 3 6 .
[ 2 0 ]  H U G E N H O L T Z, N . M . ,  P h ys ica  2 3  (1 9 5 7  ) 5 33 .
[ 2 1 ]  BRUECKNER, K . A . ,  G O L D M A N , D . T . ,  Phys. R ev . 117 (1 9  60) 2 0 7 .
[ 2 2 ]  BETHE, H . A . ,  BRANDOW , B. B . , PETSCHEK, A . G . ,  Phys. R ev . 129 (1 9 6 3 ) 2 2 5 .
[ 2 3 ]  EASLEA, B .R . ,  P hysics L ett. 19 (1 9 6 6 ) 6 6 2 .
[ 2 4 ]  KLEIN, A . ,  PRANGE, R . ,  Phys. R ev . 1 1 2 (1 9 5 8 )  9 9 4 .
[2 5 ]  TH O U LESS, D . J . ,  Phys. Rev.. 114  (1 9 5 9 ) 138 3 .
[ 2 6 ]  THOULESS, D . J . , Phys. R ev . 116 (1 9 5 9 ) 2 1 .
[ 2 7 ]  N U T T A L L , J . , Phys. R ev . 149 (1 9 6 6 ) 7 5 5 .
[ 2 8 ]  G O M E S , L . C . ,  W A L E C K A , J . D . , WEISSKOPF, V . F . ,  A nn ls Phys. 3 (1 9 5 8 ) 2 4 1 .
[ 2 9 ]  BRUECKNER,K . A . ,  G A M M E L , J .L . ,  Phys. R ev . 1 09  (1 9 5 8 ) 1 0 2 3 .
[3 0 ]  WERNER, E . ,  N u c l. Phys. 10 (1 9 5 9 ) 6 8 8 .
[ 3 1 ]  BROW N, G . E . ,  S C H A P P A R T , G . T . ,  W O N G , C . W . .  N u c l .  Phys. 5 6 (1 9 6 4 )  1 9 1 .
[3 2 ]  BRUECKNER, K . A . ,  M A STE RSO N , K . S . ,  Phys. R ev . 128  (1 9 6 2 ) 2 2 6 7 .
[ 3 3 ]  W EISSKOPF, V . ,  N u c l .  Phys. 3  (1 9 5 7 ) 4 2 3 .
[3 4 ]  RAJARA M AN , R . ,  Phys. R ev . 129  (1 9 6 3 ) 2 6 5 .
[3 5 ]  BETHE, H . A . ,  Phys. R ev . 138 (1 9 6 5 ) B804.
[ 3 6 ]  BETHE, H . A  , Phys. R ev . 158  (1 9 5 7 ) 9 4 1 .
[ 3 7 ]  R AJARA M AN , R . ,  Phys. R ev . 131  (1 9 6 3 ) 1 2 4 4 .
[ 3 8 ]  F AD D E EV, L . D . , Z h .  é x p . th e o r . F iz .  39  (1 9 6 0 ) 1 4 5 9 .
[ 3 9 ]  W O N G , C . W . ,  N u c l .  Phys. 5 6 (1 9 6 4 )  2 2 4 .
[ 4 0 ]  W O N G , C . W . ,  N u c l. Phys. 71  (1 9 65 ) 3 8 5 .
[ 4 1 ]  M O S Z K O W S K I, S . A . ,  Phys. R ev . 1 40  (1 9 6 5 ) B283.
[ 4 2 ]  D AH LBLO M , T . , N u c l. Phys. A  1 1 4 (1 9 6 7 ) 3 2 7 .
[ 4 3 ]  REID, R . , C o r n e ll T h e s is , u n p u b lish ed , and Phys. R ev .
[ 4 4 ]  A K A IS H I, Y . ,  B AN D O , H . ,  K U R IY A M A , A . ,  N O G A T A , S . ,  P rogr. th e o r . Phys. 4 0 ( 1 9 6 8 )  2 8 8 .
[4 5 ]  K U R IY A M A , A . ,  P rogr. th e o r . Phys. 4 0  (1 9 6 8 ) 3 0 1 .
[ 4 6 ]  BRUECKNER, K . A . ,  C O O N , S . A . ,  D ^B RO W SK I, J . , Phys. R ev . 168  (1 9 6 8 ) 1 1 8 4 .
[ 4 7 ]  L ASSILA , K . E . ,  HULL, M . H . ,  J r ., RUPPEL, H . M . ,  M C D O N ALD , F . A . ,  BREI'*, G . ,  Phys. R ev . 126  

(1 9 6 2 ) 8 8 1 .
[4 8 ]  H A M A D A , T . ,  JO H N STO N , J .D . ,  N u c l. Phys. 34 (1 9 6 2 ) 3 8 3 .
[ 4 9 ]  H A M A D A , T . ,  N A K A M U R A , Y . ,  T A M A G A K I, R . ,  P rogr. th e o r . Phys. 33 (1 9 6 5 ) 7 6 9 .
[ 5 0 ]  A Z Z I Z ,  N . .  N u c l. Phys. 85  (1 9 6 6 ) 1 5 .
[ 5 1 ]  INGBER, L . ,  Phys. R ev . 174  (1 9 6 8 ) 1 2 5 0 .
[ 5 2 ]  HULL, M . H . ,  J r ., LASSILA , K . E . ,  RUPPEL, H . M . ,  M C D O N ALD , F . A . ,  BREIT, G . ,  Phys. R ev . 122

(1 9 6 1 ) 1 6 0 6 .
[ 5 3 ]  SPRUNG, D . W . L . , in  P ro c . 3 rd . In t. C o n f . W in n ip e g  (  1967) 3 7 , and p r iv a te  co m m u n ic a t io n .
[ 5 4 ]  M acG R E G O R , M . H . ,  A R N D T , R . A . ,  W RIG H T, R . M . ,  Phys. R ev . 173  (1 9 6 8 ) 1 2 7 2 .
[5 5 ]  M O N G A N , T . R . , Phys. R ev . 175  (1 9 6 8 ) 126 0 .
[5 6 ]  BROW N, G . E . ,  GREEN, A . M . ,  GERACE, W .J . ,  N u c l .  Phys. A 1 1 5  (1 9 6 8 ) 4 3 5 .
[ 5 7 ]  M cKELLER, B .H . J . , RAJARA M AN , R . , Phys. R ev . L e tt . 21  (1 9 6 8 ) 4 5 0 .
[ 5 8 ]  BROW N, G . E . ,  GREEN, A . M . ,  G ERACE. W .J . ,  N Y M A N , E .M . ,  N u c l. Phys. A 1 18  (1 9 6 8 ) 1 .



SECTION IV

Phenomenological Aspects of Nuclear Structure 
and Nuclear Reactions





IA E A -S M R  6 /4 3

SYMMETRY PROPERTIES OF 
NUCLEAR VIBRATIONS

A.BOHR
Niels Bohr Institute,
Copenhagen, Denmark

Abstract

S Y M M E T R Y  PROPERTIES O F NU CLEAR VIBRA TIO N S.
A  b r ie f  survey  o f  s o m e  p r o b le m s  in  th e  f ie ld  o f  n u c le a r  v ib ra t io n a l m o d e s , based  o n  a c o l l e c t iv e  

d e s c r ip t io n , is g iv e n .

A  fundam ental p ro p e rty  o f a p h y s ica l sy ste m  is  the sp e ctru m  o f 
v ib ra t io n a l e ig e n m o d e s . The v ib ra tion a l m o d e s  re p re s e n t o s c illa t io n s  
about the equ ilib r iu m  co n fig u ra tion , and m ay be d e s c r ib e d  in te r m s  o f  an 
am plitude a o f  d isp la cem en t fr o m  equ ilib r iu m . F o r  su ffic ie n tly  sm a ll 
d isp la ce m e n ts , one e x p e cts  h a rm on ic  m otion  co rre sp o n d in g  to  a 
H am iltonian  o f  the fo r m

H = |C á2 + iD a 2 (1)

with e ig en freq u en cy

The v ib ra t io n s  can a lso  be d e s cr ib e d  in te r m s  o f  the quanta o f  e x 
cita tion . In th is  d e s cr ip t io n , a v ib ra tion  is  a m od e o f  ex cita tion  that can 
be  rep ea ted  a la rg e  n um ber o f  t im e s . The v ib ra tio n a l sta tes |n)> are  
s p e c if ie d  by the n u m ber o f  quanta, and the v a r ia b le s  o f  im m ed ia te  p h y s ica l 
s ig n ifica n ce  a re , b e s id e s  n, the o p e ra to rs  c t  and с w hich  in cr e a s e  
and d e c re a s e  the n u m ber o f  quanta. In the language o f  the quanta, h a rm o 
n ic  v ib ra t io n a l m otion  c o r r e s p o n d s  to  the ab sen ce  o f  in tera ction  betw een  
the quanta, w hich  each  p o s s e s s e s  the en erg y  hw. B eca u se  o f  the fin ite n e ss  
o f  the z e r o -p o in t  m otion ; an h arm on ic e ffe c ts  m ay b e c o m e  o f  s ig n ifica n ce  
even  fo r  the lo w e st  quanta! sta tes o f  v ib ra tio n a l m otion .

The v ib ra tio n a l m od es  in c la s s ic a l  sy s te m s  re p re s e n t pu re  m otion , 
c o rre sp o n d in g  to  quanta having on ly  en erg y  and m om entum , o r  angular 
m om entum . H ow ever, in quantal sy s te m s , one a lso  en cou n ters  m od es  
w h ose  quanta p o s s e s s  e le c t r ic  ch a rg e  and oth er s im ila r  a ttribu tes , w hich  
a re  not o f  k in em atic  n atu re. The aplitude a, though o f b a s ic  s ig n ifica n ce  
fo r  the d e s cr ip tio n  o f  the v ib ra tio n a l p r o p e r t ie s , can then no lo n g e r  be 
v isu a liz e d  in the cu s to m a ry  se n se .

In the su rv ey  o f  the n u c le a r  v ib ra t io n s , w e f ir s t  c o n s id e r  m o d e s  with 
a c la s s ic a l  analogue. An e s p e c ia lly  s im p le  type c o r r e s p o n d s  to  v a r ia tion s  
in the n u c le a r  shape. F o r  a n u cleu s with a s p h e r ica l equ ilib r iu m , the 
quanta can be sp e c ifie d  by  the angular m om entum  X and its  p r o je c t io n  ц 
on a fix ed  a x is . The am plitude a x¡i re p re s e n ts  a den sity  v a r ia tion  w hose
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angular depen den ce is  p ro p o rt io n a l to  Yjfjj , as fo llo w s  fr o m  argum ents 
o f  ro ta tion a l in va ria n ce . F o r  ex am p le , in the id e a liz e d  c a se  o f  a sy ste m  
with a sharp  su r fa c e , the n o rm a l c o -o r d in a te s  a\/j o f  the shape o s c illa t io n s  
can  be obtained  fr o m  the expan sion  o f  the su r fa ce

as is  fa m ilia r  fr o m  the th e o ry  o f  o s c illa t io n s  o f  a liqu id  d rop . The p a rity  
o f  a quantum is  к = ( - 1 ) 4

In the expan sion  (3), the te rm s  with X = 1 re p re se n t a d isp la cem en t 
o f  the ce n tre  o f  m a ss . The low est m ode o f  shape o s c illa t io n  is , th e r e fo re , 
o f  quadrupole  type with X = 2. T h is m ode is  a dom inant featu re  in the lo w - 
en erg y  n u c le a r  sp e ctra . Thus, a ll e v e n -e v e n  n u cle i have lir = 0+ in the 
grou nd  state , and the f ir s t  e x cite d  state a lm ost in va ria b ly  has angular 
m om entum  and p a rity  Itt = 2 + and can  be a sso c ia te d  with quadrupole shape 
d e fo rm a tio n s . T h is in terp retá tion  is  ba sed  on the o b s e rv e d  la rg e  m a tr ix  
e le m e n ts  fo r  e x citin g  th ese  sta tes , w hich  show s that we are  dealing  with 
a m ode o f ex cita tion  in vo lv in g  the coh eren t m otion  o f  a la rg e  n um ber o f 
n u c leon s . M o re o v e r , the m e a su re d  c r o s s - s e c t i o n s  fo r  e x citin g  the states 
in in e la stic  sca tter in g  p r o c e s s e s  can  be ra th er  w e ll accoun ted  fo r  by 
assu m in g  that the ex cita tion  is  a sso c ia te d  with a d e form ation  o f the n u clea r  
equ ipoten tia l su r fa c e s  o f  the fo rm  (3).

S tron gly  e x cite d  octu p o le  m od es  (X = 3) a re  a lso  o b se rv e d  as a prom in en t 
featu re  o f  the lo w -e n e r g y  n u c le a r  sp e ctra . L e ss  ev id en ce  is  so  fa r  a v a il
ab le on v ib ra tion a l m od es  o f h igh er m u ltip o la rity .

As m en tioned  above , a b a s ic  p ro p e rty  o f  a v ib ra tion a l m od e is  the 
p o s s ib ility  o f  rep eatin g  the e x cita tio n s . B eca u se  o f  ex p erim en ta l d i f f i 
cu lt ie s  a s so c ia te d  w ith the study o f  m u ltip le  ex c ita t io n s , the on ly  ev id en ce  
so  fa r  c o n c e rn s  the quadrupole m od e . One finds that, indeed, the e x c ita 
tion  can be rep eated , but one o b s e r v e s  m a jo r  an h arm on icity  e f fe c ts . The 
quantitative a n a lys is  o f  th ese  phenom ena is  am ong the im portan t a re a s  o f 
cu rre n t deve lop m en t, but qu a lita tive ly , the an h arm on icity  can be s im p ly  
u n d erstood  in te r m s  o f  the ten den cy  o f the n u cleon s ou tside c lo s e d  sh e lls  
to  p rod u ce  an e llip so id a l equ ilib r iu m  shape. F o r  co n fig u ra tion s  with r e 
la tiv e ly  few  such  p a r t ic le s , the eq u ilib r iu m  rem a in s  sp h e r ica l, but the 
s tab ility  d e c r e a s e s  w ith the addition  o f  p a r t ic le s  in u n filled  sh e lls , as 
te s t if ie d  by  the d e cre a s in g  v ib ra tio n a l freq u en cy . F o r  n u c le i with s u ffi
c ie n t ly  m any p a r t ic le s  ou tside c lo s e d  sh e lls , the eq u ilib r iu m  shape is  no 
lo n g e r  sp h e r ica l. The tra n sition  to  a n o n -s p h e r ic a l eq u ilib r iu m  is  re v e a le d  
by the on set o f  ro ta tion a l band stru ctu re  in the n u c lea r  sp ectra .

The o b s e rv e d  stab le  n u c le a r  d e form a tion s  p r e s e r v e  ax ia l sy m m e try , 
and the v ib ra tio n s  about such a d e fo rm e d  equ ilib r iu m  can  th e r e fo re  be 
s p e c if ie d  by the quantum n um ber v , re p re se n tin g  the p r o je c t io n  o f  angular 
m om entum  on the in tern a l sy m m e try  a x is . The to ta l angular m om entum  
o f  a v ib ra t io n a l quantum is  no lo n g e r  a constant o f  the m otion , but the shape 
v ib ra t io n s  can  be c la s s if ie d  by  a quantum n um ber X re p re se n tin g  the num ber 
o f  angular n odes in the den sity  v a ria tion .

The b e s t stud ied  shape o s c illa t io n s  in the d e fo rm e d  n u c le i a re  o f 
qu adru pole  type (X = 2); one o b s e rv e s  v = 0 m od es  (ß -v ib ra t io n s ) a s s o c i 
ated w ith den sity  o s c illa t io n s  p re se rv in g  ax ia l sy m m etry  as w e ll as 
v = ± 2 m od es  (7 -v ib r a t io n s )  re p re se n t in g  e x cu rs io n s  away fr o m  axia l

(3)
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sy m m e try . A shape d e form a tion  w ith X = 2 and v = ±1 is  equ ivalent to  a 
ro tation  and th e r e fo re  d oes  not o c c u r  as a v ib ra t io n a l d e g re e  o f  fre e d o m .

The rota tion a l m otion  o f  the n u cleu s as a w hole m ay a ffe ct the in tr in s ic  
m otion  through the C o r io l is  and cen tr ifu g a l f o r c e s .  Such C o r io l is  cou p lin g s 
a re  found to be e sp e c ia lly  im portan t fo r  the octu p o le  m od es  in the d e form ed  
n u c le i on w hich  re ce n tly  m u ch  new ev id en ce  has been  obtained.

The o c c u r r e n c e  o f  n o n -s p h e r ic a l eq u ilib r iu m  sh apes in n u c le i p ro v id e s  
an in stru ctiv e  exam ple  o f a v io la tion  o f  a sy m m e try  p o s s e s s e d  by the tota l 
H am iltonian . The sy m m e try  is  r e s to r e d  by  the in clu s ion  o f  the c o lle c t iv e  
rota tion a l m otion .

A new d im en sion  to  the n u c lea r  v ib ra tion a l s p e c tra  is  p rov id ed  by the 
o c c u r r e n c e  o f  two types o f  n u c leon s , n eutron s and p ro to n s .

The m otion  o f  n eutron s and p roton s  is  stron g ly  cou p led , a n d th e e ig e n - 
m o d e s  tend to  re p re se n t o s c illa t io n s  in w hich  the n eutron s and p ro ton s  
m ove  e ith e r  in phase o r  in op p os ite  phase. We can d e s c r ib e  th is  sy m m etry  
in te r m s  o f  the ch a rg e  sy m m etry  op era tion  S i r , w hich  in terch an g es  neutron s 
and p ro to n s . If we c o n s id e r  a n u cleu s with N = Z  and ig n ore  the e ffe c t  o f 
the ch a rg e  u n sy m m e tr ic  C ou lom b fo r c e s  and oth er e le c tro m a g n e tic  in te r 
action s  in m od ify in g  the n u c le a r  w ave fu nction , the sta tion a ry  sta tes and 
the quanta o f ex cita tion  can  be la b e lle d  by the e igenvalue  rT = ± 1 o f  â l T.

The lo w -fre q u e n c y  shape o s c illa t io n s  d is cu ss e d  above re p re se n t 
sy m m e tr ic  m otion  o f  n eutron s and p ro to n s , and the quanta have rT = + 1.
The rT = -1' m o d e s  re p re s e n t a m otion  o f  n eu tron s against p ro ton s  (p o la r i
zation  m o d e s ). The f ir s t  c o l le c t iv e  m ode o f  ex cita tion  to  be id en tified  in 
n u c le i, the giant p h o to re so n a n ce , is  o f  th is type, and has X = 1. In d e 
fo rm e d  n u c le i th is m ode is  o b s e rv e d  to  sp lit into tw o com pon en ts with 
v = 0 and v = ± 1 , r e s p e c t iv e ly .

If we are  dealing  with a n ucleu s with a la rg e  neutron  e x c e s s , the e x 
c ita tio n s  o f  n eu tron s and p ro ton s  in volve  o rb its  with d iffe re n t s in g le - 
p a r t ic le  quantum n u m bers (n jim  in sp h e r ica l, NnzAK in d e fo rm e d  n u c le i). 
The v ib ra tio n a l quanta can be d e co m p o se d  in te r m s  o f  s in g le -p a r t ic le  e x 
c ita tio n s , and at th is  m ic r o s c o p ic  le v e l the ch a rg e  sy m m e try  is  th e re fo re  
stro n g ly  brok en . H ow ever , it m ay s t il l  be p o s s ib le  to  ch a ra c te r iz e  the 
c o lle c t iv e  p r o p e r t ie s  o f  the v ib ra t io n s , i. e. the a sso c ia te d  o s c illa t io n s  
in the a v erag e  n u c le a r  fie ld  and the m u ltipo le  m om en ts o f  long  w avelength , 
by the c h a rg e -s y m m e try  quantum num ber. Indeed, the availab le  ev id en ce  
as w e ll as th e o r e t ic a l an a lyses su g gest that, in th is  se n se , the ch a rge  
sy m m e try  is  ap p rox im a te ly  fu lfille d  a lso  fo r  the shape v ib ra tion s  and 
p o la r iza t io n  o s c illa t io n s  in heavy n u c le i. F o r  ex am p le , the in e la stic  
sca tte r in g  o f o -p a r t i c le s  and d eu teron s , w hich  a cts  s y m m e tr ica lly  on 
n eutron s and p ro to n s , can  e x c ite  the shape o s c illa t io n s  (rT ** + 1), but not 
the p o la r iza t io n  m od e (rT »  -  1 ).

C h arge sy m m e try  is  part o f  a m o re  g e n e ra l in va ria n ce , the ch a rge  
indepen den ce o r  is o sp in  sy m m e try . The v a r ia tion s  in the n u cleon ic  den sity  
can  be e x p re s s e d  in te r m s  o f  is o s c a la r  (t  = 0 ) and is o v e c to r  (т = l 1 ) com pon en ts. 
The c h a rg e -s y m m e try  op era tion  re p re s e n ts  a rotation  through  the angle ж, 
about an ax is in is o s p a ce , p e rp e n d icu la r  to  the x -a x is ,  and the quantum 
n um ber rT is  th e r e fo re

fr = (-I)' (4)
T h us, the c h a r g e -s y m m e tr ic  m o d e s  are  is o s c a la r  w hile the a n ti-sy m m e tr ic  
m o d e s  are  is o v e c to r .
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The quanta o f  the p o la riza tio n  m od es  c o n s id e re d  above have no ch a rge  
and h en ce  have the is o sp in  com ponent ц т = 0. The is o v e c to r  m od es  in 
v o lv e  additional com pon en ts with ц т -  ± 1 , w hose p r o p e rt ie s  are re la ted  
to  the t  = 1 ,  цт = 0 m od es  by rota tion s in is o s p a ce . The ц? —i l  excita tion s 
in vo lve  the tra n sfo rm a tio n  o f  a p roton  into a n eutron , o r  v ic e  v e rs a , and 
re p re s e n t m od es  o f  o s c illa t io n  with no c la s s ic a l  analogue.

M T= 1 M 7 = 0  M , =  1

F IG -1- T h e  isospin  structure o f  v ib ra t io n a l m odes  in  a n u c le u s  w ith  N = Z  and isospin  T Q = 0 in  the 
ground sta te.

\
\

T„ -------------------- v \
\ V

FIG. 2 . Isospin  structure for a nu cleu s w ith  neutron  e x cess .

The is o sp in  s tru ctu re  o f v ib ra tion a l m o d e s  in a n ucleu s with N = Z 
and is o sp in  T 0 = 0 in the ground state is  in d icated  sch e m a tica lly  in F ig . 1. 
Is o b a r ic  analogue states are  con n ected  with thin brok en  lin e s . The ground 
sta tes o f  the ad jacent n u c le i and th e ir  analogue state in the ta rget are  in d i
ca ted  by  dashed lin e s .

F o r  a n u cleu s with neutron  e x c e s s , the co rre sp o n d in g  pattern  is  
sch e m a tica lly  illu s tra ted  in F ig .2. The states are  la b e lle d  by the to ta l T 
quantum n um ber and the ex cita tion s  can be c la s s if ie d  in te r m s  o f the isosp in
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change Д Т  = T -  T 0. The ta rg e t  n u cleu s is  fu lly  a lign ed  in is o s p a ce  
(M T = T 0) and it is  conven ient f ir s t  to fo cu s  attention on the ex cita tion s  
w ith ц T = A T , w hich  lead  to  states rem ain in g  fu lly  a ligned  in is o s p a ce .
The e x cita tio n s  to  the is o b a r ic  analogue sta tes (ДТ -  цт > 0) can  be obtained 
fr o m  th ose  to the fu lly  a ligned  sta tes by exp lo itin g  the ro ta tion a l in va rian ce  
in is o s p a c e ; the tra n s ition  am plitudes are  p ro p o rt io n a l to the v e c to r  
addition  c o e ffic ie n t  <^T0 Т0т цт/Т Т 0 + and the tra n s ition  p ro b a b ilit ie s  
thus d e c re a s e  a p p rox im a te ly  by a p ow er  o f  T 0 , fo r  each  unit o f  Д T  -  ßT .
F o r  sm a ll v a lu es  o f  T 0, the ex cita tion  o f an is o v e c to r  m od e w ould  lead  
to  a m u ltip let with Д Т  = - 1 ,0 ,  1, w ith p ro p e r t ie s  re la te d  by sy m m e try . 
H ow ever , even  fo r  m od era te  v a lu es  o f  the neutron  e x c e s s ,  the stron g  
cou p lin g  betw een  the is o sp in s  o f ta rg e t and v ibra tion  im p lie s  that tra n 
s itio n s  with d iffe ren t va lu es o f  Д Т  are  no lo n g e r  re la te d  in a s im p le  m ann er. 
The Д Т  = 0 m o d e s  a re  the on es co n s id e re d  ab ove , w h ose  c o lle c t iv e  p r o 
p e r t ie s  can  be a p p rox im a te ly  c h a ra c te r iz e d  by the c h a rg e -s y m m e try  
quantum n um ber r r .

The study o f  m o d e s  in volv in g  ch a rg e  exch an ge is  on ly  in its in fancy.
W ith the to o ls  p re se n tly  a v a ilab le  we m ay soon  le a rn  a g re a t dea l m o re  
about the is o sp in  s tru ctu re  o f  the n u c lea r  m o d e s  o f  e x cita tion .

The to ta l angular m om entum  o f a v ib ra tion a l m od e co n s is ts  o f  o rb ita l
and spin com p on en ts  к and a , cou p led  to the resu ltant X . The p a rity  o f  a
quantum is  d e term in ed  by the o rb ita l m u ltip ole  o r d e r

7T = (-1 )K (5)

and thus, fo r  g iven  (X, 7r), we can  have tw o d iffe re n t (к., a) com p on en ts , 
e x ce p t  fo r  X = 0,

я- = (-1 )^  к = X , a = 0 o r  1
(6)

7Г =  ( - 1 ) X + 1  К =  X ± 1  , СГ =  1

If on ly ce n tra l fo r c e s  a cted  betw een  n u cleon s, the o rb ita l and spin 
m otion  w ould  be u ncou p led , and the v ib ra tio n a l quanta w ould  have defin ite  
quantum n u m bers a and к ( fo r  a s p h e r ica l n u cleu s). The s p in -o r b it  in te r 
action  and te n so r  f o r c e s ,  h o w ev er , im ply  a cou p lin g  betw een  m o d e s  with 
the tw o d iffe re n t se ts  o f  quantum n u m bers (к, a), fo r  g iven  (X, it). T h ese  
n o n -c e n tra l in te ra ctio n s  a ffe c t  the n u c le a r  stru ctu re  in a m a jo r  w ay through  
the s p in -o r b it  cou p lin g  in the s in g le -p a r t ic le  poten tia l. T hus, fo r  ex am p le , 
v ib ra t io n a l m od es  m ay in vo lve  n u c leon ic  o rb its  w ith j = jC + | w ith litt le  
con trib u tion  fr o m  the s p in -o r b it  p a rtn e rs  w ith j = £ -  I .  Such a d is sy m m e try  
in v o lv e s  a co m p le te  v io la tion  o f  (/c , ст) sy m m e try  at the m ic r o s c o p ic  le v e l. 
H ow ever , as fo r  the ch a rg e  sy m m e try  r e fe r r e d  to  ab ove , it m ay s t ill  be 
p o s s ib le  to  c h a r a c te r iz e  the c o lle c t iv e  p r o p e r t ie s  o f  the v ib ra tion  by a p p ro x i
m ate quantum n u m bers  к and a. F o r  ex am p le , th e re  is  e v id en ce  that the 
lo w -e n e r g y  m o d e s  r e fe r r e d  to  as shape o s c illa t io n s  have a »  0 as su ggested  
by  the in terp reta tion  o f  th ese  m o d e s . The ev id en ce  c o m e s  fr o m  the o b s e r 
vation  that the n u c le a r  fie ld  a s so c ia te d  with th ese  ex cita tion s  is  on ly w eakly  
sp in -d epen d en t.

Only ra th er  lit t le  ev id en ce  is  so  fa r  ava ilab le  co n ce rn in g  the o c c u r r e n c e  
o f  v ib ra t io n a l m o d e s  w ith a ~  1. One m ay ex p e ct m od es  o f  sp in -w a v e  type, 
b y  w hich  a lo c a l  e x c e s s  o f  sp in -u p  re la tiv e  to  sp in -d ow n  p rop a g a tes  through
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the n u cleu s; such  m o d e s  are analogous to  the p o la r iza t io n  m o d e s  r e fe r r e d  
to  above. A dd ition al spin ex cita tion  m od es  m ay be a sso c ia te d  w ith the 
p r e s e n ce  o f  unsaturated  sp ins in the n u clea r  ground state , and re p re se n t 
o s c illa t io n s  in the to ta l spin and o rb ita l angular m om enta  o f  the n ucleu s.

The spin and iso sp in  s y m m e tr ie s , each  re p re se n t in g  an SU2 in v a ria n ce , 
can  be com bin ed  to  fo rm  an SU4 in va ria n ce  grou p , the su p erm u ltip let 
sy m m e try  o f W ign er. F o r  exam ple , the giant d ip ole  ex cita tion  with к = 1 
and (c j,t )  = ( 0 , 1 ) ,  togeth er with co rre sp o n d in g  sp in -w a v e  ex cita tion s  with 
к =  1 and ( c t , t )  =  ( 1 , 0 )  and ( 0 , 1 )  w ould constitu te  a 1 5 -d im e n s io n a l r e 
p resen ta tion  o f  SU4 . (The (сг,т) = (0 ,0 )  d ipole  m ode re p re s e n ts  c e n t r e -o f -  
m a ss  m otion , as m en tioned  above . )

Quite a new  v a r ie ty  o f  v ib ra tio n s  o c cu r  when we c o n s id e r  the p o s s ib i 
lity  o f  quanta p o s s e s s in g  a n on -van ish in g  n ucleon  n um ber, a.  The a = 0 
v ib ra tio n a l m od es  c o n s id e re d  above in volve  v a r ia tio n s  in the n u cleon ic  
den sity , i. e. ex c ita tion s  o f  n u cleon s o r  p a r t ic le -h o le  c o r r e la t io n s . In 
the a = ± 2  m o d e s , w e are  studying c o lle c t iv e  phenom ena gen era ted  by 
p a r t ic le -p a r t ic le  o r  h o le -h o le  c o r r e la t io n s . C o rre la t io n s  o f  th is type are  
a s so c ia te d  with the p a irin g  e ffe c t , w hich  is  such a prom in en t featu re  o f  the 
lo w -e n e r g y  n u c le a r  sp e ctra . In a s p h e r ica l n u cleu s , th is m ode o f p a ir  
v ib ra tion  has Хтг = 0+, and the quanta o f  ex cita tion  in volve  a su p erp osition  
o f  co n fig u ra tion s  (j2) 0 with tw o n ucleon s in the sam e s in g le -p a r t ic le  o rb it , j.

E = i  -  « ,  (N0) -  i  A (N -N o )  A =  ï  ( € , ( N 0+ 2 ) -  ü ,  ( N , - 2 ) )

, in units o f  tiU) 1SW г  г" ( So (No*- 2 )<- S . (N ,-  2 ) J - ’lofN o)

(3 .1) ( 2 .2 ) (1.3 )

N, - 4  N, - 2  N, Nt + 2  N, + 4
_____________ I______________ I______________ I______________ 1______________I______________ I---------------------» . N

F IG .3 . Pattern o f  p a ir  v ib ra tio n s  in v o lv in g  p a r t ic le s  o f  o n e  ty p e  (neutrons o r  proton s).

The pattern  o f such p a ir  v ib ra tio n s  in volv in g  p a r t ic le s  o f  one type 
(neutrons o r  p ro ton s) is  illu s tra ted  in F ig . 3. The ex cita tion s  a re  ba sed  on 
the ground state o f the n ucleu s with neutron  n um ber, N, assu m ed  to  r e 
p re se n t a c lo s e d  sh e ll con fig u ra tion . T h ere  a re  two m o d e s  w ith  о  = ± 2 , 
and the sta tes are  la b e lle d  by (na = -2, na = + 2), g iv in g  the num ber of 
quanta o f  each  type . The states (n .2 ,0 )  and (0 ,n 2) r e p re s e n t the ground 
sta tes o f  the n u c le i with neutron  n um ber N = No - 2n_2 and N = N0 + 2n2 , 
r e s p e c t iv e ly . The en ergy  E p lotted  in F ig . 3 is  obtained fro m  the tota l 
e n e rg y  S  by su btra ctin g  the g rou n d -s ta te  en erg y  Sо (No) fo r  N = N0 and a 
lin e a r  te r m  in N w hose  c o e ffic ie n t  is  so  ad justed  that E (0 , 0) = 0 and 
E (1, 0) = E (0, 1) = hu. The sp ectru m  illu s tra ted  c o r r e s p o n d s  to  the h a rm o 
n ic  ap prox im a tion , in w hich  the in tera ction  betw een  the ex cita tion  quanta 
is  n eg lected . The en erg y  is  then E (n2, n^ ) = (n2 + n-2)"hu.

The v ib ra tio n a l am plitude a fo r  the a  = ± 2 o s c illa t io n s  is  a m ea su re  
o f  the pa irin g  fie ld  (o r  p a irin g  den sity ), w hich  re p re s e n ts  the c re a tio n  o r
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annihilation  o f  tw o n u cleon s, at the sp ace  point c o n s id e re d . T h is  f ie ld  has 
no c la s s ic a l  analogue, and a state w ith a fin ite  average  value o f a d oes  not 
p o s s e s s  a defin ite  n um ber o f  p a r t ic le s .

The c o lle c t iv e  o s c illa t io n s  o f  the pa irin g  fie ld  a re  c h a ra cte r iz e d  by 
la rg e  ex cita tion  p ro b a b ilit ie s  in tw o -n u cleon  tra n s fe r  r e a c t io n s , such  as 
the (t, p) p r o c e s s  by w hich tw o n eutron s c lo s e ly  c o r r e la te d  in sp a ce  are 
tr a n s fe r r e d  to  the ta rget. R ecen tly , c o lle c t iv e  m od es  with the p r o p e rt ie s  
ex p ected  fo r  neutron  p a ir  v ib ra tio n s  have been  found in the study o f tw o- 
n u cleon  tra n s fe r  re a c t io n s , and the su b ject is  at p resen t in rap id  develop m en t.

The o b s e rv e d  sp e ctra  show dev iation s fro m  the h arm on ic  ap p rox im ation  
w hich  one m ay attem pt to d e s c r ib e  in te rm s o f  e ffe c t iv e  in tera ction s  betw een  
the quanta. Such an h arm on icity  e ffe c ts  are  ex p ected  to  in c r e a s e  as m o re  
and m o re  quanta are  added to  the c lo s e d -s h e l l  state. When m any quanta 
are  p re se n t, h ow ever, one m ay trea t the p a ir  c o r r e la t io n  e ffe c t  in te rm s  
o f  a static deform ation  o f the pa irin g  density. The p ro b le m  is  som ew hat 
s im ila r  to the one en cou n tered  in the quadrupole v ib ra tion a l sp ectru m  o f  
a sp h e r ica l n u cleu s if  we c o n s id e r  states w ith m any quanta and la rg e  va lu es 
o f  the angular m om entum . B ecau se  o f  the cen tr ifu g a l e ffe c t , the n u c lea r  
shape fo r  su ch  states p o s s e s s e s  an average  d e form a tion , and one m ay 
obtain  an ap prox im ate  d e scr ip tio n  by separating  the m otion  into rotation a l 
m otion  and in tr in s ic  m otion  w ith re s p e c t  to the d e fo rm e d  shape.

T im e d oes  not p erm it a p r o p e r  d is cu ss io n  o f  th ese  phenom ena, the 
study o f  w hich  m ay shed new light on the n u c lea r  p a ir -c o r r e la t io n  phenom ena 
w hich , in turn , is  in tim ately  re la ted  to  the c o r r e la t io n  e ffe ct  fo r  the e le c tr o n s  
in the su percon du ctin g  m eta l. New phenom ena, w hich  rem ain  la rg e ly  un
e x p lo re d , are  con n ected  with the pa irin g  m od es  in volv in g  n eu tron -p ro ton  
c o r r e la t io n s  as w e ll as the m od es  with n on -van ish in g  angular m om entum .

Although, in th is b r ie f  su rv ey , it has only been  p o s s ib le  to touch  upon 
a few  to p ic s , I hope to have con v eyed  an im p re s s io n  o f the r ich n e ss  o f  the 
phenom ena and the v a r ie ty  o f  p a ttern s en cou n tered  in the exp lora tion  o f the 
n u clea r  v ib ra tion a l m o d e s . The d is cu ss io n  has been  b a sed  on a c o lle c t iv e  
d e s cr ip tio n , but one m ay a lso  attem pt to analyse the v ib ra tio n a l m otion  in 
te r m s  o f  in d iv id u a l-p a rtic le  com pon en ts.

The m ain  m ech an ism  fo r  generating  the v ib ra tio n a l m otion  appears 
to  be the coup ling  betw een  the n u c leon ic  ex cita tion s  and the fie ld  they 
g en era te . On th is b a s is , one can obtain an im m ed ia te  qualitative explanation  
o f  m any o f the p rom in en t fea tu res  o f  the v ib ra tio n s . As re g a rd s  the quantita
tive  an a lys is , one m ust re co g n iz e  that we are dealing with p r o p e rt ie s  o f  
the n u c lea r  m a te r ia l and thus o f s im ila r  nature and subtlety  as, fo r  exam ple , 
the estim a te  o f  the average  n u c lea r  density  and potential.

The o c c u r r e n c e  o f  c o lle c t iv e  m otion  and the re la tion sh ip  to underly ing  
p a rt ic le  d e g re e s  o f  fr e e d o m  is  a g e n e ra l them e in m any dom ains o f  quantal 
p h y s ics  (p lasm a o s c illa t io n s  in an e le c tro n  g a s , 7r-m esons as n u c leon - 
antinucleon c o r r e la t io n s , e tc . ). In a fin ite sy ste m , such as the n u cleu s, 
th ere  is  no sharp  d is tin ction  betw een  ex cita tion s  o f  in d iv idual n u cleon s 
(p a r t ic le -h o le  con fig u ra tion s  o r  tw o -q u a s ip a rt ic le  co n fig u ra tion s) and 
c o lle c t iv e  m o d e s , and it h as, th e r e fo re , been  e sp e c ia lly  im portant to 
com b in e  m ic r o s c o p ic  and m a c r o s c o p ic  ap proa ch es.





IA E A -S M R  6 /2 7

BASIC CONCEPTS OF THE 
SHELL MODEL AND SOME SIMPLE 
EXCITATION MODES IN NUCLEI1"

G. ALAGA
Institute "Rudjer BoSkovic”
Zagreb, Yugoslavia

Abstract

BASIC CO N C EPTS O F THE SHELL MODEL AN D  SOME SIMPLE E X C IT A T IO N  M ODES IN NUCLEI.
1. T h e  b a s ic  id ea s  o f  th e  sh e ll m o d e l and th e  p rop erties  o f  s in g le -p a r t ic le  states; 2 . S im p le  fea tures 

o f  s o m e  t w o -b o d y  and m a n y -b o d y  system s.

1. TH E BASIC IDEAS OF THE SH E LL M OD EL AND THE PR O P E R T IE S 
OF S IN G L E -P A R T IC L E  ST ATES

In the c o u r s e s  g iven  b y  D . B rin k  and I . S laus in th ese  P ro ce e d in g s  
we obta in  m uch  in form ation  on the p resen t state o f  know ledge on  fr e e  
n u c le o n -n u cle o n  in te ra c tio n . In addition, the g r o s s  fe a tu re s  o f  the n u c lea r  
m a n y -b o d y  system ' such  as binding e n e rg ie s  and den sity  d is tr ib u tion s  have 
b e e n 'd is c u s s e d  fro m  the m a c r o s c o p ic  point o f  v iew  (D . B rin k , J . Nem eth 
and Z .  Szym an sk i, a lso  in th ese  P r o ce e d in g s ). B e fo r e  turning to  the d is 
cu s s io n  o f  the m od es  o f  ex cita tion s  o f  nuclei it is  in stru ctiv e  to  rev iew  
so m e  o f  the co n se q u e n ce s  o f  the bulk p r o p e r t ie s . .

The m ost sign ifican t and fascin a tin g  p ro p e rty  o f  fin ite  n u c le i is  the 
fa ct that the ra d ii a re  p ro p o rtio n a l to A 1/ 3

R = r0 A1/3 (1)

with r0 as the constant o f  p ro p o rt io n a lity . An im m ed ia te  con seq u en ce  is  
the fa ct that n u c lea r  d en sity  is  independent o f  the n um ber o f  n ucleon s A . 
A n oth er fact is  that the n u c le a r  d en sity  is ra th er  sm a ll co m p a re d  with that 
o f  c lo s e ly  packed n u c leon s . T he estim a te  m ay  be  obtained  as fo llo w s . 
C o n s id e r  the hard c o r e  rad.ius с = 0. 5 fm  as a d is ta n ce  o f  the c lo s e s t  a p - ' 
p roa ch  o f  two n u cleon s . The ra tio  o f  n u c lea r  d en sity  and that o f  c lo s e ly  
packed  n ucleon s is

. _ /  с  \3 - 0 .0 1  (2)
PjPc.p-[2^j

taking r0 = 1 .1  fm . Thus w e m ay  fu rth er  assu m e  that n u cleon s m ove a lm ost 
independently . Independent ev id en ce  m ay  be obtained fro m  neutron  sca tter in g  
e x p erim en ts  ( F i g . l ) .  C om parin g  the b la c k -b o x  c r o s s - s e c t i o n  to the 
m e a su re d  one it is  p o s s ib le  to  con clu d e  that the m ean  fr e e  path o f  neutrons 

+
T h e se  le c t u r e  notes w e re  w ritten  b y  V .R .  P andharipande and L . S ip s .
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in the nucleu s is  la r g e r  than the s iz e  o f  the n u cleu s . In a rough a p p ro x i
m a tion  we m a y  then think o f  a nucleu s as a degen era te  F e r m i g a s . We 
obta in  fo r  the d en sity

T h e k in etic  e n e rg y  o f  the m ost e n e rg e tic  nucleon  is  e a s ily  ca lcu lated  
to  be (rQ = l . l  fm )

T o  p rov id e  fo r  the o b s e rv e d  binding en erg y  p e r  n u cleon  (~  8 M eV ), the 
a v e ra g e  potential w ithin w hich  the n ucleon s a re  contained should have a 
depth o f  about 50 M eV . H ere  C ou lom b en erg y  has not been  taken into 
a ccou n t. T he con seq u en ce  o f  th is is  that in  heavy  n u cle i the depth o f  the 
n u c le a r  potentia l as seen  by  proton s is  a p p rox im a te ly  5 M eV  d e e p e r  than 
that se e n  by  n eu tron s.

The ex cited  state sp e ctra  in the F e r m i gas m od e l a re  independent o f  
the n um ber o f  n u c leon s . T he o b se rv e d  sp e ctra , h ow ev er, do show  stron g  
depen den ce on  A . B e s id e s , the m ea su red  sep ara tion  en erg y  fo r  the last 
nu cleon  show s slight flu ctuation s (F ig . 2 ). S im ila r  flu ctuation s in the a tom ic  
c a s e  (F ig .3 )  a re  m uch m o r e  pronounced  and have been  attributed to the 
sh e ll  s tru c tu re . Thus the shown flu ctuation s o f  the n u c lea r  "io n iz a tio n  
poten tia l" su ggest the p re se n ce  o f  the sh e ll stru ctu re  in n u c le i. The 
o b s e rv e d  sm a lln e ss  o f  the flu ctuation s m a y  be u n derstood  by  com p a rin g

V 3 ж2 F 4ятЗ
(3)

w hich  y ie ld s  the re la tion

1 /3

(4)
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F IG .2 .  M ea su rem en ts o f  th e  sep aration  e n e rg y .

>«
Z

О
Q.

<
N

1s 2s 3s

F IG .3 . F luctuations o f  the io n iz a t io n  p o te n t ia l in  a to m s d u e to sh e ll stru ctu re .

the strength  o f  the binding in  the H2 m o le cu le  and the deu teron  (F ig . 4 ). 
F ig u re  4 show s that the binding en ergy , e x p re sse d  in the c h a ra c te r is t ic  unit 
in vo lv in g  the s iz e  and the m a ss  o f  the sy stem  ft2/M r 2, is  by  fou r  o r d e r s  o f  
m agnitude la r g e r  in the H2 m o le cu le  than in the deu teron . A s a con sequ en ce  
the w ave fu nction  o f  the ground state o f  the H 2 m o le cu le  is  w e ll contained 
w ithin the range o f  the potential, w h ereas the deu teron  rad iu s is  la r g e r  
than the range o f  the n u c lea r  poten tia l. Thus the o b se rv e d  sm a lln e ss  o f  
sh e ll e ffe c ts  in the n u c lea r  " io n iz a tio n  p oten tia l" can be attributed to  the 
r e la t iv e ly  w eak binding in n u c le i .
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E x p er im en ta lly , the sh e ll c lo s u r e s  in n u cle i a re  detected  at the neutron  
N and proton  P  s o -c a l le d  m a g ic  num bers

2, 8, 20, 28, 50, 82, 126, 1841 ____

In the e a r ly  days o f  the n u c lea r  sh e ll m o d e l, d iffe ren t types o f  a v era g e  
p oten tia ls , in  w hich  n ucleon s w ere  put to  m ov e  independently , w ere  u sed . 
T h ey  range fro m  h a rm on ic  o s c i l la t o r  to squ are  w ell, w ine bottle  e tc .  H ow 
e v e r , none o f  th ese  cou ld  p rov id e  fo r  sh e ll c lo s u r e s  at the above m entioned  
m a g ic  n u m b ers . The p ro p e r  m a g ic  n um bers w ere  obtained  independently  
by  G o e p p e r t -M e y e r  and by  H axel, Jen sen  and Suess adding a o n e -b o d y  
s p in -o r b it  te rm  to  the a v era g e  fie ld . The a v erag e  potentia l fe lt by  n u cleon s 
a ssu m e s  the fo rm

V (r ) + U (r) 1  • s

w h ere  V (r ) and U (r) ch a ra c te r iz e  the ra d ia l shape o f  the a v era g e  potential 
and sp in -o r b it  te rm , r e s p e c t iv e ly . T he o r ig in  o f  the sp in -o r b it  te rm  m ay  
be sought in the a v era g e  o f  the tw o -b o d y  S12 term  in  the fr e e  n u c leon - 
n ucleon  potentia l (s e e  D . B rin k , th ese  P r o ce e d in g s ) . T he s e c o n d -o r d e r  
te n so r  fo r c e  m ay  a lso  con trib u te .

T h e range o f  the in te ra ctio n  is  sm a ll com p a red  with the o b s e rv e d  
th ick n ess  o f  the n u c le a r  su r fa c e . T h us,on e can  state that the a v erag e  
potentia l w ill fo llo w  the n u c le a r  d en sity  d is tr ibu tion  and m a y  be  w ritten  as

V (r )= V 0 f ( r ) = V 0 ---------- (5)
1 + exp^— j

T h is fo rm  is  known as the W ood s-S a xon  poten tia l. H e re  f(r ) is  the 
fa m ilia r  fu nction  d e s cr ib in g  the n u c le a r -d e n s ity  d is tr ibu tion  (s e e  D . B rink, 
th ese  P r o ce e d in g s ) .  F o r  the 1  • s te rm  we assu m e the fo rm

V í s ( r )  =  ( V cJ n r 2 Í M í } ? . ?  ( 6 )

The grad ien t fo rm  o f  the ra d ia l part can  be u n derstood  in tu itive ly , b eca u se  
the gradient o f  the potentia l d e fin es  the ra d ia l d ir e c t io n  w hich , with the 
p a rt ic le  m otion , can  cou p le  the p se u d o v e cto r  to the n u c le a r  sp in .

T he e x p erim en ta lly  o b s e rv e d  sp in -o r b it  sp littin gs can  be d e s c r ib e d , 
e s p e c ia lly  in the lead  reg ion , by  the fo llow in g  e x p re s s io n 2

e £s = - 2 0 ( 7 -  s) A' 2/3 M eV (7)

The evaluation  o f  e x p re s s io n  (7) g iv e s , f o r  exam ple , the v a lu es  shown 
in  T ab le  I.

1 In su p erh ea vy  n u c le i  th ere  seem s to  b e  an e x c e p t io n  fo r  P = 1 14  (s e e  Z .  S zym artsk ij L ectu re  n o te s ) .

2 E stim ates fr o m  th e  H am ad a-Joh n ston  p o te n t ia l g iv e  30  M e V *  A - 2 ^3 (S e e  B o h r -M o tte lso n , L ectures
on  N u cle a r  S tru ctu re).
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T A B L E  I. El VA LU ATIO N  OF EXPRESSION (7)

^ s > c a l c < M e V > f e£s ) e x p t (M e ^

150
1Рз/2 ' 1Pl/2 4 .9 6 .2

” 0 Id 5/2 ■ Id 3/2 7 .6 5 .0 8

a , Pb 3Рз/2 " 3Pl/2 0 .8 6 0 .8 9

■m pb 2 fl/2 - 2 f 5/2 2 .0 1 .7 7

10

0
1 2 3 
T" 1 — 1—

4 ... !
R  v5 1 6 7 /

i n  i A .
1 9  10 11 
— '  I------------ 1------------ 1—

- 1 0  -

- 2 0  -

5-30

- 4 0

- 5 0

- 6 0  -

r(fm)

S :WOODS-SAXON POTENTIAL 

V Vo*-50MeV

----°/г-р\' R * 5.8 fm
1 +exP("a ) a - 0.65fm

H* HARMONIC OSC. POTENTIAL 

V ( r ) = H < - ! r 4 C O N S T i c ¿ T ; . 9556 MM ' vV

F IG .5 .  C o m p a r iso n  o f  W o o d s -S a x o n  p o te n t ia l w ith  h a r m o n ic -o s c i l la t o r  p o te n t ia l .

In an attem pt to  ca lcu la te  sy s te m a tica lly  the s in g le -p a r t ic le  le v e ls  and 
binding e n e rg ie s  o f  the s in g le -p a r t ic le  o r b ita ls  the potential

V (r )= V 0 f(r )  + (V £s)0 r 2 i | p f ( r ) i . s  

with the p a ra m e te rs  (R  = rn X A1̂ 3 )

r  = 1 .2 7  fm , a = 0 .6 7  fm

V o =
-5 1 + 3 3 .1 N -Z

A M eV

(V ) = -0 .4 3 9  V = v . i s ' o  о
2 1 .9 - 1 4 .5 N -Z

A M eV

can  be  u se d . T h e resu lt  f o r  n eutrons can  be seen  in F ig . 5. T he d is 
cre p a n cy  o f  about 30% in  the excita tion  e n e rg ie s  o f  the s in g le -p a r t ic le  
o rb ita ls  m a y  be  attributed to the v e lo c ity  depen den ce o f  the a v erag e  poten tia l.
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T h e e igen fu n ction s o f  such a sp h e r ic a lly  sy m m e tr ic  potentia l have 
the quantum n um bers n, £ and j and can  be w ritten  as

^ j  ( e > 40 = R nCj ( г )  Ф™ ( 6 ,  Ф)  =

= Rn£j(r) Y, <''imcs mslj Yr^e' ^ Ks'S W

m t m s

Y™c(0 ,<£) a re  s p h e r ic a l h a rm o n ics , k™s is  the sp in  fu nction  and <^aabß |с-у)> 
a re  v e c t o r  coup ling  c o e f f ic ie n t s . The n orm a liza tion  o f  the w ave fu n c tio n ( 8) 
is  such  that

У  R ^ .  (r ) r 2d r  = 1 and J  Ф™' ( 0, ф ) Ф™ (Ö , ф ) dП  = 6jj( ômm,

о

It is  w orth  noting that the quantity R3R 2{ j (R0 ) (R 0 is  th e -n u clear  
rad iu s) is  fa ir ly  independent o f  the con figu ra tion , and fo r  n u cleon s bound 
b y  5 -1 0  M eV  a ssu m e s  a value o f  ~  1 .4 .  O f c o u r s e , the sta tes ca lcu la ted  in 
the above a v e ra g e  potentia l a g ree  on ly  qu a lita tive ly  with the o b s e rv e d  o n e s . 
In the fo llow in g  w e sh a ll t r y  to find som e  o f the r e a so n s  f o r  the 
d is c r e p a n c ie s .

A  ty p ica l seq u en ce  o f  the s in g le -p a r t ic le  o rb ita ls  o f  the s h e ll -m o d e l 
potentia l is  show n.in  F ig . 6 . It a ccou n ts  fo r  the c lo s u r e  o f  s h e lls .  The 
g ro u n d -s ta te  sp in s o f  the c lo s e d -s h e l l  n u cle i a re  z e r o  with p os itiv e  p a rity  
and the g e n e ra l p ro p e rty  o f  th e ir  ex cita tion  sp e c tra  is  a la rg e  gap in 
e n e rg y  betw een  the ground and the" f ir s t  excited  sta te . T he cau se  o f  th is 
gap in the sp ectru m  is  the fa ct that in  o r d e r  to fo rm  an e x cite d  sta te , we 
have to  take a p a rt ic le  out o f  the c lo s e d  sh e ll and p ro m o te  it to  the next 
m a jo r  sh e ll w hich is  w e ll sep ara ted  in en erg y . A s  an exam ple  o f  the 
c lo s e d -s h e l l  nucleu s we sh a ll take 208pb  (F ig . 7), w hich  has been  v e ry  
e x te n s iv e ly  stu d ied . T he u nperturbed  en erg y  o f  the low est ex cited  p a r t ic le -  
h o le  sta te  in  208p)-, ~ з .5  M eV . One finds (s e e  F ig .  7) that a ll o f  the
e x cite d  sta tes indeed o c c u r  above  th is en erg y  excep t fo r  the f ir s t  ex cited  
3" state, w hich  we sh a ll d is cu ss  in  so m e  deta il la te r . The sp ins and 
p a r it ie s  o f  3 .4 7  4~ and 5" state  show  that they m a y  be fo rm e d  b y  ex citin g  
a p j /2 n ucleon  to  the next g9/ 2 o r b ita l .  The sp ins and p a r it ie s  o f  the lo w - 
ly in g  states o f  the n eigh bou rin g  o d d -A  n u cle i 207T1, 209B i, 207Pb and 209Pb 
(show n in F ig . 7) n ice ly  fo llo w  the seq u en ce  p re d ic te d  by  the sh e ll m o d e l. 
H ow ever , th ere  a re  a lso  som e  p o s itiv e  p a rity  states in 209B i and 207Pb 
w hich  can re a d ily  be explained  b y  the cou p lin g  o f  the p a rt ic le  (h ole ) to 
the 3" state  o f  the 208Pb c o r e .  A s is  seen  in  F ig .  7 th ese  states o c c u r  
at about the en erg y  o f  the 2°8р ь  3" sta te . T hus, it s e e m s  that the 
e n e rg ie s , sp in s and p a r it ie s  o f  the lo w -ly in g  le v e ls  can  be w e ll u n d er
stood  in te rm s  o f  the s im p le  sh e ll  m o d e l.

B e s id e s  e n e rg ie s , sp in s and p a r it ie s  one can  a lso  study the sta tic  
m a gn etic  and quadrupole  m om en ts o f  the s h e ll -m o d e l s ta te s . In the sp ir it  
o f  the s im p le  sh e ll m o d e l the n ucleon  sp ins a re  cou p led  p a irw ise  to the
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s p in -z e r o  s ta te s . A ll e v e n -e v e n  n u cle i should th e r e fo re  have (and they  do)
0+ ground sta tes and have z e r o  sta tic  m o m e n ts . In o d d -A  n u cle i the sp in  
and p a rity  o f  the ground state a re  determ in ed  b y  the sp in  and p a rity  o f  
the la st u npa ired  n u cleon . A s a con seq u en ce  the sta tic  m om en ts in o d d -A  
n u cle i should be  g iven  as th ose  o f  the la st n u cleon . T h ese  m om en ts can  then 
be  ca lcu la ted  by  u sing  the s in g le -p a r t ic le  w ave fu nction  (8) obtained fro m  
the s h e ll -m o d e l H am ilton ian . F o r  n on -in tera ctin g  point p a rt ic le s  the 
m a gn etic  m om ent a ssu m e s  the fo rm  (m ea su red  in n u c le a r  m agnetons)

(9)

6 h u
even

- 4 s -
-3d-

' - 1 j l5/ 2 -  

yi. —  4 s  1/2-
- 3 d 3/ 2 -

— 2g-----

-2 g7/2 -

-3d V2.

—  1i  ■

-1 i n/2-- (12J
----------- (6 )

■ 2 g 9/ 2 --------------------- (1 0 )

(16)—[18Д]-----184
(4 ) -
( 2)—

(8 )

5hu)
odd

4hu)
even

З Ь ш
odd

— 3p- 

— 2f -

—  1h-

— 3s- 

— 2 d -

— 1g-

3pV2-
e " - 3 p 3/2-

-c„ 2f 5/2 
2 f 7/2

------------ 1¡ 15/2— ( 1 4 )-
------------------ ( 2 )-
-------------------------- ( 4 ) -
-------------------------- ( 6 )-
---------------------------------- ( 8 ) -
-1 h 9/2---------------- (1 0 )-

------- 3s 1/2-
-1h'V2-

■2d 3/2-
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- 2 d 5/2 -

С— 2p- 

1f-
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-C  , ---------1 f V 2 -

-1g9/2-

' - 2 p 3/2-

2 h w  i  2 * ’  
even { — la ' - C - 2 s V2

-1 f’/2-

- 1 d 3/ 2 -

- 1 d V 2 -

1ha) — 1p------< ' "  \ V ' } '
odd 1p3/2-

0 — 1s--------------1s ’/2 -

- ( 1 2 ) -  
- (2 )-
- (4)-
-  ( 6 )- 
- ( 8 ) -

-[126]---- 126

- [ 100]

-[82]-----82

-[64]

- ( 1 0 ) -  
- ( 2 ) -  
-  ( 6 ) -  
-  ( 4 ) -

•[50]-
■[40]
[38]

(8)— [28]-

(4)- 
• ( 2 ) -  
• ( 6 ) -

• ( 2 ) -  
■ (4)-

- [ 2 0 ] -
-[16]
-[14]

- [ 8 ] -
- [ 6 ]

-50

-28

-20

( 2 ) — [ 2 ] -

F IG . 6 , A  t y p ic a l  s e q u e n ce  o f  s in g le -p a r t ic le  orb ita ls  in  s h e l l - m o d e l  p o te n t ia l .
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F IG .7 . 208Pb as an e x a m p le  o f  a c l o s e d -s h e l l  n u c le u s .

w h ere  g e = 1 fo r  p roton s and g { = 0 fo r  n eu tron s. g s a re  anom alous g 
fa c to r s  o f  a p roton  and a neutron , 5 .5 8 6  and -3 .8 2 6 , r e s p e c t iv e ly . The 
evalu ation  g ives

M = < jm  = з|Д| jm  = j>  = (j -  l / 2 )g{ + 1 /2  gs fo r  j = i  + l /2

(10)

= [ ( j+ 3 /2 ) g É- 1/2 gs] fo r  j = i - l / 2

T h e se  v a lu es  a re  known as the Schm idt v a lu es .
T h e quadrupole te n so r  o p e r a to r  c la s s ic a l ly  has the w ell-k n ow n  fo rm

Q ik  = j / J J ( 3 x ¡ x k - r 2 ó i k ) p ( 5 ) d T
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What is  m e a su re d  is  the Q zz com pon ent o f  the quadrupole  te n so r  w hich 
we m a y  w rite

Qzz =fff  (3z2 ■ г2)рМ dT

and fo r  a u n ifo rm ly  ch a rg ed  a x ia lly  sy m m e tr ic  e llip so id  we have

Q z z = q |  ( c 2 - a 2 ) (11)

E x p r e ss io n  (11) is  ca lle d  the c la s s ic a l  quadrupole m om en t, с  and a are  
se m ia x e s  o f  the e llip so id , and Q is  the to ta l ch a rg e .

An an alogou s qu an tu m -m ech an ica l e x p re s s io n , d iv ided  by  the ch a rge  
and ca lle d  the s p e c t r o s c o p ic  quadrupole m om en t, is

T he su m m ation  in clu d es  on ly  p roton  c o -o r d in a te s . If we w ish  to  know the 
va lu e  fo r  any M it is  s im p ly  ca lcu la ted  to be

T he s in g le -p a r t ic le  va lu e ca lcu la ted  with the s h e ll -m o d e l w ave function  
is  ( fo r  the la st u npaired proton)

Qp = - f S < r2>nij « - f r H Ro for j = i± i/ 2 <i3>

<Cr2^nij den otes the m ean  valu e o f  r 2 u sin g  the w ave fu nction  R njj(r )  and 
the la st ap p rox im a te  equ ality  is  obtained by  averag in g  r 2 o v e r  the u n ifo rm ly  
ch a rg ed  sp h ere  o f  the rad iu s R 0 . In e x p lic it  ca lcu la tion s^ h a rm on ic- 
o s c i l la t o r  w ave fu nction s a re  co m m o n ly  u sed . One m ay  im m ed ia te ly  
qu estion  the a c c u r a c y  o f  such a ca lcu la tion , but as w e se e  in F ig . 8, the 
ra d ia l w ave fu nction s o f  a p r o p e r ly  ad justed  h a r m o n ic -o s c i l la to r  w e ll and 
the W ood s -S a xon  one a re  a lm ost id e n tica l. The ad justm ent m eans the 
req u irem en t that the root m ean  squ are  o f  the radius o f  the la st v a len ce  
n ucleon  be  equal to the n u clea r  ra d iu s .

B e s id e s  the s ta tic  p r o p e rt ie s  m entioned  above on e can  in vestiga te  som e 
o f  the d y n a m ica l on es  such  as tra n s itio n  p ro b a b ilit ie s  f o r  e le c tro m a g n e tic  
tr a n s it io n s . T he in tera ction  o f  the e le c tro m a g n e tic  fie ld  with the nucleus 
is  d e s c r ib e d  b y  the coup ling
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F IG .8 .  R a d ia l w a v e  fu n ction s  o f  a p rop er ly  ad justed  h a rm o n ic  o s c i l la t o r  (H ) and W o o d s -S a x o n  p o te n t ia l (S ) .

A jj = (A ,iV )  is  the e le c tro m a g n e tic  f o u r -v e c t o r  potentia l and = ( j , i c p )  
the e le c tro m a g n e tic  ch a rg e -cu r re n t  fo u r -v e c t o r  w hich  s a t is f ie s  the c o n 
tinu ity  equation

V - Г + ^ р - О  ( 1 5 )

Equation  ( 1 5 )  e x p r e s s e s  the co n se rv a t io n  o f  the e le c t r ic  ch a rg e . In the 
C ou lom b gauge V = 0 p o s se ss in g  on ly  tr a n s v e r s e  f ie ld s , the v e c t o r  potential

• A  s a t is fie s

□ Ад = V • A  = 0

T hen  the re ta rd ed  p la n e-w av e  so lu tion  fo r  the e le c t r ic  fie ld  E p ro p a 
gating in the z -d ir e c t io n  can  be w ritten  as

E = a[e  e l Ŵt kz' + c . c . ]  (16)
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The am plitude a is  a r e a l n um ber and e is  the p o la riza tion  v e c t o r .  E x 
panding in m u lt ip o le s3 and assu m in g  n on -in tera ctin g  point ch a rg e s  we 
obtain

'C H y  ]> = — Г ф'“(рА + Ар)ф0т-ц j ф* о Нф d T  =

= f i  J~2rr
\ V 2

( 2 i + i ) ( j e + i )

л
« M

Ci X  DmM(Ẑ Z')
m

.. /I  _ . _  m I \
X <|j/J M £ -  i E fi I > (17)

w here

M, '(егЛ ) r r ) ] X g i ( r ) L t+ gs(r) sr (18)

and

E f  = X  t  tl+T3 (r>] г ) У ” ( е , ф г) - к  б1( г ) З С гУ” (ег,фг)0{(к rr) (19)
г

a re  the m a gn etic  and the e le c t r ic  m u ltipo le  o p e r a to rs , r e s p e c t iv e ly . The 
secon d  te rm  in E f  (19) is  in v e r se ly  p rop ortion a l to the n ucleoh  m a ss  and 
can  be n eg lected  in  the n u clear  ca se , in con tra st to the a tom ic  c a s e .

The e x p re s s io n  fo r  the tra n s ition  p rob a b ility  can be ca lcu la ted  using 
F e r m i 's  "g o ld e n  ru le "

W(k, i)  = f  I < Hr >f p (E) = f  7 [-( ¿ k2i+1 ö(Ti) (20)

B (t í ) is  the redu ced  tra n sition  p rob a b ility  o f  т type and 2 { po le  rad ia tion . 
It reads

B(Ti) = 2ÏTÏT I  l°T >l2 <21>
M ¡ M f

T h e s in g le -p a r t ic le  estim ate  fo r  tra n sition  p ro b a b ilit ie s , to  w hich  we 
sh a ll r e fe r  in the subsequent d is cu ss io n , can be obtained as fo llo w s . A s 
sum e that on ly  the v a le n ce  p a rt ic le  p a rtic ip a tes  and that its  (o r  th e ir , if  
th ere  a re  m o re ) ra d ia l w ave fu nction  is  constant w ithin the n u c lea r  v o lu m e.

3 For d e ta ils  o f  m u lt ip o le  expa n sion s see , e . g .  Rose, M u lt ip o le  F ie ld s , o r  any a d v a n ce d  te x tb o o k .
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F o r  gam m a rays o f  e n e rg y  hu in M eV and the n u c le a r  rad iu s R0 in fe r m is  
w e obtain

w  ( k  £)~ 1 - 9 (^ + 1 ) ( A \ 2 (^L\2‘+1(u i . ( r  A l / 3 ^ - 2

’ д а  +  1 ) . ч ] 2  V  +  2i V197/ \  P £ + 1) °

X 1021 s ' 1 (23)

H aving the n e c e s s a r y  e x p re s s io n s  we a re  now rea d y  to apply  the s im p le  
sh e ll m o d e l to re a l n u cle i and co m p a re  its p re d ic tio n s  with ex p erim en ta l 
f in d in g s .

A s  we m en tioned  e a r l ie r  in  208pbj it has been  o b s e rv e d  that the 3" 
state has the B (E 3) value w hich is  about 40 t im e s  la r g e r  than the sin g le  
p a rt ic le  e st im a te . T o  explain  such an en orm ou s enhancem ent, one has 
to assu m e that th is 3* state  is  a su p erp osition  o f  m any p a r t ic le -h o le  
e x c ita t io n s . T he v a r io u s  com pon en ts o f  th is state m ust add th e ir  in d iv idual 
con trib u tion s  and thus be coh eren t with r e sp e c t  to the E3 tra n sition  
o p e r a to r .

R e ce n tly  it has been  show n that the 3“ state r e a lly  c o n s is ts  o f  m any 
p a r t ic le -h o le  e x c ita t io n s . The experim en t was (p, p1) reson a n ce  sca tter in g  
through  the is o b a r ic  analogue sta tes o f  209P b . T he w ave function  o f  208Pb 
can  be w ritten  as

^km( 209Pb) = Nkm+|208Pb>

+
N™ is  the o p e r a to r  w hich  c re a te s  a neutron  in the state k, m . T he is o b a r ic  
analogue state can be obtained by applying the is o sp in  lo w e r in g  o p e ra to r

T _  = y p M + N M ( 2 4 )

J .M

T h is g ives

T_ ф™( 209Pb) = T. Nkm+|208Pb> = Y  PjM+N^N™+| 208Pb>

J .M

= p f | 208P b > -  ^  P M+Nkm\ Т 8РЬ> (
J .M

On in sp ectin g  E q .(2 5 ) we se e  that the la st te rm  on  the righ t-h an d  sid e  
r e p re s e n ts  the p roton  in the state J, M and a neutron  p a r t ic le -h o le  p a ir . 
T h e proton  d e ca y  o f  th is state then le a v e s  the re s id u a l nucleu s in the
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ex cited  neutron  p a r t ic le -h o le  sta te . It has been  found ex p erim en ta lly  
that the 3 ' state at 2 .6 1  M eV in 20SPb is  populated through m any analogue 
re so n a n ce s  and thus should have the m any p a r t ic le -h o le  state ch a ra cte r  
we p resu m ed  e a r l ie r .  H ow ever, the 4" and 5" state o f  208Pb a re  popu
lated  m o s t ly  through one re so n a n ce , thus having the sin g le  p a r t ic le -h o le  
state  c h a r a c t e r .4 Such a h igh ly  coh eren t c o lle c t iv e  3" state is  g e n e ra lly  
r e fe r r e d  to as an octu p o le  phonon state^and we sh a ll d is cu ss  such states 
in  the next ch a p ter .

L ook in g  at the sp e ctra  o f  o d d -A  n u cle i n ear 20 8р ь  ( F i g .  7 ) we found 
that the lo w -ly in g  states w ere  th ose  expected  from  the s im p le  sh e ll m o d e l.
W e sh a ll now co m p a re  th e ir  e le c tro m a g n e tic  p ro p e rt ie s  with the exp ectation s 
on  the b a s is  o f  the s im p le  sh e ll m o d e l. It has been  found e x p erim en ta lly  
that the m a gn etic  m om en ts o f  the c lo s e d -s h e l l -p lu s - (m in u s ) -o n e -n u c le o n  
n u c le i a re  g e n e ra lly  s m a lle r  than the ca lcu la ted  on es (in m agnitude) (T ab le  II).

T A B L E  II. M AG N ETIC M OM ENTS OF NUCLEI WITH 
CLOSED SH ELLS PLUS (MINUS) ONE NUCLEON

N u cleu s O rb it M exp<n *m *> Mc a l c ( n . m . )

1 5 Q
^ 1/2

0 .7 2 0 .6 4

17o d  5/2 - 1 . 8 9 - 1 .9 1

17 F
“ s/* 4 .7 2 4 .7 9

2 0 7 р ъ
^ l / z

0 .5 9 0 .6 4

207 p b
f 5/2 0 .6 5  ± 0 .0 5 1 .3 7

209B i
^ 9 /2 .

4 .0 8 2 .6 2

O ne cou ld  exp ect d is c r e p a n c ie s  b e ca u se  the p a rt ic le  (hole) ou tsid e  the 
c lo s e d  sh e ll w ill in teract with the c lo se d  c o r e  and this part o f  the in te r 
action  has been  left out in ou r  s im p le  s h e ll -m o d e l p ic tu re . T he rem ed y  
fo r  th is d is cre p a n cy  m ay  be sought in p o la riza tion  e ffe c ts , w hich could  
change the value o f  gs as w ell as the fo rm  o f  the m a gn etic  m om ent o p e r a to r . 
N ote that the m a gn etic  d ip o le  o p e ra to r  is  re la ted  to the m a gn etic -m om en t 
o p e r a to r  (9) as

М(М1^ ) = Ы  ш н Ч  (26)

w h ere  (ц) d en otes the s p h e r ica l com ponent o f  the v e c to r  (9 ). It is  
seen  fro m  the fo rm  o f  the M l o p e ra to r  that it has allow ed  m a tr ix  e lem ents 
betw een  the s p in -o r b it  p a rtn ers  j = SL ± 1 /2  on ly . C on sid er  the sp in -dependen t

4 For a  d e ta ile d  d iscu ssion  se e  le c tu re s  b y  v o n  Brentano (th e se  P ro ce e d in g s ) .
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part o f  the ce n tra l fo r c e  V0 (r12 ) a 1 - a 2 . V ia  th is  part o f  the ce n tra l fo r c e  an 
ex tra  c o r e  n u cleon  can  e x cite  the j = i  ± 1 /  2 state o f  the c o r e  to the j = I  + 1 /2  
state ou tsid e  the c o r e , cau sin g  th ereby  an adm ixtu re o f  the two states

li  + 1/ 2, m > l i  + 1 / 2, ° e x t  = ¿ ‘ I / 2. m p |  j =  ̂ + 1 / 2, m >
I * fis

x | i  - 1 /2 , m > (27)

CText re p re se n ts  the sp in  o f  the ex tern a l p o la riz in g  n u cleon . A s the 
m a gn etic  m om ent thus generated  is  p ro p o rt io n a l to aext, we can c o n s id e r  
th is p o la riza tion  to  be a re n o rm a liza tio n  o f  gs b y  an amount

4<Vn > 2i -1
5gsK- l ^ ^ - gi)(2j+1) 4 r  (28)fis *

H ere  we have n eg lected  the depen den ce o f the p o la riz in g  fie ld  crext on  the 
p os ition  o f  the p o la riz in g  n u cleon . H ow ever, th ere  is  another ax ia l v e c to r  
quantity w hich m ay  be con stru cted , nam ely  (Y2 cr1)1, and it conta in s both 
p o s itio n  and sp in  co o rd in a te s  o f  a n u cleon . Such a term  w ill cau se  a 
change in the m a gn etic  m om ent o p e ra to r

(0Ai)M= 0 g s(Y2 o i ) lf(1 (29)

w h ere  the b ra ck et on the right-hand side  denotes the v e c to r  cou p lin g . It is  
im portant to o b s e rv e  that the m od ifica tion  (29) can cau se  M l tra n sition s  
betw een  AS = ± 2  states which tra n sition s  a re  1-fo rb id d e n  o th e rw is e . In 
o r d e r  to estim a te  the m agnitude, o f  £g and ó 'g s, it is  n e c e s s a r y  to have 
tw o independent m e a su re m e n ts . A tentative test m ay be m ade in the ca se  
o f  207Pb (F ig . 7) w here the m a gn etic  m om en ts o f p j / 2 ant  ̂ Í5/2 have been  
m e a su re d . F r o m  the o b s e rv e d  E 2 /M 1 ratio  in the Ц}2~ f ^  tran sition  
assu m in g  the s in g le -p a r t ic le  value with e eff = 0 .9  fo r  the E2 com ponent 
one obtains an M l m a tr ix  e lem ent which is  about h a lf the s in g le -p a r t ic le  
on e . F ro m  th ese  one m ay  co n s is te n t ly  find 6g s/ g s = - 0 .5  and 6 'g s / g s - '-0 .4  
y ie ld in g  the c o r r e c t  M l m a tr ix  e lem ent and

exp s . p. c o r r .

0 .5 9  ' 0 .6 4  0 .5

0 .6 5  ± 0 .0 5  1 .3 7  0 .9

a ll in n u clea r  m a gn eton s. The e ffe c t iv e  gyrom a gn etic  ra tio s  thus determ ined  
should be used in ca lcu la tin g  the m agn etic  m om en ts and tra n sition  p ro b a 
b ilit ie s  with the s h e ll -m o d e l w ave fu n ction s. U nfortunately, at p resèn t, 
th ere  a re  not too  m any c a se s  in volv in g  d ifferen t con fig u ra tion s  known so 
that it is  not p o s s ib le  to test the: p o s s ib le  depen den ce o f  the e ffe c t iv e  g y r o -  
m a gn etic  ra tio s  on  the co n fig u ra tion . F ro m  the start one cou ld  not expect 
them  to  be e n tire ly  configu ra tion -in depen dent.
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T h e re  is  yet anoth er s o u r ce  o f  c o r r e c t io n  to the m u ltipo le  o p e ra to rs  
and it c o m e s  from  the v e lo c ity  dependent in te ra c tio n s . In o th er  w ord s , the 
in te ra ctio n  w ill change the e x p re s s io n  fo r  the cu rren t used in the m u ltip ole  
exp an sion . An exam ple o f  such an in tera ction  is  a tw o -b od y  s p in -o rb it  
fo r c e

V so  = I  1  V LS ( r iX > ( ? i ) X  Ц  - P k  } '  I  ( ï i 4  )

4 X V L s ( r i k > 4 k - S ik  ( 3 0 )

ik

C alcu la tin g  the v e lo c ity  o f  the kth p a rt ic le

V | [H«rk] = ^ H V ?kH] =^ +s [v' ?k] <31>

on e im m e d ia te ly  s e e s  that the v e lo c ity  depen den ce o f  the in tera ction  w ill 
cau se  change in the v e lo c ity  o f  p a r t ic le s , i . e .  the re la tion  betw een  the 
m om entum  and the v e lo c ity  is  a lte re d . In ou r  exam ple the com m u ta tor  
is  rea d ily  evaluated to g ive

t L ik  ‘ s ik  - r s ] = i f t  S ik  X  ( ? r ? k ) [ 6 ^  - 6 is ]

[ V s o > ? J  = - i f t ^  V L s ( r s k ^ s k X ( ? s - ? k )  

k '

T hen,the final e x p re s s io n  fo r  the p a rt ic le  v e lo c ity  reads

= vLS(rsk)(v:?k)x Ssk (32>
■ к

T h e new o rb ita l angular m om entum  is  thus

4  = r s X  Ps = V  m
V r  X s Л > х§*к (33)

and the c o r r e c t io n  to the m a gn etic  m u ltip o le  o p e ra to r  is  g iven  by
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T g ( k )  is  the th ird  com ponent o f  the kth-p a r t ic le  is o sp in . The con tribu tion  
to  the sta tic  m a gn etic  d ip o le  m om ent is

Л "-  ? T3<v£s(r)?x(5xl)> (35)

2.Í-1
2j+  2 j = S. + 1 /2  _

6 “ 0 .1 5  t „  fo r  r e s p e c t iv e ly . (36)
= Ш 1  j  = i - l /2  ■

2j + 3

It is  seen  that the c o r r e c t io n  has d ifferen t sign  fo r  p roton s and neutrons 
and is  o f  the o r d e r  o f  1 /1 0  o f  the n u clea r  m agneton . e °  is  the zeroth  
com pon ent o f  the s p h e r ica l te n so r  o f  rank on e . E x p re ss io n  (35) can be 
ca st into the fo rm

| e ï -  r X ( r X a ) =  - ^ T ^ 2 - ^  r 2 a»' (37)

with

Tjx = X  < X lV  ™,|д м > У ” М е.Ф)®?*
m s m \  ■

C om parin g  the fo rm  o f  the c o r r e c t io n  term  (37) with the p o la riza tio n  te rm s 
on e can se e  that th e ir  fo rm  is  the sa m e . We should, th e r e fo re , say  that 
taking the e ffe c t iv e  g yrom a gn etic  ra tios  from  the ex p erim en t we au to
m a tica lly  in clude  the above  c o r r e c t io n ,  too .

We sh a ll now co n s id e r  the sta tic  e le c t r ic  quadrupole m om en ts and 
the E2 tra n sition  p ro b a b ilit ie s  in n u cle i having one v a le n ce  n ucleon  ou tsid e  
the dou bly  c lo se d  sh e ll . In the fra m ew ork  o f  the s im p le  sh e ll m o d e l the 
od d -N  n u cle i should not have any e le c t r ic  m o m e n ts . H ow ever, it has 
been  ex p erim en ta lly  o b se rv e d  that such  n u cle i have both sta tic  and tra n 
s ition  e le c t r ic  m o m e n ts . N aturally , th ese  m om en ts a re  due to  the p o la r i
za tion  o f  the c o r e  w hich in turn ca u se s  a d e form ation  o f  the c o r e  ch a rge  
d is tr ib u tion . A ls o  in the c a se  o f  o d d -Z  n u cle i the e x p erim en ta l m om ents 
a re  g e n e ra lly  la r g e r  than th ose  ca lcu la ted  fro m  the s im p le  sh e ll m o d e l (13 ). 
One can hope to  in clude  the c o r e  p o la riza tion  e ffe c ts  by  attributing an 
e ffe c t iv e  ch a rge  to the v a le n ce  n u cleon :

, . < If =  j f II  M (E 2) I, = j  . > ex p erim en ta l m a tr ix  e lem ent
( e  ) =  ------ !--------LÏÏ-------------------1LJ_____ i___  = ______ _____________________________________________ _____ ( з д )

eff E2 < j  j| r 2 у  ! j . > . m a trix  e lem ent with e = 1

Such a p ro ce d u re  is  m eaningfu l i f  the e ffe c t iv e  ch a rge  obtained from  the 
above defin ition  d oes  not depend, c r it ic a l ly  on v a r iou s  j .  and j {  . It is ,
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T A B L E  III. M EASURED B(E2) VALUES

N u cleu s < « i ) i ( f i j ) f B(E2)sp e 2 fm 4 B(E2)e x p  e2 fm 4
■—

 0> 
0)

I 70 s 1 /2 d  S /2 35 6 .3 0 .4 2

17f s  1 /2 d  5/2 43 64 1 .2

41Sc P з/г f . / 2
40 104 1 .6

41C a P 3/2 ^ 7 /2 40 87 1 .5

207P b
5  S /2 P l /2

81 70 0 .9

207Pb
Р 3 /2 /2

110 80 0 .8 5

209 P b S l / 2 d V .  .
8 6 6 150 0 .4 2

indeed , o b s e rv e d  that the e x p erim en ta lly  o b se rv e d  e can be w ell a p p ro x i
m ated by  the e x p re ss io n

( e e f f ) E 2 “  \  e (1 + т3 ) + е'ро1 (39)

with e'pOl!»0 .5  e . F o r  exam p le , the sta tic  quadrupole m om ent o f  the 5 /2 + 
state in 170 is  ex p erim en ta lly  found to be -0 .0 2 6 X  IO"24 cm 2 , w hereas 
the s in g le -p a r t ic le  value ca lcu lated  as if  the la st neutron  w ere  a proton  
is  0 .0 6 6 X  10' 24 cm 2 . T h is would im p ly  ej,ol «  0 .4  e . In 209B i the 9 /2 + 
ground state has Q exp = - 0 .4 X  1 0 ' 24c m 2 , w hile the ca lcu lated  one is  
Q sp = -0 .2 6 X  10-24 cm 2 y ie ld in g  e^ol = ¡0 .6  e . T ab le  III show s m ea su red  
B (E2) va lu es (so m e  o f  them ).

A  m ic r o s c o p ic  ca lcu la tion  o f  e eff w ill be d is cu sse d  by R im in i (these 
P ro ce e d in g s ) , and note that the s e m ic la s s ic a l  treatm ent g iven  by 
Z .  Szym añski a lso  gave e£ol = 0 .5  e (these P ro ce e d in g s ).

In the sa m e way we can  d is cu ss  h igh er m u ltipole  tra n sition s , fo r  
in stan ce  E3 and M4 (m agn etic h e x a d e cu p o le ). It is  o f  in terest just to 
m en tion  the M 4 tra n sition  in 207Pb depopulating the (Í13/ 2)"1 1- 64 M eV 
hole ' state going to the f ‘ *2 0. 57 M eV h ole  state (se e  F ig . 7). It is  retarded  
by  a fa c to r  o f  6 com p a red  with the s in g le -p a r t ic le  va lu e . In 201T1 (F ig . 7) 
the M4 tra n sition  from  h^ 2 at 1. 34 M eV to d3y2 0. 35 M eV is  a lso  retarded  
by  a fa c to r  o f  7. R egard in g  the E3 tra n sition , let us just quote the ¿15/2
1 .4 2  M eV to gg/2 g rou n d -sta te  tra n sition  in 209P b w hich is  enhanced by 
a fa c to r  o f  about 20 o v e r  the s in g le -p a r t ic le  va lu e . It is  c le a r  that the 
con cep t o f  e ffe c t iv e  ch a rge  e eff cannot a ccou n t fo r  such a la rg e  en h an ce
m ent and th e re fo re  we m ust understand this in a d iffe ren t way.- D etailed  
ca lcu la tion s  (se e  the C a rg ese  le c tu re  notes by G . A laga) explain  this en 
hancem ent in te rm s  o f  an adm ixture o f  the j 15/ 2 state and the 1 5 /2  state 
obtained by  coup ling  the ggy2 p a rt ic le  to  the 3" state o f  the 208P b -c o r e .

In form ation  rega rd in g  the purity  o f  the sh e ll-m o d e l states around 
doubly  c lo se d  sh e ll n u cle i can a lso  be obtained from  the data on  beta  d eca y .
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The in tera ction  re sp o n s ib le  fo r  beta  d eca y  can  be w ritten  as a lin e a r  c o m b i
nation o f  the v e c t o r  and ax ia l v e c to r  cu rren t -  -current in te ra c tio n . F o r  ■ 
each  n u cleon  it can be w ritten  in the fo rm  (fo r  a nucleus we have to sum 
o v e r  a ll n ucleon s)

Hß =” Í  Ч Т± У4 \ Фе± \ {1+У5)ФЦ + g AT* +У5)ФЦ+Я ' A ' ]
** V V

= -r -  i g v [T± ip'" ( l  + y 5)'pv - a r ± ip*± a { l  + 4 5)<pv ] (40)
e i  v e  v

+ ёА&т±Ф у а  + У5)Ф„-У5т±Ф*± 7 5 ( l + 7 5 ) ^ ] }  .
V

w h ere  the u pper and lo w e r  sign  r e fe r  to ß + and ß~ d eca y , r e s p e c t iv e ly . 
gv and gA a re  the coup ling  constan ts o f  the v e c t o r  and the a x ia l v e c to r  
part o f  the in tera ction , r e s p e c t iv e ly . The fa c to r  1 Д/2 guarantees the sam e 
de fin ition  o f  the cou p lin g  constan ts as b e fo re  the p a rity  n o n -co n se rv a t io n  
d is c o v e r y ,  у , y4 and y5 a re  the u su al D ira c  m a tr ic e s , w hile ф̂  and фи a re  
the e le c tro n  and neutrino fie ld  o p e r a to rs  taken at the p os ition  o f  the tr a n s 
fo rm in g  n u cleon . The tra n s ition  p rob a b ility  can be ca lcu la ted  in the p e r tu r 
bation  th e o ry . P ro ce e d in g  along the Sam e lin es  as in the e le c tro m a g n e tic  
m u ltip o le  expan sion , we expand in m om entum  tr a n s fe r  at the n u c lea r  radius 
kRo = ( 1/ü ) (pe + Py)Ro is  o f  the o r d e r  o f  1 /1 0  fo r  e n e rg ie s  not h igh er  than 
10 M eV arid th e re fo re  in the lo w e st ap p rox im a tion  w e 'ca h  take (k R 0)° . The 
o p e r a to rs  thus-obtained a re  th ose  co rre sp o n d in g  to the a llow ed  tra n s itio n s . 
F o r  the n o n -r e la t iv is t ic  ca se  we see  fro m  E q .(4 0 ) that th ere  a re  two p o s s i 
b i lit ie s  g v T ± and g^cîт ± . T ra n sit ion s  cau sed  by thé o p e r a to r  §̂ t± a re  ca lled  
F e r m i tra n s it io n s ’ and have the s e le c t io n  ru les  AJ = 0 , A i  = 0 and Д Т = 0. 
gACTT± w ill cau se-th e  s o -c a l le d  G a m o w -T e lle r  tra n s ition s  with the s e le c t io n  
ru le s  AJ ='0, ±1; 'A i=  0 and AT = 0, ±1 : In the ca se  o f  the nucleus the r e 
duced tra n sition  p ro b a b ilit ie s  m ay  be defined  (an a logou sly  to the e le c t r o 
m a gn etic  c a s e ) :

B (F : ITM X-*■ IT M X± 1 ) = ^  I<IM TMj. ±  1 1 T ± = ^  t ± (i) | IM T M T>|2 (41)

i = l

and ■ ■ . ’ . •

2 2 

B (G T : IjTj M j-*  I fTf M j  ± 1) = Y  I < IfTf M T ± l| ^  т ± (i) cr* (i)| I. T. M^>| (42)

M fy  i

The tra n s ition  o p e r a to r  f o r 1 F e r m i tra n sition s  is  the com pon ent o f  the 
to ta l is o sp in , the m a tr ix  e lem en ts  w ill depend on  the is o sp in  quantum 
n um bers o f  the states in volved  on ly . The o b s e rv e d  F e r m i-ty p e  tra n sition  
'ra tes p rov id e  a test o f  tlie g ood n ess  o f  the is o sp in  quantum num ber fo r
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n u c le a r  s ta te s . On the o th er  hand, G a m o w -T e lle r  m a tr ix  e lem en ts y ield  
in form a tion  rega rd in g  the coupling  o f the n ucleon  sp in s . One can see  that 
the is o v e c to r  part o f  the b e ta -cu rre n t has a s im ila r  stru ctu re  to the 
e le c tro m a g n e tic  c u rre n t. By rotation a l in va rian ce  in is o s p a ce , the 
G a m o w -T e lle r  o p e ra to r  is  related  to the is o v e c to r  part o f  the spin 
con trib u tion  to the m a g n e tic -d ip o le  o p e r a to r . Having such a re la tion  
on e  can  exp ect that the e ffe c ts  we have d is cu ss e d  in con n ection  with the 
r e n o rm a liza tio n  o f  g s w ill a lso  a ffe ct the G a m o w -T e lle r  m a tr ix  e lem en ts . 
In the d eca y  o f  17F - 170  B (G T ) is  15% s m a lle r  than the sin g le  p a rtic le  
value

fo r  j 1 = j2 = -e ± l /2  A j = 0

fo r  A j = 1

32 + 1
±1

Bsp(G T; = j ^ i  j2 )
47Г

2h +  1 
7+1/2

T h is then im p lie s  the red u ction  o f  about 8% in the is o v e c to r  contribution  
to  the m a gn etic  m om en ts o f  th ese  n u c le i. It am ounts to 0 .2  n u clea r  
m agn eton s, in  d isa g reem en t with the n e ce s s a r y  0 .1  n .m . requ ired  from  
the ex p erim en t.

B esid es , the in form a tion  on  the a llow ed  tra n sition s  in  the study o f  the 
d e ca y  207T1- 207Pb, the an a lys is  g iven  by  J . D am gaard and A . W inther 
(N u cl. P h y s ics  J54 (1964) 615) contains in form ation  on the forb id den  beta - 
d e ca y . In fa ct, the tra n sition s  a re  f ir s t - fo r b id d e n  on es and the o p e ra to rs  
can  be obtained by  taking the fir s t  h igh er term  in the m om entum  tr a n s fe r  
expan sion  ( c . f .  a b ove ). In th is tra n sition  an s.J2 proton  d eca y s  into the 
р '̂Д and p"J2 n eutron . K now ing the e x p erim en ta l ft va lu es defined  as

con st.ft = ----------------  (43
i 2

I MI  I-

w h ere  the sum  runs o v e r  the m a tr ix  e lem en ts with d ifferen t tra n sform a tion  
p r o p e rt ie s , and m aking use o f  .v e c to r -cu rre n t  con se rv a t io n  the authors 
find that fo r  agreem en t to e x ist it is  n e c e s s a r y  to assu m e "e f fe c t iv e  ß-  
c h a rg e s "  in  an a logy  with the e le c tro m a g n e tic  c a s e . T h ose  a re  then re la ted  
ra th er  d ir e c t ly  to the e ffe ct iv e  va lu es fo r  gv and gA to  be used in ca lcu latin g  
the m a tr ix  e lem en ts with s in g le -p a r t ic le  w ave fu n ction s. The two se ts  o f  
v a lu es  found w ere

a ( g f / g v) = o .e

b ( g f / g v) = 0 .3

( g f / g A) = 0 .5  

(gf/gA) = 0-7
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O f co u r s e , it would be h igh ly  d e s ira b le  to have an independent ch eck  o f  
th ese  v a lu e s . An experim en t w hich they have p rop osed  would be to m ea su re  
the shape o f  the beta  sp e c tra . T h is  has not been  done as yet to the best o f  
o u r  know ledge.

T h e re  is  yet another c o r r e c t io n  to  the s in g le -p a r t ic le  p ro p e rt ie s  due 
to  the p re se n ce  o f  the sh o r t-ra n g e  p a irin g  c o rr e la t io n s  in n u c le i. T h ey  
have been  le ft out in the averag in g  p ro ce d u re , but can be ap prox im a te ly  
in co rp o ra te d  m aintaining the s in g le -p a r t ic le  p ictu re  though, o f  co u rse , 
m od ified  (pa irin g  c o rr e la t io n s  a re  d is cu sse d  in deta il by  P al and in le c tu re s  
on  the HFB approach  in th ese  P ro ce e d in g s ).

T he m ain  featu re  o f  pa iring  co rr e la t io n s  is  the la rg e  m a tr ix  e lem ent 
fo r  t im e -r e v e r s e d  p a irs  o f  p a rt ic le s  <^k-k|vlk '-k ' / 1 (k stands fo r  a t im e - 
r e v e r se d  sta te ). P rov id ed  that the m ean d ista n ce  betw een  the states is 
o f  the o r d e r  o f  m agnitude o r  sm a lle r  than the pa iring  m a tr ix  e lem ent, 
instead  o f  the sh arp  F e r m i su r fa ce , which is  c h a ra c te r is t ic  o f  the sh e ll 
m o d e l and the H a r tr e e -F o c k  potential, the sca tter in g  o f  p a irs  a c r o s s  w ill 
sm e a r  Out the F e r m i su r fa c e . At the p r ic e  o f  co n se rv in g  the num ber o f 
p a r t ic le s  on ly  on the a v erag e , one p e r fo rm s  the B og o liu b ov -V a la tin  lin ea r  
ca n on ica l tra n sform a tion

°k = Uk ak - Vk 4
(44)

ö-k=Uk a-k +Vk a k

re p la c in g  the p a rt ic le s  ak by new o b je c ts  o k fo r  w hich then th e 's in g le 
p a rt ic le  p ictu re  again  h o ld s . T h ese  new o b je c ts  a re  ca lled  q u a s i-p a r t ic le s  
and they have the p rob a b ility  am plitude Vk o f  being  a p a rt ic le  and Uk o f 
being  a h ole  in the state k. C le a r ly , th is w ill a ffe c t  the tra n sition  m a tr ix  
e lem en ts fo r  e le c tro m a g n e tic  tra n s ition s , b e ta -d e ca y  as w ell as the 
t r a n s fe r  r e a c t io n s . In odd m a ss  n u cle i fo r  the tra n sition  m a tr ix  e lem ent 
on  the b a sis  o f  re la tion  (44) one e a s ily  d e r iv e s  the e x p re s s io n  relating  
the q u a s i-p a r t ic le  to the p a rt ic le  m a tr ix  e lem en t .

< k f № i >  = (U k.U k f+ ( - )T Vk¡ Vkf ) < k f |T £|ki> (45)

TjJ is  a te n so r  o p e ra to r  o f  rank X and the phase fa c to r  ( - )T is  determ in ed  
b y  the beh av iou r  o f  T^ under tim e r e v e r s a l .  In the c a se  o f  e le c tro m a g n e tic  
tra n sition s  the phase fa c to r  ( - )T is  +1 fo r  the m a gn etic  and -1 fo r  the 
e le c t r ic  m u ltipole  o p e r a to r . An im m ed ia te  con seq u en ce  is  that the m a g 
n etic  m om ent is  not a ffe cted  at a ll (U ^+ V^= 1) by in clu s ion  o f  pa iring  c o r r e 
la tion s , w hile m agn etic  tra n sition s  a re  changed on ly  sligh tly . F o r  stron g  
pa irin g , the e le c t r ic  tra n sition s  are  v e r y  m uch retard ed , but, as the w e ll- 
known E2 tra n sition s  a re , in the m a jo r ity  o f  c a s e s , o f  c o l le c t iv e  nature, 
it is  v e r y  d ifficu lt  to detect th em . The sam e is  tru e o f  E3 tra n sition s , 
w hile E l tra n sition s  betw een  the lo w -ly in g  sta tes a re  h ind ered  fo r  o th er 
r e a s o n s . The pa iring  co rr e la t io n s  have n o ticea b ly  a ffected  the ca lcu lated  
ft va lu es fo r  b e ta -d e ca y .

It should be s t re s s e d  that in a lm ost dou bly  m a g ic  n u cle i one d oes  not 
exp ect a stron g  in flu en ce  o f  pa irin g  fo r  la rg e  d is ta n ces  in en erg y  betw een  
m a jo r  sh e lls .
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F r o m  the an a lyses p resen ted  in this ch a p ter it ap pears that w e are  
ab le  to re m ed y  the d is c r e p a n c ie s  betw een  m ea su red  and ca lcu la ted  p ro p e rt ie s  
o f  the h u cle i around the doubly  c lo s e d  sh e lls  in te rm s  o f  the e ffe ct iv e  
e le c tro m a g n e tic  and b e ta -d e c a y  o p e r a t o r s . R en orm a liza tion  e ffe c ts  are  
a lso  exp ected  in the re a c tio n  an d . in e la stic  sca tter in g  data (s e e  the papers 
b y  A g od i, von  B rentano, C indro , D ost and F rah n  in th ese  P r o ce e d in g s ).
A l l  th ese  re n o rm a liza tio n  e ffe c ts  have, in fact, been  expected  from  the 
beginning  b e ca u se  the s ta tic  average  fie ld , due to  the averag in g  p ro ce d u re , 
d e fin ite ly  le a v e s  out a certa in  amount o f  c o rr e la t io n s  am ong n ucleon s 
(s e e  the p a p ers  on H a r tr e e -F o c k  and H FB a p p ro a ch e s).

II. SIM PLE F E A T U R E S OF SOME T W O -B O D Y  AND M A N Y -B O D Y
SYSTEM S ■

A fte r  co n s id e r in g  the n u cle i having dou bly  c lo s e d  sh e ll plus o r  m inus 
on e p a rt ic le  we can  s im p ly  go on. and g e n e ra liz e  ou r  co n s id e ra tio n s  fo r  
two p a rt ic le s  o r  two h o le s  ou tsid e  the c lo se d  s h e lls ;  In th ese  ca lcu la tion s  
on e u su a lly  lim its  o n e s e lf  to  one m a jo r  sh e ll . T o  ca lcu la te  the e n e rg ie s  
and the w ave fu nction s o f  the coup led  sy stem , we can start with the 
e n e rg ie s  o f  the n on -in tera ctin g  sy stem  and assu m e the d ir e c t  product 
o f  the w ave functions o f  the n on -in tera ctin g  system  as the low est a p p ro x i
m ation  fo r  the cou p led  o r  in teractin g  sy s te m . In th is w ay we obta in  d e 
g en era te  ground states as w ell as ex cited  states o f  the sy s te m . The e x 
p er im en ts  c le a r ly  in d icate  that the sta tes a re  not d egen era te  and so  we 
have to  in trod u ce  res id u a l in tera ction s  in o r d e r  to rem ov e  the d e g e n e ra cy . 
T h is  in te ra ctio n  cannot be taken  s im p ly  as a f r e e  N -N  in tera ction  beca u se  
a part o f  th is in te ra ctio n  has a lrea d y  been  taken in c rea tin g  the a v era g e  
f ie ld . T h e re fo r e , ou r  guide in ch oos in g  a res id u a l in tera ction  should be 
the ex p e rim e n ta l ev id en ce  on d e g e n e ra cy  sp littin g  and o rd e r in g  o f  the 
le v e ls .  F u rth e rm o re  we have to pay attention  to  the tru ncation  o f  the 
con fig u ra tion  sp a ce . ■ T h ese  poin ts a re  ex ten s iv e ly  d is cu ss e d  by  P al,
S op er  and T a lm i (th ese  P r o ce e d in g s ) . A s an illu s tra tion  we sh a ll take 
a s im p le  exam ple  o f  20SPb.

In 2 0 6 p b  W e  have two neutron  h oles d istr ibu ted  in the З р -^ , 2 f5/2 ,
3p3/ 2 and 1 j 3 /2 s u b -s h e l ls .  In the actu al ca lcu la tion  done by  T ru e  and 
F o r d 5 an a ttra ctiv e  G aussian  tw o -b o d y  fo r c e  acting  in the s in g le t-e v e n  state 
is  a ssu m ed :

2/ a2
. V (r ) = \?0 e

with

V = -3 2 .5  M eV and ß = 1 .8 5  fmо ^

■ T h is  potentia l has an e ffe c t iv e  range V0s = 2 .6 5  fm  and a bound state 
at z e r o  e n e rg y . The h a r m o n ic -o s c i l la to r  w ave fu nction s have been  u sed  and 
the s iz e  p a ra m e te r  b ad justed  so  that the squ are  root o f  the m ean  square

5 TRU E, W . W . ,  FORD, K . W . t Phys. R e v . U 9  (1 9 5 8 ) 1 6 7 5 .
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THEORY EXP'T

(p 1/2 f r / 2 )  { Z Z S I S Z T . i z j *  - 3 ----------

,------------------6 -
(p »/2 i 13/2) I

2

(p 1/2 p 3/2) ------------------------ 1 +

a 3 7  (p 1/2 f 5 / 2 )+ 0.60 (P 1/2 p 3/2 ) ______________ 2+ •
0.181p 1/2 )2->________________0+

( p l/ 2  f 5/2 ) 'Ъ *

а 5 7 ( р | / 2  f5 /2 )  + a 3 0  (P 1/2 P3 /2 ) -------------------- 2 +

0.73 {pl/2>2 ------------------------------------0+ - 0  --------- ;-----------------

F IG .9 .  C o m p a r iso n  o f  c a lc u la t e d  en erg y  le v e ls  w ith  ob se rv e d  o n e s .

rad iu s o f  the v a le n cy  n u cleon s equals the n u c le a r  ra d iu s . F o r  206Pb th is 
y ie ld s  b = 2. 33 fm . The en erg y  m a tr ix  has been  con stru cted  in the v a len ce  
su b sh e lls  and su bsequ en tly  d ia g o n a lize d .

In F ig . 9 the ca lcu la ted  en erg y  le v e ls  a re  com p a red  with the o b s e rv e d  
o n e s . The agreem en t fo r  the en erg y  le v e ls  ap pears to be quite s a t is fa c to r y . 
T he 3" state w hich o c c u r s  at 2 .6  M eV  has not been  p red icted  in the c a lc u 
la tion . It is , as we have d is cu ss e d  in the p rev iou s  ch apter, a p -h  ex cita tion  
o f  the 206Pb c o r e  and h ence cannot be d e s cr ib e d  in a m od e l c o n s id e r in g  
the ex cita tion s  o f  v a le n cy  n ucleon s in the m a jo r  sh e ll .

T h e tra n sition  p ro b a b ilit ie s  a re  ca lcu la ted  u sin g  eeff = 1 .1 5 . T he 
o b s e rv e d  B (E 2) fo r  the 2j -  0+ tra n s ition  can then be exp la in ed . H ow ever, 
the ratio  o f  the tra n s ition s  from  the secon d  2+ to the f ir s t  2+ and the 
ground state is  not in agreem en t with the ex p erim en t. T h e -m od e l p r e 
d ic ts  a lm ost 100% tra n sitio n  to  the f ir s t  2+, w h ereas  ex p erim en ta lly  a 
20% c r o s s - o v e r  tra n sition  is  o b s e rv e d . T h is is  ce rta in ly  an in d ication  
o f  the fact that we a re  m iss in g  so m e  d e g re e s  o f  fre e d o m  to accoun t fo r  
the d is c r e p a n c y . Indeed, taking the quadrupole v ibra tion a l sta tes in 208p b  
and assu m in g  a coup ling  betw een  the ca lcu la ted  2* states and the c o lle c t iv e  
p io d e s  o f  the c o r e  we obtain  sign ifican t im p rov em en t. We m ay  a lso  
m en tion  h ere  the exam ple  o f  the 1 5 /2 "  state at 1 .4 2  M eV  in 20SPb ( F ig .7 ).
It has a co n s id e ra b le  ad m ixtu re o f  the g$/2 p a rt ic le  coup led  to the 3" 
c o l le c t iv e  state o f  208P b . The sam e is  tru e o f  the 9 /  2+ 209Pb ground state . 
H ence the E3 tra n sition  fr o m  the 1 5 /2 "  state at 1 .4 2  M eV  to the ground 
state  o f  209p b  is  enhanced b y  a p p rox im a te ly  a fa c to r  o f  tw enty sin g le  
p a rt ic le  u n its.

C a lcu la tion s  in  20брь have a lso  been  c a r r ie d  out with d iffe ren t shapes 
fo r  the tw o -b o d y  potentia l (Yukawa potential, f o r  exam ple) and with s ligh tly  
d iffe ren t va lu es f o r  the o th e r  p a ra m e te rs . T he re su lts  o f  such  c a lc u 
la tion s  a g re e  w e ll with each  o th e r . Thus the e igen fu n ction s ca lcu la ted  
by  T ru e  and F o rd  can  be co n s id e re d  ty p ica l ex am p les  o f  the re su lts  o f  
a s im p le  s h e ll -m o d e l ca lcu la tio n . Som e o f  th ese  e igen fu n ction s a re  lis ted  
in  T a b le  IV.
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T A B L E  IV . EIGENFUNCTIONS DUE TO  
SH E L L -M O D E L  C A LC U LA TIO N

0 + states

Energy <P1 /2 >Z <P3 /2 >2 ( i n / /

0 .0 1 1 0 .8 6 5 3 0 .3 0 7 7 0 .3 7 6 5 -0 .1 2 1 6

1 .2 3 2 -0 .4 1 3 8 0 .8 7 5 5 0 .1 7 9 4 -0 .1 7 3 6

2 + states

Energy
Cpi / . f  »4 5 ( P l/2  P |/»> ^ 3/2   ̂i/2  ^ (P 3/2 >2

0 .8 0 4 0 .7 2 2 9 -0 .6 0 1 7 0 .2 1 6 8 0 .1 5 0 9 0 .2 1 3 4

1 .2 5 3 0 .6 5 3 8 0 .7 3 4 7 0 .0 0 1 6 0 .0 4 3 8 -0 .1 7 5 7

4 + states

Energy < V 2 ^ 3/2 ^ 5/2 ^ ‘ ( P l / « f 7/»>

1 .7 0 5 0 .6 6 8 8 0 .7 0 2 1 -0 .2 4 4 4

1 .9 6 3 0 .7 4 1 6 -0 .6 5 3 3 0 .1 5 2 6

It is  in terestin g  to c o n s id e r  the s in g le -n u c le o n  tra n s fe r  re a ctio n  data 
w hich  g ive in form ation  on the la rg e  s in g le -p a r t ic le  com pon en ts in  the w ave 
fu n ction . T h e se  ex p erim en ts  seem  to g ive , fo r  the ground state o f  206Pb, 
a l/2 = 0 .9 1  and a 3/2 = 0 .3 4 .  The T ru e  and F o rd  ca lcu la tion  is  in good 

agreem en t with th ese  n u m bers .
The adm ixtu re in the f ir s t  2+ state is  such that a ll the contribution s 

to  the ground state E2 tra n sition  m om ent have the sam e sign . In o th er  
w o rd s , th ey  add up co h e re n tly  and enhance the E2 tra n sition  w ell above 
the s in g le -p a r t ic le  v a lu e . T he tra n sition  m a tr ix  e lem ent from  the secon d  
2+ state is  re ta rd ed . Such a re la tion  betw een  the g rou n d -sta te  tran sition s 
fr o m  the f ir s t  and secon d  2+ le v e ls  is  s im ila r  to  that o b se rv e d  in v ib ra tio n a l- 
type sp e ctra .

M ost o f  the s h e ll -m o d e l ca lcu la tion s  use a  s im p le  p h en om en olog ica l 
re s id u a l in te ra ctio n . The fr e e  n u c leon -n u cleon  in tera ction  se e m s  to  be 
sin g u la r  (s e e  D . B r in k 's  le c tu re  notes) and thus cannot b e  trea ted  by  the 
s im p le  m ethod d e s c r ib e d  a b o v e . T h e p rob lem  o f  d er iv in g  the res id u a l 
in te ra ctio n  fro m  the fr e e  n u c leon -n u cleon  in tera ction  a re  d is cu ss e d  by  
G m itro  in  th ese  P r o ce e d in g s . S econ d ly , it should a lso  be noted that in 
the above-m en tion ed  ca lcu la tion  the con figu ra tion  sp a ce  was re s tr ic te d  
to tw o -n eu tron  h o le s  in a s in g le -m a jo r  sh e ll . Such a tru n cation  is  o b v io u s ly
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n e c e s s a r y  in  o r d e r  to  lim it  the s iz e  o f  the en erg y  m a tr ix . T he p a ra m e te rs  
o f  the e ffe c t iv e  re s id u a l in tera ction  then depend on the s iz e  o f  the c o n 
fig u ra tion  sp a ce . T h ese  p ro b le m s  a re  d is cu sse d  in d eta il b y  S op er  and 
T a lm i in th ese  P r o ce e d in g s . In g en era l, the en erg y  sp e ctra  can be  e x 
plained by  ch o o s in g  a su itable e ffe c t iv e  res id u a l in tera ction , and a few  
dom inant s im p le  con fig u ra tion s  accoun t fo r  the t r a n s fe r  r e a ctio n  data. 
H ow ever , the sm a ll n eg lected  com pon ents m ay  s ig n ifica n tly  a ffe ct the 
e le c tro m a g n e tic  tra n sition  p ro b a b ilit ie s . We c o n s id e r  so m e  o f  th ese  e ffe c ts  
b y  using an e ffe c t iv e  ch a rge  fo r  the v a le n ce  n u cleon s, but th is m ay  not 
b e  su ffic ien t as is  dem on stra ted  by  the g rou n d -s ta te  E2 tra n sition  from  
the secon d  2+ state in  206P b.

W e have m en tioned  the d iff icu lt ie s  in trea tin g  the tw o -v a le n cy  p a r 
t ic le s  ou tsid e  the dou bly  c lo s e d  s h e lls .  If we t r y  to  understand the 
p r o p e rt ie s  o f  n u cle i fa r  fro m  the c lo s e d  sh e lls  it is  c le a r  that the sh e ll 
m o d e l ca lcu la tion s  b e co m e  e x ce e d in g ly  d ifficu lt . So fa r  exact d ia gon a li- 
za tion  has been  c a r r ie d  out fo r  fiv e  n ucleon s in the d 5/ 2 and s y 2 su b 
s h e lls .  H ow ever, the p rob lem  m a y  be pa rtly  o v e r c o m e  if  one takes a 
d iffe ren t startin g  poin t. We m ay  turn  to the ex p erim en ta l data and ask 
the qu estion : W hich  part and w hich fea tu res  o f  thé sp e ctra  o f  r e la t iv e ly  
w ide range o f  n u cle i show  on ly  sligh t depen den ce on  a p a rt icu la r  n u cleu s?
O f the n u cle i aw ay fro m  the c lo s e d  sh e lls  we can  m ake d is tin ction  at two 
c a te g o r ie s : d e fo rm e d  and s p h e r ic a l o n e s . T he d e fo rm e d  n u cle i, as a 
m o s t  strik in g  fea tu re , exh ib it ro ta tion a l b a n d s . T h e se  n u cle i a re  d is cu sse d  
in d eta il by  Szym an sky in th ese  P r o ce e d in g s . W e w ill b r ie f ly  d is cu ss  
so m e  re g u la r it ie s  o f  the s o -c a l le d  sp h e r ica l n u c le i.

W e have m en tioned  b e fo r e  that a ll e v e n -e v e n  n u cle i have ground state 
sp in  and p a rity  0 +. With the ex cep tion  o f  the c lo s e d -s h e l l  n u cle i, the f ir s t  
ex cited  state  o f  an e v e n -e v e n  n ucleu s is  in va ria b ly  a 2+ sta te . T h e en ergy  
o f  th is 2* state is  not v e r y  se n s itiv e  to the p a rt icu la r  n ucleu s excep t in  
the c a se  o f  is o to p e s  and iso to n e s  n ea rest to the dou bly  c lo s e d  sh e ll . T h is 
is  a lso  tru e  o f s in g le  c lo s e d -s h e l l  n u c le i. A fu rth er  str ik in g  fea tu re  o f  
th is  2+ state is  that the g rou n d -s ta te  E2 tra n sition  is  enhanced above  the 
s in g le -p a r t ic le  value by  a fa c to r  o f  3 -1 0 . Q uite often  in the en erg y  reg ion  
o f  tw ice  the ex cita tion  e n e rg y  o f  the f ir s t  2+ state w e find sta tes  with sp ins 
and p a rit ie s  =0 + , 2* and 4 + . T h ese  states d e ca y  to the f ir s t  ex cited  2+ 
sta tes and the p o s s ib le  c r o s s o v e r  tra n sition  fro m  the secon d  2* state to 
the 0+ ground state is  a lw ays found to  be v e r y  sm a ll (2 -3 %  o f  the m ain  
tra n s it io n ). Such a pattern  su g gests  that the low est 2+ state m a y  be looked  
upon as a quadrupole v ib ra tion  o f  the n u cleu s . If a cce p te d  such an in te r p r e 
tation  p re d ic ts  the above-m en tion ed  0+ , 2+ and 4+ states to  be tw o-ph on on  
states o f  quadrupole  v ib ra t io n s . The o b s e rv e d  s e le c t io n  ru le s  fo r  the E2 
tra n sitio n s  co n firm  th is d e s cr ip t io n .

T he e n e rg ie s  o f  the 3" sta tes show  an even  w eak er  depen den ce on  the 
n u c le a r  m a s s e s  i . e .  it v a r ie s  as ~ A 1//3 . The E3 tra n s ition s  fr o m  th ese  
sta tes  a re  a lso  h igh ly  en hanced . We have quoted the 3" state o f  208Pb 
and its  B (E 3) is  40 t im e s  that o f  the sin g le  p a r t ic le .  Such states can  be 
c la s s if ie d  as the octu p o le  v ib ra tio n a l sta tes .

T he presen t status o f  the m ic r o s c o p ic  th e o ry  o f  v ib ra tio n s  w ill be 
d is cu ss e d  b y  P a l in h is  c o u r s e  o f  le c tu re s  (th ese  P r o ce e d in g s ) . P h en om en o- 
lo g ic a lly  we can d e s c r ib e  ax -p o le  v ib ra tion  by  a su itab ly  ch osen  c o lle c t iv e  
c o -o rd in a te  . F o r  a h a rm on ic  v ib ra to r  the H am ilton ian  then a ssu m es 

'  the fo rm
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H =тг В , i l "
М=

+х
1 V -1

+ 2 °х Л

ц=-\

^1
аМ (46)

T he e ig e n fre q u e n cie s  and the en erg y  o f  an N -phonon  state is  then obtained 
to  be

U x = \ f l ^  and E n = + (47)

T h e sp e ctra  a re  se ts  o f  equidistant d eg en erate  le v e ls  and th ere  is  a v e ry  
s im p le  B(EX) ra tio  ru le

B (E X ;N x = 2, Jj -  Nx= 1,X ) = 2B(EX; Nx = 1, X ^ N x = 0, 0) (48)

T h e tra n s itio n  o c c u r s  on ly  when ANX= ± 1 .  And a lso

B(EX; Nx = l ,X -> N x = 0 ,0 )  = ( ¿ Z e R f c \  2 (49)
'  A. \

i f  on e a ssu m e s  that the o s c illa t in g  ch a rg e  Z e  has a constant av era g e  den sity  
w ithin a rad iu s R 0. Thus we se e  that the two p a ra m e te rs  Bx and C x 
c h a ra c te r iz e  the sp e ctra  fu lly . A  d e s cr ip tio n  o f  the sy m m e tr ie s  o f  the 
v ib ra t io n a l p rob lem  can be found in A . B o h r 's  paper in  th ese  P r o ce e d in g s .

B e s id e s  th ese  c o lle c t iv e  m od es  a sso c ia te d  with the enhanced e le c t r o 
m a gn etic  tra n sition s  one cou ld  a lso  o b s e rv e  the s o -c a l le d  p a irin g  m ode 
in tw o -n u c le o n  tr a n s fe r  r e a c t io n s . In the rea ction s

208Pb(t, p)210 Pb .a n d  208P b (p ,t )206Pb

lead in g  to the ground states o f  fin a l n u cle i, the c r o s s - s e c t i o n  is  s tron g ly  
enhanced as co m p a re d  with the tra n s ition  into the pure |(j)2 J = 0̂ > c o n 
fig u ra tion . T h is  enhancem ent in d ica tes  that the p r o c e s s  is  o f  c o lle c t iv e  
n atu re, and, th e r e fo re , we m ay try  to  in terp ret the ground states o f  210Pb 
and 206pfc> as c o l le c t iv e  ex cita tion s  o f  208P b. The quanta o f  excita tion  o f  
th is  s o -c a l le d  pa irin g  m od e  w ill be ch a ra cte r iz e d  by  the n ucleon  tra n s fe r  
n um ber a.  Thus a = +2 is  a p a ir -a d d it io n  m ode and a = -2  c o rre sp o n d s  to 
a p a ir -r e m o v a l m od e . The sta tes a re  then la b e lled  by  (n i, n2) w here i i j  
is  the n um ber o f  p a ir  addition  m od e quanta and n2 the num ber o f  pa ir  
r e m o v a l quanta.

T h e p a irin g  m od e m a y  be  a sso c ia te d  with the fluctuations in Д , the. 
p a ir in g -e n e rg y  gap, around the equ ilibriu m  va lu e . Its th e o ry  w ill be d is 
c u s se d  b y  R ipka (th ese  P r o ce e d in g s ) . A n a logou sly  to the o th er  v ib ra tion a l 
m o d e s  the ra tio s  o f  s u c c e s s iv e  c r o s s - sè c t io n s  in the fo llow in g  rea ction s  
should  have the p ro p e rty

c r [ ( 0 , 0 ) - ( l ,  0 ) ] :  cr[( 1, 0) -* (2 , 0)] : ct[(2, 0) -  (3, 0)] = 1 : 2 : 3
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E x p er im en ta lly  fo r  the rea ction s

208 P b (p ,t )206Pb; 206P b (p ,t )  204Pb and 2 04 P b(p ,t )202Pb

the ra tio  o f  the c r o s s -s e c t i o n  is  1 : 1 .7  + 2. 7 (±20% ) in  good  agreem en t 
with the v ib ra tion a l fo r m a lis m .

T o  obta in  the en erg y  a sso c ia te d  with the p a ir in g -m o d e  quanta, we 
add a lin e a r  term  in N

E ' =E  - E( 208Pb) + (N -126) 5 .8 1  M eV

Then

(50)

and the en erg y  o f  the state (п1д ) is  g iven  by

E ' =hu ( n .+ n ,)
(n r  n2 ) a '  l  2 ’ (51)

T h e e n e rg ie s  o f  the 0+ le v e ls  in the 208pb  re g io n  a re  ca lcu la ted  and 
com p a red  with the ex p erim en ta l le v e ls  in F ig . 10.

F u rth er in g  the an alogy  it is  to be expected  that in the su perflu id  
n u cle i p o s se ss in g  n o n -z e r o  sta tic  value fo r  the pa iring  en erg y  gap Д 
one would o b s e rv e  p a irin g  ro ta tio n s . T he g rou n d -s ta te  e n e rg ie s  o f  th ese  
n u cle i would then lie  on a pa ra bo la  and th is is  d em on strated  in the c a se  o f 
Sn iso to p e s  in  F ig . 11.

W e w ill now turn to ex p erim en ts  in o r d e r  to s e e  i f  o u r  p ic tu re  o f  
h a rm on ic  v ib ra tio n s  is  adequate. F ir s t  we find that in a ll n u cle i in  which 
the tw o-q u a d ru p ole  phonon tr ip le t is  e x p erim en ta lly  id en tified , the 0 + , 2+ 
and 4+ le v e ls  a re  sep arated  in en erg y  b y  ap p rox im a te ly  80 keV to 400 keV, 
and a re  not degen era te  as p red icted  by the h a r m o n ic -v ib ra to r  m od e l.

E - E ( 2 0 e P b ) . (N  126) 5.81 MeV

15 M eV

lO M e V

5 M eV

OMeV

J--L-9.60 
---------- S . 25

-(™ 11.36

( 2.0 )
- ‘ -’ ¿ I , . *

n, num berof q u a n ta w ith o U -2  
n l n 2* n num ber of quanta w ith

Observed levels 

N on -In te racting  quanta 

Including interactions 
between pairs of quanta

- - - 1 10.08
(0.3)

5.70 (U) ( 0.2 )

,.8.01
^7.97

(1,0 )
-*.07

5.17

2.50
(0 ,1)

2.50
(0 ,0 )

202 204 206 208 210 212 214

F IG .1 0 . C o m p a r iso n  o f  ca lc u la t e d  en erg y  o f  the C + le v e ls  in  th e  208Pb re g io n  w ith  the e x p e r im e n ta l o n e s .
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FIG. 1 1 .  N eutron p a ir  e x c ita t io n s  in  Sn is o to p e s . T h e  so lid  lin es  represen t ground sta tes.

T h is  fact by  it s e l f  points out the ex is ten ce  o f  quite a p p rec ia b le  an h arm o- 
n ic it ie s .  B e s id e s  the e n e rg ie s , the tra n sition  in ten sities  a re  a lso  d ifferen t 
fr o m  the ex p erim en ta l o n e s . A s has been  m en tioned  e a r lie r , the c r o s s 
o v e r  tra n s itio n  fr o m  the se co n d  2+ state to  the ground state is  p resen t and 
is  about 2-3%  o f  the m ain  tra n s ition . T he h a rm on ic-p h on on  p ictu re  a lso  
p r e d ic ts  z e r o  s ta tic  quadrupole m om ent fo r  the v ib ra tion a l s ta te s . E x p e r i
m en ta lly , h o w ev er , we o b s e rv e  quite a p p re c ia b le  sta tic  quadrupole m om ents 
fo r  the f ir s t  ex cited  2+ sta tes . In 114Cd, fo r  exam ple , the f ir s t  2+ state 
has Q = - 0 .4 9 ± 0 .2 5  eV .

One cou ld  tr y  to explain  the a b ove -m en tion ed  d ev iation s fr o m  the 
h a rm on ic  p ictu re  by  taking the p o s s ib le  an h arm on ic te r m s  into c o n s id e r 
ation . H ow ever, the exact d ia gon a lization , in  sta tes contain ing up to 
sev en  phonons o f  the an h arm on ic te rm s , ca r r ie d  out by  S oren sen  (P h ys .
L ett . 21 (1966) 683) in 114Cd show ed c le a r ly  that the la rg e  quadrupole 
m om ent o f  the f ir s t  ex cited  2 + state cou ld  be obtained on ly  at a p r ic e  o f  
having a c r o s s - o v e r  tra n sition  m uch la r g e r  than that o b se rv e d  
e x p e rim e n ta lly .

S econ d ly , from  the ex p erim en ts  we find m any oth er  sta tes not p r e 
d icted  by  the v ib ra tion a l m o d e l. T h e se  states usu ally  o c c u r  in the en erg y  
re g io n  o f the tw o quadrùpole phonon sta te s . F o r  exam ple , in addition  to 
the 0 + , 2+ and 4+ states o f  the two phonon tr ip le t , at 1 .1 3 , 1 .2 1  and 
1 .3 8  M eV , we find a 0+ and 2+ state at 1. 30 and 1 .3 6  M eV , r e sp e c t iv e ly , 
in  114C d. In p r in c ip le , in  its  m ic r o s c o p ic  d e s cr ip t io n  the phonon state 
should  conta in  a la rg e  num ber o f  sm a ll l p - l h  o r  2 q u a s i-p a r t ic le  a m p li
tu d es . P resu m a b ly , th ese  o th er  sta tes , w hich  a re  not exp la ined  by  the 
phonon m o d e l, conta in  la rg e  am plitudes o f  a few  l p - l h  o r  two qu a s i
p a r t ic le  ex c ita t io n s . T h ese  s o -c a l le d  two q u a s i-p a r t ic le  sta tes can  m ix  
w ith pure h a rm on ic  phonon sta te s . T h e r e fo r e , as a f ir s t  im provem en t 
o v e r  the phonon m o d e l we w ill c o n s id e r  the p a rt ic le  d e g re e s  o f  freed om  
and th e ir  cou p lin g  with the phonon s ta te s . F o r  exam ple , in the treatm en t
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o f  n u cle i n ear the sin g le  c lo s e d  sh e ll, the s in g le - c lo s e d -s h e l l  n u cle i can 
be co n s id e re d  as v ib r a to rs  and the p a rt ic le s  (o r  h o les ) added (o r  taken 
fro m ) the c lo se d  sh e ll a re  co n s id e re d  e x p lic it ly  and the two m od es  a re  
cou p led . O f c o u r s e , s im ila r  ca lcu la tion s  can be ca r r ie d  out n ear doubly  
c lo s e d  sh e ll n u c le i. W e w ill b r ie f ly  d is cu ss  the ca lcu la tion s  c a r r ie d  out 
fo r  114Cd and 209B i.

T he in tera ction  o f  a p a rt ic le  with an a v erag e  v ib ra tion a l fie ld , d e s cr ib e d  
b y  the su r fa ce  o s c illa t io n s , can  be obtained as fo llo w s . We a re  in terested  
in the d iffe r e n c e  V (r , 0, 0 )) -V (r )  betw een  the v ib ra tio n a l and sta tic
c a s e . A ssu m in g  that th is d iffe re n ce  is  the sa m e fo r  a ll equ ipotentia l 
s u r fa c e s  we w rite  it fo r  the sp h ere  r  = R 0 and expand around аЧ = 0

V (R 0, f  0 ) -V (R 0, = 0) = V f -------- - --------\  -V (R 0)

V I « /

= V ( r ) - r ^ ^  a f  У цх (в,ф) + к< IY  o f  У ( > ,ф )|2 + . . .  (52)

X/J Х д

K eeping on ly  te rm s  lin e a r  in a e x p re s s io n  (50) fo r  a. g iven  m u ltipole  
X reads as

h x = - r ^ ^  V  ^ ( е , Ф )  (53)int d r  / , л л
X (i

In the above e x p re s s io n s  V (r) is  the sp h e r ic a lly  s y m m e tr ic  potential and
0 and ф a re  p a rt ic le  c o -o r d in a te s .

A s  an exam p le  o f  fu ll d ia gon a lization  we c o n s id e r  the ca se  o f  114Cd. 
H ere the v ib ra to r  is  the Sn iso to p e  to w hich the two proton  h o les  in the 
Z  = 50 sh e ll a re  cou p led . T he en erg y  m a tr ix  is  con stru cted  from  a ll p o s 
s ib le  sta tes up to th ree  phonons and the two p roton  h o les  in the Z  = 28 to 
Z  = 50 sh e ll . The coupling  constant in Hj|,t E q . (53) is  ad justed  to g ive 
b est agreem en t with the sp e ctra  (F ig . 12 ). The w ave fu nction s obta in ed  
in .the d iagon a liza tion  a re  then used to ca lcu la te  the e le c tro m a g n e tic  
p r o p e rt ie s  and the strength  d istr ibu tion  fo r  p a rt ic le  t r a n s fe r  r e a c tio n s . 
Thus th ese  w ave functions a re  su b ject to  s e v e r e r  te s ts .

In the n u m e rica l c o m p a r is o n 6 an e ffe c t iv e  ch a rge  e pff = 2ep and 
e£ff = 2 .9  ep have been  used to obtain  the B (E 2 ) value fo r  the f ir s t  2* to 
g rou n d -s ta te  tra n sitio n . The quadrupole m om ent o f  the f ir s t  ex cited  2+ 
state is  then obtained  as -0 .  33 eb, w hich a g re e s  w ell with the e x p e r i
m en ta l value -0 .4 9  ± 0 .2 5  eb . F o r  ca lcu la tin g  the M l tra n s ition  p ro b a 
b ilit ie s  an e ffe c t iv e  g yrom a gn etic  fa c to r  g®ff = 0 .7  g free) w as u sed . The 
re su lts  o f  th is ca lcu la tion  a re  show n in T ab le  V .

6 V . L o p a c , M .S c .  thesis, Z a g r e b  1 9 6 7 .
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FIG . 1 2 , C om p ar ison  o f  th e o re t ica l sp ectru m  

w ith  the e x p e r im e n ta l o n e  for 114C d .
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It is  a lso  in te re stin g  to  co m p a re  the s in g le -p a r t ic le  stren gth s fo r  
the tr a n s fe r  r e a c t io n s . T h is co m p a riso n  w ill te s t  the p a rt ic le  com ponent 
o f  the w ave fu n ction s . T he w ave functions o f  the 0 +, and 2* sta tes a re  
g iven  b e lo w .

| ° - >  =  ° - 7 8 [ ( § 9 / 2 ) - 2 ,  0 0 > + 0 - 4 2 | { g 9 / 2 ) ^ j i 2 >  _ ° . 2 6 | ( Р з / 2 ) - 2 ,  ° ° >

- 0 . 2 3  |(p1/2)-02 , 0 0 > + 0 .17 20>

|2>  ° * 6 7 |(%/2 >'o2- 12> + 0 -4| (g 9/2 )¡2 , 00> + 0 - 2 8 |(g9/2)¿2 ,2 4 >

+ 0 . 2 l | ( g 9/2)¿2 , 1 2 > - 0 .  21  | ( p 3 / 2 ) - 2 , 1 2 > + 0 . 2 0  ( ( g g ^ ) " 2 , 2 2  >

-  ° -  1 9 i 1 2  > - 0 . 1 8  | (p i / 2  ) o2 .  1 2  >

K > =  0 . 5 3 6 | ( g 9/2 ) ; 2 , 2 2 > - ° . 4 3 | ( g 9/ 2 ) ^ 1 2 >

+ 0 .2 7 | (g 9/2)¿2 , 2 ° > - 0 .2 6  l (g 9/2)-2 , Í 2 >

- ° - 2 0 |(g9/2);2<2 4 > + 0 - 1 9 l(P3/ 2 )'o2 - 1 2 >

T he am ount o f  (gg/2 )"2 con fig u ra tion  is  la rg e  (85% in the ground state 
and 90% and 61% fo r  the 2  ̂ and 2* sta tes , r e s p e c t iv e ly ) .  T h e se  n u m bers 
a re  e ss e n t ia lly  in agreem en t with the e x p erim en t. It is  a lso  v e r y  in te re stin g  
to  o b s e rv e  that the fin a l w ave fu n ction s, w hich a re  lin e a r  com bin a tion s o f  
sta tes  with d iffe re n t n u m bers o f  phonons, s t i l l  p r e s e r v e  a v ib r a t io n a l- lik e  
pattern  o f  B (E 2 ) 's  fo r  ce rta in  s ta te s . Thus one cou ld  sa y  that th ese  sta tes, 
although ad m ixed , s t il l  behave lik e  so m e  new a n h a r m o n ic -o s c i lla to r  s ta te s .

T h e re  is  yet an oth er p o s s ib le  ap proa ch  to th is p ro b le m , n am ely  that 
o f  p ertu rb ation  th e o ry . O f c o u r s e , one has to pay m uch attention  to the 
co n v e rg e n ce  and th e r e fo re  ch o o s e  p ro p e r  c a s e s .  One such c a s e  -  and 
th e re  a re  p rob a b ly  m any m o r e  -  is  o ffe re d  b y  the o b se rv a t io n  o f  the 
septuplet o f  p o s it iv e -p a r ity  le v e ls , with sp ins ranging  from  3 /2  to  1 5 /2 , 
and with an e n e rg y  sp rea d  o f  250 keV in 209B i (F ig . 7 ). T he low est is  the 
3 /2 + state  at 2 .4 9  M.eV and the 15 /2+ at 2 .7 4  M eV  is  the h igh est. The 
ce n tre  o fig ra v ity  o f  th ese  le v e ls  l ie s  at about 2 .6  M eV w hich  s tro n g ly  su g 
g e s ts  th e ir  nature to be o f  an h g/2 p roton  coup led  to  the 3 ' o c tu p o le  state 
o f  the 208Pb c o r e .  Indeed the ca lcu la tion s  c a r r ie d  out by  M otte lson , P a a r  
and o th e rs  (s e e  C a rg e se  le c tu re  n otes fo r  d e ta ils ) fu lly  su pport such  an 
in te rp re ta tio n . In 207Pb th ere  is  a doublet o f  le v e ls ,  with Ju = 5 /2 + and 
7 /2 + at 2 .6 1  and 2 .6 5  M eV , r e s p e c t iv e ly  (F ig . 7), w hich can  be  exp la ined  
as due to  the cou p lin g  o f  the p 1//2 neutron  h ole  with the octu p o le  v ib ra t io n .
In both c a s e s  the pertu rb ation  exp an sion  is  w e ll ju s t ifie d  and p ro v id e s  an 
im portan t to o l in  estim a tin g  the con trib u tion s fr o m  the c lo s e s t  le v e ls .
One m a y  sa y  that both a p p ro a ch e s , the m a tr ix  d ia gon a liza tion 'a n d  the 
p ertu rb ation  th e o ry , a re  in a w ay co m p le m e n ta ry . W hile the fu ll d ia g on a li
za tion  is  lim ited  in the s iz e  o f  the en erg y  m a tr ix  to be d ia gon a lized  and
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th e r e fo r e  not a p p rop r ia te  to the in vestiga tion  o f  the in flu en ce  o f  m any 
fa r  d istant le v e ls ,  the p ertu rbation  ap proach  in c a s e s  w here it c o n v e rg e s  
p ro v id e s  ju st such  in form a tion .

T h e re  is  as yet litt le  ev id en ce  on  v ib ra tio n a l sta tes a s so c ia te d  with 
h ig h er  m u lt ip o le s . H ow ever, re ce n tly  in an in e la s tic  (p, p ') experim en t 
on  Cd iso to p e s  by  M . K oike et a l . (N u cl. P h y s ics  A  125 (1969) 161) it has 
b een  found that the red u ced  tra n s ition  p rob a b ility  f o r  i = 4 (e le c t r ic  h exa - 
d ecu p o le ) tra n sition s  a re  7 to 10 tim e s  the s in g le -p a r t ic le  v a lu e . H ow ever, 
m u ch  m o r e  ex p erim en ta l data a re  needed b e fo r e  one draw s defin ite  
c o n c lu s io n s .

F ig u r e s  1, 2, 3, 4, 5, 6, 8, 10 and 11 have been  taken fr o m  A .B oh r and B .R . 
M otte lson , L e c tu re s  on N u clear  S tru ctu re ; F ig . 9 fro m  T ru e , W .W .,
F o r d , K .W . (P h y s . R ev . 109 (1958) 1675); F ig . 12 from  V . L op a c:
M .S c .  T h e s is , Z a g re b , w hile F ig . 7 is  due to  the co u r te s y  o f  N. C in dro .
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Abstract

SHELL-M ODEL TECHN IQU ES.
1 . S later determ in a n ts (s e c o n d -q u a n t iz e d  w av e  fu n c t io n s ); 2 . T h e  fr a c t io n a l p a ren ta g e  re p resen ta tion ; 

3 .  C a lc u la t io n  o f  o n e -  and t w o -b o d y  m a tr ix  e le m e n ts .

1. SL A T E R  D ETER M IN AN TS (SE C O N D -Q U A N TIZE D  W AVE FUNCTIONS)

A  sin g le  S later determ inant is  the s im p le s t fo rm  o f a n tisy m m etric  w ave 
function . C om p lete ly  equ ivalent to it is  the fu nction  that c o n s is ts  o f  a s in g le  
strin g  o f  c re a tio n  o p e ra to rs  acting  on  the vacuum . We sh a ll r e fe r  to w ave 
fu nction s o f  e ith e r  o f  th ese  fo r m s  s im p ly  as "d e te rm in a n ts " .

W e sh a ll u se  the fo llow in g  notation  fo r  determ in an ts. We f ir s t  define 
a "s ta n d a rd  o r d e r "  fo r  the set o f  s in g le -p a r t ic le  states |nijm)> that we are 
co n s id e r in g  (assu m ed  fin ite ). We then need on ly  in d icate  w hether each 
state in  the set is  o ccu p ie d  o r  u n occu p ied  in  the determ inant. T h is we do 
by m eans o f  a b in a ry  num ber, w ith as many d ig its as th ere  are  states in 
the sp a ce ; fo r  each  state in  the standard o r d e r  a " 1" in  the co rresp on d in g  
p o s itio n  in  the b in a ry  num ber denotes the state is  o ccu p ie d , " 0"  that it is  
.u n occu p ied . The notation  is  com p a ct, and c le a r ly  su ited  to a com pu ter, 
w h ere  a w ord  o f  64 b its  can span a sp a ce  am ply la rg e  enough fo r  m ost 
a p p lica tion s . T h is fo rm  is  in  fa ct used  in the A rgonne sy stem  o f  sh e ll- 
m o d e l p r o g r a m s  [1 ] .

W e sh a ll h e re  trea t a ll-n e u tro n  sy s te m s , in d icatin g  (w here it is  not 
o bv iou s) how n eu tron -p ro ton  sy ste m s can be in cluded . We defin e a 
co n fig u ra tion  as a d is tr ib u tion  o f  the p a r t ic le s  o v e r  the v a r io u s  sh e lls  
|n ij>  in  w hich  the c h o ice  o f  m -v a lu e s  w ithin each  sh e ll is  not sp e c ifie d .

V e r y  few states o f  a m a n y -bod y  system  ( fo r  w hich  the to ta l angular 
m om entum  J is  a good  quantum num ber) can be rep resen ted  by a sin g le  
determ inant in  the m -re p re se n ta t io n . Such a determ inant has a p r e c is e  
value o f  M, but not o f  J . The e x cep tion s  a re  c a se s  w h ere  the p a rticu la r  
va lu e o f  M can be obtained in  on ly  one w ay w ithin  a g iven  con figu ra tion ; 
such  a unique state m ust be id e n tica l to  a s im ila r ly  unique state in  the 
| jM / rep resen ta tion , and thus m ust have good  J . The la rg e st  c la s s  o f 
such sta tes is  that with the m axim um  p o s s ib le  M in  a g iven  con figu ra tion  
(we co n s id e r  h e re  on ly  M g 0). T h ese  states a re  alw ays unique and have 
J = M . T he m ost im p ortan t ex a m p les  a re :

(a) C losed  sh e lls , w ith J = M = 0, and
(b) c lo s e d  sh e lls  p lu s o r  m inus one p a rt ic le . If the ex tra  (o r  m iss in g ) 

p a r t ic le  is  in  the |nij^> sh e ll the determ inants have J = j (note th is is  true 
fo r  a ll M ).

O ther sta tes o f  m axim um  M a re  le s s  im portan t p h y s ica lly  than th ese , 
but o f  grea t im p o rta n ce  in  com pu tation  as w e sh a ll se e  below  when w e 
co n stru ct the sta tes o f  good  J in  the g en era l ca se .

227
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States contain ing  two p a r t ic le s  (o r  h o le s ) ou tside  c lo se d  sh e lls  are  not 
in  g e n e ra l s in g le  d eterm in an ts but lin e a r  com bin ation s o f  two o r  m o re . 
S ince each  determ inant is  a lrea d y  a n tisy m m e tric , w e have on ly  to w o rry  
about fo rm in g  states o f  good  J ; th is is  o f  c o u rse  ach ieved  with C le b sch - 
G ordan  c o e ffic ie n ts . A s an exam ple  w e co n s id e r  the J.= 1, M = 1 state o f  the 
co n fig u ra tion  j x = |, j 2 = |. We have

■ I

H i2 2
" m ,  m  Д

n i m 2

m i  >

3  3 s  

2  2
I . I > . I  
2 2 2

3 I >  
2 2 7 12> 2  2

3
2

1
2

\
2

3
2

1 1
2

4 У  4
V '

Jt 2 >2 2

F I G . l .  "S tan da rd  o rd e r "  fo r  c o n f ig u ra t io n  j j  = j2 = \

If w e adopt the standard o r d e r  A  show n in  F ig . 1 then the state w e have

w ritten  as 

1 1

3 3 .  
2  2

■'2 ^ r e p re s e n ts  the determ inant ( 1000 001) and the

1 I >  
2 2 y 2 2

)> state is  (0 1 0 0 1 0 ). The la tte r  notation  is  p re fe ra b le  s in ce  the

states a re  a n tisy m m e trize d .
States o f  good  J fo r  m o re  than two p a r t ic le s  a re  not so  s im p le . 

W e u se  the M -lo w e r in g  o p e r a to r :

w h ere  ,T_ has the p ro p e rty

J IJM  > = n/ (J  + M )(J  - M + 1) IJ M - 1 >

and s im ila r ly  fo r  j_. W e op era te  on the determ in an ts, with £ j  , each  te rm  
o f  w hich  has the fo llo w in g  e ffe c t . If the state i is  u n occu p ied  the term  g ives  
z e r o .  If it is  o ccu p ie d , then j* m o v e s  the 1 in  that p o s itio n  one p la ce  to  the 
right (in  ou r  fo rm  o f  standard o r d e r )  and m u ltip lies  the resu ltin g  d e te r 
m inant by the ap p rop r ia te  fa c to r . If the state on  the r igh t is  a lrea dy  
o c cu p ie d  o r  b e lon g s  to  a d ifferen t sh e ll the re su lt  is  again z e r o  fo r  that 
t e r m .
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W e fo llo w  the p ro ce d u re  u sed  in  the A rgonne s h e ll -m o d e l p ro g ra m  [1 ] 
The s tep s  a re  as fo llo w s :

( a )
(b)

(c)

(d)

C h oose  a con fig u ra tion . 
C on stru ct the state o f  m axim um

Am ax*
to g ive  m ultip le  o f

M . T h is  state w ill be unique,

v M  - 1 > .O perate  w ith J

O perate  w ith S j1 to g ive  the ap p rop ria te  lin e a r  com bin a tion  o f  
j - l o w e r e d  determ in a n ts. Equate the two and n o rm a liz e .
A ll o th er  lin e a r  com bin ation s o f  th ese  d eterm inants w hich  are  
n o rm a l and orth ogon a l to each  oth er and to the com bin a tion  found
in  (c )  are  e ig en sta tes  o f  J with J and M = M r -1. F ind a
com p le te  set o f  th ese  by Schm idt orth ogon a liza tion .

(e ) R epeat (c )  and (d ), u sin g  a ll the v e c to r s  a lrea d y  found. F o r  each  
s u c c e s s iv e  M con stru ct a ll the states be lon g in g  to J>M  by u sin g  J_ 
on th e ir  known M +l com pon en ts. Then  f i l l  out the sp a ce  by Schm idt 
o rth ogon a liza tion ; the new v e c to r s  be lon g  to J = M.

(f) It is  p o s s ib le  to co n s e rv e  se n io r ity  in  th is s ch e m e . At each  
Schm idt orth ogon a liza tion  (it can be show n) it w ill be p o s s ib le  to 
ch oose  new v e c to r s  in  w hich  a ll the d eterm inants have the sam e 
d e g re e  o f  p a irin g  (a "p a ir "  is  defined as the occu p a tion  o f  both 
| jm ^ and |j-m  )  in  a g iven  sh e ll; "d e g r e e  o f  p a ir in g " is  s im p ly  

the n um ber o f  such p a irs  in  the determ inant). T he resu ltin g  w ave 
fu nction s w ill then have good  se n io r ity  (g iven  by the num ber o f  
im p a ire d  p a r t ic le s  in  the M = J  state) as w ill a ll fu nction s su b
sequently  d er iv ed  fro m  them  by J_ o p era tion s .

As a (tr iv ia l)  exam ple  w e take the ca se  o f  two p a r t ic le s  c o n s id e re d
ab ove . The m axim um  M is  2 and h ence  we have

H ence

and hence

I 2, 2> = (100 010)

J_|2,2> = 2 I 2, 1>

= < / 3 ( 0 1 0 0 1 0 )  +  ( 1 0 0 0 0 1 )

Г, 1
I 2, 1> = -y-(OlOOlO)+- (100001)

1 Jk
I 1 ,  1 >  = -  g  ( 0 1 0 0 1 0 )  +  - ^ ( 1 0 0 0 0 1 )

T h is is  the resu lt  w hich  w e had b e fo r e .
C learly^w e had an a rb itra ry  ch o ice  o f phase h e re ; in  m o r e  com p lica ted  

c a se s  w e w ill a lso  have an a rb itra ry  ch o ice  o f  orth ogon a l lin e a r  com bin ation s 
in  steps (d) and (e ), though th is w ill be redu ced  i f  w e p r e s e r v e  se n io r ity . 
P ro v id e d  w e a re  con s is ten t , h ow ev er , th ese c h o ic e s  w ill not a ffe c t  any 
p h y s ica l quantity, s in ce  w e are  h ere  con stru ctin g  a com p le te  set o f  b a s is  
sta tes in  w hich  to e x p re s s  o p e r a to rs  and w ave fu n ction s.

W hen both  n eutrons and proton s are  p resen t the above op era tion s  can 
be c a r r ie d  out, trea tin g  the neutrons and p roton s  as d iffe re n t p a r t ic le s
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( i . e .  counting the neutron  and p roton  |nij)> sh e lls  as d is tin ct). Then  w ithin
each  set o f  fu nction s | J, M = J / w e can c la s s ify  a cco rd in g  to  the is o s p in  T
by  u sin g  the is o sp in  low erin g  o p e ra to r  T_ in  the sam e w ay that w e used J_ .
We iden tify  the state w ith the la rg e st p o s s ib le  num ber o f  neutrons in  this
sp ace  o f  fu nction s (m axim u m  MT); th is w ill have T = T m,„  = Mt„ „ .  Theni  '  m a x  m a x
we c a r r y  out the T_ and orth ogon a liz in g  op era tion s  ex a ctly  as b e fo r e , w ithin 
the sp a ce  o f  functions j J, M=J/' . One sm a ll point has to be w atched . In 
m ost "s ta n d a rd  o r d e r s " ,  co rre sp o n d in g  neutron  and proton  states (w hich  
are  conn ected  by t_) w ill not be next to each  o th er  (as they w e re  in  the ca se  
o f  j_ in  the standard o r d e r  we adopted). We m ust then r e m e m b e r  that in 
n jov ing  a neutron  to  the co rre sp o n d in g  p ro ton  state by m eans o f  t we m ust 
m u ltip ly  the resu ltin g  determ inant by  ( - 1)1 w h ere  r  is  the num ber o f o ccu p ie d  
states that w e p a ss  o v e r  in th e  tra n s fe r . T h is  ru le  is  o f  c o u rse  an e x p re s s io n  
o f  the an ticom m u tation  law.

2. THE F R A C T IO N A L  P A R E N TA G E  R E P R E SE N TA TIO N

R ep resen ta tion  in  te rm s  o f  determ inants is  v e ry  s im p le  in p r in c ip le  but 
v e ry  co m p lica te d  in  p r a c t ic e . T o  p rov id e  a b a s is  fo r  n u cle i o f  m a ss  10 fo r  
exam p le  in  L -S  coupling  (s ix  p a rt ic le s  in  1рз and lp^ ) we need to c o n s id e r  
(12!)/ (6! )2 = 924 determ in a n ts. C learly  th is rep resen ta tion  b e co m e s  m o re  
suited to  com p u ters  than hum an bein gs as soon  as we lea ve  the im m ed ia te  
n eigh bou rhood  o f  c lo se d  sh e lls .

W e u se  instead  the technique o f fra c tio n a l p a ren ta ge . We su ppose that 
w e know a ll the a n tisy m m etric  states o f  n- 1 p a r t ic le s  in  a sh e ll (w e co n s id e r  
a sin g le  sh e ll fo r  the m om ent). Let th ese  be |jn_1a J M ]> =  Ф. If w e sim p ly  
v e c to r  couple  to a ll o f  th ese  states a nucleon  la be lled  n in  a ll p o s s ib le  w ays 
w e sh all obtain  a set o f  states

i//(jn 1 a J) ф(j) = У q!jJ I jn_1 5JM> I jm>
¿—' M m MM  ' M m M  

M m

w h ere  we denote the s in g le -p a r t ic le  state by ф o r  |jm)> and v e c to r  coupling  
by [ ]^j. T h ese  states w ill not be a n tisy m m etric  fo r  exch an ges betw een
p a rt ic le  n and the o th er  p a r t ic le s ,in  g e n e ra l; on ly som e su bset o f  states w ill 
be to ta lly  a n tisy m m etric , g iven  by the lin e a r  com bination s

I j V j  M> У  а* У  c i iJ  I
/ _ j jij Lj  M m M

h "  V j M )  I j m >

J a M m

■I 1 or J ) ф( j )

The co e ffic ie n ts  a| o f  th is  p r o je c t io n  op e ra tio n  from  the sp a ce  o f  v e c t o r -  
coup led  sta tes to its  to ta lly  a n tisy m m etric  su bsp ace  are  ca lle d  co e ffic ie n ts  
o f  fra c t io n a l parentage (c .  f. p. ). T hey are  ex ten s iv e ly  tabulated [2] .

W e have e x p re s se d  the a. s . (a n tisy m m e tric ) states o f  j n in  te rm s  o f  the 
a. s . sta tes o f  j n_1; in  turn w e can  e x p re s s  th ese  i f  w e w ish  in  te rm s  o f
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j n~2 and so  on, to a r r iv e  at a com p le te  e x p re s s io n  fo r  the j n w ave function
w hich  w ill be as co m p lica te d  as (and equ ivalent to) its  e x p re s s io n  as a sum 
o f  S la ter d eterm in a n ts . But n u c le a r  p h y s ics  c o n s is ts  e s s e n t ia lly  o f  m a trix  
e lem en ts  o f  o n e - and tw o -b o d y  o p e r a to rs , not o f  w ave fu n ction s. F o r  on e- 
body  o p e r a to rs  we need n e v e r  go beyond the f ir s t  step  in  th is red u ction , fo r  
tw o -b o d y  o p e r a to rs  we need on ly  go as fa r  as the secon d . In th is w ay w e 
find that we can  im m e d ia te ly  red u ce  the p rob lem  o f finding n -b o d y  m a trix  
e lem en ts  to the s im p le  p ro b le m  o f  finding 2 -b o d y  o r  1-b o d y  m a trix  e lem en ts . 
T h is  red u ction  is  p u re ly  g e o m e tr ic .

(a) M atrix  e lem en ts o f  o n e -b o d y  o p e ra to rs

O p e ra to rs  co rre sp o n d in g  to o b s e rv a b le  quantities in quantum m e ch a n ics  
m ust be s y m m e tr ic  in  a ll p a r t ic le s  (o f  a g iven  type). The m ost g en era l 
fo rm  o f  a o n e -b o d y  o p e r a to r  m ust th e r e fo re  be F = £  f¡ w h ere  the sum is

taken o v e r  a ll p a r t ic le s . The f¡ can  in  g en era l be e x p re s se d  as a sum o f  
ir r e d u c ib le  s p h e r ica l te n s o r s ; w e sh a ll a ssu m e th is has been  done, and 
sh a ll c o n s id e r  on ly  one rank o f  te n s o r  at a t im e . W e th e r e fo re  c o n s id e r

S ince the w ave functions a re  tota lly  a n tisy m m e tric  it fo llo w s  that each  
te rm  in  the sum  w ill g ive  a con tribu tion  o f  the sam e m agnitude and sign  
(v e r ify  th is ). W e th e r e fo re  on ly  c o n s id e r  the con trib u tion  o f  f n and m u ltip ly  
the re su lt  by n. A pp lying  a lso  the W ig n e r-E ck a r t  th eorem  g ives

The o p e r a to r  h ere  a cts  on ly  on  the secon d  part o f  the v e c to r -c o u p le d  sy stem , 
and we can  th e r e fo re  u se  the th eorem  13 J

W e now u se  the fra c tio n a l paren tage expan sion :

X < [^ (o -J ) 0n( j ) ] J I | f 'k) I | [< //'(5 'J ') фп (з ) ]Г >

< j , j2j|  I T (k) (2)| = 6. .. (2J+1 ) (2 J '+ 1 )
1 1

X W(j' k j j j ;  j2J ' )< j2| IT(k)(2) I I j2' >
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w hich  g iv e s  us the fin al resu lt

ч>

X W ( jk J J ;  j J ') < j|  |f(k )| |j>

w hich  e x p r e s s e s  the n -b o d y  m a trix  e lem en t in  te r m s  o f  a o n e -b o d y  m a trix  
e lem en t and g e o m e tr ic a l fa c to r s .

(b) T w o -b o d y  o p e ra to rs

W e have defin ed  the o n e -b o d y  c . f .  p . ab ove . The tw o -b od y  c . f .  p. are  
defin ed  s im ila r ly

w h ere  ф is  an a. s . state o f  the fir s t  (n -2 ) p a r t ic le s  and ф2 is  an a. s . state 
o f  p a r t ic le s  (n -1 ) and n. B y  ex a ctly  the sa m e argum ents that w e u sed  above, 
w e have fo r  the m a tr ix  e lem en ts  o f

In m ost c a s e s  o f  in te re s t  the tw o -b od y  o p e ra to r  w ill be a s c a la r  w ith к = 0. 
The resu lt  then re d u ce s  to the v e ry  s im p le  on e:

M

1 фФ Фф
/  a* a*' J ( 2 J  + 1) (2 J ' + 1 )
L---1 Crf л л

(¿0 Фф 2 2
фф2

( с )  R ela tion  betw een  tw o - and on e -b o d y  c .f .p .

T h e re  a re  m any ta b les  o f  o n e -p a r t ic le  c . f .  p . T h ere  a re  few  o f  tw o- 
p a r t ic le  c . f .  p . ,  w hich  a re  n e c e s s a r ily  m o re  bu lky. We th e r e fo re  need to be
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able to  e x p re s s  the 2 -b o d y  c o e ffic ie n ts  in te rm s  o f  the o n e -b o d y  on e s . We 
can w rite , u sing  the o n e -p a r t ic le  breakdow n tw ice  in s u c c e s s io n :

ф(2По J M ) I Ф
Ф(а1) ф ( j ) l  =Y a*_ a^

JM L~' ф ф

W e now need to  r e co u p le  the angular m om enta  in  the la st line to  g ive  the 
standard fo rm  fo r  the tw o -b o d y  pai 
W e u se  the recou p lin g  co e ffic ie n t :
standard fo rm  fo r  the tw o -b o d y  paren tage e x p re s s io n , w hich  in v o lv es  ф .

< V 2 ( J 1 2 )> V  J  l j l ’  j 2 j 3 ( J2 3 ) ; J >

= (2 Jj2 +1 ) (2 J23 + 1 ) W(i l j2Jj3; J12J23)

w hich  g ives

ф( j "a J M) УL_i ф
2 J + l )  (2 J2 + 1 ) W (J j J j; JJ2) 0 (3 J) 02(J2)

and hence

* = )  a?_a^ s/(2 J + l )  (2J2 +1) W (J jJ j ;  J J )
7f, л  ' I i/,ф 0  i— J ¡¡I ф

3. C A L C U LA T IO N  OF O N E- AND T W O -B O D Y  M A TR IX  E LE M E N TS

The ca lcu la tio n  o f  m a trix  e lem en ts o f  o n e -b o d y  o p e ra to rs  is  usually  
.quite s tra ig h tforw a rd . The w ave fu n ction s-a re  v e c to r -c o u p le d  com bin ation s 
o f  sp in  and o rb ita l angular m om enta, and the o p e ra to rs  can be w ritten  as 
com bin a tion s o f  ir re d u c ib le  s p h e r ica l te n so rs  in  sp in  and o rb ita l sp a ce s . 
O nce the sp lit in to th ese  two sp a ce s  is  com p le te , the sp in  p a rts  can be 
evaluated u sin g  ( fo r  in stan ce ) P au li m a tr ic e s , and the o rb ita l parts w ill 
red u ce  to in teg ra ls  o v e r  p rod u cts  o f  s p h e r ica l h a rm on ics  o r  to m atrix  
e lem en ts  o f  angular m om entum  o p e r a to rs , a ll o f  w hich  are  w e ll-k n ow n . In 
g e n e ra l, th ere  w ill a lso  be rad ia l in te g ra ls , w hich  w ill be s im p le  sing le  
in te g ra ls  and e a s ily  evaluated fo r  any ch o se n  fo rm  o f rad ia l w ave function .

E xam ple  :

The m a gn etic  m om ent o f  a sin g le  neutron  ou tside  c lo se d  sh e lls  is  
g iven  by

U = < s i  j m = j |gs s j15 I s i  j m = j>
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w h ere  gs = -3.8256 n u clea r  m agn eton s. Show that

M = g s С

I  + j ( j + l )  - Щ + 1 )

2 ( j + l )

:) and s im ila r ly  ca lcu la te  the s in g le 
p a rt ic le  ("S ch m id t" ) m om en ts fo r  
a sin g le  p roton  (with o rb ita l 
con trib u tion ).o r D

M atrix  e lem en ts  o f  tw o -b o d y  o p e ra to rs  m ay be a little  m o re  co m p lica te d  
fro m  the angular m om entum  point o f  v ie w . The m ost frequ en tly  en cou n tered  
c a s e s  in vo lve  s c a la r  o p e r a to rs , w hich can be w ritten  in  te r m s  o f  s c a la r  
p ro d u cts  o f  sp in  and o rb ita l o p e r a to rs ; th ese  two sp a ce s  can  then be se p a 
rated , by tra n s fo rm in g  the tw o -b od y  w ave fu nction s fro m  j - j to  L -S  cou p lin g :

The g e n e ra l ca se  has b een  trea ted  by E llio tt [4 ] ;  w e h ere  c o n s id e r  the 
m ost c o m m o n  ex am p le , in  w hich  the tw o -b o d y  o p e r a to r  re p re s e n ts  (sa y ) 
a tw o -b o d y  ce n tra l in te ra c tio n , in  o th er  w o rd s  is  a s c a la r  both in  space  
and sp in . A s in  the o n e -b o d y  ca se  w e can  dea l e a s ily  with the sp in  part; 
the o r b ita l part w ill  in vo lve  the evalu ation  o f

w h ere  V ( r 12) is  a s c a la r  fu n ction  o f  the d ista n ce  r12. W e sh a ll in  fact 
c o n s id e r  h e re , not the o n e -s h e ll  ca se  we have co n s id e re d  so  fa r , but the 
g e n e ra l ca se  w h ere  a ll the 1-v a lu e s  in vo lved  m ay be d iffe ren t, i . e .

O ur p ro b le m  is  that V  is  a fu nction  o f  r12 w hile  the tw o -b o d y  w ave 
fu n ction  is  a fu n ction  o f  r j  and r 2 se p a ra te ly . W e dea l f ir s t  w ith  the g en era l

< ( s j e ) j , ( s i ) j ;  J2M 2| = Y  ( 2 j + l )  '/"(2 S2 + 1 )(2 L 2+ 1 ) 

'  s  i  j  1

I V  ( r 1 2 ) |^з^4Ь 2>
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m ethod , then w ith  the s im p lifie d  m ethod that is  p o s s ib le  w hen the rad ia l 
w ave fu nction s a re  th ose  o f  a h a rm on ic  o s c i l la t o r .

(a) G en era l m ethod

W e are  fa ced  with an in te g ra l o v e r  two w ave fu nction s (w hich  are  
e ss e n t ia lly  a p rod u ct o f  fu nction s o f  and r 2 ) and a potentia l (fu n ction  o f
r12). O ur f ir s t  m ethod re w r ite s  the function  o f  r ^  as a fu n ction  o f  rj , r 2 
and co s  u 12 w h ere  u 12 is  the angle betw een  ? j  and r2 . E x p lic it ly  we w r ite :

к

w here Pk is  the L eg en d re  p o ly n om ia l o f  rank k. C lea r ly  w e have

V k ( r i>  r 2 ) =1! ±Í/ V(r1 2 ) P k ( C O S U ,1 2 ) d ( C O S U l 2 )

s in ce  /P k(z) P k. (z) dz = 2 6k /(2 k + l) .  If we defin e a re n o rm a liz e d  s p h e r ica l 
h a rm on ic  as

Yk4(n)

and trea t it as a te n s o r  o p e r a to r  o f  rank k, the sp h e r ica l-h a rm o n ic  addition  
th eorem  can s im p ly  be w ritten  in  the notation  o f  a s c a la r  p rodu ct o f  te n so r  
o p e ra to rs

P^cosc^) = d V i )  С(кЦ )

Now the tw o -b o d y  w ave fu nction  is  a p rod u ct o f  a ra d ia l and an angular 
part, i . e .

I  =

H ence putting the re su lts  tog e th er  w e see  that

■(íiügLgMgl V (r 12) |i3i 4 L2M2> -  ^
к

w h ere  Fk is  a S later In tegra l

(П2)
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and f k is  the m a trix  e lem en t o f  C ^ ( l )  C^k^(2). U sin g  the fo rm u la  fo r  
a s c a la r  prod u ct in  a cou p led  sy stem :

< j j J M | T (k)( l )  U(k)( 2 ) | j 'j '  J 'M '>  = ( - l ) k W (j J k j ' ;  i i ')
1 ¿ 1 ¿ 2 1 1 2

x  Пт(к)И j ! )  О  II и (к)|И! > ó ó1 ' ' ' I  Jl' X J 2 ( 1 * ' J2 X  JJ* M M '

w e have

гк = ( - 1^ ( ^ ь 2к ^ ; ^ 4 ) ( ^ | |  c ( k ) || i 3 ) ( i 2 || c ( k ) | | í 4 )

Thus f k is  p u re ly  g e o m e tr ica l, depending on ly  on the angular m om entum  
quantum n u m bers; the Fk contain  the p h y s ics  e x p re s se d  in  the ra d ia l w ave 
fu n ction s.

W e can ca lcu la te  the (¿ ||C^||i') from  the form u lae  fo r  in tegra tin g  
th ree  s p h e r ica l h a rm o n ics  o f  the sam e argum ent. W e find

(*ll C(k)||í') = n/ 2 í ' + 1 c ' ' 0ko

(and th e r e fo re  van ish es u n less V  +k  + Í  is  even ; thus on ly  a l l-e v e n  o r  
a ll-o d d  к o c c u r  in  the expan sion . A lso  the tr ia n g u la r  ru le  on  Í ,  к and £' 
l im its  the num ber o f  p o s s ib le  va lu es o f  k, and hence the num ber o f  double 
in teg ra ls  Fk that need to be evaluated, to a sm a ll va lu e).

E xam ple

P r o v e  that 6 (r j - r2) = ( 1 /Г [Г 2) 6(r j  • 
a 6 -fu n ction  V (r12) = 6( ? 1 - ?2) we have

r2) ( 1 /27Г) 6( c o s u 12- 1) and h ence fo r

v  ( r  r  ) = ¿ ( r l  ~ r 2)
к 1 2 4 7Г rvrv,L1 x 2

and h ence  that = (2 k + l) F 0 . H ence show that

f  Li \2<i I L  |б(? - L„ > = (2 i +1) ( C ^ C„2I F
1 2  2' 1 2 ' 1 1 2 2^ v 1 '  \  О О О /  0

plus an exch an ge term  (evaluate). H ence plot a ty p ica l sp ectru m  fo r  1 2 
w ith 6 - f o r c e s  (no exch an ge needed fo r  equ ivalent p a r t ic le s ) .  See de Shalit 
and T a lm i [3 ] , p. 219.

(b) M ethod fo r  h a rm on ic  o s c i l la t o r  w ave functions

T a lm i has show n that it is  p o s s ib le  to red u ce  the double S later in teg ra ls  
to  sin g le  in te g ra ls  i f  the ra d ia l w ave fu nction s are  th ose  o f  a h a rm on ic  
o s c i l la t o r .  M osh in sky  and c o -w o r k e r s  have deve lop ed  (and com puted)
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e x p re s s io n s  [5] fo r  ach iev in g  th is s im p lifica t io n  d ir e c t ly . T h ey  tra n s fo rm  
the w a v e -fu n ctio n  ra th er  than the p oten tia l.

O s c il la to r  w ave fu n ction s fo r  tw o p a r t ic le s  a r is e  fr o m  a potentia l 
H am ilton ian  g iven  by :

P  2 n  2
TT ^ 1 1 2  2 i ^ 2  1 9 9H = -  ------ + -  m uz V“ + -  --------+ -  m r  !о 2 m 2 г 2 m 2 2

I f  w e define

я  ^  "2' я

(N ote th ese  are  not quite the sam e as the standard de fin ition s o f  re la t iv e  and 
c e n t r e -o f -m a s s  c o -o rd in a te  arid m om en tu rp .) Then w e h ave :

H0 = ^  ^  m u 2 r2 + -̂ —  + ^  m y 2B 2
0 2 m 2 2 m 2

W e have i j  and i 2 as c o n s e rv e d  angular m om entum  o p e r a to rs  in  the old  
H am ilton ian  H0. W e s im ila r ly  defin e £ = ? X  p and L  = R X P  in  the tr a n s 
fo rm e d  H am ilton ian . A  co m p le te  set o f  tw o -b o d y  w ave fu n ction s can  be 
w ritten  in  te r m s  o f  the fo r m e r  quantum n u m bers :

|n £ n J 2;Ц М 2> = )  С ( r . ) &  „ ( г 2) У й (u ,) Y  (u2)
1 1 1 7  2 ¿ ¿ I——i m ^ M ,  n j  « i  17  n, «2 2 * i m i  ¿'

Щ| Ш2

o r  in  te r m s  o f  the la tte r :

In iN L ; LJVL> = )  C ^ g t  ( r  )3>i (R ) Y  (u) Y  (Г2)
' 2  * 2 '  m M M , n Í '  n l  £ m  LM

m  M

W e have o f  c o u r se  the re la tion sh ip

i l  +  i 2  -  £ +  L  -  L 2

The (r e a l ,  orth ogon a l) tra n s fo rm a tio n  betw een  th ese  tw o co m p le te  sets  
dan be  w ritten

I V l V 2 L 2  Ч >  =  X Г'**'■NL Ц М , > <ni :NL Ц  I пЛ i y 2L2>
n f
NL
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where the transformation coefficient is independent of M 2 of course. These 

coefficients (ni. N L  L 2| п ^ 1п2£2Ь 2^ are called Moshinsky brackets and are 

extensively tabulated [5]. As well as having to obey the triangular relations 

implied by the angular m omentum  condition above, the brackets obey an 

energy condition - the number of energy quanta in the n ^ n ^  system must 

be the sam e as that in the ni N L  system. This gives the condition:

2 n i + i i + 2 n 2 + i 2 = 2 n  +  i + 2 N  +  L

To apply the method we first have to make the trivial but vital transformation 

from V (r  ) to V(r) where r = (l/\/2) rJ2 . Having done this we then have

^ 'n i ^ i n 2 '^ 2^ J 2 ^ 2  I ^  I n 3 ^ 3 n 4 ^ 4 ^ 2 ^ 2 ^

= У  У  <n1í 1n2£2L 2| n f N L L j )  <n*& ' N 1 L ’ L j  n ^ n ^ ^ )

n iN L  n ’ S ’ N T

X  < n iN L L 2M 2| V ( r ) | n ' i 'N 'L ’ L 2M 2>

W e  take V (r) to be a scalar, and it operates of course only on the relative 

co-ordinate, i.e. only on "part l" of the coupled system. This gives a 

factor 6NN, 6f and the final result

<Cn1^ 1n2í2L 2M 2 | V(r) I n g ig n j^L g M ^

= У  У  <n1£1n2í2L 2| n iN L L 2> < n 'i N L L 2|n3Í3n4{4I^>  

n n ' f  NL

X F  Я  V(r) (r) r2dr 
J ni n’t
0

involving the (tabulated) brackets and a simple single integral.

W e  can go one stage further. The R ni(r) are (polynomials of rank

i in r) X  exp (- r2/2 ) where we have expressed r in terms of units of 

b = s/h/mu,' the oscillator length constant. All the integrals are therefore 

sums over integrals of the form

ip = Г ~ з \ "  Г г2Р е'Г V (r )r 2dr

r(p+f )  о
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(the normalization is such that Ip= 1 when V(r) = 1 everywhere). These are 

called Talmi integrals. W e  can now write

oo

/ á?nt(r) V ( r ) ^ n. £/r ) r2dr = Y  В (ni, n' Í 1 , p) Ip

0 p

where the B 's  can be tabulated once and for all. This has also been done 

[5].
Gaussian, Yukawa and Coulomb forces are all particularly easy to 

calculate with in this schem e, since the Talm i integrals can be performed 

analytically.
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Abstract

BASIC EVIDENCE A N D  PROPERTIES OF SIN G LE-PARTICLE S T A T E S IN  NUCLEI.
1 .  In trod u ction : th e  s h e l l -m o d e l  o rb ita ls ; 2 .  In fo rm a tio n  a bou t s in g le -p a r t ic le  o rb ita ls : a  c r i t i c a l  

e v a lu a tio n ; 3 . E x p e r im e n ta l e v id e n c e :  3 . 1 .  T h e  le a d  re g io n ; 3 . 2 .  T h e  c a lc iu m  re g io n ; 3 . 3 .  N u c le i  far 

fr o m  c lo s e d  shells ; 4 .  C o n c lu s io n .

1. IN T R O D U C T IO N : T H E  S H E L L  M O D E L  O R B IT A L S

This paper is meant as the experimental counterpart of Professor 

A laga 's paper on the foundations of the shell model. Hence, one could 

jokingly say that our task is to prove that what Prof. Alaga was saying up 

to now is experimentally correct and well founded. Now, with theoreticians 

this is always difficult; it would be much easier to prove that what they are 

saying is wrong. However, in this case our task is somewhat simplified in 

the sense that both Prof. Alaga and we are talking about a subject that 

seem s to be well established, namely the shell model of the nucleus. W e  

should, therefore, include in this paper not so much the evidence for this 

model - this evidence is well known and, anyway, it can be found in every 

nuclear physics textbook - but an evaluation of the state of art in crucial 

matters pertaining to the shell model: single-particle and single-hole 

levels, the fractioning of single-particle strength, the effect of core excita

tion and the way how we get at it. Of course, we shall not dwell on experi

mental methods. W hen  we say "stripping reaction" we shall assum e that 

we know what it is, and it is not necessary to know what experimental 

m eans are implied in its m easurement.

In his paper, Alaga gives the theoretical foundations of the shell model 

(we shall use the nam es shell model and independent-particle-model inter

changeably). The essence of his paper is the statement that it is now pos

sible to understand why protons and neutrons are moving independently in 

something which can be called an average potential.

What does this mean? It m eans that we can take the nuclear Ham il

tonian H  and split it into two parts:
4

Н = Н 0 +да

where H 0 stands for an average potential and -te stands for everything which 

is not included in this average potential. Of course, we can do this with 

any Hamiltonian. The goodness of the shell model approach lies in the fact

t  T h is  w ork  w as c o m p le t e d  in  part w h ile  th e  author was at th e  S e r v ic e  d e  P hysique N u c lé a ire  i  Basse 
E n e rg ie , CEN S a c la y ,  F ra n ce .
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that Ho contains already the essential features of the nuclear dynamics,

i .e . that the wave function ф obtained from

н о Ф = E o'//

describes already, in zeroth approximation, the behaviour of the nucleus, 

whereas can be treated as a relatively small perturbation.

Is this actually so? Namely, we are always speaking of the shell model; 

now, we know that a model is essentially a parametrization of data, i .e . 

a complex way of doing numerology, which is not necessarily related to 

the literal truth of nature. Is there some literal truth in the shell model? 

Rather than give an answer to the question posed in this way, we shall dis

cuss the point how literally can we take the notion of neutrons and protons 

moving independently in unperturbed orbitals. Of course, when we say 

"orbitals" what we m ean is motion with given angular m omentum .

The facts of our knowledge of the nuclear shell model are, as a rule, 

highly inferential and come from a comparison with experiment of derived 

quantities such as energies and transition moments. W e  should like to 

have something m ore closely and directly demonstrating the literal truth - 

if any - of the independent-particle model.

A  comprehensive survey of some experiments performed recently in 

order to elucidate this point was given by D .H .  Wilkinson [1]. A direct way 

of probing the behaviour of a nucleon in the nucleus is to knock it out 

suddenly. If its motion is independent of that of other nucleons, the col

lision will be described by ordinary ballistics laws. The energy of the 

struck nucleon will be related in a simple way to its binding energy and 

the energy of the colliding particle: its m omentum  (mirrored by the angular 

distribution) will reflect the m omentum  distribution in the nucleus.

Let us consider a particle knock-out experiment in the lp shell 

(4He - 160  region). In the zero-order independent-particle model, without 

any residual nucleon-nucleon interaction and spin-orbit coupling, we should 

expect two widely separated groups in the particle spectrum, correspond

ing, respectively, to knocking out particles from the lp and Is orbitals, 

the latter being m ore bound by about 15- 20 M e V  (Fig. la). W e  know, how

ever, that this is a very rough approximation since we have to take into 

account the spin-orbit force (which splits the lp orbital into two) and the 

residual nucleon-nucleon interaction, which, in turn, will split the pure Is 

and lp configurations by, perhaps, several M e V . In other words, the ex

perimental spectrum will show several peaks, corresponding to the various 

states that can be left behind on a sudden removal of a nucleon, because of 

the different ways in which the residual interaction m ay act among the 

remaining nucleons (Fig. lb).

Nevertheless, if the independent-particle picture is basically true, the 

effect of the spin-orbit and the residual interactions can change the picture 

only quantitatively, introducing states that cannot be reached by the 

primitive theory, without changing the general pattern. This pattern is 

shown in Fig . lc.

The results of a real experiment are shown in Fig. Id. It demonstrates 

strikingly the literal shell-structure of the nucleus. The spectrum is that 

of the 12C (p, 2p) n B  reaction at 160 M e V  taken with about 3 M e V  resolution 

[2]. It is very suggestive to take the two peaks as corresponding to, 

respectively, the Ip and Is particles, the poor energy resolution having
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(f r o m  R e f .C l] ) .

smeared out the fine-structure. As  the binding energy of particles m ov

ing in an average field depends essentially on their size, the above result 

can be cross-checked by calculating the nuclear size through the use of a 

Saxon-Woods potential. The derived result agrees well with those obtained 

from electron scattering and Coulomb energy difference [3].

A  m ore direct cross-check as to the nature of the peaks presented in 

Fig. Id is given by the correlation experiments. As mentioned above, the 

correlation between the emerging particles, notably the angular distribution 

of the struck nucleon, will be determined by the m om entum  distribution 

in the nucleus itself. The momentum  distributions for s and p particles 

are rather different, the former having a pronounced forward (0 °) 

m axim um , the latter having zero cross-section in the forward direction. 

Figure 2 shows data from the 12С (e, e'p) n B  experiment [4] performed in 

Frascati, where fixed-energy electrons, inelastically scattered at a fixed 

angle, were measured in coincidence with protons of fixed energy and 

variable angle of emission; in this way the momentum  distribution of the 

struck nucleon could be m easured. The particle energies were chosen so 

as to correspond to the m axim a of the Is and lp peaks of Fig . 1, respec

tively. The lines (Fig. 2) show the expectation calculated on the basis of 

harmonic-oscillator Is and lp wave functions. The results wholly confirm 

the above orbital angular-momentum assignments for the two peaks.
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F IG .2 .  M o m e n tu m  d istr ib u tion  o f  th e  struck pro to n  in  th e  re a ct io n  12C  (e ,  e ‘ p ) ( fro m  R e f . [ 4 ] ) .

These results, which examine directly the shell structure of a nucleus, 

leave no doubt that individual nucleons‘spend most of their time in motions 

which are roughly independent of the motion of neighbouring nucleons. At 

least, in light nuclei.

The transition to heavy nuclei is not trivial. To explore experimentally 

the deep-lying shells of heavy nuclei, one needs fine resolution, several 

hundred M e V  particles, that are only becoming gradually available.

Thus we see that speaking of, e .g . 2f or lg particles is not only a 

convenient way of classifying particles, but there is something m ore to it. 

By this we do not say that the shell model is an exact theory. What we are 

saying is that the independent-particle model is a good description of the 

essential features of nuclei, based on some good direct experimental 

evidence, and that the zeroth approximation contained in Ho is applicable 

to solving nuclear problems. W e  should stress that this, alone, is not a 

minor achievement.

Let us see now what we know m ore about shell-model orbitals.

First an elementary fact: protons and neutrons move in separated 

orbitals. The p-p.and n-n interactions are, furthermore, different. In 

fact, they differ by the Coulomb interaction. For heavier nuclei this 

should m ake, at first sight, quite a difference. Namely, from the stability 

of nuclei, it turns out that the'highest filled orbits for protons and neutrons 

should be found at the sam e potential energy. If this were not the case, 

nuclei would be /З-unstable.. Hence one would expect the proton orbits to 

be wider spaced than the neutron ones. It is also plausible that the 

location of single particle states depends on the m ass number A (size of 

the average potential well).

This problem was investigated by Cohen [5]. Contrary to what might 

be believed,- the second effect (A dependence) is m ore important than the 

first. Figure 3 shows proton and neutron orbits in the.region of 82 to 126.

A  remarkable similarity exists-between the relative positions of the neutron 

and proton single-particle levels in the A  = 208 region. This similarity is 

far greater than between neutron single-particle levels in, for example, 

141Ce and 20,IPb  (right-hand side of F ig .3 ), i .e . neutron levels correspond-
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F IG .3 .  P roton  and neutron  s in g le -p a r t ic le  le v e ls  in  the 82  - 1 2 6  p a r t ic le  r e g io n  ( fr o m  R e f . [ 5 ] ) .

ing to nuclei with different A . The principal difference between the latter 

is that the lhg/2 and 1 i 1 3 / 2  orbitals move down with increasing A . The 

small upward shift of proton p-levels (i = 1 ) can be explained tentatively 

by assuming that particles of low angular m omentum  are near the centre, 

where the Coulomb field is strongest, and shifts them up.

A  similar situation is shown on the left-hand side of Fig. 3 where the 

50 -82 single-particle levels are shown. The similarity between single

particle proton and neutron orbitals is remarkable (case of 119Sb and 119Sn) 

while, e .g . single-particle orbitals for 50 neutrons and 50 protons, corres

ponding to nuclei with A = 91 and A = 119 ( 91Nb and 119Sn) are very different.

The sam e behaviour, although with less regularity, is shown for the 

single-particle levels in the region of 20 -50 particles'. Again the f and g 

levels (S. = 3 and 4) shift down with respect to the p states with increasing A 

(Fig. 4).

The А -effect is, thus, m ore important in the location of single particle 

levels than the effect of the Coulomb field. Proton and neutron levels' in 

nuclei with close m ass numbers (A)' show a much stronger similarity than 

expected at first sight.

2. I N F O R M A T IO N  A B O U T  S IN G L E - P A R T IC L E  O R B IT A L S : A  C R IT IC A L

E V A L U A T I O N

After the.se preliminary rem arks let us now answer the,question of 

how we learn about single-particle orbits. W e  have seen the straight

forward way. However, the direct way is not always the simplest. The 

bulk of our information comes from the so-called transfer reactions.

What is a transfer reaction? It is a nuclear process in which, a hucleon 

or a cluster,of nucleons is transferred from one nucleus to another without 

considerably disturbing the rest of the nucleons. Typical transfer reactions 

are the so-called stripping [(d, p), (d, n), ( 3He, d), (t, d), (a, 3He), {a, t)] and 

pick-up [(p, d), (n, d), (d, 3He), (d, t), ( 3H e ,a ) , (t, a) etc. .]  reactions. In all 

these reactions we add or subtract nucleons to the target nucleus and thus 

we can learn something about the wave function of the nucleus. Here we
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F IG .4 .  P roton  and neutron  s in g le -p a r t ic le  le v e ls  in  th e  20  - 5 0  p a r t ic le  r e g io n  ( fro m  R e f . [ 5 ] ) .

have mentioned only single-nucleon transfer reactions. W e  shall, however, 

also utilize reactions in which more then one nucleon is transferred.

W e  shall assum e, furthermore, that the mechanism  of transfer reac

tions, - at least the m echanism  of single-nucleon transfer, - is well de

scribed by the D W B A .

W e  shall not discuss here the D W B A ; we shall rather examine some 

critical points in the physical basis of the D W B A  and review the approxima

tion involved. (For a detailed treatment,see, e .g . the article by 

W .  Frahn in these Proceedings. )

The matrix element for a direct transition between an initial state i 

and a final state f is given by

T j f  = < 0 f | v | * j >  ( 1 )

where (Z/¡ and <¡>f are wave functions or the initial and final states and V  is 

the interaction causing the transition.

The exact wave functions of nuclear systems are not available, nor do 

we know the exact interaction. It has been shown, however, that the exact 

expression (1 ) from the point of view of perturbation theory can be ap

proximated by

T i f  =  < x p ) l v l x d+) >  ( 2 )

where

and

xi') =ÿ/i')(kn,î 1! (A, r , <t )
p v p '  p>  p ' л 1 /2  Jf n '  n '

(3b)
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with

where <¡>¿{r) is the internal wave function of the deuteron,

X! its spin wave function (only S state, since D  state is less than 

10%),
фj. , i//jf wave functions for the target and final nuclei and 

Xi/2_ proton spin-wave function, 

i and i/Д") are elastic-scattering wave functions to be computed from 

the one-body interactions between the de'uteron and the target and the 

proton and the target, respectively.

The next problem is the evaluation of expression (2). -To compute the 

ingredients of this expression we shall have to m ake several approxima

tions. In writing expression (2) we have, however, already m ade some 

approximations:

i) first, we have factorized the wave functions for both the initial and 

' the final state. This implies weak coupling between the particle 

(outgoing and incoming) and the nuclear co-ordinates (the so-called 

sudden approximation); 

ii) second, we have tacitly assum ed that there will be only one collision 

by which the nucleon(s) is (are) removed from the target (absence 

of so-called rearrangement stripping).

To calculate the components of the wave functions of Eqs (3a) and (3b) 

we introduce the distorted-wave approximation (D W A ). W e  assum e that 

the nucleus distorts the. wave functions of the incoming and outgoing par

ticles and that this distortion is described by the optical model. Hence, 

iii) the elastic-scattering wave functions ф^  and фр''1 are substituted 

by the elastic-scattering wave functions obtained from the optical 

model: Schrödinger differential equation.

Of the above approximations, the first and the third are crucial.

Notably the third, which, by itself, need not be a bad approximation if it 

were not for the ambiguity in determining the parameters of the optical 

potential. Moreover, reasons connected with numerics of the integration 

of the optical functions m ay, e .g . force us to use zero-range forces, 

which is by itself a further approximation1 .

The difficulties caused by the radial part of the bound-state wave 

function are well known. This function is calculated from the Schrödinger 

type equation using a Saxon well with the binding energy of the transferred 

particle in the residual nucleus as an experimental parameter. This latter 

value is not always known and m ay introduce a serious error. This effect, 

however, could not be considered as an approximation, it is rather an 

imperfection of the method.

To recapitulate, the D W A  analysis of transfer reactions gives two 

essential pieces of information concerning the shell-model orbitals:

- the angular m om entum  of the orbit to which the transferred nucleon 

is stripped or picked-up;

1 Surprisingly  e n o u g h , this a p p r o x im a tio n  d o e s  n ot se e m  to  b e  t o o  c r u c ia l  in  so m e  a sp e c ts . In fa c t , 
f in it e - r a n g e  DW A ca lc u la t io n s , w e re  p e r fo rm e d  w ith  no a p p r e c ia b le  d i f fe r e n c e  in  th e  shape o f  th e  p r e d ic te d  
an gu la r d istr ib u tion s.
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- the so-called spectroscopic factor S which tells us how well a state 

is described by a single particle coupled to a core.

The angular m omentum  I is a geometrical information which is deter

mined from the kinematic conditions of the process. It is extracted from 

the shape of the angular distributions and is not, in general, affected by 

the above approximations. Hence D W A  remains still a good tool for deter

mining the angular momentum  of the transferred particle.

The spectroscopic factor S remains the weakest point of the D W A  ana

lysis. This quantity is related to the expansion coefficients ß t which give 

the overlap between (a) the real wave function of the final state (residual 

nucleus) and (b) a wave function constructed by vector-coupling the extra 

nucleon in a spin-orbit state (j, Í) to the target nucleus [6]. If the final 

state из in effect what we call a single-particle state, the overlap will be 

large. Hence the spectroscopic factor telis us how well a state is described 

by a single particle coupled to the core (see also chapter 4).

Most of our knowledge on shell filling comes from the obtained spectro

scopic factors. It is therefore of utmost importance to keep in mind the 

restrictions of the D W A .  All the approximations we have mentioned - and 

some that we have not - are present in the different codes we use to obtain 

spectroscopic factors [7]. Knowing all this plus the fact that in the D W A  

codes we use poor model wave functions it is more than surprising that we 

obtain any consistent result.

Yet, we do obtain m ore or less consistent results which show that 

there is a good physical basis to the D N A , namely the perturbation theory. 

W e  believe that the "experimentally" obtained spectroscopic factors can 

be trusted - if obtained correctly - to about 30 - 50%, the error being more 

or less stochastic.

Qualitatively, thus, the most important fact stemming from the D W B A  

analysis of transfer reactions is that the individual orbital angular 

m om entum  of nuclear particles is a good quantum number. The informa

tion about the spectroscopic factors should, however, be read very 

carefully.

There are, of course, other methods to obtain information about single

particle states, in particular using the ft values in j3-decay. W e  shall, 

however stop at this point and look at the experimental situation in a few 

typical cases. W e  shall examine two regions: the Pb region of closed 

shells Z  = 82 and N  = 126 and the Ca region of closed shells Z  = N  = 20.

Later we shall go away from closed shells, but let us first examine the Pb 

and Ca region.

3. E X P E R I M E N T A L  E V ID E N C E

3 .1 . The lead region (Z  = 82, N = 1 2 6 )

The lead region: 208рь± particle or hole. Physicists usually say that 

208Pb is a shell-model nucleus par excellence. M any would even say that 

it is the only shell-model nucleus in the periodic table. In the sense that 

a good shell-model nucleus is one for which the first term in the separation

H  = H 0 +-u

presents a good approximation, 208Pb  is definitely good. On  the other hand,



IAEA-SMR 6/39 249

4.35-

4.53-

-1/2

-3/2

4.13-

4.05-

6.Ю - 

5.96 = 

5.79-

5.60- 

548- 
539- 

528 s

* 5/2' 

-3/2-

513«.

5.03-
4.97-

4.84-

4.69-
4.60-

4.39.
4.37“
4.23-

4.13-

3.64-

3.47-

-5/2* 

-h  9/2
- p l /2

-P3/2

•Iй
43/2 1.57-

1.42-

- d s /2 i e o " 

-Î15/2

’ Р"з/2

" f  5/2

0 --------------------S )/2  0 p t*/2  0 ------------------- 0* 0 9 9 /2  0 h g /2
207T | 207 208p b  209p b  209g .

81 126 82 125 82 126 82 127 83 126

F IG .5 . S pectra  around th e  Z  = 8 2 , N = 126  sh e lls .

single-particle orbitals in 208рь are closely spaced allowing more con

figuration mixing than expected for a good shell-model nucleus. v

Let us examine the single-particle and single-hole levels in’ the Pb 

region. They are shown in Fig. 5.

This information is collected from various sources. W e  shall concen

trate on m ore recent ones. The neutron single particles and single holes 

around 208pb were recently studied by Muehllehner et al. [8] by means of 

a combined study of (d, p) and (d, t) reactions. W e  consider 208рь a closed- 

shell core; the (d, p) reactions will add neutrons on single-particle levels, 

while the (d, t) reaction will pick up neutrons from existing levels. Hence 

we should expect that the strongly excited levels in the, e .g . (d, p) reaction 

will be single-particle levels. Figure 6 shows the experimental spectrum 

of the 208рь (d, p)2°9pb reaction, while Fig. 7 shows the corresponding (d, t) 

spectrum. Both spectra have a com m on feature: a few isolated, strong
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peaks and all the rest is much smaller. This is particularly visible in the 

(d, p) reaction (Fig. 6), where the left-hand side of the spectrum has been 

multiplied by 1 0 .
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T A B L E  la. N E U T R O N  S IN G L E - P A R T IC L E  L E V E L S  IN  209Р ь E X C IT E D  

B Y  T H E  208pb(d, p) 209рь R E A C T IO N  (from Ref. [8]).

L e v e l Present w ork Brady a C o h e n b H a r v e y 0

P l / 2 Q = -  1 .1 3  ± 0 .0 1 - 1 . 1 2 - 1 . 1 0

f 5 /2 Ex  = 0 .5 7 0 .5 7 0 0 .5 7 0 .6 1

Р З /2 0 .8 9 0 .8 9 7 0 .9 0 0 .9 5

* 1 3 /2 1 .6 4 1 .6 3 3 1 .6 4 1 .6 1

f 7 /2 2 .3 4 2 .3 3 9 2 .3 5 2 .3 3

3 .2 3

3 .3 3 3 .3 8

h 9 /2 3 .4 3 3 .4 7

3 .5 9

a Brady, F .P . ,  P eek , N . F . ,  W arner, R . A . ,  U n iversity  o f  C a li fo r n ia , D a v is , R eport C N L -U C D  23 
(u n p u b lish e d ).

b  C o h e n , B .L . ,  M a y o , S . ,  P r ice , R .E . ,  N u c l .  Phys. 20 (1 9 6 0 ) 3 6 0 . 
с  H a rv e y , J . A . ,  C a n . J. Phys. 31 (1 9 5 3 ) 2 7 8 .

T A B L E  lb. N E U T R O N  S IN G L E - H O L E  L E V E L S  IN  207рь E X C I T E D  B Y  

T H E  2 0 8 p b ( d ;  t) 207P b  R E A C T IO N  (from Ref. [ 8 ] ) .

L e v e l Present w ork M u k h e r je e  a Erskine b NDS c

§ 9 /2 Q  = 1 .7 0  ± 0 ,0 1 1 .6 1 .7 0 5  ± 0 .0 1 5

1 1 1 /2 Ex  = 0 .7 9 0 .7 7 0...774 0 .7 9

j 1 5 /2 1 .4 2 1 .4 1 1 .4 1

¿ 5 / 2 1 .5 6 1 .5 6 1 .5 6 3 1 .5 6

s 1 /2 2 .0 1 2 .0 3 2 .0 1 5 2 .0 3

§ 7 /2 2 .4 7 2 .4 7 2 .4 8 3 2 .4 7

d 3 /2 2 .5 1 2 .5 2 2 .5 2 7 2 .5 4

a M u k h e r je e , P . ,  C o h e n , B .L . ,  P hys. R ev . 127  (1 9 6 2 ) 1 2 8 4 . 
b Erskine, J .R . , B uechner, W . W . ,  B u ll. A m . ph ys . S o c .  7 (1 9 62 ) 3 6 0 . 
с  N u c le a r  D ata S h eets , c o m p ile d  b y  K . W a y  et a l .  (P rin ting  and P u blish in g  O f f i c e ,  N a tio n a l 

A c a d e m y  o f  S c ie n c e s  -  N a tio n a l R esearch  C o u n c il ,  W ash ington  2 5 ,  D . C . )  NRC 5 -3 -9 3  to  
5 - 3 - 9 4 .

The energies of these levels are given in Tables la and lb. To test 

whether these levels correspond to single-particle levels, we perform the 

usual D W B A  analysis. Of course, we have already anticipated that they 

will be close to one and written the single-particle configurations pertain

ing to these energies. That this is m ore or less the case we see in 

Tables lia and lib.

In fact, the spectroscopic factors for most of the levels are close to 

unity in the (d, p) case and to (2j +1) in the (d, t) case. (This difference 

comes from the fact that the comparison for (d, t) cross-sections was done 

using a formula which did not contain a (2j + l) factor.) The values of the
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T A B L E  lia. S P E C T R O S C O P IC  F A C T O R S  F O R  S IN G L E - P A R T IC L E  

S T A T E S  IN  T H E  R E A C T IO N  208Pb(dj t) 207Pb (from  Ref. [8]).

L e v e l 1 5 .0  M e V 2 0 .3  M eV 2 5 .1  M e V

8 9 /2 0 .8 7 0 .7 7 0 .6 7

i 1 1 / 2 1 .1 7 0 .7 8 0 .9 4

j 1 5 /2 0 .9 6 0 .7 9 1 .1 3

d 5 /2 0 .8 3 1 .0 5 1 . 0 0

s 1 / 2 0 .8 0 0 .9 0 0 .9 3

S 7 /2 1 .0 8 1 .0 8 1 .1 7

d 3 /2 0 . 8 8 1 .0 7 1 .1 7

T A B L E  lib. S P E C T R O S C O P IC  F A C T O R S  F O R  S IN G L E - H O L E  S T A T E S  

IN  T H E  R E A C T IO N  208p b(d, t)207pb . (from  Ref. [8]).

L e v e l 1 4 .8  M e V 2 0 .1  M eV 2 4 .8  M e V

p l / 2
2 .1 8 2 . 1 2 2 . 1 2

f 5 /2 6 .6 0 7 .2 0 6 . 0 0

Я З /2 3 .7 6 3 .8 0 3 .3 2

i 1 3 /2 1 4 .0 0 1 3 .0 2 1 4 .0 0

Í 7 / 2 6 .0 8 6 .4 0 5 .7 6

h 9 /2 1 0 . 0 0

spectroscopic factors are, however, interesting in another aspect. They 

are, namely, incident-energy dependent, and, moreover, the value for the 

g3/2, g-s - configuration of 209pb is not quite unity. This, of course, 

might show that there is something wrong with our picture of 209pb as an 

inert 208p b core+neutron, but it is more likely showing the limitations of 

the D W B A  analysis and extracted spectroscopic factors.

Now we have a good idea of the single-particle neutron levels around Pb. 

An  important point is that the single-particle strength is not fractionated 

and that the shell-model picture appears to work well in this region.

W e  have already seen the proton-particle states in Figs 3 and 5. The 

situation is quite analogous to that of neutron particle states, except for 

the fact that the shell-model orbitals involved are different. Detailed in

formations on proton states can be found in the references listed in Ref. [9].

It would, of course, be wrong to conclude that the spectra of 

(208pb±lp or Ih) consist of only single-particle or hole levels. In the same 

way as coupling to the ground state, particles and holes can couple to some 

strongly excited states of 20SPb . As can be seen from Fig. 5, the energy 

spectra of 207 p b or 209щ show more levels then observed in (d, t) or (3He, d) 

stripping. What is the nature of these levels?

In this respect it is very interesting to look at the manifold of levels 

around 2 .6  M e V  in 209gi [11]. These levels are centred around the energy 

of the 2 .6 2  M e V  3’ collective level in 208pb ancj are most conveniently 

interpreted as the result of a coupling of the h 9/2 proton to the 3" level of
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208P b . Angular-momentum coupling rules allow j values for the coupling 

of a hg/2 particle to a 3' level, ranging from 3/2+ to 15 /2+ . All these 

levels were found within 200 keV . Their spins were determined by the use 

of the (2j + l) sum  rule.

W e  see that even in the finest shell-model nuclei (20SP b + a  single 

particle or hole) the contribution of particles in the closed-shell core should 

be taken into account if we want to have an accurate description of physical 

reality. Naturally, this does not m ean that the shell model is wrong; it 

means that it should be refined and that H 0 , although it gives the essential 

features of the nuclear behaviour, does not give all of them.

Another example of the sam e kind is reported in Ref. [12], where single 

neutron-hole states of 207pb were excited in inelastic scattering of protons. 

Inelastic scattering of protons provides a good experimental test for the 

microscopic structure of levels. Now, the states at 0 .5 70 , 0 .8 94 , 1 .633  

and 2 .3 3  M e V  in 207Pb were so far interpreted as practically pure single 

hole states corresponding to, respectively, the 2f5/ 2 , Зр-^, Í13/2 and 2f7/2 

neutron holes in а 208рь core. As  mentioned before, no definite evidence 

has been found from a transfer reaction leading to 207Pb that the hole 

strength is split and that 208рь is not a good closed core.

What about other processes? The inelastic scattering on hole states 

gives the values of B (E2) for the (2f5/2 )_1 “* (3pi/2)_1 and (Зрз/2) (3pj/2)

transitions. These experimental values require an effective charge close 

to 1! .Now , we know what effective charge (for a neutron) m eans: it is a 

way of parametrising the composite action of all the core particles.

Another fact which favours this interpretation is the angular distri

bution of inelastic protons: the D W B A  gave a good fit only when consider

able amounts of core polarization component was added to the single-hole 

wave function of these states.

Perhaps the most dramatic demonstration of the core + particle coupling 

in the lead region are the experiments by Stein et al. [13] which show that 

this description is valid even when the energies of both particle and core 

increase considerably. Stein et al. have investigated analogue states in 

209Bi by proton inelastic scattering on 208P b . The compound nucleus states 

formed in 209b í  are analogues to the low-lying states in 209P b . As can be 

seen in Fig. 8, between 18 and 22 M e V  bombarding energy new resonance 

behaviour is observed in the inelastic scattering to the 2 .615  M e V  3" level, 

totally missing in the ground state (elastic scattering). Now, if these 

resonances are isobaric analogues, they correspond to levels in 209рь be

tween 4 and 6 M e V  of excitation. A  simple interpretation of the results 

would then be that the structure of these 2°9Pb levels can be described as 

а 208рь core, excited to its 3" state coupled to the odd neutron in one of its 

single-particle states. It is clear that the .isobaric analogues of these 

levels would then be expected to decay strongly to the 3‘ level in 208рь.

In a simple-minded picture, we should expect 7 multiplets of levels, one 

for each of the 7 low-lying single-particle states. The location of each 

multiplet, obtained by simply adding 2 .6 2  M e V  to each single particle 

state is shown by arrows in Fig. 1. The agreement with the position of the 

resonances is remarkable.

It should, however, not be forgotten, and we should repeat again and 

again that although these examples show that the simple shell model de

scription in the region of 208Pb is not valid, the fact is that it fails only
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E X C IT A T IO N  E N E R G Y  IN Pb (MeV)
209

PROTO N L A B O R A T O R Y  EN ER G Y  (MeV)
FIG . 8 . E x c ita tio n  fu n c t io n  o f  th e  2MPb (p , p) 208Pb re a c t io n  in  the e la s t ic  and in e la s t ic  ch an n els (fro m  R e f . [1 3 ]) .

when applied to details; the main features of spectra are, nevertheless, 

well described.

The lead region: 208Pb . Let us now turn to the microscopic description

of the 208p b  core in terms of the shell model. Being a doubly closed shell, 

20SPb can be excited only by creating pairs of holes and particles. The 

simplest way how to excite it would be to lift one single particle to the next 

orbital leaving a hole in the filled shell. For neutron particle-hole pairs 

this would be a (gg/2, P1/2) configuration, its unperturbed energy would be 

higher than 3 M e V . For proton particle-hole pairs this would be a 

(h9/2» s l/2) configuration; its unperturbed energy would be still higher.

Now, the lowest excited state in 208рь the 3 ' state (which, by the way, 

could not be formed at all by these configurations because of its spin and. 

parity) lies at 2 .6 2  M eV !

This has been explained as the result of a coherent action of many 

particle-hole configurations to form what we call a collective level. For 

instance, the mentioned 3“ state in 208Pb would be a coherent mixture of 

17 neutron and 14 proton particle-hole configurations [14]. W e  will leave 

the details of this description to other papers in these Proceedings. Never

theless, this gives us an indication as to the sense in which we should orient 

our experimental investigations, since our experimental methods should 

be adapted to the nature of levels which we want to investigate. In par

ticular, single particle-hole configurations should be investigated by 

stripping a single particle over an existing hole or vice-versa, more 

complex configuration by the transfer of several particles or holes, etc. . . .

The levels of 208pb are shown in Fig. 5. There are many of them, 

still m ore are found virtually day by day, and it is thus probably that very 

different configurations are present.
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The easiest way to investigate the particle-hole structure of 208рь is 

by means of the 207Pb (d, p)20SPb reaction. What are the particle-hole 

levels bound to be excited by such a reaction? It is clear that only levels 

having configurations of the type [particle, pï/2 ]n will be excited. This 

reaction was investigated by Bardwick and Tickle [14] and earlier by other 

authors [15].

W e  shall discuss here the results of Ref. [14] where incident deuterons 

of 2 1 .6  M e V  and magnetic analysis were used. As  mentioned above, we 

expect that configurations of the type (particle, p£/2) will be excited. On 

the other hand, collective levels like the 3' level at 2 .6 2  M e V , consisting 

of m any particle-hole configurations should be weakly or not at all excited. 

This latter conjecture is experimentally verified. What about the levels 

which are excited? If they are particle-hole configurations of the above 

type we should, naively, expect them to lie near the zero-order unperturbed 

energies of particle-hole configurations of the above type [particle, Pi/г]- 

In the ideal case we should expect a few levels, split in two by J splitting 

effects since for each configuration two J values are allowed. The experi

mental situation is not too different, as seen in Table III. Table IV shows 

that the levels are not only clustered around the О-order energy of the 

corresponding configuration, but also that their strength is not too frac

tionated. Let us take any example, for instance, the (in /2 , pi/2) configura

tion. ‘ The zero order, unperturbed energy is expected at 4. 21 M e V  

(Table III). Now, let us look for this configurations in Table IV . W e  see 

that at 4 .2 2  M e V  there is a strong level which exhausts practically all the 

strength of the i n /2 configuration. (The values of the spectroscopic factors 

are twice as large since we start from a spin-1/2  nucleus and not from a

T A B L E  III. C O M P A R IS O N  O F  Z E R O T H - O R D E R  E N E R G IE S  O F  N E U T R O N  

S IN G L E - P A R T IC L E  S IN G L E - H O L E  C O N F IG U R A T IO N S  W IT H  C O R R E S 

P O N D I N G ,E X P E R I M E N T A L L Y  D E T E R M I N E D  C E N T R E S  O F  G R A V IT Y  

(from Ref. [14])

C o n fig u ra tio n
Z e ro th -o rd e r  

e x c ita t io n  
e n e rg y 3  (M eV )

E x p er im en ta l 
ce n tre  o f  

g ra v ity ^  (M e V )

(3 P 1 /2 ) " 1 (2 g 9 /2 > 3 .4 4 3 .3 9

( S p i / 2 ) ' 1 (> ‘ 1 1 / 2) 4 .2 1 4 .2 5

( 3 p i / 2 ) _1 Ш 1 5 /2 > 4 .8 5 4 .7 7

( 3 p i / 2 ) _1 (3 d 5 /2 ) 5 .0 0 5 .0 0

( 3Р 1 / 2 ) ‘ ‘  W s j / 2) 5 .4 7 5 .2 8

( 3P l / 2^_1 i-2 %rl / ’2) 5 .9 1 5 94 c

( 3 p i / 2 ) " ‘  (3 d 3 /2 ) - 5 .9 6 5 .9 2 c

a A b so lu te  en e rg y  va lu es  a re  based  o n  th e  d i f fe r e n c e  o f  n e u tro n -se p a ra tio n  e n e rg ie s  for 208Pb and Z09Pb, 
r e s p e c t iv e ly . T h e  r e la t iv e  e n e rg ie s  corresp on d  to  th e  sp a c in g  o f  th e  neutron  s in g le -p a r t ic le  states 
i n ! 09Pb.

b  For le v e ls  based on  th e  sa m e  co n f ig u ra t io n , th e  ce n tre  o f  g ra v ity  is d e fin e d  as 
I  (2J + 1) S g j /  £ ( 2 J + l ) S j j j ,  w h ere  E^ is th e  e x c ita t io n  e n e rg y .

с  Based o n  th e  ob se rv e d  strength  b e lo w  6 .1  M e V , w h ich  does  n ot fu l f i l l  th e  su m -ru le  p r e d ic t io n .
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T A B L E  IV . S IN G L E  P A R T IC L E - H O L E  L E V E L S  IN  2 0 8 P b  O B S E R V E D  IN  

T H E  R E A C T IO N  207Pb(d, p ) 2 0 8 p b  (from Ref. [14])

Eac x
(M e V )

( d a /  d fï) 
(m b /s r )  

( l a b )

ö m a x
(d e g )
( la b )

1.3 (2J + D S

0 1 .3 10

2 . 6 0 .0 4 9 20

3 .1 9 2 . 2 30 2 B 9 /2 9 .5

3 .4 7 2 . 0 25 2 S 9 /2 8 .7

3 .7 3  1 

3 .7 6  j
0 .3 5 20 2 8 9 /2 1 .9

4 .2 2  1 

4 .2 8  j
0 .3 9 35

l i l l / 2

2 g 9 /2

2 3 .2

0 .5 9

4 .6 1 • 0 .1 3 45 1 J l5 /2 1 0 . 0 0

4 .7 0 1 . 1 15 3 <* 5 /2 1 .5

4 .8 3

4 .8 6
0 .2 5 45 1 J l5 /2 2 0 . 0 0

4 .9 8 2 . 0 15 3 <*5/2 3 .6

5 .0 3 1 .9 15 3 d 5 /2 2 . 6

5 .1 2 1 . 0 15 3 d 5 /2 1 .4

5 .2 4 1 . 1 15 3 <¡5/2 1 .3

5 .2 8 2 . 2 30 4s 1 / 2 3 .6

5 .7 7

5 .8 0
0 .4 6 35 3 d3 /2 0 .4 6

5 .8 5 1 . 2 25 2 g 7 /2 3 .1

5 .8 9 1 .5 30 3 d 3 /2 1 . 8

5 .9 3 1 . 2 25 3 <¡3/2 1 .4

5 .9 6 2 .5 25 2 g 7 /2 6 .9

6 . 0 0 0 . 6 6 25 2 g 7 /2 1 .7

6 .0 5  ’ 

6 .0 7
0 .6 2 30 3 d 3 / 2 0 .6 7

a E x c ita t io n  e n e rg ie s , e x c e p t  that o f  th e  first e x c i t e d  le v e l  w h ich  was o b ta in e d  from  R e f . [1 1 ]  
a re  ta k e n  fro m  M u k h e r je e  an d  C o h e n , R e f . [ 1 5 ] .

0-spin one). O r  else, we can take the (4sx/2, Р 1/2) configuration. Its un

perturbed energy is 5 .4 7  M e V . Now, 208Pb exhibits a level at 5. 28 M e V . 

W e  shall see later that its spin is in fact 1 ' .

O f course, not all the levels are so well described (e .g . the d 3/2 or 

g7/2 particle configurations). However, when we take the experiméntally 

determined total strengths E (2J  + l )S £j and compare it with sum  rule 

predictions we find an agreement that is m ore than satisfactory: in view of 

what we know about D W B A  it is astonishing (Table V ). It is obvious that
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T A B L E  V . E X P E R I M E N T  A N D  S U M - R U L E  P R E D IC T IO N S  IN  T H E  

207Pb(d, p)208pb R E A C T IO N S  (from Ref. [14]).

S h e l l -m o d e l
state

£ (2 J  + l ) S j  
sum  ru le

£ ( 2J + 1)  S j 

e x p e r im e n t

2 8 9 /2 2 0 2 0 .7

1 1 / 2 2 4 2 3 .2

1 1 1 5 /2 32 3 0 .0

3 d5 /2 1 2 1 0 .4

4s 1 / 2 4 3 .6

2 8 7 /2 16 1 1 .7

3 d3 /2 8 4 .3

we are missing som e 2g7/ 2 and a 3d 3 /2 strength; they are probably at higher 

energies.

W e  could be even m ore exacting and ask for the J* of some of these 

configurations. Namely, we have obtained the SL of the transferred protons; 

however for each configuration, two J values are possible. W e  can deter

mine the Jn value of some of these levels by other methods, as in Ref. [16] 

which describes a search for 1" levels in 208Pb . The two configurations 

which can couple to Jn = 1" are the (s lyi2, pjy2) and (d3/2, P 1/ 2) configurations. 

These, as we have seen, should occur around 5- 6 M e V . In the pure 

neutron stripping 2<>7pb (d, p) 208рь process we should also expect states 

with J* = 0 -, 2-, 3 -, 4-, 5’ , 6‘ , 7+ or 8*.

Now, all these states are expected to decay preferentially by gam m a 

cascade transitions through the 3 ' ,  2 .6 2  M e V  level rather than by the 

cross-over transition. On  the contrary, 1" levels should decay by cross

over to the ground state. Consequently, the presence of ground state 

cross-over transitions is a sign of а Г level, since 1+ or 2+ levels are not 

expected to be excited in the 2cnpb(d, p) reaction.

The experiment has shown two cross-over ground-state transitions: 

one at 5. 28 and the other about 5. 96 M e V . If we now turn to Table IV, 

we see that the energy found in Ref. [14] to correspond to the configuration 

(4 si/2> P 1/ 2) is exactly at 5 .2 8  M e V  while those corresponding to 

(3d3/ 2, P i^ )  are at 5 .8 9  and 5 .9 3  M e V . A  relative experimental error 

of 50 keV  in determining the energy in the two experiments is not to be ex

cluded, and the agreement should be considered satisfactory. It is corro

borated by other results [17]. Namely, particle-hole pairs can be created 

in 20?Pb in a number of ways. A  very useful'way is through isobaric 

analogue .resonances.

An  isobaric analogue resonance formed by proton bombardment of a 

neutron closed-shell nucleus m ay be considered to be a superposition of a 

single-particle state and a set of 2 particle-1 hole states (Fig. 9).

If the resonance decays through the inelastic channel, a neutron 

particle-hole state is formed and since the particle and the hole are general

ly in different major shells, the state is of negative parity. These states 

are bound and will decay by 7 -transitions to lower-lying states:

1- --» g .s .  (El)
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+ proton

target
(closed shell)

FIG . 9 . Iso b a r ic  a n a lo g u e  re so n a n ce  fo rm e d  b y  proton  b om b a rd m en t o f  a neutron  c lo s e d -s h e l l  n u c le u s .

Higher angular m omentum  states will decay through the low-lying 2+ or 

3+ states. Results obtained in this way [17] confirm the data of Ref. [16] 

on the spin and parity of the 5. 27 and 5. 94 states of 208Pb.

Let us now return to transfer reactions. W e  have created particle- 

hole configurations by adding particles to an existing hole. W e  can pro

ceed the other way round; we could dig holes and couple them to an existing 

particle. An  example is the 2°9Bi (t, a )208Pb  [18]. The configurations which 

will be excited in this reaction differ from those excited in 201 Pb (d, p )2()8Pb 

by the fact that the former are proton particle-hole configurations, and, in 

particular, configurations of the type (lhg/2, proton hole). W e  expect, 

hence, configurations of the type (lh9/2, sj;J2 ) . . . (lh9/2, dg)2b  The results 

show that the ground state has a pure Í = 5 angular distribution. Hence,

T A B L E  V I. E X P E R I M E N T A L  A N D  T H E O R E T I C A L  P R O T O N  P ICK- U P  

S T R E N G T H S  F R O M  T H E  R E A C T IO N  2°9Bi(t, a p S P b  (from Ref. [18])

Ex
JTT

3 sl / 2 2 d 3 /2 2 d 5 /2 XS 7 /2

Exp. 0 < 0 . 1 0 < 0 . 0 7 < 0 . 2 8

2 .6 2 3 - R e f. [2 4 ] o - 0 .1 5 0 .0 0 6 0 .0 1 4

R e f .[ 1 9 ]

Exp. 0 .0 6 < 0 .0 9 < 0 .0 6 < 0 .2 8

3 .2 0 5 " R e f. [2 4 ] 0 . 1 1 0 .0 4 0 .0 0 9 0 .0 0 4

R e f .[ 1 9 ] 0 . 1 1  • 0 .0 5 0 . 0 1 0 . 0 1

Exp. <  0 .0 0 4 < 0 .0 0 7 < 0 . 0 0 5 0 . 0 2

3 .4 8 4 - R e f. [2 4 ]

R e f .[ 1 9 ] 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 0 1 0 .0 0 0 0 7

Exp. 0 .3 1 < 0 .5 2 < 0 .3 6 < 1 .7

3 .7 1 5 " R e f . [2 4 ] 0 .3 4 0 .0 5 0 .0 0 7 0 . 0 0 1

R e f .[ 1 9 ] 0 .2 5 0 .0 3 0 .0 0 3 0 .0 0 0 7

E xp. 1 . 0 1 < 1 . 8 6 < 1 .1 7 < 5 .7

3 .9 6 4 , 5 - R e f . [2 4 ]

R e f . [1 9 ] 0 . 6 8 0 .0 3 0 .0 0 0 9 0 .0 0 0 0 3

Ex  is g iv e n  in  M e V . T h e  strengths a re  S ( 9 / 2  -*• j  + J ), w h e re  j  is th e  h o le  co n fig u ra t io n  g iv e n  o n  to p  o f  
th e  t a b le  to  th e  right and J th e  fin a l -s ta te  sp in . T h e  p a r t ic le  co n f ig u ra t io n  is a lw a ys lh g / 2  • and 
209B i ( t , a ) 208 Pb g ro u n d -sta te  S w as put e q u a l t o  1 .  In ca s e  an fi -v a lu e  w as assigned  from  e x p e r im e n t , 
th e  corre sp o n d in g  strength  is g iv e n  as i f  n o  o th e r  ¿ -v a lu e s  co n tr ib u te d .
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the ground state is a pure hg/г state. However, considerable configuration 

mixing is observed already in the first excited state, where transfers of 

£= 2 and 4 can be expected from  the shell model: both are present, although 

i = 2  is predominant. The relative spectroscopic factors, normalized to 

the ground state as a pure i = 5  transition (S = 1), are shown in Table VI.

It seem s, then, that negative-parity proton particle-hole levels in 

2°8pb show relatively strong configuration mixing, in contrast to neutron 

particle-hole levels. The reasons for such a different behaviour are not 

obvious. Nevertheless, theoretical calculations [19] reproduce fairly well 

the gross structure of the proton particle-hole spectra (F ig .10). The 

strongest transitions are concentrated in two regions:

a) near the unperturbed energy of З в ^  and 2d5/2 hole states 

(E x = 4 - 4. 5 M e V  exc.), and

b) near the unperturbed energy of lh11/i2 and 2d5/2 hole states 

(E x = 5 .5 - 6  M e V  exc.).

W e  should notice here that although the energies are close to the un

perturbed ones, a strong configuration mixing is present, tfhis just 

shows how poorly the energy spectrum indicates the nature of the wave 

function. O r , in other words, we could use almost any wave function to 

reproduce the experimental spectrum.

a .
<
cc.

CD 
CL 
<  ° 
in 
S  
Э  
to
о
_J 
LU 
>  '

( О

209B i ( t , a )  P b  

E t = 13 M eV  

E X P  S P E C T R U M

e -7 V

J lL

64’
5"

Ew IN  M eV

í09B¡ ( t , a ) ioeP b  

T H EO R ET IC A L  S P E C T R U M

I ., I . ,
2d*, 3svt

E„ IN  M eV

FIG . 1 0 . 
c u la te d

C o m p a r iso n  b e tw e e n  th e  e x p e r im e n ta l 209B i ( t , a )  208 Pb y ie ld  sum s (R e f.[1 8 J ) and y ie ld  sum s c a l -  
from  th e  w a v e  fu n ction s  o f  R e f .[ 1 9 ]  and th e  DW c o d e  JULIE .
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99/2

1 / 2 1/2

proton neutron protron neutron

FIG . 1 1 .  G ro u n d -sta te  co n fig u ra tio n s  o f  208T1 and 208Bi.

The lead region: 208x1 and 208Bi: These two nuclei are very similar

to 208рь, and can be used to test the validity of the independent-particle 

model description in the 208рь region. Either of these nuclei has a par

ticular ground-state configuration (Fig. 11).

In principle, hence, these nuclei can be treated in the same way as 

the excited states of 2 0 8 Р ь .  Hence, we can study particle-hole configura

tions by the stripping or pick-up of a particle. Alford et al. [20] have 

studied the levels of 2 0 8 Bi by both the pick-up reaction 209 Bi (d, t) and the 

stripping reaction 207рь ( Зце, d ) . 209 Bi is a hg/2 proton particle state, and 

207pb  its а Р1/2 neutron hole state, and we expect configurations of the type

hg/2 3PÏ/2> 2f5/2, З р з / 2 ,  Í 1 3 / 2 ,  2f?/2 

protons

for (d, t)

and

P l / 2  h 9/2> 
neutrons

2f7 /2 ; i-1 3 /2  > ^ f  5 / 2  

proton particles

for ( He, d)

to be excited. Moreover, as both the 2 0 8 р ь  (d, t)207pb and 208Pb ( 3He, d) 209Bi 

excite single hole single particle states with full spectroscopic strength, 

we expect that the structure of the states in 2°8Bi will be rather simple, 

(except for the hg^hole state, which in 207рь has been found to be badly 

fragmented). The data (Fig. 12) show that there appears to be little con

figuration mixing. At least, the energies of the particle-hole J multiplets 

cluster around the unperturbed values so that even an J attribution was 

possible using the 2J +1 rule. This is visible especially for the (d, t) 

reaction.

The agreement between the two parts of the Fig. 12 is actually more 

than accidental. Although in one case' we have configurations of the type

p i/2
hole ®  proton particles

and in the other

1 9 /2 particle ® neutron holes

and hence we should have only one com m on configuration, (hg/2 , pï/2 ) it 

happens that in 208р ь  proton particle states ( Z  = 82- 126) practically 

coincide with neutron hole states (N = 126 -82), as seen from the labelling 

above the figures (see also chapter 1, and Ref. [5]).
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Pb207 (HeJ.d )B ¡2oe E„,¡.- 30 MeV

EXCITATION ENERGY (M e V )

F IG . 1 2 . L e ve ls  o f  208Bi e x c i t e d  b y  th e  207P b (3H e , d) 208Bi and 209B i(d ,  t) 208Bi re a ctio n s  ( fro m  R e f . [ 2 0 ] ) .

Quite similar results were obtained earlier by Erskine [21] in the 

209Bi (d, t)20SBi reaction. States found in Ref. [21] show a relatively simple 

structure where.one configuration usually predominates, (quite naturally, 

the (d, t) reaction selects' just such kind of levels.). Figüré 13 shows 

a comparison between experimental and calculated triton spectra from the 

(d, t) reaction. In the experimental spectrum the groups are labelled in 

sequence starting with 0 for the ground state. ( In the calculated spectrum, 

each group is labelled with its total angular momentum  J. The theory is 

by K im  and Rassm ussen. [22]. Again the overall agreement is very good, 

and a more detailed comparison with Ref. [21] shows that .several J* values 

are well reproduced. - ; 1 ' ...

A n  overall comparison of theory and experimental data for 208T1 and 

208BÍ is given in Figs 14 and 15 taken from Réf. [22].
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.206
Bi EXCITATION ENERGY (KeV)

F IG .1 3 . E x p er im en ta l and c a lc u la t e d  sp ectru m  o f  the re a c t io n  209B i ( d , t ) 2°8Bi ( fro m  R e f . [ 2 1 ] ) .

OftOER D IA G O N A L D IAGONAL CO NFIG - 
O NLY ONLY URAT ION

M IX IN G

FIG . 1 4 . L e ve ls  o f  208T1 c a lc u la t e d  b y  d iffe re n t  a p p ro x im a tio n s  and c o m p a r e d  to  e x p e r im e n t  ( fro m  R e f . [ 2 1 ] ) .
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ZERO CF C F + T F  CF  + TF EXPERIM ENT
ORDER DIAGONAL DIAGONAL CONFIG-

ONLY ONLY URATION
MIXING

F IG .1 5 . L e v e ls  o f  208Bi c a lc u la t e d  b y  d iffe re n t  a p p ro x im a tio n s  and co m p a r e d  to  e x p e r im e n t  ( fro m  R e f . [ 2 2 ] ) .

At least for the low-lying states the agreement is almost spectacular. 

The theory of Ref. [22] used a simple particle-hole calculation, where a 

particle-hole state was created by taking a vector product of single-particle 

and hole states, derived from the 208Pb  core. The energy of the multiplets 

was computed by determining the matrix element of the two-body interac

tion operator, which comprised the particle-core and hole-core interactions 

and, finally, the particle-hole interaction.

Table VII shows the configurational structure of 208x1 levels as cal

culated by K im  and Rassm ussen  [22]. The calculated configurations 

appear to be almost pure; the small amplitudes m ay be important in cal

culating transition probabilities only.

At this point we should nevertheless be cautious. What we have seen 

so far is that in the region of 208Pb, the essential features of the ground- 

and low-lying excite.d levels are fairly well explained by a shell-model 

208pb core plus a particle or a hole. However, so far we have explained 

only the energy of these states. Now, the energy is the physical quantity 

easiest to reproduce theoretically. What about other quantities, like 

transition moments, etc. . . ? W e  have seen that there the simple shell 

model fails, and the effects of the particles in the core should be taken 

into consideration.

The lead region: complex configurations in 2Q8Pb. Up to now we have 

studied single particle-hole configurations of a various degree of com 

plexity in the spectrum of 208Pb and its isobars. Are  there other types of



T A B L E  VII. C A L C U L A T E D  E IG E N F U N C T IO N S  F O R  L O W - L Y IN G  208x1 S T A T E S  (from Ref. [22])

E igen va lu es
E igen fu n ction s

(M e V )
sl / 2 S 9 / 2 d 3 /2 S 9 /2 sl / 2 i l l / 2 **3 /2 * 1 1 /2 sl / 2 d 5 /2 d 3 / 2 d 5 /2 sl / 2 S 7 / 2 d 3 /2 ® 7 /2 d 3 / 2 d3 /2

J = 3

0 .6 9 5 0 .9 9 8 3 - 0 . 0 4 4 9 0 .0 2 2 6 0 .0 1 8 4 0 .0 2 1 8 - 0 . 0 0 1 8

J = 4

0 .1 8 3 0 .9 3 2 2 0 .3 6 1 3 - 0 , 0 0 5 8 0 .0 1 5 2 - 0 . 0 0 7 4 -0 . 0 1 4 6

0 .6 1 6 - 0 .3 6 1 3 0 .9 3 2 0 - 0 .0 1 2 3 0 .0 1 1 4 - 0 . 0 1 3 6 0 .0 1 7 4

1 .5 1 6 0 . 0 0 0 1 0 .0 1 2 4 0 .9 9 7 1 0 .0 0 0 7 - 0 . 0 7 0 0 - 0 . 0 2 5 9

J = 5

0 .1 3 0 0 .9 5 3 8 - 0 . 3 0 0 1 - 0 . 0 0 2 2 0 .0 1 1 7 0 .0 0 8 9

0 .4 9 1 0 .3 0 0 0 0 .9 5 3 2 0 .0 3 3 6 0 .0 0 8 7 - 0 . 0 0 8 2

0 .8 3 2 - 0 . 0 1 2 1 - 0 . 0 3 2 3 0 .9 4 7 2 0 .3 1 7 8 0 .0 2 4 4

1 .2 7 7 - 0 . 0 1 0 2 0 .0 0 5 3 - 0 . 3 1 6 5 0 .9 4 7 4 - 0 . 0 4 5 3

J = 6

0 .7 1 2 0 .9 9 9 3 - 0 .0 3 0 7 0 .0 2 1 3

0 .9 5 1 0 .0 3 6 5 0 .9 2 4 9 - 0 . 3 7 8 5

1 .2 6 5 - 0 .0 0 8 1 0 .3 7 9 0 0 .9 2 5 3
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configurations? If we are to take the particle-hole picture seriously, it is 

the 2p-2h configurations which come next in our hierarchy. It can be ex

pected that these configurations will show up at somewhat higher energies. 

How to excite these configurations? For instance, by adding two particles 

to existing two holes.

A n  example is the reaction 206pb(t, p) 208Pb  [23]. Because of the'selec- 

tive character of this reaction we should expect less states to be excited 

than, e .g . in 207Pb(d, p). This is, in fact, true. The strongest transitions 

in 206Pb(t, p) 2°8pb are to the ground state, which obviously corresponds to 

filling two neutron holes and to the 3 ' level at 2 .6 2 . Both of these levels 

are weakly excited in (d, p), the latter due to its collective character. 

Besides the ground and the 3" states, many 208Pb  states between 5 .5-  

6. 1 M e V  of excitation are also excited in the (t, p) reaction, as expected 

from a naive theory (Fig. 16).

E , IN MeV

9___________S___________ 7____________ 6____________ 5_____________ i ______________ 3_______________ 2________________1_________________ 0

“ c lO l 'W  !«Pb[tpl™ Pb

F IG .1 6 . T h e  e x p e r im e n ta l sp ectru m  o f  th e  206P b ( t ,p ) !08Pb r e a c t io n  ( fr o m  R e f . [ 2 3 ] ) .

The strong excitation of the 3" state at 2. 62 M e V  deserves some 

comments. This fact can be explained by assuming that the g. s. of 2°6рь 

is not a pure 2-hole configuration.

In fact if 206pb (0) were a simple (Pi/2)’2 configuration, a low-lying 

3" state in 208Pb could be formed by (t, p) only through components 

(d5/2» P1/2 ) and (g7/2 . Pi/г)’ Now both of these components should be small 

in 3 ", according to calculations of Gillet et al. [24]. We,should conclude 

that 206pb (Q) contains additional hole components.

This is an example of how the details of the simple shell-model 

picture rapidly deteriorate when more than one particle or hole is added 

to a closed-shell core. While the ground state of 207рь was an almost pure 

pj/2 state, the ground state of 20брь contains additional hole components, 

different from (Pi/2)"2 •

The lead region: 2Q6pb and 210Pb (nuclei away from closed shells):

Let us now examine the situation 2, 4 and m ore particles or holes away 

from closed shells. A  very extensive search of nuclei in the 208рь region 

was performed by the Copenhagen-Aldermaston groups, whose results we 

have quoted already. The simplest case - symmetrical to 208Pb  - are the 

206рь and the 210рь nuclei. Spectra obtained from the (t, p) reaction leading 

to 209рь and 210рь are presented in Figs 16 and 17,respectively [25]. Now,
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e ,  in м<*

6 5 * 3 2 1 О

F IG .1 7 . Proton sp ectru m  from  th e  re a c t io n  20, P b ( t ,p ) z05Pb ( fr o m  R e f . [2 5 ] ) .

E . IN MeV

5 t  3 2 1 0

RADIUS OF CURVATURE IN cm 

FIG . 1 8 . P roton sp ectru m  from  th e  re a c t io n  208Pb ( t ,  p ) 210Pb ( fr o m  R e f . [ 2 5 ] ) .

the above reaction is by itself a very selective process. Furthermore, the 

low-lying levels of 210Pb  are expected to be well described by two neutrons 

out of the 208pb  core, and (t, p) reactions are particularly suitable to study 

them. Nevertheless, the comparison of Figs 17 and 18 shows how spectra 

become m ore complicated when crossing from 209Pb to 210Pb . Actually, 

the theory [26] describes the low-lying levels fairly well (up to ~ 1. 5 M eV ) 

and all these levels have in fact large (gg/2 )2 components. Later on, there 

is hardly any resemblance between theory and experiment (Fig. 19).
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208
F ro m  T h e o ry

P b ( t ,p )  R e d l ic h

G a u s s ia n  S E

F IG .1 9 . C a lc u la te d  ( fr o m  R e f .[ 2 6 ] )  and e x p e r im e n ta l sp ectra  o f  210Pb ( fro m  R e f . [ 2 5 ] ) .

The situation on the hole-side far away from 20 8 р ь  (2 0 4 ,2 0 5 ,2 0 6  p b) w a s  

also investigated by the Copenhagen-Aldermaston groups [27]. Figure 20 

shows the density of states in 205рь obtained from the reaction 204Pb(d, p) 

at excitation energies above 4 M e V . If we compare this with, e .g . (d, p) 

spectra on 2 0 8 p b (see Fig. 6) the difference is m ore then striking.

A new phenomenon is the strong fractionation of single-particle strength 

shown in Fig. 21. Namely, the (d, p) reaction on 204pij starts filling up the 

almost filled 83- 126 shells (fs/2 . and pi/2 orbitals). At higher excitation 

energies (around 2. 5 M e V ) the empty neutron orbital gg/2 (127 and up) 

starts being filled. 'T h e  cluster of levels at this energy have, in fáct, all 

j?=4, which shows the heavy fractionating of the g9/2 strength. This frac

tionating is interpreted as a consequence of the coupling of particle con

figurations to core excitation m odes. Sum  rules are, however, still valid, 

in particular for single particle states near the Ferm i surface, as seen 

from Tables Villa and V H Ib . Table Villa shows the strength defined as 

(2J + 1)S(+) for the stripping 204(d, р)205рь reaction and as for the

pick-up 204(d( t)203рь case. Near the Ferm i surface (orbitals 3pjy2 - 2f5/ 2) 

the experimentally derived sum  is in good agreement with the simple
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E* IN MeV

F IG . 2 0 .  P roton sp ectru m  from  th e  r e a c t io n  204Pb (d , p )208Pb at e x c it a t io n  en e rg ie s  b e tw e e n  4 - 6  M e V ; n o t ic e  
th e  la rg e  den sity  o f  le v e ls  ( fr o m  R e f . [ 2 7 ] ) .

(2J + 1) limit. Table VHIb  shows that near the Ferm i surface, the experi

mentally derived quantities u2 (j) (see section 3. 3) are in reasonable agree

ment with the results of the pairing model, in which the low-lying states 

in the odd-mass nuclei are one-quasi-particle states and no splitting of the 

strength occurs [27].

3 .2 .  The Calcium  Region

The Ca  region, which is another region around doubly closed shell 

nuclei will be discussed in detail in a separate paper. W e  shall discuss 

it briefly, to point out the analogies - if any - with the Pb  region.

The main spectroscopic feature of the Pb region was the fact that 

single-particle and hole states were excited in their full spectroscopic 

strength. In other words, the essential features of spectra in this region 

were described as a particle or a hole coupled to an inert, closed-shell
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F IG .2 1 . P roton  sp ectru m  from  th e  re a c t io n  204P b ( d , p ) 205Pb (fr o m  R e f . [ 2 7 ] ) .

T A B L E  Villa. T H E  R E A C T IO N S  2°4pb(d, p) 205pb A N D  2<>4pb(d, t) 203Pb: 

C O M P A R IS O N  O F  S U M  R U L E S  O F  T H E  S T R IP P IN G  (2j + l ) S W  A N D  

P IC K - U P  (S(-)) S T R E N G T H  T O  T H E  (2j + l) L IM IT  (from Ref. [27]).

C o n fig u ra tio n ( 2 j + l )  s W ( j ) s(->(j) Sum 2 j + 1

3 P l / 2 1.4 0.8 2 . 2 2

3P3/2 0.6 3.4a 4.0 4

2f5/2 2 . 2 5.1 7 .3 6

1113/2 1.3 7.2 8.5 144

2f7/2 0.1 3.4 3.5 8

2S9/2 5.4 5.4 10

a T h e  was n o rm a liz e d  to  fu l f i l  th e  sum  rule

T A B L E  V IH b . T H E  E X P E R I M E N T A L L Y  D E R IV E D  O C C U P A T I O N  

P A R A M E T E R S  u2(j) A R O U N D  204Pb A N D  T H E  C O M P A R IS O N  W IT H  T H E  

P A IR IN G  M O D E L  (from Ref. [27]).

C o n fig u ra t io n
E xperim ent 

u2 ( j )
T h eory

3 P l / 2 0 .7 0 . 8

3P3/2 0 .1 5 0 . 1

2 f  5/2 0 .4 0 . 2

1113/2 0 . 1 0 . 0 2

2f7/2 0 . 0 1 0 . 0 1
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core. What happens in the Ca region? Let us take 40 Ca, although the 

belief exists that 48Ca is a better example of a closed-shell nucleus.

First, about shell closure. It is a well known fact that 40Ca is not a 

good closed-shell nucleus, i .e . that the ground state contains particles in 

the f7/2 shell. This has been experimentally demonstrated by Glashausser 

et al. [28] who found £ = 3 angular distributions in the deuteron spectra 

from the 40Ca(p, d)39 Ca reaction. Now, the £= 3 neutrons could be picked-up 

only from particles in the f7/ 2 shell. This result has been corroborated 

later by other authors.

Second, 40 Ca and other Ca isotopes show a series of low-lying positive- 

parity states which cannot be explained in terms of particle-hole configura

tions. Particles i n 40Ca fill up, in principle, the s-d shell. The next empty 

shell is the f7/ 2 one and moreover, the shell above is again an odd i-shell, 

while the first-positive parity orbital g9/ 2 comes very high in energy.

Hence to make a particle-hole configuration of positive parity one would 

need to couple the (s, d) holes with the g9/ 2 particles or else dig up holes 

from very deep underneath the Ferm i surface. As the lowest-lying levels in Ca 

isotopes are,as a rule, levels of positive parity, we should look for an 

explanation in terms of other, more complex configurations.

A third point which makes the difference between 40Ca and 208Pb region 

is the fractionating of the single-particle strength in 40Ca(d, p) and (3He, d) 

reactions. All this indicates that the crude shell-model description of 40Ca 

is far from being satisfactory, and that all other particles in the core 

interact strongly and modify the simple shell-model description.

W e  shall briefly illustrate these points," leaving the detailed description 

of nuclei in this region to other papers.

The calcium region: 40Ca ± particle - In the simplest shell model,

states in 4iCa should be pictured as an inert 40Ca core plus a neutron in a 

single-particle level ( 1 f7/ 2 , 2рз/2, 1 fa/ 2 . . . . ) .  These states are identified 

via the ^ C a  (d, p) reaction [29]. As we said before, the spectroscopic 

strength of these states was found to be fractionated, indicating that the 

simple picture does not contain sufficient degrees of freedom. The same 

is true for 43Ca, where many more low-lying levels are found than could 

be predicted by the (f7/2)3 configuration alone. Even when the three 

neutrons are allowed to occupy either the 1 f7/ 2 or the 2рз/2 orbits the 

number of calculated levels is significantly lower then the number of ex

perimental levels found below an excitation energy of, e .g . 3 .5  M e V .

Another deviation from the simple shell model in 41Ca is presented by 

the second excited state at 2 .017  M e V  which is a 3/2*  state. This J1' can 

be obtained only by promoting two particles in the f7/2 orbital:

( l d 3 / 2 ) ®  ( f 7 / 2 ) 2

Now the first positive parity level of 41Ca is 1. 3 M e V  lower then the 1st 

positive parity level in 40Ca (the 0+ at 3. 35 M e V ). Hence, to explain the 

excitation of these levels by (d, p), one should admit the presence of 

(2p, 2h) viz. (4p, 2h) configurations already in the ground state of 40Ca and

42Ca,respectively. . These core excitations provide the extra degrees of

freedom responsible for the fractionating of the single-particle strength.

Let us look now at the experimental situation. Table IX  shows a

survey of 41Ca levels and the respective spectroscopic strengths [30]. The
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T A B L E  IX . 41Ca L E V E L S  A N D  S P E C T R O S C O P IC  S T R E N G T H  

(from Ref. [30]).

E
(M e V )

M a x .
d o /d Q

(m b /s r )

C 2 S
C ZS

( 3H e ,a )
C2J + D S  
(d , p)

d o /d n  
( 3H e , p) 
(m b /s r )

J*
Z R /L FR/NL

0 . 0 0 2 .8 2 3 1 .5 1 . 6 1 . 6 8 . 0 0 0 .0 3 7 /2 "

2 . 0 П 2 .3 0 2 3 .8 2 .1 2 . 0 0 .7 9 0 .1 9 3 /2 +

2 .4 7 1 0 .0 4 9 a 0 . 0 1 1 . 1 1 3 / 2 -

2 .6 8 0 0 .8 6 0 0 0 .5 3 0 .3 4 0 .6 5 0 .3 5 l / 2+

2 .9 8 0 .1 5 3 3 0 .1 4 0 .1 7 0 .1 4 7 / 2 - ,  ( 5 / 2 ) "

3 .4 0 8 0 .0 8 8 0 0 .0 8 5 0 .0 4 9 0 . 1 2 0 .0 3 1 0 .0 6 7 1 / 2+

3 .5 2 0 . 2 0 2 2 0 .3 9 0 .3 1 0 . 1 1 5 /2 + ,  3 /2 +

3 .7 4 0 0 .1 8 0 2 0 .3 6 0 .2 8 0 .2 6 0 .2 8 0 .1 8 3 /2 + , 5 /2 +

3 .8 5 9 0 .1 5 8 0 0 . 2 0 0 . 1 1 0 .1 9 0 . 0 1 1 / 2+

3 .9 5 0 .0 5 8 a

4 .1 0 5 0 .3 6 4 2 0 .8 5 0 .7 1 0 .1 3 0 .5 1 5 /2 + ,  3 /2 +

4 .8 2 9 0 .0 8 1 ( 2 ) 0 .1 9 0 .1 6 0 . 1 0 0 . 1 0 0 .1 7 3 /2 + ,  5 /2 +

5 .4 9 0 .0 5 8 a

5 .8 4 0 .6 2 6 2 1 .7 1 .7 2 .3 0 .9 1 3 /2 +

5 .9 0 0 .1 0 6 a

6 .0 4 0 .0 9 7 a

6 . 6 8 0 .0 6 4 a

6 .8 2 0 .1 3 9 0 0 .9 3 0 .8 5 0 .5 4 1 / 2+

7 .1 3 0 .1 2 3 3 0 .1 5 0 . 2 0 0 .3 7 7 / 2 -

7 .4 1 0 .1 0 4 a

a A n g u lar d istr ib u tion  w ith  m o r e  than  th re e  da ta  p o in ts  was u n o b ta in a b le .

fractionating is quite visible. The low-lying positive-parity states in 41Ca 

are of particular interest; especially the SLn = 2 state at 2. 02 and the I =0 

state at 2 .6 8  M e V . As mentioned above, these states can be readily identi

fied as 2 particle-1 hole configurations, namely 42Ca (g .s .)  ®  i /fld j^ ); 

42C a (g .s . )  ®  v (2sŸ/2) configurations. W e  see that states of complex con

figuration are present rather low in the spectrum.

A quite similar situation exists in ^ C a , where the lowest positive- 

parity level is found already at 0. 99 M e V  (Table X ) . The experimental [30] 

and calculated [31] spectroscopic strength C 2S for the 42Ca (p, d)41 Ca 

reaction versus the excitation energy for - 0 and i n = 2 levels in 41Ca is 

shown in Fig. 22. The agreement is, certainly, far from being satisfactory, 

and a comparison with similar results in the lead region (see, e .g .

Tables Ha  and lib) clearly shows that simple shell-model descriptions are 

less adequate in the Ca-region. Of course, some qualitative features of 

the shell model are nevertheless valid as illustrated on Fig. 23, which 

shows a comparison of the spectroscopic strengths of levels in 43Ca ob

tained from the 42ca (d, p)43Ç!a and ‘MCafp, d ) ^ C a  reactions. The obvious
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T A B L E  X .  43Ca L E V E L S  A N D  S P E C T R O S C O P IC  S T R E N G T H S  

(from Ref. [ 30]).

Ex
M a x .

(d o /d£ 3)
(m b /s r )

C ZS
(2J + 1 )  S

J7T
(M e V )

Z R /L FR/NL
(d ,p )

0 . 0 0 6 .2 6 3 3 .6 3 .8 5 .5 7 / 2 -

0 .3 7 3 0 .2 2 4 3 0 .1 3 0 .1 5 5 / 2 _

0 .5 9 4 0 .5 4 5 1 0 . 1 0 0 . 1 0 0 . 2 1 3 / 2 “

0 .9 9 2 3 .2 3 2 3 .6 2 .5 0 .5 2 3 /2  +

1 .3 9 5 0 .1 4 1 2 0 . 2 2 0 .1 6 ( 0 . 1 2 ) 3 / 2 4-, ( 5 / 2 +)

1 .6 8 0 0 .0 7 4 ( 1 1 / 2 -)

1 .9 5 9 2 . 2 0 0 0 .8 0 0 .6 2 0 .1 3 l / 2+

2 .0 5 0 0 .5 3 1 1 0 .1 6 0 .1 8 3 .0 3 /2 "

2 .2 5 2 0 .2 3 4 2 0 .4 2 0 .2 8 3 /2 + , 5 /2 +

2 .6 9 0 .2 5 8 2 0 .5 3 0 .3 6 3 /2 + ,  5 /2 +

2 .8 7 0 .2 6 6 2 '  0 .4 9 0 .3 7 3 /2 + ,  5 /2 +

3 .0 5 0 .5 2 3 0 0 .3 3 0 . 2 2 l / 2+

3 .2 8 0 .2 5 5 3 0 . 2 2 0 .2 8 7 / 2 “ , ( 5 / 2 - )

3 .6 0 0 .0 4 5 ( l )3 0 . 0 1 0 . 0 2 0 .2 4 ( 3 / 2 - ,  1 / 2 “ )

3 .9 2 0 .2 1 8 ( 2) 0 .5 8 0 .4 0 ( 3 / 2 + , 5 /2 + )

4 .2 0 0 .2 6 6 ( 2) 1 . 2 0 .7 5 ( 3 / 2 + , 5 /2 +)

4 .4 6 0 .3 0 8 ( 2 ) 0 .8 0 0 .5 3 ( 3 / 2 + , 5 /2 + )

7 .9 7 0 .1 7 9 2 0 .8 0 1 . 1 3 /2 +

8 .5 9

8 .7 5

a P arentheses in d ic a t e  te n ta tiv e  assignm ent

feature is that the (p, d) strength is much larger for & = 0 and 2 transitions 

while the (d, p) strength prevails for I = 1. The i = 3 strength is about 

equally shared among (p, d) and (d, p) levels. In terms of a qualitative shell- 

model picture, this means that neutrons in 43Ca are still to be found in the 

(s, d) shell (pick-up possibility) while the fj/2 shell is half-filled (pick-up 

and stripping equally possible). Extra core particles in 43ça are to be 

found essentially in the Í7/2 shell, while the Í = 1 рз/2 and pi/2 orbitals are 

more or less empty (large stripping and small pick-up strengths).

This evidence is corroborated by examining the 40ca plus hole case.

The splitting of hole strength in 39K  and 39Ca is a well known fact. W e  shall 

look for more direct evidence for the presence of core excitation in the low- 

lying levels of 39K  or 39Ca . In this respect 39K and 39Ca will present a 

very favourable case since the strongly excited low lying core state (the 

3" of 4<>Ca at 3.7 3 M e V ) has negative parity, and, each m em ber of the core 

multiplet will have parity opposite to that of the ground state. Hence, con

figuration mixing of the ground state with the multiplet m em ber of the same
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E„(M eV ) 

9 . EXR 
/ n = 0

Ex (MeV)
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5 • _______

4
•
в

3

-
2

1 1 ^ [ 1 r
.0 ¿JD

T * 3/2
D 2.0

F IG .2 2 . T h e  e x p e r im e n ta l ( R e f . [ 3 0 ] )  and ca lc u la t e d  (R e f .[3 1 ] )  s p e c tro s co p ic  strengths C 2S from  the 
42C a  (p , d )41C a  re a c t io n  fo r  f n “ °  ar)d £n ~ 2  le v e ls  in  41Ca (fro m  R e f . [ 3 0 ] ) .

spin and parity (which results in a heavy loss of strength for the latter) will 

not occur2.

The quartet corresponding to the coupling of the d 3/2 proton hole to the 

3- level in 40Ca was found by Lewis [32] by means of the (d,.d') reaction. 

The levels at 3. 02, 4 .1 2 , 3. 88 and 3. 60 were found to be, respectively, 

the 3/2*, 5/2*, 7 /2 ", 9 /2 ' m em bers of the quartet resulting from d3/2 
proton-hole coupling to the 3“ level of 40Ca. The angular distributions 

were found to be identical, the cross-sections obeyed the 2 j+ l  rules, 

while the centre of gravity of the four levels lay at 3 .71  M e V .

W e  conclude that the inert, closed-shell core plus particle or hole 

picture is hardly valid in the 40Ca region. The evidence for shell non

closure is overwhelming and the influence of the excitation of all the 

particles in the core should be taken into account even in a first 

approximation.

The calcium region: positive-parity states - The most conclusive 

evidence in this respect is the presence of low-lying positive parity states 

in 40Ca and other even Ca isotopes. In some isotopes, these levels were 

found to make a rotational band like in 40Ca, where the 0+ , 2 + and (4 + ) 

levels at 3 .3 5 , 3 .9 0  and 5 .27  M e V  obey the 1(1 + 1) rule. Recently,

Delaunay et al. [33] have found evidence for candidates for a fourth m em ber 

of the band (6+) around 7 .3  M e V . Now, with particles in f7/2 , Рз/2 . P1/2 
and f5/2 orbitals the О  states in 4 2 , 4 4 , 4 6 ç a  should appear at 5, 4 .5  and 

3 .8  M e V , respectively, while experimentally they are found at 1 .84 , 1 .89  

and 2 .4 3  M e V  respectively. As  the inclusion of other configurations could

2 A s im ila r  ca se  o c c u rs  for 209Bi and 208Pb (s e e  Physics L etters (1 9 6 6 ) 5 7 9 ).
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A-c --i ■A - 2

С S - ‘"‘Co (p,d)

J„- 3

(2J+DS - 4гСо(d,p)

F IG .2 3 . ^ C a  sp e c tr o s c o p ic  strength  from  ■MC a (p ,d )  and ^ C a i d .p )  re a ctio n s  ( fr o m  R e f . [ 3 0 ] ) .

not mend the disagreement, we conclude that the first 0+ states involve 

excitation of particles from the 40Ca core into f-p orbits. Another argu

ment in this respect is the strong E 2  transition of these levels to the lower- 

lying positive-parity states.

The idea of introducing admixtures of deformed states in the low-lying 

levels of closed-shell nuclei was introduced by Brown [34] and followed by 

other authors [35] in order to explain the low-lying states of 160 .  Federm an 

and Talm i [36], Bertsch [37], Gerace and Green [38] applied it to Ca isotopes 

with various degrees of success. Recently, Flowers and Skouras [39] cal

culated the deformed states by a variational procedure with no fitting of 

matrix elements to experimental energies.

At this point, one should ask several questions. First, why did they 

choose deformed states rather than spherical ones? Second, why many- 

particle many-hole configurations rather than 1 particle-1 hole, if one 

wishes to obtain low-energy excitations?

The answer to the first question is obvious: some deformed states have 

a lower energy then the spherical ones. It is sufficient to look at the 

Nilsson diagrams in order to see this.

The second question is more complex. Let us look at a system of four 

particles in a shell-model potential (Fig. 24). Let the energy difference 

between major shells be e and A Y  the particle-particle or hole-hole 

interaction. W e  assum e | A v | < | e| and we neglect particle-hole inter

actions. The energy of g .s . (a) is 0. Next we excite one particle. The 

excitation energy of the system (b) is E  = e + 0. Next, we excite two par

ticles (c). Now, the unperturbed energy of excitation 2e is diminished by 

a particle-particle interaction A V :E (c ) = 2e - A V . W hen we rise 3 particles 

(d) we have 3 interacting pairs and the total energy is E(d) : 3e- 3AV . For

4 particles we have E(e) = 4e - 6A V , which might be lower than E  = e + 0.

Hence, under particular conditions, 4 particle-4 hole configurations might 

appear at lower energies than the 1 particle-1 hole ones.
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Fro m  this short survey of the Ca region, we see that the situation 

here is quite different from that in Pb  and that we have to admit deviations 

from the simple shell-model picture even in a first-approximation 

description.

3. 3. Nuclei far from closed shells

So far we have been looking at the vicinity of doubly-closed-shell nuclei. 

What about nuclei very far away from closed shells? Is the shell model still 

a good description there? In the simple shell model, the treatment of more 

than three particles outside of the closed shell becomes next to impossible. 

However, this is again simple in the pairing theory [40], provided that 

either the neutrons or the protons form a closed shell. W e  shall illustrate 

this for tin isotopes, Z  = 50, N  = 6 6 ^ 7 4 .  The involved neutron sub-shells 

are:

d 5 / 2 '  S t / 2 ’ S 1 / 2 *  d 3 /2 "  h n / 2  •

Cohen and Price [41] have shown that combining (d, p) and (d, t) 

reactions one can obtain useful information about single-particle levels.

As is well known the cross-section for any stripping or pick-up reaction 

can be represented as the product of two factors, one containing the kine

matics of the reaction, the other the nuclear structure information

5 ï ï ( d ’ P ) =  f f T T p ( i n . Q > e >-

5 ^ (d , t )  = T ( i n.Q ,e ) .  S(i,fl

where P  and T  are functions which can be derived from the reaction theory 

and S¡f = Sf¡ , the overlap of the initial and final states, can be obtained 

from nuclear-structure theory. W e  have chosen the (d, p) and (d, t) reactions 

as being experimentally simple.

■H-H-

■4--------
- w

(a)

(b)

-H —
F IG .2 4 . Four p a r t ic le s  in  s h e l l -m o d e l  p o te n t ia l .  _________ j  | (c )

-hH- 
— i-

4 H +

(d)

(e)
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F ro m  the French-Macfarlane rules one obtains for even-even targets 

and pure jn configurations:

S = n for (d, t) (4a)

S = 1 - 2^-j- for (d, p) (4b)

where n is the number of particles (neutrons) outside the closed shell. 

However, we know that the configurations are not pure, and we define an 

average occupation probability for a given orbital j, v? as

n = (2j + 1) v?

Thus, for even-even targets we can write the cross-section (I¡ =0, If =j).

^ ( d . p )  = ( 2 j  +  i ) P . u J «

g y  (d,t) = (fej + 1) T  -v®Cl)

It is obvious that the stripping cross-section will be proportional to the 

number of empty places, i .e . holes which can be filled, while the cross- 

section for pick-up will be proportional to the number of particles that can 

be taken out. Here u? = 1 _ vj2; v? represents the fraction by which the 

sub-shell j is filled with particles, u2 represents the fraction of unoccupied 

places, 'i .e . the num ber of holes, [actually, the number of holes is given 

by (2j + l) .u?].

How do we calculate vf? W e  shall discuss a method proposed by 

Cohen and Price [41]. This method contains several approximations and 

simplifications and it is surprising that it works at all. Yet, it gives 

results that are not inconsistent. The reason, in our opinion, is that it 

contains a m inim um  number of simple physical assumptions and that hence 

it should work.

First we eliminate the Q-value dependence by the assumption

P (-£n, Q, 0) = PJn (6) F"°

T  (ín, Q , 0) = TJ (0) FQu Kn

where F  is a factor close to 1.

This approximation is based on the experimental fact that stripping 

and pick-up reactions vary smoothly with Q  (and, in general, with energy). 

This is already a first approximation in the calculation.

Next we take the ratio of cross-sections for two sub-shells of the 

sam e i-value at the sam e angle, e .g . d 3/ 2 and d5/2 .

F « = , „  - а д  j j L  ( d ,  p )  ;  d 5 / 2  ] . , .  i
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T A B L E  X I . F IL L IN G  P A R A M E T E R S  vf/2 A N D  vf/2 (from Ref. [40]) 

C A L C U L A T E D  F O R  Sn IS O T O P E S  F O R  A = 116 - 124.

T a rge t  
A mass 116 118 120 12 2 124

V 3 /2
1 . 0 0 .2 8 0 .4 0 ' 0 .7 3 0 .7 7 0 .9 4

1 . 1 2 0 .2 6 0 .3 6 0 .6 0 0 . 6 6 0 .7 6

1 .2 5 0 .2 4 . 0 .2 9 0 .4 9 . 0 .5 2 0 .6 1

V 5 /2 1 . 0 0 .7 7 0 .7 8 0 .9 0 0 .9 0 0 .9 8

1 . 1 2 0 .7 8 0 .8 0 0 .8 7 0 .8 7 0 .9 4

1 .2 5 0 .8 0 0 .8 1 0 . 8 6 0 .8 4 0 .9 2

W e  do the sam e for (d, t):

- p (Q 5 / 2 - Q 3 / 2 )
d 3 / 2 ^ ( d , t ) - d 5 / 2 = b 4 ^

6  v 5 /2

W e  see that using and u^ , stripping and pick-up reactions can be treated 

formally in the sam e way: a pick-up reaction is, essentially, the stripping 

of a hole.
2 2 2 2 

Now we have two equations with U 3 / 2 , U 5 / 2 ,  V 3 / 2  and V 5 / 2  since a and b,

the ratios, are experimental values. However, we also have a second pair

of equations, connecting the u2 and the v2 :

u 3 /2  + v 3 /2  = 1

and

u  5 / 2  _  v  5 / 2 ‘ 1

W e  have hence 4 equations w'ith 4 unknowns and we can obtain the u2 's 

and the v 2 ,s. In the above procedure,' however, we have fácitly made a 

second approximation, namely we have supposed that the.shape of the 

angular distribution for the two £ = 2 levels is identical, which is not 

always true. Nevertheless, the results as seen from Table XI, are not 

completely unreasonable. For instance, both the v2/2 and v 2/2 are slowly 

increasing with increasing atomic number A , i .e . the sub-shells d 3//2 

and d5/2 are being gradually filled up. The d5/2 orbital is filled first, as

h ll/2

------------------------------  d 3 / 2

s  1 / 2  

Sl/2

■---------------d 5 / 2
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expected from its lower energy. In a simple shell-model picture the d 5/2 

orbital should have been filled already with 6 extra-core particles. In 

practice, we find it almost filled with 16 particles (80%). The d 3/2 orbital 

is more instructive. W e  should need 16 extra-core particles to start to fill 

it up and 20 particles to fill it completely. In fact for 116Sn it is almost 

unfilled (~ 25% ). For 120Sn it is three-quarters filled, while for 4 more 

particles (124Sn) it is completely filled.

W e  see, hence, that even away from closed shells we can use simple 

shell-model notions if we modify them in a proper way.

In the case when we do not have two sets of levels with identical angular 

distributions (like, for example, the g7/ 2 or h u /2 levels), we have to make 

further approximations. Even then the obtained results are not too 

inconsistent.

The next information which we can obtain in this way is the unperturbed 

single-particle energy. For  doubly closed shells this information was 

straightforward. Even when, owing to the interaction with the core, the 

single-particle strength was fractionated, it was easy to obtain the spacing 

of single-particle levels by taking the centre-of-gravity (a weighted 

average) energy. Here this information is by no means straightforward 

but it passes through the pairing theory. This theory relates the occupation 

probabilities v? with the energies of the observed levels Ej and the energies 

of the unperturbed single-particle levels ej through two empirical quantities: 

the chemical potential X and the pairing energy gap Д:

2 _  1

Vi 2

where

( 1  - e 2 ) ! / 2 (5)

e j  = ( e j  - А ) / Д (6)

T A B L E  XII. V A L U E S  O F  U N P E R T U R B E D  S IN G L E - P A R T IC L E  

E N E R G IE S  F O R  T IN  IS O T O P E S  C A L C U L A T E D  F R O M  T H E  v?'s O F  

T A B L E  XI, U SIN G  T H E  P A IR IN G  T H E O R Y  O F  Ref. [40] (from Ref. [41])

M ass n u m ber 116 118 120 12 2 124
N ilsson

K -S
Exp
av

sl / 2 Exp 0 .9 7 0 .8 3 0 .9 7 0 .7 0 1 .2 4 1 .9 0 0 .9 5

E 1 .6 5 1 .7 2 1 .5 7 1 .4 0 1 .3 7

d3 /2 Exp 1 .4 4 1 . 2 2 1 . 1 0 0 .9 6 1 .4 1 2 . 2 0 1 .2 3

E 2 .4 5 2 . 1 2 1 .8 7 1 .8 5 1 .9 4

d 5 /2 Exp 0 0 0 0 0 0 0

E 0 0 0 0 0

§ 7 /2 Exp 0 ,0 8 - 0 .3 3 - 0 . 2 2 0 . 2 2 - 0 .1 6

E 0 .4 2 0 .3 7 0 . 2 2

h i  1 / 2 Exp 1 .3 4 1 . 2 2 1 .5 4 1 . 2 2 1 .7 5 2 .8 0 1 .4 1

E 2 .7 5 2 .3 2 2 . 1 2 2 .0 5 1 .9 4
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Experimentally, Д  is a half of the pairing-energy gap [about 1 . 1 M eV] 

in this m ass region. The relation between the observed level energy Ej 

and the unperturbed energy goes through the intermediate energies ej :

Е Г [(1- е ? )1/2- (1 + е?.£ )1/2

where e j .£ stands for the ej value in the ground state. Solving Eq . (5) for 

ej and using the relation between u^ and v^ we obtain:

2 2 
U j  “  V j

e i ‘  2 ( u j V j  W 2

and, using relation (6), ej .

The values of obtained from this equation are shown in Table XII. 

The determination of the single-particle energies for the various isotopes 

are reasonably consistent among themselves, although there are large 

fluctuations, as might be expected.

4. C O N C L U S IO N

Let us conclude with some comments on what we m ean by saying that 

a process or a state is well described by a certain model. W e  have seen, 

e .g . that the sam e model wave functions which give good energy spectra do 

not yield the transition probabilities etc. This point has been discussed 

extensively by De Shalit [42] and we refer the reader thereto.

A wave function of a system of A particles gives the complete informa

tion about the system ,i.e . about the motion of all the particles. Usually, 

we do not need all this information. In fact, what we usually need are 

matrix elements of some one-body or two-body operators

F  = Y  f¡ or G  = I

It can be shown, that, to calculate these matrix elements, one needs' only 

a small part of the A-particle wave function, namely the single viz. two- 

particle density matrix. Hence it is clear that when we say that a certain 

set of model wave functions ФА (x¡ . . . хд) reproduces the experimental 

values of some F  or G  type operators, then what we m ean at most is that 

the model wave function Фд and the real wave function Фа yield the same 

density matrix раь (x, x '). Very little can be claimed as to the faithfulness 

with which ФА describes other types of correlations.

W e  can see now why some model wave functions give excellent results 

for some physical quantities, while failing completely to describe the 

others.

A few words should be said about the meaning of the concept of 

"overlap". A  large overlap of two wave functions, say 90 or 95%, is usually 

taken as equivalent to these wave functions being equally valid. In fact, 

we have implicitly used this terminology in the description of the spectro

scopic factor. W e  said that the spectroscopic factor was unity when the 

residual wave function had a m axim um  overlap with a wave function
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constructed by vector coupling a single nucleon in a given orbital state St, j 

to the ground-state target wave function. Such a statement should be care

fully considered, since the validity of a wave function depends very much 

on the purpose for which it has been constructed. The trivial example is 

the case of the Is wave functions in two harmonic oscillators with elastic 

constants к and 2k respectively, which have a 91%  overlap since the bulk 

of both of them is concentrated around the origin. Nevertheless, if we use 

the two wave functions to determine a quantity at larger radii, the difference 

might well be all we were looking for.

It often has been repeated that the greatest discovery in nuclear physics 

in the last ten years is the evidence that the shell model is applicable to 

nuclei. This fact, at first difficult to understand, is now well understood 

and corroborated by convincing evidence. It was the scope of these lectures 

to illustrate the value and the limitations of this description. As to the 

value of the spectroscopic information obtained from, e .g . the analysis of 

transfer reactions, it is certainly correct to say that the most important 

facts stemming out from this analysis are (a) that the individual orbital 

angular momentum  is a good quantum number and (b) that the orbital occupa

tion parameters agree with our basic ideas of a shell-model description of 

nuclear states.
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CHARGE INDEPENDENCE IN NUCLEAR PHYSICS 

L. FONDA
Istituto di Física Teórica, Univers it à di Trieste 
Trieste, Italy

Abstract

CHARGE INDEPENDENCE IN NUCLEAR PH YSICS.
1. C h a rg e  in d e p e n d e n ce  and is o to p ic  sp in ; 2 . G e n e ra liz e d  P au li p r in c ip le ;  3 .  S e le c t io n  ru les for 

n u c le a r  re a ct io n s ; 4 .  E le c t ro m a g n e t ic  transitions and 0 -d e c a y ;  5 . M ass sp littin g s ; 6 . F in ite  groups and 
ch a rg e  in d e p e n d e n ce ; 7 . T h e  is o to p ic  sp in  in  h e a v y  n u c le i .

1. C H A R G E  IN D E P E N D E N C E  A N D  IS O T O P IC  SPIN

Immediately after the discovery of the neutron in 1932, Heisenberg [ 1 ] 

put forward the idea that the nuclear force between a pair of protons is 

equal to the nuclear force between a pair of neutrons. In 1936 ,Breit and 

Feenberg [2] inferred from a comparison of the scattering of protons by 

protons and of protons by neutrons, that the nuclear force which acts 

between two protons is equal to that acting between a proton-neutron pair. 

These pioneering works paved the way to the introduction of a new symmetry 

in nuclear physics, i. e. to the so-called charge independence of the nuclear 

forces: the neutron and the proton are two states of a single entity, the 

nucleon. There are, of course, differences between these two particles, 

i. e. a small m ass difference, different charges and magnetic m oments, 

but one thinks that they can just be explained by the different role played 

by these particles in the interaction with the electromagnetic field.

There is great experimental evidence that nuclear forces are charge- 

symmetric, i. e. that the n-n and p-p interactions are the sam e, once 

having disposed of the Coulomb force in the p-p pair. This comes essen

tially from the equivalence of the spectra of m irror nuclei since for these 

nuclei the num ber of n-p bonds are the same. In Table I we show some 

exam ples1. To obtain an approximate estimate of the Coulomb part of 

the binding energy we have used the simple expression which is obtained 

for point protons uniformly distributed in a nucleus:

E C o u l o m b  ° .  6 1  M e V  ( 1 )

(we have used r0 = 1 .41  X 10~13cm ). The close equality of the net nuclear 

binding energies is striking.

The charge independence of nuclear forces, i. e. the fact that we 

actually have n-n = p-p = n-p for the nuclear forces of these pairs, is 

provided by the original work by Breit and Feenberg and by the equality 

of the nuclear binding energy of the so-called isomultiplets [ 3 ] that we 

now come to describe.

1 T h e  e x p e r im e n ta l b in d in g  en e rg ie s  o f  T a b le  I and II a re  ta k en  from  M A T T A U C H , J. H. E . , THIELE, W . , 
W A P ST R A , A . H . , N u c l. P hysics 67  (1 9 6 5 ) 1.

283
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T A B L E  I. B IN D IN G  E N E R G IE S  (in M eV ) O F  S O M E  M IR R O R  N U C L E I

A z N u cleu s B inding  en erg y C o u lo m b  en ergy
N et n u c le a r  

b in d in g  en e rg y

3 Í 1 з н - 8 .4 8 0 - 8 .4 8

I 2 s He -7 .72 + 0 .8 5 -8 .5 7

13 {
6 13C -9 7 .1 1 + 7 .7 8 -1 0 4 .8 9

3 13N -9 4 .1 1 1 0 .8 9 -1 0 5 .0 0

« {
20 41C a - 3 5 0 .4 + 6 7 .3 -4 1 7 .7

21 «Sc -3 4 3 .1 + 7 4 .3 - 4 1 7 .4

Energy

(MeV)

4 ■

2  ■

-2
He

FIG . l a .  L e ve ls  w ith o u t e x c lu s io n  p r in c ip le .

Naively,one would think that, if the interaction between all nucleons 

is alike, all nuclei of sam e m ass number A  will have the sam e spectra and 

energy levels. This is, however, not true because of the exclusion principle. 

In fact, some states which are compatible with the exclusion principle 

for a n-p pair, are incompatible for á n-n or for a p-p pair. The states 

in question are those which are symmetric under the interchange of the 

two particles. These states are perfectly permissible for a n-p pair.

This kind of suppression is shown in Fig. 1 for the nuclei 6H , 6He, 6Li,

6Be and 6B . W e  see for example that the low-energy states of 6B  and 6H  

are eliminated. The experimental binding energies are, of course, not 

the sam e owing to the electrostatic force which tilts the levels in such a 

way that nuclei with fewer protons have lower energy. However, after 

subtracting the Coulomb energy we get very close values for the net nuclear 

binding energy. This is shown in Table II for some nuclei. W e  have again
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Елегду

(MtV)

4  H

C H

FIG . l b .  A l lo w e d  le v e ls ,  w ith o u t e le c t r o s ta t ic  e n erg y .

Energy

2

FIG . l c .  A l lo w e d  le v e ls ,  w ith  e le c t r o s t a t ic  e n e rg y .

used the simple-minded formula (1) in order to get a rough estimate of 

the Coulomb energy. W e  see,from  Tables I and II that nuclei arrange in 

multiplets of the sam e nuclear binding energy in m uch the sam e way as 

the spin multiplets in atomic spectroscopy. In the latter case the intro

duction of the concept of spin for the electron led to a concise mathematical
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T A B L E  II. B IN D IN G  E N E R G IE S  (in M eV ) O F  S O M E  I- T R IP L E T S

A Z N u cleu s Binding en ergy C o u lo m b  en erg y
N et n u c le a r  

b in d in g  en erg y

- 2 6H e - 2 9 .2 6 + 0 .6 7 -2 9 .9 3

6 3 6U * ( 3 .5 6 ) -2 8 -4 3 +2 . 0 2 - 3 0 .4 5

4 «Be - 2 6 .9 3 + 4 .0 3 - 3 0 .9 6

4 10Be -6 4 .  98 + 3 .4 0 - 6 8 .3 8

1 0 5 10B* ( 1 .7 4 ) - 6 3 .0 1 + 5 .6 6 - 6 8 .6 7

6 ю с -6 0 .3 6 + 8 .4 9 -6 8 .8 5

6 » C - 1 0 5 .3 + 7 .6 - 1 1 2 .9

14 7 14N * ( 2 . 3 2 ) -1 0 2 .3 + 1 0 . 6 - 1 1 2 .9

8 14Q - 9 8 .7 + 1 4 .2 - 1 1 2 .9

formulation of the problem. In the sam e way, to express the hypotheses 

of charge symmetry and charge independence in quantum-mechanical 

language, one is led to the introduction of a new quantum number for 

the nucleon:

i
= +1  

= - 1

neutron

proton

This variable distinguishes between neutrons and protons just as the 

electron spin variable distinguishes electrons with spin parallel or anti

parallel to the z-axis. The corresponding operator can be written in 

matrix form

1  0  

0  - 1
(2)

In this representation the pure proton and the pure neutron state are, of 

course, described by two-component wave functions:

(3)

where фп and are wave functions of given spin. In this new two- 

dimensional Hilbert space all operators will be a linear combination of 

the 2 X 2  identity matrix and of the three matrices

0  1 

1  0

1  0

0  - 1
(4)

These matrices satisfy the commutation relations for spin

( t k ,  T j ]  =  2  6 u
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W e  call I = j  t  the isotopic or isobaric spin of the nucleon. W e  say that 

the nucleon is a particle of isotopic spin it is an isospin doublet. For 

a system of A  nucleons we define the total isotopic spin

That is, the Ij determine the algebra of the group SU(2) of the unimodular 

unitary 2 X 2  matrices. W e  can then proceed as in the case of angular 

mom entum . W e  diagonalize I 2and I3 together. To a given value of I we 

have 2 1 + 1  values of I3 ranging from - I  to +1. These constitute an irre

ducible representation of the group SU(2). For I3 we have:

In fact, once A  is given we first fix a value I (1+ 1 ) of the Casim ir 

operator Î 2. According to the theory of angular m om entum , I will be 

integer (й 0) or half-integer (> 0) according to whether the number of 

nucleons is even or odd. In this way we have a multiplet of 2 I + 1 isobar 

nuclei. The value of I3  then identifies one of these in a one-to-one way 

according to Eq. (7). The 2 1 + 1  nuclei of the irreducible representation 

characterized by the value I for the isospin are then different states of a 

single entity. Of course, the nuclear binding energy, the spin J and the 

parity P  is the sam e for all. Charge independence tells us that by jumping, 

in a given I-multiplet, from a value of ^ t o  another possible value of this 

operator we get a particle (nucleus) which evolves in time in the same way 

as that from which we started. This means that the Hamiltonian commutes 

with I+ and I.

which are the raising and lowering operators for the eigenvalues of I3 :

Since, on the other hand, H  commutes also with I3  (they can be simul

taneously diagonalized) we obtain

A

(5)
k=l

where j  t ®  is the isospin of the к-th nucleon. W e  easily see that

[Ij, Ik] = iejkt I{ (6)

(7)

-)rt
W e  see that we can just use I and I3 to identify a nucleus in a multiplet.

I± = h  ±  i  I 2 (8)

= f d - y  (1+I3 + i)]1 î̂3+1

I. = [ ( I + I 3) (I-I3 + 1)]* ( /Л ' 1
(9)

[н , Ij ] = о (10)

and therefore also

[ H, Î 2] = 0
(1 1 )
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W e  say that H  is an isospin scalar, an invariant under rotations in the 

so-called isotopic spin (or charge) space which is introduced by analogy 

with the ordinary three-dimensional space in which physical rotations 

operate. The unitary operator implementing a rotation in the charge 

space is^of course,

R ^ ( w )  = e l I ‘ ‘J  ( 1 2 )

where I is the total isospin of the system given by Eq. (5) and u = nu.

In particular, a rotation of 180° around the 1-axis corresponds to the 

substitution of all the protons of the considered nucleus by neutrons and 

vice versa. The invariance under this transformation is just the hypo

thesis of charge symmetry. W e  easily see that

R ! ( 7 > ¡ 3 s e 11» ' ^ 3 = i 2V j Is (13)

If I3 = 0, i. e. for a self-conjugate nucleus (number of protons equal to the

number of neutrons), we see that the nuclear wave function is eigenfunction

of R^tt) for the eigenvalue ( - ) 1 (I is an integer in this case):

1 = 0  1 1 = 0
= (-) (14)

W e  say that the nucleus has "charge parity" (-)1. Selection rules based 

on the application of Eq . (14) are then consequences of the weaker 

assumption of charge symmetry.

2. G E N E R A L I Z E D  P A U L I  P R IN C IP L E

The identity of the nucleons leads us to an investigation of the problem 

of the statistics obeyed of the nucleon. In nature identical particles obey 

either the Fermi-Dirac or the Bose-Einstein statistics [4]. Protons and 

neutrons are both fermions. A  priori a nucleon could be either a fermion 

or a boson. However, since a neutron can transform into a proton via 

ß-decay, it is possible to see that the nucleon is actually a fermion [5]. 

Consider, in fact, a system of a neutron and a proton in a scattering 

state 3S of zero orbital angular m om entum  and spin 1. There are two 

linearly independent wave functions possible for the description of such 

a state:

A  =  ^ i = o ( r )  X s = i ^ i °
(15)

'/ 'a  = ^ í= 0  ( r ) X s = l ^ ¿ 0

the first being symmetric under interchange of all co-ordinates, i. e. under 

interchange of the two nucleons, the second being antisymmetric. For a 

system of two nucleons, з is simply given in terms of the isotopic wave 

functions f of the two nucleons:



IAEA-SMR 6/46 289

' *iVi1 = ?+(1) ç+<2)

t r i p l e t  ■ Ф ^ 0= ^  ^ + ( ! )  ? '  (2 ) + € ‘ (1 ) i + (2 )]

_1 = Г (1) V  (2)

(16t)

singlet ф £ 0° [?+ (1) ?" (2) - ?" (1) f + (2) ] (16s)

Here f+ describes the neutron (I3 = + | ), f" the proton. Now, in a 

scattering state the system n-p can be transformed into the p-p system 

via ß-decay. Since the ß-interaction, like all physical observables 

(see below), is symmetrical for the interchange of the nucleons, ф5 and фА 

will retain their symmetry. But a p-p system must have a completely 

antisymmetric wave function, therefore the symmetric wave function ф5 

is ruled out: the nucleon is a fermion.

As anticipated above, all physical observables are symmetric under 

interchange of any pair of nucleons. For example, for the charge Z, 

kinetic energy К  and Coulomb potential Vc we have

3. S E L E C T I O N  R U L E S  F O R  N U C L E A R  R E A C T IO N S

Charge sym metry alone is already able to forbid the occurrence of 

certain reactions. For example, we know that the self-conjugate nuclei 

2H , ^He and 160  have charge parity +1 while 14N *  (2. 32) has charge 

parity -1. The reaction

z  = 4  +  i 3

K  = " f  ( m n +  m p ) ° 2  +  ( m n -  m p ) C 2 l 3

(17a)

(17b)

where is the Laplacian on the j-th particle and

? k j  = ? k  -

hi + 160  —* 14N *  (2. 32) + 4He (18c)
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is then forbidden. Analogously the fissions

+ 4He
(19)

10B *  (6 . 5 )---> 6Li + 4He

8Be + 2H

are also forbidden by charge symmetry.

If we assum e the stronger hypothesis of charge independence we 

obtain selection rules as a consequence of conservation of the total I-spin. 

According to Eq . (11)1  must be the sam e throughout the process. For 

example the reaction

6Li + 4H e —  6Li* (3. 56) + 4He (20)

is forbidden since I is zero and one at the beginning and at the end, 

respectively (6Li*  (3. 56) belongs to an I-triplet, see Table II). On the 

other hand, from I-conservation we can get intensity rules. For example 

the ratio of the cross-sections for the two reactions

2H  + 9Be —* 10B * (1. 74) + n

(21)
2h  +  9 ß e  _  1 0 В е  +  p

is equal to This is seen by combining the isospin wave functions of the 

final products into a total I-spin eigenfunction:

I 1 + I 2

У  С , ,  (I, m 1+  m *  mj ,  m2) (22)
1 2 f - 1 . 2 1 2

1= I “ II l 2 i.

Since the initial state is an I-doublet, only the term I = \ of Eq. (22) will 

contribute in constructing the scattering amplitude. W e  see then that the 

scattering amplitude is proportional to Ci± (i, 0, j) = -l/«/3 for the 

final state 10B *  (1. 74) = N  and to Cji (|, i ; 1, -j) = *72/3 for the final state 

1(*Be + p. W e  finally get

g (*°B* + n) = i  

a (10Be + p) 2
(23)

The above rules are approximate since the Coulomb interaction, which 

m akes itself felt m ore and m ore on increasing the number of protons in 

the nucleus, while conserving I3 (see relation (17c)), does not conserve I. 

The sam e is also true for the kinetic energy due to the m n - m p m ass 

difference (see Eq. (17b)) and to the )3-de с ay interaction which m akes the 

neutron decay according to n -> p + e‘  +"v while the proton is stable. As a 

consequence of the only approximate validity of charge independence 

we have for example that the reaction

2H  + 160  —  14N * (2. 32) + ^He (24)
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occurs experimentally while., being a A I  = 1 transition (14N *  (2 .32) has 

1 = 1, see Table II), it would be forbidden if isospin were strictly con

served. In the particular case of reaction (24) the reason for its occurrence 

lies in the fact that the compound nucleus 18F  which is formed as an inter

mediate step contains an isospin impurity of about 4 % . Impurities of 

this type always show up when the compound nucleus is formed in a highly 

excited state since in that case its wave function is strongly altered by 

the Coulomb force.

4. E L E C T R O M A G N E T I C  T R A N S IT IO N S  A N D  ß - D E C A Y

If one takes into account the interaction of a nucleus with an electro

magnetic field then clearly the I-spin is no longer conserved. W e  can, 

however, discuss certain selection rules concerning the change AI = If - I¡ 

of the I-spin in radiative reactions. The interaction of electromagnetic 

radiation with a system of nucleons is given by

Hem=2-kp I  [(з - f  Â <v)2 -PJ2]
proton s ( 2 5 )

- Y  Ц?Ъ0) ' rot  ̂ ) ' X ^ (J) " r0t  ̂^ *
p roton s neutrons

where and /un are the magnetic moments of the proton and neutron, re 

spectively. To first order in e , in the gauge div A  = 0 and after intro

duction of the isospin operators, we obtain

H e

with

« Г . 2 m pС L 
}

ßv + Цп

2

A
e V

2 mpC L>
j=i

i ^ p :. Цп

X  ä й  ) • Pj
3=1

A

^  • rot A  (?J )

(26a)

j= i

X  r p  A  (?j)- p,

)= l
A

—  ^  3 «  • rot A  (rj )

(26b)

j=i

^  is an .isoscalar, while ^  is an isovector; there follows as a simple 

application of the Wigner-Eckart theorem that to the first order in e :

A I  = 0 for

AI = 0, ±1 for âjfv

(27)
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This selection rule can be used for the isospin assignment of an excited 

state. Let us, for example, suppose that we have a reaction of the type

7  + nucleus — ► nucleus* — ► nuclear fragments (28a)

If the target nucleus has I = | ,  the I-spin of the excited state is either 

\ or I, and this can be understood by determining the I-spin of the final 

products since the second step of the reaction conserves I-spin. If the 

target nucleus is self-conjugate then it can be shown [6 ] that the excited 

states reached by the absorption of a slow photon, by m eans of an electric 

dipole transition, have an I-spin differing from that of the target nucleus 

b y ± 1 :

I (nucleus ) - I (nucleus) = ± 1, for self-conjugate nuclei (28b)

If consideration is given to the ß-decay of nuclei, we have, of course, 

again breakdown of charge independence. Here we have both I2 and 1з not 

conserved. The ß-decay interaction is in general of the type

A

DU) T(J) + p  TU) (29)

(30)

H

j= i

where т± = r-y + iT2 and from hermiticity. The first term

describes ß-disintegration while the second describesthe process of 

inverse ß-decay (e.g . e‘ + p -♦ n + v). H® behaves as an isovector so 

that,in general,we have the selection rule

Д1 = 0, ±1

Д13= ±1

For Fermi-type transitions we have the simplification that (and ) 

does not depend on j so that

H ß - D  I . + J I t (31)

Since [ I±, T2] = 0 we get

Д1 = 0

Ferm i transitions (32)

The Ferm i transitions then shift the nucleus along the line which connects 

the m em bers of an I-multiplet. The consideration of ß-decay can then 

provide a tool to limit the assignment of I-spin of a nucleus if the I-spin 

of either the final or the initial state is known.

5. M A S S  S P L IT T IN G S

As we have already pointed out, see in particular Fig. lc, the 

Coulomb interaction among the protons gives rise to a splitting of the 

m asses of the nuclei belonging to a multiplet of isotopic spin. Since the
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electrostatic potential within a nucleus can hardly depend on the nucleon . 

state, the dependence of the Coulomb-energy correction on I3 should be 

almost the sam e for all I-multiplets. To understand the m echanism  of 

the splitting, let us consider the Hamiltonian H  = К  + Vc + VN , sum  of 

the kinetic energy, of all Coulomb and of all nuclear interactions. К  and 

Vc are given by (17b) and (17c). Vjj is, of course, assum ed to be an 

isoscalar. H  is then in general the sum  of a term Hj which is a scalar 

for rotations in the isospin space, a term H v which behaves like an iso

vector and a term Ht which is the 33-component of a traceless isotensor.

In particular, H v and Ht have the form:

H „  .  < „ „  -  т . )  „ 4  *  £  i "  Д “ ’ • Ï  Г  <3 3 >

P j=l k<j k)

ft., (m n - mp) V  (j) (j) _ e у  

** 4 m n m p L  3 Л 4 L

Tr e 2 V  T

1 '  4 L
k < i

The vector term H v is the most important term  of the interaction. It is 

responsible for the tilt in the energy lines connecting the m em bers of an

I-multiplet since its contribution is proportional to I3. This can be seen 

by writing the matrix elements of H  in the basis of the eigenstates ф̂ 3 of 

H s , I 2 and I3:

(ФÍ3 . H  ф1̂ )  = 6ip E  (I) + (ф̂  , H v ф ^ ) + ( ^ ,  H t^ Is) (34)

where E s (I) is the unperturbed energy. W e  have kept the eigenvalue of I3 
fixed since this remains a good quantum number. Both H v and H t are 

non-diagonal since they do not commute with T2. It is, however, easy to 

see that in the process of diagonalization we obtain contributions at least 

of the order e4 or (m p - m ,,)2 from the off-diagonal elements, so that in 

first approximation we can disregard them. Fro m  the Wigner-Eckart 

theorem we then obtain

Ц 1* , H * | * )  = E s (I) + E , (I)-I3 + E t(I)[l2 -i 1 (1 + 1 )]  " (35)

As anticipated the dependence of the energy corrections on I3 is the same 

for all I, in the first approximation. W e  see that in the first approxi

mation, the m asses of an I-multiplet lie on the parabola (35). Since any 

set of three or fewer points m ay always be joined by a parabola, the 

relation (35) has no relevance for I S 1. However, for I > 1 it can be 

used to predict the m asses of the m em bers of the I-multiplet if, at least, 

three of them are known. One can apply these reasonings, for example, 

to the nuclear quadruplets such as -̂TN, 170 * ,  1,?F * ,  1,?Ne and 13B , 13C *,

13N * , 130 .  However, multiplets with I S 3 /2  either occur at high energy 

where there are many levels, or contain very unstable nuclei so that the 

identification of their m em bers becomes rather difficult.
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6 . F IN IT E  G R O U P S  A N D  C H A R G E  I N D E P E N D E N C E

Equations (10) and (11) are the result of the hypothesis of charge 

independence once we have assumed the formalism of angular m omentum  

or, whichis just the sam e, of the continuous group SU(2) for the description 

of the isotopic spin. W e  would, however, like to stress that charge inde

pendence does not necessarily imply the use of a continuous group of trans

formations. Finite groups m ay in fact be taken into consideration. In 

particular, one can proceed as follows [7].

For the continuous group, using the expression (7) for I3, we see that 

a finite rotation through an angle <j> around the 3-axis is implemented by 

the operator

R 3 (Ф) - eief£ " z) (36a)

For the finite groups, one chooses the axis of largest symmetry to be 

the 3-axis. If this is an n-fold axis one then requires the validity of 

Eq . (36a) for all these rotations:

2тг
R 3 ф  = e 11 (36b)

Eq . (36b) is the generalization of Eq. (7), and of course defines А /  2 - Z 

only modulo n. One next considers, as in the case of the continuous 

group SU(2), an Í -dimensional irreducible representation of the considered 

finite group. It will accommodate a multiplet of Í objects each one of 

them belonging to an eigenvalue of (36b). The invariance of the H am il

tonian H  under this rotation implies, for example, that in any reaction the 

product of the eigenvalues of R 3 (2тг/п) for initial and final states must be 

equal:

- Zj^ = const [m odn] (37)

a ll  fragm en ts

This is the generalization of the I3 conservation law for SU(2). The redu

cible representations furnished by the initial and final states must contain 

a com m on irreducible representation of the finite group: this is the 

analogue of conservation of total isotopic spin I. On the other hand, the 

fact that the m em b ers  of a multiplet have the sam e energy, spin and parity, 

implies that H  commutes with all the elements of the finite group, i. e. 

also with the finite rotations defined by the given group around any 

other axis.

Consideration has been given by Case, Karplus and Yang to the tetra

hedral, octahedral and icosahedral groups. While the tetrahedral group 

has representations such that the possible assignment of isobar nuclei to 

a multiplet are again those implied by SU(2), for the other two finite groups 

we have some irreducible representations which can accomodate nuclei 

whose charges differ by two units. Up to now the existing experimental 

information excludes the existence of such multiplets, and we can there

fore safely rely on the formalism  ôf the continuous group SU(2) in order 

to describe the isospin properties of nuclei.
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7. T H E  IS O T O P IC  S P IN  IN H E A V Y  N U C L E I

The fact that H v and H t are rather small when the neutron-proton 

m ass  difference and the Coulomb force can be disregarded, makes the 

isotopic spin a useful quantum number for the classification of the levels 

of light nuclei. Since for heavy nuclei the contribution of electrostatic 

forces become important, the considerations based on the isotopic spin 

concept should become less accurate with increasing proton number Z.

Lane and Soper [8] have however argued on theoretical grounds that, at 

least for the ground state of heavy nuclei, the isospin is still a good 

quantum number and that, surprisingly, its "purity" even increases with 

m ass  num ber A  (for nuclei near the stability line). The reason why this 

is so is rather trivial. It is true that in the part of the nucleus which 

contains an equal num ber of neutrons and protons (core) there is some 

mixing of states of different I. However the neutrons outside the core, 

being neutral particles, build up pure eigenstates of I. Since as A  increases 

there is a m ore rapid increase of the neutron excess for nuclei in nature, 

i. e. near the stability line, the isospin impurity of the ground state corres

pondingly decreases. The isospin purity for heavy nuclei is therefore of a 

rather artificial nature arising by virtue of the excess neutrons, irrespec

tive of the existence of possible large isospin asymmetry between neutrons 

and protons in the core. It is not surprising that, as pointed out by Lane 

and Soper, it is not possible to devise any experiments to really test the 

isospin purity as such in heavy nuclei. As a consequence, the isotopic spin, 

even though quite pure, is a useless quantum number in heavy nuclei.
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Abstract

STRU C TU RE IN FO RM A TIO N  FROM  D IRECT NU CLEAR R E A C T IO N S.
1 .  In tro d u ctio n ; 2 .  T h e o ry  o f  d ire c t  r e a ct io n s ; 3 .  C a lc u la t io n  o f  re d u ce d  c r o ss -se c t io n s ; 

4 .  C a lc u la t io n  o f  s p e c t r o s c o p ic  fa c to r s ; 5 . C o m p a r iso n  w ith  e x p e r im e n t .

1. I N T R O D U C T IO N

A  great deal of our knowledge about nuclear structure is derived from 

the study of nuclear reactions. Elastic scattering other than resonant 

scattering tells us mostly about overall or average properties of nuclei 

while reactions probe detailed microscopic features of the nuclear many- 

body system . In particular, direct reactions which affect only a small 

num ber of nuclear degrees of freedom are ideally suited for studying low- 

lying excited states that are characterized by simple elementary exci

tations. Moreover, there often is a very specific connection between a 

given type of level and the direct reaction by which it is strongly excited. 

Thus different kinds of direct reactions usually probe different m odes of 

excitation. For example, an important feature of a reaction is whether 

single-particle contributions enter coherently or incoherently into the 

reaction amplitude. The reaction will then strongly excite collective 

and single-particle m odes, respectively. The former is the case in in

elastic scattering and certain types of two-nucleon transfer reactions, 

while the latter occurs in one-nucleon transfer reactions. In these 

lectures we shall restrict ourselves mainly to one- and two-nucleon 

transfer processes and describe the methods by which structure in

formation is obtained from m easured differential cross-sections.

The theory of direct reactions shows that it is possible in many 

cases to write a differential reaction cross-section as a product of two 

factors,

l r  w

where a(6) describes the shape of the angular distribution as a function of 

scattering angle, while S m easures the absolute magnitude of the cross- 

section. In m any important cases one finds that the shape function is 

rather insensitive to the details of nuclear structure, so that the structure 

information about the initial and final nuclear states is carried by the 

magnitude factor S, called the spectroscopic factor. Usually this in

formation is extracted from absolute differential cross-section measure-

297
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ments by calculating the angular distribution <r(0) in a suitable approxi

mation, such as the distorted-wave Born approximation (D W B A ) ; the 

factor S is then determined by normalization to the experimental data.

The results are to be compared with values calculated from appropriate 

nuclear models.

After a survey of the different kinds of one- and two-nucleon trans

fer processes we describe the D W B A  theory of direct reactions. F ro m  a 

discussion of the approximations and uncertainties involved in this method 

the reliability of the extracted spectroscopic factors will be estimated.

Next we give a brief description of how these factors are calculated in 

various nuclear models. Finally we discuss typical examples from several 

regions of the nuclear periodic table.

For a general background we refer to the reviews by Austern [1], 

Baym an  [2], Glendenning [3] and Satchler [4].

W e  shall confine ourselves to direct reactions of the type A (a ,b )B , 

with two nuclei in the initial state and two nuclei in the final state. In

T A B L E  I. O N E - N U C L E O N  T R A N S F E R  R E A C T IO N S 1"

M ass n um ber 
o f  p a rtic le s  
a and b

stripping p ick u p

neutron proton neutron proton

*
1  and 2 (d .P ) (d .n ) ( P ,d ) * (n ,  d)

2  and 3 ( t .d ) ( 3H e , d )* ( d , t ) * (d ,  3He)

3 and 4 ( a , 3 He) ( a . t ) * ( 3 H e, a ) * (t ,  a )

^ R e a ctio n s  w ith  *  c a n  e x c i t e  states w  ith  isosp in  T  = T  2  -  -4, T 2  + è

T A B L E  II. T W O - N U C L E O N  T R A N S F E R  R E A C T IO N S  a

T ran sferred  
. -, ,.b p a r t ic le

Isospin  
ch a n g e  Д Т

strippin g p ick u p

2 n  o r 2 H e 1 ( t .p )  ( 3 H e, n)T t ( p , t ) T t  (n , 3 He)

d or 2 H 0 . 1 ( t , n ) t  ( 3 H e , p ) 1- ( n , t ) t  (p .  3 H e)f

d 0 (<*. d) (d ,  a )

a t  « t t
R e a ctio n s  w ith  c a n  e x c i t e  states w ith  isosp in  T  = T Z , T z  + 1  in  transfer, th ose  w ith  ca n
e x c i t e  states w ith  isosp in  T  = T Z , T z  + 1 , T z  + 2 , i f  T z  2:1)

^ 2n = d i-n e u tr o n , 2H e = d i -p r o to n , d = tr ip le t  deu teron  ( g . s . ) ,  2H = s in g le t  deu teron



particular we consider transfer reactions in which the particles a and b 

differ by one or two nucleons. If a is heavier than b we speak of stripping, 

the inverse process is called pickup. The various kinds of one- and two- 

nucleon transfer reactions are listed in Tables I and II (Schiffer [5]).

2. T H E O R Y  O F  D IR E C T  R E A C T IO N S

2 .1 . The distorted-wave Born approximation

For a reaction of the type A (a , b)B  we write the total Hamiltonian as

H = H a + K a + « 4 = H ß+ K ß + W 6 (2)

where a = (a, A) and ß = (b, B) specify the initial and final channels, r es 

pectively, and where H a = H a + HA is the internal Hamiltonian, K a the 

kinetic energy operator in channel a, and a the interaction operator 

between a and A . The total wave functions Ф are solutions of the 

Schroedinger equation

Н Ф  = ESt (3)

belonging to the total energy E , while the internal wave functions 

) = <М 5 'а Н А  (£a ) satisfy

Ha*a = ( E - E a)*a (4)

2 2
where E a = (h /2/иа)ка is the relative kinetic energy of (a, A ), k a denotes 

the channel wave number and jua is the reduced m ass in channel a. Thus 

the Q-value of the reaction is given by Q  = E e - E a . The are the internal 

co-ordinates of nuclei A  and a. An exact expression for the reaction 

amplitude is

. l i v r e  i i (+) 4
T aß = < e фв f I > (5)

(+ )
where \ta is that solution of Eq .(3) which behaves asymptotically as an 

incoming free-particle wav« in channel a plus outgoing spherical waves 

in all channels ß. If we separate from the full interaction operator 

an average interaction ("optical potential") which is independent of 

the internal co-ordinates,

V ß ' ? ß )  = u ß ( ? ß ) + V V ? ß )  ( 6 )

we can use the Gell-Mann-Goldberger relation to write
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where xa is  a solution o f the on e-p a rtic le  equation

C ^ a  +  U a ) X a  - -^aXa (8 )

(+)The solutions x with outgoing-w ave boundary conditions d escribe  the 
e lastic  scattering o f  (a, A) by the potential Ua and are ca lled  distorted 
w aves; the solutions x̂ * are the t im e -rev ersed  scattering wave functions, 
X̂ '(k , r) = [x +) (-k , r ) ] * .  The firs t  term  in expression  (7) is  the amplitude 
fo r  e lastic  scattering in channel a, while the second term  is the actual 
reaction  amplitude which we w ill denote by Таь . The differential cro ss  
section  for  the reaction  A(a, b)B  is then given by

d g  -  M a M b . .. k b  V  I t  I2  / q \
dn (2irñ‘¿ )‘¿ ka L  ' ab ' ( '

where £ denotes a sum over final and an average over initial spin 
av

p ro jection s .
A ll o f  our subsequent d iscussion  w ill be based  upon the d istorted- 

wave B orn approxim ation in the "p ost-in teraction " form  (Satchler [4])

*(a ^ a ( S « ) X a ( k a, £  ) (Ю)

in which the reaction  amplitude becom es

T ab = < x V ( k b ,  г в ) ( ^ з ( | 6 ) | и в ( 5 а ,  Г п ) \ ф а £ а ) Х а ( к ^  ? a  )  >  ( 1 1 )

We shall confine ou rse lves to transfer p ro ce sse s , sp ecifica lly  
stripping reactions with a = b + x, B = A + x, where x is  the stripped 
"p a r tic le "  (F ig .l ) .  Then the full interaction in the final state consists 
o f  two parts,

^ e = V bx+V bA (12)

so that

~ ñ = % - U ñ = Vbx+(VbA-XJ bB) (13)

where UbB = Ug is the optical potential that d istorts the waves in the final
state. A  v ital step further is to make the "stripping approxim ation" which
con sists  in the assum ption that the nucleus A rem ains an inert " c o r e "  
w hose configuration does not change during the transfer p rocess , so that 
VbA ~ UbA “ UbB . By this approxim ation it becom es possib le  to separate 
structure e ffects  from  kinem atic e ffe cts . If we w rite фа = ФяФа and 
ф  ̂ = ФЬФВ the transition amplitude becom es

T ab = / / Х /  4  £ } ~<S b '  .? b > < * b  * B  I V bx I V a > * a  <S a >  ? a > <14>
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w here £  is the Jacobian o f  the transform ation from  the channel c o 
ordinates ?„ = r xA, r 8 = ?bx to the relative co -ord inates r a, r b (F ig .2).

We now consider separately one-nucleon  and tw o-nucleon transfer 
reactions in which x is  a single nucleon and a tw o-nucleon system , 
resp ective ly .

a

A

F IG .2 .  C o -o r d in a te s  o f  th e  stripp in g  r e a c t io n  A (a ,b )B  w ith  a  = b + x  and B = A + x

F I G . l .  . D ia g ra m  o f  a stripp in g  re a c t io n

2.2. O ne-nucleon transfer reactions
—> —> —>

Here we denote the channel co -ord inates by r  = rxA and p=  Гьх . To 
evaluate the m atrix elem ent in expression  (14) we firs t  expand the wave 
function o f the residual nucleus В in a com plete set o f states o f the core  
A plus one nucleon,

*b S,C bZB(Ça < ctt' ?)

?)</>JATA (C A )

В zB

J „T „
(15)

n i  j

where the bracket denotes v ecto r  coupling with resp ect to spin and isospin  
and the quantities ( |} ) are s in g le -p a rtic le  coefficien ts  o f fractional 
parentage (c .f .p .) . The wave function Ф o f the captured nucleon we 
separate into sp in -isosp in , orb ita l and radial parts:

m u ,  —̂ о .  m  « t ,
^ j i  ( ^ , r ) = u n4(r)[i Yj (r)(/)i j(ffT)]ji (16)
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Next we make a s im ilar expansion o f the wave function o f the incom ing 
particle  a in states o f particle  b.plus one nucleon. Here we assum e for 
sim plicity  that particle  b and the nucleon are in an S-state o f  relative 
m otion within a. Thus,

m acza
Фа ~ Ф j a t a  (?b * CTT’ P)

i i m At a
= ( V  i| }3 .) ( t b ^ l> t a)ea (p)[*jb tb (çbW4i (aT)]l4ta (17)

where 0a(p) is the radial wave function o f particle a. Further we assum e 
that the interaction is  a sca lar in p, Vbx = V (p). Inserting expressions (15), 
(16), and (17) in Eq.(14) and integrating over the internal co -ord inates 
iA , ? b and a, t y ields

Y < J A M A '  | j B M B > < * m . > s l j m j > < j b m b ' ^ m s l j a m a>

n £ j mmsmj

X ^ V  + I^C Á B ™  (18)

where

kJ

= (2Í + 1) 2 / dr / dp X b  ( k b r b ) u n i ( r ) [ i  Y l < r ) l  ’ V ( P ) e a ( P ) X a  ( k a -  r a ) (19)

with r b = p + (A /B )r  and r a = r + (b /a)p ,

s L j - ( A  + i r  (JA, n ij |}JB)(TA, !| }T B)

and

c T= < T ATzA, K | T BTzB>

(20)

(21)

The fa ctor  [a(A + l) ]  a r ises  from  antisym m etrization o f the target (A) 
and p ro ject ile  (a) wave functions. Further, the pro jectile  m ass number 
has been restricted  to a s 4, so that (jb, 11} ja)(t b, 1 1} ta)< tbtzb, i t z|tatza> =

= ± 1 / / 2 ‘ , ,2A fter form ing | T ab | and carrying out the sum s over projection
quantum num bers we find that the differential cross-section  is  p ro 
portional to

I II
£ jm  n

Ь m  

S n i j  B n i
( 2 2 )
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i.e .,  incoherent with resp ect to the orb ita l and spin quantum num bers, but 
coherent with resp ect to the principal quantum number o f the captured 
nucleon. However, it is usually assum ed that only a single value o f n 
contributes. With this assum ption we drop the index n and find [3]

da
dñ

where

4  2 J B + 1  а  о  V -1 i m i2

a£(6) “ (2nb>¿)2 kJ 2JX+T 4 ° T /  (24)
m

In this form  the d ifferential c ro ss -s e c t io n , for a given orb ita l angular 
momentum transfer ( ,  is  factored  into a shape function al (9), determ ined 
by the kinem atic amplitude B™ , and a sp ectroscop ic  factor

S,= Y  S,. <«>

proportional to the square o f the s in g le -p artic le  c .f .p . F or  the inverse 
pickup reaction  B(b, a)A the only change in (24) is to rep lace the factor

kb 2Jb+3_ by Î£a_2j a +_1 (26)
ka 2Ja +1 y kb 2jb + l  . < >

2.3. Tw o-nucleon  transfer reactions

In this case the internal co -ord inates f x o f the tran sferred  system  
com prise  the spin ay , 02 , isospin  Ti,T2, and the relative co -ord inates 
x = r ¡  -  r 2 o f the two nucleons. The channel co -ord inates we again denote 
by p and r = i ( r i  + ? 2). We follow  close ly  the method developed by 
Glendenning [3, 6]. F irs t the wave function o f  the residual nucleus В is 
expanded in states o f the co re  A plus two nucleons,

M BT zB -  -»

К  =*JT (€a * ai CT2 Tl T2 X' r ) в в

V  у у -  -  MBTzB
^ L S JT  ^ L S J T  ( CT1 CT2 T1 т 2 X '  Г )^ ]АТ д  (^ а ) Ь в Т в ( 2 7 )

LSJT, y

where 7  stands fo r  the set o f quantum num bers n ecessary  to specify  the 
states o f the tw o-nucleon system  in addition to its orbita l (L ), spin (S), 
isospin  (T) and total angular momentum (J). The wave function.// o f  the 
captured nucleons can be separated into sp in -isosp in  and orb ita l parts,

7MJTz ^  r У -  -  MJTz
^ LSJT  (CTl ° :2 Tl T2 X '  r )  -  ( X > r ) ‘¿S T  T 1 T 2 )jJT (28)
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Now it is desirable to separate the dependence on the relative co-ord inate 
x and the c .m . co -ord inate  r o f  the two nucleons in the orb ita l wave 
function ф1 (x ,r ) .  This is  possib le  if we use h a rm on ic -osc illa tor  wave 
functions. Then , which can be constructed by coupling the sin g le 
particle  orb ita l angular m om enta and j?2 to L, may be written in 
term s o f  coupled functions o f the relative and c .m . co -ord inates o f the 
pair by means o f a Talm i transform ation,

y M  -> r ,M

V"1 M= ¿  <nX,N A ;L|n1i 1, n ^ 2; L > [фпХ (x)<*>N A(r)]L (29)

nÀ., пЛ

H ere, 7  stands for ( n ^ ,  n2P2), ^ and Л are the orbita l angular momenta 
o f  the relative and c .m . m otions, respective ly , while n and N are the 
corresponding principal quantum num bers. The coefficien ts in expression  
(29) are the B rody-M oshinsky brack ets , and we have

m . m\ мл л М д

u n x W i Y x (* ) •  = S i a W 1 Y a  (3 ° )

where u nX and и^л are radial h a rm on ic -osc illa tor  eigenfunctions.
Next we expand the wave function o f the p ro jectile  a in states o f 

particle  b plus two nucleons. Again we assum e that particle b and the 
tw o-nucleon  system  are in an S -state o f  relative m otion, so that

m acza *

(?b » ° 1 ° 2 Т 1 Т 2 Х - P )

-* m atza

= % ( X ,  p )  [ ф ^ ъ ( C f a ) ^ ^  <3 1 )

where is  the orb ita l part o f the p ro jectile  wave function. This also 
im plies that X = 0 and A. = L in Eqs (29) and (30). If we assum e a Gaussian 
form  o f  <pa, we can further separate the dependence on x and p,

'Pa(xJp) = Xa(x)0a(p) (32)

The interaction is  again assum ed to be sp in -isosp in  independent and 
sca la r , Vbx= V(p).

With these ingredients the transition amplitude can be written in the 
form

T.b = I
NLSJT M M g M j

1 4  2 M
X  ^  I j a m a ^  ( 2 L +  1 )  C r ^ S T ^ N L S J T  B NL

I <JAMA; JMj j JBMB> < LM, SMs| JM j) (33)
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where the kinem atic amplitude

B NL ( k b  * k a  )

= (2L + 1 )4* / I

has the sam e form  as Eq.(19) fo r  one-nucleon  transfer. 
The structure factor is  defined as

(35)
У

where

n Iuno(x )Xa(x )x2dx (36)
0

and g = 1 if  (n jÍ! ji) == (П2?212)< otherw ise g = -j2. The statistical factor 
arising  from  antisym m etrization is included in the definition o f ^ lsjt • 
T he 'isosp in -cou p lin g  coefficien t Cx is  defined as in Eq.(21), while bsT 
com es from  the overlap  o f the sp in -isosp in  functions o f particles  a and b 
and is given by

In the case  o f the (a, d) reaction  the amplitude (33) contains another o v e r 
lap fa ctor  from  the overlap  o f the deuteron with the corresponding part 
o f the o -p a r tic le  wave function.

Finally, the d ifferential c ro s s -s e c t io n  fo r  tw o-nucleon stripping 
becom es

fo r  (t, p) o r  (3He, n)

b S T  = i ( 6 s o 6 T i +  6 s i 6 t o )  f o r  ( ^ п )  о г  ( З н е - Р ) (37)

fo r  '(o , d).

da _ A*â b k b 2JB +1 
dtt (2trfi^f k7 2Ja +1 d

(38)
LSJTM  . N
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The c ro s s -s e c t io n  for  pickup is again obtained from  Eq.(38) by the r e - ' 
p lacem ent (26).

Note that there is again incoherence with resp ect to L, S, J, T and M, 
but coh eren ce  with resp ect to the radial quantum number N. However, in 
con trast with the situation fo r  one-nucleon transfer, the coherence in N 
is essentia l because the c .m . motion o f a nucleon pair is described  by 
m ore  than one radial state. It is , th eréfore , in general no longer possib le 
to fa ctorize  the tw o-nucleon transfer c ro ss -s e c t io n  into a structure factor 
and a kinem atic fa ctor.

The use o f harm onic osc illa tor  wave functions^as the disadvantage 
that the function u NL(r) does not have the right asym ptotic behaviour which 
should be that o f the solution o f the free  Schroedinger equation with negative 
energy corresponding to the separation energy e B o f the two nucleons from  
nucleus B . We therefore  have to match the in terior h a rm on ic-osc illa tor  
function to a spherical Hankel function at a matching radius R N,

uNL(r) «  r Le*rf , r S R N

(39)
u N L ( r )  K -i" r  6 Rn

2 2 -i, where к = (4m>,c/ii )e B, with 2m'1' equal to the m ass o f the tran sferred
nucleon pair.

Suppose now that, because o f strong absorption, the contribution to 
the.transfer amplitude BNL from  the nuclear in terior can be neglected.
Since u NL(r) at large  r  ca rr ie s  a sign factor ( - ) N_1 we can w rite

M  N - l  ~ M
Bnl= (- )  Wnl(í, , k)B l (40)

~  M  M
where B l is  the sam e amplitude as B nl but with иыь(г) rep laced  by
-ihV 4  (i-кг). The quantity WNL (v, к ) is  determ ined by the m atching con 
dition at r  = RN. In this case it is possib le to w rite the c ro ss -s e c t io n  (38) 
in the factored  form

. <«>
L

where

^  (CTbST) I ^  (" )NWNLG NLSjT I (42)
SJT N

is  the sp ectroscop ic  fa ctor , and ctl(0) is  a reduced c ro ss -s e c t io n  defined 
by
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3. CALCULATION O F REDUCED CROSS-SECTIONS

In the preceding section  the concept o f  sp ectroscop ic  factor in transfer 
reactions was introduced through the overlap  integral between the wave 
functions o f the final and initial nuclei. In stripping reactions it m easures 
the probability with which the particular configuration o f target nucleus 
plus tran sferred  particles  o ccu rs  in the final state wave function. F or 
one-nucleon  transfer p ro ce sse s , in particular the (d, p) stripping, reaction , 
the sp ectroscop ic  factor was firs t  defined by M acfarlane and French  [7], 
who a lso  explored  in a com prehensive survey the usefu lness o f this 
quantity as a tool in nuclear sp ectroscop y . Since then, the m ajority  o f 
transfer reaction  analyses has aim ed at extracting sp ectroscop ic  factors ' 
as re liab ly  as possib le  from  m easured differential c ro ss  sections by means 
o f a suitable reaction  theory (usually the DWBA), and then com paring the 
resulting values with those calculated from  sp ecific  nuclear m odels. We 
shall now deal with the firs t  problem , the extraction  o f sp ectroscop ic  
fa ctors  from  experim ental data. '

Let us assum e there is  no coherence so that the differential c r o s s -  
section  can be written in the factored  form  (23) o r  (24). Once the value 
o f the orb ita l angular momentum transfer H is  ascertained from  the shape 
o f the angular distribution, the value o f  S £ can be determ ined by n orm ali
zation o f the reduced c ro s s -s e c t io n  ац(в) to the data, usually at the peak 
c ro s s -s e c t io n . This is  possib le  if absolute m easurem ents are available, 
otherw ise only relative sp ectroscop ic  factors can be obtained. The n orm ali
zation method is open to uncertainties from  two sou rces , (i) experim ental 
e r ro rs  in the transfer as w ell as the corresponding e lastic differential 
c ro s s -s e c t io n s , and (ii) approxim ations in the calculation  o f the reduced 
c ro s s -s e c t io n . E xperim ental e r ro r s  are usually considerably sm aller than 
the theoretica l ones, though they may amount to as much as 15%. The 
main uncertainties in determ ining Sf arise  from  approxim ations in ca lcu 
lating the kinem atic amplitude B™ .

F irs t  o f all, how good is  the b a sic  DWBA assum ption (10)? This is  
d ifficu lt to estim ate, except possib ly  by com parison  with extensive coupled- 
channels calcu lations. Such calculations indicate [1 ,4 ] that the DWBA is 
sufficiently accurate above som e tens o f M eV. However, severa l further 
approxim ations have been made to obtain the kinem atic amplitudes in 
the form  (19) o r  (34).
(i) Interference from  com pound-nucleus form ation is neglected . Part 

o f its effect is  taken into account sum m arily through the im aginary 
part o f the optical potentials.

(ii) A ntisym m etrization o f the total wave function [8 ] is  d isregarded 
except fo r  statistica l factors that are incorporated  in the definition 
o f S £.

(iii) By the "stripping approxim ation", which neglects the term  VbA-
in E q.(13), one d isregards excitations o f the co re  A . This is  con 
sidered  justifiable in stripping onto c lo se d - shell nuclei but is  doubtful 
in other cases.

(iv) The interaction Vbx is  usually assum ed central and spin-independent, 
excluding.in particular tensor fo r ce s . One often goes a step further 
and m akes the zero -ra n ge  approxim ation,

D (P )-V (p )6a(P)~ Daó (p) (44)
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which considerably s im plifies the calculation o f  by reducing the
six-d im ensional integral in relation (19) or (34) to the three-dim ensional
form

B?(gb. g a) = (2Ï T Ï j T (45)

The constant D0 is  determ ined by the volum e integral

D0= J d p V (p )fla (p)' (46)

which in the case o f the (d, p) reaction can be calculated from  the 
Schroedinger equation for the internal deuteron wave function. Its 
value depends on the deuteron binding energy and on the form  of 
ва(р), and can vary between 1 .0 -1 .7X  104 M eV 2 fm 3 [4]. F in ite-range 
e ffects w ere firs t studied by Austern et al. [9]. Since then, fin ite- 
range DWBA calculations have been perform ed  in increasing num bers. 
It becam e clear  that finite-range effects reduce the amount o f  stripping 
that o ccu rs  in the nuclear in terior. In a zero -ran ge  calculation this 
can be sim ulated approxim ately by a low er cutoff in the radial integral.

(v) The assum ption that, within particle a, particle  b and the transferred  
system  x are in an S state o f relative m otion n eg lects, for  instance, 
the D -state component o f the deuteron wave function. Johnson [10] 
has shown that the D -state contribution has an appreciable effect on 
the angular distribution o f  (d, p) and (p, d) reactions.

(vi) If particles a a n d /or  b contain m ore than two nucleons there are ad
ditional uncertainties regarding their wave functions. F or th ree- 
nucleon system s, B assel [11] has calculated the norm alization factors 
by which the reduced zero-ran ge c ro ss -s e c t io n s  o f (t, d), (3He, d) and 
their inverse p rocesses  should be m ultiplied to take account o f the 
overlap  between the th ree -p article  and deuteron wave functions. A s 
suming Irving-Gunn wave functions for the fo rm er  and Hulthén wave 
functions fo r  the latter, B assel finds the values given in Table III.

(vii) The distorted waves x a and Хь are calculated as scattering solutions 
o f  the Schroedinger equation (8) fo r  which the optical potentials Ua and 
Ub have to be determ ined by analysis o f the elastic scattering in both 
the initial (a + A) and final (b + B) channels. A m ajor sou rce  o f un
certainty is  the fact that this cannot be done unam biguously. F or 
com posite particles especia lly , severa l different sets o f optical 
potentials generate the sam e scattering [ 12 ], fo r  instance those whose 
w ell depth V0 and radius R are related  by V0R n = const. (2 < n < 3 ). 
B ecause o f strong absorption in the in terior o f the nucleus, e lastic 
scattering is sensitive only to the surface part o f the potential. 
H ow ever, since the radial integrals fo r  transfer are somewhat m ore 
sensitive to the in terior wave functions it is  som etim es possib le  to 
distinguish between different w ell depths by fitting transfer c r o s s -  
sections . It is  found that this se lects  those potentials that satisfy 
R ook1 s cr iterion  [13], Vo sa .5 0  MeV, where a is  the m ass num ber o f
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stripp in g p ick u p

( t ,d ) ( ^ e ,  d) (d ,  t) (d ,  3He)

3 .8 4 2 .5 6

' 5 .0 6 3 .3 3

4 .4 2 2 .9 5

*
For pro to n  transfers th e  upper v a lu e s  are c a lc u la t e d  w ith ou t, th e  lo w e r  w ith  
in c lu s io n  o f  th e  C o u lo m b  in te r a c t io n  b e tw e e n  th e  proton  and th e  d eu teron

the p ro je ct ile . On the other hand, both e lastic and transfer c r o s s -  
sections are rather insensitive to the form  o f the im aginary part o f the 
optica l potentials which makes it difficu lt to distinguish between volum e 
and surface absorption.

(viii)E lastic c ro ss -s e c t io n s  are also rather insensitive to the sp in -orb it 
interaction  except at large angles. M oreover, transfer cro ss -s e c t io n s  
too do not depend much on the sp in -orb it part o f the distorting 
potentials. F or  instance, the shapes o f (d, p) angular distributions are 
m ainly determ ined by i ,  except fo r  the L ee-S ch iffer j-dependence [13] 
which distinguishes the р г/2 c ro ss -se ction  from  that fo r  p3/ 2 by a 
pronounced dip near 0 = 10 0°, whose orig in  is however not yet c lea r . 
Another j-dependence was found in (p, d) reactions [14].

(ix) O ptical potentials are energy-dependent. The m ajor part o f this, at 
least fo r  the rea l potentials, is  due to non -loca lity  o f  the average 
nuclear fie ld . Although the asym ptotic wave functions o f a n on -loca l 
potential m ust be the sam e as fo r  the "equivalent" lo ca l potential
that generates the sam e e lastic  scattering, the n on -loca l wave function 
in the nuclear in terior is  sm a ller  by typically. 15% (P erey  effect [15]). 
T h ere fore , the effect o f n on -loca lity , in the so -ca lle d  lo ca l energy 
approxim ation [16], is  to reduce the contribution to the transition 
m atrix elem ents from  the nuclear in terior [17, 18]. This can again 
be sim ulated approxim ately by a low er cutoff in the radial integrals [19].

(x) If the nuclei A and В are deform ed, one can use in the initial and final 
channels generalized  optica l potentials which include the co llective  
co -ord in a tes . Then the incident and outgoing particles can excite low - 
lying rotational levels  in the target and residual nuclei. Lukyanov 
and Petkov [20] have shown that this leads to m ulti-step  contributions 
to the stripping amplitude. However one may doubt whether calculating 
m ulti-step  p ro ce sse s  in fir s t -o r d e r  DWBA is  a consistent procedure.

(xi) The functions u4(r) in (19) a n d u m fr) in (34) w ere introduced as the 
radia l wave functions o f the captured partic les . M ore generally,
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these functions are to be defined by the overlap  integral between the 
in itial and final nuclear states, e .g . fo r  one-nucleon  transfer by

A MbTzb* ,
J d^ ] BTB (?а ' стт' г ) ^ ата (?а)

\

У (̂ д* j  ̂JB )(^A ' 2" TB ) JaM Aj I
n £ j

*mtz
* < t a t z a >  ^ z l T BTzB>^niJi («"• r) (47)

The norm alized  radial part of<//j(ar, r ), v iz .u ,¡(r), defines the "form  
fa c to r "  o f  the transfer reaction . It is an assumption that this form ' 
factor is  equal to the radial part o f  a s in g le -p artic le  shell m odel 
eigenstate in a central potential. This assum ption has been made 
in m ost DWBA calculations so fa r . Then u £(r) is  calculated as an 
eigenfunction o f a finite w ell, usually o f  W oods-Saxon form . How
ever, this procedure leads to an ambiguity with regard  to the eigen - 
energy corresponding to this eigenfunction. If one chooses as the 
eigenenergy the observed  separation energy ("separation  energy 
p rescr ip tion " [2 1 ]), the sp ectroscop ic  factors turn out too large 
in som e ca ses . B etter agreem ent with experim ent is then obtained 
by adjusting the w ell depth such that the eigenenergy is equal 
to the binding energy o f the sh e ll-m od el s in g le -particle  level 
mCj ("effective-binding-energy p rescrip tion " [14]). H owever, in this 
case  u,j(r) has not the co r re c t  asym ptotic tail. In any case the 
sp ectroscop ic  fa ctors  depend quite sensitively  on the eigenenergy 
and thus on the shape of the form  factor, so that a better procedure 
fo r  its calculation has to be found.

(xii) A ctually, as Austern [22] has em phasized, the assum ption that u£(r) 
is  a radia l s in g le -p a rtic le  wave function is not m ore than a guess at 
the shape o f the form  factor which is  co rre c t  only for  stripping by a 
c lo s e d -s h e l l  target nucleus. In general it is  n ecessary  to determ ine 
the form  factor by calculating the overlap  <(Фа, фв У from  nuclear - 
structure th eories . B erggren  [23] and Pinkston and Satchler [24] 
have derived an exact equation satisfied  by the form  factor . R ecently, 
Prakash and Austern [25] developed a general method o f  solving the 
form  factor equation o f Pinkston and Satchler. The resu lts o f  their 
"structu re -str ip p in g " calculations show that the sp ectroscop ic  factors 
obtained from  the usual separation energy prescrip tion  can be in e rro r  
by as much as 50%.

In view  o f the many approxim ations and uncertainties one may ask 
whether re liab le  S pectroscop ic factors can be extracted at a ll by means 
Of the DWBA m ethod. This question was investigated by Lee et al.[ 26] 
who tested  the reliab ility  o f the DWBA in the 40Ca(d, p) 41Ca reaction , 
and by Smith [27] in the 90Z r(d , p )91reaction . Lee et a l. assum ed that 
40 Ca is  a good c lo sed -sh a ll nucleus so that the final states in 41Ca are 
pure s in g le -p a rtic le  states fo r  which the sp ectroscop ic  fa ctors  are known
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(Sí - 1 ) .  The param eters fo r  e lastic scattering d+ 40Ca at the sam e energies 
(7-12 MeV) w ere known, those fo r  p+ 41Ca w ere extrapolated. The ca lcu 
lations included sp in -orb it coupling- in the distorting potentials and a 
finite range o f the n -p  in teraction . The neutron was assum ed to be cap 
tured into a shell m odel orb it which is  an eigenstate o f a W oods-Saxon 
w ell. C om parison o f the fin ite-rangé resu lts with those fo r  zero range 
plus a low er cutoff showed that the' latter procedure does not lead to a 
consistent set o f  sp ectroscop ic  fa ctors . F o r  the fin ite-range calculation, 
a detailed study o f  the variations in the potential param eters led to the 
conclusion  that absolute sp ectroscop ic  fa ctors  can be determ ined with an 
uncertainty o f not m ore  than 20%. R elative sp ectroscop ic  fa ctors  w ere 
found to be le s s  subject-to the uncertainties in the potentials and should 
be m ore  accurate than the absolute values. S m ith 's  study [27] o f the 
am biguities in the e lastic  scattering param eters led  to a le s s  optim istic 
estim ate. He found that absolute sp ectroscop ic  factors may vary  by m ore 
than a factor 2 over the'range o f acceptable e lastic  scattering param eters. 
How ever, relative values fo r  transitions with different Í (Sj /S j ) should 
be about tw ice as dependable than the absolute ones.

Many o f the uncertainties in the nuclear param eters are absent, o r  
at least greatly reduced, in transfer reactions at low en erg ies, below  the 
Coulomb b a rr ie r , where the relative m otion depends a lm ost entirely upon 
the Coulomb interaction . The determ ination o f reliab le  sp ectroscop ic  
fa ctors  by such "sub-C oulom b stripping" experim ents has been advocated 
by Goldfarb [28], especia lly  fo r  heavier p ro ject iles  [2 9 ,3 0 ].' F or  the (d, p) 
reaction  this expectation is  borne out for instance by the resu lts o f the 
H eidelberg group (reported  in the sem inar lecture's by Dost [31] and 
von Brentano [32] in these P roceedings).

In the case o f transfer p ro ce sse s  between strongly absorbed  com posite 
particles  it is  possib le  to make further approxim ations which greatly 
sim plify  the DWBA expression  fo r  the reduced c r o s s -s e c t io n s . The so - 
ca lled  diffraction  m odels o f transfer reactions [33, 34] exploit the insensi
tivity, due to strong absorption, o f the reaction  amplitude to the nuclear 
in ter ior . A m ore  general form ulation can be based  on the loca lization  o f 
the radial transfer integrals in orb ita l angular momentum space. This 
leads to very  sim ple closed  expression s fo r  the reduced c ro ss -s e c t io n s  
which display- the typical k inem atic features com m on to all transfer angular 
distributions [35 -40 ]. Although this form alism  is  an approxim ation to the 
DWBA theory, it is , at least, free  o f the am biguities in the e lastic scattering 
param eters, because it d escrib es  thé distortion  d irectly  in term s o f 
param eterized  elastic  scattering phase shifts and so avoids the interm ediary 
step o f constructing optical potentials.

. An alternative method o f  determ ining sp ectroscop ic  fa ctors  is  based  on 
their relation  to the reduced widths Упиу for-capture o f a nucleon into the- :
state n i j ,  in units o f the "s in g le -p a rtic le  width" (s, p .),

where

S (48)

2
(49)
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and ас is  the channel radius as defined in R -m a trix  theory. The reduced 
width fo r  neutron capture can be obtained from  an analysis o f isobaric  
analogue resonances in (p, p) scattering. This method has been advocated 
by R obson [41, 42] who points out its advantages com pared with the deter
mination o f SnÉj from  (d, p) m easurem ents.

M ore detailed structure inform ation can be derived from  experim ents 
that go beyond the m easurem ent o f differential c ro s s -s e c t io n s , such as 
polarization  and angular corre la tion  between the outgoing particle  and de
excitation y -ra y s  [3, 43]. A d iscussion  o f these im portant sou rces  o f 
sp ectroscop ic  in form ation is  outside the scope o f these le ctu res . A lso , 
the sign ificance fo r  nuclear structure o f reactions other than those o f the 
type A (a ,b )B , such as the im portant q u a si-free  proton scattering (p, 2p) [44], 
can only be m entioned here.

4. CALCULATION OF SPECTROSCOPIC FACTORS

D irect reactions can be roughly defined as p ro ce sse s  in which only 
a few o f  the total num ber o f nucleons take an active part. A ccordingly  
it is  assum ed that the m ajority  o f nucleons rem ain passive during the 
interaction, i .e .,  occupy the sam e configuration in the in itial and final 
nucleus. In other w ords, the passive nucleons form  an inert core  to 
which p articles  can be added in a stripping p ro ce ss , o r  from  which 
p articles  can be rem oved  in a pickup reaction . The sp ectroscop ic  factor 
is a m easure o f the validity o f this picture in actual transfer reactions.
Its values c lea r ly  depend upon the structure of the " c o r e "  and upon the 
nature of the configurations in which the transferred  particles are added 
o r  rem oved. T herefore , theoretical calculations o f sp ectroscop ic  factors 
can be based on each o f the d iff erent m odels by which nuclear structure 
is  d e scr ib e d .

4 .1 . Shell m odel

Let us firs t  con sider one-nucleon  tran sfer reactions. In the sim plest 
sh e ll-m od el calculations one assum es that the passive nucleons occupy a 
pure sh e ll-m od el configuration to which a single nucleon is added in one 
o f the empty s in g le -p a rtic le  orb ita ls (stripping), o r  from  which a single 
nucleon is rem oved out o f one o f the occupied s in g le -p artic le  orbita ls 
(pickup). The latter p rocess  is equivalent to the additio.n o f a single hole 
in one o f the occupied s in g le -p artic le  states. In this picture the sp ectro 
scop ic  factor fo r  stripping is proportional to the squared coefficien t of 
fractional parentage ( c . f .  p .)  between the initial and final configurations.
F o r  the present;let us d isregard  isospin . Then we have from  E q.(20)

Snij= (N + l) (J A, nij|}JB)2 (50)

where N + l is the total num ber of nucleons in the system  which are  of 
the sam e type as the transferred  particle (neutrons, say). This factor 
a iis e s  from  the antisym m etrization o f the transferred  particle  with 
respect to the N equivalent ones in the target nucleus. It is easily  shown 
(see , fo r  exam ple, R ef. [2 ]) that this antisym m etrization *n effect extends
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only ov er  equivalent nucleons in unfilled sh ells . Thus, fo r  a nucleus with 
severa l closed  and severa l open shells o f neutrons (say), N + l is the total 
num ber o f neutrons in open shells only. This property is autom atically 
taken care  o f if we express the c . f .p .  in occupation num ber representation 
[45, 46] .

Suppose the initial and final nuclei are in shell-m odel configurations 
j NoJA and j N +10JB, respectively . Then we have the relation  (see lectures 
by R im ini [47] )

.  .N+1 , i Î  i i ,N

N i N + l ( - ) N + 1  ß J B N n n i j l N  a J A ^
(j aJA, n ij } j ßJB)= - iJ = = r  ------------- , -------------  (51)

n/N+1  sl2JB+ 1

where a and ß are additional quantum num bers (such as sen iority , etc . ) 
that may be n ecessary  fo r  com plete specification  o f the initial and final 
states, respective ly , and n̂ nij is a creation  operator o f a neutron in 
the s in g le -p artic le  state nüj. Thus, the sp ectroscop ic  fa ctor  becom es

(S)MB t(a) t MB 2
Snij = Í < olfPu (N + l ) ip lA (N)nnlj], |0>|

N N +1 2 <  3 N+3ß J B l | n n i j  H Í ^ J a ) 2
(N + l) ( j  aJA, nij|} j ßJB) =-----------— — ----------------- (52)

where the creation  (field) op era tors  <p are defined by

''Jb
B(l,2 ... N+ 1) = jp j^ Mß(N+ 1) I 0>

<¿(“ )% (1 ,2...N ) ее ^ (“ >Ma(N)|0>  
A  JA

(53)

and |o  ̂ is the particle vacuum .
In the shell m odel, th erefore , the calculation o f sp ectroscop ic  factors 

reduces essentia lly  a computation of c . f .p .  Bayman and Lande [48] have 
calculated extensive tables o f identical ferm ion  (and boson) c . f .p .  , using 
an elegant grou p -th eoretica l m ethod. This method is based on the fact 
that the set o f totally antisym m etric functions 0 j^ Mß( j N+1, 1 . . .  N + l)
ca rr ie s  the irredu cib le  representation Д1 , 1 , . . . 1 ], o f  the specia l unitary

N + l
group SU(2j +1). Since the set o f functions [^ jÂ (jN, 1. • • N)^j(j, N + 1)]^B 
ca rr ie s  the product representation

[ 1. 1 ...1 ] ® [ 1 ] = [ 1, 1 ...1 ] © [ 2, 1 ...1 ]
»_________ »._________ -J \________ J

N N + l N
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the problem  consists in reducing this product representation. This is 
done by calculating the m atrix of the C asim ir operator o f SU(2j +1) in 
the basis • and diagonalizing it. The c . f .  p. are the eigenvectors
which correspond to the eigenvalues associated  with the representation

which ca rry  irreducib le  representations o f the sym plectic group
Sp(2j +1), the C asim ir operators of SU(2j +1) and Sp(2j +1) are diagonalized
sim ultaneously.

C onsider the case of the low est sen iority  states, i . e . ,  those in 
which all even particles are coupled to zero . Then the c . f .  p. have the 
follow ing sim ple explicit form

In general, fo r  wave functions o f m ixed configurations the calculation 
o f sp ectroscop ic  factors is  ca rried  out by means o f Racah recoupling 
techniques. (As an exam ple, see the calculations o f Cohen and Kurath [70] 
fo r  the lp  shell to be d iscussed  in section  5.)

4 .2. Sum rules

The sp ectroscop ic  factor for stripping N-» N + l is  equal to that for 
the pickup N + l ■* N,

Since here ßJB is the target state and a Ja the final state, this means that 
the sum o f the pickup sp ectroscop ic  factors over a ll final states (n ij) 
equals the number o f  neutrons in the target. This is the sim plest example

^ Actually, since the c . f .  p. connect eigenstates of sen iority,

, for  even N
(54)

(j JA = j< j b “ °) " 1> fo r  odd N
N , N + l

hence

fo r  even N

S j (N > N + l)=  - (55)

N + l ,  fo r  odd N

S nlj(N+_l -  N) = ( N + 1 ) ( A ja , n ij |} jN+1ßJB)2 (56)

F rom  the orthonorm ality property o f the c .f.p . [47],

(57)
aJA

we find

(58)
aJA



IAEA-SMR 6/33, 34, 36, 37 315

o f sum ru les satisfied  by the sp ectroscop ic  fa ctors  o f  one-nucleon  
transfer reactions [7], which provide very  usefu l checks in analyses o f 
experim ental data. We now derive m ore  general sum rules using the 
occupation num ber representation o f the sp ectroscop ic  fa ctors  [2]. F irs t 
consider stripping A (a, a - 1)A+ 1. Then

(ß)MA + 1 t(a) t MA+1 о
y ïJA ^ JAil)= K °lf IA + 1 [í% n^ ]jA + J 0>l (59)

Now let us calculate the average num ber of (n ij) neutron holes in the 
target A . This quantity is  the expectation value o f the neutron hole 
number operator

X <6o>
m  = - j

Т(а)МА| 4
in the target state <p |0 /

JA

( а ) М д г - 1 f  t ( a ) M A

n A(j ) = < 0 1 (PjA ¿ n mn m^JA l° >  (61)
m

(where we used a sim plified  notation for  the.particle op era tors). Inserting

(ß)MA+i
|и / Ч и 1Г

A  + l

Ы д  +  1м А +1

V  П в >Ма +1| -  \  /  .  Ii = ) <p i о X  о I ®
—1 J a + i  m + i

tbetween nm and nm gives

-  V  / n l  1Хв)МА+1. n ч /  .  i V M a  t  Ka)MA , NnA0  )=  I  < 0 \ f]A n mfjA+i |0 > < 0 |% + i nm %  |0 >

WA +1 M A +I m

s— i (ß)MA + 1  t  T M A  2
= ) K ö l f .  П V, I 0 >1

' ' JA + 1  m  .JA  1
(62)

Мл , M A , m A + l  A + l

Now we use

t m  t ( a ) M A  V 1 X I 4  ,  Î  ' f ( a )  ,M \  ,
W l *  A = ^ < 3m , J AM A|j.+1 M -+1> [n n i A  (63)

JA+1
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and get

(64)

mMA+1

or

(6.5)

In particu lar, fo r  an even-even  target with JA = 0, JA+1 = j we have

This m eans: the num ber o f (n ij) neutron holes in the target can be deter
m ined by m easuring the stripping to a ll final states with the sam e n ij 
( i .e ., in p ractice , a ll final states with the sam e j and parity гг = ( - ) £).

Next we con sider pickup from  the sam e target, A(a, a + l ) A - l .  Then 
we have already seen that

Now let us calculate the average number o f  (n ij) neutron particles  in the 
target A . This is  the expectation value o f  the particle  num ber operator

(66)

®nij (®Ja I'Ja -i ) ®n£j "J a )

(67)
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Using

t  t(y)MA ! 'Г~1 I t  t (y )  M i
nn£j, m̂ JA_̂  = < j m - JA -lMA-l|JAM A > b nij|f>lA_l ]^  (69)

we find

ñ A ( j )  = Y S n ij  ( « J A - 7 J A - l )  ( 7 0 )

Wa -1

Again, fo r  an even-even  target with JA = 0, JA_X = j we have

ñA(j)=  E  s n í j ( « 0 -7 j )  (71)
У

T h erefore , the num ber o f (n ij) particles in the target can be determ ined 
by m easuring the pickup leading to all final states with the sam e (n ij). 
C learly  we must have

üA( j ) + ñA( j '1) = 2j + l (72)

Application o f these sum ru les in actual experim ents requ ires  that 
a ll states o f given (nS j) are excited  and identified. This is  often difficult
(i) because the strength is  usually spread over a num ber o f  levels in a 
certain  energy range and (ii) because transfer angular distributions 
identify m ainly the t -value and are rather insensitive to the j-va lu e  except 
in specia l cases [13 ,14 ].

M ore detailed sum rules can be derived [49] when the isospin  o f the 
target and final nucleus is taken into account. C onsider a neutron pickup 
reaction  on a target with isospin  T A = TZlA . This reaction  can excite 
states in the final nucleus with TA. X = T A - § =T< , but a lso  states with 
T A. 1 = TA + j  = T .,. Let us now, in Eq.(71), distinguish between final states 
with T< and T>,

па(3) ” ^  Snij(JAT A~ JA-iT A_i)

JA - 1 T A -1

= E  Snij(JATA ^ J AT< ) + I  Snij(JATA ^ JA-1T> ) ^  + ̂  ( ?3)

Now fo r  neutron pickup is  proportional to the corresponding quantity 
fo r  proton pickup, with a proportionality fa ctor  (2TA + 1)_1, fo r  instance.

5^j(P. d) 2T^ + 1 (n, d) (74)
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Since in the proton pickup reaction only T> states can be excited, we must 
have 5^^(n, d) = p A(j), where pA(j) is the average number o f protons in the 
target. Thus,

^ (p' d )= W T i P ^  ‘ <75)A

and we have the sum ru les

ñA(3) = SVSV PA(j).= (2TA+l) Ĵ
. (76)

E(j)=5'j+2(TA+1)^

where aA(j) is  the average number o f nucleons in the state (n ij).
T h ere fore , by m easuring the neutron pickup strengths to final states 

with T< and T> separately, one can obtain the average num ber o f neutrons 
and o f protons in the target. S im ilarly, by m easuring the proton stripping 
strengths to final states with T< and T> separately, one can determ ine 
both the average num ber o f proton holes and o f neutron holes in the target.

4 .3. Pairing fo rce  m odel

We now turn to nuclei in the so -ca lle d  vibrational region . These are 
spherica l nuclei with severa l nucleons outside closed  sh e lls . Shell-m odel 
calcu lations for such nuclei would be very  la rge . However, a much 
s im p ler description  can be given when the short-range part o f the residual 
interaction  between nucleons is  approxim ated by the so -ca lle d  pairing 
fo rce

ТГТ  ̂ V tm̂ tm m’ „m"
pair =-° ¿  aj aj aj- aj- (77)

jj‘rn > 0,m'>0

where G is  the strength o f the pairing interaction and àj™, a™ are 
sph erica l creation  and destruction operators (see [50]). This interaction 
d escrib es  p erfect iso trop ic  scattering o f two paired particles from  any 
state with (m 1, -m 1 ) to any other state with (m, -m ). It therefore produces
a m ixing o f  sh e ll-m od el configurations such that a given particle  may be
found in m ore  than one shell; in other w ords, shells may be only partially 
occup ied .

The ground state o f the Hamiltonian (77) for an even-even  nucleus is  
given by the BCS (B a rdeen -C ooper-S ch rie ffer) wave function
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where vj and Uj are the probability amplitudes fo r  occupation and non
occupation o f the leve l j by a pair, resp ective ly . Since vj is  the probability 
o f finding a zero -cou p led  j-p a ir  in the ground state we have the condition

u - 4  = l (79)

The elem entary excitations o f the system  are ca lled  BCS qu asiparticles. 
T heir creation  and destruction operators, o']™ and a™ are related  to the 
particle  operators by the B ogoliubov-V alatin  transform ation

t  m t  m „ ш
a : = uja j - vi ai

(80)
m tm  , ~m

“ J = V i a J + U i a j

Since the state (BCS^ is not an eigenstate o f the particle-num ber 
operator IN, it does not correspon d  to a definite num ber o f  p a rtic les . 
H ow ever, we requ ire that the éxpectation value o f the num ber operator 
in I BCS X  which is  given by 2 Ç v ? , equals the actual particle  number

< B C S | 1 N | b C S >  =  2  ) v ^ = N  ( 8 1 )

The probability amplitudes Uj and v¡ are determ ined by m inim izing 
the Hamiltonian

И  - XIN (82)

where X is  a Lagrange m ultip lier. The resu lt is

(83)Ej

where ej is  the s in g le -p a rtic le  energy, Ej the sin g le-qu asipartic le  
energy

E j = [ (е г Х)2+Д2Г  (84)

X the chem ica l potential, and Д is  on e-h alf the energy gap,

j

In a m ore  general treatm ent one starts from  the full nuclear 
Hamiltonian, rather than assum ing the schem atic pairing fo rce  (77), and 
transform s directly  to quasiparticles by m eans o f the B ogoliubov trans
form ation (80). The coefficien ts  u, and Vj are then again determ ined by
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B CS-type equations, but instead of the constant strength param eter G 
they contain the m atrix elem ents o f the full residual interaction and the 
gap param eter Aj becom es j-dependent.

A fter this sketchy introduction (for m ore  details see the papers by 
Arvieu [51] and Pal [52] in these Proceedings) let us return to the 
sp ectroscop ic  fa ctors . We are still considering one-nucleon  transfer.
Now we d escribe  the ground state o f an even-even  vibrational nucleus 
approxim ately by |b CS)> and that o f a neighbouring odd nucleus by a 
one-quasiparticle  state at™ |BCSX Since these states are s im ilar  to 
those o f the sen iority  schem e we may expect a sim ple generalization o f 
the resu lt (55) fo r  the sp ectroscop ic  factors o f  stripping and pickup from  
the low est seniority  states, which we write in the form

0  ^  ,  ñ A Ü )  M f 1 )
. Sj (0 -*j)= 1 - —  = -  (stripping)

(86)

S j(O -j) = ñA(j) . (pickup)

In the BCS approach the average num ber o f  neutrons in the (even) target 
is  ñA(j) = (2j + l)v j , and the average number o f neutron holes is ñA(j ) =
= (2j + 1) - nA(j) = (2j + l)u? . We therefore expect [53] that

2Sj (0 -* j)= u j (stripping)

2 (87 )  S j(O - j ) -  (2 j+ l)v j (pickup)

Let us now con firm  this resu lt by a m ore  detailed calculation [54, 2]. 
We denote the sp ectroscop ic  factors fo r  stripping and pickup by a super
scrip t (+1) and (-1 ), resp ective ly . F rom  Eq.(59) we have for stripping 
a neutron onto an even-even  target

( + í  i , i m , t  t m  , .
Sj (0 - j ) =  | < 0 |*, [n jf t l j  |0 >| (88)

where now

fl °  I 0 > =  | B C S > ,  < 0 I ¡P ,m = < B C S | a ”

and

[njPo] ™ I 0 > = n ]m |bcs >

Thus

SjT1)( ° - j ) =  |<BCS|ajmn]m|BCS> 12 (89)
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Here we insert the expression  fo r  n {m in term s o f quasiparticle operators, 
obtained by inverting Eq.(80),

< В CS I ff™ n"/” |В CS > = < В CS I a ”  (u p  j m + Vj a ”  ) | В CS >

= Uj<BCS|a“  a ¡ m |BCS > = U j ^ B C S  |а[Ш BCS > = Uj (90)

since S'”  |BCS У= 0 by definition. Hence

^ +1)(0 -3 )= u J  (91)

S im ilarly , for  pickup o f  a neutron from  an even-even target (Eq.(67))

S(í' 1)(0->j) = |<0|#,°tn .V ]t ] ¡ | 0 > |2 (92)

where

and

< o I Pq = < B e s  I , jPjm |o > = a ™  IВ  CS >

ц ^ ] о0| ° > = [ п У ] ;  | b cs>

Thus

Sj_3>( 0 -  j) = K B C S lln jff jlo  |BCS> I (93)

Now,

< BCS I [п*-о  ̂ ] q |BCS> = ^  < jm , j-m  l o o X B C S l n ” « ? "  |b CS>
m

__ | j - m

= I(2jÍT)i<BCS|(U¡ ^ m+V̂  ^ r i BCS>
m

-— , j - m'IraWv<<BCsî “','”|BCS>
m

‘  (2jT T )i <B C S I K í m ¡B C S> - V ^ » ‘
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Hence

s f >( 0 - j )  = (2j + l)Vj (94)

This m eans: s tripping onto an even-even target nucleus m easures the 
" em ptin ess" щ  o f the lev e l j , while pickup from  an even-even  target 
m easures the "fu lln ess" vf o f the level, with resp ect to zero -cou p led  
p a irs . Again the sum rule (72) is valid,

ñ A(j) + nA( j '1) = (2j + l)v? + (2 j + l)u 2 =2j + l (95)

The description  o f the ground states o f  even and odd vibrational nuclei 
by |BCS> and ffjm|BCSX i.e .,  by zero-qu asiparticle  and one-quasiparticle  
configurations o f  B C S-theory, respective ly , is a very  approxim ate one. If 
one u ses a m ore rea lis tic  tw o-body interaction than the schem atic pairing 
fo rce , and introduces B ogoliubov quasiparticles (QP) by the transform ation 
(80), the residual Q P -in teraction  causes m ixing o f  pure Q P configurations. 
When the QP configuration m ixing is  lim ited (i) by truncating the space of 
active sh e ll-m od el orb its  and (ii) by restrictin g  the number o f excited  Q P 1 s, 
one speaks o f  Q uasiparticle T am m -D ancoff (QTD) calcu lations. In recent 
years such calculations have been ca rried  out with increasing s ize  (as to 
the num ber o f  QP excitations) and com plexity (projecting out spurious 
states, going from  sim ple phenom enological to " r e a lis t ic "  tw o-body fo rce s , 
taking into account core  excitation by renorm alization  o f the residual fo rce , 
e tc .). This work, which includes the calculation o f sp ectroscop ic  factors 
fo r  both one-nucleon  and tw o-nucleon transfer reactions, was done mainly 
by the Pittsburgh [55-57], O rsay [58] and T rieste  [59-63] groups. We 
shall return to it in section  5.

4 .4 . Tw o-nucleon transfer reactions

4 .4 .1 . Definition o f sp ectroscop ic  factor

F or  these reactions we defined in section  2.4, follow ing Glendenning
[3 ,6 ], the structure fa ctor  (Eq.(35))

^ nlsjt ” S ß LSjT ^ n >̂ NL; l | n^üj , n2^2; L >̂
У

у
Here the sp ectroscop ic  amplitude Plsjt is defined by the expansion (27). 
F o r  a stripping reaction  it is  given by the overlap  between the wave 
function o f the final nucleus В and the wave function describ ing the ground 
state o f nucleus A plus two neutrons in the state (7 , LSJT) :
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(where fo r  sim plicity  we do not w rite the spin and isospin  variab les and 
the pro jection  quantum num bers). Equation (96) includes the statistical 
factor arising from  antisym m etrization , A being the num ber o f  nucleons 
in the target. The quantity (P¿sjt )2 is  the sp ectroscop ic  fa ctor  for  thé 
tw o-nucleon transfer reaction . It can be calculated fr o m 'E q .(96) i f  the 
wave functions фА and фв are given by a nuclear m odel.

4 .4 .2 . Shell m odel

C onsider firs t  the shell m odel, and let us assum e fo r  sim plicity  that 
the target A is  a c lo se d -sh e ll nucleus with ground state wave function 
Фо (5a)- Then the states o f the final nucleus В w ill be a product o f фо (? д) 
tim es a m ixture o f  sh e ll-m od el configurations o f the two nucleons in 
leve ls  above the closed  shells o f A,

(i^ )
Ч ТВ ’ Г1 r 2 ) ” ^0 (?A ) 2_ , C JBTB ^(j1j2)JBTB Г2 ) 

hh

(97)

To com pare with Eq.(96) we transform  from  j - j  coupling to L -S  coupling. 
This transform ation is  given by

i¡j .
В Д ,Т I

LS

1 2 j;
*2 2 32

L s J

(L S)JT
(98)

where

~h i  h' ' h  i  Ji'

*2 2 j2
Л Л Л Л

-  L S j lÍ2. #2 2 Í2

L S J L S J ^

(99)

H ere, L = (2 L + 1 )5 e tc ., and the curly  bracket is  a 9 - j  sym bol (see  Ref.'[47j). 
This gives

Oij2)
3 l s j t  .c Jb T b , 2  2 JS

L S J

6 JJb 6 T T b (100)

cJiJ'á
in term s o f the m ixture coefficien ts  C jbtb . Note that the configurations 
Y = ( j i j 2 ) enter coherently into the structure factor G. T herefore ,w e cannot



324 FRAHN

in general determ ine the wave function o f В from  experim ent; we can only- 
test whether an assum ed m odel wave function is  com patible with the data.

C onsider now the case where A and В are both even-even  nuclei, and 
let us assum e that two neutrons are added to o r  rem oved  from  a given shell 
j. Then the ground states are connected by a tw o-particle  c .f .p . (see 
R ef. [47]),

N+2
o > = y

N
(j v j ;

N+2
3 0)

N 2 4
j Vj,  (j )J, 0> (101)

H ere N (not to be confused with the principal quantum num ber N in the 
structure factorl) is  the (even) num ber o f neutrons in A , and v is the 
sen iority . Again we transform  the configuration (j2)J to L -S  coupling 
by m eans o f  relations (98) and (99), and obtain

y  N 

ß  LSJ ( j  V j

N+2 
j 0) =

^N + 2  
V 2

( jNvJ; (j2 ) j | } j N+20)

* i  

*. $ 
L S

(102)

In occupation-num ber representation, the tw o-particle  c .f .p . has the form  
(see R ef. [47])

, N  T  , - 2 4 T  l \ - N + 2 m  -  N +  2 Y  /  . N +  2  „ и  Л Т I I N  T \(3 vJ; (j )J |}j 0 ) -  j < j  0 11 A  (jjj) 11 j v j  > (103)

where A1̂ is  the tw o-particle  creation operator (see R ef. [50])

t  Î  л M  a . a .
(1 + 6 у 2 )* jl j2

(104)

Hence

't i  j '  

t i 3 

L S J

(105)

where
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4.4 .3 . Pairing fo rce  m odel

It was firs t  pointed out by Yoshida [64], in the fram ew ork o f the 
pairing fo rce  m odel, that the tw o-neutron transfer reactions (t, p) and 
(p, t) are o f specia l im portance fo r  studying pairing corre la tion s . The 
(t, p) reaction , for exam ple, w ill strongly excite those leve ls  in the 
final nucleus in which the corre la tion  between the two neutrons has a 
strong overlap  with the corre la tion  that existed  between the two neutrons 
in the p ro ject ile .

By a straightforw ard generalization o f  Eq.(105) we have

^1 ! ¡1

ß L S ^ B fJ j^ ) ^2 5 2̂ (107)

L S J

where

B(Jj Z M B -f w

<JAM A,JM |JBMB> < 0  |A (jl Í 2JM)|* A > (108)

To calculate this quantity in the pairing fo rce  m odel we m ust firs t  write 
the tw o-particle  creation operator A'*’ in term s o f q u asi-particle  operators, 
using E q.(80). T he’ resu lt is

At ( j1j 2JM) = - ------ f  Y  < j 2m 2 |jM >

'tm !  t m ¡  t i n ^ ,
U j U j û -  +  V j Vj OTj f f j  + X lj V j ûfj ûfj
. 1 2  1 2 1 J 2 *1 J 2 J1 J2 J1 12

t  m 2 j  j  “ Hij

•vj, uj “ j. + 6 j j . (- )  6- 1 2 1 *1
(109)

. We only quote Y oshida 1 s resu lts [64] fo r  the m ost im portant sim ple 
ca se s :
(i) Both nuclei A and В are in Ó-QP states (this applies to transition 

between ground states o f  even nuclei):

B (0 jj)= ( j + è )*u jAvjB (HO)

(ii) The parent nucleus В is in a O-QP state, and the daughter nucleus
A in a 2 -Q P  state o f configuration (jxj 2)J (this applies to pickup from  
an even target B):

B (Ji1 j 2)= - (2 J  + l)* v jBvjB (111)
J1 J 2
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(iii) The parent nucleus В is  in a 2 -Q P  state with configuration ( j j 2)J>
. and the daughter nucleus A in a 0 -Q P  state (this applies to stripping 

from  an even target A);

B ( J j l 3 2 )  “  u j  AU j A  ( 1 1 2 )

(Note that the subscripts A or В o f the amplitudes U j , V j are n ecessary  
because these quantities differ from  neighbouring even nuclei).

We can now easily  see that the pairing correlations strongly enhance 
that the (t,p) and (p,t) c ro ss -s e c t io n s  in case (i). Then we have S = 0, J = L, 
and the c ro ss -s e c t io n  is proportional to

l I ( 2j + 1)% vJB i' ~ lX <2j+1>uivi ( '“ С # )2 <113>
j j

using the gap equation (85). On the other hand, for a pure shell-m odel 
configuration, we have (2A/G) s j  + |, so that

Enhancement factor
due to pairing correlations L G (j + |)

2Д (114)

which is about 10 for the Sn isotopes.
E xpressions (110)-(112) are obtained in the independent B C S-quasi- 

p article  m odel (IQM). If the residual interaction between quasiparticles 
is  taken into account, these results are changed due to m ixing o f Q P- 
configurations. The e ffect o f quadrupole-quadrupole (Q-Q) fo rces  has 
been studied by Lin [65]. Extensive calculations fo r  m ixed 0-Q P, 2-Q P  
and 4 -Q P  configurations (i.e ., in the so -ca lle d  quasiparticle second 
Tam m -D ancoff approxim ation, QSTD) have been made by the T rieste  
group, using both phenom enological (Gaussian and Q-Q) [66] and rea listic  
(Tabakin) fo rce s  [67, 62]. It is  found that the sp ectroscop ic  factors  for  
tw o-neutron transfer reactions are rather sensitive to the number o f QP 
excitations and to the nature o f the residual interaction.

5. COMPARISON WITH EXPERIMENT

The amount o f experim ental inform ation on transfer reactions is  so 
vast that we cannot attempt anything like a com prehensive survey. We 
th ere fore  se le c t a few typical experim ents which have been analysed in 
som e detail. In particular we p re fer  system atic studies that cover a range 
o f nuclei in those regions o f the nuclear period ic  table which are believed 
to be specia lly  amenable to analysis by transfer reaction theory. One o f 
the b a s ic  assum ptions o f  the sim ple DWBA treatment is  the presence of 
an inert " c o r e "  o f nucleons which acts as a spiectator during the transfer 
p rocess  and whose only function is  to provide an average fie ld  that (i) 
binds the particles  to be captured or rem oved, and (ii) d istorts the wave
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functions in the initial and final channels. The best approxim ation o f  such 
a core  would be a doubly c losed  shell nucleus. We shall th erefore mainly 
look at experim ents on nuclei in the vicinity  o f what are believed  to be 
good closed  sh ells . Since one- and tw o-nucleon transfer reactions probe 
different m odes o f excitation we consider them separately.

5 .1. O ne-nucleon transfer reactions

5.1 .1 . The lp  shell

A system atic study o f the (d, p) reaction  with 12-M eV deuterons on 
a ll stable nuclei in the lp  shell (6 s A s  14) has been made by Schiffer 
et a l. [ 68]. Angular distributions, over nearly the full range o f angles, 
for  transitions leading to the ground and low -lying  excited states o f the 
final nuclei w ere m easured and their absolute values determ ined with 
an estim ated accuracy  o f about 15%.

The results w ere com pared with DWBA calcu lations. B ecause of 
the am biguities in optical-m odel param eters derived from  e la stic -sca tter 
ing data (see section  3.(vii)) a fixed average set o f param eters (eight in 
each channel) was used, which was obtained by form ing arithm etic means 
o f previously  determ ined param eter sets for deuteron and proton elastic 
scattering . Calculations w ere made with the JULIE code [69] using 
severa l approxim ations: zero range with and without low er cutoff, and 
with form  factors  calculated in lo ca l energy approxim ation. The shape 
o f the angular distributions was fitted satisfactorily  at forw ard angles, 
especia lly  near the peak cross -se ction . However, considerable d is c re 
pancies w ere found at backw ard angles. In particular, the rather prominent 
j-dependence in the data at large angles could not be reproduced by the 
DWBA calculations, although reasonable sp in -orb it fo rce s  w ere included.
At the peak c ro ss -s e c t io n s  the uncertainty due to the different approxi
m ations used was estim ated to be about 15%.

The actual analysis was ca rr ied  out in zero-ran ge approxim ation 
with a low er cutoff at 4 fm . S pectroscop ic fa ctors , fo r  1 = 1 transitions,#  
w ere obtained from  the expression

(der/dQ) exp (peak)

s * = i= — 2j r n ------------------ г  <115>
1,65  2Ja + 1 CTIULIE (Peak) .

where 1.65 is a norm alization factor that results from  the use o f Hulthén 
wave functions for the deuteron.

Shell-m odel calculation o f sp ectroscop ic  factors  for stripping and 
pickup in the lp  shell was made by "Cohen and Rurath [70]. These authors 
calculate

Sn{j (« JATA -  ß JB Tg ) -  (A + 1) I (a JATA; n i j |} ßJ в T B) | 2 (116)



328 FRAHN

fo r  n^j -  1рз/2 and l p i / 2, where A + 1 is the number o f active lp  nucleons, 
and the c .f .p . are defined by

(a)

The wave functions are m ixed shell m odel configuration wave functions 
fo r  effective  interactions in the lp  shell which w ere deduced by fitting 
energy lev e ls . A lso calculated are the sum m ed spectros'cop ic fa ctors .
It is found that about 99% o f the total strength is exhausted by the low - 
lying states calculated. The summation for pickup gives (see Eq.(70))

E W “ JATa -  TJA.iT A-i) = nA(j) (118)

W JA - 1 T A - 1

the num ber o f n ij nucleons in the target nucleus. As an exam ple, the 
pred icted  filling o f the 1рз/2 leve l in the ground state o f the target nuclei 
is  shown in F ig .3 . Com parison with the values expected from  the jj and 
LS coupling lim its shows the degree to which the coupling is interm ediate 
between these lim its.

The sp ectroscop ic  fa ctors  extracted by means o f relation  (115) are 
com pared  with the predictions o f Cohen and Kurath in F ig .4 . The upper 
part o f  this figure also shows a com parison  o f the experim ental and theo
re tica l peak c r o s s -s e c t io n s . Except fo r  the ground-state transition in 
the 12C(d, p )13C reaction , the agreem ent is surprisingly good. Since no 
system atic variation o f the ratio S(exp)/S(theor) with the reaction  Q -value, 
aiÿl thus with the reaction  kinem atics, is found, the DWBA resu lts 
appear to be re liab le  and the agreem ent with the sh e ll-m od el calculation 
seem s genuine.

5 .1 .2 . The Ca isotopes (1Í7/2 neutron shell)

Although 40Ca is  a doubly-m agic nucleus the c la ss ic  study o f the 
40Ca(d, p)41Ca reaction  by Lee et al. [2 6 ], in which the reliab ility  o f the 
DWBA was tested (see section  3.), showed that the pure-configuration 
p icture for  41Ca is  not va lid . Table IV gives the sp ectroscop ic  factors 
fo r  the low -ly in g  states in 41 Ca seen by Lee et a l., which w ere extracted 
by m eans o f  a fin ite-range calculation including sp in -orb it coupling. Not 
only are  the sp ectroscop ic  factors for the 7"/2 and l ” /2  states significantly 
below  unity, but the p3/ 2 s in g le -p artic le  strength is spread over two leve ls . 
Further investigations showed that !  = 2 and $ -  0 transitions occu r  in ad
dition to the f  = 3 ground state transitions. This led to the conclusion that 
the ground state o f 40 Ca, and that o f  other even Ca isotopes, contain
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adm ixtures o f co re -e x c ite d  2p-2h com ponents. The ground-state wave 
functions can be written as

4 0 + 2 n _  . . .  _  . . .  , 2 n  „  > - 2 . 1 Г  ,2 n  + 2Ca(0) -  a ( l f7/í2) + b ( l d 3y2» 2s1¿,2) ( l f 7̂ .2) (119)

The m ixing coe fficien t b was found to decrease  rapidly with in creasing  n; 
in particu lar, 48 Ca appears to be a much better closed -sh e ll nucleus than 
40Ca.

a.

|C<

F IG .3 .  T h e  n u m b er o f  l p 3 / 2 n u c le o n s  in  th e  ta rg e t  g rou n d  states, c a lc u la t e d  fr o m  E q .(1 1 8 ) .  T h e  tria n g le s , 
dots and crosses re fe r  t o  d iffe re n t e f f e c t iv e  in te r a c t io n s . T h e  lin e s  c o n n e c t  v a lu e s  e x p e c te d  in  th e  j  -  j  
co u p lin g  or L -S  co u p lin g  lim its  (C o h e n  and K urath [ 7 0 ] ) .
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F IG .4 .  C o m p a r iso n  o f  e x p e r im e n ta l and c a lc u la t e d  p e a k  cro ss -se ct io n s  and s p e c t r o s c o p ic  fa c to r s  in  th e  l p  
s h e ll (S c h if fe r  e t  a l .  [ 6 8 ] )
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TABLE IV. SPECTROSCOPIC FACTORS FOR 
LOW -LYING STATES IN 41Ca EXTRACTED FROM 
THE 40Ca(d, p) 41 Ca REACTION BY LEE et a l. [26]

TABLE V. COMPARISON OF N O RM AU ZED 
EXPERIM ENTAL AND THEORETICAL VALUES OF 
THE TO TAL STRENGTH OF £ = 3 GROUND-STATE 
TRANSITIONS IN THE EVEN Ca ISOTOPES 
(F rom  R ef. [71].)

F in a l state ( 2 j+ l ) S ( e x p ) (2  j  + l )S ( t h e o r )

" c a i O ) 6 .5 4 8

43Ca( 0) 4 .8 9 6

4sC a(0 ) 3 .3 7 4

47C a(0 ) 2 .0 0 2

A recent system atic study o f the (d, p) reaction  on the even Ca isotopes 
was made by the M IT-C openhagen-A lderm aston collaboration  at 7 MeV [71] 
and 10 MeV [72], who also review  the ea r lie r  work in.this region . The 
angular distributions w ere analysed in DWBA (JULIE code, zero -ran ge , 
no cutoff). Table V gives the best extracted sp ectroscop ic  strengths of 
the £ = 3 ground state transitions, norm alized  such that (2j + 1)S= 2 for 
47Ca(0), in com parison  with the theoretically  expected values.

The experim ental values, believed  to be accurate to about ±10% , 
fa ll considerably  below  the predicted  sh e ll-m od el ones. This indicates 
that shell c losu re  is  quite im perfect especia lly  in the lighter isotopes 
with A = 40, 42 and 44.

S im ilar resu lts are obtained for the Z=  20 proton shell. A recent study 
o f  the (t, a) proton pickup reaction  on the even Ca isotopes [73] shows 
that f  = 3 transitions o ccu r  in a ll cases except 48Ca. This indicates that 
I f7/2 protons are present in their ground states and suggests an admixture
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-2  2o f ( 1 d 3/2 ) (I f  7/2 ) tw o-particle  tw o-hole com ponents. This is c o r r o 
borated  by the occu rren ce  o f S = 2 transitions in the ( 3He, d) proton- 
stripping reaction  on a ll even Ca isotopes, except 48Ca, which can be 
interpreted  as stripping o f protons onto the partially unfilled l d 3/ 2 
orb ita l [74].

A m ixed-con figuration  sh e ll-m od el calculation o f the C a-even  isotopes 
has been perform ed  recently  by Bayman and Hintz [75]. They include the 
follow ing active s in g le -p a rtic le  states:

2S-L/2 , l d 3/2 , 1 ̂ 7/2 > 2Рз/2 > 2p i /2 , l f s /2

The neutron-neutron interaction is  approxim ated by a sim ple pairing 
fo rce . 2In F ig .5 the calculated ground-state occupation probabilities v j are 
com pared with sum m ed experim ental sp ectroscop ic  fa ctors , to which 
they are related  by E q .(86). This shows that the data are consistent with 
the pairing calculation and indicates to which extent deviations from  un
perturbed shell m odel values o ccu r .

F I G .5 . A v e ra g e  g rou n d -sta te  o c c u p a t io n  p r o b a b il it ie s  v j  fo r  th e  e v e n  C a  iso to p e s  fo r  s in g le -p a r t ic le  states 
in d ic a te d . R ectan g u lar bars a re  results o f  p a ir in g - fo r c e  ca lc u la t io n s  fo r  G = 2 0 /A ,  d o tte d  lin e s  a re  fo r  G = 2 7 /A .  
D ashed  lin e s  show  unperturbed  sh e ll m o d e l v a lu e s . B la ck  poin ts a re  e x p e r im e n ta l v a lu e s  fr o m  s in g le -n u c le o n  
transfer d a ta . (F ro m  R ef. [ 7 5 ] ) .

5.1 .3 . The Sn isotopes

The tin isotopes are prototypes o f  s o -ca lle d  vibrational nuclei, in 
which 12-24 neutrons populate the active leve ls

2^5/2 • *87/2 > 3S]y2 , . 2d 3/.2 , lh U/,2

above what is  assum ed to be a doubly closed  50-50 co re . They a re ,th ere 
fore  ideally  suited fo r  testing the pairing fo rce  m odel (see section  4 .3 .).
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The c la ss ic  investigation in this region is  the work of Cohen- and P rice  Í53] 
who studied the (d, p) and (d, t) reactions on the isotopes 116Sn- 124 Sn. No 
detailed fits o f  the angular distributions by means o f a reaction  theory 
w ere m ade, but the S-values o f the transitions w ère determ ined by the 
shape o f the (d, p) c ross -se ction s . This fixes the value o f j, except for
S —3, in which case the cross-section s  for 2d 5/2 and 2d 3/2 are distinguished 
by their Q -va lu es. The analysis is based on the expressions for  the 
sp ectroscop ic  factors in the sim ple pairing fo rce  m odel (Eqs (91) and 
(94)).

even target nuclei odd target nuclei
(ground-state transition)

(d ,p): S j ( 0 - j ) = u ? A , SJ( j - 0 )  = (2 j+ l)v * B (120a)

(d, t): Sj(0-* j) = (2j + l)v^ A , S ( j -*• 0) = Uj B (120b)

2 2 2 2 where U j iA  , V j,A re fe r  to the target nucleus anduj,B , vjfB to the r e 
sidual nucleus. The cross-section  ratios between the (d, p) reactions (odd 
A - l - e v e n  A) and (even A-*-odd A + l), together with the condition u^A + v^ A = 1, 
determ ines the probabilities UjiA and v jiA . S im ilar relations, for  the (d, t) 
reaction  give an independent check on these values. The resu lts w ere 
com pared with the p a ir in g -fo rce  calculations o f K isslinger and Sorensen [78], 
and fa ir ly  satisfactory  agreem ent was found.

1.0

0.8

0-6
3

0 4

02  

0
A  = 112 114 116 118 120 122 124

N =  62 64 66 68 70 72 74

F IG . 6 . ''E m ptin ess” Uj o f  th e  a c t iv e  le v e ls  in  th e  e v e n  Sn is o to p e s . (F ro m  R ef. [ 7 9 ] ) .

In a m ore  recent study by Schneid et al. [79] the ea rlie r  work was
extended by including the isotopes o f m ass number 112, 114 and 115, and 
the energy resolution  was im proved by a factor two. The data were 
analysed by m eans o f  the DWBA, and the uj , v f  w ere obtained from  
sum m ed sp ectroscop ic  fa ctors . The resu lts for the "em ptiness" Uj are 
given in F ig .6 . As expected, a ll active leve ls  are gradually filled  with 
increasing  num ber o f neutron pairs.

These resu lts , as w ell as those fo r  the (p, d) reaction  on 111 Sn and 
118Sn by Yagi et a l. [80], w ere found to be in fa ir agreem ent with ca lcu 
lations by Yoshida [81] which include quadrupole-quadrupole and

112 114 116 118 120 122 124

62 64 66 68 70 72 74

o f  th e  a c t iv e  le v e ls  in  th e  e v e n  Sn iso to p e s .
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F IG .7 .  S p e c tr o s c o p ic  fa c to rs  S? ( 0 , 5 )  fo r  ( d ,p )  r e a c t io n s  le a d in g  to  th e  lo w e s t  sta te  in  th e  o d d -m a ss  Sn 
iso to p e s  o f  sp in  5  . T h e  so lid  lin e s  c o n n e c t  resu lts o f  th e  T a m m -D a n c o f f  c a lc u la t io n  (T D A ) . T h e  crosses 
c o n n e c t e d  by  dashed lin es  a re  e x p e r im e n ta l v a lu e s  fr o m  R e f. [ 7 9 ] .  C ir c le s  corresp on d  to  c a lc u la t io n s  w ith  
a d iffe re n t  set o f  s h e l l -m o d e l p a ra m eters . (F ro m  R ef. [ 5 5 ] . )

F IG .8 . S p e c tr o s c o p ic  fa c to rs  S ^ (3 , 0 ) / ( 2 ^  + l ) .  T h e  so lid  lin e s  c o n n e c t  resu lts o f  th e  T a m m -D a n c o f f  
c a lc u la t io n  (T D A ) . T h e  crosses c o n n e c t e d  by  dashed  lin e s  are e x p e r im e n ta l v a lu e s  fr o m  (d ,  t) r e a ctio n s  
o n  th e  e v e n  Sn is o to p e s , squares a re  e x p e r im e n ta l v a lu e s  fr o m  (d .  p) e x p e r im e n ts  on  th e  o d d -m a ss  targets 
w ith  A  = 1 X 5 , 117 and 1 1 9 . C ir c le s  corresp on d  t o  ca lc u la t io n s  w ith  a d iffe re n t set o f  s h e l l -m o d e l 
p a ra m eters . (F ro m  R e f. [  5 5 ] . )

octu pole-octu pole  interactions in addition to the pairing fo r ce . M ore 
sophisticated calcu lations, in various form s o f the Q uasiparticle Tam m - 
Dancoff approxim ation (see  section  4.4.3.) have been made recently  [55-57], 
[59 -63 ]. Kuo et a l. [55] take for  the ground state o f the even isotopes the 
BCS ground state, and fo r  the states o f the odd isotopes the eigenfunctions
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N E U T R O N  N U M B E R N E U T R O N  N U M B E R

F I G .9 . Behariour o f  u ?  in  2 8 -5 0  shells .

55 60  65 70
N E U T R O N S

6 0  65 70
N E U T R O N S

60  65 70
N E U T R O N S

FIG . 1 0 . B ehariour o f  Uj in  5 0 -8 2  shells .
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o f the (1QP) Tam m -D ancoff calculation . The sp ectroscop ic  factors for 
the .(d, p) and (d, t) reactions on even target nuclei are then given by [54]

W -  ° ) = (2/  + l)vp U/1
(i)

( 1 2 1 a )  

. ( 1 2 1 b )

resp ective ly , where | < 1 ( ß )  | is the amount o f 1QP state p adm ixed to 
the ith eigenstate o f the odd isotope, and j p = i/ .  The sp ectroscop ic  
factor (121b) applies also to a (d, p) reaction  on an odd target with the 
final nucleus in its ground state. F igures 7 and 8 show a com parison  of 
the calculated values (121) with the experim ental ones o f Schneid et al.
The agreem ent is quite satisfactory .

A survey o f the system atics o f  sing le -qu asipartic le  states in spherical 
nuclei through entire m a jor  shells was recently  given by Cohen [82]. The 
behaviour o f the "em ptin ess" uf in the 28-50 and 50-82 shells is  shown 
in F igs 9 and 10, resp ectiv e ly . With few exceptions, the agreem ent is  
fa irly  good.
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5 .1 .4 . The Pb region

¿ü8Pb
F IG . 1 1 . L o w - ly in g  states n eat 208Pb

9Pb

This seem s to be a region  o f happiness fo r  the nuclear shell m odel. 
R ecent thorough investigations have shown that the ground state o f  208 Pb 
is a very  good c losed  shell fo r  both neutrons and protons. Evidence for
this com es from  neutron stripping and pickup reactions on 208 Pb, leading
to s in g le -p a rtic le  states in 209Pb and to s in g le -h ole  states in “u'Pb, 
resp ective ly . The low -ly in g  levels  in these nuclei are shown in F ig .11.

207-,
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TABLE VI. SPECTROSCOPIC FACTORS FOR SINGLE -PA RTIC LE  
STATES IN 209 Pb

S ta te Ex  (M e V )
1 5 .0  M e V

( d .p )  [ 8 3 ]  

2 0 .3  M e V 2 5 .1  M e V

( t .d )

[ 8 5 ]

(P .P )
a n a lo g u e

[ 8 6 ]

2 g 9 /2
0 0 .8 7 0 .7 7 0 .6 7 0 .9 3 0 .9 7

0 .7 9 1 .1 7 0 .7 8 0 .9 4 1 .0 5

l j 1 5 /2
1 .4 2 0 .9 6 0 .7 9 1 .1 3 0 .5 1

3 d5 /2
1 .5 6 0 .8 3 1 .0 5 1 . 0 0 0 .8 6  ' 0 .8 5

4 Sl / 2
2 . 0 1 0 .8 0 0 .9 0 0 .9 3 0 .8 6 0 .9 0

% / 2
2 .4 7 1 .0 8 1 .0 8 1 .1 7 0 .9 0 0 .8 4

3 d3 /2 2 .5 1 0 .8 8 1 .0 7 1 .1 7 0 .8 3 0 .8 6

M uehllehner et a l.[83 ] studied the reactions 208 Pb(d, p) 209 Pb and 
208Pb(d, t) 201 Pb at E d = 15, 20 and 25 MeV; the reaction  208 Pb(p, d) 201 Pb 
was studied by Whitten et al. [84] at E p = 20 and 22 M eV, and the reaction  
208Pb(t, d)201Pb by Igo et a l. [85]. The resulting sp ectroscop ic  fa ctors  for 
the s in g le -p a rtic le  states in 209Pb are shown in Table VI, together with 
values obtained from  analysis [ 86 ] o f isob a r ic  analogue resonances in 
(p, p) scattering (see section  3).

With only two exceptions (the (d, p) reaction  at 25.1 MeV to the ground 
state, and the (t, d) reaction  to the IJ15/2 state) these resu lts show that 
the low -ly in g  leve ls  in 209Pb are pure, unfragmented sin g le -p artic le  
states.

Table VII gives the sp ectroscop ic  fa ctors  for 207Pb. Again there is  
good evidence that the low -ly in g  levels  in 207 Pb (with the exception of 
the 2 f7/2 level) are pure single-neutron  hole states. S im ilar evidence 
is  being obtained fo r  the p roton -particle  states in 209 B i and fo r  the 
proton -h ole  states in 207 T1 (see [87]).

Other aspects o f nuclear states in the Pb region  are d iscu ssed  in 
the papers by Alaga [88 ] and Cindro [89] in these P roceed in gs.

5 .2 . Tw o-nucleon  transfer reactions

We have seen (section  4.4.) that tw o-nucleon transfer reactions depend 
sensitively  upon the nature o f  the corre la tion s between the tran sferred  
nucleons. O f particu lar im portance are the tw o-neutron stripping and 
pickup p ro ce sse s , especia lly  (t, p) and (p, t), in which zero -cou p led  pairs



TAB LE  VII. SPECTROSCOPIC FACTORS FOR SINGLE-HOLE STATES IN 207Pb

S ta te
Ex

(M e V )
Sj

(th e o r e t ic a l )

( p .d )  [ 8 4 ]
E = 2 0 .0 0  E = 2 2 .0 0

M e V  M e V
, , , ( r e la t iv e ) ,  

(a b so lu te )
 ̂ Р3 / 2) ~4

E = 1 4 .8  
d

M e V

( d , t )  [ 8 3 ]

E = 2 0 .1  
d

M e V
E = 2 4 .8  

d
M e V

ЗР1 /2
0 2 2 .1 9 2 .1 6 2 .1 8 2 .1 2 2 .1 2

2 f5 /2
0 .5 7 6 6 .0 0 5 .8 2 6 .6 0 7 .2 0 6 .0 0

- 3P3/ 2
0 .8 9 4 4 .0 4 ( 4 .  00) 3 .7 6 3 .8 0 3 .3 2

U 1 3 /2
1 .6 4 14 1 4 .3 1 2 .7 1 4 .0 0 1 3 .0 2 1 4 .0 0

2 f7 /2
2 .3 4 8 6 .3 5 5 .7 5 6 .0 8 6 .4 0 5 .7 6

Г 3 .4 3

lh 9 /2
1^3.59

10 1 0 .0 0 1 0 .0 0 1 0 . 0 0
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are tran sferred . Since the addition o r  rem oval o f zero -cou p led  pairs has 
little effect on the co llective  m otions in the initial and final nuclei, we 
expect strongly enhanced c ro ss -s e c t io n s  for pair transfer between states 
which have s im ilar co llective  m otions.

Recently there have been many experim ents that confirm  the collective  
enhancement o f tw o-nucleon transfer reactions. The data o f (t, p) and (p, t) 
reactions with L = 0 on the Ca isotopes o f m ass number 40-48 at 
E t = 10-12 MeV [90] w ere analysed by Bayman and Hintz [75]. These 
authors calculated sp ectroscop ic  amplitudes fo r  two-neutron transfer 
using m ixed neutron configurations and approxim ating the neutron-neutron 
interaction by a sim ple pairing fo r ce . The good agreem ent obtained with 
the ratios o f observed  (t, p) and (p, t) c ro ss -s e c t io n s  for ground state 
transitions indicates that the ground states o f the Ca isotopes are 
characterized  by sim ple pairing degrees o f freedom . However, the 
transitions to som e o f the excited 0  ̂ states are predicted  too large so 
that these states must involve m ore  com plicated  degrees of freedom .

Detailed tests o f the tw o-nucleon-transfer reaction  theory have been 
ca rried  out in the lead region . Glendenning [91] has analysed the data 
o f Reynolds et a l.[92 ] fo r  the 208 Pb(t, p)206Pb reaction, using the shell 
m odel wave functions o f True and F ord  [93]. A m ore extensive analysis 
along the sam e lines o f this reaction has been made recently  by B rom ley 
and co -w ork ers  [94], who found excellent agreem ent for  the shapes of the 
angular distributions, fo r  the relative c ro ss -s e c t io n s  for  states up to
3 MeV excitation energy, and fo r  the energy dependence o f the c r o s s -  
sections .

Tw o-nucleon transfer reactions are o f specia l im portance for  the 
study o f a new type o f co llective  m odes o f excitation, the so -ca lle d  
pairing vibrations. The theoretical concepts have recently  been d is 
cussed  by B ohr [95], and the experim ental situation was surveyed by 
Nathan [96]. D ifferent aspects o f these im portant and exciting develop
ments are dealt with in other papers at this Course (Bohr [97], A laga [88 ], 
Ripka [98] in these P roceed in gs).
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Abstract

SPECTRO SCO PIC  IN FO RM A TIO N  FROM NUCLEAR R EA CTIO N S.
1. In tra d u ction ; 2 . S p e c tro s co p y  w ith  th e  s u b -C o u lo m b  str ip p in g  r e a c t io n ; 3 . In e la s t ic  p -s c a t te r in g  

v ia  a n a lo g u e  reson an ces ; 4 ‘. C o n c lu s io n .

1. INTRODUCTION

In this lecture we w ill d iscuss the problem  of extracting nuclear 
structure inform ation from  nuclear reactions using two exam ples, nam ely 
the (d, p) stripping reactions below the Coulomb b a rr ie r  and the (pp1 ) 
reactions via isobaric  analogue resonances (IAR) in heavy nuclei.

In the analysis of the c r o s s f  section of a particular reaction one must 
first con sider the various reaction m echanism s or reaction  m odes which 
can contribute to the m easured c ro s s -s e c t io n . F or low -en ergy  reactions 
the im portant m odes aihe 1 ) the resonance reactions; here, one has first 
to con sider statistical fluctuations and doorway resonances as the IAR, 
and 2) the c la ss  of the â ire c t ;reactions and there one distinguishes between 
sim ple reactions and m ore com plicated  ones involving, e .g . target ex 
citation [3] or resonances in entrance and exit channels [31 ]. It is obvious 
that one can obtain useful inform ation mainly from  reactions which are 
dominated by one particu lar reaction mode only. Still, in general, the 
problem  of various reaction m odes is quite seriou s because in the c r o s s -  
section  there are interference term s between the various m odes, and thus 
even a reaction  mode with a' sm all amplitude can largely  influence the 
c ro ss -s e c t io n .

F or the reactions to be considered  in this paper the analysis proceeds 
in two steps; 1 ) one param etrizes-the c ro s s -s e c t io n  with a sm all set of 
unam biguously detèrm inéd reaction  widths G and g. These param eters 
are m odel independent. 2) F rom  the reaction  widths G and g one can 
derive sp ectroscop ic  factors S by using additional inform ation on the wave 
functions inside the nucleus. -

2. SPECTROSCOPY WITH THE SUB-COULOMB STRIPPING REACTION

The c ro s s -s e c t io n  of the on ë-step  (d, p) stripping reaction  Ij + d I2+P  
is  usually decom posed [ 1 ] into a s in g le -p artic le  cross -se ction  crjjP' and a 
sp ectroscop ic  factor S ^

Æ »> ■ -n t f r  I Ц Т Г  sy < , r' m  <‘ >
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FIG . 1. E x cita tio n  fu n c t io n  o f  40Ca ( d , p )  4,C a  sh ow in g  s ta t is tica l flu ctu a tio n s  w h ic h  in te r fe re  w ith  th e  

d ir e c t  p rocess . F rom  L e e  and S ch iffe r , Ref- [ 2 9 ] .
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where

( S b ) t  = <I 2.M2| (а; ® 1 1) 12м 2 > ( - l )+l2' j ‘ l1 (2)

In Eq. (1) all angular and energy dependences are contained in the s in g le
p article  c ro s s -s e c t io n s , which are, however, assum ed to be independent 
o f the spins Ij* 12 and the nuclear structure of the states Ii and I2. The 
n uclear-structure  inform ation is then contained in the sp ectroscop ic  
fa ctors  s j2j. The sp ectroscop ic  usefulness of expression  (1) depends on 
two conditions:

(1) Is the factorization  valid? F or this, at least, rearrangem ents
in the co re  and polarizing  interactions in the initial and final 
channels have to be neglected. This means that the reaction  must 
be a o n e -s te p -p ro ce ss , and contributions, from  statistical reactions 
must be negligible. A case where these contributions are important 
is shown in Fig. 1. ,

(2) How accurately can a|jp' either be taken from  experim ent or be
calculated th eoretica lly? ,

We want to d iscuss the second point first and rely  on the validity of a 
D W B A -description  o f the p rocess . Thus, we ask only how w ell the in
gredients to the s in g le -p artic le  amplitude in DW BA-approxim ation [ 2 ] ,  i . e .

°йр- = T S f  t  i  I  1 <4° (?p * v (?n) 1 v"p1 ^ +) ft *Md) > |2 (3)
m.fip.Md

can be taken from  experim ent or be calculated. Although this is m erely  
concerned with the applicability of a given theory and, th erefore , hardly 
seem s to be an ambitious question we w ill learn about som e serius 
restriction s.

In Eq. (3), , xÿ) are the elastic scattering functions fo r  the proton
and deuteron, respective ly , which we take for sim plicity  relative to an in
finitely heavy target or residual nucleus. The scattering functions and

are usually calculated from  optical potentials that fit the e la stic - 
scattering angular distributions fo r  the appropriate targets and energies. 
H ow ever, e lastic scattering only determ ines the asym ptotic behaviour of 
the wave functions, i. e. the phase shifts which, in turn, can be reproduced 
by various different potentials (som etim es re ferred  to as potential "fam ilies  "). 
Thus the integration in Eq. (3) extends over the nuclear in terior, where 
* p are no* uniquely known from  scattering experim ents, and th ere 
fore  introduces som e ambiguity into the calculation of afjP . The function 

in Eq. (3) is called  "the wave function of the tran sferred  neutron" and 
it is defined by Ф{} = ■ S 'jjm and

< I2M 2 10t (rn) I Ij Mx> = g (rn, ад)

(4)
= Y  (Ij Mj j m 11 ^ )  y |jm f t ,  3n ) (Sj*. )* ф,. (rn)

£, j ,  m

where ф*(rn) creates a neutron at the location rn and

< * t> )  K ( r )  > = 1
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In this equation, S^j is the sp ectroscop ic factor and |liM;t)>, |l2M2> are 
the true w ave- functions of the initial and final states. The form  factor 
<¡>ü¡ is  also im plicitly  appearing in the form al definition o f the sp ectro 
scop ic factor given in Eq. (2). In principle_,0£j is defined by Eq. (4). How
ever, this equation does not give a p ractica l method for obtaining it. In
stead, one can use the "separation-energy m ethod" by Pinkstone and 
Satchler [ 4 ] .  In their method <j>$j is approximated by the eigenfunction <$j0d 
o f a single neutron in a rea l w ell, having the experim ental separation 
energy Ев . The wave function obviously depends on Ев and the 
potential param eters, namely the r. m. s radius <̂ R2^ and the diffuseness a. 
It has been shown [5] that the dependence on the diffuseness a is  rather 
weak if the r. m. s radius is kept fixed.

It seem s that one can avoid the problem s of the optical m odel wave 
function in the nuclear in terior by the relative method, which is d irectly  
based on Eqs (1) and (2): one does not calculate a|jP' from  an arbitrary 
m odel, but rather takes it from  the experim ent on a neighbouring nucleus 
whose sp ectroscop ic  factors  are believed to be known. An example for 
this method is  given in column 3 o f Table I, where the sp ectroscop ic  
factors from  the 207Pb(d, p) m easurem ent of Bardwick and T ick le [7 ] are 
com pared with sum rule lim its. The crfjp' values were taken from  the 
208рь (d, p) c r o ss -s e c t io n s  as shown in Fig. 2 under the assumption of pure 
single-neutron configurations in 209Pb. The agreem ent, however, turns 
out to be not quite satisfactory (up to about 45% deviation). Part of this 
d iscrepancy certainly  com es from  the fact that the authors did not co rre c t  
for the d ifferences in binding energy which enter into the cr|'jP’ via the фцj 
function. To do this they would have to calculate the ст̂ Р- , i. e. they would 
have to do a full DW BA-calculation.

The. relative method ,has, however, a lim ited range of application, , 
because cr¿jp' depends on two independent energies Ej and EB or E<j and Ep. 
ThuSjthe relative method can work only if the corresponding configurations

TABLE I. COMPARISON OF THE SPECTROSCOPIC FACTORS

S* = - f  S|7 +  ̂ s I j 2 ! -  from  the 207Pb(d, p) 208Pb reaction  obtained

by the relative method [7 ] and the sub-Coulom b stripping [ 6 ] with sum 
rule lim its.

C on fig u ra tio n
D ost and H er in g a

s r
B ard w ick  and T ic k le ^

ST
Sum  R ule

S *

d f
3 .6 8 (  - m 2 .1 5 ( -4 6 % ) 4

gi  p ¡ ‘
8 .3 3 (  +4% ) 5 .8 5 ( -2 7 % ) 8

4  p i
2 -3 0 (+ 1 5 % ) 1 . 8 ( - 10% ) 2

d 5 pT 1 
t  *

5 .9 9 (  -  ) 5 .2 ( “ 13% ) ‘ 6

Ц  P |
1 1 .3 8 (+ 1 4% ) 1 0 .4 ( +3% ) 10

a R ef. [ 6 ] 
b  R ef. [ 7 ]
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LABORATORY ANGLE (DEGREES)

FIG. 2 . ?07P b(d, p )  208Pb angu la r d istr ib u tion  [ 7 ]  at Ed = 2 1 . 6 M e V  to g e th e r  w ith  fits a c co r d in g  to the
" r e la t iv e  m e th o d ” using s in g le -p a r t ic le  c r o ss -se c t io n s  o ^ jP - o b ta in e d  from  the 2™ P b(d ,p ) 209Pb e x p e r im e n t. 
F rom  B ard w ick  and T ic k le ,  Ref- [ 7 ] .

in the neighbouring nuclei have nearly  the same excitation energy EB and 
if  none o f them is spread out very  much.

At this point we must em phasize that D W BA-analyses successfu lly  
fitting the sum rules are by now quite com m on; a typical exam ple is the 
analysis o f 40Ca(d, p) by Lee and Schiffer [29].  But in this paper we want 
to con sider reactions which are sim pler because their analysis requ ires 
le ss  additional inform ation on the wave functions inside the nucleus.

Another way to avoid these problem s is to use deuteron beam s with 
energies below the Coulomb b a rr ier  as shown, e .g . in R efs [ 6 , 8 - 1 2 ,  21] .  
In this case the contributions to the radial integral (3) entirely com e from  
the surface region around the nucleus (see Fig. 3). The form  factor 
( S b j ^ j  has there its asym ptotic form

( s î ; ,  ) *  ^  ( ? „ )  =  c  î ; ,  j h ( < P  t . 1  к в г п  )  %  j  m  ( ? „  )
С£Р- h(i>(ikBrn) ^ j m (?n)

FIG- 3 . R a d ia l d istr ib u tio n  o f  th e  in tegran d  in  Eq. (3 )  in  a pure C o u lo m b  stripp in g  ca s e  for v ar iou s  re a ctio n  
a n g le s . F rom  G o ld fa rb , R ef. [ 8 ] .
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We introduce Coulomb functions i / '^ Coul, i//jj+)C o u l  for the optical m odel wave 
functions x(p), хф  in Eq. (3), we use a zero -ran ge-in teraction  Vnp = Хф 6 (rn -rp) 
and perform  the'sum m ations over ц?, /ua- (In contrast to and *(+)
the functions i / / ( ¡ ? C o u l and i//jj+ )C o u l  shall not contain the spinors for  proton and 
deuteron, resp ective ly . ) One then obtains from  Eqs (2) and (3)

dff _ 2 2 12 + 1 V* 1
df2 - w Л 2 Ij + 1 L  (2j + 1

]

where

~s.p. _ J _  m„md kpkd 
2n (2тг h2)2

A = Y  K ^ ')COUl(?) h ^ ( i k Br) Y  ( t o i  j  Mn|jm) C r ) W )C0a\ r )> t  
m.Mn mi

and Gjj j contains Vnp , the value ф<¡ (0) o f the internal deuteron wave function 
at the origin  and the norm alization C|| j  of the neutron wave function:

Gi|.j = ^ р ^ ( 0) С [ . .

There are only known functions in a ljP , so j  is the quantity which 
one m easures when doing a (dp) sub-C oulom b-experim ent. The first two 
fa ctors  in G are com m on to all stripping experim ents, the last factor 
contains the sp ectroscop ic  inform ation.

There are c lo se  analogies between G2 and the partial width Г in 
resonance reactions, it even has the proper dim ension and this is the 
reason  why we ca ll G a reaction  width. From  G ^ j  we get the n orm ali
zation Cj f j  o f the asym ptotic neutron wave function with the accuracy to 
which the constant Vnp фа (0) is known.. The quantity С;*  ̂ can be reduced 
to the sp ectroscop ic  factor according to

Cîi . j  = C J /- (S^.j )*

only if  the asym ptotic norm alization Cj P’ o f the s in g le -particle  wave 
function ФУ' is known. Though ф|'й" is defined through Eq. (4) by using the 
physica l wave functions of the target and residual nuclei only, it has in all 
p ra ctica l ca ses  to be approximated by a single particle shell m odel wave 
function. Thus the norm alization  C}*j can be m easured d irectly  while the 
sp ectroscop ic  factor Sĵ  j  cannot be extracted without the use of a potential 
m odel and, hence, w ill depend on the param eters d iscussed  above. N um eri
ca l exam ples may be found in R efs [12]  and [22] .  A rather interesting 
extension o f these ideas is  quasi-C oulom b stripping [11] .  In this case  we 
still postulate that only the asym ptotic parts o f * p) , and Фи j enter into
the integral of Eq. (3) but we do not postulate that фр and 1¡j¿ are Coulomb 
w aves. This extension is  meaningful because the asym ptotic part of the 
X 1 s is determ ined by the e lastic-sca tterin g  phase shifts only and can thus 
be uniquely m easured.

fij
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FIG. 4 . T y p ic a l  C o u lo m b -s tr ip p in g  angu la r d istr ib u tion  w ith  D W B A -fit .  From  Erskine, B uechner and Enge, 
R e f. [ 1 0 ] .

From  an experim ental point of view Fig. 5 shows that the c ro s s -s e c t io n  
is much m ore favourable in this case and^thus^ it is this reaction  which is 
m ost often used.

Summing up we want to em phasize the follow ing points on "quasi 
Coulomb stripping":

(1) T ypical d ifferentia l cross -se ction s  are of the order of 100 jub/sr, 
so such experim ents are quite feasib le with spectrographs, e s p e c i
ally with spectrographs having large solid  angles.

(2) The angular distributions have a broad maxim um  at 180° ir r e s p e c 
tive o f the orb ita l angular momentum £ as shown in Fig. 4. How
ever, one can determ ine i-v a lu e s  either at high en erg ies , where it 
is easy to distinguish them as shown, e. g. , in Fig. 2 or by an 
ingenious method of Hering et al. [ 9 ] using the excitation functions.

(3) The DWBA gives excellent fits to the excitation functions (Fig. 5) 
and angular distributions (F ig. 4) with a proportionality factor G2 
as the only free  param eter. This excellent agreem ent is a rea l 
test and great su ccess  o f the DW BA-theory and rem oves som e 
doubts as to the effects of the polarization  of the deuteron in sub- 
Coulomb stripping (see Ref. [12] ) .

(4) F rom  the com parison  the th eoretica l and experim ental c r o s s -  
section  the param eter G2 is unambiguously determ ined. The 
norm alization C2 o f the asym ptotic part of the neutron wave 
function фщ can be derived with the p recis ion  to which the univeral 
factor Vnp (0 ) is known.
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Ed (MeV)

FIG- 5 . T y p ic a l  C o u lo m b  stripp in g  e x c it a t io n  fu n c tio n  w ith  a D W B A -fit  using  pu re  C o u lo m b  fu n ction s  
( f r o m  R ef. [ 1 3 ] ) .  T h e  re g io n  around 10 - 1 1  M e V  is th e  re g io n  o f  q u a s i-C o u lo m b  stripp in g. From  H ering  
and D ost, Refs [ 6 , 9 ] .

FIG - 6  D e p e n d e n c e  o f  the s p e c tr o s c o p ic  fa cto rs  on  th e  bound sta te  ra d iu s .< R n > .fo r  a g iv e n  n o r m a liz a t io n C . 
T h e  sep aration  en e rg y  m eth od  is used and th e  n o rm a liz a t io n  С  and the d iffu sen ess a a re  k ep t f ix e d . D ost and 
H erin g , R ef. [ 2 2 ] .

(5) As can be seen from  Eq. (4) one can unambiguously relate S to C2
if the shape o f the form  factor ф is known from  a n uclear-structure 
calculation. If this shape is calculated from  the separation energy 
method then the r. m . s. radius of the neutron potential R2 must 
be known. As shown in Fig. 6 , S depends rather sensitively  on Rfj .

(6) As the bom barding energy fo r  a quasi-C oulom b stripping ex p eri
ment is rather low , contributions form  statistical reactions b e 
com e important in light to medium nuclei. This is shown for 
exam ple in F ig .l.. Thus quasi-C oulom b stripping is prim arily  
interesting for heavy nuclei.

(7) At the low bom barding energies the e lastic c ro s s -s e c t io n  dominates 
all inelastic cross -se ction s  and thus tw o -s te p -p ro ce sse s  as the 
excitation o f an inelastic level with subsequent stripping becom e 
com pletely  negligible. This is again a valuable aspect o f quasi- 
Coulomb stripping.
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(8) The su ccess  of the DWBA for quasi-C oulom b stripping also shows 
that the DWBA properly  pred icts the dependence o f the c r o s s -  
section  on the bom barding energy and the Q-value o f the reaction . 
Thus the DWBA method g ives reliable ratios of sp ectroscop ic  
fa ctors . If a com plete spectrum  is m easured, one can then apply 
sum rules to obtain absolute sp ectroscop ic  factors from  the relative 
ones, and this is the usual method.

3. INELASTIC P-SCATTERING VIA ANALOGUE RESONANCES

As an exam ple of resonance spectroscopy  we d iscuss the sp ectroscop ic  
inform ation which one can obtain from  the proton decay of isobaric  analogue 
resonances in heavy nuclei. The scattering m atrix elem ent describ ing an 
isolated  resonance is given by a B reit-W igner expression :

<Scc’ > = (5)
where the background scattering term  Sj?c- is nearly energy-independent. 
The indices c , c ' stand for the quantum num bers which specify  the channels. 
The transition amplitudes gc and gc' are com plex num bers: gc = exp(i6c )IJ.i, 
where is a rea l num ber, whose sign is not n ecessa rily  positive. For 
channel energies below the C ou lom b-barrier , 6C is the Coulomb phase-shift. 
The IAR' s  in heavy nuclei have a fine structure and the brackets^ ' У in 
Eq. (5) denote an average over an interval which is large com pared to the 
width of the fluctuations and sm all com pared to the total resonance with FJ.

The non-averaged m atrix elem ent is then S Cc' = ^ Scd'/* + Sec’ , thus 
one obtains a sim ple picture only if < |s££- I2)  «  K s cc> )>|2 , because in this 
case the fluctuating part can be neglected. This is usually possib le  for 
strong IAR in (p,pj)) and (p, p 1 ) in heavy nuclei above about A =140. Under 
this assumption and if one can also neglect the d irect part Sec’ one obtains 
an explicit expression  for the d ifferential cross -section  from  Eq. (5). For 
the reaction  sequence I0 + p -1“» J-1-* I + p 1 one gets [ 14 , 15]  the c r o s s -  
section  form ulae (6).

In Eq. (6) we have assum ed that Io = 0, jo = J, and that Io, J, I, j, J are 
the spins o f the target, resonance, final state and the tran sferred  particles  
respective ly :

| А ( М , Й- , Й) | 2 (6a)
M, p ', p

where ■

A (M' , , ц) = - i  1т± X --------- ------------ (2 i  + l ) i
E  -  E j  +  I  Г 1

X Y  Y  ' ( í 0 5 ^ | J M j )  ( I M j m J j M j )  
J Mj, irijim

X ( í m b 1 I j mj )  Y Cm (в,ф)
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This may be written

da
df2 -  irX (E - El )2 + ( r J / 2 )2 I PL (cos 0)

L=0, 2 ,4 ,

X B ( j , j , L )  (Г/. Ti» )* cos  ( 6j. - )

where the B ( j , j , L )  are geom etrica l coefficien ts [15].  The Г/j are widths 
for the decay J-¡* I; and ^  is the elastic-scattering  width.

The expression  for  the integrated c ro ss -s e c t io n  is particu larly  sim ple

/ s dn- 5 ' * ! <2J + 1 )
W  Y' pJ 
1  o j  Y  1  i j

(E -E ¿  f  +  ( Ф )2
(7)

In Fig. 7 we show som e typical excitation functions. It is seen that 
there are clea rly  ca ses , as,e. g. the excitation function to the 208Pb(4_ ) 
state, where the d irect reaction  mode can be neglected and the resonance 
has a L orenz-shape as given by Eq. (7). But there are other ca ses , as e. ¡ 
the 208Pb(3~) states, where the direct amplitude must be taken care  of.

It is  obvious from  Eq. (7) that from  a m easurem ent o f the elastic and 
inelastic scattering one can directly  determ ine the widths r J, roJJ and the

FIG. 7- E x cita tio n  fu n ction s  o f  208P b (p , p* ) 208Pb. T h e  re so n a n ce  at Ep = 1 4 . 91 M e V  is th e  a n a lo g u e  o f  
th e  g | g . s .  o f  209Pb. From  Z a id i  et a l . , R e f. [ 2 3 ] .
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integrated width Ç  Fjj . Such a determ ination is unique and unambiguous 
j

and can be done if one can neglect com peting reaction m odes'as the fluctu
ating and direct ones. If the phases 6C are known, e. g. if  they are Coulomb 
phases and if the number of widths which contribute to the angular 
distribution is sm all, then one can also obtain the individual (rf j  )г from  a 
fit to the angular distribution [ 14- 16] .  While in one-nucleon transfer

F IG -S . A n g u lar d istr ib u tion s for th e  20‘ P b ( p , p ' )  208Pb (Ex , I) le a d in g  to  d iffe re n t  fin a l states m easured  
o n  top  o f  th e  g  I  r e so n a n ce  at Ep = 14. 91 M e V  show n in  F ig . 7 . T h e  fit  is m a d e  using th e  L egen d re  
p o ly n o m ia ls  P „ , P, and P4 . From  R ichard e t  a l . ,  Ref. [ 2 4 ] .

reactions and in the integrated resonance c ro ss -s e c t io n  the widths (r^j 
corresponding to different tran sferred  angular momenta j add incoherently, 
they add coherently in the angular distribution and one can thus determ ine 
also the relative signs of the widths (rVj . F rom  a set of such widths 
(itf ) i  fo r  a given final state I one then can obtain an expansion o f this state 
in various configurations as has been shown e . g .  by Bondorf et al. [14] 
and H eusler et al. [ 15] .  Some typical angular distributions m easured on 
top o f the g| resonance in 209Bi are shown in Fig. 8 . The fits are made with 
the, Legendre polynom ials PQ, P 2 and P4 which com pletely  d escribe  the 
angular distribution.

The sp ectroscop ic  use of the (p, p 1 ) reaction via IAR, com es from  the 
fact that the analogue state and the parent state are both m em bers of an 
isobaric  m ultiplet and thus have the sam e internal structure. F or a m ore 
com plete d iscussion  o f the resonance reactions via  IAR we re fe r  to the 
T allahassee con ference on isospin  [34]  and to an article  by G.M. T em m er [33]. 
The proton width (Ij^ of the IAR with spin J is proportional to the neutron 
width G ^ j connecting the parent state J with the final state I. A schem atic 
illustration of this relation is given in Fig. 9.

(F ij)*  = ( I jS P )* Gy / G? ’ p'

= (Г,'-Р-)* (Sjj )* (8 )

= (r;-p-)*<J I (aj(E> i ) j X - i ) (I' H>
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TABLE И. COMPARISON OF THE INTEGRATED WIDTH ^  r * tj (E^) (CORRECTED FOR THE CHANNEL ENERGY
a l

ACCORDING TO Eq. (9) FROM THE DECAY OF THE g| RESONANCE [24]  INTO STATES IN 208Pb WITH THE 
SINGLE-PARTICLE WIDTH (2j + l )  Г-s-P-OBTAINED FROM THE DECAY [ 28, 30]  OF THE 0+ GROUND-STATE 
ANALOGUE IN 208ßi TO THE SINGLE-HOLE STATES IN s^Pb.

N u m b er o f  states 
w ith  Г p* > 2  k e V

Em in  t o  Em a x  

(M e V )
I r«ii
a  I

A ssign ed  co n fig u ra tio n s c e x p

(M e V )

e] - p *

(M e V )

3 .3 7 5  3 .4 3 0  Оft
3 .9 9 4  4 .0 0 0  r

4 .3 7  4 .3 2 4

3 . 0  -  3 .8  5 5 .8  k e V

3 .8  -  4 .1 5  2 5  k e V

4 .1 5  -  4 . 8  6 2 .4  k e V

5 7 .2

33

56
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FIG- 9 . R e la tion  o f  th e  c o m p o u n d  n u c le u s  (C + p ) and corre sp o n d in g  paren t states in  th e  n u c le u s  (C + n ) to  
states in  th e  n u c le u s  C.

As is seen in Eq. 8 the study o f IAR gives the same sp ectroscop ic  fa ctors , 
which we would get from  stripping and pick-up reactions on a target in an 
excited  state if  such an experim ent w ere possib le . The possib ility  of doing 
it via the (p, p 1 ) reaction is the main reason for the study o f the resonant 
(p, p ' ) reaction. The factorization  of the width I}j into a sp ectroscop ic  
factor S and a s in g le -p artic le  width-FfP- is the reason  for the strong s e le c t i
vity of the resonant (p, p ' ) reaction . A beautiful exam ple o f this selective 
excitation is shown in the spectra  (F ig. 10) obtained from  the 208Pb(p, p 1 ) 208рь 
reaction  m easured at energies corresponding to various IAR in 20®Bi. 
Indeed, different groups of neutron partic le -h o le  states are excited in 
different resonances.

The relation (8) is  obviously only valid if the resonance decays in one 
step J -L» I. It is not valid if  the final state is reached by a tw o-step  reaction. 
Such m ore com plicated  reactions apparently exist as shown by H am burger [17] 
who observed  the isosp in -forb idden  excitation o f analogue resonances in 
(d, p) stripping reactions. An exam ple is shown in Fig. 11. Since the e x 
citation of the IAR is isosp in -forb idden  in this case , Tam ura [31 ] has 
suggested that the reaction  must be interpreted as an e lastic or inelastic 
resonance reaction  follow ed by a p ick -up  reaction: 208Pb + p —► 209Bi —. говрь 
+ p — 207 pb + d.

F or the quantitative determ ination of sp ectroscop ic  fa ctors  S one must 
know the single particle  decay width Г^-Р-, which is the width of an isobaric  
analogue o f a s in g le -p artic le  state. Again one can try a relative method 
and obtain the s in g le -p artic le  widths from  the resonance scattering on a 
neighbouring nucleus where the sp ectroscop ic  factor is known. In Table II 
we give a com parison  o f the summed decay strengths of the gf- IAR in 
208Pb + p to the sum rule lim its derived from  the decay o f the 0 + g. s. 
analog resonance in 201Bi + p. In Fig. 12 we show a com parison  of a set 
o f integrated widths with th eoretica l widths obtained from  the wave functions 
by Kuo and Brown [27] .  S ingle-particle  widths obtained by the relative 
method w ere used. In making these com parisons one has to c o rre c t  for 
the energy dependence o f the s in g le-particle  with Г>Р-.

In the cases where the channel energy is below  the Coulomb b a rr ie r , 
this correction  is usually done by using Coulomb penetration fa ctors  as
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6 5 4 3
EXCITATION ENERGY (MeV)

(a) ■

(b)

FIG. 10. In e la s t ic  p ro ton  sp ectra  from  208Pb at fou r b o m b a rd in g  en e rg ie s  corre sp o n d in g  to  su c ce ss iv e  s in g le 
p a r t ic le  a n a lo g u e  states in 209Pb. W e e m p h a s iz e  th e  s e le c t iv e  ch a ra cte r  o f  th e  re a c t io n : a g iv e n  le v e l  is 
s tron g ly  e x c i t e d  in  o n e  re so n a n ce  o n ly . From  M o o re  et a l . , R ef. [ 2 5 ] .  and Brentano et a l . , Ref. [ 3 2 ] .

shown in Eq. (9)

(9)

where

R 0 »  1 .4  A+ fm
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(PROTON CHANNEL ENERGY) CM IN MeV

FIG. 11. E x cita tion  fu n c tio n  o f  208P b(p, d )  207Pb. T his is an e x a m p le  o f  a  r e so n a n ce  re a ct io n  fo l lo w e d  by  a 
d ir e c t  e x c it a t io n  as d iscussed  in  the te x t . F rom  S tein  e t  a l. , R e f [ 2 6 ] .

FIG. 12. T h e  upper fig u re  g iv e s  th e  w i d t h ^ ^ r ^  from  th e  d e c a y  o f  th e  g-2_, re so n a n ce  in  Z09Bi to  v ariou s

states in  208Pb o b ta in e d  from  an gu la r d istr ib u tion s  o f  208P b (p . p'. )  show n in  F ig . 8 . A lso  show n is a ca lc u la t io n  
o f  th ese  w id ths using th e  w a v e  fu n ction s  o f  e x c ite d  states in  208Pb b y  K u o and Brown [2 6 ]  and s in g le -p a r t ic le  
w id ths o b ta in e d  by  th e  r e la t iv e  m e th o d  as d iscussed  in  the ca p t io n  to  T a b le  II. From  R ichard  et a l . , R ef. [ 2 7 ]
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This procedure is , how ever, only approximate because the energy depen
dence on the bound-state wave function is not included. F or the calculation 
o f Г*-р' different theories [18]  all result with an expression  which is up to 
m inor co rrection s  [19]  equivalent to [ 2 0 ]

g j / -  = exp (irif j ) (r)|Vc ( г ) - Д с |х ^ ( г ) > ( 7г/т0 )̂  (10)

H ere, ф$] is the s in g le -particle  neutron wave function for  the parent state J; 
■x|P? is the optica l-m odel proton wave function in the decay channel I + p 
having the (com plex) scattering phase shift гщ and being norm alized to a
6 - function:

<X¡] ( E ) K 5 j  ( E ' ) >  = 6 ( E - E * )  ■ ( 1 1 )

Vc (r) is  the Coulomb potential acting on the outgoing proton, A c is the 
C oulom b-energy d ifference minus the proton-neutron  m ass d ifference, and 
it is known from  the energies of the analogue state and its parent state.
To is the isospin  of the state I. In general, the calculation of gs p again 
requ ires additional knowledge about potential param eters, as shown in 
Eq. (10). While a carefu l analysis of the proton scattering w ill determ ine 
many of these param eters the radii o f the neutron potential and the proton 
potential are le s s  w ell determ ined. The s. p. Coulomb potential depends 
on the charge radius, which can be taken from  electron  scattering. An 
exam ple [19]  of a com parison  between spectroscop ic  factors from  elastic 
scattering and (d, p) reactions on the same target is shown in Table III.

In analogy to the situation in the stripping reactions considerable 
sim plification  o ccu rs  in the calculation o f gs. p. if the channel energy is

TABLE III. COMPARISON OF SPECTROSCOPIC FACTORS Sdp FROM 
THE EXPERIMENTS 140Ce (d, p) AND I38ßa(d,.p) WITH SPECTROSCOPIC 
FACTORS-OBTAINED FROM THE ANALYSIS'OF ELASTIC-RESONANCE 
SCATTERING VIA IAR ON THE SAME TARGETS [9 ]

T a r g e t Eres
(M e V )

Ex
(M e V ) ^ P P ^ d p

138Ba 1 0 . 02 0 Í 75
0 .9 4 0 .7 6

T  = 13 
0

1 0 .6 5 0 .6 4
P*
Pi ■

.0 .4 0 0 .4 9

1 1 . 1 1 1 . 0.8 0 .3 7 0 .4 2

1 1 .4 6 1 .4 3  '
2

f * 0 .2 8 0 -2 4

■ 1 1 .7 3 1. 71 f 5
7

0 .2 3 0 .2 4

I40C e

9. 75 0 : V, 0 .8 6 0 .8 9

1 0 .4 0 0. 65
-

0 -4 2 0 .4 2

T 0 = 12 1 0 .8 8 1. 13
2

f A

,0 .2 8 0 .3 8

1 1 .2 5 . 1 .5 0 0 .2 7 0 .3 0

1 1 -4 9 ■ 1 . 7 4
2

0 .2 5 0 .3 8
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w ell below  the Coulomb b a rr ie r . In this case the integral in Eq. (10) be 
com es nearly independent of the proton param eters [19]  because the 
contributions of the nuclear in terior becom e negligible. This case  c learly  
corresp on d s to the sub-C oulom b stripping and sim ilar conclusions may be 
drawn. Unfortunately the sub-C oulom b case  does not seem  to be rea lized  
very  often. In particu lar, in contrast to the situation in the (d, p) reaction 
where one is  free  to choose the incident energy, the bom barding energy 
fo r  the production o f a particular IAR is fixed and thus a consideration  o f 
the non-sub-C oulom b case cannot be avoided.

4 .  C O N C L U S I O N

We have d iscussed  the problem - of sp ectroscop ic  inform ation from  
resonant (pp* ) reactions which proceed  via IAR and from  "quasi-C oulóm b" 
(d,p)  stripping reactions. In both cases the c ro s s -s e c t io n  can be d irectly  
and unambiguously analysed in term s of a set of reaction  widths, if only 
one reaction mode contributes to it, o r  if the contributions to the c r o s s -  
section  from  other reaction m odes can be suitably taken into account. It is 
these widths which a n uclear-reaction  theory and a nuclear-structure  theory 
should try to calculate d irectly . H owever, a much m ore  easily  interpretable 
param eter for 'nu clear-stru ctu re  physics is  the sp ectroscop ic  factor. There 
are, as we have discussed, good theories fo r  obtaining the sp ectroscop ic  
fa ctors  S from  the reaction Width g and G but additional knowledge on the 
form  factor and on the optical m odel wave functions inside the nucleus is 
needed to make the calculation o f S unique. The ratios of sp ectroscop ic  
fa ctors  are usually le ss  dependent on the potential param eters and can thus 
be determ ined quite reliab ly  from  these reactions. By the use of sum rules 
one can obtain also absolute sp ectroscop ic  factors .
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HARTREE-FOCK CALCULATIONS 
FOR LIGHT NUCLEI

M. BOUTEN 
Centre d'Etude de l'E n ergie  Nucléaire, 
Mol-Donk, Belgium

Abstract

H A RTR E E -FO C K  C A L C U L A T IO N S  FOR LIGH T NU CLEI.
1 . In tro d u ct io n ; 2 .  H a r tr e e -F o ck  e q u a t io n s ; 3 . S o lu tio n  o f  th e  H a r tr e e -F o ck  e q u a t io n s ; 4 .  Results o f  

H a r tr e e -F o ck  e q u a t io n s ; 5 . P ro je c t io n  o p e r a t io n s ; 6 . P ro je c te d  H a r tr e e -F o ck  ca lc u la t io n s  fo r  4  ^ A  — 1 2 ;
7 . Results o f  p r o je c te d  H a r tr e e -F o ck  c a lc u la t io n s  fo r  n u c le i  w ith  4  £ A  ^ 1 2 ;  8 . C o l le c t iv e  m o m e n ts  and 
tran sition s . F orm  fa c to r s  fo r  h ig h -e n e r g y  e le c t r o n  sca tte r in g .

1. INTRODUCTION

In recent yea rs , H a rtree -F ock  (HF) calculations have becom e very  
fashionable in nuclear-structure studies. The first calculation  appears 
to have been made by Nesbet and Ullah [1J for  the ground state o f l 60 .
Soon a fterw ards, an extensive investigation o f m ost nuclei in the ls-O d 
shell was ca rried  out by L ev in son 's  group at the W eizm ann institute, 
using an approxim ation of the usual H F-m ethod. In these calculations only 
the particles outside the 160 -c o r e  w ere taken into account, and their orbitals 
w ere restricted  to one m ajor osc illa tor  shell. These calculations can best 
be looked upon as a H F-approxim ation to a standard sh e ll-m od el calculation.
A good review  o f this w ork has been given by Ripka [2] . Com plete H F- 
calculations in which all particles  are con sidered , w ere made by Baranger 
and co -w o rk e rs  fo r  spherica l nuclei, and soon afterw ards a lso  by many other, 
people. The aim  o f these m ore general calculations is the same as in atom ic 
ph ysics: starting from  the tw o-body nucleon-nucleon  fo rce , one tr ies  to 
construct the se lf-con sisten t field of the shell m odel. In this p icture, H F- 
calculations are only a firs t  step in a com plete calculation . Configuration 
mixing should be considered  afterw ards in the H F -b a sis . This has not been 
done so far.

The basic assum ption of the shell m odel is that the nucleons in the nucleus 
behave very  much like independent partic les , moving in a field  created by 
the presence o f the other nucleons. In practica l sh e ll-m od el calcu lations, 
this average field  is chosen in a fa ir ly  arb itrary  way, containing severa l ■ 
param eters which are then adjusted for each nucleus to reproduce good fits 
to the experim ental data. F or exam ple, it is custom ary to choose a'harm onic 
osc illa to r  potential, the width o f  which is adjusted to the experim ental 
radius, and a one-body sp in -orb it fo rce , the strength o f which is adjusted 
in order to obtain a best fit to the experim ental energy spectrum . In this 
way, it is c lea r  that part o f  the su ccess  o f the shell m odel is obtained from  
the adjustable param eters. In a better theory, one should start from  
the nuclear Hamiltonian and construct the sh e ll-m od el potential from  it.
This is the usual procedure in atom ic physics where the H F-m ethod is 
used to construct the average fie ld . The reason  why this method has not
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been taken over into nuclear physics up to recently is that realistic inter

actions between nucleons contain an infinitely repulsive core. This implies 

that matrix elements of such an interaction between independently moving 

particles become infinite. In recent years, a modification of the HF-method 

has been developed for singular potentials. Also, some almost realistic 

interactions have been obtained which do not possess a hard core [3,4] .

In the next section, a derivation of the HF-equations is given starting 

from Schrödinger's variational principle, assuming that the nuclear H am il

tonian is not singular. In section 3, we describe the approximations which 

are usually made to find actual solutions of the HF-equations, and in sec 

tion 4 we describe some selected results obtained in HF-calculations.

This section is very short indeed compared to the large number of HF- 

calculations in the literature. It is mainly given here as an illustration 

of what comes out of a HF-calculation; more results are described by 

J .P .  Svenne in his lectures (these Proceedings).

The main emphasis of these lectures is on the last four sections. Sec

tion 5 shows when and how an angular m omentum  projection can be carried 

out without too much labour. In section 6, we describe how projected 

Hartree-Fock calculations can be made in an approximate way for nuclei 

with 4 s A  § 12. Results for energies and wave functions of such calcula

tions are described in section 7. Finally, .in section 8, these wave func

tions are tested by calculating several physical quantities, and it is shown 

that the enhanced matrix elements of collective moments and transitions 

are systematically reproduced.

2. H A R T R E E - F O C K  E Q U A T IO N S

There exist several ways for deriving the HF-equations (see Baranger1 s 

Varenna notes 1967 [5]). Here we will follow the conventional method [6] , 

which is based on Schrödinger* s variational principle for the energy.

A  system of A  independently moving fermions is described by a Slater 

determinant

Ф (1, 2. . A )

fa(l)

M l )

f AU )

fj ( 2 ).

^ ( 2 ).

V 2>-

f, (A)

M A )

fA(A)

( 1)

The Slater determinant Ф which is a vector of the Hilbert space of A-particle 

states is constructed with A  functions f j , f2 ... . fA which are vectors of the 

one-particle Hilbert space. These one-particle functions will be called 

orbitals. Without any loss of generality, we m ay assum e that the orbitals 

fj, f 2 . . . f A in Ф are orthonormal. Indeed, the Slater determinant Ф depends 

only on the A-dimensional subspace of the one-particle Hilbert space which 

is spanned by the orbitals f1; f2. . . fA and not on the particular basis chosen 

in this subspace. This is easily seen since a linear transformation of the 

orbitals among themselves leaves Ф unchanged but for a factor. The subspace 

spanned by the orbitals fj, f2. . . fA will be denoted by ( f ^  . . . fA} . The ortho-
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normality of the orbitals f¿ has as a consequence that the Slater determinant 

Ф is automatically normalized.

In the HF-method, one looks for the best choice of the normalized Slater 

determinant Ф in the sense that it minimize the expectation value of the 

Hamiltonian H

б <Ф |н| Ф> = 0 (2)

or

<6ф|н |ф> + <Ф I H I 5Ф> = О

This must be satisfied for any small variation | 5Ф which keeps |ф У 
normalized, or, as one easily checks, for any small variation | 6Ф )> 

which is orthogonal to |ф>. Replacing then |бФ^ by | i6Ф one obtains

-1 <6 ф|н|ф> + Кф|н|бф> = 0

The last two equations lead to the conditions

<0 Ф ¡H j Ф > = 0 

<ф | H  |бФ> = о

Since Н  is Hermitian, these two equations are equivalent so that it suffices 

to require the first one to be satisfied.

For the Slater determinant which satisfies Eqs (3), we use the following 

notation. The orthonormalized orbitals which occur in® will be labelled 

u ^ o r u ^ . n  = 1 ,2 . .A )  and are called occupied orbitals. In the space 

orthogonal to {uj, u 2. . -uA} we also choose an orthonormal basis, the vec

tors of which will be labelled by u or uT (сг,т > A ) and which are called 

unoccupied orbitals. The whole set of occupied and unoccupied orbitals 

form a complete basis in the one-particle Hilbert space.

To a variation 6u1; 6u2 . . . 6uA of the orbitals, there corresponds a 

variation of the Slater determinant

■JÂÏ
•*1 u2 •

which is given by

5Ф = * [ u j + ó u j  u 2 + 6 u 2. . . . u A + 6u A| - IujUj . . . i

•ÍÁT ■ ÆT

To first order in the variation this equals

A

ЙФ = ) —-—  I u ,u „ . . . ôu, . . . . u. I
L  Ш
X=1
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The Slater determinant on the right-hand side of the last equation is 

obtained from Ф by replacing the orbital u^ by 6ux . Let us expand 6ux in

the complete basis (и ^,ио)

where the r¡'s are small complex num bers. Introducing this in 6Ф yields

6 Ф = £  £  П Х, Ф ^ + ^  Y  ПоФ°Х 

x = l ( j  = l  X = l a > A

where Ф^ and Ф° are the Slater determinants obtained from Ф by replacing 

the orbital u x by u^ and u 0, respectively. Obviously Ф^ = 6 . The Ф£

are one-particle-one-hole states. The orthogonality condition <бф|ф> = 0
A

requires now 2Г V \ = 0 so that we finally obtain

A

бф = X  L  ^  (4)
1 o >  A

The condition (3) now becomes 

A

Y  Y  о* < ф ° I Н  |ф> = о (5)

X -  1 о  > А

Since the r)£ are arbitrary, we obtain the Brillouin condition

\Ф°Х| H IФ У = 0 for all X S A , a > A  (6)

which m eans that the Hamiltonian has no matrix elements between the 

HF-state Ф and the one-particle-one-hole states Ф °.

W e  now assum e that the Hamiltonian H  consists of a one-body and a 

two-body part

A  A

H  = H a +  H 2 = ^ H j ( i )  +  1  Y ( 7 )

i = 1 i t i = l

Usually, Hj is just the kinetic energy and H 2 the two-body interaction.

The Brillouin condition (6) can now easily be transformed into a condition 

on the orbitals u Using the notation | X У for u^, one immediately obtains 

from relation (6)

A

< a | H l |x>+ £ <  ffju|H2(l - P)|Xm>, = 0 for all X s A ,  cr > A  (8)

d = l



IAE A-SM R-6 /1 4 365

H ere P is the permutation operator for two p artic les . This is called 
the H a rtree -F ock  condition. 'It is usually written in a different form  as

\<t| h I X̂ > = 0  for all A s A , a > A  (9)

'w here h is called  the H a rtree -F ock  Hamiltonian defined by its m atrix 
elem ents between any two on e-particle  states as

A

< a j h I b > = <a|H j|b> + ^  < a/u |н2(.1 - P) | b/u > (10)
(i = l

The HF-H am iltonian h is  a one-body operator which depends on the A 
occupied orbita ls U j, u 2. . ,uA o r , m ore exactly , on the subspace 
{ u-l, u2 . . . uA} spanned by the occupied orb ita ls. To make this depen
dence m ore exp licit, we w ill th erefore often use the notation h ( u r  . . u A) . 
The H F -condition  (9) thus requ ires  that the A orbita ls Uj. . ,uA must be 
such that the operator h fu j . . . ид } constructed with them, has no m atrix 
elem ents between occupied  and unoccupied orb ita ls. The condition (9) 
can be written as a set of A coupled operator equations '

A

M ul - . - uA} ux= tX = l ,  2 . . . A )  (ID
M = 1

■where the e Xfl form  an eigenvalue m atrix.
It is  easy to check that if  the set of functions ux, u 2 . . . uA satisfies 

the H F -condition  (9) or (11), then any unitary lin ear com bination of these 
functions a lso  sa tisfies  the H F -condition . This'mUSt obviously be so from  
the rem ark  at the beginning o f this section , since the new orbita ls would 
build exactly the same Slater determinant Ф, so that condition (2) rem ains 
satisfied . This freedom  in the ch oice  of the orbital-s ux can now be used 
to introduce an additional condition on the orbita ls which determ ines them 
in a unique way, without, how ever, changing the Slater determinant Ф. We 
choose that particular basis in the subspace {ujU g. . . uA} for  which the
eigenvalue m atrix e X(J becom es diagonal. This is always possib le  because
the e X(Jform  a H erm itian m atrix (or because h is a H erm itian operator).
In this way, one obtains the canonical form  o f the ,HF-equations

.. ;>•

h {u j .  . ,u A} u x = e xux (Л = 1, 2 . . .  A) (12)

These equations form  a non-linear eigenvalue problem , Míe"*unknown orbitals 
ux occu rrin g  a lso  in the definition o f the HF-H am iltonian h. The u^ must 
be eigenfunctions of the operator h which itse lf is constructed by means of 
the u x. This is ca lled  the se lf-con s is ten cy  condition.

Rem arks '

(1) If the one-body term  in the Hamiltonian H contains only the kinetic 
energy operator 2? T (i), the HF-H am iltonian h takes the form  h = T + U, 

i
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where U is called the H F-potential. Equations (12) then have the form  of 
a set of A sin g le -p artic le  Schrödinger equations for particles moving in the 
com m on potential w ell U. This gives a connection to the shell-m odel 
potential.

(2) If by we denote the Slater determinant o f (A - 1) particles ob 
tained from  Ф by taking away the orbital ux, and sim ilarly , by Ф °, the 
Slater determinant o f (A + 1) particles obtained from  Ф by adding the orb ita l' 
u a, one easily  calculates

. < * J h A- > x> = <Ф| Н А |Ф> - ел

<Ф°|НА+1|Ф°> = <ф| НА| Ф> + €0 (13)

where

А А

НА = Y_ Hl(i) + i  X  H2(ÍJ )  (14)
i = l i t j = 1

This shows that, i f ® x, O a n d ® ° are good approxim ations for physical 
states in the (A - 1), A and (A + l) -p a r tic le  nuclei, the and e 0 are good 
approxim ations for the separation energy o f a single nucleon.

(3) The subsidiary condition yxtposed on the occupied orbitals in deriving 
Eqs (12) still leaves som e arb itrariness in the definition of h since a one- 
body operator can always be written in many different ways as a sum of a 
one-body and a tw o-body operator. The kinetic energy operator can, for 
exam ple, be written as a sum o f a one-body and a tw o-body operator

A A_

Y  T ( i )  = x X  T ( i )  +  ( 1 -  x )  2 ( A1 -  1)  X  [ T ( i )  +  T ( J ) I
i= i i= i i^ j=1

where x is an arb itrary  rea l num ber. The canonical H F-equations w ill be 
changed to a form  which, for x /  1, does no longer have a sim ple physical 
meaning, but which may be easier in practica l num erical calculations (e .g . 
with x = 0). The sin g le -p artic le  energies and the orbitals w ill, as a ru le, 
a lso  be changed, but the Slater determinant Ф must obviously rem ain the 
sam e. One should a lso  notice that for x f  1, the new tw o-body operator 
depends on the number of particles A which im plies that a sim ple relation 
o f the type (13) is no longer valid (since the new operators HA.j ,  HA and 
HA+1 are not related as those defined by (14)).

3. SOLUTION OF THE HF EQUATIONS

For definiteness, we w ill write the Hamiltonian in this section  as 
H = T + V where T is the kinetic energy and V is a tw o-body interaction 
energy. The usual sym m etry properties o f V w ill be assum ed throughout 
this section . The HF-H am iltonian w ill be written as h = T + U.

The H F-equations (12), being only a condition for the stationarity 
o f the energy, have very  many solutions. In fact, it is easy to show
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that there are always an infinite number of solutions of Eqs (12). The 
difficu lty con sists in finding the solution which gives the low est energy.

Let us firs t  show that any set of A plane waves with wave vectors
¡Cjltg • • . Йд f ° rm s a solution o f Eqs (12). In the usual way, we take a large
cube with period ic boundary conditions as norm alization volum e, so  that 
the plane w avesican be norm alized  \kj|kj> = ó ¡ - . We w ill show that

<kj |h , l iA} 1̂ . > = for all i and j (15)

which w ill prove that the plane waves | k ^  . | kA)> form  a solution
of Eqs (12). Using definition (10), the left-hand side of expression  (15) 
can be rew ritten as

A

<k¡ |Т |kj> + ^ < к ;к х|У(1 - P )|kjk^> 
x * i

which equals

2 2 A  

^  «и + «« ^ k i k x l v d - P J l k i k x )
x = 1

because V com m utes with the total momentum (or is translationally 
invariant). This has the form  of the right-hand side of expression  (15) 
with

2 2 A

6 i =\ ^ t + ¿ < £ к х к ( 1 - Р ) | к ; к х > 
x=i

This proves that any set of A plane waves form s a solution of the H F- 
equations (12). Since we are interested in finding the low est solution 
(low est total energy), we calculate the total energy

A  A

<Ф ¡H 1Ф > = Y  ^  + | X  < ]^ I V t1 - p > | k x V  
X=1 X ¿  M = 1

Am ong all plane wave solutions, we then expect to find the low est HF- 
solution by taking the A plane waves with low est kinetic energy. One 
usually assum es that this solution w ill a lso  be the low est solution among 
all H F -solutions in the case of infinite system s like infinite nuclear m atter. 
There is , how ever, no p roof for th is, and Overhauser [7] has shown that 
one may obtain a low er energy solution a lso  in the case o f infinite system s 
for specia l types o f interactions.

In the case  o f finite nuclei, it is obvious that the plane wave solution 
w ill not be the low est one, since the particles are interacting only very  
little when they are sm eared out over all space. How can we find a low er 
energy solution and especia lly  the low est one? In practica l calcu lations,
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an iteration procedure is used to find a solution of the H F-equations, which 
you may hope w ill be the low est one. One m akes a guess for the occupied 
orbita ls (ca ll them u j^ ) ,  one calcu lates h { u ^ }  by means o f definition (10) 
and finds its eigenvalues and eigenfunctions. Let us ca ll its low est A 
eigenfunctions u-^ , u ^  . . . u ^  . These are now chosen to construct h { u ^ }  . 
This new operator is again diagonalized, its low est A eigenfunctions chosen, 
and one continues in the sam e manner until se lf-con s is ten cy  is obtained, 
i . e .  until the u x in two consecutive steps of the iteration  rem ain unchanged.

The reason  for choosing the low est eigenfunctions o f h {u x} at each step 
o f the iteration is that one hopes that this set w ill give the low est total 
energy \ф|н|ф> at each step of the iteration. This choice  is not n ecessary  
to find a solution o f Eqs (12), but one hopes that it w ill help to find the low est 
solution.

The iteration procedure described  above is still a form idable work.
In all practica l calculations the problem  has been sim plified  in either of 
two different ways:

1. Truncation o f the on e-particle  Hilbert space

In m ost H F -calcu lations for light nuclei, one has taken the subspace 
spanned by the low est four harm onic oscilla tor  shells Os, Op, ls-O d , lp-O f. 
This is  an eighty-dim ensional subspace. If we ca ll ¡ O  (i = 1, . . . 80) an 
orthonorm al basis in this subspace, the H F -orb ita ls u x are then determ ined 
by their expansion coefficien ts  X*1

80

ux = ^ X ^ | i>  (16)
i = l

and the H F-H am iltonian h {ujU 2 . . .ид} is rep laced  by an eighty-dim ensional 
m atrix :

A 80 80

<i|h| j>  = <i| T j j > + V  Y  Y  x£*<ik|v(l - P ) | j i> x £  (17)
X=1k=l i= l

The HF-equations (12) are then rep laced  by the matrix equation 

80

^<i|h| j>  X^ = e xX^ ( i = l , . . . 8 0 )  (18)
j = i

Thus the X х are  the different e igenvectors o f the m atrix (17). One again 
proceeds by iteration . Making an initial guess for the A occupied eigen 
v ecto rs  (ca ll them XM l) ), one calcu lates 0 | h (!)  |j^ by means of ex 
p ression  (17) and diagonalizes it.. Calling the low est A eigenvectors X x(2) one 
calcu lates again <( i |h(2) |j)> by means o f expression  (17) and continues until 
se lf-con s is ten cy  is  achieved. This iteration  procedure is  obviously much 
sim pler than the general iteration procedure sketched before  because dia- 
gonalizing a finite m atrix is  very  much sim pler than finding the low est A 
eigenfunctions o f a general one-body operator.
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If the dim ension of the subspace is largue, how ever, the num erical 
labour rem ains very  large . For exam ple, in the case  of the finite eighty
dim ensional space considered  above, there are (80 X 81 )/ 2 = 3240 matrix 
elem ents to be calculated at each step of the iteration : Each m atrix e le 
ment, calculated by means o f expression  (17), contains a sum of A X 80 X 80 
= 6400 X A m atrix elem ents1 of V. This large num erical problem  can be 
sim plified  by the second approxim ation called the sym m etry restr iction .

2. Sym m etry restriction

Suppose that our initial guess of the H F -orb ita ls u ^  has a certain  
sym m etry. For the sake of definiteness, let us suppose that each u ^  has 
a definite parity Iu ^  = еф Then the HF-H am iltonian constructed
with the u^ÿ w ill comm ute with the parity operator [ h { u ^ } , I] =0. To 
show this, we only have to prove that [Uiu^1) } , ! ]  =0. F or general s in g le 
particle states |a^ and |b^ one has <

< a J i"1" UII b > = < la I U| lb >

A

= ^T<Ia, u ^ l v d  '-P )| lb ,u W  >
X=1

from  the definition o f U. Transform ing both bra and ket by the unitary 
operator I g ives (since [I,V ] =0)

A

= ^ < а ,1 и [ 1} IV( 1 - P)|b, Iux(1)>

A

= У \e í 1) I2 I V(1 - P)| b, u =< a I U|b>
xTi

Since I a)> and |b)> are general s in g le -particle  states, one has the operator 
relation

If U {u^4 } I = U {u < « }

or

[I, U { u ^ } ]  = 0

The above p roo f only shows that i f  the probability density for finding 
the nucleons is sym m etric under inversion  through the orig in , then the 
potential created by this m ass distribution w ill a lso  be sym m etric.

1 From  expressions (1 7 )  and (1 8 )  o n e  sees that the labour in v o lv e d  in  a H F -c a lc u la t io n  dep en ds very
li t t le  on  th e  n u m b er o f  p a n ic le s  A ,  con tra ry  t o  w hat is th e  ca se  in  th e  usual s h e l l -m o d e l  ca lc u la t io n s ,
but m a in ly  on  th e  d im e n s io n  o f  the o n e -p a r t ic le  su b sp ace .
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Now, since [I, U {uj¡^ }J = 0, the eigenfunctions o f h {u j^  ) w ill have 
definite parity

In other w ords, the sym m etry of the initial guess is conserved  during the 
iteration , and the iteration procedure w ill eventually converge towards a 
solution having the sam e sym m etry property. If the initial guess has a 
definite parity, the iteration procedure w ill always converge towards a 
solution with a definite parity. A sym m etry (like parity) which is con 
served during the iteration procedure is called a consistent sym m etry.

There are two aspects of consistent sym m etries:

i) Starting from  a guess with definite parity, one w ill obtain a solution 
with definite parity. This means that if  the low est H F-solution  does not 
have definite parity ( i .e .  if  the HF-Hamiltonian has no inversion  sym m etry) 
one w ill never be able to obtain the low est H F -solution  if  one starts from
a guess with definite parity. If one wants the low est H F-solution , one 
should start from  a guess without sym m etry.

ii) On the other hand, a consistent sym m etry sim p lifies  the num erical 
w ork considerably . C onsider, for exam ple, again the case o f the eighty
dim ensional subspace and take the oscilla tor functions as basic states.

I u [ 2> =e(2)u(2)

( I Os >, I Is >, I 0 d » =  |i> (i = 1, . . . 28)

( [ 0p>, I lp  > , |of>)= |i> (i = 29,. . . 80)

for even parity:
i = l

for odd parity:
i = 29

The m atrix < (i| h {u ^ } | redu ces to the follow ing form :

28 0

52 J 0

and each m atrix elem ent (17) now contains at m ost A X (52)2 m atrix e le 
ments o f V. Thus the sim plification  is threefold :
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(a) there are le ss  m atrix elem ents 0 | h | jX
(b) each m atrix elem ent contains le ss  elem ents of V in its sum , and
(c) sm aller m atrices are to be diagonalized

We shall later see that there is a fourth sim plification  i f  one has to make 
an angular-m om entum  projection .

Thus, although one may lose  the low est solution of the H F-equations 
by starting from  a guess with consistent sym m etry, this has been done in 
all practica l calculations in order to sim plify  the num erical labour.

TABLE I. NUMBER OF TERMS IN BASIC-STATE EXPANSION

1Г m T N u m b er o f  term s in  th e  exp a n sion

+ ± 5 / 2 ± 1 / 2 1

+ ± 3 / 2 ± 1 / 2 2

+ ± 1 / 2 ± 1 / 2 4

- ± 7 / 2 ± 1 / 2 1

- ± 5 / 2 ± 1 / 2 2

- ± 3 / 2 ± 1 / 2 4

- ± 1 / 2 ± 1 / 2 6

Other consistent sym m etries are axial sym m etry (orbita ls are e igen 
functions of j z ) and axial sym m etry in isospace (orbitals are eigenfunctions 
o f t 3). To see how strongly these sym m etries s im plify  the num erical w ork, 
let us consider the above exam ple again. The orbitals are now eigenfunctions 
o f I, j z and t3 with eigenvalues it, m and t , resp ective ly . Table I shows 
how many term s there are in their expansion in basic states. Also, the 
m atrix <( i| h {u x} | j)> is reduced very  much. It contains along the diagonal

4 subm atrices o f dim ension 6 
8 " " 4
8 " " 2
8 " " 1

The total number of m atrix elem ents <( i|h| j)> which are n on -zero  has 
consequently decreased  from  3240 to 196 and every m atrix elem ent itse lf 
is  now a sum o f at m ost A X 36 term s (instead o f A X 6400). The s im p li
fication  in calculating the m atrix (i|h| is  m ore than a factor 2000. One 
sees how much you gain in num erical labour if  one runs the r isk  of losing 
the low est solution. In many ca ses , how ever, one has found as low est so lu 
tion a solution having a higher sym m etry than the sym m etry o f the initial 
guess and so you may hope that the sym m etry restriction  w ill not a ffect the 
accu racy  o f the method.

It is  interesting now to know whether one can still further sim plify  
the calcu lation  by starting from  a guess with a still la rger sym m etry than 
the ones considered  so far. Instead o f talking about the sym m etry o f the 
orb ita ls , it is somewhat easier to talk about the sym m etry of the HF
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Hamiltonian which is , o f  cou rse , the same thing. We have then seen that 
the assum ption o f axial sym m etry, inversion  sym m etry and t3 -sym m etry  
sim plify  the calculation considerably . May we, for exam ple, not assum e 
that h be spherica lly  sym m etric?  The answer is in som e cases "y e s " , 
in m ost cases  "n o " . Of cou rse , we can always start from  an initial guess 
for h, having spherica l sym m etry, but the calculation is sim plified  only 
if  the sym m etry is conserved  during the iteration. A ssum e, for exam ple, 
for a nucleus like ^ e ,  that h ^  be sph erica lly  sym m etric . Its low est 
eigenfunctions are then

s -o rb ita l : 4 tim es degenerate

p -orb ita l : 12 tim es degenerate

So the next ĥ 2) w ill be constructed with four S -orb ita ls and one p -orb ita l 
and cannot be any longer spherica lly  sym m etric. On the other hand, for 
160  the next ĥ 2̂  w ill be constructed with four s -o rb ita ls  ând twelve p -orb ita ls 
and w ill again be spherica lly  sym m etric. Thus, spherical sym m etry is a 
consistent sym m etry for 1®0, but not for 5He. The question then is : for 
what nuclei w ill a certain  group be a consistent sym m etry group? The 
answer to this question is not known in general. One can, how ever, answer 
the inverse question (at least, partly). F or what nuclei w ill a certain 
group not be a consistent sym m etry group? This w ill then exclude severa l 
sym m etries as being non-consistent for a given nucleus, and one may try 
som e o f the rem aining groups and find out whether it is consistent or not 
by doing the iteration.

t The answer to the question "F o r  what А -values is a given group G 
certainly  not a consistent sym m etry grou p ?" is  based on the following 
theorem :

If О is a unitary sym m etry operator for the total Hamiltonian H and 
if  { u }U2 .'. ,u A} is an invariant space under O, then О is a lso  a sym m etry 
operator for h {ujU g. . . uA} . M ore form ally ,

i f  [O.H] = 0

if  0 u x = ^ 0 X(jU(j ( X = l , 2 , . . . A)
¡1 = 1

then [0 ,h {u r  . ид }] = 0

The p roo f is exactly the sam e as that given previously  for the inversion 
operator (see  R ef. [8] ).

The theorem  is a lso  im m ediately extended to a group G o f unitary 
op era tors : i f  [G ,H ] = 0  and {и х . . . . uA} is invariant under a ll operators 
o f G, then [G ,h {u j. .u A}] = 0.

F rom  the previous theorem  we im m ediately have the triv ia l con se 
quence that i f  G is a sym m etry group for h, it is certainly  n ecessary  that 
in the on e-p artic le  H ilbert space there exists a subspace o f dim ension A 
which is invariant under G. In this way, at least, one can start with an 
initial guess u ^  having the sym m etry of the group G. There is no guarantee



IAEA-SMR-6/14 373

that this sym m etry w ill be conserved  during the iteration2 but, at least, 
values o f A with the property that no invariant subspace of dim ension A 
exists cannot have G as a consistent sym m etry group. One is thus led to 
study the dim ensions o f the invariant subspaces in the on e-particle  H ilbert 
space for the different groups G. F or R 3 one finds, for exam ple, only 
even -d im ensional subspaces and for the isospin  group SU2 only a tw o- 
dim ensional subspace. If G is the product group R 3(X)SU2, the invariant 
subspaces have dim ensions which are m ultiples o f fo u r . Thus for nuclei 
with A f  4n, R 3 ®  SU2 is  certain ly  not a possib le  sym m etry group.

A ll this does not seem  very  useful. H ow ever, -in the specia l case of 
a group G for  which all irredu cib le  invariant subspaces have the same 
dim ension d, G is a consistent sym m etry for a ll A which are m ultiples of
d. A triv ia l application o f this are the Abelian groups considered  previously  
(I, j z, t3) which are consistent sym m etries for all values of A . A non
triv ia l exam ple is the tw o-dim ensional rotation re flection  group which has 
only irredu cib le  subspaces of dim ension two in the on e-p artic le  H ilbert 
space, and the isospin  group SU2 which a lso  has only tw o-dim ensional i r 
reducib le  subspaces. A s a resu lt, the product o f the tw o-dim ensional rotation 
re flection  group and SU2 has only irredu cib le  subspaces of dim ension four 
and is  a consistent sym m etry for A = 4n. To show that the above statement 
is  true, let us start from  an initial guess h^1) , com m uting with G. It follow s 
that the eigenvalues o f h(!) w ill have degeneracy d, and the A particles w ill 
just fill the low est A /d  lev e ls . This space is invariant uhder. G and so h ^  
w ill com m ute with G from  the above theorem . Thus G is  conserved  as a 
sum m etry group during the iteration  procedure and is thus a consistent 
sym m etry.

F or m ore details about these m atters we re fe r  to R ef. [8] . M ost c a l
culations so far have been done either for sph erica l nuclei ( ieO, 40 Ca) where 
spherica l sym m etry is a consistent sym m etry, or for  Z  = N (even) nuclei 
(A = 4n) for which the product o f the tw o-dim ensional rotation re flection  
group and SU2 is a consistent sym m etry group. The reason , of cou rse , 
is that this sim p lifies  the num erical w ork  very  much. As stated above, 
one may lose  the low est H F -solution . A typical exam ple of this is  12C, 
for which spherica l sym m etry turns out to be consistent, but the resulting 
H F -solution  is not the low est one. Starting from  a guess without spherical 
sym m etry, one finds a solution which is 14 MeV low er [9] .

4. RESULTS OF HF CALCULATIONS

In this section , we shall d escribe  a typical H F -ca lcu lation  for light 
nuclei. We choose the calculation which in our opinion, is the best one 
done so far. Many other calcu lations about which we shall not talk have 
been done by other people, but our main purpose is  to go on rather quickly 
to som e H F -ca lcu lations with angular momentum pro jection  in the next 
le ctu res .

Kerm an, Svenne and V illars [10] have made a H F-ca lcu lation  for the 
sph erica l nuclei 160  and 40Ca using the Tabakin interaction  [3] . They have

2 I f  o n e  d o e s  not k e e p  t o  th e  p re scr ip tio n  that at e a c h  step  o f  th e  ite r a t io n  th e  lo w e s t  A  o rb ita ls  should 
b e  f i l l e d ,  it is a lw a ys p o ss ib le  t o  ch o o s e  th e  o rb ita ls  such  that th e  sy m m e try  o f  th e  in it ia l  guess is c o n s e rv e d . 
H o w e v e r , o n e  shou ld  n ot e x p e c t  to  fin d  a  lo w - ly in g  H F -s o lu t io n  in  th is w a y .
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sim plified  the H F-equations by assuming rotation inversion  and tim e reversa l 
sym m etry as w ell as t 3 -sym m etry  and by expanding the orbitals in spherical 
o scilla tor  functions. The occupied orbitals are thus written as

u x = ^ X ^ | n  £ j m t >   ̂ (19)
n = 0

and they have truncated the space at N = 4. The X -̂ are rea l and identical 
for different orbitals corresponding to the sam e £ j-va lu e .

M oreover, they optim ize the total energy with resp ect to the oscilla tor  
param eter b by plotting the H F -energy as a function of b.

We d escribe  their resu lts for 16 О in som e detail here. They find that 
the expansion coefficien ts  X^ decrease very  rapidly with n so that the 
truncation at N = 4 is  justified . The sin g le -p artic le  spectrum  ex is shown 
below (we plot only the neutron states):

e X e x

10. 74 ---------------- d 3 /2 0. 93

6. 12 ---------------- S l / 2 -3 . 28

2.,31 d  5 /2 -4 . 15

-9 .4 5  --------------------------------  p 1/2 -15 .65

-19 .65  ---------------------------------  p 3/2 -21 .81

-48 .72  —------------------------------  s 1/2 ?

and the experim ental sin g le -particle  energies ex are given on the right. 
C om parison with experim ent is based on relations (13) where Ф° and Фх 
are interpreted as states of 170  and 150  respective ly . One sees that the 
low est orbital is very  deep, much deeper than is possib le in a loca l 
potential which would have only three bound states. The com parison  with 
the experim ental sin g le -particle  energies is qualitatively good, but there 
are som e d iscrepancies in the details. For exam ple, the unoccupied orbitals 
d 5/2 and S j/2 are not bound in contradiction to the experim ental situation.
W e shall see that this com es out for many H F -ca lcu lations, an explanation 
w ill be given further on.

The sp in -orb it splitting (e .g . between d 3/ 2 and d5/ 2) is too large . A 
possible explanation o f this was suggested by E lliott [11] . He found that 
the sp in -orb it splitting is  very  sensitive to the size  o f the nucleus, the 
sp in -orb it splitting decreasing as the size in creases. Kerman et al. did 
calculate the radius for 160  and found it about 10% too sm all. Thus the 
too large sp in -orb it splitting may be related to the too sm all radius.
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The total energy \Ф | н|ф^ is equal to -3 8 .5  M eV, com pared to the 
experim ental value E = - 127 MeV. To im prove the agreem ent, Kerm an 
and Pal [12] calculated the secon d -ord er co rrection  to the total energy

д Е ( 2) = V  - V  l < u \ U u |  V(1 -P )| u 0uT>|2
i—j  ̂\ ^  ~ - er

o,T

They find

Л Е (2)= -6 9  MeV

so that the total energy equals -107. 5 MeV, which agrees sa tisfactorily  
with the experim ent. The fact that the secon d -ord er contribution is  very  
large does not mean that the convergence of the perturbation theory is bad. 
In fact, one must com pare Д Е Й  with the f ir s t-o rd e r  potential energy 

‘(Ф I VIФ which equals about -350 MeV and so

ДЕ<2)
C 0 - 20

B assich is , Kerman and Svenne [9] extended these calculations to all 
Z = N (even) nuclei with A S 40. They sim plified  the H F -prob lem  by:

(i) Truncating the on e-particle  Hilbert space to the eighty-dim ensional 
subspace spanned by the oscilla tor functions, Os, Op, ls -O d , lp -O f, and
(ii) restrictin g  them selves to solutions with the sym m etry of the tw o- 
dim ensional rotation reflection  group, good parity, tim e reversa l and 
charge independence.

The occupied orbitals are then written as

ux = ^  X n̂ j I n £ j m r )  with ( - ){ fixed
ntj

The X „tj- are rea l and are independent of m and r for fixed nüj.
The nuclei 4 He, 160  and 4°Ca are found to be spherical and w ill not 

be discussed any m ore . The sin g le -p artic le  energies ex for 8Be, 12C 
and 20Ne are shown in F ig. 1. The leve ls  below the dashed line are the 
occupied ones. One finds a gap between occupied and unoccupied orb ita ls. 
This gap was d iscovered  by Levinson in restricted  H F -calcu lations -within 
the s -d  shell, where it shows up much m ore c lea r ly . In H F -ca lcu lations, 
where all particles are taken into account, one a lso  finds energy gaps between 
the "m a jor  shells" o f the shell m odel and in the whole energy diagram ; the 
Levinson gap is le ss  conspicuous than in H F -calcu lations within one m ajor 
shell.

As in the case  o f 160 ,  it is again found that the unoccupied orbitals in 
8Be and 12C have a positive s in g le -p artic le  energy, in contradiction to e x 
perim ental bound nuclei 9Be and 13 с  and the s in g le -p artic le  3/2+ state 
in 20Ne is only just bound, com pared to a w ell bound 21 Ne nucleus. The
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explanation o f this d iscrepan cy  is probably the follow ing. It is known from  
L evinson1 s w ork that the gap between occupied and unoccupied orbitals is. 
considerably  la rger  for  Z  = N (even) nuclei ( 8B e, l2C, 16 O, 20Ne) than for 
the neighbouring odd nuclei. So it is to be expected that configuration 
adm ixtures w ill be m ore  important for the odd nuclei, resulting in a larger 
corre la tion  energy which w ill make the odd nuclei bound.

B a ssich is  et al. find the follow ing values for the expansion coefficien ts 
o f the orbita ls :

8Be :

u ( l / 2 +) = -0 . 96 ¡Os 1 /2  > - 0 .20  I Od 5 /2  > - 0 .02  |ls 1 /2  > + 0. 18 | Od 3 /2  >

u ( 1 /2 ') = 0. 85 I Op 3 /2  > - 0. 50 |0p 1/2 > + 0 .13 | 0 f7 /2 > -0 .0 1  ¡lp  3 /2  >

-0 .1 1  ¡0 f 5 /2 >  + 0 .03  11 p 1/2 >

It is  interesting to rew rite  these coefficien ts  in a L -S  coupling basis 
I n Í m f m s>:

This becom es

u ( l / 2 +) = - 0. 96 ¡Os 0 1/2 > - 0 .27  |od 0 1/2 >+  0.013 ¡Od 1 -1 /2  >

■ - 0. 02 |l s 0 1 /2 >

u ( 1 /2 ')  = 0 .98  ¡0 pO 1 /2  > + 0. 08 ¡0 p 1 - l / 2 >  + . . .
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The rem arkable thing is that u ( l /2 +) and u ( l / 2 " )  are to a very  good ap
proxim ation eigenfunctions o f $ z with eigenvalue ze ro . This is  just what 
one obtains if  one m akes a H F -ca lcu lation  starting from  a central in ter
action . We see that sp in -orb it and tensor fo rce s  play a very  negligible,
r o le  in determ ining the H F -orb ita ls  for sBe.

If one does the sam e thing for 12 С and for 20Ne, one finds for 
12C : the negative parity orb ita ls becom e

u ( 3 /2" ) = 0 .99  I 0 p 1 1 /2  >+  . . .

u (1 /2 ") = -0 . 98 I 0 p 1 - 1 /2> - 0. 18 |o pO 1/2 >+ . . .

and for 20Ne the highest occupied orbital becom es

u( 1 /2+ 1 ) = 0. 03 I 0 s 0 1 /2 > t 0 .86  |o d 0 1/2 > -  0. 30 |o d 1 - l / 2 >

+ 0 .40  I 1 sO 1 /2 >

So you again find that u x are approxim ately eigenfunctions of Hz for 12C 
but with a la rger  adm ixture of different I z values and for 20Ne this is 
still w orse . Spin-orbit and tensor fo rce s  becom e m ore and m ore effective 
in determ ining the H F -orb ita ls  as one goes to heavier nuclei. For light 
nuclei, as s B e, they can be neglected.

The total energies <(Ф | н|ф^> obtained by B assich is et a l. again deviate 
strongly from  the experim ental en erg ies. H ow ever, since the nuclei turn 
out to be deform ed (except for 4He, 160  and40Ca), Ф is  not an eigenfunction 
o f the total angular momentum J2 and can consequently not be associated  
with a particular physical state. One can, how ever, expand Ф in eigenstates 
o f J2 :

J

and associa te  'Fj with the low est physical state with angular momentum 
J. The energy for this state is then E  j  =<(■'? j  |h| 4 ^  /<( T j  | *Fj X  To calculate 
E j  from  a given <(ф|н|ф/ B assich is et a l. postulate that the E j  are related 
as in a rotational band

Ej = E 0 + В J(J+  1) (22)

One then has

<Ф ¡Н|ф> = ^ < ' F j | H | f j >  = E 0 + В  <Ф I J 2 I Ф> 

J

(23)
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Calculating both < Ф |н |ф)> and \ ф| Л2 |ф)>, one can obtain E 0 i f  one knows B. 
T heoretica l methods for calculating В are very  unsuccessful. T herefore 
B assich is et al. have taken В from  the experim ental knowledge of the low est 
excited 2+ state. They get, e .g . for 20Ne,

<ф|н|ф> = - 51 .8  MeV

E 0 = - 56. 0 MeV

whereas E x = - 179.2 MeV

In the same way as for 160, they calculate the secon d -ord er correction  
Д Е (2> for the energy by means of Eq. (20). In this way, the agreem ent with 
experim ent is substantially im proved. For example for 20Ne, they find

E 0 + ДЕ(2) = - 150. 5 MeV

There seem s, how ever, to be no justification for using the standard 
perturbation-theory form ula (20) for deform ed nuclei. F or 160 , the 
H F-determ inant Ф can be considered to be an approxim ation to the exact 
eigenfunction o f H. Splitting H into

I M i , t { ï I v 4  T u ( i > }  1 2 4 1

H
Z_i ' ' iz

¡ / j

where h(i) is the H F-H am iltonian, one can use standard perturbation theory. 
In the case of deform ed nuclei, Ф is a very  poor approxim ation for the rea l 
eigenstates of H, but Ÿj is probably a good approxim ation. H ow ever, while 
Ф is  an eigenfunction o f 72 h (i), ¥j is not. So using ^  as an approxim ation

i
for the rea l states, one should split up the total Hamiltonian H in a different 
way:

H = H0 + н х

where H Q ^  = E jYj . It is , however, not easy to find a sim ple expression  

Another quantity which is calculated is the intrinsic quadrupole moment
for H0

Q i
1  6  7Г

1T~ 120 (25)

The sign of Q intr_ indicates whether Ф is prolate or oblate. B assich is et al. 
found that only 12C and 28Si are oblate; all the other nuclei are prolate.
To com pare with experim ental quadrupole mom ents or B (E2)' s , one has 
to postulate som e relation  between Q intr and observable quantities (in the 
sam e way as for the energies E j). If we postulate the rotational m odel 
relation

B(E2;  2 -» 0) = 1
1 6  77"

Q -^  in (26)
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we find, e .g .  for 12C, B (E 2 ; 2 0 )  = 5 .2  fm 4 , com pared to an experim ental 
value of 8 .4  fm 4 . We have already rem arked above that the calculated 
rad ii are about 10% too sm all. A la rger  radius w ill obviously in crease 
Qintr- and, consequently, a lso  B (E 2; 2 -» 0), giving a better fit to the ex p eri
mental resu lt.

In the next section , we shall show how one can perform  calculations 
with the function Yj d irectly  without having to postulate any relations between 
in trinsic and observable quantities which are not very  w ell satisfied  for 
light nuclei [13] .

To conclude this section , we want to com pare som e properties of the 
H F-potential with what one expects from  it on the basis of the standard sh ell- 
m odel ca lcu lations. Kurath1 s [14] in term ediate-coupling calculation  in the 
p -sh e ll used a sh e ll-m od el potential

—»

U S M  = U  o s c il la t o r  +  s  -£• S

Treating Ças an adjustable param eter, Kurath found best fits to the ex p eri
mental spectra  if  Ç increased  through the shell. A lso , in the s -d  shell, 
a la rger sp in -orb it splitting is needed at the end o f the shell than at the 
beginning. Let us see i f  this com es out here.

160  : e (d 3 /2 ) - e  (d 5 /2 ) = 8 .4  MeV

4°Ca: e (d 3 /2 ) - e (d 5 /2 ) = 13. 3 MeV

Another property o f the sh e ll-m od el potential in the s -d  shell is the so 
called  s -d  inversion . In 170 ,  the s -o rb ita l is known to lie  below the centre 
o f gravity o f the d -orb ita ls  w hereas in 39Ca the s -o rb ita l is lying above.
In the H F -ca lcu lation , the s -o rb ita l lie s  above the centre o f gravity of 
the d -orb ita ls  both in 160  and 40Ca, so the inversion  is not found. It is 
maybe interesting to rem ark  that Baranger and Muthukrishnan [15] did 
find the s -d  inversion  in a H F-ca lcu lation  using the central Yamaguchi 
potential.

5. PROJECTION OPERATORS

In general, the H F-determ inant Ф is not an eigenfunction o f J 2 and
cannot be interpreted as an approxim ate description  o f á particular physical
state. In this case , it is usual to regard  Ф as an "in trin sic  state" in the
sam e sense as in the N ilsson m odel. Insofar as this intrinsic state is su f
ficien tly  stable, the rea l physical states are then associated  with different
rotational states o f the in trinsic state Ф. The way o f obtaining wave functions
for the rotational states from  a knowledge o f Ф is not w ell known. The best
way, so far, seem s to be by means o f pro jection  operators for the angular
momentum. F or sim plicity  we shall assum e that Ф is already an eigen 
function of Jz with eigenvalue K:

J z® = К Ф (27)
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(this is so if  the H F-potential is axially sym m etric). Expanding Ф into 
eigenfunctions o f J 2

we obtain the function ¥ from  Ф by means of a projection  operator P j

YJK = Р; Ф (29)

An expression  o f P j is , for exam ple,

F I n i j (j + l )  - Jl(J i+ 1)J ( 0)
r I

2where JQp is the quantum -m echanical operator for the total angular m o 
mentum. That is , P j is an infinite product of operators, one for each 
value of Jj = 0, 1 ,2 , . . .  , with the exception o f J. E xpression  (30) is , 
how ever, very  d ifficu lt to w ork with, in general. A m ore useful expression  
for Pj is  based on som e properties o f the rotation m atrices

p  -  2 J + 1  
J.

Г _L 1 P
72- J  ® D^)RC (31)

H ere Q, is a shorthand notation for the three Euler angles Q = (ер, 9 гф)

2ît tí 2тг
and

о о  о

¿.TT n  ¿7Г .

J~dí2 = J'dtp J 'з т  6 d9 J'dtp (32)

The operator R fi is  the rotation operator [6]

= e~ i<p}z  e ‘ iG,y e ' i W :

and the function D^K,(Q) are the representation  m atrices

•DJKK.(iî) = < J K l R j  JKI>= e 'iK’ ’dJKK,( e ) e - iK’ îi' (34)

It is  easily  seen , by using standard properties o f the D -functions, that 
the operator Pj defined by E q.(31) is  a projection  operator for the angular 
momentum J. The operator Pj is a Herm itian projection  operator which 
means that
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Useful operators are the related operators

p m  = 4 ^ - f dÇ2D̂  K^>R ß OS)

which construct the "partner-functions" of f JK . The operators PJM 
a re , how ever, neither Herm itian nor projection  operators.

The energy Ej corresponding to the projected  state T JKcan now be 
expressed  as fo llow s, using the fact that the Hamiltonian is  a sca la r , or

[H ,P , ] = 0

One has

E  . < * t k | h | * i k >

<  V l V >

_ \ Ф  I H P j  |ф  >

<ф|р,|ф>

jDJ*(n)<o|HRo|®>dn

y D JK*K(n)<4>|Rn | ®>dtt

Using Eqs (27) and (34) one can easily  ca rry  out the integration over cp 
and ф (this is  the advantage of assum ing E q .(27 )), so that

v
J'sin  0 d0 d ^ e )h (d )

E j = ----------------------------------  (36)
7ГJ sin 0 d0 dJKK(e)n(0)

0

where

h (0) = <Ф |Н e " iejy |ф>

(37)
n(0) = <Ф I e " ie jy (ф>

B efore  describ ing how the functions h(0) and n(0) can be calculated, 
we should like to make som e rem arks about the interpretation o f the func
tions Pj Ф as rotational states. P e ier ls  and Y occoz  [16] introduced the 
projection  operators as a quantum -m echanical description  of the rotation 
o f the in trinsic state Ф. They posed them selves the follow ing problem :
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Since [H .R J  = 0, it means that

<ф| H I Ф> = <R jf|H  IRjjÍ» )

for all Г2. So let us try  to find the best superposition  o f these "degenerate 
functions" RßO

The answer to this problem  is

The function Ï  is a superposition  of the intrinsic function Ф rotated through 
different angles Г2. To see that it may correspond to a rotational state, 
con sider the case that Ф is very  strongly deform ed so that both n(0) and 
h(0) go rapidly to zero  as 0 in crea ses . In this case  we can approxim ate 
the d ^ O )  function in expression  (36) by the first term s of its T aylor 
expansion

This expression  can easily  be obtained from  the defining equation (34) by 
expanding the exponential

in the sense that

¿ < * N * > =0
О ф  >

в2

d KK <e > s  1  -  T  [ J ( J  + 1) ■ r 2 ] + • ■ • (38)

dKi 0̂) = <JK|e'iejy |JK>

= < JK  |l - y- J2 I JK  >

= 1 - j -  < JK |j2 - J2 | JK>

where we have used the obvious relations

<JK I Jy I JK > = 0

< j k |j 2 |j k > = < j k |j 2 |j k >
X у
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Introducing the expansion (38) into expression  (36) we obtain

p  7ГJh(0) s in e  d0 - i  [J (J+  1) - K2] J в2 h (0) sin 0 de
0

E T

Jn{6)  sine  d6 [ J ( J +  1) -  K2] f e 2n{6) sine  d0

о о

Since the second term , both in the num erator and the denom inator, is 
sm all com pared to the firs t  term  [from  the assum ption for n(0) and h(e)] 
one has

/ h (6) /h  (0) / e 2n (0) - je2 h(0) / n(0)
Ej = ^---------  + {  [ J ( J + 1) - K 2] ---------------

jn ( 0 )

where we used the shorthand notation

n(0)

J  f(0)=  J  f (0) sin 0 d0 
0

Thus, the energies Ej are related as in the rotational m odel 

E j = A + B [J (J  + 1) -K 2] + ____

In the same lim it o f strong deform ation, we a lso  find that the same relations 
are valid between B(E2) values and the "in trin sic  quadrupole mom ent"
Qintr.in (25) as in the rotational m odel. One is then justified in saying that 
the functions Pj Ф correspond  to rotational states o f the intrinsic state Ф.
This is , in fact, not surprising because, if  Ф is strongly deform ed, it 
defines a d irection  in space and this is , from  the uncertainty princip le, 
only possib le  i f  Ф contains very  many angular momentum states which are 
related  among them selves as having the sam e internal structure, o r , in 
other w ords, only if  Ф contains a "rotational band". P rojecting  out states 
with a definite J w ill then produce the rotational states which are contained 
т Ф .  On the other hand, i f  Ф does not contain rotational states, Pj w ill still 
p ro ject states with definite J but the wave functions Pj® w ill not be related 
as rotational states. The operator P j has nothing to do with "rotatin g  the 
system  Ф ", but if®  contains a rotational band, Pj w ill p ro ject the rotational 
states out.

A sim ple, exam ple showing c lea r ly  that a state Pj Ф does not always 
mean a rotational state o f the intrinsic state Ф, is given by the LS-coupling 
sh e ll-m od el wave functions for 6L i. In the shell m odel one takes the con 
figuration (Os)4 (Op)2 which for the m ost sym m etric partition [4 ,2 ] can couple 
to L = 0 and L = 2. These sh e ll-m od el functions can be written as L - 
projections from  an "in trin sic  state" Ф0 , which can be taken as a sim ple 
Slater determinant

Ф0 = det |(0s)4(0 p 0 )n+(0 p 0 )p+|
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Here n+ means a neutron state with spin +|, etc. . . One has

¥ = P <
L =2 L = 2

i 2  ч/ бOne easily  calcu lates ф °  |<32о|Ф°/> = - — b2 where b is the oscilla tor
n/4 7Г

length param eter. Thus Ф0 is a prolate state and one might be inclined 
to say that 4'L=o and ¥[ = 2 correspond to rotations of a cigar-shaped  6Li. 
H ow ever, these sam e LS-coupling wave functions can also be written as

Y = p  ai  
L= 0 L=0 Ф

\ - 2  = P L = 2^ ’

. where Ф1 is another Slater determinant

and one easily  calcu lates <(ф' | Q 20 b2 , so  that 4/L = 0 and Ï L = 2

Ф' = | (0s)4( 0 p l ) n+(0 p -l )P + |

J L

could just as' w ell be interpreted as "rotational states of a pancake-shaped “L i" 
In fact, any wave function with a definite J can always be written as 

a J -p ro jection  from  an infinite number of different intrinsic states. It is 
only possib le  to talk about rotational states i f  you have a large set o f  func
tions with different J -va lues, which are related among them selves as in 
the rotational m odel and an equivalent way of saying this is that they all 
can be obtained by angular momentum projection  from  a strongly deform ed 
intrinsic state.

Let us now return to form ula (37) and see how h(6) and n(0) can be 
calculated. If these functions are known, a sim ple integration yields the 
p rojected  energies E j.

5 .1 . A pproxim ate method

In the case  o f strongly deform ed Ф, the functions n(0) and h(6) go rapidly 
to ze ro  as 0 in crea ses . For sm all values o f 0, one has

n (6) = <Ф I 1 - y J y l O  

h (0) = <Ф| H(1 Jy)|®>

up to third order in 0.
An expression  for n(0) and h(0) which is c o rre c t  for sm all values o f 0 

and which goes rapidly to zero  as 0 in creases is

02 I T21- —  <ф| J 2 ^ >n(0) = exp 

h(0) = <Ф I H IФ > exp
о (39)

0f_ < ф !н ^ | ф)
’ 2 <Ф |н|ф> -
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Lam m e and B oeker [17] have tested this approxim ation for the light nuclei 
o f  8B e, 12C , i6o. ' They find that the energies calculated by using these 
approxim ate expressions d iffer from  the exact resu lts only by a few per 
cent. As is to be expected, they find that the agreem ent im proves as Ф 
becom es m ore deform ed.

Verhaar [18] has rem arked that in the case К = 0, the functions n(0) 
and h(0) may becom e large again for 6= it. The method can easily  be adapted 
to include this case .

5 .2 . Exact method

Let us firs t  consider how to calculate n(0) = \ Ф  | e‘ l8Jy |®)> w here®  
is the norm alized  Slater determinant

Ф = L -- det I UjU2 . . . uA|
ÆT

Then е’ 10,УФ is a lso  a Slater determinant which we denote with a bar above, 
Ф. We write

1
ф = s / Ä T  d e t  l U l U 2-  • • ■ U a I

where_u x = e"i0Jy ux. So n(0) is  the overlap o f the two Slater determinants 
Ф and®. It is  w ell known [19] that this equals the determinant of the overlap 
m atrix О defined by its m atrix elem ents

°х„ = < UJ V  = < uJ e ' 10JyK >  (40)

thus

n (0) = det О (41)

To calculate the m atrix elem ents Ox(i, one expands the orbita ls u^ and u 
into eigenfunctions o f j 2 (this is just the form  in which the orbitals are  ̂
obtained in actual H F -calcu lations)

i

u(j = í I ¿ j i ra (42)
i

where m x and m- are fixed, since we are considering  only the case of 
axial sym m etry here. (Extension to non-axially  sym m etric H F -solutions 
is  straightforw ard, but m ore tedious). One im m ediately obtains

°X u=  > У Х х* Х ? , ^  (0) б ., б...L L  1 1 mxm|j ¡¡i;. 11
i i*

(43)
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This is  sim ple to calculate if  the number o f term s in the sum is sm all. 
Introducing these functions in the overlap m atrix O, it is easy to calculate 
the determinant o f О if  either A is very  sm all or if  the m atrix О is reduced 
to a sim ple form . The latter happens if  the orbitals ux have som e symm etry, 
com m uting with the rotation operators . At this stage then, we see how the 
sym m etry restr iction  described  in section  3 a lso  sim plifies the calculation 
o f n(0) and consequently o f the angular momentum projection . The sym m etry 
restriction  has as a consequence that the number o f term s in the expansion 
(42) is much sm aller and consequently sim plifies the calculation of (\  .
On the other hand, the sym m etry restriction  a lso  has as a consequence a 
reduction of the m atrix O. To illustrate how sim ple the calculation o f n(0) 
m ay becom e in specia l ca ses , we again consider the LS-coupling sh ell-m odel 
wave function of 6Li already considered  above. In this case ,

1Ф =~^=7  det |(0 s )n+(0 s )n" (0 s)'*’+(0 s )p’  (0 p 0)n+ (0 p 0)p+ I

where the su perscrip ts n+, p - , etc. . , d escribe  the sp in -isosp in  quantum 
num bers, neutron with spin +§, proton with spin -| etc. Since we consider 
an L -p ro je ct ion  here (and not a J -pro jection ) the overlap m atrix О is defined 
as

, I - i© fi „ I \0 x|j= < u x |e У|им>

This gives

1

1

1

cos  0

cos  0

i. e. a diagonal m atrix, due to the sym m etry of the orbita ls (which are 
eigenfunctions o f I, s z and t 3). We have used the specia l expressions for 
d-functions

d°o(0) = 1 

d jo(0) = cos  0

It follow s that

n(0) = det О = c o s 20

To calculate h(0) we must calculate m atrix elem ents o f both one-body 
and tw o-body operators between Ф and Ф.

h(0) = t(0) + v(0 ) (44)
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where

t(0) = \Ф T(i)

v(9) = £ v ( i , j ) (45)

i < j
We firs t consider the one-body operator part t(6). One has', because of 
the antisym m etry o f the Slater determinants

Ф ^ T ( i )  ф)> = А <(ф |тЦ)|ф)>

Expanding Ф and Ф with resp ect to the first particle

A

= J X  I  <->"■
\=1

1 A  

■ i s b -

и х(1 )Ф х(2, 3, . . . A)

) х+1йх(1 ) Ф , ( 2 ,3 , . . .А )
x = 1

where

(46)

Ф\(2, 3, . . .A ) ='
■J ( A  -  l ) 1. d e t  l U l U 2 - - - U X - l U X+ l

and introducing this into E q .(45 ), we obtain
A

t(0) = ^ ( - ) Х+Ч и х|т|йм><фх|фр> (47)
X,M = 1

Now <фх|ф )> is again equal to the determinant o f the overlap m atrix c o r 
responding to the orbitals of Фх and . This is just the sub-m atrix  of О 
obtained by erasing row X, and co lu m n ^ . This is easily  calculated in the 
sam e way as n(0). The m atrix elem ent \ и х|т|й^> is further calculated
by introducing the expansion (42) yielding 

^ х 1 Т 1йЙ >=Х Х Г Х^ т х1Т 1 1' i i “ x> V л inX ¡1
(в) (48)

which again is quite sim ple if  the number o f term s in the expansion (42) 
is sm all. In the above exam ple of 6L i one obtains in this way (because О 
is diagonal)

t ( 0) <их | т | й х > < Ф х К >

= 4 < 0 s  ¡T I 0s>  co s2 0 + 2< Op |t | 0p> c o s 26
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F or th_e tw o-body part v(0) one proceeds exactly in the sam e way, expanding 
Ф and Ф in determ inants of particles 1 and 2. This gives

v(0) = Ф„р> < u xU)j |v(1 - P ) | ^ >  (49)
X<(iv<p •

where
1 .

Ф Х Д =  d e t ! u r - u H u » i  • • • U M - 1 U M + 1 • • • u a I

The m atrix elem ent \ и хи^|у(1 -P)| > is again easily  calculated by
introducing the expansion (42) and coupling the two particles to a definite J. 
This gives

<u xu J v ( l - P ) | ^ r p> = ^ X ^ X ^ X P
pqrs

X X  C ( j pj qJ m xm,)  С ( ^ , Л п „ т р) dmx+m(J,ra„+mp' e)

X < p j p ; q j q IV ( l - P ) | r j r; s j s >j (50)

This form ula shows c lea r ly  that the labour of such a calculation in creases 
very  rapidly  with the number o f term s in the expansion (42). In the next 
section , we d escribe  an approxim ate projected  H artree -F ock  calculation 
for the light nuclei with 4 S A s 12 for which it is  possib le  to give som e good 
arguments for choosing a specia l form  for the orbita ls such that the overlap 
m atrix О is very  much reduced and the number o f term s in the expansion (42) 
of the orbitals is sm all.

6. PROJECTED HARTREE-FOCK CALCULATIONS FOR 4 S A S  12

It has been said in the introduction that the main objective o f H F- 
calcu lations in nuclei is the calculation o f the sh e ll-m od el potential and 
its eigenfunctions, starting from  the nuclear Hamiltonian. In this way, 
the adjustable param eters are elim inated. H ow ever, one may a lso  hope 
that H F -ca lcu lations may solve in a sa tisfactory  way the old problem  of 
co lle ctiv e  m om ents and transitions. It is w ell known that even in very  
light p -sh e ll nuclei, e le c tr ic  quadrupole mom ents and transitions are often 
a factor two la rger and faster, resp ective ly , than the sh e ll-m od el values. 
Several suggestions have been made o f how to im prove the sh ell-m odel 
functions in order to reproduce the experim ental co lle ctive  quantities. The 
sim plest o f these suggestions is  N ilsso n 's  m odel in which the sh ell-m odel 
potential is allowed to deform . The deform ation is treated as a new adjustable 
param eter and, in solving the problem  o f co llective  quantities, it sharpens 
the problem  o f the adjustable param eters. We know, how ever, that the 
H F-potential has a definite s ize  and a definite deform ation which are c a l
culated starting from  the nuclear Hamiltonian. So we can calculate whether 
this deform ation is  the one needed to reproduce the co llective  quantities.
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To do so , it is n ecessa ry  to calculate m atrix elem ents o f co llective  quanti
ties with projected  functions.

In this section  we d escribe  an approxim ate projected  H F -calcu lation  
for the nuclei 4 S A S 12. These are the sim plest nuclei to calculate and, 
on the other hand, they are already sufficiently  heavy to show the problem  
o f co lle ctive  quantities in a c lear way.

We start from  the Hamiltonian for the internal energy

Л
H = ^ T ( i )  - Tc m_+ i  ^ v ( i . j )  (51)

1=1 i^j

where Tc-m_ is  the kinetic energy o f the centre o f m ass which is subtracted. 
As nucleon-nucleon  interaction we choose an interaction o f the Volkov type 
[2 0 ]

V( 1, 2) = -pV0exp + V(J exp ■M+MP (52)

Volkov [20] has studied potentials o f this type to be used in H F -calcu lations 
for p -sh e ll nuclei. The param eters V0 , a, V'0 and a1 are chosen so as to 
fit approxim ately:

i) low -energy tw o-body scattering data;
ii) the binding energy and radius o f 4He.

The exchange m ixture contains only W igner and M ajorana com ponents;
M is chosen so as to fit approxim ately the binding energy and radius of 160 .

TABLE II. VOLKOV AND BRINK PARAMETERS

V 0 a V'o a ' M

V o lk o v  . 8 3 .3 4  1 .6 0  . 1 4 4 .8 6  0 .8 2  0 .6 0

Brink 60 1 .8 0  60 1 .0 1  0 .6 5

We have used two sets o f values for the param eters and label them 
by "V olkov" and '-'Brink", resp ective ly . The last set was used by Brink [21] 
in som e variational calcu lations with a -p a r tic le  type wave functions. The 
interaction  (52) is purely central and independent o f spin and isospin  c o 
ordinates. The eigenfunctions o f the Hamiltonian (51) can im m ediately be 
c la ss ified  by W ign er1 s superm ultiplet theory [22] . The low est energy 
eigenfunctions belong to the m ost sym m etric partition [f] and are eigen
functions o f both orbita l (L) and spin (S) angular momentum separately, 
as w ell as o f the total isospin  T. How can the use o f such a Hamiltonian 
in nuclear H F -calcu lations be ju stified ? In particu lar, can a H F -calcu lation  
with a purely central Hamiltonian have and physical value?

There are som e arguments why spin, orbit fo rce s  can probably be 
neglected for the nuclei 4 S A S 12, at least, in first approxim ation. F rom  
interm ediate coupling sh e ll-m od el calcu lations [23] it is  w ell known that
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the partition quantum number [f ]  is very  good for nuclei with 4 S A S 9 and 
for the heavier p -sh e ll nuclei it is still a fa irly  good quantum num ber. The 
low est partition [f ] contains the following L -va lu es:

A [f] L

5 [41] 1

6 [42] 0 ,2

7 [43] 1,3 •
8 [44] 0 ,2 ,4

9 [441] 1 ,2 ,3 ,4

10 [442] 0 ,2 ,4 ; 2 ,3 ,4

11 [443] 1 ,2 ,3 ,4

12 [444] О to

With the exception of A = 9, 10, 11, all the other nuclei correspond to 
partitions whose L -values in crease by steps of two. This means that 
a sp in -orb it fo rce  has no off-d iagonal m atrix elem ents, mixing different 
L -va lu es. A s  a resu lt, if  [ f  ] is a good quantum num ber, L is a lso  a good 
quantum number for A = 5, 6, 7, 8 ,12 . Spin-orbit fo rces  then only play 
a ro le  in lifting the degeneracy in J, without changing the wave functions, 
and can be neglected in a calculation o f the wave functions. For the nuclei 
A = 9, 10, 11, the L -m ix ing  due to the sp in -orb it fo rce  can easily  be taken 
into account afterw ards by perturbation theory. The way to do this w ill be 
described  in subsection 7 .4  in the case o f 9B e. It is to be expected, however, 
that the resu lts are le ss  good for the heavier nuclei, since [f ] is becom ing 
a le ss  good quantum number.

Another possib le  justification  for the neglect o f the non-central fo rces  
follow s from  the H F -calcu lations o f B assich is et al. [9] described  in section 4 . 
There we have seen that the H F -orb ita ls for 8Be obtained in a calculation 
with the rea lis tic  Tabakin fo rce  are essentia lly  identical with those obtained 
in a calculation with a central fo rce , and this is still approxim ately so in 
12C. The non-centra l fo rce s  are thus o f very  little effect in determ ining 
the HF orbitals in light nuclei. We neglect them because this s im plifies 
the calculation  considerably.

F a ess ler  [24] has made H F -calculations for sBe and 12C starting from  
V o lk ov 's  interaction in a truncated Hilbert space (O s, Op, I s ,  0 d, 1 p,
Of). As a resu lt he finds the following Slater determinant:

for 8B e: Ф = -^ = -d e t  |^cp4 I

for 12 C: ф = JUT det (53)
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with

ф0 = I 0 s 0> + a I 1 s 0 > + ß| 0 d 0 >

ф0 = |OpO> + 7 | lp O >  + ó|0f0)>

Ф+1= I О p ± 0  + e | lp ± l>  + ? I 0 f ± 1  > (54)

where a , ß , y ,  ô ,e ,Ç  are som e num erical coe ffic ien ts . The expansion of 
the orb ita ls contains only three term s. On the other hand, one easily  , 
sees  that S24> = 0, so that J = L . Taking an L -p ro je ct ion  P L4>, one has 
to calculate the overlap  m atrix 0 X(J = <Cux | exp ( -id i y) | uM > which turns out 
to be very  much reduced because of parity, spin and isospin  selection  rules 
Thus both conditions for carrying out the angular momentum projection  
without much labour are fu lfilled .

Instead o f proceeding in two steps as described  in the previous sections ,
v iz .

i) solve the HF equations, resulting in finding Ф,
ii) calculate with projected  function Pj Ф

one can try  to do both operations at once. This then means that one asks 
for the best function o f the form  P ^  (where Ф is a Slater determinant) in 
the sense that

This method w ill be called  the projected  H artree -F ock  (PHF) method (the 
pro jection  being carried  out before  the Slater determinant is  obtained). The 
prev iously  described  method w ill now be called the H FP-m ethod (the p ro 
jection  being carried  out after the H F-determ inant is  obtained). The con d i
tion (55) leads to a very  com plicated  set o f equations for the H F -orb ita ls 
u x, and there is no hope o f solving these. In section  3, it was shown how 
the com plicated  H F-equations can be sim plified  in order to find the solution 
of a standard H F -prob lem . Since the equations corresponding to the PH F- 
problem  are m ore d ifficu lt, one must obviously a lso  re.sort to som e s im p li
fying approxim ations.

An approxim ation procedure for  a PH F-calcu lation  with the Hamiltonian 
(51) for the nuclei 4 s A s 12 is  suggested in the follow ing way. If we used 
this Hamiltonian in a standard sh e ll-m od el calcu lation , we should just get 
the E lliott SU3 -functions [25] as sh e ll-m od el wave functions. This follow s 
from  the fact that both [f ] and L are exact quantum num bers and there is 
only one function with a definite L in the low est partition (except for m ass 
10 for which som e L -va lu es occu r tw ice). Now E lliott has shown that the 
SU3 -functions can be written as an L -p ro je ct ion  from  an intrinsic function 
Ф0. In a ll nuclei with 4 s A § 12 it turns out that it is always possib le  to 
choose a single Slater determinant for the in trinsic functions. F or the 
consecutive m ass num bers, one has

6  < р , ф |н | р ; ф >  =  0

< Pj Ф |Pj Ф>
(55)
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5He Ф0 = det (0 s 0 )4 (0 p 0 )n+|

6Li ф° = det (0 sO )4 (0 p 0 )n+(0 p 0 )p+|

7 Li ф° = det (0 sO )4(OpO)n+(OpO)P+ (0 p 0 )n' 1

8Be ф0 = det (0 s 0)4 (0 p О)4 1

9Be фО = det (0 s 0)4 (0 p 0)4 (0 p l )n+ 1

10B ,0 ф - 
К=0 det (0 sO )4(OpO)4 ( 0 p l ) n+( 0 p - l ) p+|

•
ФК=2 = det (0 s 0)4 (0 p 0)4 (0 p 4 )n+(0 p l ) p+ 1

n B ф0 = det (0 s 0)4 (0 p 1)4 (0 p - l ) n+ (Op - l f ( 0 p  - l ) n'

12c Ф° = det (0 s 0 )4 ( 0 p l ) 4( 0 p - l ) 4 |

In the case  A  = 10, there are two in trinsic states [25] , resp ective ly , 
with К = 0 and К = 2. It is im m ediately c lear that the in trinsic functions 
belong to the m ost sym m etric partition, except for the К = 0 intrinsic 
state o f A  = 10. In fact, an in trinsic state belonging to the partition [442] 
would be

det I (0 s 0)4 (0 p 0)4 (0 p l ) n+(0 p -1)P+ |+ det | (0 s 0)4 (0 pO)4 (0 p - l)n+(0 p 1)P+ |

One can, how ever, easily  show that both determinants give the sam e con tr i
bution when an even L -value is projected  out and an opposite contribution 
i f  an odd L -value is projected  out. This shows that one can take just one of 
these determ inants as in trinsic state.

Now, at the beginning of this section , we have pointed out that the main 
ob jective o f H F -ca lcu lations was to elim inate the adjustable param eters, like, 
e .g .  , the s ize  of the orb ita ls. If we should now take as tria l functions just 
the sh e ll-m od el function

ïS  = P»L®° (57)

w ith®0 given by (56) and treat the oscilla tor  pai .im eter as a variational 
param eter to be determ ined such that

E > )  ■. << № > , 5S)
<  \ ° K >

becom es m inim um , we would have elim inated the adjustable size  param eter. 
The procedure could be looked upon as an approxim ation to the P H F -problem .

In the sam e way, we could consider different values for the oscilla tor 
param eters along the z -a x is  (sym m etry axis b |:) and along the x -  and y -axes 
(sym m etry  plane b x). This means that one would use as tria l function

( 5 9 )
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where Ф is  given by expressions (56) in which the follow ing replacem ents 
are m ade:

O sO —> X 000(b ±, b^)

°Р О — Х 001(Ь ;, b ')

O P i l ^ ^ . i l . o l 15" .  b j )  (60)

where X (b , b n) are eigenfunctions o f the axially sym m etric deform ed 
h a rm on ic-osc illa tor  potential. In this way, the deform ation o f the orbitals 
would be calculated. This would obviously be a better approxim ation to 
the P H F -problem .

V ariational calculations o f this type, but without angular-m om entum  
projection  have been carried  out by Volkov [20] . His calculations can be 
looked upon as an approxim ation to a standard H F -calcu lation . Volkov 
found it very  difficult to ca rry  out the angular momentum projection . The 
reason  is quite c lea r , since the orbitals (60) contain an infinite number, o f 
term s in their expansion in eigenfunctions of I2 . If, how ever, we truncate 
this expansion after a few term s, e .g .  ,

X ooo^x’ V  = | 0 s 0 > + a | ls 0 >  + ß | 0 d 0 > + . . .

X 001(b'± ,b ' )  = |OpO> + T | lpO >  + 6 | O f O > + . . .

x l,±l,o(b> ii>  = I 0 p ± 1  > + e I l p ± l >  + Ç I 0 f  ± 1 > + . . . (61)

we know that the angular momentum projection  is quite easy. Now, if  b 
and bn are both not very  different from  the length param eter b in the sp h erica l- 
oscilla tor  functions |ni m>, the expansion w ill have converged and the trun
cation w ill not change the physical meaning of the orb ita ls. M oreover, we 
see that the orbitals which.we obtain in this way have exactly the sam e stru c 
ture as those in relations (54) obtained in a standard H F -calcu lation  with the 
same interaction for 8Be and 12C. So we may be confident that our approxim a
tion procedure to the PH F^problem  is fa irly  accurate.

To sum m arize, we calculate the follow ing energy:

EL(ö , ß , 7 , 6 , e , ? ;  b) (62)
< Р ЬФ|РЬФ>

where Ф is  given by the Slater determinants in expressions (56) in which 
the on e-particle  functions (0 s 0), (OpO), (0 p ±  1) are rep laced  by the 
truncated expansions (61) o f the deform ed oscilla tor  functions X 000X 001X i+ i  o- 
The param eters o , /3 , 7 , 6 , e,Ç ,b  are treated as variational param eters, to 
be determ ined by the minimum condition for the energy E L.

It is  to be rem arked that the energy E®(b) is obtained from  E L(a, ß , 7 , 6 , e , Ç , b) 
by putting all param eters a = /3 = 7  = ô =  e =  Ç = 0. The tria l function ¥L con 
tains the sh e ll-m od el function a$ a specia l ca se . Values for the param eters
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a ß y ô e Ç different from  zero  mean adm ixtures o f higher configurations in 
the sh e ll-m od el wave function.

7. RESULTS OF PH F CALCULATIONS FOR NUCLEI WITH 4 á A ä 12

7 .1 . E nergies for  the ground states (Volkov force )

In F ig . 2 are plotted the binding energies obtained for the ground states 
o f the nuclei 4 S A S 12, and com pared with the experim ental binding en er
g ies  which w ere corrected  for Coulomb en erg ies. The general behaviour

FIG . 2 . E x p er im en ta l and c a lc u la t e d  b in d in g  e n e rg ie s  as a fu n c t io n  o f  th e  m ass n u m b er A .

o f the calculated energies agrees quite w ell with the experim ental binding 
en erg ies , there being a cusp in the energy curve at A = 8. The details, 
how ever, show som e d iscrep an cies , the main one being a large dip both at 
A = 5, 6 and at A = 9. In fact, both A = 6 and A = 9 would not be bound in 
contradiction  with the experim ental situation. A sim ilar result was found 
by Volkov [20] and by B assich is et a l. [9] in their H F -ca lcu lations, as we 
have d iscussed  in section  4. The explanation suggested there a lso  applies 
for  the present calcu lation .

In this calculation, a ll nuclei with A S 10 are prolate whereas A = 11 
and 12 are oblate. This is not a resu lt of our calculation but was in fact 
assum ed when w riting down the determinants Ф0 in expressions (56). In
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genera l, it is possib le  to take another expression  for Ф0 (the "low est weight" 
state o f the SU3-c la ss ifica tion  instead of the "highest weight" state). In 
expression s (56) we have chosen that which turned out to be a single Slater 
determ inant. For som e nuclei, A = 6 and A = 10, it is possib le  to w rite 
a lso  an oblate Slater determinant from  which the L S-coupling sh ell-m odel 
can be p rojected  out. These are

A = 6 Ф' = det |(0s^ ( 0 p l ) n+(0 p -l)P + I

A = 10 Ф' = det I (0 s )4 ( O p l ) 3 (0 p -1) 3| (63)

and PL®° = Р^Ф' up to a multiplying constant. If the replacem ent (61) is 
ca rr ied  through and expression  (62) is  m inim ized one finds that for both 
A = 6 and A = 10 the prolate minimum is low er by one or two M eV, r e s p e c 
tively . This is in contrast with V o lk o v 's  resu lt (without projection ) who 
found the oblate solution to be low er for 9 s A § 12. This is , anyway, not 
an im portant problem  because both the oblate and the prolate solutions have a 
very  large overlap when a sharp L is projected  out.

TABLE III. ENERGIES OF GROUND STATES

In Table III we com pare the energies for 4 S A 5 8 obtained from  d if
ferent variational m ethods:

1. SM : sh e ll-m od el approxim ation (58);
2. HF : approxim ate H artree -F ock . T ria l function® given by expressions

(56) in which the replacem ent (61) is made and a , ß , y , 6 , e , b  
are  treated as variational param eters;

3. H F P : L -p ro je ct ion  from  HF
4. P H F : approxim ate PHF (62)

In the last colum n ДЕ = E J - E L is the energy gained by introducing the 
param eters a ,ß ,y, 6,e in the sh e ll-m od el function. The very  large values 
show the im portance o f the adm ixtures of higher configurations in-the sh ell- 
m odel function. The energy ДЕ can a lso  be called "deform ation  energy", 
sin ce it is the energy gain due to the deform ation of the orb ita ls.

The energy gain (H FP-PH F) is quite sm all. We shall see further that 
the deform ation o f the ground state in the PH F-m ethod is somewhat la rger
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than in the H FP-m ethod and this larger deform ation brings about a better 
agreem ent for  the co llective  quantities.

7 .2 . Excited states (Volkov force )

Since the Hamiltonian is purely central, one obviously cannot expect 
a detailed agreem ent with the energies o f excited states. Table IV gives 
the calculated excitation energies, com pared with som e experim ental 
"m ean values" , E x, i . e . ,  the mean for different J-va lues.

TABLE IV. ENERGIES OF EXCITED STATES

It is interesting to see how w ell the energies EL satisfy the rotational 
band relation . In the pure sh e ll-m od el, Racah [26] has shown that a central 
fo rce  leads to a pure L (L  + 1) spectrum  in the p -sh e ll

E° = E 0 + B L (L  + 1)

In F ig. 3 we have plotted both E£ and EL as a function o f L (L  + 1) for A = 9 
and A = 11. F or  E L, one finds a considerable distortion  of the rotational 
band, the state with L = 3 lying about 2 MeV too high.

Another interesting problem  which can be treated by the PHF-m ethod 
is the occu rren ce  of non-norm al parity states in the low -en ergy  spectrum .
In 9 B e, there i s a  1/ 2+ leve l at 1. 7 MeV and a 5 /  2+ leve l at 3. 03 MeV.
Using the procedure described  in the previous section , these levels  would 
be described  on the L S-coupling sh ell-m odel by the functions •

P Ldet I (0 s 0)4 (0 p 0)4 ( 1 sQ -J2 0 d 0 )n+|

with L = 0 and 2. Using the replacem ent (61), it would be natural to r e 
place the last orbital (1 sO) - 2 (OdO) by the truncated expansion o f
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L ( 1+1)

FIG . 3 . P lot o f  th e  e n e rg ie s  El  and EL as a fu n c t io n  o f  L ( L + 1 ).

TABLE V. LEVELS AND ENERGIES

L p 0 
e l e l e °l ' e l

1 " - 3 8 .9 - 4 9 .7 1 0 . 8

2 " - 3 7 .5 - 4 7 .7 1 0 . 2

3 “ - 3 5 .4 -4 2 .  6 7 .2

4 " - 3 2 .5 - 3 9 .6 7 .1

0 + - 2 8 .9 - 4 5 .4 1 6 .5

2 + - 2 8 .8 - 4 3 .0 1 4 .2

Xoo2 (bx , b||). B ecause o f com puter lim itations this has not been done.
The energies found are listed  in Table V, where we have a lso  repeated 
the energies of the negative parity band. One sees that the even parity 
states lie  w ell above the odd parity states in the sh e ll-m od el approxim ation 
(E J) but drop down low between the odd parity states when the states are 
allowed to deform . A very  large gain in energy (16 .5  MeV) is found, for 
the 0+ lev e l, although the outer orbital was not allowed to adjust its d eform a
tion to that o f the other orb ita ls. An extra gain may be expected i f  the outer 
orbita l is allowed to deform  so  that the experim ental value o f 1 .7  MeV is 
quite w ell attainable.
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7 .3 . W ave functions, size  and deform ation

The param eters a,  y _and e w ill be called  size  param eters since they 
admix an osc illa tor  function with the sam e angular part to the low est o s c i l 
lator functions 0 s and 0 p. In first ord er, this amounts only to a change 
in the length param eter of the Os and Op oscilla tor  functions. F rom  b, 
a^y and e one can thus calculate an effective length param eter for the inner 
(ф0) and outer (cpQ , cp±1) orb ita ls. Qualitatively, the sam e resu lt is  found 
for the behaviour o f these effective length param eters, as was found by 
Volkov [20] : the size  of the inner orbitals in creases with A , the size  of- 
the outer orbita ls d ecreases with A . At A = 12, inner and outer orbitals 
have about the sam e length param eters.

A

F IG .4 .  D e fo rm a tio n  param eters Ö and 6 as a fu n c t io n  o f  m ass n u m b er A .

The param eters /3, 6, Ç, on the other hand, admix oscilla tor  functions 
having a different angular part. These parts can be admixed by the quadru
pole deform ation o f the potential. Thus ß,  6 and Ç can be called deform ation 
param eters. The values o f ß and 5 for  the ground states are given in F ig. 4 
for the prolate solutions 5 S A s 10. The deform ation becom es maximum 
at A = 8. One sees that ß changes very  much over the shell, whereas 6 
rem ains a lm ost constant. A lso  surprising is  that ß> ó. F or  a given prolate 
deform ation ( i .e .  one definite b± , Ьц ) one finds that the expansion coefficien ts 

* 000 and x ooi satisfy  ß < 6. So ß > 6 means that the HF potential is  m ore 
deform ed for the inner orbita l ф0 than for the outer orbital cp0 . It a lso  means 
that there are m ore adm ixtures o f configurations in which the 4 He co re  is 
excited . To have an idea of how much these adm ixtures take up o f the total 
wave function, we give the decom position  o f the ground state of 7 L i: '

65.7% low est configuration (Os)4 (Op)3
24% configurations in which only s -p a rtic le s  are excited,

6. 8% configurations in which only p -p a rtic les  are excited,
3. 5% configurations in which both s -  and p -p a rtic les  are excited.

This large deform ation of the inner orbitals seem s surprising in view of
the great stability o f the a -p a rtic le . One can, how ever, understand it in 
a qualitative way as follow s [27] . The orbital cp0 has a deform ed m ass 
distribution even when the param eter ó = 0, whereas the orbital ф0 has a 
spherica l m ass distribution when /3 = 0 . For the values ß and 6 obtained 
in the PH F-calculation,- the orbital cp0 still has a m ore deform ed m ass 
distribution than ф0 , although the harm onic w ell for which cp0 is an approxi-
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mate eigenfunction is less  deform ed than that of ф0. If we consider 8Be 
as an exam ple, an outer particle (with orbital cpQ) fee ls  an average potential 
produced by four inner particles (orbital ф0 ) and by three outer p articles , 
w hereas an inner particle fee ls  an average potential produced by three inner 
particles and by four outer p artic les . Since the outer particles have a m ore 
deform ed m ass distribution, it is  quite natural that the inner particles feel 
a m ore deform ed potential or ß > 6. In the sam e way, one understands the 
behaviour o f ß when the number o f particles in crea ses . As m ore particles 
with orbital cp0 are added, the potential felt by the inner particles becom es 
m ore deform ed and ß in crea ses . When the orbital cpQ is com pletely  filled , 
and the next particle  is added (9Be) in the orbital cpj, which has an oblate 
deform ation, the potential felt by the inner particles becom es less  deform ed 
and ß d ecrea ses  again.

To conclude this section , we rem ark  that as a resu lt of these PH F- 
calculations one invariably finds ß and 6 la rger for the ground state than for 
the excited states. In fact, ß and ó decrease  m onotonically as L in creases 
within a "rotational band". This is  exactly the opposite o f what one expects 
for a rotational band from  the centrifugal fo rce . This resu lt is probably an 
indication o f the fact that the states P LÎ> are not very  rea l rotational states 
yet in these light nuclei.

7 .4 . Influence of a one-body sp in -orb it fo rce

We now consider the influence on the PH F-wave functions o f adding 
a one-body sp in -orb it fo rce

to the central Hamiltonian (51) considered  so far. F rom  interm ediate 
coupling sh ell-m odel calcu lations, it is known that the strength Ç of the 
sp in -orb it fo rce  in creases throughout the 0 p -sh e ll, being quite weak for 
the nuclei with A < 10. For these nuclei, a perturbation treatment o f Vs 0 
is  certainly  justified .

A s has been rem arked b e fore , the introduction o f a one-body spin- 
orbit fo rce  in the total Hamiltonian has no effect on the PH F-wave functions 
for the nuclei 4 S A S 8. For these nuclei, the m ost sym m etric partition 
[4 ,A -4 ] contains only values o f the total orbital angular momentum L which 
in crease by steps o f two. If we re s tr ic t  ourselves to functions belonging 
to the low est partition (which is a good approxim ation if  Vs is weak), 
the sp in -orb it force, w ill not change the wave functions for these nuclei 
since it can only mix L -va lu es which, at m ost, d iffer by one unit. The 
only effect for the nuclei 4 § A s 8 would be to lift the degeneracy of the 
energy, without affecting the wave functions, at a ll. In the case of the 
nuclei A = 9, 10 and 11, the low est partition [4 ,4 ,A -8 ]  contains values 
o f L which d iffer by one unit only, and these w ill be mixed even by a 
weak sp in -orb it fo rce . In the follow ing, we re s tr ic t  ourselves to the 9Be 
case which is probably the only case for which a perturbation treatment 
o f Vs o_ is allowed. Since the strength o f the sp in -orb it fo rce  is not w ell 
known, we w ill treat Ç as a param eter as is done in interm ediate coupling 
calculations [14] . F rom  previous sh ell-m odel calcu lations, we expect Ç 
to be sm aller than 3 MeV.

(64)
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Having obtained the P H F -energies E L ând wave functions ï 'L as d e s 
cribed  in the previous section , we now construct eigenfunctions o f the total 
angular momentum J by coupling orbital and spin angular momenta

| L S J M >  = <0| P l |0 ^ C ( L S  J; M -^,M )PLM_M<t>(S,M) (65)
M

where Рш .м is-the operator defined by (35) and<3>(S,/u) is obtained from ®  
by means o f step operators for the spin (д being the projection  of the spin 
S on the z -a x is ). The factor '(ф | P L ¡ф)“"* is a norm alization fa ctor. We 
then set up the m atrix o f the total Hamiltonian H -Ç within the space
o f functions with the same J. The m atrix elem ents o f the one-body spin- 
orbit fo rce  between two PHF functions is calculated by means o f the form ula

L S  J M L ’ S J M )  = (- ), L+ L* + s + j + 1 (2 L + 1 ) (2L ' + 1)

A  A

I ( S  +  1 ) ( 2 S  + 1 )  Í L S  j ]  V  V .  , X + V , , „  v Ä ( T  U  . o  m

V S  < ф Р ь ф  > < ф Р ь ,  ф>  I S L ' l j A Z ^  6 K k v ) ä ( T x | T v ) S z ( > )

X=1 X* = 1

x  Z  Z  X n M .  6nn'6 u '  J H S  +  1 ) ( 2£  +  1) ^ ( - ) í "/ ( 2 / + l )

n i  n ' l ’

Л L L '
K -m x mx -K y  \ K -m x. m x,-K

L ' L 1 
S £ ß

X J  sine de d (6)
o  K -m x , K  - m  y

det Okk. (66)

w here X n{ are the expansion coefficien ts  (54) o f the occupied orbitals

n í

and det Ox y  is the determinant of the m atrix, obtained from  the overlap 
m atrix О by erasing row > and column . The label К is the eigenvalue 
o f L z corresponding to the Slater determinant Ф. Form ula (66) w ill be 
derived in the Appendix.

The m atrix o f the total Hamiltonian is then diagonalized for severa l 
values o f Ç between 0 and 3 M eV. The resulting energies Ej are plotted 
as a function o f Ç in F ig . 5. It is  to be noticed that, for this figure, Brink1 s 
fo rce  [21] has been used in the central Hamiltonian (51). F rom  now on, 
in this paper, all resu lts that w ill be given w ere calculated with B rink1 s 
interaction . The reasori for this sudden change is the follow ing. In our 
orig inal w ork , we used V olkov1 s fo rce  so that we have m ore  com plete 
resu lts for the energies with V olkov1 s interaction. Later on, we found out 
that B rink1 s le ss  attractive fo rce  gave a better quantitative agreem ent with
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FIG . 5 . E nergy o f  l o w - ly in g  le v e ls  o f  9Be as a  fu n c t io n  o f  th e  sp in -o rb it  strength  £.

the experim ental s ize s  and deform ations in light nuclei. We did, how ever, 
not rep eat'a ll energy calculations with B rink1 s fo r ce , but only those which 
w ere n ecessa ry  for obtaining the wave functions needed for the calculations 
described  in the next section .

The dependence o f Ej on Ç is  very  s im ilar to that o f the interm ediate 
coupling calcu lations o f Kurath [14] . The low est 5 /2 " leve l is  found at an 
excitation energy in rough agreem ent with the experim ental value over the 
whole range o f Ç-values between 0 and 3 MeV. The low est 7/2" leve l is 
everyw here too high. The other calculated levels  have not been observed  
experim entally . H ence, it is  d ifficu lt to determ ine the best value of Ç from  
a com parison  o f the calculated and experim ental energy spectra . In the next 
section , we shall determ ine Ç from  a com parison  o f the calculated and ex 
perim ental value for the m agnetic mom ent o f the ground state.

The eigenfunctions ¥(.1) for the low est J = 3 /2  and J = 5 /2  levels  are 
given in Table VI. The follow ing notation is used

Ï'(J) = x_ |L = J -1 /2 .S ,  J>  + x + |L = J + 1 /2 .S , J> (67)

The wave functions for the second 3 /2 " and 5 /2 "  leve l are obtained from  
the orthogonality condition. F or J = 1 /2 , there is only one L -va lu e :
¥ (J = 1 /2 ) = |L = 1,S ,J>.
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TABLE VI. EXPANSION COEFFICIENTS OF THE FUNCTIONS Y (J) 
AS DEFINED IN EQ. (67)

8. COLLECTIVE MOMENTS AND TRANSITIONS. FORM FACTORS
FOR HIGH-ENERGY ELECTRON SCATTERING

The PH F-functions obtained in the way described  above have a strongly 
deform ed in trinsic state, and one may ask whether the electrom agnetic 
co llective  E 2-m om ents and transitions can be explained. If so , this would 
mean that the problem  o f the collective  quantities in the shell m odel has 
its origin  in the fact that the sh ell-m odel potential was not calculated but 
chosen in correctly . That this is indeed so  w ill be seen by calculating 
severa l co lle ctive  quantities in 7Li and 9Be. Sim ilar c?lcu lations perform ed 
for 6Li and 12C lead to the same conclusions [28,29] .

B efore  considering co llective  quantities, one may, however, wonder 
whether the large adm ixtures of higher configurations have not disturbed 
the agreem ent which existed between the sh ell-m odel predictions and ex 
perim ental magnetic dipole mom ents and transitions. That this is not 
so can be seen as fo llow s. The magnetic .dipole operator

+ +^nXaz
P P n

con sists  of an orbita l and a spin part. The spin part can be rew ritten as 
follow s :
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where the sum s run now over all nucleons. The new operators Z/Oz and 
S ffz T3 a re , how ever, in fin itesim al operators of the group SU4 . The m atrix 
elem ents of these operators a re , consequently, com pletely  determ ined by 
the transform ation properties o f the PH F-functions under the group SU4 
and not by the detailed structure o f the functions (in the same way that 
the m atrix elem ents of L +, e .g .  , between functions which have definite 
transform ation properties under rotations are determ ined by these tran s
form ation p roperties ). This means that the spin part o f the magnetic - 
m om ent operator is exactly the same for the PHF as for the sh ell-m odel 
L S-coupling functions. The orbita l part, on the other hand, is usually 
much sm aller and has no m atrix elem ents between different sh ell-m odel 
configurations. This means that the change is only o f second order in the 
variational param eters. The total change is quite sm all (the above argument 
is obviously also applicable to allowed ß -transitions, the operators YjT and 
£  CTT being infin itesim al operators o f SU4).

FIG . 6 . M a g n e t ic  d ip o le  m o m e n t  a s a fu n c t io n  o f  th e  s p in -o rb it  strength £ in  9Be.

The above argument is not d irectly  valid for 9Be since the sp in -orb it 
fo rce  disturbs the SU4 -sym m etry . H ow ever, the actual calculation o f ß 
g ives a lso  in this case a very  s im ilar result for the PHF and for the sh ell- 
m odel wave functions. One finds that д depends very  sensitively  on the spin- 
orbit strength (F ig . 6). The experim ental value/uexp = - 1. 18 n .m . can then 
be used to determ ine the best value for Ç . This gives E ~  2. 5 MeV.

F or the calculation of co llective  mom ents and transitions, or for lon g i
tudinal form  factors for electron  scattering, one has to calculate matrix 
elem ents between PHF functions o f operators of the form

т; = Еч - I чО-И
P i

where the sum runs over the protons only. The operator trp is a one- 
body tensor operator o f rank r and is independent of spin co -ord in ates.
In the sam e way as for the derivation of form ula (66), one obtains the 
form ula
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< L S  J ¡IT r(I L ' S J1 > = (-)S+r  (2L + D ( 2 L '+ 1 ) (2J + l ) ( 2 J '+ li r
2 ^<Ф|РЬ|Ф><Ф|РЬ, |Ф>

x fr r i j î  [ í *
X=1 V  =1 n i  n ' £ ’

X <ní||tr ||n'í ' > У ( - ) { "/ ( 2 /  +1) ( j f  £ Ÿ) (  ^  V L 
L_j *  \ K -m ^  -K /  \ K -m ^ f m ^ , -K

ïï

x  { î '  î  s i n e  d e  A *  ( 0 )  d e t  ° X X -  ( 6 9 )
0 K-mx, K-m y

The reduced m atrix elem ent here is that defined by Racah

< J M | l^ J 'M '>  = (- )I ~M( . i I p <j|| T'll J» >

The co llective  quantities which we consider first are the static quadrupole 
mom ents o f the ground state. The quadrupole mom ent o f 7L i is known fa irly  
w ell [30]: Q = ( -4 .0  ± 0 .5 )  fm 2 . The shell m odel in L S-coupling gives 
Q = - 3 /5  b 2 where b is  the oscilla tor-len gth  param eter. Using the rea son 
able value b = 1.73 fm , one obtains Q S_M = -1 .8  fm 2 which is sm aller than 
the experim ental value by a factor of two. The calculation with the PH F- 
function yields -3 .9 1  fm 2 .

It m ay be useful to notice at this point that the quadrupole mom ent of 
7L i is negative although the in trinsic state is prolate, i . e .  has a positive 
in trinsic quadrupole mom ent. The B ohr-M ottelson  relation  between the 
in trinsic mom ent Q intr_ and the quadrupole mom ent Q ( in a rotational state 
with spin J is

_ 3K2 - J ( J + 1 ) _
" (J+  l ) (2 J  + 3 )4 ¡™. (70)

The ground-state spin o f m ost nuclei has J = К and since J ш 1 (in order 
to have Q j f  0) one finds that Q j and Q intr have the same sign. H ow ever, 
in the case  К = 1 /2 , the ground state may have J = 3 /2  because o f the d e 
coupling param eter, and in this case Qj and Q intr have different signs.
This then should be the picture of 7Li in the rotational m odel.

The value of Q intr_ calculated with the intrinsic state Ф turns out to be 
17.88 fm 2. Using E q.(70) this yields Qj = -3 .5 8  fm 2 for  the ground state 
o f 7L i com pared  to the value -3 . 91 fm 2 obtained in the exact calculation. 
This shows the type o f e rro r  made by using the B ohr-M ottelson  relations.

The quadrupole mom ent o f 9Be is not w ell known experim entally, the 
quoted values [31] ranging between 2 fm 2 and m ore  than 6 fm 2. The sh e ll- 
m odel in interm ediate coupling gives values between 1 .8  fm 2 and 3 fm 2 . 
The value calculated with the PH F-function f (J )  in E q .(67) is  shown as 
a function o f Ç in F ig . 7. The value obtained is considerably la rger  than 
in the shell m odel. The quadrupole mom ent in creases  rapidly with Ç,
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FIG . 7 . E le c tr ic  q u ad ru p ole  m o m e n t  as a fu n c t io n  o f  th e  sp in -o rb it  strength £ in  9B e.

reaching an alm ost stationary value when Ç lies  between 2 and 3 M eV. This 
suggests a quadrupole moment between 5 .5  fm 2 and 6 fm 2, in rough a g ree 
ment with the value Q = 5. 26 fm 2 obtained from  atom ic beam h. f. s. [32] .
It w ü l be seen further on that this value is a lso  consistent with the high 
energy electron  scattering data.

Detailed and very  accurate inform ation about nuclei is obtained from  
h igh-energy electron -sca tterin g  experim ents. It is com m only believed 
that the c ro ss -s e c t io n  for scattering o f h igh-energy electrons from  light 
nuclei may be calculated in fir s t -o rd e r  Born approxim ation [33] :

Here ctm tt(fl) is the c ro s s -s e c t io n  for scattering from  a point nucleus in 
which the whole charge is concentrated. The functions Fl (q) and FT(q) 
are called , resp ective ly , the longitudinal and transverse form  factors 
and are functions o f the momentum transfer q = | íc¡ - ïf| only where Tq 
and ÏCf are the wave vectors  o f the incom ing and o f the outgoing electron , 
resp ective ly . By doing m easurem ents at different initial e lectron  energies 
and at different scattering angles, one can obtain |FL(q)|2 and |FT (q)|2 
separately. We w ill concentrate here on the longitudinal form  factors 
which are easier to calculate and which are usually better known ex p eri
mentally.

The longitudinal form  factor FL (q) is defined by

where the sum £ runs over the Z  protons only. A ccording to whether 
P

the final state Jf is equal o r  not to the initial state J ¡ , this form ula defines 
the longitudinal form  factor for e lastic or inelastic scattering. Expanding 
the plane wave e x p (iq  • r) in m ultipoles, only a few term s w ill rem ain from  
angular-m om entum  and parity conservation.

M jM f p

(71)
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We obtain

|FL(q)|2 = Y  l FL,^(q)|2 (72>

where

|FL >( q ) P .  I< Jf l|Mxtc,ni J, >1° ( , „

2 J. + 1

with

MXp(q) = ) > \ ^ г ) 3 ^ м(е .Ф) (74)
P

If the parity o f the initial and final states is the sam e, only even values of 
> rem ain in E q .(72).

For sm all values o f momentum transfer, one has

q 2 r 2
j 0( q r ) ~ l  -

■ , , q2 r2 <75>J2(qr )~—

Introducing this into E q .(74 ), one obtains for sm all values of momentum 
transfer

f l , \ =  0 ~  1 '  \ r 2 y

(76)
|p  I2 - W  K  J f  II S  I я в^я|| J,- >1 2
I L,\ = 2 I 225 Z 2 -----------E

2 Jj+ 1

Here ^ r 2^ is  the square o f the r .m .s .  radius o f the charge distribution, 
and the reduced m atrix elem ent of ¿2 r 23^2ji related to the quadrupole

P

moment in the case of e lastic scattering and to the reduced E 2-transition  
probability in the case of inelastic scattering. The last equation can be 
rew ritten  (always for sm all q)

If  I2 - q4 (J + i )  (2 J + 3) 2
1 ЬД = 2 1 3 6 Z 2 5J (2 J - 1) 4

-2Ц %  B (E 2 ; J, -  Jf ) for i  ̂ f

(77)

This shows that the quadrupole part of the longitudinal form  factor w ill 
be enhanced considerably  com pared to the sh ell-m odel predictions. As
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an exam ple, we consider a few longitudinal form  factors which w ere d e te r
mined quite accurately .

The c ro s s -s e c t io n  for scattering o f h igh-energy electrons from  7Li 
was m easured by Suelzle, Yearian and Crannell [34] , up to high momentum 
transfers of q 2 7 fm ’ 2. In fact, e lectrons which w ere scattered e lastica lly  
could not be separated from  those which w ere scattered in elastica lly  with 
excitation o f the low -ly in g  1 /2 ' level at 0 .478 MeV. The m easured c r o s s -  
section  is the sum o f the e lastic and inelastic c r o s s -s e c t io n s . F rom  their 
m easurem ents, together with a previous determ ination [35] of the tra n s
verse  form  factor FT(q), Suelzle et a l.w e re  able to determ ine the square 
of the longitudinal form  factor, which is again equal to the sum o f the squares 
o f the e lastic and the inelastic form  factors

I Fl (q) |2 = |Ff  (q) I2 + f F¿nel(q)¡2 (78)

Since J¡ = 3 /2  for the ground state, one has

l F Le l ( 4 ) | 2 = l F L ? U « ï ) M F L^ 2 ( q ) | 2 ( ? 9 >

and since Jf = 1/2 /o r  the inelastic part, one has

|F[nel(q)|2 = |FL|nxei 2 (q) I 2 (80)

In the superm ultiplet theory, the states J = 3 /2  and J = 1/2 form  a spin 
doublet with L = 1 and S = 1 /2 . F rom  this, there follow s a relation  between 
the quadrupole part of the elastic and the inelastic form  factors . One easily  
calculates

< L  = l S  = l / 2  J = 3 /2 Z   ̂2 3̂ 2
P

L = 1 S = 1/2 J = 1/2 ^ I2 Г 1 1/2 3 /2 l2 
1 L l/2  2 1 J

<^L = 1 S = 1/2 J = 3 /2 Z j 2 ^ 2 L = 1 S= 1/2 .J = 3/ 2y>
2 {1  1/2 3 /2 ]2 

\ 3 /2  2 i J

The right-hand side turns out to be equal to unity. One,thus,has

K ( q ) l 2 =  K U M 2 + 2 K eu « 3 > l 2 ( 8 1 ь

The m atrix elem ents are calculated by means o f Eq. (69) and the resu lt is 
com pared with the experim ental data in F ig. 8. The very  good agreem ent 
gives experim ental confirm ation  for the calculated value o f the quadrupole 
mom ent Q = -3 .9 1  fm 2 . The m onopole part F f 1̂ b e c o m e s  negligible co m 
pared to the quadrupole part for q 2 Ï 4 fm "2 , and a large d iscrepancy would 
have been obtained for these momentum transfers with the pure sh e ll-m od el 
wave functions.
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q ! U m '1 )

F IG . 8 . Sum  o f  e la s t ic  and in e la s t ic  (0 .4 7 8  M e V  le v e l )  lo n g itu d in a l fo r m  fa cto r s  in  7 Li.

A s a second exam ple, we consider the elastic form  factor for  9Be 
determ ined by severa l experim ental groups [31 ,36] . Since the ground 
state has J = 3 /2 , there is again a m onopole and a quadrupole contribution, 
and an eventual fit would support the calculated value o f the quadrupole m o
ment. The calculated form  factor is shown in F ig . 9 for two values o f the 
sp in -orb it strength Ç = 0 and Ç = 2 .5  M eV. For this latter case which is 
suggested from  the value o f the m agnetic m om ent, the m onopole and quadru
pole contribution are drawn separately. The agreem ent is  sa tisfactory  over 
the w hole range o f q2 -values if  the M eyer-B erkhout et al. [36] data are used 
in the reg ion  2.5 fm"2 < q 2 < 5 fm '2. No equally good fit can be obtained,for 
•any value o f the sp in -orb it strength if  the Bernheim  et a l. [31] data are used. 
A re-m easu rem en t would be needed to decide between the two experim ental 
g rou p s.

The inelastic form  factor to the 5 /2 " level at 2 .43 MeV in 9Be was 
determ ined by the O rsay group [37,31] . The form  factor calculated with 
the P H F-functions is shown in F ig. 10 for Ç = 0 and Ç = 2 .5  MeV. The 
agreem ent is very  satisfactory  although there appears again a d iscrepancy 
with the Bernheim  et a l . data in the sam e region  o f momentum transfers 
as in the ca se  o f e lastic scattering.
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FIG . 9 . C h a rg e  fo r m  fa c t o r  fo r  9B e, b o th  fo r  Ç = 0 and Ç "  2 . 5 M e V . T h e  m o n o p o le  and qu ad ru p o le  
co n tr ib u tio n s  a re  show n sep a ra te ly  (d a s h e d  cu rv e s) in  th e  ca s e  £ = 2 .5  M e V .

FIG . 1 0 . In e la stic  fo rm  fa c t o r  fo r  e x c i t a t io n  o f  th e  5 /2 "  le v e l  at 2 .4 3  M e V  in  ^ e ,  b o th  fo r  £ = 0 and 
£ = 2 . 5 M e V .

At the end of this section , we m ay conclude that the PH F-functions 
represent a considerable  im provem ent com pared to the usual sh ell-m odel 
functions in the sense that co llective  mom ents and transitions are reproduced
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In a sa tisfa ctory  way. The im provem ent is obtained by a considerable  amount 
o f excited configurations. Standard sh e ll-m od el calculations cannot take 
these configurations into account because o f computational lim itations. They 
are , how ever, easily  incorporated through a H F -calcu lation .

APPENDIX

To derive E q .(66 ), we firs t  decouple orbita l and spin parts

< L S  j | £ 7 - s |L' S J> = (- L  s  j 1 < l l , s s | E í z s z |l ' l s s >
S L ' 1 L 1 L ' \ /  S 1 S 

-L 0 L  J  V-S 0 S

where we have assum ed L 's  L . We now calculate the m atrix elem ent in 
the num erator. The functions |l MSS)> are given by

Il m s s )  =
2L + 1

8тгг <ф| Р Ь|Ф> Г  / d n D ¿ * ( n ) H n ® ( S . S )

where R jj rotates the spatial co -ord inates only. Using the group properties 
o f the rotation operators and m atrices , we easily  obtain

< l l s s | £ í zsz |l ' l s s > C (L ' ,L ;L 0 )  
•ч/<фрьф ><фрь. ф> L

) C (L 1 1 L; K-ju , ß)

P erform ing the integration over the Euler angles cp and ф yields

, s C ( L ',L ;L 0 )  V"
< L L S S | £ i z sz |L 'L S S >  ¿ C ( L ' 1 L ; K - M, , )

Ф (SS)

We now use form ula (47) for a general one-body operator between two 
Slater determ inants, as w ell as the relations

< u x l v z K - >  = Z x n? x nvt.
n£ n * Í*

( n l m  J  | п '# тх-й  > = 6nn. óe r C ( í ,  S ; m x -/u , /u) -J Л (t  + 1)
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to obtain

A  A

< L L S S | i :  í 2Sz | L 'L S S >  = C ( L '1 L ; L 0 ) _  2 L ^ y  y ( _)X + v
Х ф рь ф > < ф р ь. ф> X̂ 1XV=1

X  6 ( ax |av ) 6 ( T x |Tv ) Sz ( X ) ^ X ^ X nVi l 6 nn. 6 i £, Л ( Г Г Т )  ■

n i  n ' i*7Г

x j  s in e  de det Oxx, ^ C  (L* , L ; K-ju , /и) C ( í , Í  ; .m x - aî,jli ) d < K d mx-|i ,тд_.
0  (J

The sum can be reduced to a simpler- form  by using properties of the 
У

d-functions and the C lebsch -G ordan  coefficien ts  yielding

Y  . . . = Y  ( - ) L+1‘ к ч/ (2L + 1 ) ( 2 /  + 1) C ( L 'Í  / ;  -К ,  m 'x)
M /

ÍL L- 1 j  ,
J  s /  J mX'K'mV

Introducing this into the previous form ula, rew riting all C lebsch-G ordan 
coefficien ts as 3 j-sym b ols  and making use of the explicit expression

S 1 S
4-S 0 S /  V (S + 1) (2S + 1)

one im m ediately gets (66).
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Abstract

H A RTR E E -FO C K  C A L C U L A T IO N S  IN DEFORMED LIG H T A N D  M E D IU M -L IG H T  NUCLEI.
1 . In tro d u ct io n ; 2 .  J u s t if ic a t io n  o f  the in ert c o r e  ; 3 .  S om e d e ta ils  o f  the c a lc u la t io n s ;  4 .  Results o f  

th e  s -d  s h e l l ;  5 .  P r o je c t io n  o f  ro ta t io n a l sta te s ; 6 . Results in  the 2 p - l f  s h e lls ; 7 . M a jo r -s h e ll -m ix in g  
u n restricted  HF c a lc u la t io n s .

1. INTRODUCTION

The H artree -F ock  (HF) method [1] is  a system atic method o f seeking 
approxim ate solutions to the m any-body problem . In the case o f the nucleus, 
the nature o f  the system  and o f the tw o-body interaction  is  such that even 
with the rather d rastic assum ptions underlying the HF method, the problem  
is still very  d ifficu lt. T h ere fore , further approxim ations are made and 
various types o f HF calculations have been and are being carried  out by 
different groups. These may be c lass ified  accord ing to the nature o f the 
in teraction  used and to the kinds o f sym m etry properties assum ed a p riori, 
as follow s :

e .g .  T abakin -non-loca l

4) R ea listic , no hard co re : 
e .g .  R ied
B resse l, Levy

5) R ea listic , hard core  (BHF):
e .g .  Ham ada-Johnston 
Yale

F o r  exam ple, the MIT group [2] (K erm an, V illa rs , B assich is , Svenne) 
w ork with em phasis on 3b, 3c, 3d (and aim fo r  4b, c). B aranger1 s group [3] 
(D avies, K rieger, Mathukrishnan, Tarbutton) have mainly worked on lb  and 2b

Interactions Sym m etries

1) E ffective, phenom enological: 
e .g .  R osenfeld

a) Inert

2) Sem i-phenom enological: 
e .g .  G reen ,B aranger, 
N estor -p 2 fo rces  
B rink-sum s o f Gaus'sians

c)

b) Spherical

3) S em i-rea lis tic : d) Parity  mixing

413
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(but recent work [4] on BHF, 5b). Bouten d iscu sses 2c in his contribution 
to these P roceed ings, and Lande1 s lectures (not published in these P roceed ings) 
m ainly treat 5b.

In my papers, I shall m ostly deal with the sim plest and oldest type of 
HF calculations [5] : la . But first o f all, we should explain what we mean 
by an "in ert c o re "  and how it affects the HF equation.

2. JUSTIFICATION OF THE INERT CORE

T o start with, let us say a few w ords about the se lf-con sisten t sym 
m etries o f the HF solution; these are sym m etries which, once they are 
present at any stage o f the iteration, rem ain so throughout all subsequent 
iterations. It is also possib le  to im pose sym m etry properties on the HF 
wave function by introducing external constraints. One such constraint is 
the inert core .

In may be possib le  to find a " c o r e "  o f particles which can be assumed to 
rem ain invariant (inert) under the variations im plicit in the HF method.
If so, the HF se lf-con s is ten cy  problem  need be solved only fo r  the few 
extra particles  outside the core  (e. g. fo r  nuclei in the 2 s - 1 d shell, 160  is 
usually taken as the co re ; then a nucleus such as 24Mg is treated as the 
160  core  plus 4 neutrons and 4 protons).

The m atrix elem ent o f the s in g le -particle  (s . p .)  Hamiltonian is [1]

<#|h|/3> = <a|t|/3> 0 * | v A |/3X> = ea 6aß (1)
x

and the ground-state en'ergy E0 is  given by

E0 = £  <X|t|X> + \  ^T<Ah|va |ЛЙ> (2)
X X/J

Here X and ц run over all the occupied states.
Let С be the number o f particles in the core , and let us rew rite E q .( l )a s

c  A

<0-111 /3> + Y  <«X|vA |j3X> + ^  <Q-X I vA I pX> = ea би ß (3)
x = i x = c + i

Assum e that we have the HF solution fo r  the core , with s. p. eigenvalues 
e « : ' с

<o-| t |ß> + ^<aX |vA I pX> = ен éaS (4)
X=1

If we assum e that the wave functions o f the co re  are not changed by the 
addition o f the p articles  outside, we may substitute E q .(4 ) into E q .(3 ):

A

е<Ав+ X <^ivAî > = e„ öaß (5)
X = C + 1
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This is the HF equation in the restricted  space outside the core . From  
Eq. (2) we have

С

^ T < X | t| X > +  Д  <X/u |vA |Xfi> 

X , fi = 1

A A

^ T < x | t| x > + |  ^  <Xm I vA |Хм> + ^  ^ < Х м | \ | Х ц >

X=1 X, fl = 1 ( 6 )

A A A C

+
X = C + 1 X,|i=C+l X=C+1 p=l

The sum of the first two term s is  the ground state energy of the core 
E0(C ). Using E q .(4 ), the sum o f the third and last term s gives

AI
X = C+ 1

where e^ is the s. p. energy o f a particle in the core . 

T herefore ,
ft ft 

E 0 = E o ( c ) +  X  +  2 X  < X m I va I X ^ (?)

X=C+1 X,M=C+1

Equations (5) and (7) now represent the HF problem  for the "va lence" 
particles  outside the inert core . This is a greatly sim plified  problem  since 
we now have only n = A - С particles to deal with rather than all A. Generally, 
the ea are taken as the experim ental s. p. energies appropriate fo r  the core  
(in the s - d  shell case, taken from  the 170  spectrum ), though ideally, they 
should be the result o f the HF calculation for the core  nucleus. E q (C) is 
taken as the experim ental binding energy o f the co re ; in fact, usually one 
only calcu lates the energy o f the nucleus relative to the co re :

n n n

E o - E o ( C )  = X  e x + !  ^  <X/u |va |Xm >= i  ^  ( ex + ex) (8)

X. д = 1 X=1

A further d rastica lly  sim plifying assumption is usually made in these 
restricted  HF calcu lations: the s. p. wave functions |a?]> are taken as sums 
over spherical harm onic o sc illa to r  functions Inijm ^

*>= У c“/  I n i j r
| n ijm >  (9)

But in this case this sum is restricted  to run over only one m ajor shell o f the 
harm onic osc illa tor , i . e .  that shell which is outside the c lo sed -sh e ll o f the 
inert core .

The main justification  of all these assumptions is that they make the 
calculations very  much ea s ier  and faster; th erefore, they w ere the earliest 
type o f HF calculations that had been done. In addition, an external ju stifi-



416 SVENNE

cation is provided by the w ork o f R edlich , Kurath and Piem an [6] . They 
find that the wave functions obtained from  interm ediate-coupling sh ell-m odel 
calculations are very  sim ilar to those obtained by projecting  states o f good 
angular momentum from  the in trinsic states obtained by filling a deform ed 
h a rm on ic -osc illa tor  w ell. Such in trinsic states are essentia lly  calculated 
in the way d iscussed  here when the HF wavefunctions are taken as sums 
(on Í ,  j and m) o f spherica l o sc illa to r  functions in one m ajor shell.

Of cou rse , e r ro rs  are introduced by these assum ptions. In particular, 
it is  not possib le  in this way to obtain the co rrect absolute magnitude o f the 
deform ations, since the deform ation o f the e x tra -co re  orbita ls induces 
polarizations o f the co re , which is  not accounted fo r  here. However, the 
system atics o f the deform ation are w ell described , as are other details of 
the structure o f the HF solution and excitation spectra  built on it, as we 
shall see .

Since there is  an inert core  assum ed in these calculations and the s .p . 
energies ea are taken from  experim ent, there is  not much sense in choosing 
the m ost rea lis tic  fo rce  p oss ib le . Any deficiency  in the fo rce  o r  in the way 
it is  treated can be "sw ept under the rug" by being taken up in the s. p. 
energies o r  the strength o f the fo rce . T h ere fore , sim ple effective  in ter
actions are used here (which have the further advantage o f making the 
calculations still ea s ier ). The m ost popular one in 2s - Id shell calculations 
is  the R osenfeld  [7] fo r ce :

A possib le  way o f estim ating the e r r o r  induced by the in e r t-co re  
assum ption could be by the follow ing perturbation approach:

Suppose the w ave-functions in the core  are changed by the presence o f 
the extra particles  in such a way that Eq. (4) is to be rep laced  by:

с
<o|t|^>+^<aX|vA I 0Л> = еайаВ + <a|óh( ’ |ß) 

x= i

Then Eq. (5) has the additional term  j óh^1 ̂  | and we may calculate its 
effect (assum ing it to be sm all) by f ir s t -o rd e r  perturbation theory. The 
m odified eigenvalues ea and eigenvectors |S)> are then

n

+ <а I ôh(1) |а> + ^  |̂ <ar5í|vA |аХ> - <огЛ|^

\=1

it*/ = |<*/ +
^  I ß></3|öh(1)|<*> ^  |ß>[<j3X|vA|oX> - <j3X|v|<*X>

8 *  а 8
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The extra term  in these equations com es from  the se lf-con sisten cy , the 
fact that h itse lf depends on its e igen vectors. It may be evaluated using 
the firs t  two term s o f the second equation, as:

( .a i  I vA I ßX> - <crX I vA I ßX >

y , <oX| vA I jS tX tI 6h(1)|x> <x| 6h(1)|-y><Q-y|vA |/3x>
_ ^  ^  

y * X У

This correction  due to m odification o f the core  has never been calculated 
and, in fact, it is not c lea r  if  the perturbation óhí1) would be sm all enough 
to make this approach valid.

3. SOME DETAILS OF THE CALCULATION

M ost o f the d iscu ssion  o f HF calculations given here to date have been 
quite abstract. I thought it might be instructive to go into a little m ore 
detail o f  how one actually proceeds in the sim ple case o f the s -d  shell. The 
spherica l o sc illa to r  basis states in the 2 s - ld  shell are:

( n i  .i m) (»  t  Í -m )

Id 5 /2 1/2 Id 5 /2 -1 /2
2s 1/2 1/2 2s 1/2 -1 /2
Id 3 /2 1/2 Id 3 /2 -1 /2
Id 5 /2 -3 /2 Id 5/2 3 /2
Id 3/2 -3 /2 Id 3 /2 3 /2
Id 5 /2 5/2 Id 5 /2 -5 /2

Each of these states can hold one neutron and one proton, in all 24 sin g le 
particle  states are available. Thus, if  the sum in E q .(9 ) is  taken as 
com pletely  unrestricted  (within the shell, o f cou rse), the HF s'ingle-particle 
Hamiltonian h is  a 24X 24 m atrix. In practice , the problem  is  reduced 
significantly by the use o f sym m etry properties under which the HF m atrix 
breaks down into a number o f uncoupled su b -m atrices :

I

Ц - , 0
л

The two m ost com m on sym m etries which have been applied to all 
calculations to date are t im e -re v e rsa l invariance and isotop ic spin con ser 
vation. T im e rev ersa l invariance im plies that the o sc illa to r  state
I n i jm ^  and its t im e -re v e rse

( ' ) £ + j-ш I n i  j -m >
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are not m ixed in Eq. (9) . That is  the reason  why I wrote the basis in the 
two columns above -  the states in one column do not couple with those in 
the other. Isotop ic-sp in  conservation im plies that neutron wavefunctions 
do not couple with proton functions. These sym m etries reduce the HF 
m atrix to 4 decoupled 6 X 6  m atrices. In fact, fo r  N = Z , even -even  nuclei 
(fo r  which these sym m etries are exact if the Coulomb fo rce  is neglected) 
all 4 m atrices are identical and all HF s. p. levels becom e fou r-fo ld  de
generate, corresponding to the states: jX, p)> fo r  protons, its tim e -rev erse  
IX, p̂ > and |X, n>, IX, n)> fo r  neutrons. Then only one 6 X 6  m atrix need be 
diagonalized.

Since all states o f the s -d  shell have the same parity, the HF orbitals 
autom atically have good parity. However, if axial sym m etry is  also 
assum ed, the 6 X 6  m atrix breaks down even further, since then states of 
different m are uncoupled. Then the HF m atrix breaks down into a 3 X 3 
m atrix fo r  m = 1 /2 , a 2 X  2 fo r  m = 3 /2  and a 1 X 1 fo r  m = 5 /2 .

With the choice o f sym m etry taken care of, the actual solution o f the 
HF equation proceeds as fo llow s: F irst we w rite E q .(5 ) in the osc illa tor  
basis1

Now, the tw o-body interaction appears only in term s o f its m atrix elem ents 
between the osc illa tor  states (np | vA | n1 p ' ). These are calculated at the start 
fo r  the interaction chosen (e. g. Eq. (10)) fo r  all states (n, p, n ' , p ' ) in the 
s -d  shell and are sotred in the program .

Then one se lects  som e initial set o f coefficien ts c “ . This selection  
requ ires som e ca re . Since Eqs (11) are non-linear, they may p ossess

starting point. The sim plest initial choice is C“  = <5na, i . e .  the in itial states 
|ô > are sim ply the spherical h arm on ic-osc illa tor  states. There is  a danger 
in this, however. In the case o f such nuclei as 28Si, where it is possib le  
com pletely to fill one j-su b sh e ll (the d 5 /2  shell fo r  28Si) it is rigorously  
true that the spherical solution is  a se lf-con sisten t one. This means that 
i f  one starts with sp h erica l-osc illa tor ' functions, the wave functions w ill 
rem ain spherical throughout the iteration p ro ce ss . But this is not the 
lowest se lf-con sisten t solution, there are deform ed ones at low er energy.
A better choice is suggested by the observation  that the deform ed HF orbitals 
resem ble those o f particles in a deform ed osc illa tor  w ell. Therefore one 
can start by making an in itial guess fo r  the HF Hamiltonian:

(11a)

X p p '

and

( l ib )

severa l solutions, and som e may be m issed by .im proper selection  o f the

(n|h<°>|n'-) = Anénnt-B (n | n 2Y j n ' )

1 H ere n, p , e t c .  stand for the fu ll set o f  quantum  num bers n e e d e d  to  sp e c i fy  the h a r m o n ic -o s c i l la t o r
s ta te : ( n f j m ) .
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and diagonalizing this to get the initial wave functions Ĉ *. This enables 
one to explore regions o f widely different deform ations. However, this 
still does not perm it a search  fo r  triaxial solutions.

A fter the in itial wave functions have been ch osen , the HF Hamiltonian 
(11a) is calculated. This involves a sum over the occupied  states X outside 
the co re  (e . g. in 20Ne, a sum o f 4 term s) and fo r  each X a sum on all (p ,p ' ) 
in the s -d  shell basis (6 X 6 = 36 term s). This calculation proceeds quite 
rapidly once the m atrix elem ents (np|\^|n'p') have been evaluated b e fo re 
hand. The Hamiltonian m atrix (n|h|n') is then diagonalized (E q .( l lb ) )  to 
yield  a new set o f wave functions C“  with which (n|h|n') is re -ca lcu la ted .
This cycle  is  repeated until the total energy (E q .8 )) does not vary sign ifi
cantly from  one iteration  to the next.

4. RESULTS IN THE s -d  SHELL

We shall not present the results here in great detail since they can be 
found in the literature [5 ,8 ,9 ] .  We shall, however, d iscu ss som e o f their 
ch aracteristic  features. The calculations have been done on all N = Z, 
even -even  nuclei in the s -d  shell, as w ell as som e other, both even and 
odd, nuclei near the beginning o f the shell. The calculated binding energies 
are generally  reasonably good (which is not surprising because the s. p. 
energies and strength o f interaction are chosen to get reasonable binding) 
but quadrupole mom ents are generally too sm all by about a factor o f 2.
This is because o f the neglect of the core  polarization, as mentioned ea r lie r . 
However, the co rre ct system atics o f the deform ation are observed ; Q is 
positive in the beginning o f the shell and changes sign m id -sh ell, at about 
28Si.

The m ost striking feature of the results is  seen in the spectrum  of 
s in g le -p artic le  energies obtained (F ig . 1). One sees im m ediately that the 
F erm i-lev e l -  the height to which the s. p. levels  are occupied  -  is 
approxim ately constant, and, furtherm ore, that there is a large gap of 
7-8 MeV between occupied and unoccupied leve ls . Such a gap is not evident 
in other m odels fo r  deform ed nuclei, such as the N ilsson  m odel [10] . The 
HF wave functions are quite s im ilar  to N ilsson functions but the spectrum  
of s. p. levels  d iffers by the presen ce  of this gap.

It can be seen as essentia lly  due to the n on-loca lity  o f the HF field , as 
we shall see below . Its presen ce  is  an indication o f the stability o f the 
HF solution since it would take a large amount o f energy to m ove a particle 
from  the occupied  states-into one of the unoccupied ones.

A guide to an understanding o f the gap is given by a sim ple solvable 
m odel introduced by B ar-T ou v  and Levinson [11 ]. An effective tw o-body 
interaction, such as the R osenfeld fo rce  (E q .(10), can be written as a 
radial function tim es a general exchange m ixture:

v (r )  = (W + B P  = H P  + M P )  f (r) (12)

Here W, В, H, and M are the W igner, Bartlett, H eisenberg, and M ajorana 
exchange fo r c e s , resp ective ly  and Pg-, PT , PK are the sp in -, isosp in -, 
and space-exchange operators, respective ly . The idea o f R ef. [11] is  that 
the g ross  features o f the HF solution com e from  the long-range part o f this
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F IG . 1 . S p ectru m  o f  the HF orb its  o f  lo w e s t-e n e rg y  so lu tion s  o f  e v e n -e v e n  N = Z  n u c le i  b e tw e e n  12C  and 40C a . 
T h e  le v e ls  are fo u r fo ld  d e g e n e r a te , and o c c u p ie d  orb its are m a rk e d  w ith  a  d o t . T h e  a d d it io n a l sy m m e try  o f  
e a ch  so lu t io n  is in d ic a te d  and a lso  th e  shape (p r e la te  or o b la te )  o f  the a x ia l ly  sy m m e tr ic  so lu tion s . T h e  
a x ia l ly  s y m m e tr ic  so lu tion s  are la b e lle d  b y  ( 2 k ) " ;  e . g .  3 m ea n s a k  = 3 / 2  o rb it  o f  the 2 s - l d  sh e ll an d  1 m ean s 
a k  = l / £  o rb it  o f  the p s h e l l.  For sp h e r ica l and a x ia l ly  sy m m e tr ic  so lu tion s  the 1 p  and 2 s - l d  sh e ll orb its  are 
sh ow n . For e l l ip s o id a l  so lu tion s  o n ly  2 s - l d  sh e ll orb its  are show n (f ig u r e  ta k en  fr o m  R e f . [ 1 ] ,  R ipk a ).

interaction , th erefore an in fin ite-range fo rce  is  chosen, i . e .  f(r) = 1.
Then the HF equation is  exactly solvable and the result (fo r  N = Z , even- 
even) is  that all the occupied  orb ita ls are degenerate and lie at an energy

and the unoccupied orb ita ls are degenerate at an energy

e a ~  < 1 3 b )

Both are m easured with respect to the inert core , -  n is  the number of 
partic les  outside the co re , -  and:

S = 4W +2B  - 2H - M
(13c)

G = W + 2 B - 2H - 4M

Thus, there is  a constant (n-independent) gap G between the occupied and 
unoccupied shells, providing G > 0 . The constancy o f the F erm i level is due
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to a saturation condition, S = 0, which holds fo r  the R osenfeld fo rce  used in 
the calculation fo r  F ig . 1. From  the form  of G, we see that a strong 
attractive M ajorana component (M < 0 ) w ill ensure a large gap. In fact, 
m ost reasonable exchange m ixtures used do have a strong M < 0 .

To see that the gap is connected with the non-loca lity  o f the HF field, 
we w rite the HF equation in co -ord inate space. F or  a loca l, central fo rce  
o f the form  (12), it is ,

where

-§ ^ -Ф а (Ь  + S U L(r )^ a (r) - Gj^ UNL( r , ? ' ) ^ ( ? ' ) d ? '

u L ( r )  = / d ? '  Y  I )

x

com es from  the d irect term  in E q .( l )  and the n on -loca l part

(14)

M r ) |M r ' ) f ( lr ■ r ' I)
X

com es from  the exchange term . In other w ords, G is  sim ply the strength 
o f the n on -loca l term . If G is  large, the non-loca lity  is large.

5. PROJECTION OF ROTATIONAL STATES

The solution o f the HF problem  fo r  a deform ed nucleus, in which s. p. 
states o f different j are allowed to m ix in E q .(9 ) lead to a deform ed intrinsic 
state fo r  the nucleus. This state, however, does not have good angular 
momentum. It is th erefore not the true ground state, but a m ixture o f the 
ground state with a num ber o f low -lying  levels associated  with the same 
in trinsic state.

To com pare to experim ental levels obtained in nuclear spectroscopy , 
we must extract from  the HF wave function states o f good total angular 
momentum J. In this, one usually follow s the p ro jection  method o f P e ierls  
and Y occoz  [12 ]. If the deform ed in trinsic state is  axially sym m etric with 
p ro jection  К o f Jz on the in trinsic sym m etry a x is , 'a  state o f good total J 
and p ro jection  M is obtained from  the integral

<ф 1 ^ = ---- 2J + 1 I |ф > , 15)

MK e Æ - '  MK K
J к

Here R (f2) is the rotation operator fo r  a rotation defined by fI , D ^ Q )  are 
its representation m atrices [13]

D ^ f l )  =  < J M | R ( 0 ) | J K >

and NjK is  a norm alization  constant.
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way are then :
The energies E j o f the states of a rotational band projected  in this

E J

T T I _ i ® v  ,/  s i n ß d ß  d (j3) e H Ф >
0 K K  к  к

(16)

TT т - Í 0 J
/  s in ß d ß  dKK(/3) <Фк |е у |фк >

о

We w ill not d iscuss in detail the pro jection  method since it is quite com p li
cated and discussed  in Bouten's paper in these P roceedings (or , see 
Ripka, R ef. [1]). One can see from  the expression  above the orig in  o f the 
d ifficu lties in the p ro jection  method, i .e . ' the evaluation of the rather 
com plicated matrix elem ents

Since \&K is an n X n determinant, the p ro jection  has been possib le  to date
[2] only for a rather sm all number o f p a rtic les . (N uclei in the beginning of 
the s -d  shell [2 ], and very  light nuclei (Bouten 's p a p er).)

A lim iting case o f E q .(16 ) is the strong-coupling  lim it, when the 
m atrix elem ents

contribute significantly only near the values /3 = 0 and ß = v. Then 
Ej = A J (J  + 1), the w ell-know n rotational spectrum . In aptual calculations., 
these m atrix elem ents do, in fact, peak rather strongly at ß = 0 and ß = w, 
th erefore  the pro jected  spectra  resem ble rotational ones. F igure 2 shows 
som e p ro jected  HF spectra . The agreem ent with experim ent is  w orst fo r  the 
28Si nucleus. A possib le  reason  fo r  this is  the fact that 28Si has two 
deform ed HF minima, one oblate and one prolate, nearly degenerate in 
energy. The low -en ergy  spectrum  must then be influenced by som e sort 
o f interaction  o f these two possib le  structures. In the other nuclei shown, 
the p ro jected  spectra  are in quite reasonable agreement with the ex p eri
mental ones.

and

and

2 H ere d (ß ) are the re d u ce d  ro ta t io n  m a tr ice s  [ 1 3 ] .  
M K
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F IG .2 .  P ro je c te d  HF sp ectra  o f  l2C ,  20N e , 28Si, and 36A r . T h e  o b la te  so lu t io n  o f  28Si was u sed . T h e  
p r o je c te d  sp e ctra  are draw n to  the le f t  o f  the e x p e r im e n ta l sp ectra  fo r  e a c h  n u c le u s . T h e  n u m ber on  the right 
o f  e a ch  l e v e l  is the sp in  o f  the le v e l .  T h e  n um ber on  the le f t  o f  the p r o je c t e d  le v e ls  is the d i f fe r e n c e  A j 
b e tw e e n  th e  en e rg y  o f  the p r o je c te d  le v e l  and the HF en e rg y  o f  the in tr in s ic  state ( f ig u r e  ta k en  from  R e f . f l ] ,  
R ip k a ).

6. RESULTS IN THE 2 p - If SHELL

Two possib le  extensions o f the s -d  shell HF calculations suggest 
them selves (and here finally we get to som e of the author's w ork); namely, 
extension to other m ajor shells, and extension to include mixing of severa l 
m ajor shells.

The 2p - I f shell is the next m ajor shell after the 2s - Id shell. It is 
known that nuclei in the beginning o f this shell do not exhibit the ch arac
te r is tic  large deform ations o f the s -d  shell case . It was of in terest, th ere 
fore , to perform  calculations on the f-p  shell, taking 40Ca as the inert co re . 
This is at once m ore difficult, since there are m ore o sc illa to r  states, and 
m ore dubious since 40Ca is  known to be not nearly as good a closed  shell 
as 160. However, Par'ikh and the author [14], have carried  out calculations 
o f this type for a large number of nuclei in the f-p  shell, using the effective 
interaction  due to Shakin et al. [15] . Somewhat to our su rprise , we found 
that the structure o f the HF calculations fo r  these nuclei did not look 
strikingly different from  that in the s -d  shell. They had the sam e large 
positive quadrupole m om ents3, with a change of sign around the m iddle o f the 
shell. One significant d ifference was observed  as is  evident in F ig . 3: the 
gap between occupied and unoccupied states is  much sm aller, about 1 to
2 MeV. As a result, these nuclei are not nearly so stable against excitation 
o f particles  as in the s -d  shell. An estim ate o f the effect o f pairing excita 
tions was made in R ef. [14], where it is shown that in these nuclei an im 
portant ro le  may be played by excitations of the pa iring-vibration  type.

7. MAJOR-SHELL-MIXING UNRESTRICTED HF CALCULATIONS

Another extension o f the deform ed HF calculation is  to elim inate the 
inert core  and let all particles  o f the nucleus m ove in variational orb its.

3 E x ce p t fo r  the C a  iso to p e s , d o m in a te d  b y  the sp h e r ica l '‘ t a  c o r e  and th e  fa c t  that 48C a  is a lso  
sp h e r ica l ( c lo s e d  f?^  neutron  sh e ll) .
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F IG .3 . P roton  s in g le -p a r t ic le  H . F. le v e ls  fo r  the p r o la te , a x ia l  so lu tion s  o f  N =  Z  n u c le i .  T h e  le v e ls  are 
la b e lle d  b y  the v a lu e  o f  к and on  e a ch  le v e l  a re  g iv e n  the d o m in a n t term s in  th e ir  o s c il la to r  ex p a n s io n . T h e  
thin  lin es  c o n n e c t  le v e ls  o f  the sa m e к and a p p r o x im a te ly  sam e stru ctu re . S ig n ifica n t ch a n g es  in  structure o f  
the le v e ls  from  o n e  n u c leu s  to  the n ext are in d ic a te d  ( fig u re  ta k en  from  R e f .[ 1 4 ] ) .
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F IG .4 .  T h e  H a r tr e e -F o ck  e n e rg y  w ith  th e  a n g u la r -m o m e n tu m  c o r r e c t io n  and th e  se c o n d -o r d e r  c o r re c t io n  
co m p a r e d  to  the o b se rv e d  b in d in g  e n erg ies  (a fte r  C o u lo m b  su b tra ctio n ). T h e  e f f e c t  o f  assum ing a constant 
(in d e p e n d e n t  o f  A ) fo r  H a rtr e e -F o ck  h o le  e n e rg ie s  [E q .(1 4 ) ]  c o u ld  e x p la in  the sy ste m a tic  d e v ia t io n  o f  the 
c o r re c te d  resu lts fr o m  e x p e r im e n t  (f ig u re  ta k e n  fr o m  R e f . [ 2 ] ,  B assich is, K erm a n  and S v e n n e ).
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That is , we return to a solution o f the full equation (1), where X runs over 
all A pa rtic les  of the nucleus. Obviously, we can no longer confine ou r
se lves to h a rm on ic -osc illa tor  wave functions in one shell, and the basis 
needed in E q .(9 ) becom es much la rger, the sum running over all n i  j and m.

B assich is , Kerman and Svenne [16] have carried  out such 'calculations 
fo r  nuclei in the lp  and 2s - Id shell using the n on -loca l Tabakin [17] two- 
body interaction . F or  reasons o f com puter storage, axial sym m etry was 
assum ed ( i .e .  no sum on m in E q .(9 )) and the basis was restricted  to the 
firs t 4 m ajor shells o f the harm onic o sc illa to r : Is , lp , 2 s -Id  and 2 p - l f  
sh ells . The qualitative features o f the resu lts are essentia lly  the same as 
fo r  the s in g le -sh e ll ca lcu lations: large gaps and large deform ations (away 
from  closed  shells) are found. H ow ever, the quadrupole m om ents are 
in creased  in magnitude and in much better agreem ent with observed  values. 
A lso, it is  possib le  now to make meaningful com parisons o f the total binding 
energy (F ig . 4) with experim ental values.
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Abstract

PAIRING VIBRA TIO N S A N D  T W O -P A R T IC L E  T W O -H O L E  A D M IX TU R E S .

1 . T im e -d e p e n d e n t  H a rtre e -B o g o ly u b o v  th e o ry ; 2 .  T h e  g e n e r a t o r -c o -o r d in a t e  m e th o d ; 3 .  T w o -  
p a r t ic le  t w o -h o le  a dm ixtu res in  2 s - l d  sh ell n u c le i .

INTRODUCTION

This paper treats the pairing mode of vibration o f norm al system s 
and the tw o-particle  tw o-hole adm ixtures to the H artree-F ock  states of 
2 s -Id  shell nuclei. The two subjects are only form ally  related  in that they 
both involve correla tion s due to the m otion of two p a rtic les . The recent 
attention [ 1 ] which has been given to pairing vibrations is  due to the s e le c 
tivity o f (p, t) and (t, p) reactions which excite preferentia lly  a few states 
of the residual nucleus, nam ely those states which are ca lled  pairing v i 
brations. The theory of pairing vibrations and a m easure of their collectiv ity  
with resp ect to (p, t) and (t, p) reactions have been form ulated by Bes and 
B roglia  [2 ]. T here is a strong form al sim ilarity  between R. P . A. vibrations, 
which we shall ca ll "n orm al v ibrations" and pairing v ibrations. In fact, to 
each of the innumerable ways of deriving the R. P . A. equations there is an 
analogous way of deriving the equations of pairing vibrations. In the first 
chapter, we shall derive both pairing and norm al vibrations at the sam e tim e 
by considering tim e-dependent H artree-B ogolyubov theory. This approach 
s tresses  the reaction  m echanism  by which these vibrations are excited. In 
the second chapter, we shall derive the same equations by a generator- 
co -ord inate  method. This method, which was in itially used by Jancovici 
and Schiff [3 ] to derive the norm al R. P . A. vibrations, is very  instructive, 
and its wide range of applications [4 ] has not yet been exhausted. In the last 
chapter, we shall d iscuss the methods and resu lts o f the calculations of 
tw o-p artic le , tw o-hole  adm ixtures to the H a rtree-F ock  states of N = Z 
even -even  nuclei.

The reader w ill find a review  o f the theory o f pairing vibrations which 
includes the diagram  expansion o f tw o-body Green functions and the in ter
dependence of norm al and pairing vibrations in Ref. [ 5].

1. TIM E-DEPENDENT HARTREE-BOGOLYUBOV THEORY

C onsider the wave function ¡ f  (t) ^ of a target nucleus which is  bom barded 
by either protons or tritons. Let | ¥o/A)>be the ground state o f the target 
nucleus A. During the reaction , the target nucleus may either

*  O n le a v e  o f  a b s e n ce  fr o m  Institu te " R u d je r B o s k o v ié " , Z a g r e b , Y u g o s la v ia
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i) stay in its ground state r, ï o X
ii) be excited  by an inelastic co llis ion  to som e excited state |n, АУ,

iii)  capture a pair of neutrons in which case it makes the transition to 
a state |n, A + 2^>of the nucleus A + 2, which has two extra neutrons, or

iv) lose  a pair of neutrons in which case it makes the transition to a 
state |n , A - 2^ o f the nucleus A - 2, which has two neutrons le ss .

We shall neglect the other p ro ce sse s . The wave function |ï(t)^>of the 
target nucleus w ill then have amplitudes in all the states considered  above;

N,A>

-iE  (A+2)t 
YN e N |n ,A+2> (1)

The states |n, Â >, | N, A + 2 У and |N, A - 2 are eigenstates of the nuclear 
Hamiltonian H:

h U  > = E |ф )•
‘ To '  o ,To '

h |n , a > = en<a )|n, a )  (2)

h |n ,A + 2> = En(A + 2) |n ,A Í  2>

-IE t 
|*(t)>  = r P

?  l * o >  +  Z  “ N

- iE  (A)t N

-iE  (A+2) t
+ Z ßN e |n,A+2>+ ^

N N

It is  convenient to introduce the frequencies (ft = 1): ■

<i> = E (A) -  EN N o

<i>n(A+2) r  EN(A+2) -  Eq (3 )

Ш„(А-2) = E -  E (A-2)N O N

The coefficien ts ßN and yn depend on the reaction  m echanism , and
their exp licit calculation w ill not be needed.

The theory of pairing vibrations is  based on two basic  hypotheses:
1) During the reaction , that is , at each time t, the wave function |¥(t)^ 

rem ains a q u asi-p artic le  vacuum.
2} The amplitudes a , ß  and 7 .are sm all com pared to unity.
A q u asi-p artic le  vacuum is  entirely determ ined by the norm al and ab

norm al density m atriceo p¡j and K i;j. These are defined by

PtJ ( t )  = < K t ) | b j  b J l K t ) )

Ki j ( t )  = <>Kt) |ь |\|r(t)>
C4)
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The operators b¡ and b* are nucleon destruction and creation  op era tors . It 
may be shown [6 ] that a n ecessary  and sufficient condition for |ï(t))>to be 
a qu asi-p artic le  vacuum is that the density m atrices  p and К satisfy the 
m atrix equations

t -p = p  K + K = 0
2 tp + KK = p (5)

pK = Kp

Let us then calculate the density m atrices p and К o f the state (1); we 
obtain by neglecting quadratic term s in a, ß and y:

(0 )  X  “ n e ^  <’t,0 lbj bi lN. A> + X  “ Ñ e N <N,A |фо >

(6)

+ lU> t

where

pij = < ♦ . !* > .>j W  (7)

and

/ 0 \ r - ,  -i<UM(A+2)t
KU ( t )  = Ki j  + Z  ßN e <Ф0 |Ь b jN .A + 2 )

N

(8 )

(9 )

where

Ki J } r  <+olbJbi l+ o >  ClO)

We shall d iscu ss here only those nuclei which have norm al ground states 
and fo r  which K̂ ,* = 0 . A  q u asi-particle  vacuum whose abnorm al 
density m atrix K?°) vanishes redu ces to a sim ple independent-particle state ' 
made up o f A orb its  a.  We shall distinguish the orb its which are occupied 
in the state | Y0 У; we ca ll them hole orbits and denote them by Greek indices
a , ß . . .e t c .  We ca ll the other orbits particle  o rb its  and denote them

* . " S ’  »  “ ц ’ «* ’

<N,A-2|b b |ф >
J  1  O '
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F I G . l .  B inding  en e rg ie s  o f  Pb iso top es  p lo tte d  again st th e  mass n u m b er A .

by Roman letters i, j, . . . . In an independent-particle state |Y0 /  the occupied 
orbits may be chosen so as to diagonalize the density m atrix; thus for  a 
norm al system  we may choose

( o )  _ 6 ( o )  _ (o)
“aß aß "a i  f j j

к (о )  _ (о )  _ (о )  _
aß -  ai -  Ki j  -  0

(11)

R ecalling that p ^  and Ш1) are fir s t -o r d e r  quantities (in aN, ßN and 7 N) with 
resp ect to p̂ 0> , it is  easily  verified  that to firs t order Eqs (5) im ply that

P( l )Hi j
( 1 2 )

This means that the only non-vanishing elem ents o f the m atrix pW are the 
p a rtic le -h o le  elem ents p^J and p^¡, and that the only non-vanishing elem ents 
of the m atrix K^1) are the p a rtic le -p a rtic le  and hole-h ole  elem ents and 
k $ .  respective ly .

It is c lea r  then that the two basic hypotheses made concerning the state 
I Ï  (t) У strongly lim it the states' described  by the present theory. Indeed, 

the excited  states |n, АУ o f the nucleus A must have only p a rtic le -h o le  and 
h o le -p a rtic le  configurations, and the states |n, A ±2 У o f the A ± 2 nucleus 
must have only tw o-p article  and tw o-hole configurations. The theory does 
allow fo r  ground-state corre la tion s which are secon d - and h igh er-ord er

■ e ffects .
We have so  far considered  only the kinem atics of the reaction . Let us 

now con sider the dynam ics. The density m atrices p (t) and K (t) are given 
by the Schrödinger equation
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(13)

[ ] is a com m utator. We use the Hamiltonian

И = У  ( m|t|n) b b + — (rs|v|mn) b V b  bm n 4 ¿__i '  r s n m (14)

where t is the k in etic-en ergy  operator, and v is  the tw o-body interaction. 
When |ï(t)^> is a qu asi-particle  vacuum, the right-hand sides of Eqs (13) 
are easily  evaluated by using W ick1 s theorem . The result is

1 ^  P, ~ V  ( t s +l,4 )p . -  pj (t  . +U .) + К* Д -к .  Л* ~| at is  is  rs j r is  s j s j js  s i  is  s j
s

(15)

1 £  Ki i ( t )  -  У  <t, +U )K . -  ( t  + U Ж . -  p. A + p dt i j  i s  i s  s j  j s  j s  s i  r j s  s i  ri As s j + Aj i
(16)

We have written these equations in term s of the usual H artree-F ock  and 
pairing fie lds Uis and Ais which are defined by

U -  'У' (im I v I sn )  pi s  ¿_j  '  1 1 '  rnni
mn

(17)

A = - j r -  У  <is|v|mn)Ki s  2 Z_i nm

In the low est ord er, Eq. (15) gives the usual tim e-independent H artree-F ock  
equation for |ï0]>, i . e .

1 dt P< = t* + l»( 0 ) ,p ( 0 ) ] = О (18)

so that t + U(0) and p(0) may be diagonalized sim ultaneously. We shall use 
the follow ing H artree-F ock  representation:

t <4 + u!°> = e 6
iJ  i j  i  i j

+ U(o) = оiot ia

V  +  Ua ß }  r  e a  5 a ß  < 1 9 >
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The €j and e a are the energies of the H artree -F ock  orb its , and U(Q) is  the 
static H artree -F ock  fie ld

If we substitute the expressions of p(°) and U<0) in Eqs (15) and (16), and 
keep only f ir s t -o r d e r  term s in K ^ a n d  p№, the follow ing set o f equations 
is  obtained:

Thus, in a norm al system  the equations fo r  p(1) and K P 'are  com pletely  
uncoupled to firs t  o rd e r . Equations (21) are the fam iliar equations of tim e- 
dependent H artree-F ock  theory. They lead to the R. P . A. equations. If 
we had put /3n = Tn = 0 in Eq. (1) and thus considered  only inelastic p ro ce sse s , 
we would have obtained Eq. (21) and norm al R .P . A. vibrations. If we had 
put aN = 0 and considered  only transfer p rocesses , we would have obtained 
Eq. (22) and pairing v ibrations. To firs t order, that is , when only one 
vibration  is  present, norm al and pairing vibrations are independent m odes.
In se con d -ord er  p rocesses ,su ch  as ground-state corre la tion s , this is no 
longer true and the theory needs to be co rrected  fo r  the interdependence of 
pairing and norm al m odes o f vibration [5 ].

Equations (22) admit solutions o f the form  (8). Substituting expression  
(8) into Eq. (22) we obtain a set of linear equations fo r  the amplitudes

(2 0 )

1 dt pia } - (ei " ea ) Pi«} + £  j~<iß|v|aj> + <ij|v |aß> ~|

.10 L  JJß
(2 1 )

aß

(22)

I £<«ß|v№> -§  £<aß|v|lj> к“ >
Y6 ij

Xij = <'l'0lbjbilN*A+2> 

Xaß = < i0 l bßba lN ,A +2>

(23 )
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i. e.

WN(A+2)Xi j  = (e i  + e j )Xï j  + 2 X  < i j lv | M >  + I  Z  <Í JIV I“ P> Xaß
к  l  aß

(24)

V ^ > * a ß  r  (ea + e ß ) X ^  -  §  X  < « ß | v M >  -  I  £  < « ß |v | ij>  X ^

Y 6 i j

We a lso obtain a set o f linear equations for  the amplitudes 

Y i j  = < N ,A-2|b  А | * 0 >

Yaß = < " .* -*  Ibßb j t 0 >

(25)

nam ely

V A- 2 ) Y i j =  (e i  + V  Y i j  + 2 Z  ^ W ^ Ü e  + I Z  < i j l v k >  < ß
k l  aß

(26)

WK(A" 2) Y aß  = (e a + eß> Y aß '  I  Z Y ^  “  I I  < « ß lv | i j>

Y* i j

The amplitudes X ĵ and X ^ß are the amplitudes o f a pairing vibrational mode 
N o f the nucleus A which is  excited  by a (t, p) reaction . It correspon ds to 
states of the A + 2 nucleus. The amplitudes YУ and Y^s are the amplitudes 
o f a pairing vibrational m ode N o f the sam e nucleus A, which is  excited  by 
a (p, t) reaction . It correspon ds to states of the A - 2 nucleus. The pairing 
v ibrations XN and YN bear, resp ective ly , the quantum num ber a  = +2 
and -2  introduced by Bohr and M ottelson [ 1].

F inally Eqs (21) admit solutions of the form  (6). Substituting expression
(6) in Eq, (21) a set o f linear equations is  obtained fo r  the amplitudes

l. e.

Zia = < * > ^ N , / 0

Z« i  = < U bÎ bJ N' A>

“N Zïa = <ei - £a )Zï a  + Z  F<“J К |iß> Ẑ ß + <aß|v|ij> 1 
Pj - 1

% Za i  "  (e a " e i )Za i  "  Z  Zß j  + <«ß | v | l j>  z ” ß J

(27)
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Equations (28) are the fam iliar R .P . A. equations o f which there is  ample 
account in the literature [ 7 ].

In Eqs (24) and (26) the indices (i, j) and ( a , ß) always occu r in pa irs. 
Each pair (i, j) form s a tw o-particle  configuration and each pair ( a , ß) form s 
a tw o-hole  configuration. Since the configurations (i, j) and (j, i) are the 
sam e we use the convention

i > j, a > ß

Equations (24) and (26) may then be cast in m atrix form . Each tw o-particle  
configuration is labelled  by one index p, and each tw o-hole configuration is 
labelled  by one index h. Let us assum e that there are np and nh tw o-particle  
and tw o-hole configurations, respective ly . The amplitudes X^, XjJ1, YjJ and 
Y^ are then seen to be the solutions of the follow ing eigenvalue m atrix 
equation:

S  V N =  u>„ v  V N ( 2 9 )N

The eigenvector ,VN is a colum n vector  of dim ension np + nh:

vN \
P  ( 3 0 )

The m atrix S is  a herm itian m atrix which can be written as:

/  A  , В  \

5 = (  "  ' h )  (31)

where
A ,

P P

Chh’

Ai j , k ¿ = 6 I ik V e i +  V  + ( i j  U |k£>

Bph = BiJ ,«ß
= <ij|v|aß>

Bhp 3 = <«ß|v|ij>

C<xß, yô =  - ô  . ay 6 ß ö  « e a + V + < a ß | v |y6 )

(31a.)

Finally  v i s  the matrix

P P
= 6

P P ph hp

1 О  

О -1

=  О  ,  V

(32)
hh' hh'

and cô  i s  the eigenvalue.
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The eigenvalue problem  (29) is  s im ilar to the one encountered in the 
R. P . A. The R. P . A. eigenvalue problem  is a specia l case of the problem  
(29) in which np = nh and A = C. In spite of the d ifference np = пь between 
the eigenvalue problem  (29) and the R. P . A. equations, m ost of the properties 
o f the solutions o f Eq. (29) are s im ilar to the ones o f the R. P. A. equations. The 
latter equations have, been proven by Bloch [6 ]. We shall only lis t the 
properties  o f the solutions of the eigenvalue problem  (29) since the proofs  
are the sam e as in Ref. [6 ].

1. If uN is  an eigenvalue, uN is  also an eigenvalue.
2. The norm  of a vector  defined as

4. If wN is a rea l non-degenerate eigenvalue, the norm  (VN* i/VN) of 
the corresponding eigenvector is  different from  zero .

5. The vectors  VN which have a non-vanishing norm  (VN*, i/VN) are 
linearly  independent.

In the next part we shall show that a com plex eigenvalue is  associated  
with an instability of the system  with respect to the form ation  o f BCS pa irs.

In the lim it of vanishing m atrix elem ents v = 0 it is  easy to check that 
there are np v ectors  VN with positive norm and which can be norm alized 
to +1, and nh v ectors  with negative norm and which can be norm alized  to -1 . 
We assum e that this rem ains true as the interaction is switched on, so long 
as no com plex eigenvalues o ccu r. Then we identify the np v ectors  with 
positive norm to the X N amplitudes which are th ere fore  norm alized to +1:

and we identify the nj, v ectors  with negative norm to the Y N amplitudes which 
are th erefore  norm alized  to -1 :

P  =  1 h  =  1

P = 1 h = l

(33)

i  > i a > ß

i  >  J
(зза )

a > ß

The eigenvalues of the positive norm vectors  XN are identified with
uN (A + 2) = E n (A + 2) - E 0 and the eigenvalues o f the negative norm vectors
YN are identified with uN (A - 2) = E 0 - EN (A - 2).
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ú = X  x " xN w -  X  YN yn V (34)

N=1 Nrl

where i  is  the unit m atrix.

2. THE GENERATOR-CO-ORDINATE METHOD

It was shown by Jancovici and Schiff [3 ] how the gen era tor-co -ord in ate  
method can be used to derive the R. P . A. vibrations. We shall derive the 
pairing vibrations by this m ethod. In so doing, we shall derive a stability 
condition fo r  a system  against the form ation  of BCS pa irs, relate this 
condition to the com plex eigenvalues o f the eigenvalue problem  (29), and 
obtain explicit expressions fo r  the ground-state energy and wave function 
o f a system  with zero -p o in t pairing vibrations. The gen era tor-co -ord in ate  
method, illustrated in this lecture , has a wide range of applications [4 ], 
nam ely in the a -p a rtic le  m odel, and it is  an interesting and useful approach 
to the problem  of sm all oscilla tion s of a system  about its equilibrium  state.

A BCS state is  usually written thus

Ib . C . S . )  = П  (u + v b V )  |o> (35)11 m mm* “ '
m > О ш

where m and m are tim e -re v e rse d  states. We shall con sider independent - 
particle  states |ï0^ com posed o f even num bers of neutrons and protons such 
that fo r  each occupied  (hole) orbit a the t im e -re v e rsa l orbit ä  is  also 
occupied .

The state | Ф0 may th erefore be written

1фо> = П  (b I  1°) (36)

a a

where | 0 ]> is  the rea l vacuum and where the product is  lim ited  to the A /2  
occupied  orb its a.  We shall con sider BCS states which d iffer little from  the 
independent-particle state (36) in which case it is m ore  convenient to w rite
the BCS state (35) in an equivalent form  as an operator acting on | Ф0 У

| ф ( х , у ) >  =  P J  ( l + x * b j b * )  ( l + y * b  Ь а ) | ф  >
1 1 а “  °

=  e x p  Г  £  * ‘ ь У  +  X  у * ь _ ь а  П  | ф  )  ( 3 7 )
‘- i  1 а « J °
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where the states i are the empty particle  orb its . The state |ф { х , у )У  is 
not norm alized . In fact,

<Ф(х,у) |ф(х,у)> = П  ( l + |xi|2 ) I ]  ( 1+ |yJ2 )
i  a

<Ф(х,у)|фо > = 1 ( 3 8 )

The param etrization  x* = v¡ /u ¡ and у* = ua/v a is  introduced fo r  convenience.
The BCS theory consists in determ ining the coefficien ts  x¡ and ya which 

m inim ize the energy

<Ф(x , у ) |n-XN |ф(х,у)> _ E _ Xn
(ф (х ,у )  |ф(х,у) )

But we now show that the wave function (37) as such is  o f no use to us because 
whenever the eigenvalue problem  (29) has rea l roots  the energy (33) has a 
lo ca l minimum fo r  x¡ = ya = 0 in which case the BCS state (37) reduces to 
the independent-particle state |Ф0Х  Let us expand the energy (39) up to 
second ord er in x¡ and ya , using the exponential form  (31) fo r  |ф (x, у) )>

<Ф(х , у )|н-Хы|Ф(х ,y ) )
---------------------- -----------------------  = E -  Xn

(ф(х ,у)|ф(х  ,y ) )  °

+ I  Xi(Aij - Xj* + Z ya (Cß« + 2*6„ß>

ij «P

+ Z  (xA a ya + уа* BaiXiK) <«»
ia

Here A, В and С are the m atrices (31a). A m ore com pact form  is  obtained 
by expressing the param eters x. and y o as a column vector

'  = (
The energy (40) becom es

E - Xn = E0 - Xn + (V*, S V) - 2X (V*, v V) (42)

where Eo - Xn =K$o |h - XN | Ф0 X  The m atrices S and v are defined by 
Eqs (31) and (32). К the coefficien ts Xj and ya are chosen such as to keep
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the expectation value of the particle number equal to n, the vector  V has 
vanishing norm ; indeed,if

(ф (х ,у )  Ы ф ( х ,у ) )  

(ф (х ,у )| ф (х ,у ) )
n + 2 ( V*, v у )

it fo llow s that

(V*, vV )  = 0

In such a case the energy E - Xn >E 0 - Xn whenever the m atrix S is  positive- 
definite

(V Í .S V ) > 0

If wN is  a com plex eigenvalue o f the eigenvalue problem  (29), the corresponding 
eigenvector Vм has vanishing norm and hence

(VN* ,S V  ) = u n (V n*, v VN) = 0

Thus, whenever there exists a com plex eigenvalue uN, by choosing V = V N 
we can make the energy stationary up to second ord er. Whether the energy 
is a minimum or  not in that case depends on higher ord ers ; if  the energy 
was a quadratic expression  of the coefficien ts  x ; and уи it would in fact be 
a maximum and the system  would be unstable against the form ation  o f BCS 
pa irs. When the eigenvalues are all rea l, the closu re  relation  (34) allows 
us to w rite the m atrix S in term s of the eigenvectors and eigenvalues o f the 
eigenvalue problem  (29). We then find two equivalent equations fo r  the 
energy

E -X n  -  EQ -Xn + шм(А+2) |(XN ,vv)|2 -  шн(А_2 )1 (уН >v v ) f  "2X(V*,vV)
N N

* *
= EQ -Xn + ^ T [ ü)n(A+2)-2X]|(XN ,VV)|2 -  Z  *-“ m(A-2)~2X^ (yN ,VV)

2

(43)

The stability condition fo r  a vector  V of vanishing norm is

0) (A+2) > W (A-2) (44)N N

Let E 0(A ± 2) be the ground-state energies o f the A ± 2 system s. The 
condition (44) then reads

E -  E (A-2) <: E (A+2) -  E
О О О о

(45)
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Figure 1 shows the binding energies of lead isotopes. The discontinuity 
in the slope of the binding energy curve strikingly suggests the stability 
of 208pb  against pairing corre la tion s.

If the vector  V does not have a vanishing norm , the system  is stable 
provided X is chosen so as to satisfy  the inequalities

(Ü (A-2) < 2X < u> (A+2) (46)W N

Although the BCS wave function (37) is  not as such an im provem ent for  
a norm al system , a superposition  o f such wave functions may w ell be one, 
such that we con sider the wave function

1+) J .dxdy f ( x , y )  |ф(х,у>)

I  dxdy f ( x , y )  exp X  х * ь У  + X  y* b-  ba 1  l$o> (4?) 
i  a

The integrals in Eq. (47) are m ulti-d im ensional integrals over the entire 
com plex planes of each variable x¡ and ya

dx dy = d(Re x ^  d ( I m  d(Re y^) d(lm ya )
i  a

f (x, y) is a weight function expected to be peaked about the static-equ ilibrium  
values x¡ = ya = 0. We determ ine the weight function f by m inim izing the 
energy

E _ Xn = , 0 |H -  XN
<*l*>

with resp ect to in fin itesim al variations of the weight function f. This leads 
to the equation

111 (48)

J  dx ' dy* <Ф(х,у)|н-Хк|ф(х\у ')>  -  (E-Xn) <Ф(х,у)|ф(х, 1у ' ) > 1  f i x ' . y ' )  n o

J  (49)

which must be satisfied  fo r  all values of x¡ and ya . We can solve Eq. (49) 
if we make two approxim ations which shouldbe com pared to the two basic 
hypotheses made in the firs t  chapter concerning the tim e-dependent state (1).

1. The overlap kernel <̂ Ф (x, y) f Ф (x 1 , y ' )^  is approxim ated by a 
Gaussian function

<Ф(х,у) |ф(х’ , y ' )>  = Д  (1+xi xi * ) П (1+УауаЖ)
а

[  Z  х1хГ+ Z  y*y¿" ]  (50)

1

-  exp I



440 RIPKA and PADJEN

2. A quadratic approxim ation is  sufficient fo r  the Hamiltonian kernel

{ф (х , y ) |h-AN IФ( x ' i У' ) )  
<Ф(х,у) |Ф(х' , y ) > -  E -  Xn

О

+ Z Xi(Aij ■ xj* + Z Уа (Cß« + 2*V yß“ (51)
i j  aß

+ Z (хЛаУа + Ва1ХГ}
l a

When the approxim ations (50) and (51) are substituted in Eq. (49), the 
resulting equation is  equivalent to a d ifferentia l equation fo r  the function

G (x ,y )  ~ J  dx ' dy1 exp Z XiXî* + Z уауа" J f(x* >y ' 5 (52)

i. e.

[ Z Xi(Aij - 2x6ij> si- + Z y « (Cßa + 2*6aß> ö t
ij 3 aß P

+ Z ( ХЛ « Уа + B«i ЗГ ЭГ )  + Е0 - Е 1  G(x*y) г 0 (53)
i a  i а  /

Equation (53) is  an equation fo r  coupled osc illa to rs . The uncoupled m odes 
of oscilla tion  are found by expressing the m atrices A, В and С in term s of 
the eigenvectors of the eigenvalue problem  (29). Indeed we can define the 
operators :

, t  -  ^  Л  .  -  ^  AI  <  «, - X <
i  а "

-- I  < 4  - к '» .
i а

<4 = £ * Í 4  - Z
i 1 P

s  = l i - i  ■ l i  ^
1 a

Z Xi  -  2 Z ya2

1
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and express Eq. (53) in term s o f these;

Г Z  V A+2)nI BN -  Z V A- 2)CÎCN + Eo + ЛЕ -  E -  ^ 1  = 0 (55)N n J

where

ДБ r - £  wn (A+2 ) |x” |2 + £  wn(A-2)|y” |2 (56)
N,a N,i

It is  easy to check that the operators Bj,, Cjj, Bn and Cn obey the com m utation 
ru les of ra isin g  and low ering operators of a harm onic o scilla tor

The operator R o b e y s  the follow ing com m utation ru les:

(57)

[IT.bJ] = 2Bj [M, Bn ] = - 2 B n

t * .C ¡ ]  = - * £  [#Г.СМ] = 2Cn

(58)

The operator ^ c o m m u te s  with the Hamiltonian operator acting on G (x, y) 
in Eq. (55), so that they may be sim ultaneously diagonalized. Thus, 
a function G (x , y) may be found which sim ultaneously sa fis fies  the eigenvalue 
equations

Е ^ (А+2)ВК  + Z  V A_2)CNCN + Eo + ДЕ ]  G(x ’ y) = “ <*•*> (59)

H Q ( x , y )  -  aG(x,y) (60)

Equation (59) is  an equation o f uncoupled o sc illa to rs . The ground state 
Gq(x , y) containing zero  quanta o f excitation is , th erefore , the solution 
o f the equations

BN Go ( x ,y )  z CN Go ( x ,y )  = О (61)

and it has an energy

E = Eq + АБ (62)
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Thus, ДЕ defined in Eq. (56) is  the ground-state corre la tion  energy due to 
zero -p o in t pairing vibrations. It is  easy to see that fo r  a norm al system  
ДЕ < 0. We thus im prove the energy by using the tr ia l wave function (47) 
The sam e corre la tion  energy is  obtained by an appropriate summation of 
diagram s [5 ]. It is  easy to check that the function

Go ( x ,y )  = exp( Z Va Kia)
ia

(63)

w ill satisfy  Eq. (61). The m atrix K. is  the solution o f the com patible set 
of linear equations

í =  I - Í 4 (64)

When the function G (x , y) is known, the weight function f  (x, y) may be 
calculated with the help of the identity [3 ]:

G(x,y) = фМ J  exp[̂ xix;* + £ yay¿* - Z Kl" - Z G ( x \ y ' )

(65)

which may be used to invert Eq. (52);

f ( x , y )  = ( i ) exp Z K i 2 - Z k M
Í /V

G(x,y) (66 )

The number M is equal to the total number o f com plex  variab les x¡ and ya 
The identity (65) may be used to obtain an expression  for  the state |ï)>. 
Using the identity (65) and Eq. (66), Eq. (47) reads

|*> = G(b* „1  , b_ Ьа ) |Фо > (67)
i  a

where G (b|bt,b-b ) is  the function G (x, y) in which each xi and ya is  rep laced , i i a a Jrespective ly , bythe operators Ь^Ы and b-b^. Thus, an explicit expression
fo r  the tr ia l wave function is obtained; in particular the ground state
(Yo!) containing no quanta of vibrations is  obtained using Eq. (63)

|фо> = exp Г Z Kia  bI  b-  b-  ba 1  1Фо> (68)
ia  i  a -J

By expanding the exponential (68) we obtain the ground state with its z e ro - 
point vibrations in term s of tw o-particle  tw o-hole , fou r-p a rtic le  fou r-h ole , 
e t c . ,  configurations built on the independent-particle state |ф у.
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The function G (x, y) corresponding to the excited states with one or 
m ore quanta may be obtained by applying the raising operators ВД and CJ, 
to the ground-state function (63).

We must finally answer the question: what is  the extra o p e r a to r ^ ?
The reader w ill be satisfied  to learn  that it acts as the particle-num ber 
operator. This is apparent from  the follow ing equation which is easy to 
v erify

<*|n | + > J  dxdy f * ( x , y )  *G(x,y)
r n + ' ' Г M il

J dxdy f * ( x , y )  G (x,y)

= n + a (69)

The mean value o f the number of particles is  n + a,  and, furtherm ore, the 
mean value of the number of particles is  stationary with respect to variations 
of the weight function f(x , y ). It is easy to check that JT G0(x, у) = 0 so that 
in the ground state the mean value of the particle  number is n, as is also 
obvious from  Eq. (68). F or  each vibration B ¿, the particle  number is in 
creased  by 2, and fo r  each vibration  C¿¡¡ the particle  number d ecreases by 2. 
Thus the eigenvalue a o f the operator is just the particle  number quantum 
number a o f pairing vibrations introduced by Bohr and M ottelson [ 1].

3. TW O -PARTICLE TW O-HOLE ADMIXTURES IN 2 s - ld  SHELL NUCLEI

The H artree-F ock  theory has been extensively applied to 2 s - ld  shell 
nuclei, and it is  quite su ccessfu l in explaining the rotational properties of 
nuclei c lose  to 20Ne and 24Mg. But the H artree-F ock  calculations fa il to 
predict the nuclear properties of 28Si and 32S [8 ]. Strongly deform ed states 
are predicted  fo r  28Si, and experim ental data do not confirm  this. A stable 
spherica l equilibrium  shape is not obtained fo r  32S. It is , th erefore , interesting 
to study the admixtures o f tw o-particle  tw o-hole configurations to the H artree- 
Fock  state. They are the sim plest adm ixtures which one can consider since 
H artree-F ock  states are stable against p artic le -h o le  excitations. A  full 
calculation of tw o-particle  tw o-hole (2p-2h) adm ixtures has not yet been done, 
curiously  enough. Some partial attempts have been made [9 ] which neither 
include all the configurations nor treat the many-body problem  correctly .
We shall firs t  consider the problem s which must be solved before  d iagonaliz- 
ing the (2p-2h) adm ixtures and d iscuss the resu lts of such calcu lations. We 
shall for  sim plicity  con sider the even -even  N = Z nuclei, since generalizations 
are triv ia l. These nuclei are described  by an independent-particle wave 
function |ф0 У which is  t im e -re v e rsa l invariant, and the orbits of which have 
fou r-fo ld  degeneracy [10]. The wave function |Ф0)> has thus zero  total isospin  
(see F ig. 2).^

We wish to im prove the wave function |Ф0 by adding to it 2p-2h con 
figurations. We thus consider the wave function

!*> = а0 |фо> + Z  Z  C ( i j , a ß ) b ^ b ßba |io >
i> j  a>ß

(70)
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F I G .2 .  F il le d  and e m p ty  orb its  o f  an e v e n -e v e n  N = Z  n u c le u s  rep resen ted  b y  th e  sta te  |Ф0> .

j *  P

T T

F I G .3 .  G ra p h ica l rep resen ta tion  o f  a t w o -p a r t i c le  t w o -h o le  c o n f ig u ra t io n  b u ilt  o n  th e  in d e p e n d e n t -p a r t ic le  
sta te  I Ф0>  show n in  F ig . 2 .

The orb its  i, j , . . .  are empty particle  orbits and the orb its a , ß , . . .  are filled  
hole orb its  as shown in F ig. 2 (see Figs 2 and 3).

Since the isosp in  of the state |Фо )> is  zero , there are two kinds o f 2p-2h 
configurations, i. e. those in which each pair o f particles  (and holes) is 
coupled to isosp in  T = 0 or T = 1. A  pairing fo rce  would produce 2p-2h 
configurations com posed  o f T = 1 pa irs. T = 0 pairing has also been con 
sidered  [11].

The coupling o f isospins is done in the usual way: a pair o f nucleons 
with isospin  (T , MT) is  created  by the operator

t г- 1  Г  */2  T -1 + +
\  „  ( i .J )  = e ( i , j )  £  b] x (7 !)

^  V a  L  *1 *2 MT J  ’  1 J ’ 2

w here the labels i and j denote all the quantum num bers o f the orb its except 
the isosp in  quantum number.

The pair of nucleons (71) is  norm alized  if e (i, j) is  chosen such that

e (i,J ) = 1 i f i t i

_ 1 

' S *
i f i  = j  and T = 0 (72)

- о i f i  -  J and T r i

and A + (i, j) = ( - ) TA + (j, i).
A  coupled and norm alized  2p-2h configuration is  constructed as fo llow s:

i , J ; « , ß ; T > =  e ( i , j ) s ( a , p )  — у  ( i , J ) A ™ _ ( a ’ ß ) I O  ( 7 3 )
y/2T +1 „  T T

T
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The index T denotes the isospin  0 and 1 o f each pair o f nucleons; the total
isospin  o f the 2p-2h configuration (73) is  ze ro . The expansion o f the state
(70) with resp ect to the coupled and norm alized  basis (73) is

Í4>> '= a > o > + X  Y j C(i,j;a,ß;T)|i,j;a,ß;T> (74)
i > j a > ß

Finally, a further reduction o f the 2p-2h configuration space is  obtained by 
the fact that |ф0 is  t im e -re v e rsa l invariant, bet us denote by a bar a tim e- 
rev ersed  orb it. F or exam ple, i f  an orbit a  is  expanded on a sh e ll-m od el 
basis |nijm > with rea l coefficien ts  d^jm

l“> = Z  dnejm (75)n£Jm

then with the Condon-and-Shortley phase convention the t im e -re v e rse d  orbit 
is

l“> = Z  dn€jm (-)*+J_m |nêJ"m> (?6)nêjm

The tim e -re v e rse d  2p-2h configuration (73) is  | ij , aß ,Т)>, so that the con 
figurations |ij, aß,  T >  in the expansion (74) may be rep laced  by the con figu r
ations

-¿Г (Uj,«ß.T> + |ij,äß,T>) (77)
/ 2

with the exception o f the configurations |ii, a a , T ^ which are t im e -re v e rsa l 
invariant and which should be included as such. Care must be taken when 
using configurations (77), so as not to count them tw ice.

One may be tem pted to obtain the com ponents a<) and C(ij, aß,  T )o f the 
wave function (74) by sim ple diagonalization o f the nuclear or sh e ll-m od el 
Hamiltonian H between the state |Ф0 and the 2p-2h configurations. This 
is  in fact an in correct way to p roceed  fo r  two reasons;

1. The ground state and the tw o-p artic le  tw o-hole  states are not treated 
on equal footing.

2. Spurious effects a rise  because | Ф0 is  not an eigenstate o f the 
angular momentum operator.

The co rre c t  p rocedure is the follow ing:
1. One should firs t  diagonalize the tw o-particle  tw o-hole  configurations alone, 
excluding the state | Ф0 У . Let us denote each tw o-p article  tw o-hole con figu r
ation (ij, aß ,  T) by one index X. Let there be n tw o-p article  tw o-hole con 
figurations. The diagonalization o f these configurations leads to the solution 
o f the equations



446 ИРКА and PADJEN

t  < ^ ’ > *  = « * <  ¿ K NI2 = 1
X ' = 1 X=l

where H is the Hamiltonian used and where X^ and uN are the eigenvectors 
and eigenvalues resulting from  the diagonalization of the tw o-particle  tw o- 
hole configurations. The wN obtained are then the energies of the two- 
p article  tw o-hole  states relative to the ground state. It may be asked: why 
not include the state | Ф0 У in the m atrix to be diagonalized since the Ham il
tonian w ill certainly  m ix the state |Фо У and the tw o-particle  tw o-hole 
configurations?

The answer is that the energy of the tw o-particle  tw o-hole states is 
wN, and that the admixture to the ground state must be calculated after the 
diagonalization is  perform ed . This may be shown by the method of the 
lin ked -clu ster expansion of the ground-state energy, a subject outside the 
scope of this paper. The physical justification  is as fo llow s: if one 
included the state |ф0 У in the diagonalization the low est eigenvalue would 
correspon d  to the low ering of the energy of the ground state due to tw o- 
particle  tw o-hole  virtual excitations. But the tw o-particle  tw o-hole states 
are low ered by the same amount owing to the same excitations [ 16]. Such 
a low ering would not be taken into account in the diagonalization. Thus the 
ground state and the tw o-particle  tw o-hole states would not be treated on the 
sam e footing, and the distance between the ground state and the tw o-particle  
tw o-hole states would be over-estim ated. These effects are corrected  in 
the lin ked -clu ster expansion by the elim ination of unlinked diagram s.

The low ering ДЕ of the ground-state energy may be calculated in the 
follow ing way. Let

v ,  = <ф |h |x >oh о

be the m atrix elem ent linking the state |ф„ У to the tw o-particle  tw o-hole 
configuration X. Then ДЕ is  given in term s of the u>N and Xjj by the expression

|xN V I
д е  =  -  у  у  J  л _ ж

N = 1 x = l  “ N

The amplitude of a tw o-particle  tw o-hole configuration on the ground state 
is  given by

"  ”  V '  <c. = I  I

2. The diagonalization of tw o-particle  tw o-hole configurations is further 
com plicated  by the fact that |ф0 У is a deform ed state and hence not an eigen
state of "j2 , the total angular momentum. It is  useful to consider the diagona
lization  o f H as a variational procedure. Indeed the low est eigenvalue is 
equal to the minimum energy which can be obtained with a wave function of
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the form  (74). It is  w ell known [10] that an energy gain is  obtained by p ro 
jecting  IOq/1 onto a state of zero  angular m om entum . The p ro jected  state 
Pj _ о I Ф0 d iffers from  | Ф0 У by 2p-2h, 4p-4h  etc. adm ixtures. C learly  we 
do not wish to include in |y)> the 2p-2h adm ixtures which are due to angular 
momentum p ro jection  because then the 2p-2h adm ixtures would depend 
entirely  on what angular momentum J the state |y)> is p ro jected  on and the 
meaning of an in trinsic state would be lost. Whenever the state |i^> is w ell 
deform ed so that its p ro jected  states |y)> have a rotational spectrum

(t lP jH lO
----------------  = E + AJ(J+l) (78)
<Фк> °

it is  better to diagonalize not H but the Hamiltonian

H = H -  a ? 2 (79)

where A is  given by the Skyrme form ula [ 13]

A = <*145*1*)- <^4b)<*j7al*> (80)
(I 'Ij 4!* )  -  < * I?2U>

This method is  justified  because when Eq. (78) is  satisfied , the state |ï)> and 
the p ro jected  states P̂  |ï)> all have the sam e mean value of H so that no 
energy gain due to angular momentum p ro jection  is  obtained by diagonalizing 
H [12].

F igure 4 shows the resu lts o f diagonalizing the Hamiltonian (79) between 
all the 2p-2h configurations belonging to the 2 s -Id  shell fo r  28Si as a function 
o f A:

<ф|нЮ  = <Фо |н |Фо > + ДЕ (81)

ДЕ is the gain in energy due to the 2p-2h adm ixtures to the state |ф0 )>. 
F igure 4 shows the gain in energy ДЕ, the mean value |ï)> of angular
mom entum , and the strength E C  ̂o f tw o-p artic le  tw o-h ole  adm ixtures, 
resu lting from  the diagonalization o f H - A Ï2, all plotted against A. The 
v ertica l line gives the z e r o -o r d e r  value o f A, i. e.

<ф0 1н3>2|ф0> "A r ....... ... ......... ■■ ■ {82}

<ф0 1’? 4 1ф0 > -  <Фо1? 2 |фо>2

We expect that the actual value o f A calculated with expression  (80) is 
not very  different from  the value (81) since the 2p-2h adm ixtures are sm all.
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F IG .4 .  V a r ia tio n  o f  th e  en e rg y  g a in  ДЕ. th e  m ea n  v a lu e  <  J2> o f  th e  angu la r m o m e n tu m  o p e r a to r  and o f  
th e  to ta l 2 p -2 h  strength  S = I  C^|2 , w ith  th e  m o m e n t  o f  in e rtia  p a ra m e te r  A .  H ie  fu l l  l in e s  show  th e  results

o f  d ia g o n a liz in g  H -  AJ*2 a m o n g  a l l  th e  2 s - l d  sh ell 2 p -2 h  co n f ig u ra t io n s . T h e  dashed  lin e s  show  th e  resu lt 
o f  d ia g o n a liz in g  H -  AJ*2 a fte r  th e  spurious sta te  Тг \ 4ъ>  is e lim in a te d  fr o m  th e  2 p - 2 h co n fig u ra t io n  s p a c e .
T h e  v e r t i c a l  l in e  is th e  z e ro  ord er  v a lu e  A 0 o b ta in e d  b y  th e  S kyrm e fo rm u la  o f  th e  m o m e n t  o f  in e rtia  p a ra m e te r . 
T his c a lc u la t io n  is fo r  **Si w ith  an o b la t e  d e fo rm a tio n  and using a  R osen fe ld  fo r c e .

It m ay then be expected that using value (81) in the Hamiltonian Й = H - AJ*2 
is  a sufficient approxim ation. But as seen in F ig. 4, ДЕ and < (ï| ?2|Y are 
rapidly varying functions o f A around the value Aq so  that the ch oice  of A 
is  very  c r it ica l and the z e ro -o rd e r  value (82) is  dangerous to use in order 
to evaluate 2p-2h adm ixtures. This m akes the use o f the Hamiltonian (79) 
awkward since it requ ires  a p rec ise  evaluation o f A using the exact expression  
(80) which is  quite difficu lt (in fact, the rapid variation  of ДЕ and J*2)> with 
A  has been exploited fo r  a p re c ise  determ ination of A 0 [14]).

It is  possib le  to overcom e the above difficu lties by using another m ethod. 
This con sists  in elim inating from  the 2p-2h configurations the spurious 
state This spurious state is  due to a rotation o f the state

• ißJy|*o> = 1Фо > "  i ß J y l $ o > “ Í  Jy 1Фо > + ••• < e 3 )
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The component Jy |®0 ^ is  a p -h  state which does not produce adm ixtures 
to I Фо > because o f the e llipsoidal sym m etry o f [ Фо X  An examination of 
the expression  of the energy of a projected  state [ 10] w ill show that for 
nuclei with a large mean value only sm all angles ß contribute to the
gain in energy due to the p rojection . Thus, fo r  those nuclei the elim ination 
o f the state У2|ф У from  the 2p-2h configurations w ill e ffectively  elim inate 
in the diagonalization o f H the gain in energy due to angular momentum p r o 
jection . F or nuclei which are weakly deform ed and fo r  which is  sm all,
the gain in energy due to pro jection  is  sm all so that a straightforw ard 
diagonalization of H becom es justified . In fact, weakly deform ed nuclei do 
not satisfy  Eq. (78) so that the use of the Skyrme form ula (80) and of the 
Hamiltonian (79) is  no longer justified, even as a firs t  approxim ation. Thus, 
instead of diagonalizing H - A3*2, a method which requ ires a p rec ise  d eter
mination of A and has no justification  in the case o f weakly deform ed nuclei, 
one may use an alternative method, namely the diagonalization o f H and the 
elim ination of the spurious state У 2|Фо У from  the 2p-2h configurations. We 
can check this method by diagonalizing H - A J 2 and seeing whether after 
elim inating the spurious state the result is  independent of A. The dotted 
lines o f F ig . 4 show that this is  indeed the case . F urtherm ore, fo r  a w ell- 
deform ed nucleus, the point at which the dashed line cro sse s  the full line 
is  an estim ate of A, because fo r  this value no energy gain o f Й is  expected 
by projecting  angular momentum. It is  satisfying that the dashed and full 
lines o f ДЕ and cro ss  fo r  the same value of A. The 2p-2h strength
is c lo se  to a maximum at this value of A, and the 2p-2h adm ixtures are 
th erefore  sm allest there. The vertica l line on F ig. 4 indicates the value 
o f Aq. It is seen that A > A 0 so that the 2p-2h adm ixtures decrease  the moment 
o f inertia  as expected.

The actual values of the moment of inertia param eters AQ and A depend 
on the equilibrium  deform ation. A convenient way to see how the equilibrium  
deform ation is  affected by 2p-2h admixtures is  to use N ilsson  orbits [15] 
which are param etrized  by a single deform ation param eter 6. When the 
orbits are restricted  to 2 s -Id  shell configurations the asym ptotic N ilsson 
orbits are obtained fo r  ô -» ±°o. The sin g le -particle  energies and the para 
m eters of the R osenfeld Gaussian fo rce  used are those of Ref. [10].

F igure 5 shows the values of the unperturbed energy = <(Ф0 |н|Ф0 >̂ 
and of the perturbed energy E0 + ДЕ plotted against the deform ation param eter 
ô fo r  20Ne, 28Si and 32S. It is  seen that the 2p-2h adm ixtures, restricted  
to 2 s -Id  shell configurations do not alter the equilibrium  deform ation of 20Ne, 
fo r  which the 2p-2h adm ixtures are sm all.

The 2p-2h adm ixtures make 32S spherical which is in better agreem ent 
with experim ental data. The total 2p-2h strength, defined as ç | c j 2 is  equal 
to 0. 3 in 32S. F or 28Si the 2p-2h admixtures considerably reduce the energy 
gain due to deform ation, but not enough (with a R osenfeld fo rce ) to make 
28Si spherical.

With H artree-F ock  wave functions a R osenfeld fo rce  behaves like a 
m onopole plus a quadrupole-quadrupole fo rce  [ 10]. It is interesting to note 
that in the 2 s - ld  shell the 2p-2h adm ixtures which it produces are quite 
different from  those of a pairing fo rce . At zero  deform ation, the strength 
o f the 2p-2h configurations (73) with T = 1 account fo r  only 13% and 17% 
of the total 2p-2h strength in 32S and 28Si respective ly . Of this T = 1 strength, 
however, about 80% is  due to t im e -re v e rsa l invariant configurations |if, a â , T 
which a pairing fo rce  would produce. M ost of the total 2p-2h strength is  due
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F IG .5 . U nperturbed e n erg ies  E0 = < Ф 0] H| Ф0>  (d ash ed  lin e s ) and perturbed en e rg ie s  E0 + ДЕ o f  32S, 20N e and 28Si 
p lo t te d  again st the d e fo rm a tio n  p a ra m e te r  6 o f  th e  N ilsson o rb its . T h e  en e rg ie s  are m easured  re la t iv e  to  th e  I60  
g ro u n d -sta te  e n e rg y . This c a lc u la t io n  w as m a d e  b y  using a R osen fe ld  fo r c e .

to 2p-2h configurations (73) with T = 0, but of this strength only about 30% 
is  due to t im e -re v e rsa l pairs which a T = 0 pairing fo rce  [ 11] would produce.

The effects o f 2p-2h adm ixtures which are excited  from  one m ajor 
shell to the next are not yet investigated. They may be quite different b e 
cause they depend on the odd mom ents of the interaction V which play no 
ro le  within one m ajor shell.

F inally it should be pointed out that the state J2^ 0 У is not the only 
2p-2h spurious state. There are also spurious states o f the type J+b{ba |®0 У 
and J.b|ba |% У which are rotated p a rtic le -h o le  configurations. It may be 
n ecessa ry  to elim inate these states in cases where p artic le -h o le  configurations 
play an im portant ro le .
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SIMPLE SHELL MODEL 
AND EFFECTIVE NUCLEAR FORCES

I. TALMI
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Rehovoth, Israel

Abstract

SIMPLE SHELL MODEL A N D  EFFECTIVE NUCLEAR FORCES.

1. In tro d u ctio n ; H ow  e f f e c t iv e  in te ra c tio n s  ca n  b e  d e te rm in e d ; 2 . Id e n t ic a l v a le n c e  n u c le o n s . Is 
th ere  an en e rg y  gap? 3 . B inding en e rg ie s  I. A re  m a g ic  n u c le i  tig h tly  bound? 4 . B inding e n e rg ie s  II.
P ro to n -n e u tro n  in te ra c tio n s  are im p orta n t. 5 . C o u p lin g  o f  neutrons and proton s . Spin gaps. 6 . C o n fig u ra tio n  
m ix in g ;  h id d en  and e x p l ic i t .

1. INTRODUCTION. HOW EFFECTIVE INTERACTIONS CAN BE
DETERMINED

In the contributions to these P roceed in gs, rather sophisticated theories 
o f nuclear structure are d iscussed . My paper ist how ever, rather sim ple, 
the form alism  is not new and I hope that you are fam iliar with it. Let 
me state right at the beginning that I am going to con sider spherica l nuclei 
only and w ill not d iscuss at all strongly deform ed nuclei exhibiting rotational 
spectra . The problem  of n strongly interacting particles is indeed very  
d ifficu lt and a sim plified  m odel cannot be expected to give a co r re c t  d e s 
cription  of all nuclear phenomena. The only virtue of the approach which
I am going to describe  is  that it leads to significant agreem ents with som e 
experim ental data. This is  not always the case with m ore sophisticated 
theories where so many assum ptions should be introduced that it is  hardly 
possib le  to make a prediction . The approach which I shall d escribe  is 
d rastica lly  sim ple, but enables quantitative pred ictions. It m ay be d e s 
cribed , so to say, as "poor, but honest".

As the announcement suggests, I am using a "straightforw ard  approach" 
to the nuclear shell m odel. The shell m odel has such a phenomenal su ccess  
in explaining and predicting a vast amount o f nuclear data [1 ] .  A lm ost all 
su ccessfu l predictions are, however, qualitative. The present approach is 
an attempt to obtain from  the shell m odel significant quantitative predictions. 
To do so, it is  n ecessa ry  to take the shell m odel seriou sly  and consider 
very  sim ple configurations fo r  the nucleons outside closed  shells (which 
should be considered  as certain  orbits com pletely  filled ). Som etim es it is 
even assum ed that these "valence nucleons" are in a pure (jj-coup ling) 
configuration. There are many objections to such sim ple-m inded assum p
tions. It is argued that the very  strong interaction  between nucleons leads 
to strong configuration m ixings. In fact, in view  of the hard core  in the 
nuclear potential follow ed by the very  strong attraction, it could be argued 
that the shell m odel, which assum es independent motion o f the nucleons, 
would not be a good approxim ation. Once it is  rea lized  that independent- 
particle  wave functions are only m odel wave functions, it is possib le  to 
understand, at least in princip le, why the shell m odel is  so su ccessfu l.

455
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A lso in the present approach, we shall con sider sim ple configurations as 
m odel wave functions and try  to find out what quantitative predictions can 
be made on the basis o f the shell m odel.

The sin g le -p artic le  shell m odel should fir s t  be supplemented by som e 
’’ residu a l" interactions between nucleons. Otherwise, even the wave 
functions of the valence nucleons are not specified  [2 ] .  In princip le, the 
nuclear interaction to be used with sh ell-m odel wave functions should be 
very  different from  the interaction between free  nucleons. The rea l wave 
functions have short-range corre la tion s due to the h a rd -co re  and strong 
attraction. If we can transform  the problem  so as to be able to use wave 
functions of independent nucleons, the resulting effective interaction should 
be m odified by the effect of the short range corre la tion s . Thus, we expect 
the effective interaction  to have no hard core  and be much less  violent in 
m ixing configurations. How can this n on -loca l interaction  be determ ined? 
Using methods of many-body theory, one can calculate it from  the in ter
action between fre e  nucleons. This is  a rather involved procedure which, 
however, can give nice qualitative resu lts [ 3 ] .  The trouble with this 
method is  that one has to use specia l intuition to know which term s should 
be included and which term s, though large, should not be included.

In another approach, som e sim ple-m inded phenom enological in ter
action is being used. Popular choices nowadays are the "pairing" o r  the 
"pairing  + quadrupole" interactions. Since the choice of interaction  is  so 
drastica lly  lim ited, the question arises how it is  possib le  to obtain a gree 
ment with experim ents. This is  usually achieved by making the space of 
wave functions as large as necessary . It is , th erefore , difficult to expect 
that such a procedure w ill give quantitative agreem ent with experim ent.
The alternative phenom enological approach to finding the effective  in ter
action fo r  the shell m odel is to look at the experim ental data rather than 
at the papers of other people. In this paper, I would like to show how this 
procedure is  used and what we have learned from  experim ent. In particular,
I would like to show that the well-known pairing interaction is a rather 
poor approxim ation to the effective nuclear interaction.

We try  to use sim ple sh ell-m odel wave functions and determ ine the 
m atrix  elem ents o f the effective interaction from  experim ent. To obtain 
less  m atrix elem ents than the number of data, we have to im pose som e 
restriction  on the effective  interaction. We consider only tw o-body effective 
interactions. This is certainly  the sim plest assumption and we can see 
whether it is  justified . There are also som e indications from  m any-body 
theory  that this should be so although the arguments are not conclusive.
Thus, we try  to see whether nuclear energies can be calculated using 
sh e ll-m od el wave functions and effective tw o-body in teractions. Even 
with the m ost general tw o-body interaction, there must be som e relations 
between the experim ental data. These relations fo llow  from  the fact that 
fo r  tw o-body interactions, m atrix elem ents in the n -particle  configuration 
are linear com binations of m atrix elem ents in tw o-particle  configurations. 
We have now a consistency  check on our assum ptions: we see whether these 
relations are obeyed by the experim ental data. If they are, it means that 
a set of tw o-body m atrix elem ents can be used fo r  the calculation of a la rger 
num ber o f nuclear en erg ies . We determ ine the values of these m atrix 
elem ents which best reproduce the experim ental data (in a least-square 
fit). These m atrix  elem ents can now be used fo r  further calcu lations. If 
the agreem ent between the calculated and experim ental energies is  good
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we conclude that the sh e ll-m od el configuration assignm ents make sense.
This means that these wave functions can be used to calculate energies 
with the m atrix elem ents of the effective interaction determ ined in this 
way. As mentioned before , the relation between these m odel wave functions 
and the rea l wave functions is  rather involved. In som e cases, it can be 
shown that even wave functions which contain large m ixing with oth er 'con - 
figurations can still lead to sim ple-m inded m odel wave functions [4 ] .  In 
general, as w ill be d iscussed  later, the m ore experim ental data available 
the m ore meaningful are the sh ell-m odel wave functions obtained by this 
approach.

To illustrate the method, let us consider a w ell known case [ 5, 6 ] .
It was the firs t  su ccessfu l application and is  still the "best typ ica l exam ple". 
C onsider the ground state configuration of ^ K 21. The 21st neutron is  exp ec
ted to be in the I f 7/2 orbit outside the closed  shells with 20 neutrons. There 
are 11 protons in the (s , d) shell. If we assume pure jj-cou p lin g , which 
may seem  stupid, we expect closed  l d 5/ 2 and 2 8 ^  orbits and 3 protons in 
the l d 3/,2orb it. There are four states of this d3 2̂ f7/2 configuration with 
spins J=2, 3, 4, 5. The energies of these states are given, apart from  a 
constant term , by the interaction energies of the three d 3/ 2 protons with 
the f 7/2 neutron. The interaction energies in this configuration are linear 
com binations of the m atrix elem ents in the d 3/ 2~proton - f 7/ 2-neutron 
configuration expected in 3^C121 . Thus, the spacings between the 40K 
leve ls  should be linear com binations of the spacings between the 38C1 levels 
(with spins J=2, 3, 4, 5) and v ice  versa . The 40K levels w ere known ea rlie r  
and from  them the 38C1 levels w ere predicted [ 5] and later found to be in 
excellent agreem ent with experim ent (F ig. 1).

The expression  of the 40K interaction energies in term s of the 3SC1 
ones can be easily  ca rried  out by using coefficien ts of fractional percentage 
( c . f .  p .) .  Noting, however, that in 40K there is a d 3/,2 proton hole - f 7/2 
neutron configuration, we can use a general relation due to Pandya between 
p a rtic le -p a rtic le  and p artic le -h o le  spectra  [ 6 ] :

V(j2J j 'J )  = const. (2J -+1) V (jj'J ) (1)
J'

As em phasized by expression  (1), the calculation of the 38C1 spectrum  does 
not involve any detailed assumption on the tw o-body effective interaction.
It m ay be central o r  include tensor fo rce s  and sp in -orb it fo rce , it may 
be lo ca l o r  n on -loca l. The only assumptions made are pure jj-cou p lin g  
and tw o-body interactions. There are no adjustable param eters in this 
calculation. It makes use only of the geom etry of recoupling angular 
m om enta. The good agreem ent obtained is  quite striking and shows that 
this sim ple m odel (which im plies good jj-cou p lin g  also in e. g. 37C1 ) 
m akes rather much sense fo r  energy calculations.
' In view of the excellent agreem ent of the calculated energies, it should 
be reca lled  that the m agnetic mom ent of the 40K ground state does not 
agree at all with the value calculated from  a d3/ 2 proton hole and f¡/2- neutron. 
A lso the magnetic mom ents of 39K and4iCa do not agree with the single 
nucleon values (Schmidt values). This again em phasizes the fact that the 
sh e ll-m od el wave functions cannot be the rea l wave functions. The good 
agreem ent obtained shows that the adm ixtures of other states in the rea l 
wave functions have a sim ple effect on the en erg ies. The effect of these
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adm ixtures can be obtained by using with the sim ple sh e ll-m od el wave 
functions a m odified o r  renorm alized  .interaction between the nucleons.
This is  the effective  tw o-body interaction determ ined by the 40K and 3SC1 
energy leve ls .

The case o f electrom agnetic mom ents and transitions is not so clear.
It m ay happen that in som e cases the effect of the admixtures in the rea l 
wave functions can be reproduced by using renorm alized  o r  effective e le c tro 
m agnetic single-nucleon  operators (or effective charges) with sh ell-m odel 
wave functions. F or exam ple, the 40K m agnetic mom ent can be accurately  
reproduced with the observed  39K and41Ca m agnetic mom ents (the 41Ca 
m agnetic mom ent was very  accurately  predicted  from  39K, 40K and other 
К isotopes [7 ] ) .  This, however, m ay be not so in other cases (e .g .  the 
37C1 and 39К magnetic mom ents are d ifferent). Transition  probabilities are, 
in general, very  sensitive to sm all changes in the wave functions while 
energies are stationary at the co rre c t  eigenstates.

2. IDENTICAL VALENCE NUCLEONS. IS THERE AN ENERGY GAP?

Let us now con sider the sim pler case of one kind of identical nucleons 
outside closed  shells. We consider the j n configuration of either protons 
o r  neutrons outside closed  sh ells . The low est j o f interest is  j = 5 /2  
which we w ill now take up. In order to make the d iscussion  m ore concrete , 
let us consider the ld s /2 neutron orbit in oxygen isotopes. This is  an o v e r 
sim plification  o f the actual situation in oxygen but it is  useful to firs t  look 
at it in this way. In 170  we have one d5/,2 neutron. In lsO the d|/2 con figura
tion can have states with J = 0, 2, 4 and in 190  the dg32 configuration has states 
with J = 3 /2 , 5 /2 , 9 /2  allowed by the Pauli princip le . The dĝ 2 neutron 
configuration is  that of two h oles, d5̂ |, and should have the same spectrum  
as the d5̂ 2 configuration.

The d532 energies should be linear com binations of the m atrix elem ents 
in the tw o-nucleon  configuration. These latter quantities are sim ply the 
energies in the d ĝ 2 configuration (there are no two different states with 
the same value of J). The coefficien ts of the linear com binations can be 
found by using the appropriate c . f .p .  In this sim ple case, however, we 
can use an elegant method due to R.acah which w ill be useful later.
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The energies in all (d 5/ 2)n configurations are linear com binations of 
V0j V2 and V4 where Vj = \ (d s /2 )2J | v| ( d5/ 2 )2 J /. Within these configura
tions we can use fo r  energy calculations any tw o-body interaction that w ill 
have in the (d s /2)2 configuration the same eigenvalues V0, V2 and V4 . In 
the present case, there are only three param eters which fu lly ch aracterize  
the effective  interaction, no m atter how com plicated it looks. F or our 
convenience, we can choose a sim ple tw o-body interaction with known 
eigenvalues in any state o f any ( 5/ 2 )n configuration. Let us look at the 
tw o-body operator

Vi 2 = a + b 2 ( j 1- j 2) + c q 12 (2)

where q12 is the sen iority  operator o r  the pairing interaction which has the 
eigenvalue 2j + 1 in the J = 0 state and the eigenvalue 0 in all other states 
o f the j 2 configuration. The eigenvalue of the operator (2) in a state of the 
j n configuration with given J and sen iority  v is  sim ply

n n /  /  n \  2 n \  n

È  V& = Ê  a  + b l í ¿  j J  í N + c  S  q ik (3)i < k  i < k  \  \  i  ' i y i < k
• = a + [J (J  + l )  - n j( j + l ) ]  b + ̂  (2j + 3 - n - v ) c

We can adjust the constants a, b and с so that the eigenvalues of the operator 
(2) w ill be \^, V2 and V4. With the constants thus determ ined we can 
calculate all energies using E q .(3 ).

Putting n = 2 in Eq. (3) and reca llin g  that v = 0 fo r  the J = 0 state while 
v = 2 fo r  J = 2 and J = 4, we obtain

riC.
v0 = a - —  b + 6c

V2 = a - Ц-  b or

1
a = 5s

b = A

(5V2 + 23 V4 )

(V4 - v 2 ) (4)

V4 = a + 1  b 1
c = e Vo - ¿  ( i o v 2 - 3V4)

In the case o f interest here, we obtain fo r  the ( 5 /2)3 energies the follow ing 
results

35J = 5 /2  v = 1 3a - ~  b + 4c

J = 3 /2 v = 3 - - f  b (5)

J = 9 /2 v = 3 3a - f  b

If we take Vo, and V4 from  the (d ;;/2)2 spectrum , we can thus calculate 
the energies of the (d 5/ 2)3 configuration.

B efore com paring with experim ent the predictions based on the avail
able data, let us look at a specia l case . If the pairing interaction  is a 
good approxim ation to the effective interaction we have a=b = 0 and only с
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is  different from  zero . In that case, the v = 2, J = 2 and J = 4 levels are 
degenerate and lie above the v = 0 J = 0 ground state of the (5 /2 )2 configura
tion. This spacing is 6c and is  called the "energy gap". This gap is also 
found in the (5 /2 )3 configuration. There, the v = 3, J = 3 /2  and J = 9 /2  
levels  should be degenerate and lie 4c (two thirds of the energy gap) above 
the v = 1, J = 5 /2  ground state.

In O 18 the ground state has J = 0; 1. 98 MeV above it there is  a J = 2 
leve l and 3. 55 M eV above it there is a J = 4 level. Let us take these to be 
the ( l d 5/ 2)2 lev e ls . The 2 MeV 0-2 separation is indeed large but this is 
not an energy gap in the sense of the pairing theory! That would require the 
J = 2 and J = 4 levels  to be degenerate whereas their spacing is alm ost as 
large as the 0-2 separation. The failure o f the pairing theory is even m ore 
pronounced in O 19. There the ground state has indeed J = 5 /2 , but only
0. 1 M eV above it there is  a J = 3 /2  level. This cannot be the d3/2 level 
(which is at about 5 M eV excitation in O 17) as shown by its very  sm all 
stripping width. It has also a very  sm all M l-tran sition  rate to the ground 
states whereas the corresponding m atrix elem ent fo r  a spin flip is very  
large . On the other hand, the M l-op era tor  within a j n configuration of 
identical nucleons has the form  S  gj¡ = gJ and vanishing m atrix elem ents 
between any orthogonal states [7 ] .  Thus, there is no trace of an energy 
gap in 190 .  The J = 9 /2  level which should be degenerate with the J = 3 /2  
leve l has now been found at 2. 77 MeV.

Since the pairing theory fa ils  here we should check whether this failure 
is  due to the arbitrary and too restrictive  choice of interaction. Can the 
oxygen spectra  be calculated at all by using a tw o-body interaction? Using 
the 180  level spacings we can calculate the constants b and с which determ ine 
the 190  spectrum . We obtain from  (4) b = 0 .11 MeV and с = -0 .2 2  MeV.
Using these values we obtain from  the results (5) that the J = 3/ 2 level 
should lie -5 b -4 c  = 0 .33  M eV above the J = 5 /2  ground state. The spacing 
between the J = 9 /2  and J = 3 /2  levels should be 21b = 3 /2  (V4 -V 2 )= 2 .3 5  MeV, 
putting the predicted  position of the J = 9 /2  level at 2. 7 M eV. In som e 
papers on the pairing theory a specia l reason is given fo r  the fact that the 
J = 2 level is  low er than other v= 2 lev e ls . In papers where the authors 
w orry  about low -ly in g  v = 3 levels in odd nuclei, another reason is given to 
explain this fact. If we just use (d 5/,2)n configurations with effective in ter
actions suggested by the experim ental data, we obtain rather good agree
ment. In the present approach, the fact that the J = 2 leve l is  low er than 
the J = 4 im plies the near degeneracy of the J = 5 /2 , v = 1 and J = 3 /2 , v = 3 
leve ls .

The m ore detailed description  of the oxygen isotopes must include 
neutrons in the low -ly in g  2sjy2 orbit and also highly deform ed states ob 
tained by proton excitation [8 ] .  A much c lea rer  case seem s to be the 
(2d5/2)n neutron configurations in zirconium  isotopes [9 ] (F ig . 2). In 92Z r, 
with the (d 5/ 2)2 neutron configuration, the J = 2 and J = 4 levels are at 0. 93 
and 1.49 MeV, resp ective ly . In the com plem entary (ds/2)4 configuration 
in 94Z r  they are at 0. 92 and 1.47 MeV. The calculated position of the J = 3 /2  
state in 93Z r  from  either 92Z r  o r  94Z r  is 0. 26 MeV above the J = 5 /2  ground 
state.' Experim entally, it is  at 0 .27 M eV. The J = 9 /2  level should be at
1. 10 MeV above the ground state. In a recent publication [ 10], a level 
at 1.17 M eV was established in 93Z r, and it was suggested that this is the 
J = 9 /2  leve l of the (d 5/2) 3 configuration. Another relevant feature is  a 
highly attenuated M l-m a tr ix  elem ent between the J = 3 /2  state and the ground
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state [1 1 ] . The m agnetic mom ent of the J = 3 /2  state in 93Z r  was not 
m easured but in 95Mo there are corresponding states. In the J = 5 /2  ground 
state of 95Mo g = -0 . 364 ± 0. 001 was m easured whereas in the fir s t  excited 
J = 3 /2  state the experim ental result is g = -0 .3 6  ± 0 .0 4  [1 1 ] .

The occu rren ce  o f low -ly in g  v = 3 J = j -1 states is not a unique feature 
o f the (d 5/ 2)3 configuration. In the ( l f 7/ 2)3 and ( l f 7/ 2)5 proton and neutron 
configurations we see low lying J = 5 /2  levels (43Ca, 45Ca, 51V and 53Mn [ 12]). 
Such 5 /2 “ states show no stripping and have very  sm all M l transition  
strengths to the 7 /2 "  ground states. A lso in the neutron (lgg /2)7 neutron 
configuration in 85Sr and in the (lg g /г)3 proton configuration in 93T c we see 
a very  low -ly in g  v = 3 J = 7 /2  state [1 3 ] . The occu rren ce  of such states is 
strong evidence against the sim ple minded pairing theory. Such states 
are predicted  by using' e ffective interactions determ ined from  neighbouring 
nuclei and furnish one of the su ccesses  o f the approach presented here.

In a j = 5 /2  orbit with identical nucleons any tw o-body interaction is 
diagonal in the sen iority  schem e as follow s from  the representation  (2) of 
any such interaction. This is  rea lly  a sim ple case since there are no two 
states with the sam e value of J in any (5 /2 )" configuration. F or j = 7 /2  
this is no longer the case  as in (7 /2 )4 there are two states with J = 2 and 
two states with J = 4. Still, in (7 /2 )4 configuration, any tw o-body interaction 
is  diagonal in the sen iority  schem e. As a result, the (7 /2 )4 levels with 
sen iorities  v = 0 ( J = 0) and v = 2 ( J = 2, 4, 6) should have the same spacings



462 TALMI

3.0

2.0

>Q>2

1.0

3.21

6* 3.19

4* 2.75
2.69- - - i —

2 *

0•

2* 1 .52
2 * 1.56

J-2 v - 4

J:6 v*2

J*4 y i2 .

J*4 v»4

J - 2 vs 2

(5.6) 3.61

(S’ )
(2* )

2 (6 4 3.30

6* 3.11
2* (4M 2.65
4 * 2.77 - " "

0 (2M

4* 2.37

2 *  1.43

2*

20CO22 2 2 Tn ?g f7/2 2¿Cr2e 2oCa2l 20C026 26^026

F IG .3 . E nergies o f  l f 7”  co n fig u ra tio n s  (e v e n  n u c le i ) .

as in the (7 / 2)2 configuration (F ig .3 ). We see that this is  roughly so in the 
I f 7/2 proton and neutron shells. We also see that the (f7/ 2)2 m atrix elem ent 
taken from  experim ent lead to a rather low -ly in g  v = 4 J = 4 level [1 4 ] .
Such a level is actually observed  in ^ C a  and 52C r. Using these values of 
the (f7/2)2 m atrix elem ents we can calculate the ( I f7y2)3 spectrum  or the 
equivalent ( 1 f7/ 2) 5 spectrum  (F ig .4). The low -ly in g  J = 5 /2  leve l is n icely  
reproduced as w ell as som e other lev e ls . It is  c lear  that there are obvious 
perturbations, to be d iscussed  later, but the general trend is good.

The 51V nucleus is  of particular in terest because it shows a clear 
( I f7/ 2) 3 spectrum  which can be calculated from  ( 1 f 7/ 2)2 m atrix elem ents.
The Coulom b excitations from  the ground state to the J = 5 /2 , 3 /2 , 11/2 
and 9 /2  levels were m easured. The B (E 2)-values are considerably 
bigger than the ( l f 7/ 2)3 estim ate with the rea l Ë 2-op era tor . H owever, the 
ratios between the E 2-transition  m atrix elem ents agree w ell with those 
predicted  from  (7 / 2)3 wave functions [ 15 ]. It seem s that if the f7/ 2 protons 
polarize  the 48Ca co re , the individual polarizations are independent so that 
the E 2-transitions can be obtained from  (If^ g)3 wave functions using effective or 
renorm alized  E2 operators . The effective E 2-operator determ ined in this 
way can be used to calculate the static quadrupole moment of the 51V ground 
state giving the value Q= -0 .0 5 8 e  X 1 0 '24 cm 2. This agrees very  w ell with 
the recently  m easured value [ 16] of Q = ( -0 . 052 ± 0. 010)e X 10 '24 cm 2. The 
enhancement of the renorm alized  E 2-operator correspon ds to using the 
free  E 2 -op era tor  and h arm on ic -osc illa tor  wave functions with an effective 
charge e eff = 1.61 e.

The question whether seniority  is a good quantum number fo r  identical 
nucleon configurations becom es meaningful only fo r  j 6 9 /2 . F or j s 7 /2  
any tw o-body interaction is diagonal in the sen iority  schem e. We have
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som e inform ation about the proton lgg/2 orbit which w ill be discussed later. 
The resulting effective  tw o-body interaction turns out to be diagonal in the 
sen iority  schem e. A ll m atrix elem ents which are non-diagonal are p ro 
portional to [13, 17]

<i ’ 9 /2 v = l J = 9 /2|X > 9 /2 v = 3 J = 9 /2  >

20J 429- (65V2 - 315V4 + 403V6 -  153V8)
(6)

This m atrix elem ent turns out to be about 0 .03  M eV whereas typical spacings 
between states connected by it are of order 1 M eV. Thus, the tw o-body 
effective interaction between identical nucleons is  diagonal in the seniority 
schem e. It shares this property with the pairing interaction  but it is oth er
w ise considerably different from  it.

3. BINDING ENERGIES I. ARE MAGIC NUCLEI TIGHTLY BOUND?

Another feature of the pairing interaction is the variation in binding 
energy between odd and even nuclei. Unlike the energy gap, this is  a rea l 
effect but it does not at all im ply that the pairing interaction has any 
validity. As we shall see, this feature is a d irect consequence of the sen io r i
ty schem e fo r  a very  large class o f interactions. In fact, this was pointed 
out long before the pairing theory was applied to nuclei [1 8 ,1 9 ] . It is 
c lear  that the sim ple tw o-body interaction (2) cannot be used fo r  j > 5 /2
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since it has only three free  param eters. H ow ever, a m odification of it 
can still be used to calculate binding en erg ies . We firs t  consider binding 
energies o f nuclei with only one kind of nucleons outside closed  shells.

As m entioned above, the interaction energy o f any state in the j n 
configuration is  a linear com bination of the tw o-nucleon m atrix elem ents 
Vj =4  j 2 J IVI j 2. ! ) ”. In the case of identical nucleons, there are ( 2 j+ l ) /2
of these, namely, V0, V2 ..........V 2j - i . The interaction energy in the states
with low est seniority, v = 0 J = 0 for n -ev er  and v = 1 J = j fo r  n odd, has an 
even sim pler expansion. It is  a linear com bination of only two param eters, 
V0 and the average interaction in all states with sen iority  v =' 2 defined by

2j-l 2j-l
v2 = i )  (2J + 1) Vj /  É  (2J +1)

J> 0, e v e n  J > 0 , e v e n  / - j\

£  (2J + 1) Vj
(j + 1) (2j - 1) J > 0, even

This property holds, in general, for  the average interaction energy of all 
states with the same sen iority  v in the j n configuration. There is just one 
state with v = 0 o r  v = 1 in any given j n configuration.

Thus, we can use fo r  the calculation of interaction energies in_ground 
states any sim ple interaction that w ill reproduce co rre c t ly  V0 and V2. If 
we put с = 0 in (2) we obtain such an interaction . In the sim plified  in ter
action

V.12 x + y q
12 (8)

we can fix  the constants x and у to satisfy  

x + (2j + l ) y  = V0 V„ (9)

The interaction  (8) with the constants (9) has the same eigenvalue V2 fo r  all 
states with sen iority  v, and in la rger configurations w ill have s im ilar 
degen eracies. It can still be used to calculate average interaction energies 
and, in particular, the interaction energies in ground states. In fact, we 
obtain

< j nv j  I Ê  v:k I j "  v J >= V, n (n -l) + Vn - У,, n -v (2j + 3 - n -v )
i<k 1K ¿ 2j+l

_ (10)

n (n -l) 2 (j+1) V2 - Vp n^v 2 (j+1) . _ v  w  v(v -1 ) vo ~ V2
2 2j+l 2 2j+l '  0 2 ) 2 2j+l

F or the states with v = 0 o r  v = 1 the last term  in Eq. (10) vanishes and the 
interaction  energy in ground states can be written as

< j n g. s . I S  Vik| j ng. s .>  =< j ng. s . I S  Vil, h n g. s . 
i<k i<k

0 +
2

n
L2 J

(И )
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In Eq. (11) the interaction  param eters are

. а с а  ( 4  .  ü ,  (12)

and [ n / 2 ] is  the step function which is equal to n/2  fo r  even n and to ( n - l ) /2  
fo r  odd n.

E xpression  (11), in spite of its sim plicity , is  not an em pirica l relation. 
It fo llow s from  the structure of wave functions in the sen iority  schem e.
It holds fo r  any tw o-body  interaction  which m ay be a rb itrarily  com plex. In 
the ground states all the possib le  d iversities  in the possib le  tw o-body 
interactions give r ise  only to two num bers, O'and ß.  In particular, the 
occu rren ce  of the pairing term  in Eq. (11), with the coefficien t ß, is a 
resu lt of the sen iority  schem e and not o f the pairing interaction . D ifferent 
interactions give r ise  to different values of a and ß, and we shall see soon 
som e actual exam ples. If the interaction Vik (not VJk ) is  diagonal in the 
sen iority  schem e, expression  ( 1 1 ) is its eigenvalue in the ground state.
If it is  not, this is  the diagonal m atrix  elem ent while the ground state 
energy w ill be m odified by the effect of states with sen iorities 3, 5 o r  4. As 
mentioned above, in actual nuclei, such m odifications are negligible.

We can now use nuclear binding energies to determ ine the a and ß 
o f the effective interaction . The binding energy of a nucleus with various 
j n configurations outside c losed  shells has a constant term  which is  the 
energy o f the closed  sh ells . We, th erefore , subtract from  the binding 
energies considered  the binding energy of the nucleus with the same closed  
shells and no j-n u cleon s . The rem ainder includes the kinetic energy of the 
j-n u cleon s and their interaction  with the closed  shells, in addition to the 
interaction  energy within the j n configuration. The kinetic energy o f a 
j -nucleon  as w ell as its interaction  with closed  shells is a sca lar quantity 
independent of the p ro jection  m of j . Thus, the contribution o f these term s 
is  sim ply the sum of n equal single nucleon energies nC. Thus we obtain 
the resu lt [ 18 ]

B .E . ( j n) - B .E . (n=0) = nC + «  + (13)

Using given binding energies we can look fo r  values of C, a and ß which 
w ill reproduce them as accurately  as p oss ib le . A result o f such a fit in 
the 1 f 7/2 shell is  given in Table I.

The values of C, a and ß determ ined in this way are 
С = 8 . 42 ±0. 08, e= -  0. 23 ±0. 01, ß = 3. 23 ±0. 20 M eV fo r  l f 7/2 neutrons 
С = 9. 69 ±0. 05, a= - 0. 79 ±0. 01, ß = 3 .15 ±0. 13 M eV fo r  l f 7/2 protons 
The signs of these param eters are determ ined by taking binding energies 
as positive num bers. The single nucleon energy С is  different fo r  the 
protons and fo r  the neutrons not only because o f the Coulom b energy but 
also due to the interaction  in the two cases  being with different closed  
shells (those of 40Ca and o f 48Ca resp ective ly ). The interaction param eters 
»a n d  J3 fo r  the protons include also the e lectrosta tic  repulsion  and are 
indeed le ss  attractive than the corresponding neutron param eters.

The param eter ß turns out to be rather large and attractive. This is  
so also in all other cases  considered  so r  far [2 0 ] . The pairing term  
which contains it gives r ise  to a pronounced odd-even  effect in binding 
en erg ies . Looking at expression s (12) we see that the pairing term  should



TABLE I. BINDING ENERGIES IN PROTON AND NEUTRON l f " /2 CONFIGURATIONS IN MeV

N u cleu s
B inding en erg y

N u cleu s
B inding  en e rg y

e x p e r im e n ta l c a lc u la t e d e x p e r im e n ta l c a lc u la t e d

41 р я
20 21 8 .3 6 8 .4 2 49 S c 21 28 9 .6 2 9 .6 9

42 Г  я 
20 22 1 9 .8 3 1 9 .8 4 50 T j 

22 28 2 1 .7 8 2 1 .7 5

43 Г  я 
20 23 2 7 .7 6 2 7 . 81 51 у  

23 v 28 2 9 .8 3 2 9 .8 6

44 г  д 
20 24 3 8 .9 0 3 8 .7 9 52 Cr 24 ^ 2 8 4 0 .3 4 4 0 .3 4

45 г - л 
20 25 4 6 .3 2 4 6 .3 1 5 3 y n

25 28 4 6 .9 1 4 6 .8 8

46 с  я 
20 26 5 6 .7 2 5 6 .8 3 54 p e  

26 28 5 5 .7 5 5 5 .7 8

47
20 27 6 4 .0 0 6 3 .9 0 55 Q o  

27 28 6 0 .8 1 6 0 .7 4

48 с  я 
20 28

7 3 .9 4 7 3 .9 8 56 m í  
28 28 6 8 .0 1 6 8 .0 6

N ote : T h e  b in d in g  en erg y  o f  40 Ca w as su b tra cted  fr o m  th e  b in d in g  e n e rg ie s  o f  the C a  iso to p e s . T h e  b in d in g  en erg y  o f  48 C a  w as su b tra cted  fr o m  the 
b in d in g  e n e rg ie s  o f  n u c le i  w ith  pro to n  co n fig u ra tio n s .

466 
T

A
L

M
I



IAEA-SMR 6 /1 8 467

be large and attractive as long as the centre of m ass of the v = 2 levels is 
considerably  above the v= 0 J = 0 states. Thus, the odd-even  effect is  not 
at all related to the "en ergy  gap". This effect w ill be present even if the 
v= 2 leve l w ill be spread out evenly; the J = 2 level, with its low er sta tisti
ca l weight, may even coincide with the ground state. The values of V0 -V2 
obtained from  the binding energies in Table I agree with.the values ca lcu 
lated from  the actual lev e l spacings in F ig. 3.

The sign of O'is opposite to that of ß and it is therefore repu lsive.
This feature is com m on to all cases  considered  and due to the saturation 
properties of the nuclear interaction [2 0 ] . The quadratic term  is always 
attractive fo r  ord inary  potential interactions being zero  fo r  a zero  range 
fo rce  ( 6 -potential). A repulsive « c a n  arise  only from  exchange fo rce s  or 
n on -loca l interactions, like the pairing interaction (o r  a F2 fo r ce ) . As we 
shall see later, the existence of an attractive sym m etry energy, when 
both valence protons and valence neutrons are present, gives r ise  to the 
repulsive quadratic term .

FIG . 5 . N eutron  sep aration  e n erg ies  

o f  c a lc iu m  iso topes .
>0>

The form  (13) of the binding energy gives r ise  to a very  sim ple e x 
pression  fo r  the separation en erg ies. These should lie on two straight 
lines, one fo r  odd and the other fo r  even nuclei. In F ig. 5 we see neutron 
separation energies in calcium  isotopes. The separation between the lines 
is  due to the pairing term . The downward slope of the lines dem onstrates 
the fact that a  is  repu lsive.

The expression  (13) with a repulsive param eter »h a s  an interesting 
consequence [2 0 ] . N uclei with m agic proton or neutron num bers are not 
m ore tightly bound than their preceding even-even  nuclei. When a m agic 
nucleus is  approached, the separation energy goes actually down as seen 
in F ig . 5. This behaviour should be contrasted with the ionization energies 
o f atoms which have high peaks at closed  shells (n ob le-gas atom s). There, 
the plot is  fo r  neutral atom s so that the increase in the central charge 
m ore than com pensates the additional repulsion of the e lectron s . Forgetting 
that the interaction  between electrons is  repulsive, som e people think 
there should be s im ilarity  between closed  e lectron  shells and closed  nucleon 
sh e lls . The feature which is  com m on to both cases  is  the large drop in 
the separation energy beyond a m agic num ber. This drop, due to in creased  
kinetic energy of the new shell, is  c lea rly  seen in F ig. 5. Thus, nuclei
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beyond a m agic nucleus are le ss  bound. Since stability is  relative and is 
determ ined by two nuclei, this feature gives m agic nuclei extra stability 
abundance, etc. Those who insist on sim ilarity  with atoms draw an average 
line through the points. This way they divide the drop into a r ise  before 
the m agic number and a drop beyond it. They then in crease  the d ifferences 
from  the average with som e weight function to make them look like in the 
atom ic case . Such m isrepresentations of the data give the erroneous im 
pression  about the extra large binding energies of m agic nuclei.

The saturation properties of nuclear energies as w ell as the behaviour 
of the sym m etry energy are much m ore pronounced than effects of nuclear 
shell structure. They do not stop at the beginning of a new shell although 
the actual num bers m ay undergo a change. Hence, we would not expect 
the repulsive part of the interaction  between identical nucleons to be lim ited 
to a single j-o r b it . When we consider two such nucleons in different j 
and j 1 orbits we expect them to repel each other on the average (the a ttrac
tive pairing energy is  not present in this case ). P re c ise ly , we consider 
the average interaction energy

Vjj. < J2 (0) j ’ J = 1 I £  Vi3 I j 2 (0) j '  J = j '  >
i=l, 2

= \ < j. j ' 2 ( 0) j  = j I У vu I j, j ' 2 (0 ) j  = j>  =
■ ¿ 3  (14)

= £  (2 j+ l)< jj'j |v |j j 'j> / Y, (2J+1) =
J=l j - j '  I H  j - j '  I

■ ( W i q ' + l )  I  <2J+11
J

In all cases considered so far the average interaction (14) turns out to be 
repu lsive. Its absolute value is  not very  large ; o f the order of a for  
nucleons within the sam e orb it. Some of the individual V (jj’ J) may be even 
attractive, though sm all, but the average value (14) is always repu lsive.

It m ay happen that an overa ll attractive potential interaction may 
furnish not too bad an approxim ation of the effective interaction  in the j 2 
configuration. The resulting param eter a although attractive m ay be rather 
sm all (it vanishes fo r  a zero -ran ge  potential). H owever, when severa l 
j-nu cleons are considered  the quadratic term  becom es very  im portant.
Such a potential interaction w ill certainly  be a poor approxim ation fo r  the 
j j 1 configuration of identical nucleons. The average interaction (14) w ill 
then be attractive contrary to the experim ental facts.

4. BINDING ENERGIES II. PROTON-NEUTRON INTERACTIONS ARE 
IMPORTANT

Let us now con sider both protons and neutrons outside closed  shells. 
F irst let us look at both in the same j n configuration. States are now 
ch aracterized  also by the total isospin  T which is taken to be a good quantum
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number (assum ing charge independent interactions between nucleons apart 
from  the e lectrosta tic  repulsion between protons). The sen iority  schem e 
can be defined as in the case of identical nucleons. The quantum num bers 
which ch aracterize  states are now the sen iority  v and reduced isospin  t.
A state in the j n configuration with a given T, J, v and t is  obtained from  a 
state in the j v configuration (which has no pairs coupled to J = 0) with the 
sam e J and with T=t to which (n -v ) /2  pairs with J = 0 (and T = l) were added 
and the resulting wave function property  antisym m etrized.

The validity of the sen iority  schem e in the present case , apart from  
the case of T=n/2 (which was considered above), is not at all assured. For 
J = 3 /2  any tw o-body (charge-independent) interaction  is diagonal in the 
sen iority  schem e. F or j s  5 /2  this m ay not be so and whatever experim ental 
evidence we have indicates that the sen iority  is  not a good quantum num ber. 
In fact, it is  even difficult to find nuclei where the j n configuration gives a 
good description  of nuclear states. 'We shall nevertheless use the seniority  
schem e in the follow ing d iscussion . It m ay still be a good approxim ation 
fo r  ground-state energies and certainly  exhibits the essentia l features of 
the effective  nuclear interaction.

We thus consider the states with low est sen iorities  in j n configurations 
with protons and neutrons. F or n even there is  one such state fo r  every  
value o f T = n /2 , (n /2) - 2, . . . ;  it has the quantum num bers J=0, v=0, t = 0.
In even-even  nuclei, such a state exists fo r  the low est value o f the isospin  
T and is  the ground state. In odd-odd nuclei, such a state has a higher 
value of T and is usually higher up. We shall d iscuss these nuclei la ter.
F or odd n there is one state with low est sen iority  fo r  every  value o f allowed 
isospin  T with the quantum num bers J=j v=l t= 1 / 2. The interaction  energies 
of these states are linear com binations of only three param eters. These 
are Vo and V2 defined above, and the average interaction energy in the T = 0 
states of the j 2 configuration. This average interaction in the states with 
J = l ,  3, . . . ,  2j is  defined by

Any tw o-body interaction which reproduces the actual values of V0, V2 
and V1 can be used fo r  the calculation of ground-state interaction  energies. 

In analogy with relation  (8) we introduce the interaction  ■

We can now choose the free  param eters x, y and z so_that the_averages of 
the interaction (16) in the j2 configuration w ill be VQ ; V2 and V1 . As seen 
from  expression  (17), this interaction has large degeneracies, and the 
averages coincide with the actual eigenvalues. Thus, we use the expression  
(17) with n=2 and obtain

2j 2 j

J od d J odd

( 2 J + 1 )

J od d  . (15)

VJ2 = x + y q 12+ z 2 { t ¿  t2) 

which has in the j n configuration the eigenvalues

(16)

T(T+1)

(17)
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x + (2 j+ l) y + - z  = V0

+  I  Z  = v 2

2 Z = V!

x  = ( 3 V 2 +  V i  ) /  4  

y = (V0 - V2 ) /(2 j+ l)  (18)

z = (V2 - \  ) /2

We can rew rite expression  (17) as

n (n -l) , 1
2 (X " 2 y) + ( z ‘ y) T(T+1) - -  n

+ У t ( t + l ) - f v  + ^
(19)

F or v -0 , t -0  o r  v-1  t= l /2 ,  the last term  in expression  (19) vanishes and the 
expression  sim plifies to [1 9 ].

*<jnT, g .s .  vik I j " T ,  g .s .  > = < j" T , g .s .  v;k I j " T ,  g .s .  >

2 ß + T (T  + 1) - - n

(20)

The interaction  param eters which appear in expression  (20) are obtained 
from  expressions (18) and (19) to be

_ (6j+5) V, + (2 j+ l) V, - 2Vn •
4(2з+1)

ß ( v ° ( 2 1 )

_ (2Д+3) V2 - (2,1+1) V, - 2Vn 
7 2(2j+l)

E xpression  (20) fo r  the interaction energy has a quadratic term , a 
pairing term  and a term  which depends on the isospin . The value of a turns 
out to be rather sm all in all cases  con sidered . The pairing term  is  the 
sam e as in the case of identical nucleons, the value of ß in form ules (21) 
is the same as in expression  (12). The last term  in expression  (20) is  the 
w ell known sym m etry energy. In actual nuclei y  is  big and repulsive and 
as a result, the higher the value of T, the sm aller the binding energy. The 
sign of y  is determ ined by the fact that in the j 2 configuration, both the J = 0 
state and the average position  of the T=0 leve ls  with odd J are low er than 
the average position  of the v=2 T = 1 levels (with J /  0, even). This feature 
of the effective interaction is  a result of the fact that in the interaction 
between free  nucleons theT = 0 fo rce s  are m ore attractive than the T=1 fo rce s  
F or identical nucleons, T = n /2 , the sym m etry energy becom es 
(7 / 2) [n (n - l ) /2 ]  which is a repulsive quadratic term  as d iscussed  above. 
When there are both protons and neutrons present this repulsion  between 
identical nucleons is  m ore than com pensated by the attraction between
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protons and neutrons. F or equal num bers of protons and neutrons and 
T = 0, the sym m etry-en ergy  term  yields the maximum attraction -(3 /4 )п т .

The com parison  of expression  (20) with experim ent is not as good as 
in the case of identical nucleons, with the exception of the l d 3//2 shell 
between 32S and 40Ca. H ow ever, sim ple relations that can be obtained from  
expression  (20) fo r  binding energy d ifferen ces are found to agree extrem ely 
w ell with experim ent [2 1 ] . We shall not present here a detailed d iscussion  
of these but would like to point out an im portant exception. If odd-odd 
nuclei with N = Z are included, the relations are significantly violated. For 
other odd-odd nuclei, the relations hold very  w ell. F rom  expression  (19) 
we can only find out the average interaction  energies of groups of states 
with the same sen iority  quantum num bers. If N and Z are odd there is  no 
state with J = 0, v=0, t = 0 fo r  the low est isospin  value T = (N -Z )/2 . F or  this 
value of T there are states with v=2 t = l and J > 0, even, and states with 
v=2 t = 0 and J odd. The positions of the cen tre s -o f-m a ss  o f these two groups 
are determ ined by the last term  in expression  (19) i. e. by the amount of 
pairing. As у  is  attractive, the centre of m ass of the v=2 t = l levels lies 
below  the centre of m ass of the v=2 t = 0 states. In fact, ground states of 
odd-odd nuclei with N > Z have even values of J.

If both N and Z are odd and N = Z, there are only states with odd values 
of J (v=2 t =0) with T = (1 /2 )(N -Z ) = 0 .' In many odd-odd nuclei with N = Z, the 
ground states have T = 0 and odd J. As is seen from  the last term  in e x 
pression  (19), these states have, on the average, le ss  pairing energy than 
the t = l states in N > Z odd-odd nuclei. Thus, ground states of N = Z odd- 
odd nuclei have less  interaction energy than ground states of other odd-odd 
nuclei and cannot satisfy  the G arvey-K elson  relations with them. This can 
also be seen from  the fact that in all N = Z odd-odd nuclei, the J = 0 state is 
rather low -ly in g  even though it has a higher value of isospin  T = l .  In fact, 
from  38K on, the J = 0 is actually the ground state of N = Z odd-odd nuclei.
This situation is not easy  to understand from  the H a rtree -F ock  point of view. 
The interaction between a proton and a neutron would be expected to be 
much stronger when they are in the same orbit.

The interaction  between protons and neutrons in different orbits is  also 
strong and attractive. States with protons in the j orbit and neutrons in the 
j ' orbit have definite isospin  if (and only if) the neutron j-o r b it  is com pletely  
filled . In that case, the j-p ro ton  j 1-neutron interaction is  given by

~ K j j '  T = 0 j|v|jj' T = 0 J >  + < jj ' T = 1 j|v|jj' T = 1 J > ] (22)

The T = 0 m atrix elem ent in expression  (22) is  attractive, and its absolute 
value is  la rger than that of the T = 1 m atrix elem ent. Thus, even if the latter 
is  repu lsive the total m atrix elem ent (22) is attractive. As an example, 
the m atrix elem ents of the effective interaction between lp i /2 protons and 
l d 5̂ 2 neutrons were determ ined to be [7 ] :

ÍP l/2 proton - Id neutron J = 2 1 .75 J = 3 1 .60 MeV.

These m atrix elem ents are rather large and, accord ing  to the convention 
used above, they are attractive. On the other hand, two identical nucleons 
in these orbits repel each other on the average, the m atrix elem ents being

l p 1/2- l d 5/2 T = 1 J = 2 -0 .4 9  J = 3 0 .07  MeV
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We see that the fo r ce s  that give r ise  to the attractive central potential 
o f the shell m odel are the proton-neutron interactions. As we add to the nucleus 
nucleons o f one kind, the potential w ell fo r  the other kind o f nucleons b e 
com es deeper but also its form  is  changed. The spacings between single - 
nucleon orbits and even their order are changed as a result of changing 
the occupation num bers of nucleons. As an exam ple, let us look at a case 
in which the addition o f two protons changes the order of single-neutron 
levels  which are in two different m ajor shells [2 2 ] . In ^C., the neutron 
1P 1 / 2  orbit is the low est, the 2sx/2 level lying 3.09 M eV above it. When 
going from  13C7 to 14Be7 two 1рз/2 protons (coupled to J = 0) are rem oved.
One would expect that the interaction o f а 1рз/2 proton with a lp /̂2 neutron 
is  stronger than its interaction  with a 2s j /2 neutron (this feature appears 
in many ca ses ). We can find out about these interactions by looking at 
1|В7. A graphical solution which gives the ord er and spacing of the neutron 
1 Pj/2 and 2sjy2 orb its in Uße is illustrated in F ig. 6. We see here the 13C
С П 2  r i  n  (T л л т п о г а Я  +  r\ + Vi £> c n o ^ i n r r  Ь а + м т о п  + Vi о  л о п + т ' а с  Ÿ m  - - I C O  r\-f +V> n  r\ “ 1

A ccord in g  to expression  (14), the d ifference between the n Be and 13C 
spacings should be tw ice the d ifference between the 12B and 13C spacings. 
The resu lt is  that the ground state of n Be should be 1+ /2  in which the odd 
neutron is  in the 2sjy2 orb it. The lp i /2 should be 0 .2  MeV above it. This 
prediction  was con firm ed by experim ent, the 1“ /2  leve l was found at
0 .32  M eV above the l +/2  ground state of UBe,

5. COUPLING OF PROTONS AND NEUTRONS. SPIN GAPS.

In the last section  we saw certain  im portant properties of the average 
proton-neutron interaction . We shall look  now at this interaction in m ore 
detail and reach  certain  conclusions about its e ffects . As mentioned above, 
within a jn configuration this interaction is  not diagonal in the seniority  
schem e. If we look at nuclei between 40Ca and 56Ni we can see whether 
( 1 f7/ 2)n configurations can account fo r  the experim ental data. The situation 
is  not too c lear at the m om ent. Certain spectra  com e out reasonably w ell 
but in som e others there are very  large deviations [2 3 ] . It is  possib le  to 
check, fo r  instance, whetherthe sp ectra o f $ÎSc2iand 2iSc27 can be related by

о о
FIG. 6 . Order o f  le v e ls  in  11 Be.
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the Pandya relation . The agreem ent is satisfactory  [24 ] and the resulting 
tw o-body m atrix elem ents do not make sen iority  a good quantum number.
This is  c lea r ly  dem onstrated by looking at the relative positions of the 
v=2 t=l leve ls , with J-2,  4, 6, in both ca ses . In 42Sc the J=6 leve l is  about
1. 7 M eV above the J = 2 leve l (and 0. 5 M eV above the J = 4 leve l). If the 
effective  interaction w ere diagonal in the sen iority  schem e the order and 
spacings of these levels  should be the sam e in the p a rtic le -h o le  spectrum . 
Actually, the ground state of 48Sc has J = 6, the J=4 lev e l is  above it and 
the J = 2 leve l is  higher than both. We shall com e back later to this shell.

Let us now con sider the case with the j n proton configuration and j'n 
neutron configuration. The neutron j orb it is  assum ed com pletely  filled  so 
that the states would have a definite isospin  T = ( l /2 )  (2 j+ l+m -n ) in the 
absence of e lectrosta tic  in teractions. It is  possib le  to construct states of 
this system  in the follow ing way. We start with eigenstates of the jn con 
figuration with definite spin Jp and other quantum num bers &p, if n ecessary . 
S im ilarly, we look at eigenstates with definite an, Jn in the j 'm configuration. 
We now construct a state with a definite total spin by coupling the states 
with given Jp and Jn. The states constructed in this way

|jn(*  J ) j ,m (a J ) JM > (23)
1 '  p p '  J '  n n '  '  '

form  a com plete set of wave functions fo r  this system . In this schem e the 
interaction  energy within the j n configuration is  diagonal, and the same is 
true fo r  the j ,m con figu ra tion . H ow ever, apart from  the cases  j = 1 / 2 or 
j ’ = l / 2 ,  (see  R ef. [ 9 ] ) , the j proton - j '  neutron interaction  energy is  non
diagonal in the schem e (23). It has, in general, non-vanishing m atrix 
elem ents connecting states with the same J but with different values of 
Jp and Jn.

Thus, it is im possib le  to characterize  eigenstates of such configurations 
by the total proton spin and total neutron spin. The spins Jp and Jn are 
not, in general, good quantum num bers. The question whether the wave 
functions (23) m ay or m ay not be good approxim ations can be answered only 
by looking at the magnitude of the non-diagonal elem ents com pared to the 
separation between the unperturbed levels which they connect. In som e 
ca ses , where all tw o-body m atrix elem ents are known, like the ( ld 3/ 2)n 
protons - ( 1 f7/ 2)m neutron configurations, there is  a quantitative answer.
The adm ixtures o f states with different Jp and Jn (within the sam e shell- 
m odel configuration) is  present also fo r  both m and n even. Such adm ixtures 
are la rger  fo r  odd-even  nuclei since there are low -ly in g  states (with v=3) 
in the odd configuration.

The approxim ation of definite Jp and Jn is  much w orse in actual odd-odd 
nuclei. The non-diagonal m atrix  elem ents of the interaction play a very  
im portant ro le  because of the proxim ity of severa l unperturbed states. This 
is  the reason  why it is  d ifficu lt to give any rules fo r  spins of odd-odd nuclei 
based on the approxim ation (23). In f|K23 all states o f the ground con figura
tion have Jp=3/2. The state (23) with the low est diagonal elem ent has 
Jn =7/2 and J = 3 (unlike 40K where the ground state has J=4). H ow ever, the 
state with ,Jn = 5 /2  is  only 0. 37 M eV above the Jn =7/2 state in the f9/2 con 
figuration. A fter the diagonalization of the energy m atrices  (in which 
there are no adjustable param eters) it turns out that the low est state has 
J=2 as experim entally observed . It has about equal adm ixtures of the states 
with Jn =7/2 and the state with Jn = 5 /2 .



474 TALMI

It should be pointed out that, in particular, the cen tre -o f-m a ss  theorem
[25] holds only fo r  the diagonal m atrix elem ents in the schem e (23). This 
theorem  im plies, fo r  n even,

■*p +

J= 1V J'

£  (2J+1) < jn ( Jp) j 'm (Jn) j| ^ v | j " ( jp ) j™ ( jn) j > / ^ ( 2 j + l )

- < 3n(Jp=0) j 'm(Jn)J = Jn |JTv| jn (0)j 'm (J n)J=Jn> = (24)

= <3n jp | £ v  j j n Jp > -< jn  J p = o l ^ v l ^ j p  = 0 >  .

If non-diagonal m atrix elem ents of the projton-neutron interaction are in 
deed negligible, Eq. (24) is a statement relatingthe positions of centres o f m ass 
o f the m ultiplets with definite Jn and various values of Jp to be spacings of states 
with the corresponding Jp in the j n configuration. In actual nuclei, unless 
j 1 = 1 /2  (and m = 1), we expect admixtures of multiplets and large deviations 
from  the ce n tre -o f-m a ss  theorem .

In heavier nuclei, the separation between higher values of Jp in the j 2 
configuration (and higher even configurations) becom e rather sm all. The 
relative energies of states with such values of Jp are, th erefore, largely  
determ ined by the proton-neutron interaction . The properties of the latter 
interaction  give r ise  to the occu rren ce  of h igh-spin  isom etric  states. Let 
us con sider the isom erism  in 93Mo where there is  one 2ds/2 neutron out
side closed  shells and, fo r  sim plicity , we take the proton configuration 
to be ( lg g /2)2- The J=4 leve l in 92Mo is  0 .79  M eV above the J = 2 level, the 
J = 6 - J=4 spacing is  only 0. 33 MeV whereas the J=8 - J = 6 separation is 
even sm aller, 0 .14  M eV. The l g 9/ 2 proton - 2d5/ 2 neutron interaction can 
be determ ined from  the 4iNb51 levels [2 6 ] . The ground state of 92Nb has 
J = 7 and otherother levels  are at 0.135 M eV (J = 2), 0.286 MeV (J = 5),
0. 357 M eV (J = 3), 0. 479 M eV  (J=4) and at 0. 500 M eV (J = 6). Assum ing, for 
sim plicity , that these are due to the gg/2 d5/ 2 configuration, we can write 
down the energy m atrices of 93Mo in the schem e (23) and diagonalize them. 
The resu lts are in very  good agreem ent with the experim ental levels  [2 7 ] . 
In particular, the J = 21 /2  leve l is  isom eric  since there is  a "spin  gap" 
between it and the low er leve l with J = 13 /2 . The J = 15 /2 , J = 17/2 and 
J = 1 9 /2  levels are all above the J = 21/2 level.

The occu rren ce  of this spin gap can be traced  to a sim ple property 
of the proton-neutron interaction. That interaction is very  strong in the 
state with maxim um  spin of the two nucleons: J ' =7. In fact, in this case, 
it is  the strongest interaction and much stronger than in the state with 
one le ss  unit of spin J1 = 6. The maximum amount o f proton-neutron coup
lings with J' = 7 o ccu rs  in the state of 93Mo where all spins are aligned as 
much as possib le , i . e .  Jp = 8, J = 21 /2 . The states with low er spin J, 
based either on Jp = 8 o r  Jp = 6, have less  couplings J 1 = 7 (and have J 1 = 6 
couplings instead). Thus, the J = 19/2 state (with Jp = 8) is higher than the 
J = 2 l /2  state, but even the states with J = 17/2 and J = 15 /2 , with Jp = 6 
com ponents, are higher. These states rem ain higher even if  the non
diagonal elem ents are taken into account. The sm all J = 8 - J = 6 spacing 
does not balance the deficien cy  o f these states in J 1 = 7  couplings (the other 
strong coupling, fo r  J ' = 2, does not occu r  fo r  J ê 1 5 /2 ). The J = 13/2
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state, with its component having Jp =4, is low er than the J = 21/2 level due 
to the 0. 5 M eV separation between the Jp = 8 and Jp = 4 levels of 92Mo.

A sim ilar case of isom erism  is found in 2g4Po127 with the ( lh 9/ 2)2 2gg/2 
configuration [2 8 ] . The 210Po spectrum  shows the (h9/ 2)2 levels  to be 
J = 0 (g . s . )  J = 2 (1 .180 MeV), J = 4 (1. 425 M eV), J = 6 (1 .471 MeV) and 
J = 8 ( ~  1.510 M eV). The lh 9/ 2 proton - 2g9/ 2 neutron interaction can be 
determ ined from  the 2^§Bi127 leve ls . These are in M eV: J = 1 (g. s . )
J = 0 (0 .047) j = 9 (0 .268) J = 2 (0 .820) J = 3 (0. 347) J = 5 (0 .433) J = 7 (0 .433)
J = 4 (0. 501) J = 6 (0. 547), and J = 8 (0. 581). The situation is s im ilar to 
that in 93M o. The strong proton-neutron interaction in the J' = 9 state (as 
com pared to the J 1 =8, J1 = 7 and J' = 6 couplings) causes a spin gap between 
the state with maximum spin J = 25/2 (with Jp =8) and other states. As 
found experim entally, the J = 25 /2  state is isom er ic  since the J = 23 /2 ,
J = 21 /2  and J = 19/2 levels are calculated to be above it. The J = 17/2 and 
J = 15 /2  levels are somewhat low er but still very  c lo se  to the J = 25/2 level. 
The very  close  spacings of the higher spin levels in j 2 configuration makes 
the proton-neutron interaction the dominant fa ctor which determ ines the 
energies of states. This leads to isom er ic  states also in even-even  nuclei 
like 212Po.' There is a spin gap in the (lhg/2)2 (2 gg/2)2 configuration between 
the level with maximum spin J = 16 ( Jp = 8 and Jn = 8) and other levels [ 28 ].
The J = 15, J = 14, J = 13 and J = 11 levels are calculated to lie  above it while 
the J= 12 level although low er, is very  c lose  to it. This gives r ise  to the 
observed  isom erism  of the J = 16 level.

Let us make use of the (h9/ 2)2 (gg/2)2 configuration in 2i2p0 to illustrate 
an im portant feature. The higher the excitation energy, the m ore ways 
there are of distributing it between the nucleons. This effect is  c lea rly  
seen even in the calculated spectrum  of this sim ple configuration. Between 
the ground state and 0 .8  MeV excitation there are only 2 leve ls . . Between
0.8  M eV and 1 .6  M eV.there are nine. There are 20 levels between 1.6 MeV 
and 2. 4 M eV and m ore than a hundred between 2. 4 and 3. 2 M eV. It is 
p ractica lly  im possib le  to prepare a drawing with all these leve ls . In 
F ig. 7 the sam e effect is seen in the calculated spectrum  of 92Z r . The large . 
number of levels arise  from  rather sim ple sh e ll-m od el configurations 
involving l g 9/2 protons and 2dS/ 2 neutrons [2 9 ] .

The strong interaction between a proton and a neutron in the state with 
maximum spin is seen also when they are in the same orb it. In the l f 7/ 2 
shell, as seen in 42Sc, the state with J' = 7 is  low -ly in g  and is much slow er 
than the J' = 6 leve l. As a result, a spin gap is obtained in the ( l f 7/ 2 )3 con 
figuration with T = 1 /2 . In the ^ F e 27 spectrum , which agrees w ell with 
the Bayman, M cCullen and Zam ick  calculations, the leve l with maximum 
spin allowed by the Pauli princip le has J = 19/2 (at 3 .04 M eV). In it there 
is  maximum coupling to J' = 7 and it is indeed low er than the J = 17/2,
J =-15/2 and J = 13/2 lev e ls . It decays with a 2. 5 min life -t im e  [30] to the 
J = 11/2 level (at 2. 34 MeV) which cascades through the J = 9 /2  level 
(1 .33  MeV) to the J = 7 /2  ground state.

6. CONFIGURATION MIXING; HIDDEN AND EXPLICIT

As mentioned before , configuration interaction lies  at the foundation 
o f the e ffective-in teraction  approach. If the interaction between free  
nucleons has a hard core , arb itrarily  high sh ell-m odel configurations must
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be present in the rea l wave function of the nucleus. We assum e, however, 
that the effect of such configuration m ixing on the energies can be fully- 
rep laced  by a m odification  or renorm alization  of the tw o-body interaction.
If this assum ption is  valid, we can calculate nuclear energies by using sim ple 
sh e ll-m od el wave functions and an effective  tw o-body interaction between 
nucleons. We have seen severa l exam ples in which energies could actually 
be calculated consistently in this way. There are other cases, how ever, in 
which even the energy cannot be calculated in this way. In such cases, we 
have to enlarge the space of wave functions and include severa l con figura
tions in the calculation .

The main d ifficu lty  in extending the approach described  above is  the 
large number of m atrix elem ents which appear in the calculation. When 
severa l configurations are considered we have, in addition to the diagonal 
elem ents within each configuration also a large number of non-diagonal 
m atrix  elem ents. To determ ine these m atrix elem ents, many m ore e x 
perim ental data should be made available fo r  the analysis. In severa l cases
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it was found possible to determine diagonal and non-diagonal matrix elements 

from the experimental data and obtain good agreement between calculated 

and experimental energies. Some of these cases will now be described.

A  rather simple case is offered by the proton configurations in the Zr 

region where the 50 neutrons occupy closed shells [ 13, 29, 31]. In 89Y  the 

ground state is taken to be due to a 2p.,„ proton. The lgg/2 single

proton state is about 0. 9 M e V  above it. In 9®Zr the first excited state is 

a 0+ level, 1. 75 M e V  above the 0 + ground state. The other positive parity 

levels have J = 2 (2. 18 M e V ), J = 4 (3. 08 M e V ), J = 6 (3. 45 M eV ) and 

J = 8 (3 .6 0  M e V ). These latter levels are taken to be due to the lgg/2 con

figuration. This configuration must be admixed with 2p1̂ 2 to give the two 

0+ states [32]. The small 0-2 separation (0 .43  M eV ) is a clear indication 

which is supported by the detailed analysis of the energies of other nuclei 

with 50 neutrons. This case is simple since there is only one non-ciagonal 

element connecting the J = 0 states of the gĝ | and the рх/| configurations.

A  nice demonstration of the validity of this description is furnished 

by the 92M o  spectrum. The lowest states must belong to the pjySj gg/22 

configuration which are, however, admixed to corresponding states of the 

higher gg/24 configuration. The seniority is found to be a good quantum 

number for the gg/2n configurations by inserting the J = 2, 4, 6, 8 spacings 

from 90Z r  into expression (6). Therefore, only the v = 0 ( J = 0) and v = 2 

( J = 2, 4, 6, 8) states of the gg/24 configuration (but not the v = 4 states) can 

be admixed to the corresponding states of the pi/22 gg/22 configuration. 

Moreover, the non-diagonal elements between v = 2 states are independent 

of J. As a result, the spacings of the J = 2, 4, 6, 8 levels in 92M o  are ex 

pected to be equal to those of 90Zr  [13]. Experimentally, the 2+ level in 

92M o  is 1 .54  M e V  above the 0+ ground state and the other levels are at

2. 33 M e V  (4+), 2 .6 6  M e V  (6+) and 2 .8 0  M e V  (8+). The spacings do indeed 

agree which strongly supports the configuration assignments. Large con

figuration admixtures were obtained in this analysis (60%  Pi/22 configuration 

and 4 0 %  gg/22 configuration in the 90Zr  ground state). Still, the resulting 

behaviour of the energies beyond 90Zr  is so regular that it would be difficult 

to find evidence for configuration mixing in these energies. This effect is 

discussed in great detail by Professor Soper in these Proceedings. He 

considers "pseudonium " nuclei [4 ] . Here only the Zr  region example will 

be presented. It was mentioned in Ref. [3] that "it is worth-while to notice 

that the lower J = 9 /2  states in Fig. 3 [ of that paper] after being shifted by 

configuration interaction, still lie fairly well on a straight line (with the 

exception of 77Sr). Assum ing that this really reproduces the experimental 

spacings, this feature could lead to .the simple, yet wrong conclusion that 

these J = 9 /2  states belong to pure configurations, say р^/22 gg/2n~2 . 1°

other words, taking the 9 /2 + states to belong to effective pi/22 gg/2n*2 con

figurations, their energies could be well reproduced by effective two-body 

forces which have the sam e matrix elements in the nuclei considered. This 

is true in spite of the fact that the perturbing configurations, i .e.  the 

gg/2n configurations, are rather low-lying. This example demonstrates 

clearly that shell-model wave functions m ay  well include considerable adm ix

tures of other configurations". It was not realized at that time that this 

effect m ay  show up for excited states as well.

Let us now see whether nuclei from 91Nb on could be treated as having 

pure pi/22 g9/2n"2 configurations in spite of the gg/2n admixtures (30%  in 91Nb 

and less in the others) that they actually have 33). Let us first consider
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binding energies calculated with configuration m ixing and try to fit them 
with the form ula (13) of a pure j n configuration (the p i/22 protons form  a 
closed  shell and can be ingored). The agreem ent between the exactly ca lcu 
lated binding energies and the results of using form ula (13) is very good.
The coefficien ts of the result (13) obtained in this way include the effects 
of the configuration m ixings and are indeed different from  the corresp on d 
ing values of the unperturbed gg/2n configurations obtained by the detailed 
analysis:

С . о- ß
Unperturbed 5.430 -0 .622  2.396 MeV
E ffective 5.250 -0 .632  2.710 MeV

From  the change in the value of ß we can compute the change in V0-V2 
which gives d irectly  the effective 0-2 separation to be 1.482 MeV (the 
unperturbed value is 1.20 M eV). This prediction, based on the assumption 
of a pure configuration, should be com pared with the values calculated 
exactly  taking into account configuration mixing. These values are:

n1 = n-2  2 4 6 8 predicted from
pure configurations

0-2 separation 1.557 1.478 1.438 1.413 1.482
in MeV

Again the agreem ent is rather good, the deviations are less  than 0.08 MeV.- 
As mentioned before, the J = 2, 4, 6, 8 spacings are not changed by the con 
figuration m ixing. F or  odd nuclei we can compute from  the effective value 
of ß the spacing between the v = 1 J = 9 /2  ground state and any v = 3 state.
We obtain the follow ing results com paring detailed to effective calculations

n1 =n-2 3 5 7 predicted from
pure configurations

9 /2 -7 /2  separa- 0.683 0.623 0.499 0.648
tion in MeV

A lso here the agreem ent, although w orse, is still reasonably good.
It can be shown that if the effect of configuration m ixing in this example 

can be treated in secon d -ord er perturbation theory it is equivalent to a 
m odification  of the tw o-body interaction. Here, however, we have rather 
large adm ixtures (up to 30% in the present case and even much la rger m ix 
tures in other fictitious cases [ 4 ] )  and still this feature is rather w ell ob 
tained. This is rem arkable indeed and may be an indication why the sim ple 
minded shell m odel works so w ell. This phenomenon is mainly due to the 
fact that the perturbing configuration is obtained by exciting two nucleons 
from  the ground configuration. In infinite nuclear matter this is the only 
possib le  kind of adm ixtures because of momentum conservation. In finite 
nuclei, how ever, angular momentum can be conserved even if only one 
nucleon is  excited to another orbit. The effect of m ixing of configurations 
differing by the orbit of one nucleon is not equivalent to a tw o-body in ter
action. In som e cases, it may lead to a m odification of the single-nucleon 
orb ita ls and nuclear deform ations [20] .  Here we shall mention cases where 
such configuration m ixing was considered in detail.
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It was mentioned above that in the 1 f 7/2 shell of identical nucleons there 
are definite deviations from  the pure 1 7̂/ 211 description . The next orbit 
which should be considered  is the 2p3/ 2 orbit which in 41Ca is only 2 MeV 
above the ground state. A detailed analysis using both I f 7/2 and 2p3/ 2 orbits 
was ca rried  out giving much better agreem ent with the data [ 34] .  In 
particular, the positions of the 3 / 2 “ states in 43Ca and 45Ca cam e out close  
to the experim ental values (0.6 and 1.4 MeV, respective ly ). In pure Нт/2П 
configurations the position o f these levels above the 5 / 2"  ground states 
should be the sam e. Thus, the configuration m ixing in this case cannot 
be w ell replaced by a m odification of the tw o-body interaction in pure 1 f 7/ 2” 
configurations. The whole purpose of the analysis was to explain the 
deviations from  the sim ple p icture.

Another case in which the description  in term s of pure jj-cou p lin g  
configurations is not good enough in the lp shell [ 35 ] .  In the beginning 
o f the shell, the description  in term s of 1рз/2п configurations (of protons 
and neutrons) is rather poor. Towards the end of the shell, beyond 12C, 
the description  in term s of lp i /2n configuration is better [ 7 ] .  Taking into 
account both the 1рз/2 and lpt/2 orb its (interm ediate coupling) gives much 
better agreem ent with the experim ental data. In particular, the m atrix 
elem ents of the effective interaction determ ined in this way are equivalent 
to those obtained from  central and non-central fo r c e s . The contribution 
of tensor fo rce s  is essentia l to the explanation of the large ft-value of the 
14C beta decay [ 36] . It is n ice that the m atrix elem ents of the effective 
interaction determ ined from  the energies cause the n ecessary  cancellation 
in the beta-decay m atrix elem ents.

The last example is furnished by the spectra  of the n ickel isotopes.
The energy levels look as if they were due to a "vibrational" spectrum . 
Although there is  strong evidence against such an interpretation, the 
regu larities observed  are rather striking. The position of the firs t excited 
2* level is about the sam e in all isotopes from  58Ni t o 64Ni. The positions 
o f other leve ls , with J = 2, J = 4 and J = 0 are at about tw ice the 0-2 separa 
tion. The position of the 2+ state in itse lf c lea rly  indicates that no single 
configuration could account fo r  it, since the available neutron orbits are 
2рз/2, I f 5/2 and 2pjy2 . A detailed analysis of all levels including con figura
tion interaction revealed large adm ixtures of the various configurations [37] .

It turns out that the m atrix elem ents of the effective interaction d eter
mined from  the n ickel isotopes are very  sim ilar to those obtained in other, 
sim pler, ca ses . The m atrix elem ents within each configuration (e . g.
2f 5/ 2n) are very similar to those obtained for a pure configuration (e. g. 

attractive pairing term and repulsive quadratic term). There is also an 

average repulsion between neutrons in different orbits.

The non-diagonal m atrix elem ents between nucleon pairs in different 
orbits turn out to be large and attractive (in the zirconium  region only the 
size  but not the sign of the non-diagonal elem ent could be determ ined).
They are considerably la rger than m ost other non-diagonal m atrix elem ents 
and give r ise  to a schem e in which generalized sen iority  is  a good quantum 
num ber. This means that the main adm ixtures to any given state are those 
states in which neutron pairs with J = 0 go into other orb its.

The large and attractive m atrix elem ents between J = 0 pairs are s im ilar 
to those suggested by the pairing theory. Although there are definite 
quantitative d ifferen ces, these are not very  im portant. If, however, one 
tr ies  to use the pairing theory to account for the J = 0 levels , the agreem ent
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obtained is very  poor. The reason  is that the average repulsion between 
identical nucleons in different orbits plays a very  im portant role in the 
energy m atrices . This repulsion is com pletely  m ission  from  the pairing 
interaction, and it is not surprising  that no quantitative results could be 
obtained without it.

The detailed calculations involving the l f s /2, 2p3/ 2 and 2p1/2 neutron 
orbits give a good description  of the spectra of the n ickel isotopes. It is 
not c lea r  whether all transition probabilities can be explained, even when 
using effective single-nucleon  operators. This is not very  different from  
the s im p ler-cases mentioned above. In spite of the good agreem ent, it is 
not c lear  how the sim ple features of the spectra  a rise . The "v ibrational" 
structure of the spectrum  appears in severa l other cases  where there are 
only (o r  m ostly)identical nucleons outside closed  shells (like the tin is o 
topes). What is m issin g  is a sim ple approxim ation which w ill exhibit the 
sim ple features of the energy leve ls . This is n ecessary  also from  a 
practica l point of view . In the tin isotopes there are many single-nucleon  
orb its , and a detailed calculation would be extrem ely  difficult. But m ore 
interesting is the theoretica l problem  of obtaining a physical insight into 
the structure of such nuclei. It is not easy to have a physical picture of 
the outcom e of diagonalizing huge m atrices . It would be very  nice to have 
a sim ple approxim ation to explain the rather sim ple resu lts obtained from  
the detailed and com plicated  calculations.
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PSEUDONUCLEI AND THE SHELL MODEL

J. M . SOPER 
Theoretical Physics Division 
AERE Harwell, 
Great Britain

Abstract

PSEUDONUCLEI AN D  THE SHELL M O D EL. 1 ,  In tro d u ctio n ; 2 ,  T h e  p seu d on iu m  is o to p e s ; 3 .  A 
p r o to n -n e u tro n  sy stem ; 4 .  S u m m a ry .

1. INTRODUCTION

M odels have always been, and w ill always be, an essentia l part of 
nuclear physics. We m ay hope that with the foreseeab le  in crease  of 
com puter power we might (if we wished) so lve , m ore o r  less  exactly, 
the problem s of two, three, four, o r  even five bodies. But an N -body 
w ave-function , a function of (3N-6) variables (at least), w ill always r e 
m ain beyond our reach fo r  values of N greater than five . At the other 
end of the sca le  we can probably achieve any desired  degree of accu racy  
in calculating the properties  of infinite nuclear m atter. Even in the 
heaviest rea l nuclei, how ever, about half o f the nucleons lie  in the 
nuclear su rface , so that we are very  far from  this ideal situation. Nuclei 
are therefore  essentia lly  "m an y-bod y", but a lso essentia lly  finite; we 
can never know an "exa ct" nuclear w ave-function, and cannot escape the 
use of m odels.

Since we do not have exact solutions to com pare with, m odel w ave- 
functions must be justified  indirectly . We can try  to justify  our m odels 
th eoretica lly , by starting from  the equations that govern the m any-body 
system  and proceeding through a se r ie s  of approxim ations, each of which 
has to be separately justified , to the m odel solution. This task has o c 
cupied much of the attention of nuclear theorists fo r  many years now, 
but while the course o f such a chain of reasoning has been outlined, and 
som e of the links forged , the whole is neither com plete nor quantitative.

We can a lso  appeal to experim ent. It is , o f cou rse , an essentia l 
property  fo r  a good m odel to agree with a wide range of experim ental 
resu lts . Many of our current nuclear m odels are very  su ccess fu l in this 
resp ect, and it is tempting to cla im  that this agreem ent constitutes not 
only a n ecessary  test of the m odel but also a justification  of it. It creates 
a presum ption that the m odel w ave-functions are in som e sense close  to 
the true ones. In a rea l nucleus, in the absence of the sort of theoretica l 
chain re ferred  to above, this presum ption is im possib le  to prove and 
difficu lt to rebut. One tends to be led by the weight o f the evidence (which 
fo r  a su ccessfu l m odel w ill be overw helm ingly favourable) and to d ism iss 
as aberrant the handful of experim ental results that d isagree with the 
theory. Can we do th is? Or can a theory that is both physically  r e a 
sonable and a lso  in excellent agreem ent with the vast m ajority  o f ex p eri
m ental data turn out to be based on w ave-functions that are very  far from
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the true ones? I shall d escribe  here som e experim ents on this theme 
that w ere made by S. Cohen, R.D. Lawson and the author [7].

The m odel that we choose to examine is the j - j  coupling shell m odel.
As T alm i [2] em phasizes elsew here in this volum e, this m odel in its 
sim plest form  is rem arkably su ccessfu l in fitting a very  large range of 
nuclear properties in many parts of the p eriod ic  table. This su ccess  
might lead us to suppose that in these regions the sim ple w ave-functions 
o f the m odel are n ecessa rily  "tru e" in som e sense. Apart from  pointing 
to the occasion a l d iscrepan cies  with experim ent, we can make little 
useful com m ent on this hypothesis if it is applied to a rea l nucleus or 
range o f nuclei, because we cannot know the "true" w ave-functions. How
ev er , we can, in a sense, "build our own" nuclei and investigate their 
properties  using a sim ple m odel. In shell-.m odel term s, we can construct 
w ave-functions which contain configuration adm ixtures. This must be 
done in a physically  reasonable m anner, for  example by diagonalizing 
the m atrix of som e Hamiltonian operator within som e set o f configurations 
lying close  together in energy. We say that these w ave-functions represent 
"p seu d o -n u cle i" . We can then calculate the m atrix elem ents of operators 
representing physically  observable quantities between these w ave-functions. 
These quantities correspond to experim ental data in rea l nuclei -  we ca ll 
them "resu lts  of pseu do-experim en ts". Then, taking account only of these 
pseudo-data (and not of our knowledge of the true w ave-function) we try 
to find the sim plest m odel assum ptions that w ill give a reasonable fit to 
the properties o f the system . On the one hand, we can com pare the quality 
of the overa ll fit to that obtained in rea l situations. On the other hand, 
we can com pare sim ple w ave-functions that give a good fit (assumingthat 
we find som e) with the true w ave-functions that we are priv ileged  to know. 
We may then be in a position  to com m ent on the degree o f confidence that 
we can reasonably p lace in the "truth" of sim ple m odel w ave-functions 
that give a very  good fit to a large body of data.

2. THE PSEUDONIUM ISOTOPES

These are very  sim ple pseudo-nuclei in which only neutrons play an 
active ro le . They consist of a com pletely  inert core  with only two valence 
shells outside it -  a ld 3/ 2 and a If 7/ 2. No other shells play any active 
part. We fill  these two levels with neutrons, adding them one by one. The 
neutrons are bound by the central potential w ell due to the co re  (which 
we take to be a h a rm on ic -osc illa tor  potential) and are allowed to in ter
act among them selves through a tw o-body potential, which we take to 
have a sim ple central Yukawa form  with a range param eter

a = 0.94 b

where b is the usual h a rm on ic -osc illa tor  size  param eter, and with spin- 
singlet and sp in -trip let strengths

V0 = 30 MeV . ; Va = -10 MeV

If we take our Id shell to lie far below our If shell we shall get the usual 
sh e ll-c lo s in g  effect; each of our firs t  four neutrons w ill go into the Id
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lev e l which w ill then be fu ll. The next eight neutrons w ill then form  a 
fa ir ly  pure l f 7/ 2 sh ell. As long as the shell gap is large com pared with 
typical off-d iagonal elem ents o f the residual interaction this purity w ill 
p ers ist . If we reduce the shell gap until it is com parable with the r e 
sidual interaction we shall get substantial configuration m ixing, of 
cou rse . If we reduce it to zero  the mixing w ill, indeed, becom e very  
la rge . It is  this last system  that we shall study, and we shall look, in 
particu lar, at the last eight particles to go into the pair of levels (which 
we have made degenerate in energy). We shall ca ll the system s with 
four to twelve neutrons the pseudonium isotopes 40Ps to 48P s. There is 
an analogy here, o f cou rse , with the calcium  isotopes, but in re-nam ing 
the system s we wish to em phasize the fact that our calculations are c o m 
p letely  self-con ta in ed , and that we are not concerned with reproducing 
in detail the properties  of any rea l nuclear system .

The pseudo-nuclear wave functions w ere calculated, and the pseudo- 
experim ental results deduced from  them using the Argonne system  of 
sh e ll-m od el program s [3]. It rapidly becbm es c lea r  when we inspect 
this m ass of pseudo-data that the main features of the spectra  and other 
properties of these system s are just those which we would expect if we 
w ere filling a pure I f  7/2 shell with neutrons. If we look at the w ave- 
functions, o f cou rse , we can see that this is , indeed, very  far from  the 
truth. The w ave-function  of 40Ps contains only 9% of p u re -c lo se d -sh e ll 
w ave-function. The other 91% consist o f various excitations out of the 
l d 3/ 2 " c o r e "  into the If shell. To d escribe  this nucleus as a closed  shell 
would th erefore seem  pitifu lly inadequate to anyone with a knowledge of 
the "tru e" w ave-function . We em phasize again, how ever, that in rea l 
life  (which is the situation we are sim ulating) we have no such privileged 
knowledge. A sim ilar  situation occu rs in 41 Ps where 17% of the wave 
function is o n e -p a rtic le -o u ts id e -c lo se d -s h e ll in ch aracter. We are going 
to assum e this to be 100% in our sim ple pure If 7/2 m odel. As we go 
through the shell the overlaps im prove until we reach 100% at the end of 
the shell, where the d -sh e ll is  forced  to be closed  because a ll available 
states are full. O verlaps fo r  the ground states are given in the last 
colum n of Table I.

The sim ple pure I f  7/2 -sh e ll m odel pred icts 31 states of various 
J>-values as we go through the shell; we reckon  all energies relative to 
the ground state o f 40P s. Our pseudo-nuclei have, o f cou rse , many m ore 
levels  than this, but extra levels of " c o r r e c t "  parity do not intrude until 
we are quite high in energy and the low -ly in g  spectrum  looks like that 
of f y 2 . As in rea l life , th erefore , we fit the low est levels  and ignore 
the h igher-ly ing ones. We have five param eters with which to fit our 31 
data. F o r  once the m atrix -elem en t param etrization  is an econom ica l 
one and we use the param eters

Ej = < f 2 J I V I f 2 J >

fo r  J = 0, 2, 4, 6 together with e, the bindings of a single nucleon to the 
40 Ps co re , to characterize  com pletely  the m ost general tw o-body in ter
action within the f 7/2 shell.

The quality of the fit obtained can be expressed  in various ways.
The root-m ean -squ are  deviation of the theoretica l energies from  the 
pseudo-experim ental ones is 16.1 keV, which com pares w ell with m ost
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(M e V )  PSEUDO- f I(!
EXPERIMENT THEORY

E

-------------------15/2
3 -

------------------------- 5/2

1 -

0 L ------------------------------------------------------7/2
-16-829 -16-851

F I G . l .  T h e  sp ectru m  o f  p seu don iu m  4 3 .

TABLE I. OVERLAP FOR GROUND STATES

P s e u d o -e x p e r im e n t
(M e V )

f 7/ 2 theory  
(M e V )

P e rce n ta g e  o f  d 4 ^  in 
w a v e -fu n c t io n

41 Ps -  3 .4 7 -  3 .5 7 1 7 .3

4ZPs - 1 1 .6 6 - 1 1 .6 6 3 4 .1

43Ps - 1 6 .8 3 - 1 6 .8 5 5 5 .0

44Ps - 2 6 .5 6  * - 2 6 .5 7 6 5 .8

4Sps - 3 3 .4 6 -3 3 .3 8 8 5 .4

46ps - 4 4 .6 2 - 4 4 .7 1 8 8 .0

47Ps “ 5 3 .1 3 '5 3 .1 5 1 0 0 .0

4SPs - 6 5 .6 6 - 6 6 . 1 1 1 0 0 .0

TABLE II. MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE 
MOMENTS OF GROUND STATES

M a g n e t ic  m o m e n t Q u a d ru p o le  m o m e n t

P se u d o -e x p e r im e n t f 7/ 2 th eory P s e u d o -e x p e r im e n t f 7/ 2 th eory

4lPs - 1 .8 9 5 -1 .9 1 3 - 1 .3 2 -3

43Ps - 1 .9 0 9 -1 .9 1 3 - 0 . 1 1 - 1

45Ps - 1 .9 1 3 - 1 .9 1 3 + 1 .2 9 + 1

47Ps - 1 .9 1 3 -1 .9 1 3 + 3 .0 0 +3
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such fits in rea l nuclei. A typical fit to a spectrum  is shown in F ig .l ,  
the spectrum  of 43P s. It should be rem em bered  that the sca les  are 
"absolu te" -  we are not sim ply m easuring energies from  the ground 
state, but the total .binding energy of each state. A third com parison  is 
given in Table I where we show the fit to the ground-state binding en erg ies . 
The last colum n lists  the percentage overlap between the "th eoretica l" and 
and "re a l"  wave functions.

C learly  the fit is very  good -  very  surprisingly good -  by any 
standards. It is , o f cou rse , w ell known that som e effects of con figura
tion m ixing on the energy can be "m opped up" by the use of an effective  
interaction. The mopping up of this degree of admixture is quite 
startling, how ever.

We turn to the other properties of the levels in our search  fo r  signs 
of the presence of configuration m ixing. The m agnetic dipole and e le c tr ic  
quadrupole mom ents of the ground states are shown in Table II.

The f 7/ 2 pred iction  fo r  the magnetic moment is just the Schmidt . 
mom ent throughout the shell. We see that the deviations from  this value 
are quite negligib le, even in 41Ps; in rea l nuclei the uncertainties due 
to exchange-current effects are la rger than this. As we might expect, 
the quadrupole mom ent predictions are much less  c lo se . In calculating 
quadrupole mom ents fo r  neutrons we have to endow them with an effective 
charge. We have taken this to be one (in som e arb itrary  units) in setting 
up the pseudo-data. In rea l life  we would have to determ ine this para
m eter by a fit to the data; we have not attempted this here (to do so  for  
these four states would m ultiply the values in the last colum n by 0.72). 
Though the fit is not quantitative it is qualitatively reasonably good; in a 
rea l nucleus co llective  effects would undoubtedly introduce considerably 
m ore uncertainty than this.

So far we have looked at expectation values, and it may w ell be 
argued that a much m ore sensitive test of wave functions is afforded by 
transitions. These depend upon two rather than one single w ave-function, 
with phase and amplitude relationships between them that might w ell be 
badly upset by the presence of configuration m ixing. The sim plest ex 
ample is that o f M l-tra n sition s . The sim ple pure f 7/ 2 theory predicts 
that these should all vanish (the operator is sim ply [4] proportional to J). 
There are ten possib le  M l-tran sition s in these pseudo-nuclei. F or 
seven of them the value of (2Jf +1) (47t / 3 )B (M 1 ) is less  than 0.005. F or 
one it is 0.01, fo r  another it is 0.07. Only fo r  one transition  of the ten, 
the 9 /2 "  to 1 1 /2 " transition  in 43Ps is the value at a ll appreciable at
0 .69. F or  com parison  purposes the "s in g le -p a rtic le "  value (calculated 
fo r  the diagonal s in g le -p artic le  7 /2 "  state) is 37.64, so that even in this 
case the inhibition is very  great.

We might expect from  the behaviour o f the quadrupole mom ents that 
the E 2-transitions would be appreciably less  w ell predicted  than this.
We look first at what we expect to be an esp ecia lly  sensitive situation.
At the m id-point o f a shell o f identical particles  a ll E 2-transitions vanish, 
unless they change sen iority . The reason  fo r  this is m ost easily  seen in 
the quasi-spin  form alism  [5]. The W igner-E ckart theorem  in quasi-spin  
space tells us that the m atrix elem ent of an operator of rank 1 in the 
space (such as the E 2-operator) has a m atrix elem ent at the m iddle of the 
shell (where the quasi-spin  m agnetic quantum number is zero) p rop or
tional to the C lebsch -G ordan  coefficien t (Sf 100( Sf lS j 0). This vanishes
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TABLE III. VALUES OF (2 Jf + 1) (16 тг/5 b4) В (E2) IN ^ P s

[ V i 4 Iv f P s e u d o -e x p e r im e n t f  7/2  theory
j 1 '  Jf

2 2 0 ° 1 0 5 .8 7 1 0 2 .8 3

2 2 4 2 4 .6 3 0

2 2 4 4 1 7 9 .6 1 2 0 4 .6 6

2 4 0 ° 0 .0 2 0

2 4 4 2 3 7 .3 8 5 0 .3 8

2 4 4 4 0 . 1 1 0

4 2 5 “ 1 8 6 .6 5 1 4 4 .0 0

4 4 5 4 0 .1 4 0

4 2 6 2 3 .1 2 0

4 4 6 2 1 9 6 .1 2 2 4 6 .8 7

5 4 6 2 1 4 4 .5 9 1 2 2 .7 6

8 4 6 2 2 2 7 .0 2 2 4 9 .7 6

TABLE IV. E2-TRANSITION STRENGTH IN 42P

h  --------------------*  Jf P s e u d o -e x p e r im e n t f 7/ 2 theory

2 0 123 77

4 2 24 138 .

6 4 9 91
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unless S¡ + S f + 1 is even, and since the quasi-spins Sj and Sf are integral 
they must d iffer by unity. This in turn means that the sen iority  must 
change by two units in a non-vanishing transition.

The values of (2Jf + 1) ( 1б7г /5b4 )B(E2) in 44Ps are given in Table III. 
Again we have not taken advantage of a potential freedom  by fitting an 
effective charge but have sim ply used the sam e one which we used in 
setting up the pseudo-data. The fit is excellent. Not only is the s e le c 
tion rule reproduced to a rem arkable degree in that the transitions p r e 
dicted to vanish are indeed very  sm all, but the fit to the large transitions 
is a lso  very  good.

There are som e sixty p ieces  of pseudo-data on electrom agnetic 
m om ents and transitions in the whole shell. Of these the only num bers 
showing substantial d isagreem ent with the sim ple f7/ 2 p red ictions were 
the three E 2-transition  strengths in 42Ps given in Table IV.

We em phasize that these three num bers are the so le  evidence 
available to us from  the data so far that we are dealing with anything 
substantially different from  a pure shell. We may re fle ct on the f r e 
quency with which such isolated disagreem ents among otherw ise w e ll- 
fitted data are encountered in rea l nuclei, and on the many "ou tside" 
influences suffered by E 2-transitions that might w ell mask a d isa g ree 
ment of this s ize , or  to which this disagreem ent might be attributed in 
rea l life . ;

We look finally at stripping and pickup. Such experim ents should be 
particu larly  sensitive to configuration m ixing, since they m easure e s 
sentially the s in g le -p a rtic le  nature (for a sp ec ific  ¡L-value) o f one state 
relative to another. As an exam ple we look at stripping of f 7/ 2 particles"' 
onto the ground states of the even nuclei, going to the 7 /2 ” states of the 
next odd nuclei. Since there is only one 7 /2 "  state (the ground state) for 
each odd m ass num ber in the shell in the sim ple pure f 7/ 2 m odel, the. 
stripping strength should all be concentrated here. The strength itse lf 
should be proportional to the num ber of holes in the target nucleus; in 
deed the quantity 8 £ S7/ 2 m easures the number of f 7/ 2 holes in the target 
nucleus and should drop from  eight in 40Ps to zero  in 48Ps on the sim ple 
theory.

The odd pseudo-nuclei, o f cou rse , contain many J = 7 /2 ” states to 
which we can strip  with f-w aves. H ow ever, when we com e to do the 
pseudo-experim ent we find that in a ll cases  m ore than 98% of the s tr ip 
ping strength goes to the ground state of the final nucleus, in close  
a ccord  with the sim ple theory. We can m easure the quantity 8 Z S7/ 2, 
and this is plotted in F ig .2. This is a m easure of the num ber of f 7/ 2 
holes present in the target nucleus and obviously at the beginning of the 
sh ell this num ber fa lls  below the value eight predicted  by the f 7/ 2 theory. 
The plot is , how ever, quite close  to being a straight line with m ass 
num ber, and the d iscrepan cy  would only be detectable if absolute sp e c 
troscop ic  factors could be re liab ly  m easured to better than 25%; the 
achievem ent o f this a ccu ra cy  by DWBA is at the very  lim it o f what is 
p ossib le . It would be quite in line with current p ractice  to norm alize the 
40 Ps (d ,p )41Ps sp ectroscop ic  fa ctor  to som e value c lo se  to unity since 
it is essen tia lly  a s in g le -p a rtic le  reaction , in which event the broken 
line in F ig .2 would lie  very  c lo se  indeed to the theoretica l one.

We see in a ll this that the configuration m ixing introduced here, 
though very  la rge , is  o f such a nature as to be virtually undetectable by
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the experim ents which we have d iscussed  so far. While the admixtures 
in any given state m ay be very  large, it appears that the relations b e 
tween states, whether o f a state with itse lf (expectation values) o r  with 
other states in the sam e nucleus (transition probabilities) or in neigh
bouring nuclei (stripping and pickup), are p reserved  very  w ell in m ost 
ca ses . A s im ila r  situation that has been discussed [6 ] is the p reserv a 
tion of isobaric  analogue relations between states that can have highly 
m ixed isob a ric  spin.

C learly , the only type of experim ent that can give unequivocal evidence 
of strong configuration mixing is a stripping or pickup experim ent that 
would have a null result if  the c lo se d -sh e ll hypothesis w ere true. Only 
two such experim ents exist in our system , the pickup of f 7/ 2 particles 
from  40Ps and the stripping of d 3/ 2 particles  into the sam e system . These 
pseudo-experim ents would indicate the presence of 2.2 f 7/ 2 particles and 
2.2 d 3/ 2 holes in this "c lo s e d -s h e ll"  system , showing that something is 
seriou sly  wrong. In p ra ctice , we could probably only re ly  on such an 
experim ent to about 50% accu racy , but this would be ample in this case . 
Such experim ents would give us th-e only existing clue to the rea l situation.

The extrem e insensitivity o f the usual run of nuclear properties to 
this type of configuration mixing is , at least, partly due to the fact that 
the excitations out of the closed  shell are alm ost entirely  o f pairs coupled 
to J = 0. If we ignore the "b lock ing" effect of such pairs on the nucleons 
already present, arising  from  the Pauli princip le , such excitations w ill 
not a ffect the m atrix elem ents o f tensor operators of n on -zero  rank. Of 
cou rse , the effects o f antisym m etry in the open shell are not negligible 
in general, but they appear to be sm all fo r  the types of experim ent con 
sidered  here; fo r  the magnetic mom ent, fo r  exam ple, because the ex 
pectation value depends only on the sen iority  and not on the number of 
particles  present (the operator is a quasi-spin  sca la r), the presence of 
additional zero -cou p led  pa irs makes no d ifference at a ll even when the 
Pauli princip le is applied. The strong favouring of zero -cou p led  pa irs, 
is , o f cou rse , a feature of the fo rces  between identical particles.

The main m essage of this work is the dem onstration of this in sen si
tivity , but it is interesting to explore various s id e -issu e s . One of these 
is the relation o f the e ffective potential that we can deduce from  the 
Ej (J = 0, 2, 4, 6) to the "p rim itive" potential that we assum ed at the 
outset. The details are of no interest in this im aginary situation, but 
two general points em erge:

(a) W hereas the prim itive interaction contained only a central poten
tia l, the effective interaction within the l f 7/ 2 shell turned out to have 
very  substantial amounts of tensor and tw o-body sp in -orb it potential in 
it.

(b) The main m odification  to the central potential itse lf was a con 
siderable  weakening o f the odd-state interaction; it seem s reasonable to 
suppose that if  we had started with an odd-state potential that had been 
le ss  attractive it would have changed sign and becom e repu lsive. The 
reason  fo r  these m ovem ents is the follow ing. When we allow excitations 
from  the co re  into our shell we make no d ifference to the energy at the 
end of the shell where the excitations are forbidden by the Pauli princip le. 
We do, how ever, produce an appreciable decrease  in energy at the be 
ginning of the shell. B ecause of the nature o f the fo r c e s , nucleons settle 
in states o f maxim um  possib le  orbital sym m etry and therefore at the
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beginning of a shell only experience the even-state potentials. At the 
end of the shell this is no longer possib le ; the Páuli princip le fo rce s  the 
nucleons to occupy odd states of motion as w ell as the even ones. Thus,, 
when we com e to fit the whole shell we first find that the even-state e f 
fective  potential has to be m ore attractive to fit the increased  binding 
energies at the beginning of the shell. This by itse lf would lead to too 
much binding at the end of the shell (where the correction  due to core  ex 
citation is z e ro ), and hence the odd-state interaction has to be less 
attractive or even repulsive to com pensate. It is interesting to notice 
that a repulsive cen tra l-odd  potential is observed in fits to rea l nuclei, 
in contrast to that in the tw o-nucleon problem  which is attractive; this 
behaviour exactly para lle ls  what we have found here.

The behaviour of the m atrix elem ents Ej them selves is much less 
com plicated  than that of the potentials. In going from  the m atrix elem ents 
calculated with the prim itive interaction to the effective m atrix elem ents 
found in the fit we find:

(a) a ll the Ej are m ultiplied by a constant factor of 1.24;
(b) in addition, the value o f E0 has been made even m ore attractive 

(i.e . som ething like a pairing potential has been added). C learly  loca l 
potentials (of finite range) are not particu larly  w ell suited to describe  
this phenomenon, which is related to the excitation of zero -cou p led  pairs.

3. A PROTON-NEUTRON SYSTEM

It might reasonably be objected that the results of the previous s e c 
tion, while startling, would not often be realizable in rea l nuclei. The 
reason  is that in many cases where this type of configuration mixing 
might be im portant, excitation of protons would a lso  take place; in light
and m edium -weight nuclei at any rate the excited protons and neutrons
would occupy the sam e shells and we would have neutron-proton pairs 
with T = 0 possib le  which would preferentia lly  couple to n on -zero  J -va lues. 
One might reasonably expect this type o f excitation to have much m ore 
effect on the nuclear properties and therefore to be much m ore detectable 
than the type considered  above. This has been investigated by S. Cohen, 
R.D. Lawson and the author [1].

The system  we chose to study consisted  of neutrons and protons in 
a lp| shell and a ld| shell. These two levels w ere assum ed degenerate 
as b e fore . The levels  can hold up to twelve p a rtic les , which are allowed 
to interact through a central potential V TS;

V01 = - 50 MeV

V10 = - 30 MeV

V00 = 30 MeV

Vn  = - 10 MeV

We again wish to test whether the low -ly in g  even-parity  states of the 
pseudo-nuclei with N from  4 to 12 can be represented at a ll reasonably 
by an assum ed sim ple pure Ы 3/2 shell. Again the assum ption is far from  
the truth; the ground-state wave function of the N = 4 system  is only 32.3%
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TABLE V. GROUND-STATE BINDING ENERGIES AND OVERLAPS 
BETWEEN STATES

N - 4 T
P se u d o -e x p e r im e n t

(M e V )
d /  theory

( M eV )
P ercen t p 4 d ^ - 4

1 3 /2 1 / 2 -  7 .3 -  7 .1 4 3 8 .2

2 0 1 -  1 8 .8 9 -  1 8 .2 2 4 1 .4

2 3 0 -  1 9 .0 2 -  1 8 .8 2 4 9 .1

3 3 /2 3 /2 -  2 6 .3 2 -  2 6 .5 7 8 0 .2

3 3 /2 1 / 2 -  3 3 .2 2 -  3 2 .9 3 5 4 .3

4 0 2 ■ -  3 8 .9 0 -  3 8 .8 5 9 4 .8

4 2 1 -  4 4 .5 9 -  4 4 .6 7 8 4 .4

4 0 0 -  5 1 .4 7 -  5 1 .5 8 6 0 .7

5 3 /2 3 / 2 ' -  5 9 .2 5 -  5 9 .0 1 9 7 .8

5 3 /2 1 / 2 -  6 5 .0 5 -  6 5 .3 7 8 8 .4

6 0 1 -  8 2 .9 1 -  8 3 .0 9 9 6 .7

6 3 0 -  8 3 .9 0 -  8 3 .6 9 1 0 0 .0

7 3 /2 1 / 2 - 1 0 4 .6 8 -1 0 4 .4 5 1 0 0 .0

8 0 0 - 1 2 9 .7 2 -1 2 9 .7 4 1 0 0 .0

a c lo se d -sh e ll wave function, that of the N = 5 system  is only 38.2% c losed - 
sh e ll-p lu s-on e  and so on (see Table V).

There are now 29 p ieces  o f pseudo-data in the energy spectra , and
we again have five param eters, the four E JT :

EJT = < ( d 3/2)2 J T  I Veff I (d 3/2 )2 JT >

with J = 0, 2 (T = 1) and J = 1, 3 (T = 0), and the quantity e, the binding
energy of a d 3/ 2 nucleon to the "c lo sed  р х/ 2 - c o r e " .  The situation is thus 
very  s im ila r  indeed to the pseudonium case above.

The lea st-sq u a res  fit to the 29 energy levels gave an r .m .s . devia 
tion of 390 keV. This is less  good than we obtained before but still good 
com pared to rea l sh e ll-m od e l calculations when neutrons and protons 
are both present. W e’ noted e a r lie r , fo r  instance, that Cohen and 
Kurath [7] in the p -sh e ll had fitted 35 data with 13 param eters and ob 
tained r .m .s . deviations of 430 keV. This was a potential fit; a two- 
body m atrix-elem ent fit o f the same data had 17 param eters and had 
400 keV deviations. We have only five param eters.

We show the ground-state binding energies we obtain, together with 
the overlaps between the states of the "s im p le  theory" and those of the 
pseudo-nuclei in Table V . The fit to excited  states is o f com parable 
quality.

F inally we again show an example of a fitted spectrum  in F ig .3 .
This tim e we choose the N - 4 = 4  nucleus. The fit is c le a r ly  very  good.
The inclusion of protons in the problem  has thus made no qualitative 
change, at least as far as the energies are concerned.
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F IG .3 .  N =8  p se u d o n u c le u s .

We next look at the evidence from  static m om ents. These are listed 
fo r  N -4 = 4 in Table VI.

Again the fit is excellent; there is no clue here to the poorness of 
the assum ption o f pure w ave-functions. The agreem ent is n on-triv ia l
s in ce , for  exam ple, the second 2+ state (here called J = 22) has an o v e r 
lap with the pure p4 d4 state of only 24.4%.

Even the transitions te ll the sam e story . We list som e M l-tran sition s 
in Table VII.

The E 2-transitions in the nucleus (N = 8) in the middle of the shell 
show an effect s im ilar  to those in ^ P s .  This is shown in Table VIII.
The " d 3/2 theory" here uses an effe.ctive charge a = -0 .1 1 2  which was 
obtained by fitting the quadrupole mom ents o f a ll states in the shell. This 
was an iso sca la r  effect; the proton charge was taken to be (1 + a ), the 
neutron charge a. V arying the two charges independently produced a l
m ost exactly the same effective charges as the one-param eter fit. The 
quadrupole mom ents listed in Table VI happen to be independent of a.

Again the w orst fitted data concerned the e le ctr ic  quadrupole p ro 
perties of the N = 6 pseudo-nuclei. Here the d3/2 theory gave - 2.17 for 
the quadrupole mom ent of the J = 3, T = 0 state (- 1.37 by pseudo-experim ent) 
and 4.96 fo r  the (3 ,0 ) to (1 ,0 ) E 2-transition  strength (observed 2.21). These 
cases are the only instances in som e 100 e lectrom agnetic data where the 
e r r o r  in the m atrix elem ent exceeds about 40% (excluding very  sm all 
num bers and zero , o f cou rse ). Most e rro rs  are much sm aller  than this.

In these proton-neutron nuclei we can, of cou rse , observe beta-decay. 
Some log (ft) for  transitions within our N = 8 system  are shown in Table IX. 
Perhaps surprisingly , the qúality of the fit shown by these numbers 
is com parable to that, o f the E2-data rather than that of the M l as might 
have been expected . The overa ll fit, how ever, is still very  good; where 
the theory predicts a transition should vanish, the observed  log (ft) is 
unusually large for  an allowed transition , -and the other trends are fo l
lowed w ell. The only m ildly seriou s d iscrepancy is in the (1, 1) to (0 ,0 ) 
transition . Just as in the E 2 -ca se  we would in real life  have attributed 
such d iscrepan cies as there w ere to weak co llective  e ffe cts , so here we 
would undoubtedly have invoked the m ixing o f j = & + i  and j = Z - i  orb ita ls.
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TABLE VI. STATIC MOMENTS FOR N - 4  = 4

J T
M a g n e t ic  m o m e n ts Q u a d ru p o le  m o m en ts

p s e u d o -e x p e r im e n t d 3/ 2 th eory P se u d o -e x p e r im e n t d 3/2 th e o ry

2 1 0 .8 5 9 0 .8 4 8 0 .0 0 0 0 .0 0 0

3 1 1 .2 5 5 1 .2 7 2 - 2 .5 1 9 - 2 .8 0 0

1 1 0 .3 8 0 0 .4 2 4 1 .0 8 0 1 . 1 2 0

2 0 0 .8 4 8 0 .8 4 8 0 .0 9 8 0 .0 0 0  -

4 0 1 .6 9 5 1 .6 9 7 0 .0 0 0 0 .0 0 0

2 2 0 0 .8 4 9 0 .8 4 8 -0 .0 7 5 0 .0 0 0

TABLE VII. SOME Ml-TRANSITIONS

N Ji T i Jf T f
P se u d o -e x p e r im e n t d g^2 th eory

7 5 /2 1 / 2 7 /2 1 / 2 2 .9 5 6 3 .1 9 1

7 5 /2 1 / 2 3 /2 1 / 2 0 .5 7 7 0 .6 5 2

7 1 / 2 1 / 2 3 /2 1 / 2 0 .3 3 6 0 .4 6 5

8 3 1 2 1 2 .2 8 6 2 .4 4 3

8 1 1 2 1 2 .6 5 4 2 .7 9 2

9 5 /2 1 / 2 7 /2 1 / 2 3 .0 4 5 3 .1 9 1

9 5 /2 1 / 2 3 /2 1 / 2 0 .6 3 0 0 .6 5 2

9 1 / 2 1 / 2 3 /2 1 / 2 0 .5 0 3 0 .4 6 5

The beta -decay  m atrix elem ents are known to be particu larly  sensitive to 
this and it would be m ore than adequate to explain (with a sm all con figura
tion admixture) the observed variations.

F inally we look at stripping. As an example we take the sp ectro 
scop ic  fa ctors  observed in stripping on the ground state o f the N = 7 
nucleus (Jj = 3 /2 , Tj = 1 /2) and going to the various states of the N = 8 
system  we have been studying in som e detail. These are listed in Table X . 
This is very  good agreem ent, o f cou rse , which one would like to obtain 
fo r  any theory in rea l life . The sum rule gives a value close  to 4 for 
1 /8  2? (2Jf + 1) (2Tf + 1) S f  which m easures the number of à.z/% holes in 

f

the target nucleus. The d 3//2 theory gives 5, of cou rse . To detect this, 
one would again have to be able to m easure and extract co rre ct ly  absolute 
sp ectroscop ic  factors to within 20%.
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TABLE VIII. E 2-TRANSITIONS IN THE N = 8 NUCLEUS IN THE 
MIDDLE OF THE SHELL

h Ti Jf Tf P s e u d o -e x p e r im e n t d 3y 2 th eory

3 1 2 1 1 9 .7 0 6 1 6 .5 2 1

3 1 1 1 6 .9 6 3 8 .2 3 2

2 1 1 1 9 .0 8 9 7 .0 8 1

4 0 2 1 0 2 6 .4 9 6 2 1 .2 4 1

4 0 2 Z 0 0 .3 2 4 0

2 1 0 0 0 1 7 .1 5 2 1 4 .1 6 1

2 2 0 0 0 0 .0 2 9 0

TABLE IX 
SYSTEM

. SOME Log (ft) FOR TRANSITIONS WITHIN THE N = 8

Ji Í.i Jf Tf P s e u d o -e x p e r im e n t d ^  th e o ry

0 2 1 1 3 .2 7 3 .0 0

1 1 0 0 4 .6 4 5 .2 7

1 1 2 1 0 7 .1 2  , «

1 1 2 2 0 3 .6 0 3 .5 5

2 1 2 1 0 3 .9 7 4 .1 0

2 1 2 2 0 5 .8 9 oo

3 1 2 1 0 OO oo

3 1 2  1 0 3 .9 1 4 .0 1

3 1 2  2 0 4 .0 2 3 .9 9

We, thus, once m ore com e to the conclusion  that even in this system  
with neutrons and protons both present the general run of nuclear physics 
experim ents gives no clue at all to the large configuration adm ixtures.
Only by perform ing null-expectation  experim ents can one obtain inform ation 
that is reasonably unequivocal, and again the only two that suggest them 
selves are d3/,2 pickup on the N = 4 system  (which would show 1.48 such 
nucleons present where theory says there should be none) or pi/% stripping 
on any of these system s which would reveal the presence of holes in the 
c losed  shell (e .g . 0.84 in the N = 8 system ). In a rea l nucleus, I should
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T A B L E  X . SPECTROSCOPIC FACTORS OBSERVED IN STRIPPING

Jf Tf P se u d o -e x p e r im e n t d 3/ 2 th eory

0 0 4 .2 6 4 .0 0

2 1 0 2 .0 3 2 .4 0

2 2 0 0 .0 0 0 4 0

1 1 0 .2 0 0 .2 7

2 1 0 .7 9 1 .0 7

3 1 0 .1 7 0 .2 7

em phasize that things would still not n ecessa rily  be sim ple; in a stripping 
experim ent, for instance, one would have to convince on eself that an ob
served  p-strength  did not com e from  a sm aller admixture of a higher 
p -state in the final nucleus rather than from  lp -h o le s  in the target. It 
would often be n ecessa ry  to distinguish between (say) dÿ/2 and d§/2 , a 
difficu lt art as yet in its infancy. Even these apparently c lea r -cu t ex 
perim ents w ill th ere fore  often have som e degree of ambiguity.

We observe (somewhat surprisingly) that the neutron-proton system s 
are fitted (on the whole) just as w ell as the neutron-only ones. As we 
suggested at the beginning of this section , we might reasonably have e x 
pected the fit to be w orse , since the p re ferred  pairing for a neutron and 
proton is a J = 1 state. Such an excitation would at firs t  sight be expected 
to affect the m atrix elem ents of operators rather strongly.

A qualitative account of what seem s to be happening is the follow ing. 
We ignore, fo r  the m om ent, the Pauli principle in the open shell, and 
treat the (ex c ited -c lo sed -sh e ll) and (open-shell) system s separately. We 
then find by exact diagonalization that the low est excited state of the closed  
shell has quantum num bers J = 0, T = 0. In rea l life , o f cou rse , this c o r 
responds to the fact that the firs t excited state of a doubly-m agic nucleus 
has generally J = 0 and T = 0 in spite of the repulsion between this state 
and the ground state. Thus, in .low est ord er , the main admixture to the 
co re  is sim ply this J = 0, T = 0 state. T his, o f cou rse , contains large 
amounts of pairing o f excited neutrons and protons to J = 1, but these are 
then coupled to the J = 1 hole state they leave behind to give a total J = 0 
state. It is this total J-value o f the excited core  that is im portant in this . 
n o -P a u li-p rin cip le  approxim ation, since any such J = 0 state of the core  
w ill give no contribution to the m atrix elem ents of operators of n on -zero  
tensor rank. Of cou rse , this is only a very  rough approxim ation to the 
rea l situation when a ll the effects are put in, but the main consequences 
seem  to p ers ist .

4. SUMMARY

We have here surveyed in som e detail the work of Cohen, Lawson 
and the author which suggests that it is possib le  for the shell m odel to
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swallow and to digest large configuration-m ixing effects without showing 
any signs that it has done so . This points, I believe, very  fo rc ib ly  to the 
m ora l that one often learns very  little from  the experim ent that agrees 
with the theory; it is the experim ent that d isagrees that is the important 
one. In any system  all such experim ents should be considered together 
and an explanation sought o f the whole body of apparently discordant in
form ation; the fact that the overwhelm ing bulk of data agrees with a 
sim ple theory may not be particu larly  relevant to this search , and may 
even prove a psych olog ica l hindrance. Of cou rse , in rea l life  this is a 
counsel of perfection . In p ractice , there are many effects from  "outside" 
the m odel considered  that may cause plausible d iscrepan cies in the fit, 
and since (by hypothesis) the d iscrepancies are few we w ill probably have 
too many explanations rather than not enough.

The effect on the effective param eters of absorbing adm ixtures might 
(if large enough) invalidate the com parison  with m any-body theory, in tro
ducing renorm alizations that could vary from  shell to shell in an unknown 
way. If they are as difficult to detect experim entally as our results sug
gest (and the d ifficu lties encountered in our "c lean " nuclei w ill be m agni
fied trem endously in rea l system s) the only recou rse  may be to calculate 
from  firs t  p rin cip les , by taking the m any-body calculation through a 
configuration-m ixing calculation right to the bitter end of com parison  
with data. It may be, in other w ords, that m any-body theorists may have 
to learn to do their own sh e ll-m od el calculations.

F inally, I should perhaps make one point c lea r . We do not at any 
tim e claim  that other form s of configuration mixing are concealed  by the 
use of effective interactions and over-s im p le  w ave-functions. C alcu la
tions s im ilar  to those described  here, but fo r  1 f 7/2 and 2p3/ 2 have been 
carried  out by our group and (independently) by Engel and Unna [8]. In 
such a case , where the two degenerate levels have the sam e parity, and 
sin g le -p artic le  excitations can be adm ixed, a on e -lev e l fit to the pseudo
data gives poor resu lts . This situation is fam iliar in rea l nuclei, where 
(for exam ple) the nuclei of m asses 16 to 20 are much better described  
by the shell m odel as (d5/ 2 S y 2 )n than as (d5/ 2 y1 alone, proving that the 
addition o f a second shell of the same parity can alter predictions s ig 
nificantly. This does not affect our basic  thesis , of cou rse , which is 
that som e form s of admixture are very  w ell concealed , but the difference 
between the two cases serves to indicate the situations where we should be 
m ost carefu l; we should, in particu lar, be especia lly  c r it ica l when we 
examine the credentials of a closed  shell at which a com plete change of 
parity o ccu rs .
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SOME TECHNIQUES AND APPROXIMATIONS 
IN THE NUCLEAR SHELL MODEL

R. ARVIEU
Institut de Physique Nucléaire,
Orsay, France

Abstract

SOM E TECHNIQUES A N D  A P P R O X IM A T IO N S  IN  THE NUCLEAR SHELL M O D EL.
1 . In tro d u ctio n ; 2 .  T h e  m o d e l ;  3 .  S e n io r ity ; 4 .  T e n so r ia l ch a ra cte r  o f  operators  and co n s e q u e n ce s ; 

5 .  T h e  q u a s i-p a r t ic le  m e th o d  fo r  s ca la r  in te ra c t io n s ; 6 . G e n e ra liz e d  sen ior ity  b re a k in g  o f  t w o -b o d y  
in te ra c tio n s ; 7 . In flu e n ce  o f  th e  sy m m e try -b re a k in g  term s; 7 . S u m m a ry .

1. INTRODUCTION

The aim  of this paper is  to develop and to d iscu ss som e of the tech 
niques which are in use in the nuclear shell m odel. We shall not d iscuss 
the problem  of extracting the ingredients of the shell m odel, i . e .  the 
s in g le -p artic le  energies o r  wave functions, from  the tw o-body interaction. 
These problem s are considered , fo r  example, in the papers dealing with 
the H artree -F ock  method. We shall rather concentrate on the problem  of 
the shell m odel itse lf which is the N -body problem  of finding som e solutions, 
exact o r  approxim ate, o f the sh e ll-m od el Hamiltonian and the properties  of 
eigenvalues and eigenfunctions resulting from  such a calcu lation . U lti
m ately, one has to com pare the theoretical results with the experim ent.
This last problem  w ill not be d iscussed  in this paper. We shall just require 
that the m odel to be dealt with contains the proper features to obtain quali
tative agreem ent with experim ent. This m odel is presented mainly as a 
tool to help one to understand the techniques developed to find the exact 
solutions o r  the approxim ations which can be em ployed instead of these 
solutions. The m odel which we shall study first, consists of a system  of 
N iden tica l'particles occupying a degenerate subset of a spherica lly  sym 
m etric sh e ll-m od el potential and interacting through a surface delta in ter
action. This interaction was firs t  introduced by Green and M oszkowski [1] 
as a generalization  of a pairing fo r ce . Its sym m etry prop erties  with 
respect to the quasi-spin  transform ations have been investigated [2], it 
was shown, fo r  exam ple, that the interaction contains a sca la r  part plus 
a part which varies only linearly  with the number of p a rtic les . In such a 
case , it is very  easy to understand the B ogolyubov-Valatin canonical trans
form ation  or what is  m ore generally  called the q u asi-particle  method [3]. 
This interaction cannot be used in an academ ic m odel only. As a matter 
o f fact, it has a lso  been applied to the descrip tion  of the s in g le -c lo se d -sh e ll 
nuclei [4] and it has been used su ccessfu lly  in various regions of the 
period ic  table: c lo se d -sh e ll nuclei [5], medium nuclei [6] and deform ed 
nuclei [7] as w ell. In som e cases, the kind of agreem ent obtained with 
experim ent is of the sam e ord er as that which results when a much m ore 
rea lis tic  interaction is used instead of the SDI. It can be asserted  then that 
the SDI contains som e of the essentia l features needed in sh ell-m odel
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calcu lations. T herefore , it is justified to study the sh ell-m odel techniques 
by using such a sim ple tw o-body interaction.

In the follow ing we shall first present the tw o-body interaction itself, 
and give som e properties o f the tw o- and of the th ree -p artic le  system s.
We shall then d iscu ss the representation in which the SDI is diagonal: the 
generalized  sen iority  representation. B esides, we shall also d escribe  an 
other way of introducing the sen iority  quantum num ber. The generalized 
sen iority  representation, or, in other w ords, the quasi-spin  schem e, can 
also be used to c la ss ify  the op era tors . The electrom agnetic properties 
of odd and of even system s w ill be studied in this respect; we shall also 
show how the BCS method can be very  sim ply understood as a rotation p er
form ed in the quasi-spin  space.

It is very  interesting to com pare other interactions with the SDI. We 
shall re -form u la te  this question m ore generally  in this way: it is very  
interesting to com pare the sym m etry properties of any interaction to those 
of the SDI.

This com parison  is carried  out by perform ing an expansion o f a general 
tw o-body interaction in term s o f irreducib le  tensors under the quasi-spin  
space rotation. We m easure tentatively the strength of each of these 
tensors in ord er  to evaluate the sym m etry breaking. This breaking is a lso 
m easured in two other different w ays. F irst, by a d irect expansion of the 
exact wave functions, obtained by diagonalizing the entire Hamiltonian, in 
term s of wave functions of fixed generalized sen iority . Secondly, by p ro 
jecting these wave functions onto subspaces having a fixed number of 
broken pairs accord ing  to a method recently proposed by L orazo [7 - 8 ] .
F rom  a com parison  between these various ways of appraising the sym m etry 
breaking we can deduce many inform ations, in particular, specify  much 
better than before  the conditions of applicability of the BCS method.

The contents of these lectures is a review  of severa l papers and theses 
published in the last three years in collaboration  with O. Bohigas,
B. L orazo , S. M oszkow ski and C. Quesne. A sim ilar résum é has also 
been given in the 1968 C argese session  [9].

2. THE MODEL

2 .1 . S ingle-particle  energies

Our aim is to d escribe  the properties o f a system  of N identical nucleons 
interacting in a set of r s in g le -particle  leve ls  in j - j  coupling. Our first 
assum ption is that this set of levels  is com pletely degenerate in energy.
Let a, b, . . .  r be the indices denoting these leve ls . Each of these indices 
denotes the com plete set of quantum numbers which define a s in g le -particle  
state except the m agnetic quantum number m, i . e .

a = na (radial quantum number), 
i a (orbital angular momentum), 
j a (total angular mom entum ).

In som e ca ses , the sym bol ja w ill be used instead of a to denote each indi
vidual sta te .

The nuclei fo r  which such a description  is relevant should only contain 
identical nucleons. Of cou rse , this applies only to the valence nucleons,
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i . e .  those located outside a c lo sed -sh e ll c o re . The type o f nuclei belonging 
to this class of s in g le -c lo se d -sh e ll nuclei are.the oxygen isotopes, the Ni,
Sn, Pb isotopes, and a lso  all the isotones N= 50, 82 and 126, for example
( l 2 6 n )2f ^ A t -

Note that the number of valence particles (or valence holes) in these 
nuclei ranges from  2 ( 180 , 58Ni, 206Pb, 210Pb) to 16 (116Sn). Those nuclei
w ere firs t  considered by K isslinger and Sorensen [10].

In our m odel, the set of s in g le -p artic le  levels is the set located between 
two m ajor sh ells . F or exam ple, in the case of Ni isotopes, the set is 
If 5 /2 , 2p 3 /2  and 2p 1 /2 .

The assum ption o f degenerate s in g le-particle  levels is certainly not 
true fo r  lsO. It is , however, a much better approxim ation fo r  the heavy 
Sn isotopes where the three su b -sh e lls : 3s 1 /2 , 2d 3 /2 , lh 11/2 are not 
very  far apart from  each other in energy. The sam e is a lso  true for the 
Ni region .

We are aware o f the fact that the approxim ation of taking only valence 
neutrons o r  protons is certainly  not valid for all nuclei which we have 
con sidered . It has, indeed, been an important d iscovery  to rea lize  that a 
c lo se d -sh e ll core  can be excited rather easily, i . e .  that som e low -lying 
states must be due to m any-particle and m any-hole configurations, like 
the first excited 0+ states [12] in 160 .  The occu rren ce  of such states at 
low energy in all the s in g le -c lo se d -sh e ll nuclei is a possib ility  which 
must be considered seriou sly . Some recent calculations by Wong and 
Davies have been undertaken in this spirit fo r  56Ni and 58Ni where there is 
little doubt that these excitations play a great ro le . This is , however, not 
the case fo r  the nuclei around 208Pb. Indeed, in that region  the shell-m odel 
description  in term s of like nucleons works pretty w ell at low energy to the 
best of our knowledge. We must then underline that one drawback of our 
m odel is that it has certainly  not the sam e degree of validity for all the 
s in g le -c lo se d -sh e ll nuclei occu rrin g  in the period ic table.

The degeneracy of the s in g le-particle  energies is not a very  serious 
restriction . This assum ption is made here in ord er  that the generalized 
sen iority  quantum number be a good quantum number so  that each eigenstate 
o f our interaction is a basis vector  of an irredu cib le  representation  of the 
quasi-spin  group.

2 .2 . The tw o-body interaction

As was said at the beginning, the tw o-body interaction which w ill be 
assum ed to act between our identical particles is a surface delta 
interaction [ 1 ].

This interaction is  a delta interaction acting only at the surface of a 
nucleus. Let us con sider a tw o-body m atrix elem ent o f this interaction 
between two particles states.
Let

<ama bmb | w |  cm c dm d > (1 )

be such a tw o-particle  non-antisym m etric m atrix elem ent.
Let us perform  the c la ss ica l separation of radial and angular variables 

both for the tw o-body interaction and fo r  each sin g le -p artic le  state. If the
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tw o-body interaction is a general central fo rce  such a separation is carried  
out by expanding the fo rce  into Legendre polynom ials:

к
where f212 is  the angle between the d irections o f particles 1 and 2. On the 
other hand, P K can be expanded as

; ( c o s n 12)=^T С*(П1аН-1)«СкЧ(П2) (3)

C ? is  a m odified spherica l harm onics

The expansion of a 6- fo r c e  is

6 (? i = 4^7? 6 (ri _ Г ^  (2к  + 1НСк(П ^С к (П2))47Г г ?
к

i .  е.

The vK corresponding to a SDI is then

(5)

. ■ M n  - r 2) 2K + 1
vK6(rl>r2̂ -- ~17~ (6)

S D I  _  ô (r i - r 2) , . 2K +1
v k  6 (  1 R o )  4 »  ( 7 )

where R0 is the radius o f the nucleus.
Let us introduce the Slater integral

f K(a b c d  )= f  f  R a(r 1)Rb r̂ 2 v̂K̂ r l ' r2 ' R c<r 2 R̂ d<r l^r l r 2d r l dr2 W

We have, of course,, fo r  a delta interaction

fK = (2K + l ) f 0 (9)

and besides fo r  a SDI

f0 (a b c d )  = ¿  [R a (R0)R b(R0)R c (R 0)R d (R0 )]XR § (10)

We shall assum e as an approxim ation that the amplitudes of a ll the radial 
wave functions are equal at the surface o f the nucleus; f 0(a b c d )  is , then, 
independent of the s in g le -p artic le  states a b e d .
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Under these conditions the only dependence on the states is an angular 
one. We have indeed

<am a b m b |wsDI |cmcdm d > = f0<am a b m b| ^  (2K + 1) PR | cm c dm d > (11)
к

The calculation of the second factor on the right-hand side of Eq. (11) is a 
very  c la ss ica l one.

With a little algebra, this resu lt can be expressed in term s of 
C lebsch-G ordan coefficien ts only. As a result, let us give only the m atrix 
elem ents in which the two particles are coupled to J in the initial and final 
sta tes .

The tw o-particle  wave functions are taken here to be norm alized and 
a n ti-sym m etric . F or this type o f m atrix elem ent it is convenient to use the 
notation introduced by Baranger [15]:

G (a b c d  J) = - !  [(1 +6ab) ( l  +6са)Р <abJM | w |  cdJM > (12)

We have then:

Г ,  + C c  { c + { d +JG ( a b c d J )  = f  h jfab lh j (c d )( - l )  [ l + ( - l )  ] (13)

we have used here the notation

hj (ab) = n/ 2j b + 1 <jbJ - i  0 (14)

On the other hand, we include in the factor G the radial dependence as well 
as the strength o f the interaction.

The last factor in Eq. (13) ensures that the fo rce  is effective  only in 
states o f natural parity. This is due to the zero -ra n ge  character of the 
interaction . Indeed, such an interaction  can act Only in spatially sym 
m etric  states and is equal to zero, otherw ise. F or identical particles  this 
state is the singlet state and J = L . Since ( -  1){ ‘ + = ( -  1)L where Л-, and i 2
are the orbita l angular momenta o f the particles  we have ( - l ) ci +i2+J = + l .  
F or  J = 0 the G 's take the sim ple form

G (a a b b O ) = j  ( - l ) íi + -Í2Q¡ s T ^  (15)

Note a lso that the G 's are separable quantities in the indices ab and cd.
This separability which holds fo r  all J 's  w ill introduce som e sim plifications 
in the tw o-particle  spectrum  as we shall see; it does not hold true for a 
usual delta interaction because of the presence of the Slater integral.

2 .3 . T w o-p artic le  spectrum

Let us consider two particles in our degenerate set of lev e ls . Let us 
diagonalize the interaction  in the com plete tw o-particle  b a sis . We have 
then, by using a single index to denote a tw o-particle  state,

(16)
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The eigenvalue problem  is then written, if ipa denotes the weight of 
the state a, as

The solution with e f  0 is unique; on the other hand, the <p's  satisfying 
Eq. (17) span a vector  space which has the dim ension of the tw o-particle  
space minus one. F or  different values of J the result is exactly the sam e. 

T herefore  the eigenvalues of WSDI are either zero or

where we have put G = 1 in Eq. (13). Since the interaction has to be a ttrac
tive, Cj is negative. Thus, the SDI for each total angular momentum is 
effective only fo r  a single state. The weight of each tw o-particle  state is 
sim ply equal to hj (ab).

The m atrix elem ents of the operator (22) are thus just those of C^, up to a m ulti
p licative term  depending on the radial co -o rd in a tes . This fact suggests that 
there is a connection between the wave function (21) and the operator (22). 
This relation which is easy to prove [2] means that Q(JM) connects only the 
ground state with the single state of angular momentum J, which " fe e ls "  
the interaction as shown in F ig . 1.

In som e way, the low est state fo r  each angular momentum looks like 
a co llective  state with resp ect.to  the electrom agnetic fie ld . We can see 
here that our m odel already contains som e physics since it can reproduce 
som e general features of spherical nuclei: low -lying 0+ state, and a 
sequence o f levels occu rrin g  in the order of increasing angular momentum, 
each low est being a co llective  one.

(17)
6

A solution of this equation is e = 0 and

(18)
a

Another solution is

(19)
a

(20)

ab

> =С‘ Х  (" 1)Ca hJ(ab) l(jaib) JM> (21)

ab

Let us now consider the e le ctr ic  21 -po le  operator:

Qj(JM) = e. r! (Í2. ) (22)
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Energy -2 

Arb itrary

-1

Unit
-3

-5

-6 L

9 degenerate 
le ve ls

No d ecay  to the gr. St.

F I G . l .  S p ectru m  o f  (3 /2  3 /2  5 /'2 ) 2 c o n f ig u ra t io n  in  th e  ca s e  o f  a  pu re  S D I  and z e r o - s in g le -p a r t i c le  
s p lit t in g . T h e  o n ly  states d e c a y in g  t o  th e  ground sta te  a re  the first 2 + and 4+ .

2 .4 . Spectrum of three particles

We now want to d iscu ss the properties o f the SDI fo r  a higher  number 
of p a rtic les . F o r  this purpose we shall use the form alism  of secon d- 
quantization. Let afm. and aim. be the creation  and annihilation operators 
of one particle  in the orbit i, resp ective ly . Let us define the operator 
associated  with the creation  of two particles coupled to an angular 
momentum J:

At (ab JM) Y  < jajbm am bl JM > aImbaL b

a b
This can a lso  be written as a tensor product:

[af X a I ]*
L a b  JM

It has the sym m etry property

At (ba JM ) = ( - l ) ja - jb + J At (ab  JM ) 

F or  J = 0 we use the shorter notation

At a = At (a a 0 0)

(23)

(24)

(25)

(26)

We .now look fo r  a possib le  extension o f the property o f the tw o-particle  
system  to three p a rtic les . Let

j^ t ( jM )=  Y  ( - l i^ h jla b V A tfa b .
ab

JM) (27)

These operators generate all the low -ly in g  co llective  states o f the 
interaction  fo r  each.
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We now want to consider the th ree -particle  ca se . Let us construct a 
particular subset of th ree -p artic le  states:

^ т >  = С*^Г < J jaM m a| jm  >^+(JM ) a+mJ  0 > (28)
Mma

where I 0 )> is the vacuum for the operators a.
C . Quesne [14] has shown that the subspace (28) is left invariant by 

the SDI, i. e.

W SDI I J a > = Y  <  J a 3m  I W SDI I J I ' Í m > l Já' í m  >  <2 9 )

J 'a '

If we now consider a state | ф̂т У which is orthogonal to this subspace it 
sa tisfies :

< 0 I aa<Jaf(JM) | .̂m > = 0 (30)

fo r  a ll values of a and J. T herefore  we have:

JX4JM) k jm> = 0 (31)

F rom  E q.(31) it follow s that

WSD>jm> = ° (32)
Indeed by using the second quantization the SDI is.w ritten as

J  Y  У  ( - l ) £a hj (ab) A+(ab JM) ( -  l ) ec  hj(cd) A (c d J M) (33)W
SDI

JM ab  cd

= - j  Y  ^ + (J M )^ (J M ) (34)
JM

Equation (32) obviously derives from  relations (34) and (31). Thus, there 
exist som e eigenstates in which the strength of the interaction is concen
trated, like the states jj^t(JM) | 0 У for  two p artic les . These states can be
obtained by diagonalizing W in the subspace of the states defined by
expression  (28). Among these states it is possib le  to show that the set

I 0 am a > = C* a+m ^ t ( 0  0) | 0 > (35)

provides som e exact eigenstates for three p artic les . These states are 
called  states of generalized seniority  one. The explanation of the 
occu rren ce  of these states w ill be made c lea rer  later on. As far as the 
other states are concerned, we have not been able to d iscover  sim ple ex
p ress ion s . These states must then be obtained num erically.
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18 degenerate 
1 ' leve ls

d ecay to ground s t a te s

-1

-2

Energy 

A rb itrary j  

Unit

- 4

-5

-6 L ______ ______  ______

1 3 5 7 9 112 2 2 T 7 T

F IG .2 .  S p e ctru m  o f  ( 1 / 2  3 /2  5 /2 ) 3 co n fig u ra t io n  in  th e  ca s e  o f  a  pu re  S D I  and z e r o - s in g le -p a r t i c le  
sp lit t in g . T h e  states at z e ro  en e rg y  ca n n o t d e c a y  t o  th e  g ro u n d -sta te  le v e ls .  In this ca se  th e  to ta l sp in  o f  
th e  th ree  p a r t ic le s  is a g o o d  quantum  n u m b er w h ich  e x p la in s  th e  t w o - fo ld  d e g e n e r a c ie s .

It is very  gratifying to d iscover still that m ost o f the states do not 
fee l the interaction at all and are thus at zero energy. A typical spectrum  
is shown in F ig . 2.

As tp the electrom agnetic transitions, som e very  interesting p rop er
ties may be seen [14]. Let us consider a transition between a sen iority -one 
state and any other state. We see that

<0jm|Q(kq)jrft(OO)c£ I 0 > = <^jm | ^ +(0 0)Q (kq)c+  |0>

+ 2 (- l)k < ^ jm |^t(kq)c+|0> (36)

F or  all the states at zero energy the conjugate of the relations (31) im plies 
that each term  on the right-hand side o f E q.(36) is  strictly  zero .

We have, th erefore, a very  com plete analogy with the tw o-particle  
state. At low energy, we obtain a set of levels which are very  s im ilar to 
the neighbouring even nucleus; these states have important electrom agnetic 
transition states. This feature is also found in the experim ental p roper
ties o f odd nuclei.

3. SENIORITY

In this chapter we shall develop som e o f the m athem atics n ecessary  
to understand the properties o f the SDI, in particular, and o f general 
interest in n u clea r-sh e ll-m od e l studies. We shall d iscuss the two seniority  
quantum num bers which help to provide a com plete c lass ifica tion  of the 
states and operators . We defer the d iscussion  of the operators for a while
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and begin by applying this concept to a class ifica tion  of sh ell-m odel states. 
The general re feren ces  fo r  this chapter are R efs [13, 16-19].

3 .1 . Single j-sh e ll

3 .1 .1 . C lassification  o f the states of a (j)N configuration.

Let us firs t consider the case o f identical particles occupying only a 
single j-s h e ll . Here, there is only one possib le  tw o-particle  state which 
has zero angular momentum, i . e .  the state

I (j)? > = 7 J  A+ |o> (37)

a ll the other states having two particles; a non -zero  angular momentum 
can be thought o f as obtained from  Eq. (37) by firs t  destroying the pair in 
a zero  total angular momentum and then creating a new pair which is not 
coupled to J = 0 as

I1-0! >=T 2 AJ l°> (37bis)

M ore generally, we can try to construct the wave functions c o r r e s 
ponding to a la rger number of p a rtic les . F or  three particles  a possib le  
basis is

= ^  < J j M m | / ^ > a +mA;M |0>= ¡(Л?, L / >
Mm

It can be seen that, in general, these states are not independent; two states 
d iffering  by the interm ediate angular momentum J are not orthogonal and 
the number o f these states exceeds, in general, the co rre c t  number of 
states allowed by the Pauli princip le.

F or exam ple, if j = 5 /2 , and if. we restr ict J to 0 and 2, accord ing to 
relation (38) the possib le  values of ß  are 5 /2  and 1 /2 , 3 /2 , 5 /2 , 7 /2 , 9 /2 , 
The Pauli principle allows only ^= 3 /2 , 5 /2 , and 9 /2 . T herefore , since 
a ll the states (38) are com pletely  an ti-sym m etric the states having 
ß =  1 /2  and 7 /2  must vanish com pletely . On the other hand, states having 
ß -  5 / 2 and J = 0 o r  J'= 2 must be proportional; These resu lts can be 
derived by calculating the m atrix of the sca lar products of these states.
One can verify  fo r  exam ple that their norm  vanishes identically fo r  ß -  1 /2  
and 7/ 2.

At the end we are left with the states having J = 0, ß =  5 /2 ; J = 2, ,ß=  3 /2  
and 9 /2 ; they are orthogonal and independent.

This procedure can be carried  on for all values of j and ß .  Let us 
mention the m ost important resu lts:

F o r  each j, the value ß  = j is always p ossib le . F or the low est values 
of j, i . e .  j <. 7 /2 , there is only a single state fo r  each value of ß .  In these 
ca ses , one can always use the index J to label a state; fo r  exam ple:
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J = 2, /

J = 4, / i l
2 '

F rom  j = 9 /2  on, fo r  a given ß  two states may appear (as far as I know 
this is true only up to j = 13/2 , for higher j there may be m ore than two 
states). In the latter case, j = 9 /2 , this happens only for ß  = 9 / 2. We can 
then construct two orthogonal linear com binations of two states (38) which 
are not co lin ear. One can take the follow ing two states

where X and ц have to be chosen such that these states are orthogonal.
F or  higher j, j = 11/2, fo r  exam ple, the same thing also happens for 

^ = 9 /2 ,  11/2  and 15 /2 . Then we must con sider som e particu lar linear 
com bination of J = 0, 2 and 4, as fo r  exam ple:

with different values of X and ц as in expression  (-40). In other w ords, it 
is n ecessary  to introduce additional quantum num bers.

The class ifica tion  of the states can be continued along these lines; we 
have seen the essentia l steps but, in addition, we shall con sider the case 
of four p a rtic les . We can then try to use the states which have been 
constructed . F or exam ple we can construct the states:

These states are properly  an ti-sym m etric , they can be norm alized  and 
they are orthogonal. H owever, by just counting the num ber of states allowed 
by the Pauli princip le, it is seen that they do not form  a com plete basis. 
There exist som e other states which cannot be written along these lines.
F or exam ple, in Eqs (43) and (44) the only possib le  values of J are 0 or the 
even values up to 2j -  1. But there exist states, fo r  four particles, which 
have odd values fo r  their total angular momentum, or which have an even 
value higher than 2j -  1, the upper lim it in expression  (44).

On the other hand, as fo r  three p articles , som e values of the total 
angular momentum can appear severa l tim es. T herefore , we must look 
for  an other construction, for  exam ple like

|(j)§. J. / = j >

X |(j)g. j, J = j > + /u |(j)|, j, J = j>

(39)

(40)

> (41)

(42)

and
(43)

(44)

[A + X A + JJ  0 >I* I" »iГ  j "  M
(45)
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The same as fo r  states (38), these states are not orthogonal and are 
not orthogonal to states (43) and (44); m oreover, they form  a redundant 
basis. A Schmidt orthogonalization procedure has therefore still to be 
carried  out. We are , th erefore , led to som e linear com binations

X ( A + ) 2 | o >  + M ( A J ) ( A + M ) | o >

+ £  I/ (J* J") [A+. X a J .]^  | 0 > =  |o > (46)
J’ J"

which satisfy the expected orthonorm alization properties, in particular, 
they should be orthogonal to the states (43) and (44). Of course, the first 
term  is present only fo r  J = 0.

The label a is put here as an additional quantum number to distinguish 
states having, possib ly , the sam e J.

M ore generally, one can introduce the states

(47)

(48)

N - 4

(A j) 2 (B“ +) [0 > • (49)

if  N is even, and
N - 1

* ajm ( AÎ )  2 10 > (50)

if  N is odd. These states are form ed with the pair operator AJ which 
appears to som e pow er. The seniority relative to a single j-o rb ita l can 
be now defined as the number of unpaired partic les . Thus the preceding 
states have, respective ly , sen iorities 0, 2, 4 and 1. C learly , higher 
seniority  can be obtained. We shall use the quantum number v to denote 
this additional quantum num ber. The state (39) has v = 1, the states (40), 
(41) and (42) have v = 3. Let us now introduce this quantum number m ore 
form ally .

3 .1 .2 . The quasi-spin  schem e [19]

Let us build up the follow ing three operators related to the orbit j:

S+ = Í l  ( - l ) i+raatmatm (51)
m

S- = ï  I ( - 1>,+ mam a_m (52)
Ш

(a J)n/2 Io >

N - 2

2 (AV l 0 >

S0 = \  (N -П ) (53)
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where N = ^  amam *s numb e r -o f-p a r t ic le s  operator in this subshell, 
m

These operators are seen to satisfy the commutation relations o f an angular 
momentum:

[S+,S J = 2 S 0 , [S0 ,S t ]= ± S ± (54)

This angular momentum has been called  the quasi-spin  operator [19]. Let 
S 2p be its square, S (S + 1 ) its eigenvalues. It is convenient to write this 
eigenvalue as

S = (55)

where fi = j +
One sees that

A+0 = ^  < jj -  mm I 00 > a ^ a ^  = £  a+_m a+m = S+ (56)
m  m

A ll the products (Aj)P which appear in Eqs (47 -  50), with various values 
of p, comm ute with S2p .

The N -particle  states can be c lass ified  accord ing to the eigenvalues 
of S2 and S0 let

|aSS0 > or a lso  |o, ( j)Nv ) ' (57)

be such a state where a denotes the additional labels n ecessary  to specify  
the states. Given a value of S0 = (N - f i ) /2  means that the value of the 
number of particles is  specified . The states for which S0 = -  S have thus 
(N - f i ) /2  = -  (fi -  v ) /2  or N =v, they satisfy

S. I a S -  S > =0 (58)

Let us con sider the 4 -p a rtic le  case v = 4; because of Eqs (58) and (56), the 
states I aS-S^> are thus orthogonal to the states (43) and (44) and, then, 
identical with the states (46).

On the other hand, one has

-  -  -  о  / о  \  -
Sop (A? ) 2 I 0 > = (A q) 2 S2 | 0 > = (AS)2 (S+S .+ S g  - S 0 I 0 > = у  ( j  + l )  (Aq)2 |o >

(59)

i . e .  the states (47) have S = fi /2  or v= '0 . By calculating the eigenvalue of 
S2 fo r  the states (48) -  (50) it can be seen that the quantum number v defined
by Eq. (55) is identical with the sen iority  quantum number.

F rom  this study it is c lea r  that the seniority  quantum number can be 
used to c la ss ify  the states. It has the advantage of connecting the wave 
functions of adjacent nuclei. A lso in Eqs (47) to (50) the number o f states 
is independent o f N, which is a very important property of the seniority 
schem e. F or  m ore details about this schem e the reader should see R ef. [13].
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3 .2 . Case o f severa l orbitals

If we con sider the case of severa l orbits we find two ways o f gen era liz
ing sen iority  [16]. Let us now put as a superscript to the quasi-spin  opera
tors  an index to denote the subshell which they re fe r  to, S.J , fo r  example, 
and let v¡ be the + 1 quasi-spin  component, and seniority  relative to the 
subshell i. F or  each subshell these operators and quantum num bers are 
defined. We have two ways of adding them.
a. The sum of the seniority  quantum numbers relative to each orbit

v = Y  v. (60)
i

can be expected to generalize the seniority  quantum number conveniently.
In this way sen io r ity -ze ro  states of N particles are a ll the states

|(jaC Va = 0 ' « ь С Ч = 0 .......... (jr)°rV‘ = 0 >  (61)

or any linear com bination of them. F or  each of these states we have

na +nb + .................. + n r =N (62)

This definition does not take account of the weights of the configuration 
m ixing; it g ives, for  different values of the number o f particles, different 
num bers o f states having the same sen iority . F or  exam ple, in the case of 
three subshells 2p 1 /2 , 2p 3 /2 , I f  5 /2  we have 3 states of v = 0 for  N = 2, 
fo r  N = 4 we obtain 5 states and for  N = 6, 6 states. The sam e is true for 
other values o f v; there we must use the basis

l<3,ln ,V  U / 4 ............ Ur )nrv r > (63)

fo r  which

va + v b + .................. + v r =v. (64)

Of cou rse , states having a different v, o r  sim ply a different value of vs 
fo r  the subshell i, are  orthogonal. This c lass ifica tion  can certainly be 
used to construct a com plete basis; it is inconvenient in that no connection
is drawn between the wave functions of adjacent nuclei. It can, anyway,
be used very  su ccessfu lly  in som e ca ses , fo r  example, fo r  a pairing fo rce . 
Indeed, if  we con sider a pairing Hamiltonian

H = Y  e. at a. - j  V  (-l)Jl+m‘ + )к+Ш at at a a (65)/  l ímj im¡ 4 i-rcij írrij km^ k-m^ ' '

i  ik

None o f these term s can break a pa ir. This means that this Hamiltonian 
com m utes with a ll the Sj,p. Thus, the eigenvalue problem  of the pairing 
Hamiltonian must be solved  inside each subspace having a given sen iority .
b. We can a lso  use a representation in which the quasi-spins of each orbit 
are v ector ia lly  coupled, i . e .  we define a generalized  quasi-spin  operator as
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S± = Y  ( - l-)£i S> and s 0 = ^ s ‘0 and f i = ^ ( j + £ )  (66)
i i j

Since two different S¿± com m ute, these operators obey the same com m uta
tion relations as in Eq. (54). Everything that has been said before  can now 
be repeated with the follow ing d ifferen ces:

Since the relation

Sop(S+)2 l°> = f  ( f  + 1)  (S+)2 l°> (67)

holds true independently o f whether S re fers  to a sum of orbits o r  to a 
sim ple orbit, we have Vg =0. We must ca ll a generalized  sen io r ity -ze ro  
state any state o f the form

-  / V '  '  — 1 \  -

(S+ )2 = ( ^  ( - I ) * 1 A l0J 2  | o >  (68)

Here the generalized  sen iority  quantum number v g is related to the total 
qu asi-sp in  eigenvalue by

s - 2 p -  (69)

This quantum number re fe rs  now to the number of unpaired particles 
o f the type shown in E q .(68 ). T herefore  (65) has vg =0. Let us construct 
states having a higher sen iority :

N - 1

ajm(s+) 2 l ° >  has vg = 1 (70)

These states are analogous to states (50). On the other hand, the states

^  N il
^  Xab A+ (ab JM) (S+) 2 I 0 > (71)
ab

have Vg = 2, independently o f Л. provided that J f  0. If J = 0 they have v g = 2 
provided X satisfies

<o|s_^T X aaA t(aa00) |0>= 0 (72)
a

or also

£  < - l ) ia ^ > aa = 0 (73)
a

If X is arb itrary  the state (71) has not a well defined sen iority . Let us call
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B j$ any operator creating a fou r-p artic le  state which is orthogonal to the 
Vg = 0 state and to the Vg = 2 states; o f course, it then satisfies

S -Bjm I 0 > = 0 (74)

and, th erefore , has vg =N = 4.
If we consider now the states

N -4

(S+) 2 B ^ | 0 >  (75)

their number is just the number of sen iority -fou r states.
The only d ifference to the s in g le -j-sh e ll case which is worth mention

ing is that for  J = 0 we may have sen iority-tw o states. The number o f these 
states is equal to the number o f orthogonal states which satisfy  condition (70), 
i . e .  to the number of s in g le -particle  levels minus one. It is possib le  now 
to use a mixed representation where both quantum num bers are used. It is 
easy to see im m ediately that the answer is positive. Indeed, by just looking 
at relations (68), (69), (70) and (71), we see that

Vg = 0 means that v = 0 (7 6)

Vg = 2 means v = 0 if J = 0 (7 7)

v = 2 if J /  0 (78)

Vg = 1 means v = l (7 9)

On the other hand, if we consider the definition of the operators Вщ  we 
see that they have only to create states which are orthogonal to the vg = 0 
and Vg = 2 states for four p artic les . Since the seniority basis defined in 
the preceding paragraph is an orthogonal basis, but, on the other hand, 
the space of states having v = 0 or v = 2 is not exhausted by the vg = 0 and 
Vg = 2 states (just by counting states) it is seen that som e of the states 
generated by the operator can be chosen to have either v = 0 (if J = 0), 
v = 2, or  v = 4.

In other w ords, given a subspace having vg fixed we can expand it in 
term s of subspaces having also good v as follow s:

^ v g  = X  < g  ( 8 0 )

V

In expressions (76) -  (78) we have seen that:

#0 = S%, S % =¿| if J / 0 ,  g 2 if J = 0

j® _ « 0 i jo  2 i jp  40  4 " 0 ^ + 0  4 ® 4

If we put between parentheses the dim ension of each subspace we obtain 
fo r  the case of 1/2 3 /2  5 /2  levels the decom position

*4  (6) = <  ( 2 ) + <  (4) (81)

(5) = #$(1)+<?ЦЗ)+ <?$(!) (82)
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Sim ilarly, we can expand the spaces having good v into subspaces having a 
good v g.

F or example if N = 6, we obtain

In this chapter we have seen how a com plete basis o f state can be 
constructed . We have defined two schem es which do not exclude each other. 
In the generalized  sen iority  representation one uses subspaces of the space 
having fixed sen iority  (in the first meaning). Which of these subspaces 
is m ore useful cannot be said beforehand; this problem  w ill be considered 
in a further chapter. It must be underlined that each o f these quantum 
numbers does not lead to a com plete c lass ifica tion  o f the states; for 
exam ple, in the ( j)N - c a s e  both cases  (41) and (42) have v = 3, on the other 
hand, a ll the states satisfying condition (73) have vg =2. Additional quantum 
num bers must be found, but this problem  w ill not be examined here.

4. TENSORIAL CHARACTER OF OPERATORS AND CONSEQUENCES
4 .1 . T ensoria l character of the creation and destruction operators

It has been noted by Lawson and M acFarlane [20] that the angular 
m om entum -like comm utation relations of S+, S. and So can be used to ca l
culate many m atrix elem ents in the seniority schem e. As pointed out in 
the preceding chapter the method can be used in the case of a single 
j-s h e ll as w ell as in the case o f mixed orb ita ls. In the follow ing we shall 
consider the m ost general case .

F irst  one notices that the couple of operators

behaves like a spinor under the transform ation induced by the quasi-spin  
gen erators. Indeed, one has, fo r  exam ple for a^m ,

and the corresponding Herm itian conjugate relationships for ajm . It is 
seen there that the operators (84) ca rry  a double tensor ch aracter.

(a) Each of them is a sph erica l tensor o f rank j and component m with 
respect to ordinary rotations.

(b) They are, respective ly , the two components of a spinor with respect 
to the transform ations in the quasi-spin  space.

It would be m ore convenient to show this tensoria l character explicitly  
as fo llow s:

<f°(6) = #% (1) + S \  (2) + # ° (  1) (83)

Rem arks

(84)

(85)

(86)

(87)
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Note that any linear com bination o f these two operators like

dím = u j a +m + ( - l ^ m V j a j . m  ‘ (88)

suchas the one introduced by the B ogolyubov-Valatin canonical transform a
tion, has д  proper jm  tensoria l character, but, on the other hand, it c o r r e s 
ponds to a com bination of the spinor com ponents.

This rem ark has two very  interesting applications. Let us mention 
the first one.

Any product o f creation and annihilation operators is a product o f tensor 
of rank 1 /2  in the quasi spin space and of tensors o f rank j j, j 2, j 3 etc. . . . 
in the ordinary space. In general, such products are not irreducib le  
tensors, but can be expanded in term s of irreducib le  tensors by using the 
w ell known techniques developed for  the coupling of angular momenta.
F or exam ple:

a t  =9"^ \ Ŝ 'J.)2 m2 m, г ir
JM ss0

X â*^2 ] 15 (89)
M S 0

It is seen that the possib le  values of S are S = 1, S0 = 1. If we were 
considering, instead, the product a} mi ( — 1 )->гт г aj2-mz we would obtain the 
C lebsch -G ordan  coefficien t | i  i  fS S0 У and S could then take two values
S = 0 o r  1 while S0 =0. On the'other hand, we, obviously, must have

I j x - j 2 l -  J -  J i +  J 2 (9 0 i

Such products of operators, as can be seen in P ro fe sso r  Frahn’ s contribu
tion to these P roceed in gs,a re  very  com m on. In general, it is seen that 
they can be reduced to sums o f irreducib le  ten sors. On the other hand, the 
value of S0 is unique. Indeed, let us take x creations and у annihilations; 
we have then

at â  .....................a  ̂ a a ................. a
'-------------- .---------------' '-----------,-----------' (91)

x у
Each a+ from  (85) w ill give 1 /2 , while each a w ill give -  1 /2 , therefore the
total value of S0 is

S0 = ^  (92)

If an operator conserves the number o f particles we have So = 0. Let us 
then in a few exam ples consider the character of the m ost interesting physi
cal operators.

4 .2 . T ensoria l character o f the s in g le -particle  Hamiltonian and single
particle operators

As stated above we have in general S = 0 or 1 , S0 = 0. Thus, in general, 
none of the operators

X  <ja jbm am b l ™ > a ; ma( - l ) íb + mb¡V (abJM )= ^  < j J hm ,m h| JM > a :rn ( - l ) Jb Ч ~ т ь (93)

m a m b
is an irreducib le  tensor operator in the quasi-spin  space.



We can, however, ca rry  out the decom position  into irredu cib le  ten sors:

V (abJM) = V® (abJM) + v j  (ab JM) , (94)

We find that the sca lar part is

Vg(ab JM) = V (ab JM) + ( -  l ) ía+íb+ia + jb+J V (ba JM) (95)

Vß(abJM) = (ab) (96)

In Eq. (96) we have used a notation sim ilar to that introduced in Eq. (89).
On the other hand, the v ector  part is
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V j(abJM ) = V (ab JM) -  ( -  l / a+ V W 1 v  (baj M)

= s J > b )
(97)

If J = 0 it is seen that

V° = 0 ' (98)

V j ^ ( а а О О И ^ ^ Г  a ^ a ^ ^  Ñ. (99)

- ,
Any sin g le -p artic le  operator, which is o f the form  ^  ea Ña , is thus a

a
vector  in the quasi-spin  space. Note that if e = c te =e we have

ea Ña =eÑ = e(2S0 +П) (100)

On the other hand, if a = b one has

V (a a J M )= V °  if J is odd (101)

V (a a J M) = V j if J is even (102)

Within a single j-s h e ll, all the spherical tensors o f odd rank are pure 
sca lars  while those of even rank are pure v ecto rs .

4. 3. T ensor character o f the operators creating two particles

By taking Vj (ab JM ) and applying S+ and S ., we generate an operator 
associated  with two creations or two annihilations, i . e .

[S+ , V (ab JM)] = ( - l ) 'b  A+(ab JM) (103)

[S+, V (baJM )] = ( - l ) iaA+ (baJM ) = ( - l ) ta + ja -ib+lAt(ab jM ) (104)

[S + , Vg (ab JM)] = 2 ( - l ) cbA+ (ab JM) (105)
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This means that V q, At and A, with the same argument abJM, form  the 
com ponents o f a v e cto r . It is m ore convenient to take the three follow ing 
operators as com ponents of a vector:

4 .7 . T ensor character o f the interactions

By using the preceding methods one can now show that any tw o-particle  
interaction operator can be expanded as a sum of three term s:

This results d irectly  from  the fact that W contains four operators each o f 
which is  a tensor o f rank 1 /2 .

We shall ca rry  out this expansion later on fo r  a general tw o-particle  
Hamiltonian; firs t , we shall study it fo r  the S D I and the pairing fo rce .

4 .4 . 1. T ensor expansion o f a pairing fo rce

The pairing fo rce  is written as

The last expression  is obtained by considering S to be an angular momentum.
The sca lar S2 and the tensor (§ X § )2 can, of cou rse , be expressed in 

term s of the three components of S. One has, for example,

This op era tor1 is a sum o f a tw o-body operator, plus a single-body 
operator, plus a constant term . Indeed, S+S_ is a tw o-body operator, 
but S. S+ =S + S. -  2S0 is a sum of a tw o-body plus a single-body operator and 
(Sq)2 = (N -Q )2 /4  contains a lso a constant plus a one-body plus a tw o-body 
operator.

S ^  = A+(abJM) (106)

(107)

(108)

и г  -  о , 1 , 2 W - y 0 +y0 +y0 (109)

W pa ir = - G S + S . (110)

It is im m ediately seen that

( U l )

(3 X § )2 = ^  < l l q - q  I 2 0 >  S j s l q = - K l l l - 1  I 20 > [S+S_+S_S + ]
q

+ <11 00 I 20 > (Sj )2 (1 1 2 )

1 T h e  fa cto r  c o m e s  from  th e  re la tio n s  5 ^  = + - ^  [S x ± i S y ] .
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Note a lso  that we can write

J § ( 3 x s f 0 (113)

T herefore

Wpaú = - G  [S2 +S0 -S2] (114)

(115)

The largest eigenvalue of S2 is  Í2/2, then the ground-state energy o f

Note that the presence of the term s S2 introduces a quadratic dependence 
o f the ground-state energy on N.

4 .4 .2 .  T ensor expansion of the S D I

A delta fo rce  is known to be identical (for like particles  only) to a 
singlet fo r c e . We can write

which means that a trip let fo rce  vanishes identically. We can thus rep lace 
the tensor expansion of 612, Eq. (5), by a tensor expansion of (o^ - erg) ¿ i2 :

The S D I contains two term s which are expressed  as functions of these T £x :

(116)

¿>12 - 3 (CTi - a 2 ) 6 12 (117)

4тг612= - 1  ^  ( -1 )K+1+X(2K + 1 )(T KX(1 ) -T KX(2)) (118)
K\

where TKX is the tensor product

T £x(l)  = [C ^ D jlX f f1 (1 )£ (119)

i< j

K X (1 2 0 )

This expansion turns out to be just the expansion of the S D I into a sca lar 
term  (the first one) and a vector term  (the second) which happens to be 
proportional to N.



520 ARVIEU

To see this we firs t  consider a general on e-p artic le  operator, which 
is a sph erica l tensor t*-, in second quantization,

^  = Z  L <a m  a l 1 q l b m b > atamaa bmb (121)

ama bmb

We fir s t  use the W igner-E ckart theorem  which allows us to introduce a
V operator

<= I V(abKq̂ <122>
ab

= t $ g + t ^ J  (123)

In the second line we have expanded this operator into irredu cib le  tensors 
accord in g  to expansion (94). This is done by replacing V by V 1 +V° . We 
see that we now must consider the operator

V f - l  ( - l ) W i a*]b+K v (b a K q ) (124)
ab

We have thus

.к о  .к , . ,к
Ч о =Ч +1'ч <125>

t K i= t K -t 'qK (126)

Interchanging the sum m ation indices in t'qK and adding we obtain the two 
coe fficien ts ;

<3a II tK II jb > ± (-l)Ca«b+jâ b+K J! tK I > (127)

respective ly , fo r  t£ q and t q q1.
The ten soria l ch aracter o f tq depends then on the relationship between

O a II II 3b У and O b |!.tк II j a У . This relationship, in turn, depends on the
behaviour of the operator t K under the t im e -re v e rsa l operation . If the 
operator t K changes of sign under tim e rev ersa l we have

< i a l | t K H i b >  = ( - l ) i a + i b + K + ^ ' b < j b l l t K | l i a >  ( 128 )

This is the case  fo r  t K= T KX, then such an operator is  a pure sca la r . If 
the operator t K is  invariant under tim e rev ersa l we have

<3al|tK||3b > = - ( - l ) ia+jb+K+ia + Cb <3b |!tK||ia > (129)

Such an operator is then a pure vector .
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F rom  this we conclude that (i) is an operator sca la r  under the

quasi-spin  transform ations, and so the firs t part of our statement con cern 
ing expansion (120) is shown.

The p roo f that the second term  of expression  (120) is proportional to 
N w ill not be given h ere . It can be seen in R ef. [2]. This se lf-en erg y  term  
turns out to be:

“ f  X  H D K + *+1 (Ж  + П ^ Г  (T KX( i ) -Т кх(1)) (130)
K \  i  ,

= - l G f i Ñ  = - G í í S 0 - Í G n 2 (131)

The SD I can now be written as the sum of a sca lar term  and a vector  term

WSDI =yO(SDI)+y01 (SDI) (132)
with

y j (SDI) = -  G П S0 (133)
and

Уо (SDI) = first term  of expression  (120) - | G f i 2 (134)

We have thus found two interactions which are diagonal in the generalized 
quasi-spin  representations.

4 .4 .3 .  Invariance properties o f other tw o-body fo r ce s .

Any tw o-body interaction can be expanded in term s of sph erica l ten sors . 
Expansion (2) is an exam ple. F rom  what has been said in the preceding 
case it is c lea r  that the ten soria l character o f an interaction  depends on the 
invariance property  o f its spherical tensors with respect to t im e -rev ersa l 
transform ations.

We can write

= Z W« " X  X  (T f ( l ) -T K (2 ) ) fk( l ,  2) (135)W /  , ij
i < i  i < j  К

where T^ and T f  are spherica l ten sors . An expansion sim ila r  to expansion 
(120) can be perform ed . Then, if  T^ and T 2 both change sign in tim e 
rev ersa l the firs t  term  w ill be a quasi-spin  sca la r . The follow ing in terac
tions can be seen to fu lfill this statement [18].

* the spin -spin  fo r ce . The derivation is then entirely  the sam e as in 
the preceding section . It is a lso  the sam e reasoning fo r  an ordinary
6 fo rce ,

** the tensor operator Si2 = [(cri - r) (02 • r) -  j  (ctict2 ) r 2 ] / r 2 (136)
which can be written.

S12 = - J Y  (CT1 - T 2 i(2 »  (13?)

*** and s im ilar ly  the quadratic sp in -orb it operator.
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These statements are not true fo r :
* a central interaction (except for the zero -ran ge  case)

** a sp in -orb it interaction.

An important part o f the tw o-body fo rce  has thus the property

У0 = 0 (138)

These interactions contain, besides a sca la r  term , a second term  which is 
a one-body operator and a vector  term , but they have no secon d -ord er 
ten sor. Since the sh ell-m odel Hamiltonian in rea listic  cases always contains 
s in g le -p artic le  energies, i . e .  accord ing to expression  (99) an additional 
vector term , we find that for the interactions having y§ = 0 the sh ell-m odel 
Hamiltonian is  given by:

Hshell model = У° (0 + 1 + 2-body operator)
(139)

+ Уо + 1-body operator)

4 .5 . Matrix elem ents o f operators

Let T ^ b e  a second-quantized operator which is also an irreducib le  
tensor of rank к in the quasi-spin  space. F rom  what was said before  we 
know that this operator changes the number of particles by 2q. Let us 
take its m atrix elem ents in a generalized sen iority  representation  by using 
the W igner-E ckart theorem :

<aSS0|TqK|a'S'S¿> = ^ < S'KSo 4 I SS0 > (140)

From  this theorem  it is seen that the entire dependence on the number of 
particles is contained in a C lebsch-G ordan coefficient since S0 = (N -f2 ) /2 . 
The reduced m atrix elem ent does not depend on N any m ore, it can be 
calculated by taking the low est possib le  values of N on the left-hand side 
of Eq. (140). Of course, if К = 0, the m atrix elem ents are independent o f N. 
Let S = (ÎÎ -  v g ) /  2 and S' = (£2 -  Vg ) /  2. By using the rules for the coupling of 
angular momenta one finds that

I Д vg I 5 2K (141)

A v ector  term  changes thus vg by two units, a tensor by four units.

4 .6 . Spectrum  of the S D I

The S D I fo r  degenerate s in g le -p artic le  energies is  now seen to be 
diagonal in a representation in which SqP is  diagonal (or  in a representation 
in which the generalized seniority  quantum number is diagonal). To obtain 
its eigenvalues we must find the eigenvalue spectrum  o f y§ . This problem  
has not yet been solved analytically and I do not know whether this is p os 
sible or not. It is certainly  a good problem  fo r  those who are interested 
in group theory. The procedure which we have follow ed is  quite em pirica l: 
to obtain the spectrum  o f the S D I for values o f the generalized seniority
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quantum number equal to 2 o r  3 one must diagonalize y§ in the space of 
configurations of N = 2 or N = 3 p artic les . F or N = 2 we have already ana
lytic form ulas. To obtain the spectrum  of vg = 4, one uses the spectrum  
o f N = 4 and substract the vg = 0 and vg = 2 levels , the energies of which 
are known from  the preceding case, etc . . . . Until now this p rocess  has 
been carried  out up to vg =6 fo r  the set of levels 1 /2  3 /2  5 /2 . F or  the set 
of s in g le -p artic le  energies which are of physical interest we have ca l
culated the spectra  [22] corresponding to vg = 1 and vg = 3. It is in terest
ing to obtain the eigenvalues o f yjj fo r  large values of Vg as one has very  
little inform ation, in general, on their position .

(6states)

____________  vg » 4

-----------------  v9 =4

_ V g * 2  ______________ f v g = 2 ( 2 states)

(2states) [vg °4

-----------------  ve =6

«
--------------- «а =0 ---------------- = 0

Pairing force SDI

F IG .3 . R e la t iv e  p o s it io n  o f  th e  lo w  ly in g  0 + states for ( 1 / 2  3 /2  5 /2 ) 6 c o n f ig u ra t io n  in  th e  ca s e  o f  a S D I  
and a p a ir in g  fo r c e  o f  th e  sa m e  strength . T h e  p a ir in g  fo r c e  has its  le v e ls  o rd e re d  a c c o r d in g  to  in cre a s in g  V g .  

O n th e  o th e r  hand, th e  S D I  has s o m e  h ig h  sen ior ity  le v e ls  at lo w  e n e rg y .

L orazo  [8] in O rsay has carried  out the calculation fo r  N = 6 and vg = 6 
(for the 0+ states). He found that the first excited state has vg = 6 which is 
quite surprising . This low ering of the large vg is  also seen in the N = 5 
case for v „ =5. It is then very  challenging to understand this feature 
(see F ig . 3).

As an other rem ark let us consider the binding energy of the ground 
state. C learly  y{j always gives the same contribution whatever N may be. 
The energy shift of the ground state and of the whole spectrum  is given by 
the N-dependent term s of y¿ or y§ . This shift is given by expression  (116) 
fo r  the pairing fo rce , and by Eq. ( 131) fo r  the S D I.

4 .7 . E lectrom agnetic properties o f the eigenstates

By using the techniques developed previously  we can now understand 
the electrom agnetic properties o f the eigenstates of the S D I. Let us apply 
Q(Xju) the e lectr ic -m u ltip o le  operator o f order 2X on the ground state of 
a nucleus with v g = 0 and 2 particles

Q (*M )(S +)|0> = [Q(X/u), S+]|0> (142)
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By writing Q (X /i) in the form  (122) we obtain 

[Q (X iu), S+] =
ab

ab
(144)

= С ' Х  7 2X+}Í ( - ^ 6b А+(аЬ ^м ) = С' ja*(X м)
ab

We identify here

<a I I  qX I I  b > = Ct h^(ab) (145)

by assum ing all the radial m atrix elem ents to be equal. We have under 
these conditions:

< a vg =2|Q(XM)|vg =0>  =C'<avg =2 | a 0vg = 2 >=  C 4 a% (146)

where a 0 is  the co llective  state

|a0vg =2>  = jS*(Xm)|0> (147)

Equation (146) proves, for each X, that only the co llective  state ca rr ie s  all 
the electrom agnetic strength to the ground state fo r  N = 2. To show that it 
applies a lso  to a m ore general N, we must remind that Q (2/u) is t im e- 
rev ersa l invariant; th erefore , because o f E q. (129), it is a quasi-spin  
v ecto r . Let us then apply the Wignei—Eckart theorem

<o-vg = 2S 0 |q  (Хй)| vg = OS0 > " <ttVS = 1И 'V* = ° >

X  ( I 1 ^ T ^ ° | ^  (148)

The reduced m atrix elem ent appearing in E q.(148) can be calculated by 
considering the case N =2, this is enough to proof,that the left-hand side 
of Eq. (148) is zero  if a is different from  aq. Of cou rse , the magnitude 
of the m atrix elem ent corresponding to a0 depends on N through the 
C lebsch -G ordan  coefficien t.

Since there is a single state which exhausts all the electrom agnetic 
quadrupole sum rule this suggests a strong sim ilarity  o f our m odel with 
the vibrational m odel, the co llective  2+ state playing fo r  each nucleus the 
ro le  o f the "one-phonon state", the n on -co llective  states being in som e way 
the in trinsic states. This is not only true fo r  the quadrupole vibration, but 
fo r  any 2^-pole vibration . We now want to see whether this analogy can be 
pushed further ahead, and if  there exist som e two-phonon states.

Let us construct the state:

r2X + l V(abXjLi), S. (143)

[Q(2) X Q(2)]^j I vg = 0 > (149)
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The operator [Q X Q ]1 is not an irredu cib le  tensor under quasi-spin  
transform ations, it is still a sum of a sca la r  plus a vector  plus a tensor.
In other w ords, the state (149) has not a w ell defined generalized  seniority  
but it is  a sum of Vg = 0 (for 1=0 only), v g = 2 (for the proper values o f I) 
and Vg =4. Because of this there cannot exist a pure two-phonon state, the 
first 2+ must be coupled to vg = 2 and to Vg =4 states, as w ell, by the e le c tro 
m agnetic operator.

Expanding [Q X Q ]1 in tensors we now have

[Q X Q l 'M Q X Q l ^ + l Q X Q ] ^  + [ Q X Q ] ^ 0 (150)

The problem  with which we aré now faced is to examine whether the states

1
[ Q x Q C o r 2 |vg =0> (151)

are eigenstates of WSDI which belong to the subspace |vg = 2^ or | vg = 4 У 
fo r  the possib le  values o f I : I 5 4. In Eq. (151) is the norm  of each of 
these states.

This problem  has been answered num erically . We have calculated the 
overlaps

Xj = ^ '/< a v g =4IM  | [Q (2 )X Q (2 )]^  |vg ? 0 > N (152)

of the states (149) with all the eigenstates which com e out from  the exact 
diagonalization o f WSDI : I^Vg = 4IM)> . In this case, the dependence on the 
num ber o f particles can be extracted very  easily, it is only n ecessary  to 
calculate this overlap fo r  N = 4.

/ 1 3  5We present here the resu lts2 fo r  ( — — — J , a m ore com plete d iscussion

can be found in Ref. [23].
In this case there are 58 states having J S 4 . Our resu lts show that 

among the vg = 4 states the first 2+ and the first 4+ have a very  strong
overlap with our state (151), while the second v g = 4 0+ state presents also
such a large overlap accord in g  to the follow ing table:

1 x 2
0 . 0 .95
2 0 .95
4 0 .99

The two-phonon approxim ation is seen to be very  good as far as the p rop er
ties o f the wave functions are concerned. H owever, the energies do not 
follow  any sim ple rule, they are not tw ice the excitation energy o f the 
first 2 + . Let us now con sider the case of the odd-nuclei system . The wave 
functions of the sen iority -on e  levels  are given by

N - 1

2 I f  2 X d e n o te s  th e  first 2+ , th e  q uantity  xx is such  that

i =  ВЩ 2  2 y -> g  Ур = 4 IM )
X* £  (BE 2 2 . ->  ß v a = 4IM )

6 ®

a1m(S+V 2  l0 >  (153)
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We now want to see whether there are among the states of sen iority  three 
also som e states which are co lle ctive . By analogy with the weak-coupling 
m odel of the nucleus we construct the states:

N - 1

[ Q (2 )X a J ] ' (S+) 2 10 > (154)

They are constructed in the sam e way as the one-ph onon -p lus-one-particle  
s ta tes .

As before , these states do not have a w ell defined generalized seniority, 
they can be linear com binations of vg = 1 and Vg = 3. We can also look at 
the projection  of the sh e ll-m od el state which results from  an exact dia
gonalization onto the part of state (154) which has v g = 3 and which is  p roperly  
norm alized . This part is seen to be quite important fo r  very  few states [14], 

We thus see that the S D I has som e very  interesting features. The 
interaction  and the electrom agnetic transition  operators are effective only 
fo r  a few number of states. This schem e is also a very  approxim ated one, 
if  one uses a slightly m ore sophisticated m odel, for  exam ple, by sm earing 
out the interaction  over the surface, and by introducing sin g le -particle  
energies splitting, all these features w ill be affected. We must expect, for  
exam ple, that the quadrupole sum rule of all the electrom agnetic transitions 
which go to the ground state w ill not be condensed in a single-state  anym ore. 
This is rea lly  what happens when such a calculation is ca rried  out [23].
But anyway the general trends of the solution should be the sam e as the one 
which we have studied.

5. THE QUASI-PARTICLE METHOD FOR SCALAR INTERACTIONS

In this section  we apply the quasi-particle  method to those interactions 
which are, like the surface delta interaction or the pairing fo rce , diagonal 
in the generalized  sen iority  representation. We can do that with the hope 
that afterw ards we shall understand these approxim ations much better 
since we have a soluble m odel. There we can com pare the results of the 
approxim ations with the exact results and see what we are doing.

As a general rem ark let us consider the set o f a ll the wave functions 
which have the sam e vg and the sam e set of quantum num bers except the 
number of p a rtic les . Let us, fo r  exam ple, consider the set of v g = 0 states:

N

|0>, S+1 0 > , S2 I 0 > ............... (S+)2 I 0 > .............(S+)n |0> (155)

or  the set of vg = 4 states, generated by an operator В щ  which satisfies 
Eq. (74):

B¿ i l 0 >< s+b m I °> ' (S+ )2b J¡, I 0 > . . . . (S+ )fi"2 B “m I 0 > (156)

Of cou rse, any o f the state (155) is an eigenstate of the S D I and the operator 
B|J can always be chosen in such a way that all states of Eq. (156) are 
eigenstates of WSDI . Let E0 (N) the ground-state energy, eaj the excita 
tion energy of the states BjjJ | O ^so that the absolute energy of the m ore 
general state of E q.(156) satisfies

E a J  “ Eo (N) + eaj (157)
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Let us now con sider the Hamiltonian deduced from  H by subtracting the 
dependence on N

The reasoning can be-used fo r  a pairing fo rce , for  a SDI, as w ell as fo r  any 
interaction o r  Hamiltonian which is diagonal in a Vg representation. In the 
case of the pairing fo rce  we have

Note that in both of these cases these term s are not sim ply equal to the 
sca la r  parts of the interactions but contain som e other term s due to the 
existence o f the specia l term s y j o r  y 2 corresponding to these fo r c e s . But 
now we are sure that we have fo r  any N

Of cou rse , the states (155) and (156) are also eigenstates of gf,  but they 
have now the sam e energy. Any linear com bination of them w ill have the 
same property . In particular, if we con sider a given value of N = N0 and 
choose a com bination of, for  exam ple, the states (156)

by properly  choosing the coefficien ts , it w ill have a lso  the same
eigenvalue

M oreover, if P N denotes the p rojection  operator on the space with Ñ = N0 
we have

This is just, within a norm alization constant, an eigenstate o f fo r  N = N q.
Let us now show that the B ogolyubov-Valatin canonical transform ation 

is just such an operation; a rotation in the quasi-spin  space. Note that we 
have taken as the axis of quantization the axis where So is diagonal, this 
correspon ds to having a fixed number o f p a rtic les . But we can choose any

¿ Г =  H - E 0(N) (158)

(159)

just because of Eq. (115).
On the other hand, we have fo r  the S D I, because of Eq. (134)

=y° (S D I)+ iG tt2 (160)

¿Г  I Vg = 0 > = 0 (161)

(162)
N

which satisfies

< * “  I Ñ I * “  > =N0 0 0
(163)

(164)

(165)
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other axis of quantization as well, for  exam ple, that corresponding to the 
operator

S a c ó s e  S0 + s in Q S+2+S~ (166)

where 6 is a param eter.

6 q-p. 
States

3 broken 

pairs

.-"iS /.

q .p. 2 broken
States or poirs

2 q.p. 1 broken 
or

States pair

BCS state 0 broken 
pair

F IG .4 .  S c h e m a t ic  illu stra tio n  o f  th e  sp ectru m  o f  g ' - H  - E 0(N ) w here  H is  a  g e n e ra liz e d  se n io r ity -co n s e r v in g  
H a m ilto n ia n . S tates b e lo n g in g  to  th e  sa m e  represen tations in  d iffe re n t  n u c le i a re  d e g e n e r a te . A ro ta tio n  in  
the q u a s i-s p in -s p a c e  m ix e s  a ll  th e  states o f  th e  sa m e rep resen ta tion  a c c o r d in g  to  E q .(1 8 7 ) ,  T h e  resu lting  
states a re  c a lle d  z e r o -q u a s i -p a r t ic le  states (th e  B C S  w a v e  fu n c t io n ) , and r e s p e c t iv e ly  2, 4 , 6 e t c . . .  q u a s i
p a r t ic le  sta tes.

We have perform ed here a rotation of our axis and we could use the 
representation where S2 and Sj are diagonal. This is just what is done in 
the B ogolyubov-Valatin method. See the schem atic explanation in F ig . 4. 
Let us define a quasi-particle  creation  operator by

^jin ajm (-1 )i+m a j.m (167)

and let d jm be the associated  annihilation operator. The operation defined 
in relation (167) com bines a tensor with a tensor in the quasi-spin  
space. M oreover, it satisfies

u- + v f  = 1 (168)

in .order to satisfy  the anticommutation relations. T herefore , this trans
form ation is a rotation through a certain angle carried  out by the quasi
spin generators.

We know that we have ajm |0̂ > = 0 and djm | 0^  = 0 where | 5 is  the 
vacuum fo r  the operators djm . The rotation which is identical to the 
B ogolyubov-Valatin canonical transform ation can be found to be a rotation 
around the у -a x is  in the quasi-spin  space of an angle 0 j  related to uj and 
Vj by

ûj = c o s i 0 j ,  Vj = s in 5 0 j (169)

The operator generating the rotation is  just

Uj = exp^L (-l)í i 0 .S 0 (170)
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It satisfies

= Uj a|m Uj"1 (171)

(172)

but each a|m has to be rotated, therefore the total transform ation  is

U =  П Uj  = U a U b . . . U r (173)
j

or

U = e x p ( i ^  ( - l ) ci e . s j , )  (174)
j

This is a product of rotations, it p reserves the sen iority  quantum
number but not the generalized  sen iority  quantum num ber. If we want such
a transform ation  to p reserve  this number we must im pose:

0j =Cl independent of j (175)

then: 4

U = exp (i 6 Sy) (176)

and thus we have fo r  the square of the quasi-spin

[S2, U] = 0 (177)

In this transform ation  we obtain

I 5>  = U I 0>  (178)

By expanding U | 0 and by using, Sy = (S+ -  S. ) /2 i we see that U | 0 can also 
be written as

и | ° > = ^ С у е )(5 +)2 | 0 > (179)
N

where the sum over N extends from  N - 0 to N = 2Г2.
Up to now 9, or v and u , have not yet been determ ined. In the BCS 

theory one im poses the condition

<6 |Ñ|5> =N0 (180)

if  we are interested in a nucleus with N = N0 . This condition is satisfied 
if  we have

£  (2jk + l ) v 2 =N0 (181)
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But since a ll vk are equal we obtain

This fixes the CN(0) unam biguously. If we use U to transform  the component
S 0 we find:

U S0 IT1 = U U '1 = ^4P2~ Q (183)

the action  of U is to make the transform ations a+ -*■ d+ , a ^ d . Then we have 
N -* ^ qp , the operator num ber o f quasi p articles :

d T md jm (184)

v 2 = §  (182)

qp ^  j m  ^  ]m

jm

The right-hand side of E q.(183) may also be written

= c o s e s 0 + sin 8 ^ 2  ' '  (1851

This transform ation, thus, changes the component S0 into a rotated com po
nent S¿ . It transform s a lso  a state having a fixed number of particles into
a state having a fixed number of q u a si-p a rtic les . But because o f relation 
(177), if the state has a given value o f the generalized sen iority  quantum 
num ber before  the transform ation, its value is not affected by the 
transform ation .

We thus can w rite the transform ation  of a state having v particles as

I r* I _ ^ — f i  \  _ . Í0S I Г-1.-1 . V ~  f i  \  M n . tlaSS0 -----—  > 0 - e  y|orSS0 - —¿—  > (186)

■ x
$ l s (0 ,6 , 0) 10-330 = > (187)

E xpression  (187) is just equivalent to expressions (162) or (179). However, 
the coefficien ts  CN(0) o r  GNN are just taken here as a rotation m atrix 
corresponding to the E u ler 's  angles: a = 0, /3 = 0, y = 0. A ccording to its 
expressions the state (186) has v q u asi-p articles , it is obtained by rotating 
a state with v particles (by replacing in the second-quantized expression  of 
this state any creation  operator of a particle  by a creation  operator of a 
qu asi-p artic le ); the average value of N to which it corresponds [9] is ob 
tained by taking

sin2| = ^  (188)

Its expansion in the N -particle  subspace is given by E q.(187), and 
finally its generalized  sen iority  is the same as that which corresponds to 
the states from  which we started.



IAEA-SMR 6/45 531

F or  a given S o r  v g we can generate, by starting, from  different values 
o f v and using E q.(186), (2S + 1) states having a number o f qu asi-p artic les  
in the lim its - S s  S'0 S +S, or

vg S v S 20. -  v (189)

By choosing в p roperly  as in E q.(188) we obtain the same average value,
N 0, for the num ber o f p a rtic les . It is  possib le  to show that not all these 
states a re  physical ones [9]. Indeed, if we pro ject out a state like (186) 
on the space with N0 p articles  we find that there is a single state, to one 
which has

v = v % (190)

which has a n on -zero  p ro jection . A ll the states having v = vg =2, v g = 4, . . . 
2 f2 -v g qu asi-p artic les  are thus com pletely  irrelevant fo r  the problem  of 
N0 p articles  which we are considering.

In this way, one understands better the B ogolyubov-Valatin  o r  the 
q u asi-particle  m ethod. If we construct the com plete basis o f states

|e S =  n ^ vg . s , = _ s >e (191)

having vg qu a si-p a rtic les , this basis w ill give the exact energies of the 
states having an eigenvalue of the generalized sen iority  quantum number 
equal to vg . This, of cou rse , is true only if  we u se ^ ".

Then a p ro jection  on the state having N = N0 gives the exact wave function.
The q u asi-particle  method is  seen to be very  convenient fo r  in terac

tions which do not contain any term s not diagonal in the generalized 
sen iority  representation.

Since this method is used fo r  all the interactions it is very  interesting 
to see whether these interactions contain large term s which are able to 
introduce adm ixtures. This w ill be done in the follow ing. • F or m ore 
details on the application o f the BCS method see P ro fe sso r  P a l's  contribu
tion to these P roceed in gs .

6. GENERALIZED SENIORITY BREAKING OF TW O-BODY INTERACTIONS

6 .1 . The sym m etry-break ing term s

We have shown in chapter 2 that a tw o-body fo rce  can be expanded in 
three term s as fo llow s:

W = y ° + y ¿ + y ¿  (192)

Our firs t  aim  is now to ca rry  out such an expansion fo r  a general tw o-body 
fo rce  and to evaluate the relative magnitude of each o f its term s. The 
answer to this problem  has been known fo r  quite a while in the case of (j) N 
configurations [1 3 -2 4 ] .  In this case there is no problem  about y¿ which 
is proportional to Ñ and, th erefore , is diagonal in the representation . The 
only question is to calculate the m atrix elem ents of in term s of the tw o- 
body interaction m atrix elem ents. B efore giving the resu lts, we must
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point out that the knowledge o f y2 does not n ecessarily  provide the m atrix 
elem ents o f the sen iority-break ing part o f the fo rce . Indeed, by con sid er
ing Eq. ( I l l ) ,  we see that som e tensor term s and also som e vector  term s 
can be diagonal.

This is due to the fact, already pointed previously  by Ichim ura [25] 
and A rim a and Ichim ura [26], that further quantum num bers can be used 
to c la ss ify  the operators .

Indeed, if we con sider the generators o f the sym plectic group in
2 Г2 dim ensions : Sp (2f2), they can be expressed  sim ply in term s o f the 
operators Vq (ab JM) and only in term s of these operators which are quasi 
spin sca la rs . T herefore , the two groups com m ute. We can c la ss ify  then 
the operators accord ing  to the d irect product Sp (2£2) ® SU2 , where SU2 
is the quasi-spin  group. If T is any operator, which could be an irreducib le  
tensor with respect to the quasi-spin  rotations, one can expand it, in turn, 
in term s of irredu cib le  tensors with resp ect to the transform ations of 
Sp (2S7). If [a] = [ctj <t2 • • • °h ] *s the label of the irredu cib le  representations 
of Sp (2£2) one has then

T = Y  t  [o] (193)

[o]
T may contain a sca lar part designated by [00. . .0 ], which w ill be diagonal 
in the generalized  sen iority  representation. Such an expansion can be 
ca rried  out respective ly , for each part o f the right-hand side of E q .(192 ).
It is irrelevant fo r  the firs t  term  y° which may not be a Sp (20) sca la r  but 
which is diagonal since it is a quasi-spin  sca la r . It is n on-triv ia l for y j 
and y§ . One finds

Уо

ООо.-I 
О

 

II + У’о (194)

Уо

ооо04 
О

1!

см 
о

+ (195)

In these two expressions we have isolated  only the sca la r  part under Sp (2£2) 
and we have designated by y'J 012 the sums o f the other ten sors . It can be 
checked [27] that the expressions fo r  the sca lars  are

y i too ...0] = x (N _ n) = 2XS0 (196)

y 2 [00...0] = - g J J [ 3 x 3]2 (197)

where G and X are som e linear com binations o f the m atrix elem ents of the 
fo r c e . Note that these sca lar parts are sim ply identical with the qu asi- 
spin vector  and tensor parts of a pairing fo rce , Eq. (111). H owever, in 
general, 2X f  U.

The tw o-body interaction can now be written in term s of a part which 
is  diagonal in the representation, Wd, and a non-diagonal part as follow s:

w  = w d + w nd

Wd = y °+ X  ( N - f i ) - G  / I  (SX S)2

(198)

(199)

W  = v ' 1 + v ' 2 nd " О  У 0 ( 2 0 0 )
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Equation (199) is  s im ilar  to the tensor expansion of a pairing fo rce  for
which v '1 =v'ß = 0. This is also the case of the SD I which has the further J 0 —J 0 
property  G = 0.

The two term s of Wn(¡ are still quasi-spin  v ectors  and ten sors, and 
are, respective ly , associated-w ith  the selection  rules | Avg | S 2 and
I A v g I -  4 -

The detailed expressions for the operators yjj, y 'o , y'o can be found 
in R ef. [27]. Let us just d iscu ss in which case one has y'§ =0. By using 
the notations of Baranger, i . e .  with G defined as in expression  (12) and F 
defined as

F (abcd j) = -  2^ (2J> + l)W (jajdj bj c;J ,J )G (d abc; J 'J) (201)
J’

we find that y '2 is  expressed  only in term s of

G l2 )' (abcd j) = i  | g  (a b c d j) - ( - 1) ‘а + {с F (abcd j) + (-1 )Jc' Jd + ,+£c+ í(i F (abcd j) |

¿ » c ¿ bd ~ ÔI0 ( - l ) í a + í c  Й Л (202)

where G, which appears a lso  in E q .(198), is defined as

G = „ . / . о ,  )  ( - l ) £a+£b ч/Г2аГ2ь' [G (aabbO) -  ( - l ) {a + íb2F (aabbo)]
1 ’ t í  ( 203)

Note that the com bination o f G and F which appears in G is just the same 
as in the first term  of E q .(202 ). If this particular com bination vanished 
fo r  any abed and J, then G^®' (abcd j) = 0 and y '2 = 0. This cancellation  
happens fo r  all the fo rce s  which satisfy  y2 = 0 like those considered  in 
chapter 3. But now we have a m ore general cr iterion  if

G(2)' (abcd j) = 0 (204)

fo r  all quadruplets abed and J; we have now a n ecessary  and sufficient 
condition to cancel the part o f the interaction which connects vg to vg ± 4 .

Note that all the levels  inside our space appear through G. On the 
other hand, y'J can be expressed  as:

n - Ш  ^ F (aab4 ( * t - Ña) (205)
a b  a

It seem s m ore  d ifficu lt to annulate the coefficien ts  appearing in E q .(205). 
Those are se lf-en erg y  term s which are important in the H artree-F ock  
theory . H owever, if

X ^ F (aabb° ) = c ,  (206)
b

which incidentally is the case fo r  a S D I, we have now y'J =0.
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We must a lso  mention that the sym m etry-break ing term s y'o and y'g 
contribute respectively , to the m atrix elem ents which are non-diagonal 
as w ell as those which are diagonal in the generalized  sen iority  representa
tion. Since the term  y'fj is associated with the least restr ictiv e  selection  ru les, 
I ДVg I S 4, it seem s to be the most dangerou? and should be considered in 
m ore detail. We also must mention that if we introduce a splitting between 
our s in g le -p artic le  levels , the resulting vector term  can, in turn, be ex
panded accord ing to the sym plectic group

The firs t term  which is s im ilar  to relation  (205) is the sen iority-breaking 
term , the second term  is obviously diagonal. Note that the sym m etry- 
breaking term  can be written

Its effect w ill depend on the spreading of the s in g le -p artic le  levels with 
respect to the average value

Let us just examine the problem s which arise  owing to Eq. (204). It is 
much sim p ler to consider the case of a single j-s h e ll. There we must 
drop the indices abed . . .,  and, for  exam ple, we have

A ll these equations are not independent. The right number of independent 
equations has to be found for  each j. It is found that these equations are 
satisfied  [13] autom atically fo r  j s  7 /2 . F rom  j = 9 /2 on, these relations 
are no m ore triv ia l. F or  j = 9 /2  it is  known [28] that the only independent 
condition is

H sm
(207)

a a a

(208)
a a

(209)
a

(210)

Equation (204) can be written

(211)

fo r  all J. By using Eq. (210) we can w rite it in the form

( 2 1 2 )

J'

-6 5  G + 315 G . -  403 G„ + 153G., = 02 4 6 8 (213)
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This relation is satisfied with a good accuracy  by the m atrix elem ents 
deduced from  experim ent in the zirconium  region . It is independent of G0. 
It means that there is only a single independent fo rce  which violates the 
sen iority  sym m etry.

The relations (202) are an extension o f these results to the generalized 
sen iority  sym m etry. One has exactly the sam e problem : to find the 
num ber of independent equations from  which the number of interactions 
violating the sym m etry can be deduced. See fo r  this problem  R ef. [9, 14].

6 .2 . Estim ate of the sym m etry-break ing term s

We now assum e that a tw o-body fo rce  is given and that the relation  
G ®  ' (abed) = 0 is not obeyed. We now want to estim ate the effect of this 
breaking.

The first method is  to exploit the separation of H into three parts:
H =Hd +y 'o  +y'o № e sin g le -p artic le  Hamiltonian can be introduced in 
Hd and y'J as well) and to calculate the strength of each part. This is  a 
method which has also been suggested by J ,B . F rench  [29]. and which has 
a lso  been used in evaluating the im portance o f each term  in a tensor ex 
pansion with respect to SU(3) by Vincent [30]. We define the sca lar product 
of two operators V̂  , V2 by

{ v J V j }  = T r { V 1t V 2}=  Y  <abJM |vf|cdJM ><cdJM |v2 | abJM >
abcdJM  (214)

If Vj = V 2 = two body interaction, this gives the norm  of W, it can be 
written in term s of the G'jS.

! w  I w )  £  , b)[— 6CJ) ' G |a b c JJ > | i  <2151
a bed

J

The sum over the s in g le -p artic le  states spans the space in which the in ter
action is defined, fo r  example the (s -d ) shell. By replacing W su cce ss iv e 
ly by Wd, y '¿ , y '2 one obtains the norm  of each of these op era tors . One 
can then com pare these norm s between them and with the norm  of W. If 
one defines

Sf = { y ' j | y ' j } / { w d | w d }

si = { У'о |у' о } /  { w d I Wd}

and if

Ç2 «  1 (2181

and

Ç2 «  1 (219)

one has then an estim ate that vg is a good quantum num ber. If only the 
second inequality is  true, i . e .  if  there are very  sm all m atrix elem ents

(216)

(217)
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between vg and vg + 4, the interaction has, in this case, the sam e sym m etry 
as a S D I or a pairing fo rce  in a non-degenerate case .

This evaluation o f the norm  can be cr it ic ized  fo r  severa l reasons, in 
particular, because the trace  is lim ited to the tw o-particle  states. There 
is no reason  fo r  not considering the traces over spaces with N la rger .
A lso it is  a sum of square o f m atrix elem ents so that it can probably o v e r 
estim ate the violation fo r  it does not account fo r  accidental cancellation 
which can appear because of different signs of the G 2̂) ' .

TABLE I. VALUES OF AND l\ FOR THE INTERACTIONS LISTED IN 
THE FIRST COLUMN
See R ef. [27] fo r  m ore details about the interactions.

S 2
b i £ 22

SDI 0 0

R osen fe ld  fo r ce 0 .3 8 0 0 .0 0 4

A u e rb a ch 0 .1 2 0 0 ,0 3 6

A rgon n e 0 .0 0 7 0 .0 1 0

K uo (b a re ) 0 .8 2 3 0 .0 1 0

W ig n e r fo r ce 0 .1 3 3 0 .0 6 4

K uo (p o la r iz e d  co r e ) 1 .3 5 8 0 .3 5 5

P airing  + q u ad ru p o le 0 .1 2 5 0 .2 7 1

P ure q u a d ru p o le 0 .3 0 8 0 .6 6 9

In R ef. [27] a large  number o f interactions have been studied c o r r e s 
ponding to particles  in the lp  shell as w ell as to particles  in the shell o f 
the Pb isotopes. F rom  this referen ce .w e extract a few results which are 
typical of the interactions which were con sidered . We w ill take the case 
of the Ni region  in Table I where all kinds o f fo rce s  have been considered.

We see that fo r  many interactions is large while is large in a 
very  few ca ses , mainly when the quadrupole part of the interaction is en
hanced. The quadrupole fo rce  is-indeed that fo rce  which has by far the 
largest y '2 term . In the case of rea listic  fo rce  Kuo (bare) and Kuo 
(polarized  core ) it is  seen that the inclusion of the polarization  of the core  
in creases the non-diagonal part y'o which becom es of the sam e order as in 
the case of a pairing plus quadrupole fo r ce . Except in these three cases 
the magnitude of Ç| is  rather sm all. It is then very  interesting to examine 
separately the effect of y'J and of y'§ on the properties of the system  itse lf.

7. INFLUENCE OF THE SYMMETRY-BREAKING TERMS

In the preceding sections we have studied the tensor analysis of a 
general tw o-body interaction . We have d iscussed  the properties o f the 
sca la r  part o f the Hamiltonian, and fo r  any interaction we have carried  out 
the ten sor expansion. We now want to see what are the effects o f the 
sym m etry-break ing term s on the properties o f the system  itse lf. We shall 
con sider severa l p ossib ilities  o f taking into account the sym m etry-breaking 
te r m s .
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7 .1 . Exact diagonalization

This procedure can, o f cou rse , be used, since our s in g le -p artic le  
space is finite, and the m any-particle  basis which is spanned is a lso  finite. 
T h ere fore , we can perform  an exact sh ell-m odel diagonalization (ESM) 
which con sists of:

(a) constructing the com plete set of states for  N p articles  in the r 
levels,

(b) calculating the m atrix .elem ents of H in this basis,
(c) diagonalizing H.

This p ro ce ss  must, o f cou rse , be carried  out num erically, the techniques 
to construct the basis and the m atrix elem ents are standard sh e ll-m od el 
techniques [1 3 -1 8 ] . The lim itation com es from  the dim ension of the basis 
and o f the m a tr ices . The main groups which have been using these ideas 
are the W eizm ann Institute group, the Argonne and the Oak Ridge groups. 
The Oak Ridge code is the best at the moment since it can deal with 
600X600 m atrices .

Many people all around the world have also been constructing sh e ll- 
m odel codes, these codes are, however, much m ore  lim ited than the last 
two quoted above.

By fu lfilling this program  one obtains energies and wave functions and 
can regard the effect o f introducing the sym m etry-break ing term s. F or 
the id en tica l-p a rtic les  case one can take a rather large num ber of particles 
into account.

Such a program  was firs t  investigated by the Argonne group [18].
They have pointed out that vg is a very  bad quantum num ber while on the

contrary  v v i can be very  useful fo r  labelling the low est eigenstates 
i

of a two body interaction.
This can be seen from  Table II where the only term s in the interaction 

violating the sym m etry are the s in g le -p artic le  energies which have been 
taken from  experim ent (207Pb). The spectrum  o f 205Pb, on the other hand, 
can be seen from  F ig . 5.

It is seen in this table that while the percentage of Vg = 1 is very  low 
for the low -ly in g  states the percentage of v = 1 is quite high. This is true 
m ore generally, the s in g le -p artic le  energy splitting in trodu ces quite a 
large m ixing. On the other hand, among the. states of the even or odd

TABLE II. PERCENTA.GE OF v = 1 AND v g = 1 IN THE WAVE FUNCTIONS 
OF AN E S M  CALCULATION USING SD I AND NON-DEGENERATE 
SING LE-PARTICLE ORBITS FOR 2<>5pb (See R ef. [22]).
The states in question are the low est fo r  a given angular momentum j.

j  7Г P e rce n ta g e  o f  v  - 1 P e rce n ta g e  o f  V g = l

1 / 2 - 99 71

3 / 2 - 91 3 9

5 / 2 - 97 40

7 / 2 - 0 0 .3

1 3 /2  + 98 48
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F IG .5 .  S p e c tru m  o f  z0 5P b, th e o ry  and e x p e r im e n t . T h e  t h e o r e t ic a l  sp ectru m  [2 2 ]  has b e e n  c a lc u la t e d  w ith  
S D I  and th e  e x p e r im e n ta l s in g le -p a r t ic le  sp acings o f  201 P b . T h e  dashed le v e ls  a re  not w e l l  id e n t if ie d .

nuclei, there are always som e states which are pure v = 0, 1, 2 or even
3 states. We must now look fo r  a study o f the violation in an other way 
but litera lly  we can a ssert that Vg is a bad quantum num ber.

7 .2 . The B C S  method

An other possib ility  of calculating the spectra when we have Wnd f  0 
w ill be the use of q u asi-particle  approxim ations [3]. These approxim ations 
can be sum m arized b r ie fly  as fo llow s.

(a) Let us define the qu asi-particle  annihilation and creation  opera
tors  as in Eq. (167} and define the rotation operator U with 0j depending 
on the states j as in Eq. (174).

(b) Let us define the vacuum associated  with these operators |5̂ > and 
con sid er it to be a tria l wave function. The param eters Oj , Vj , or  equi
valently 9 j, are  then determ ined by satisfying the two m inim ization
cond itions

ó < 0 1 HI 0>  = 0 (218)

< ÔI Ñ I Ö> = N0 (219)

These two steps constitute the B C S  method o r  the B ogolyubov-Valatin  
method. It defines a new state |0^ having, on the average, N0 particles 
which is in a way analogous to the vg = 0 state. When the interaction is 
taken purely as Wd , the d iscussion  o f chapter 4 has shown that it is a 
com bination o f a ll the Vg = 0 states fo r  a ll the values of N.

This state can be also written in the B C S  form  [3]

° >  =7rjm№j + ç j ■(-1) J+maJmaf . m)|0> (220)
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The pro jection  o f that state onto the subspace having No particles  does not 
have Vg =0. H owever, if 6j f  C l , one can show that

P N 0 l ° >  = C t  ( X  ^ h A o ) ®  1 °  >  ( 2 2 1 )

i
This is  identical with a vg = 0 only if Vj /0  ¡ = C 1, which im plies a very  
specia l B C S  wave function. This solution is obtained fo r  the operator Wj ; 
however, m ore generally, if  Wnd is present, v¿ and are not constant.

7 .3 . D iscussion  o f the B C S  method

This method has been applied now for 1-0 years in nuclear physics and 
it has been found to be very  su ccessfu l. One has been using | 5 У or  its 
NQ-p ro je ction  as approxim ations to the ground state. We must retain that 
this B C S  wave function

1) has v = 0, independently of the v and ü.
2) does not have v g = 0, but is built in the sam e way as the vg = 0 wave 

function, i . e .  as a product of pa irs.
This method was initiated in the theory of superconductivity where no 

relationship was set up with the seniority  quantum num ber. Though the 
method has been used fo r  a long tim e in nuclear physics, it was not pointed 
out until recently  [26 -  27] that the method is based on the assum ption that 
the term  Wd should be much la rger than Wnd .

If the generalized  sen iority  sym m etry is not invoked it is very  difficult 
to understand why expression  (221) should be a very  good approxim ation 
in many ca ses , and above all why it contains so few param eters.

It is well-know n that the com plete basis of an exact sh e ll-m od e l ca l
culation can be extrem ely  la rge . If no particu lar sym m etry is assum ed 
fo r  the Hamiltonian or som e of its part, it is  very  difficu lt to im agine 
approxim ate solutions. To em phasize this point, let us con sider only the 
calculation of 0+ states in the s in g le -c lo se d -sh e ll isotopes. To sim plify

the problem , we w ill con sider only the basis having v = ^  v ¡ which is

appropriate fo r  a pairing fo rce . *
If one con siders firs t  62Ni which has six  particles  and take only 3 single

particle  levels we obtain, fo r  exam ple, nine states with v = 0; these states 
have the form

I ( 2 p l /2 ) ^ o (2 p 3 /2 )nv2=o( l f 5 /2 ) ^ 0> (222)

with n1 + n 2 + n 3 = 6.
If we take H6Sn with five subshells the basis is

| (2d5 /2 )^o ( lg 7 /2 )^ o ( 3 s l /2 ) £ 0 (2 d 3 /2 )^ Q ( l h l l / 2 ) * ,  > (223)

with n j +П2 + ......... + n 5 - 16. We then obtain 110 sta tes . This means that
in the first case we have nine param eters in the wave functions while we 
have 110 in the last case!

There is no such freedom  in the B C S  wave function which has only 
two param eters for  Ni and four param eters in Sn. Since this wave function 
is still lim ited to the v = 0 subspace we may expect it to be quite a poor
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approxim ation to the rea l ground state. However, it was found, first by- 
Kerm an Lawson and M acFarlane [16] fo r  the pairing fo rce , then by many 
other authors [18] who used the pairing fo rce  o r  even other interactions, 
that this wave function is extrem ely good. In a work on Sn isotopes [7] it 
was shown that overlaps as large as 0. 992 could be obtained by com paring 
the exact wave function with the N o-projected  B C S  state.

Such good overlaps could not be obtained if the rea l wave function did 
not have a pair structure as in the B C S  state. Such a structure is p ro 
vided by the part of the interaction  diagonal in the generalized  seniority  
representations, i . e .  by W<¡. It is seen that a possib le  effect of the 
sym m etry-breaking term s is to keep the m em ory of this sym m etry and 
just to change the weight of the pairs in the operator which now plays the 
ro le  of S+ (C ooper pair).

With this in mind we can say that sym m etry is p reserved . This is 
true for s in g le -p artic le  spacings and interaction strengths which are c lose  
to the values needed fo r  a reproduction o f experim ental resu lts . If the 
spacings (208) are very  large the B C S  wave function cannot be so good 
any longer.

It is quite interesting now to see the results for this overlap if we 
change the interaction and consider fo rce s  with quite a large variety of
tensor term s v I1 and y£ '.J 0 J 0

This is shown in the F igs 6 and 7. In these figures one sees a clear 
relationship between the value o f the number which we have taken as a 
m easure of the sym m etry breaking, and the "goodn ess" o f the P B C S  wave 
function. As in creases the overlap d ecreases because the tensor term  
introduces com ponents in the wave functions which are lacking, for exam ple, 
components having vg = 4, v g = 6 etc. . . . which are m ore and m ore im portant. 
A sm all value of or o f Çf does not n ecessarily  mean that vg is con 
served, it means, however, that the structure of the wave function is that 
which has been predicted  by considering the vg = 0 wave function.

We have, how ever, to define what we mean by Ç|,being sm all. By con 
sidering the exam ples [8] o f Table III we see that sm all does not mean 
the sam e thing fo r  all interactions. The overlap is la rger for  a pairing 
fo rce  than fo r  K uo's m atrix elem ents while the are the other way round. 
A lso the pairing plus quadrupole fo rce  gives approxim ately the sam e result 
fo r  a very  different value of the The case of the K uo's interaction can, 
however, be explained by the large value of .

The evaluation of is , on the one hand, a very  c lear indication that 
there is a connection between the tensor part of the fo rce  and the structure 
of the exact wave function. On the other hand, the results of Table III 
show that it is certainly difficult to define a value o f f ° r which one can 
be sure that this structure is fixed. The m easurem ent o f the violation by 

certainly  gives a rough estim ate o f the sym m etry violation; other 
cr iteria  have to be studied.

7 .4 . O n e-qu asi-particle  states in odd nuclei

In the q u asi-particle  theory an elem entary excitation can be defined as

d?m|0> (224)

It ca rr ie s  an angular momentum j with component m . In the quasi-particle
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FIG . 6 . M a g n itu d e  o f  th e  ten sor te rm , fo r  a G aussian fo r c e ,  m easu red  b y  th e  c o e f f i c ie n t  d e fin e d  by  

E q . (2 1 6 ) o f  th e  tex t  and b y  th e  o v e r la p  I < 'l 'ex a ct I ф PBCSJ 12 •
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F IG . 7 . M a g n itu d e  o f  ten sor te rm  fo r  a p a ir in g  p lus q u ad ru p o le  fo r c e  as a fu n c t io n  o f  th e  in ten sity  o f  the 
q u a d ru p o le  p a rt.

form alism , the excitation energy of this state can be calculated [3]. We 
shall con sider here only the structure of the wave function which is im plied 
by-definition (224) by studying its N -pro jection .

Let us introduce the new pair operator

(225)

the N -pro jected  wave function of the operator (225) is now seen to be

N - 1  
2 0> (226)

. it has a structure s im ila r  to the v g = 1 states, Eq. (70). With that in mind 
we can analyse the structure o f the exact wave function of, fo r  example, 
205Pb. This is done in Table IV.

We see here that the weights of the sen iority-one states are nearly 
independent o f the angular momenta o f the hole. T herefore , the concept 
o f a pair holds in this case , too. Owing to the large sen iority -con serv in g  
part of the tw o-body fo rce  we obtain a very  specia l configuration mixing
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TABLE III. EXAM PLES FROM REF. [8]

c 2
2 P ro je c t io n r 2

b i

P a irin g  + q u a d ru p o le 0 . 2 1 1 0 .9 6 0 ,1 2 5

A rgon n e 0 .0 3 6 0 .9 5 0 .0 0 7

A u e rb a ch 0 .0 1 0 0 .9 7 0>036

K u o (p o la r iz e d  c o r e ) 0 .3 5 5 0 .7 8 1 .3 5 8

TABLE IV. STRUCTURE OF 206Pb AND 205Pb

N u cleu s State < p l / 2 )-2 ( f 5 /2 ) -2 С р З /2 )-г ( i  1 3 /2 )  ¿2 ( f 5 /2 ) -2 % v =  1 R2

206 рь
° f 0 .7 9 4 0 .2 5 6 0 .4 3 7 0 .1 6 1 - 0 . 2 9 5

205 pb 1 / 2 - - 0 .3 7 9 0 .8 0 7 0 .2 0 2 - 0 . 3 9 2 9 8 .9 9 7 .6

3 / 2 - 0 .8 2 8 0 .1 4 1 0 .3 6 3 0 .1 3 0 - 0 . 2 4 4 9 1 .4 9 9 .0

5 / 2 - 0 .8 6 6 0 .2 1 5 0 .3 0 1 0 .1 3 6 - 0 . 2 4 9 9 6 .6 9 8 .4

1 3 /2 + 0 .8 1 5 0 .2 4 1 0 .4 1 5 0 .1 5 0 - 0 . 2 4 8 9 7 .8 9 9 .9

N ote : First lin e : s e n io r it y -z e r o  co m p o n e n ts  o f  th e  g ro u n d -sta te  w a v e  fu n c t io n  o f  206P b . O th er lines: 
s e n io r ity -o n e  co m p o n e n ts  o f  th e  lo w e s t  states in  205P b . Eighth co lu m n : p e r ce n ta g e  o f  sen ior ity  o n e ;  
last co lu m n : square o v e r la p , in  p e r c e n t , o f  th e  w a v e  fu n c tio n  o f  205Pb w ith  th e  g ro u n d -sta te  w a v e  fu n c t io n  
o f  20брь p lus a  h o le  in  a sta te  j . T h e  in te r a c t io n  used is a  S D I [2 2 ] .

of v = 1 states which is alm ost independent of the additional hole in the 
gound state o f 20брь.

Note the pair corresponding to j = 1/2  is not the sam e. This is due to 
the fact that the largest component in S+ correspon ds to ( p l /2 ) '2 . Adding 
a further hole in the state (1 /2 )"1 is not allowed by the Pauli princip le . 
T herefore , the pair should redistribute itse lf among the leve ls  in the best 
possib le  way. This has been called the blocking effect.

Note a lso  that the 7 /2 "  state is not present in that table although we 
have taken into account the f7/ 2 level. Indeed the 7 /2 ’  is not found at low 
energy. Since it is much low er in the potential w ell it has a higher excita 
tion energy. T herefore  the state

a 7/2(p .)| 0>  (227)

should lie  higher in E q. (227); | 0]> denotes the ground state o f the nucleus 
208pb. T h ere fore , one must use p_ instead of p. where p . = (p+)+. It will 
then lie  near other states having v = 3 and it must interact with them. This 
state should then be distributed among many other 7 /2 ” levels (see F ig . 8).

T herefore , the concept o f a quasi-particle  excitation is essentially  
the sam e as the concept o f generalized sen iority -on e  state. This concept 
holds with the sam e accu racy  in other nuclei [22] where such an analysis 
o f the structure o f the wave function has been made, for exam ple, in MNi, 
211At. What is n ecessa ry  for this concept to be valid? The exam ple of 
205р ь  and o f the state f7 /  2 ~ shows that it is not sufficient that the tw o-body 
interaction contains a large Wd and y'J is sm all. We requ ire  a lso that the 
generalized  sen iority -on e  state should be w ell separated from  those of
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Energy 2 

MeV 7/2-

■'Vll

% -

' 3/2-
5/2-

V2-
14.p. 3q.p.

F IG . 8 . C o m p a r iso n  o f  th e  o n e -q u a s i - p a r t i c le  and th r e e -q u a s i -p a r t i c le  sp ectru m  in  205 P b. O n th e  le f t -h a n d  
s id e  th e  o n e -q u a s i -p a r t i c le  le v e ls  a re  p lo t t e d .  O n th e  r ig h t-h a n d  s id e , th e  p o s it io n  o f  th e  t h r e e -q u a s i -p a r t ic le  
e n e rg ie s  c a lc u la t e d  at th e  lo w e s t  ord e r  for j  = 7 / 2 " .  It is o b v io u s  th en  that a q u a s i-p a r t ic le  7 / 2 "  ca n n o t  e x is t . 
T h e  in te r a c t io n  is  a S D I .

generalized  sen iority  three. This is an extra condition which depends on 
the interaction  as w ell as on the s in g le -p artic le  en erg ies . No work has 
yet been done on the influence of these two param eters on the overlaps as 
we have done for  the ground-state wave functions. We know, however, 
that this concept is meaningful since it is so su ccessfu l when a com parison  
is made with experim ent [10].

7 .5 . Several q u asi-particle  states

In the qu a si-p a rtic le  theory one can construct excited states having any 
num ber of q u a s i-p a rtic les . F or  this purpose one uses exactly the same 
techniques as for constructing states of a given number of p a rtic les . F or 
exam ple, a tw o-q u a si-p a rtic le  state of angular momentum J can be defined as

|(ab) JM >= ^  <Jaj bmam b | JM > c fmad ; mb |o>  (228)
m m .  a b

By allowing the set (ab) to run over all the tw o-s in g le -p a rtic le  levels one 
constructs the com plete set of two q u a si-p a rtic les . This set can be used 
to diagonalize the total Hamiltonian accord ing  to a method called  the 
T am m -D ancoff method [15]. Let P be the m atrix

F ab cd = < a b  J M | H | c d  J M >  (2 2 9 )

of H in this tw o -q u a si-p a rtic le  space. The eigenvalues of P and its eigen
values can be taken as approxim ate eigenvalues and eigenstates of H for 
the nucleus having Nq p a rtic les . This method has been used with m oderate
su ccess  in the past [33]. F rom  the d iscussion  o f chapter 4 we see that this
method is  exact if 'H = W d; in this case a diagonalization o f P is exactly 
equivalent to a diagonalization of H in the vg = 2 basis . If Wnd f  0 the 
method is no longer exact. P ro jectin g  out states (228) with the operator 
P No we find
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P N I (ab) JM > = A+ {ab JM) S+ 2 | o >  (230)
о

i . e .  the tw o-qu asi-p artic le  states are one broken -pair states (for J = 0, 
a specia l case, see R ef. [9]).

The T am m -D ancoff method can be applied to odd nuclei, by taking into 
account 1 +3 + etc. . . qu asi-particles  or to even nuclei by taking
0 + 2 + 4 + etc. ._. q u a si-p a rtic les . There a slight generalization  o f the 
method is used. The number o f q u asi-particles  is no longer considered to 
be a good quantum num ber. This is an idea s im ilar to that of mixing 
states having vg = 1, 3 etc . or  Vg =0, 2, 4 etc . . . Such methods, m ore 
com plex than the on e-qu asi-p artic le  o r  the tw o-qu asi-p artic le  methods have 
been applied in the past [34-35].

Another possib ility , is  to operate, for  exam ple, d irectly  in the basis 
(230), i . e .  to diagonalize H in a on e-brok en -pa ir basis or, m ore generally, 
one can use a basis having zero  + 1+2  + e tc . . . broken p a irs . This method 
has been developed recently  by L orazo [7, 8].

It is  a very  interesting question to ask in which case the m ixing be
tween states having a different number of broken pairs is im portant. F rom  
the work o f R ef. [8] we see that two things play an important ro le :

(a) the magnitude of Wd , or, separately, o f y'J and y 'g .
(b) the unperturbed energy d ifferen ces of states having a different vg .

F or exam ple, fo r  a pairing fo rce , states of different vg are quite far apart. 
On the other hand, for  a S D I som e states having v g = 2 are degenerate with 
the states having vg = 4 (F ig .3 ). In this case, even a sm all non-diagonal 
term  in the interaction  can introduce important adm ixtures of the two states. 
The method can, however, be used provided there is not a large admixture 
between states d iffering  by a large number of broken pa irs. In 60Ni, for 
exam ple, and fo r  the 0+ excited states, L orazo  has shown that one must 
include 1+ 2  + 3 broken -pa ir states in the low est excited states. This is as
com plicated as the exact resu lt in this case : However, if these results w ere
valid for  another region, fo r  exam ple, in the Sn-isotope region, it would 
still be of som e in terest.

The qu a si-p a rtic le  method is d iscussed  in greater detail in P ro fe sso r  
P a l's  contribution to these P roceed in gs.

N - 2

7. SUMMARY

In the preceding chapters we have shown that the exact m odel of a 
pairing fo rce  o r  o f a S D I are  very  useful for an understanding of the exact 
m ethods or the approxim ations of the shell m odel. We have considered 
the sym m etry properties o f these interactions in greater detail. We have 
shown that fo r  any general interaction we can isolate a part in the in terac
tion  which has this same sym m etry, and a part which v iolates the sym m etry. 
The relative magnitude of these parts have been tentatively estim ated as 
w ell as the effect on the structure of the wave function. It has been shown 
that this sym m etry-break ing part must be sm all in ord er that the approxi
mation method as, e .g .  the B C S  method can be applied.with som e 
con fiden ce .

We should like to point out that, with and Ç|, we certainly  have a 
very  broad idea of the sym m etry breaking. Other ways of m easuring it
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have to be found in the future. On the other hand, we have found that the 
sym m etry-break ing term s can conserve the structure of the wave functions 
as w ell as the elem entary-excitation  m odes of the system  with good 
approxim ation. Thus, the generalized  sen io r ity -ze ro  wave function is a 
product o f pa irs, the sam e as the B C S  wave function. This is  a very  new 
way of introducing sym m etry-break ing e ffects .

The same kind o f d iscussion  has to be made fo r  other sym m etry groups, 
for exam ple, for the SU3 group, and for deform ed nuclei as has also been 
proposed by French  [31]. This rem ains to be done in the future.

I would like to thank O. Bohigas, B. L orazo  and C. Quesne for their 
collaboration  and fo r  many cr it ica l com m ents during this w ork.
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THEORY OF NUCLEAR V IB R A TIO N .
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m o d e ; 6 .  R ev iew  o f  a p p lic a t io n s  o f  the th eory .

1. INTRODUCTION AND OUTLINE

The subject m atter of this contribution is the phenomenon of nuclear 
vibration. The topic is also d iscussed  in these P roceed ings by Z . Szymanski, 
and G. Alaga. We shall, th erefore , avoid going into many of the phenom eno
log ica l details, and shall concern  ourselves m ostly  with a m icroscop ic  
description  of the phenomenon.

The nucleus is a m any-body system , consisting o f nucleons m oving in 
an average potential field , and interacting weakly through a residual in ter
action. It is  obvious that such a m any-body system  w ill have excited  states 
corresponding to the. excitation o f one or a few p artic les . This type of 
excitation mode of the nucleus is well-known near closed  sh ells . There is 
an altogether different kind of excitation mode of a m any-body system  -  a 
m ode in which many particles participate in a coherent manner. Such a mode 
is  well-known in the m an y-electron  problem , where one gets a coherent 
plasm a mode of oscilla tion . Sim ilar oscillation  m odes have also been observed  
in nuclei; as a m atter of fact, we have a very  r ich  variety here, distinguished 
from  each other through the angular momentum (J), the parity (jt), and the 
isosp in  (T) of the phonon associated  with the vibrational m ode.

The m ost im portant nuclear vibrations, c la ss ified  in this manner, are:
(1) the giant dipole oscilla tion  (Jïï =1" ,  T = 1), (2) the quadrupole vibration
(2+, T = 0), and (3) the octupole vibration (3‘ , T = 0).

F or th eoretica l purposes it is convenient to class ify  the vibrational 
states accord ing.to the type of nuclei to which they belong. In this way we 
have the theory of vibration of (1) c lo sed -sh e ll nuclei, (2) spherica l non- 
c lo se d -sh e ll nuclei, and (3) deform ed nuclei, which d iffer from  each other 
in som e details. The basic  concepts, as outlined below , are, however, the 
same fo r  all these different ca ses .

The s in g le -particle  leve l schem es fo r  the three different cases and the 
highest occupied  lev e l (F erm i level) X have been shown in F ig. 1 .1 . In the 
case of the c lo sed -sh e ll nucleus the level im m ediately above X is separated 
from  it by a large interval (the spacing between two shells), and hence 
excitation of a nucleon from  the occupied  levels  (below and up to the leve l X) 
to the low est unoccupied one requ ires  a fa ir ly  large  amount of energy. The 
ground state, th erefore , is a fa irly  good c lo se d -sh e ll state having an occu pa
tion probability P, below  and above X, as depicted in F ig . 1. 2a. The state 
obtained by exciting a nucleon from  an occupied leve l to an unoccupied level
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(a) (b) (с )

F IG . 1 .1 .  S in g le -p a r t ic le  le v e l  s ch e m e s  in  d iffe re n t  types o f  n u c le i :  (a )  c lo s e d -s h e l l  n u c le i ,  ( b )  n o n -c lo s e d -  
sh e ll sp h e r ica l n u c le i ,  ( c )  d e fo rm e d  n u c le i .  T h e  le v e l  d en otes  th e  h igh est o c c u p ie d  sta te.

P -  

(b )

FIG . 1 .2 .  P ro b a b ility  o f  o c c u p a t io n  o f  s in g le -p a r t ic le  states: (a )  c lo s e d -s h e l l  n u c le i ,  (b )  n o n -c lo s e d  shell 
sp h e r ica l and d e fo rm e d  n u c le i .

is  u su a lly  c a lle d  a state o f the o n e -h o le , o n e -p a r t ic le  (1 hp) type, beca u se  
in  th is p r o c e s s  o f  ex cita tion  a v a ca n cy  (h ole) is  le ft  in  the occu p ie d  le v e l 
and a " p a r t ic le "  is  p rod u ced , in stead , in one o f the u n occu p ied  le v e ls .  This 
type o f ex cita tion  is  a p o s s ib le  e lem en ta ry  m od e o f  ex cita tion  o f  a c lo s e d -  
sh e ll n u cleu s, and such  a m ode has an en erg y  v e ry  n ea r ly  equal to  the 
sep a ra tion  o f  the tw o sh e lls  at the top  o f  the F e r m i-s e a .  H ow ever, i f  we 
le t each  o f  the n u cleon s in  the F e r m i-s e a  get e x cite d  in  turn  above the sea , 
we have a w hole se t o f  1 h p -type  states o f  the c lo s e d -s h e l l  n u cleu s. The 
qu estion  is :  can  th ese  independent p a rt ic le  m od es  o f  the d iffe ren t F e r m i-s e a  
n u cleon s act coherently , and bu ild  up a c o lle c t iv e  type o f  ex cita tion  m od e?
W e sh a ll se e  in  th is p ap er that the an sw er to  th is qu estion  is  a ffirm a tiv e , 
and the resu ltan t coh eren t state is  a v ib ra tion a l state o f the c lo s e d -s h e l l  
n u cleu s . The ex a ct m eaning  o f  the w ord  "v ib ra tio n "  in th is context w ill 
be  m ade m o re  quantitative as we go along.

L et u s now go ba ck  to  F ig s  1. lb , 1. l c ,  and 1. 2b and exam ine what 
happens in  the c a se  o f n o n -c lo s e d -s h e l l  s p h e r ica l and d e fo rm e d  n u cle i. The 
on ly  d iffe r e n c e  betw een  th ese  tw o c a s e s  is  in the nature o f  the s in g le -p a r t ic le  
sta te s . In the c a se  o f  s p h e r ica l n u cle i [F ig .  1. lb ]  the states a re  la b e lle d  by 
the quantum n u m bers (n i jm ), and the sep ara tion  betw een  the m a jo r  sh e lls  
is  s t i l l  la rg e . On the o th er  hand, the s in g le -p a r t ic le  sta tes o f the d e form ed  
n u cle i [F ig .  1. l c ]  a re  su p e rp o s itio n s  o f  s e v e r a l se ts  o f  (n-2jm); f o r  ax ia lly  
sy m m e tr ic  n u cle i on ly  m is  a good  quantum n um ber. In th is c a s e , the le v e ls  
be lon g in g  to  v a r io u s  m a jo r  sh e lls  a lso  co m e  c lo s e r  to  each  oth er , and can 
even  pen etrate  in to each  o th er  fo r  a la rg e  d e form a tion . The m ain  point o f 
ou r in te re s t , at the p resen t m om ent, is  what o c c u r s  n ear the F e r m i le v e l X. 
In both  c a s e s , th ere  a re  s e v e r a l s in g le -p a r t ic le  en erg y  le v e ls  w hich  crow d
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to g e th e r  in  th is en erg y  re g io n . As a con seq u en ce , ou r  p ic tu re  o f  a sharp  
F e r m i- s e a  as the ground state o f  th ese  n u cle i is  bound to  be  ra th er  p o o r .
S ince it c o s ts  v e r y  lit t le  en erg y  to  p ro m o te  a n ucleon  fro m  the F e r m i-s e a  
to  one o f th ese  crow d ed  le v e ls  im m ed ia te ly  above X,  we ex p ect that the ground 
state w ill conta in  su ch  ex cita tion s  m aking the occu p a tion  p ro b a b ility  o f  le v e ls  
im m e d ia te ly  be low  and above X depart fr o m  th e ir  id e a l v a lu e s , 1 and 0, 
r e s p e c t iv e ly . T h is p ic tu re  o f  the g rou n d -s ta te  having a d iffu se  s in g le -p a r t ic le  
p ro b a b ility  d is tr ib u tion  is  show n in  F ig . 1. 2b. S ince the ground state is  
a lrea d y  som ew hat co m p lica te d  fo r  th ese  n u cle i, it is  not im m e d ia te ly  obv iou s 
what s o r t  o f e lem en ta ry  e x cita tion s  w ill take p la ce  in th em . We sh a ll show  
in  th ese  le c tu r e s  that it is  s t i l l  p o s s ib le  to  find  a p p rox im a te ly  the e lem en ta ry  
e x cita tion  m od es  ca lle d  "q u a s i -p a r t ic le s " ,  o f  such  a sy s te m . In th is a p p ro x 
im ate  th e o ry , the ground state o f  F ig . 1. 2b w ill be c h a ra cte r iz e d  by  the 
a b sen ce  o f  any q u a s i-p a r t ic le ;  the sta tes o f  o d d -m a ss  and even  n u c le i w ill 
c o r r e s p o n d , r e s p e c t iv e ly , to  an odd and even  num ber o f  q u a s i-p a r t ic le s .
F o r  an even  n u cleu s, the e lem en ta ry  ex cita tion  m od es  o f the lo w e st e n e rg ie s  
w ill thus c o rr e sp o n d  to  a p a ir  o f  q u a s i-p a r t ic le s . T h is is  v e r y  m u ch  analogous 
to  the hp p a ir  ex cita tion  m ode o f a c lo s e d -s h e l l  n u cleu s. T h e r e fo r e , in  a 
s im ila r  m ann er one can  bu ild  up a m ic r o s c o p ic  th e o ry  o f  v ib ra tion  c o r r e s p o n d 
ing  to  F ig . 1. 2b by  the coh eren t su p e rp o s itio n  o f  q u a s i-p a r t ic le  p a ir  sta tes. 
T h is , in sy n o p sis , is  the m ain  id ea  behind the m ic r o s c o p ic  th eory  w hich  we 
sh a ll d ev e lop  in  th is  p a per.

T he m ic r o s c o p ic  p ic tu re  o f  v ib ra tion , as ou tlin ed  above , apparently  
s e e m s  ra th er  fa r - fe t c h e d  fr o m  the c la s s ic a l  p ic tu re  o f  v ib ra tion , w hich 
co n s is ts  o f  a c e rta in  dyn a m ica l v a r ia b le  o s c illa t in g  as a fu nction  o f  t im e .
In r e a lity , h o w ev er , th ere  is  an u n d erly in g  link  betw een  th ese  p ic tu r e s , and 
one o f ou r a im s in  th is p a p er  w ill be  to  p r e s e r v e  th is link  as m uch  as p o s s ib le . 
W e sh a ll se e  that the n u c lea r  v ib ra tio n a l state w hich  is  a coh eren t s u p e r 
p o s itio n  o f m any e lem en ta ry  ex cita tion  m od es  o f  the h o le -p a r t ic le  (o r  p a ir -  
o f -q u a s i -p a r t ic le s )  type c o r r e s p o n d s  to  a s in g le -p a r t ic le  den sity  v a r ia b le  
that in deed  o s c i l la t e s  with t im e . T he equation  o f m otion  fo r  the o s c illa t in g  
d en sity  and the sy stem  o f  lin e a r  equations that con n ect the e lem en ta ry  
ex cita tion  m o d e s  are  e x a ctly  id en tica l.

In the p a p ers  on H a r tr e e -F o c k  (H F) th e o ry  in  th ese  P r o ce e d in g s , w e have 
seen  that the s in g le -p a r t ic le  den sity  is  s e l f -c o n s is te n t ly  con n ected  to  the av era g e  
n u c le a r  f ie ld . T h e r e fo r e , the o s c illa t io n s  that w e a re  dea lin g  w ith can  equ iva lently  
be  look ed  upon as o s c illa t io n s  o f  the a v erag e  H F -p oten tia l. W e shou ld  keep in  m ind, 
h ow ev er , th atth is kind o f  v ib ra tion  d oes  not exhaust a ll the p o s s ib il it ie s  f o r  a 
n u c leu s . One exam p le  o f  s ta tes co rre sp o n d in g  to  v ib ra tion s  o f  an o th er kind o f  
d y n a m ica l v a r ia b le s  is  d is cu s s e d  e lse w h e re  in  th ese  P r o c e e d in g s ; th is is  the c a se  
o f  p a ir in g  v ib ra t io n s , qu a lita tive ly  d e s c r ib e d  by G. A laga , and trea ted  in  deta il 
by  G. R ipka. The d y n a m ica l quantity that v ib ra te s  h e re  is  the p a ir in g  den sity , o r , 
equ iva len tly , the p a ir in g  p oten tia l.

W e sh a ll beg in  b y  d e s c r ib in g  s e v e r a l  g en era l m ethods o f trea tin g  
v ib ra tion . A ll th ese  m ethods have b een  applied  by  v a r io u s  authors in 
d e r iv in g  the equations fo r  n u clear  v ib ra t io n s . N eed less  to  say  that the fin a l 
equations one d e r iv e s  a re  independent o f  the m ethod  u sed . In th ese  le c tu re s  
we sh a ll p re se n t th is d e r iv a tio n  in  tw o d iffe re n t w ays. The f ir s t  w ill be 
a tim e-d ep en d en t trea tm en t, and w ill conta in  the s e m i- c la s s ic a l  p ic tu re  
o f  an o s c illa t in g  den sity  d is tr ib u tion ; the secon d  d er iv a tion  w ill be m o re  
fo r m a l, and b a sed  on the tra n s fo rm a tio n  o f  the H am iltonian o f  the m a n y - 
b od y  sy ste m  to  a fo rm  that c le a r ly  sh ow s w hich  is  the part re sp o n s ib le  fo r
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the v ib ra t io n s , and then what is  le ft  o v e r  a fte r  su ch  a treatm en t. T he secon d  
m ethod , th e r e fo re , a llow s a natural ex ten sion , w hich  en ab les one to  in 
co rp o r a te  the e ffe c ts  o f  the re s id u a l p a rts  o f  the H am iltonian. Such an 
ex ten sion  has the con seq u en ce  o f g iving r is e  to  anharm onic e ffe c ts  in  n u clear  
v ib ra tion . T h ere  is  am ple ex p erim en ta l ev id en ce  o f  su ch  an h arm on icity  in 
the n u clea r  quadrupole  v ib ra tion .

In the la st tw o le c tu r e s  w e sh all d e s c r ib e  the ap p lica tion  o f  the th eory  
to  the v ib ra tion a l sta tes in : (1) c lo s e d -s h e l l  n u cle i, (2) s p h e r ica l n o n -c lo s e d -  
sh e ll n u c le i, and (3) d e fo rm e d  n u c le i. A  su rv e y  o f  what is  to  co m e  m ay not 
be out o f p la ce  h e re .

(1) C lo s e d -s h e ll  n u c le i: The n u c le i that have b een  trea ted  exh a u stive ly  
by  m any authors are  1Ю, 40Ca, and 208P b . In a ll th ese  n u c le i, the giant 
d ip o le  r e so n a n ce  sta tes (J w = 1 " , T  = 1), and the o ctu p o le  sta tes (J* = 3 " , T  = 0) 
have b een  v e ry  w e ll r e p ro d u ce d  by  the th e o ry  b a sed  on 1 hp type ex cita tion s . 
The ag reem en t o f  the tra n sitio n  stren gth  in  the c a se  o f  the octu p o le  states
is  v e r y  good , w hile th ere  a re  som e m in or  d is c r e p a n c ie s  fo r  the giant d ip ole  
sta te s . The la tter  sta tes a re  around 20 -25  M eV  in the lig h te r  n u cle i, w hile 
in  208Pb they a re  in  the neigh bou rhood  o f  14 -15  M eV . It has been  found 
re ce n tly  that, fo r  th ese  sta tes , the ex cita tion  o f  a n u cleon  to  the continuum  
states is  a lso  im portan t; an ex ten sion  o f the kind o f th e o ry  w hich  we sh all 
d e s c r ib e  h e re , so  as to  in co rp o ra te  the e ffe c t  o f  the continuum  states are  
d e s c r ib e d  by  C. M ahaux in h is con trib u tion  to  th ese  P r o ce e d in g s . The 
octu p o le  sta tes are  v e ry  s tron g ly  c o lle c t iv e , have a la rg e  E 3 -tra n s it io n  
p ro b a b ility  to  the ground state , and are. v e r y  lo w -ly in g  in  en erg y . The type 
o f th e o ry  w hich  we sh a ll d e r iv e  is  v e r y  m uch  su ited  fo r  a d e s cr ip t io n  o f 
th ese  tw o fe a tu re s . F o r  a t im e , th ere  w e re  m any ca lcu la tion s  on the 
2+, T  = 0 states in c lo s e d -s h e l l  n u cle i u sin g  the sam e m ethod b a sed  on 
1 h p -e x c ita tio n s . H ow ever, it is  now c o n c lu s iv e ly  esta b lish ed  that it is  
d ifficu lt  to  get a lo w -ly in g  2+ state by  th is m ethod . E x p er im en ta lly  a lso , 
the lo w -ly in g  2+ states o f  the c lo s e d -s h e l l  n u c le i a re  found to  have v e ry  
lit t le  c o l le c t iv e  v ib ra tio n a l ch a ra cte r  -  the E 2 -tra n s it io n  stren gth  con n ectin g  
such  a state to  the ground state is  ra th er  sm a ll. The m ost en igm atic  state 
in  the c lo s e d -s h e l l  n u c le i (and a lso  m any s p h e r ica l even  n u cle i) is  the lo w - 
ly in g  0+ sta te . In the e a r ly  ca lcu la tion s  on the v ib ra tion a l sta tes , a 1 h p - 
type c h a ra cte r  w as a lso  u n s u cce s s fu lly  attributed to  th is sta te . H ow ever, 
the ex p e rim e n ta lly  o b s e rv e d  sm a ll tra n s itio n  stren gth  to  the ground state 
r u le s  out such  a trea tm en t o f  the 0+ state . In 160  and 40Ca th is state has 
been  e sta b lish e d  to  have a d e form a tion , even  though the ground states are 
sp h e r ic a l. 208P b , h ow ev er, is  a v e ry  stab le  c lo s e d -s h e l l  n u cleu s, and does 
not tend to  a cq u ire  a d e fo rm a tio n  in any lo w -ly in g  e x cite d  state . The 0+ 
state in th is n ucleu s is  now u n derstood  to  be a m e m b e r  o f the chain  o f  le v e ls  
in the P b -r e g io n  con n ected  to  each  o th er  by  the p a irin g  v ib ra tion . In 160  
and 40Ca, b e s id e s  the 0+ state, th ere  a re  o th er states w hich  c o rr e sp o n d  to 
a d e fo rm e d  shape.

(2) S p h er ica l n o n -c lo s e d  sh e ll n u c le i: In co n tra st to  the c lo s e d -s h e l l  
n u c le i, th ese  n u c le i have a s tron g ly  c o lle c t iv e  quadrupole  v ib ra tio n a l le v e l 
(2+), as th e ir  f ir s t  e x c ite d  sta te . The octu p o le  le v e l  (3") has a lso  been  o b 
se rv e d  in  m any o f th ese  n u c le i. The m ain  poin ts o f  in te re s t  in  th ese  n u cle i 
now ce n tre  around the grou p  o f e x cite d  states above the f ir s t  e x cite d  2+. F o r  
an id e a l h a rm on ic  quadrupole  v ib ra to r  one should  ex p ect the tw o-ph on on  
tr ip le t  (0+, 2+, 4+) at rou gh ly  double the e n e rg y  o f  the f ir s t  2+. E x p erim en ta l 
data on m ost o f  th ese  n u c le i depart fr o m  th is id e a l situation . T h ere  is  no
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re g u la r ity  in  the o r d e r  and m agnitude o f  the sp littin g  in  e n e rg y  o f the tr ip le t ; 
so m e tim e s  a m e m b e r  o f the tr ip le t  m ay be m iss in g ; m o r e  often  th ere  are 
s e v e r a l  ex tra  le v e ls  in the v ic in ity  o f  the tr ip le t . F o r  an id e a l h arm on ic  
v ib r a to r  the se co n d  2+ le v e l  shou ld  d eca y  to  the f ir s t  2+ by an E2 (no M l) 
tra n s itio n , and th ere  shou ld  be  no c r o s s - o v e r  tra n s itio n  to  the ground state . 
T he qu adru pole  m om ent o f  the f ir s t  e x c ite d  state (2+) should  a lso  be  z e r o  
under the id e a l c ir c u m s ta n ce s . In m any c a s e s  th ere  is  c o n s id e ra b le  departu re  
fr o m  a ll th ese  id e a liz e d  ex p ecta tion s . A ll th ese  p ro p e r t ie s  o f  the s p h e r ica l 
n o n -c lo s e d  sh e ll n u c le i a re , at the p resen t t im e , a ch a llen ge  to  the th e o r is t .
In th is  p a p er, we sh a ll deve lop  a th e o ry  fo r  th ese  v ib ra t io n a l n u c le i, b a sed  
on the ex cita tion  o f  q u a s i-p a r t ic le  p a ir s ; ex ten sion  o f  the fo r m a lis m  to  in clu de  
fo u r  q u a s i-p a r t ic le  e x cita tio n s  w ill a lso  be  co n s id e re d . Such an extended 
th e o ry  w ill be  applied  to  s e v e r a l  n u c le i and the fit to  the ex p e rim e n ta l data 
w ill be  d is cu ss e d . The situation  w ill be  seen  to  be  not yet v e r y  sa t is fa c to r y .
O f s p e c ia l im p o rta n ce  a m on g st 'th ese  n u c le i are  th ose  w hich  b e lon g  to  the 
tra n s itio n a l r e g io n s . A  w ord  o f explan ation  is  needed  about th is n om en cla tu re . 
It is  w e ll known that n u cle i in s e v e r a l m a ss  re g io n s  have a d e fo rm e d  e q u il i
b r iu m  shape. A m ongst the n u c le i a long  the sta b ility  lin e  th ere  a re  th ree  
su ch  w e ll-m a rk e d  r e g io n s : (a) s -d  sh e ll n u c le i b e low  28Si, (b) r a r e -e a r th  
n u cle i in  the m a s s -ra n g e  145 A  185, and (c ) n u c le i o f  the actin ide  re g io n  
having A  ^ 2 2 6 . B e s id e s  th ese  n u c le i, th ere  a re  o th er re g io n s  o f f  the 
sta b ility  lin e  w h ere  equ ilib r iu m  d e form a tion  is  ex p ected  and has b een  found 
in  s e v e r a l  c a s e s :  th ese  are  the n e u tro n -d e fic ie n t  r e g io n s  w ith  both  Z  and N 
ly in g  in the in te rv a l 28 to  50 o r  fr o m  50 to  82, and the n e u tro n -r ich  re g io n  
fo r  28 < Z  < 50 and 50 < N < 82. The sp h e r ic a l n u c le i at both  ends o f  th ese  
re g io n s  o f  d e fo rm a tio n  a re  sa id  to  b e lo n g  to  the tra n s itio n a l r e g io n . F o r  
th ese  n u c le i, the dep a rtu re  fr o m  an id e a l v ib r a to r  o r  r o ta to r  is  c o n s id e ra b le . 
W e sh a ll le a v e  th ese  s p e c ia l n u c le i out o f c o n s id e ra tio n  in  th is p a p er ; K. 
K u m a r 's  p aper la te r  in th is c o u r s e  w ill be  m a in ly  d evoted  to them .

(3) D e fo rm e d  n u c le i: In th ese  n u cle i the le v e ls  n ear  the ground state 
b e lon g  to  a ro ta tion a l band. H ow ever, they  exh ib it e x c ite d  states o f  the 
v ib ra t io n a l type , the m ost im portan t on es be in g  the quadrupole  ß -  and y -  
v ib ra t io n a l sta tes , and the o ctu p o le  v ib ra tio n a l sta tes . In d e fo rm e d  n u cle i 
the phonon o f the v ib ra t io n  d oes  not, s t r ic t ly  speak ing, have a defin ite  
angular m om entum ; yet it is  cu s to m a ry  to  ta lk  o f  th ese  v ib ra t io n a l states 
as "q u a d ru p o le " o r  "o c tu p o le "  in k eep in g  w ith a s e m ic la s s ic a l  p ic tu re  o f  the 
shape o s c illa t io n  o f  the n ucleu s startin g  fr o m  an equ ilib r iu m  p ro la te  s p h e r ica l 
sh ape. When the p ro la te  sp h e ro id  re m a in s  a p ro la te  sp h ero id , and on ly  its 
d e g re e  o f  d e form a tion  changes in  c o u r s e  o f  the o s c illa t io n , w e have the ß -  
v ib ra tion ; the p r o je c t io n  quantum n um ber is  z e r o  fo r  such ' a v ib ra tion , and 
hen ce  the lo w e st  state o f  th is type is  0+. S im ila r ly , when the p ro la te  sp h e ro id  
k eep s its d e form a tion  p a ra m e te r  the sa m e , but a cq u ire s  a lit t ly  b it o f  a 
tr ia x ia l shape during  the c o u r s e  o f  o s c illa t io n  we have a 7 -v ib ra t io n  with 
p r o je c t io n  quantum n um ber and p a r ity  equ al to  2+, w hich  turns out to  be the 
lo w e st  7 -v ib ra t io n a l state. W hen the d e fo rm e d  shape during  the o s c illa t io n  
is  o f  the o ctu p o le  type , we m ay h ave sta tes w ith p r o je c t io n  0", 1", 2", 3", a ll 
o f  w hich  c o m p r is e  the octu p o le  v ib ra t io n a l sta te s . In th is p a p er, we sh all 
be v e r y  sk etch y  about the v ib ra t io n a l sta tes  o f  d e fo rm e d  n u c le i. D eta iled  
r e fe r e n c e s  w ill be g iven  at the end to  the o r ig in a l w ork  by S o lo v ie v  et al.
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2. G E N E R A L  TH EO RY OF VIBRATIO N
2. 1. E lem en ta ry  trea tm en t b y  S ch röd in g er  equation

If the fo r c e  a ctin g  on  a bod y, when the bod y  is  d isp la ce d  fr o m  its  p o s itio n  
o f  eq u ilib r iu m , is  p ro p o rt io n a l to  its  d isp la cem en t and is  d ire c te d  tow ards 
its  equ ilib r iu m  p os ition , then the m otion  ex ecu ted  by  the bod y  under such  a 
fo r c e  o f  restitu tion  is  a h a rm on ic  o s c illa t io n  about its  point o f eq u ilib r iu m . 
T h is is  the c la s s ic a l  defin ition  o f  h arm on ic  v ib ra tion . If the d isp la cem en t 
is  a ,  and С the s o - c a l le d  "s p r in g  con stan t" then the p oten tia l en erg y  is  g iven  
by

V ( a )  = | c  a 2

w hile the k in etic  en erg y , in  te r m s  o f the m a ss  p a ra m e te r  B , is

T  B a 2

The dot on the top  o f a  d en otes t im e -d e r iv a t iv e . The m om entum  тг is  g iven  
by

9T
* = M  = Ba

and h en ce  the H am iltonian  o f  the o s c i l la t o r  is

Н (* ,т г ) = T  + V ( e )  = | ^ +  | c a 2 (2 .1 )

C la s s ic a lly , the o s c i l la t o r y  m otion  has a fre q u e n cy  u, g iven  by

T o  quantize the m otion  o f the o s c i l la t o r , one has to  r e q u ire  the usu al 
ca n o n ica l com m u tation  ru le :

[ а ,  ж] = rñ (2. 3)

In the S ch röd in g er  re p re se n ta tio n  we have

•*. 9я- = -m  5— da

and h en ce  the equation  o f m otion , the standard S ch röd in g er  equation , is  
g iven  by

Нф (a )  = E ф (a)
o r

( - ê â  + ï Ca2) Ma) = E0(a)
(2 .4 )
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T h is equation , as is  w e ll known, has w e ll-b e h a v e d  so lu tion s f o r  the fo llo w in g  
e igen va lu es o f en ergy :

m ak es the c o -o r d in a te  a  d im e n s io n le ss , and Hn is  the H erm ite  p o ly n om ia l.
A ll th is is  v e r y  standard and g iven  in  any e lem en ta ry  tex tbook  on quantum 
m e ch a n ics .

T he d ifficu lty  o f  applying th is stra ig h tforw a rd  m ethod  to  the phenom enon 
o f  n u clea r  v ib ra tio n  is  the fo llow in g : the nucleu s is  a m a n y -b od y  sy stem , 
and h ence  it is  d ifficu lt  to  iden tify  the v a r ia b le  a  fo r  n u c lea r  v ib ra tion .
S ev era l w o rk e rs  tr ie d  to  iden tify  su ch  c o lle c t iv e  v ib ra tio n a l c o -o r d in a te s  in 
te r m s  o f  the c o -o rd in a te s  o f  the ind iv idu al n u c leon s, but th is fundam ental 
p ro g ra m  is  a lm ost im p o s s ib le  to c a r r y  out ex ce p t fo r  ce rta in  s im p lifie d  
tw o -d im e n s io n a l m o d e ls . In a le s s  fundam ental ap proach  one m ay take the 
v a r ia b le  a  to be  one o r  few  d e form a tion  p a ra m e te rs , sp e c ify in g  the shape of 
the n u clea r  su r fa ce  o r  equ iva len tly  that o f  the average  p oten tia l V  (se e  
se c t io n  3 fo r  d e ta ils ). The ta sk  that rem a in s  a fter  th is is  to  obta in  an e x 
p r e s s io n  fo r  V as a fu nction  o f a ,  and T  as a fu nction  o f  a. The la tter  defin es 
the m a ss  p a ra m e te r  B, and the fo r m e r  d e fin es  the sp rin g  constan t С fo r  
sm a ll v ib ra tion s  about the equ ilib r iu m  shape. T o  understand the la s t  s ta te 
m ent le t us take a g en era l p oten tia l e n e rg y  fu n ction  V (a )  and expand it in 
a T a y lo r  s e r ie s  about the equ ilib r iu m  point or0 . F o r  s im p lic ity , le t  us sh ift 
the o r ig in  to  a 0, and keep  on denoting a - a 0 by the o ld  v a r ia b le  a .  Then

w h ere  the z e r o s  im p ly  that the quantities have to  be  evaluated  at the e q u i
lib riu m  poin t. F ro m  the d e fin ition  o f  eq u ilib r iu m , V (a ) has a m in im um  at 
a0 and h en ce  (dV /daJo is  z e r o .  Thus

(2. 5a)

and the co rre sp o n d in g  w ave fu nction  фп(а)  is  g iven  by

« M « )  = Hn( a / b ) e ‘ iaVb2 (2. 5b)

w h ere  the h a rm on ic  o s c i l la t o r  p a ra m eter

b = (h /B w )5

V (a )  = V (0 )  + a  + • (2 . 6 )

V (a )  = V (0 )  + i  С a 2 + (2 .7 a )

w here

(2. 7b)

T h e r e fo r e , to  th is o r d e r  o f  ap p rox im ation , we obtain  a h a rm on ic  v ib ra tion . 
The in clu s io n  o f  h igh er  te r m s  in  the expan sion  (2. 6) m akes the v ib ra tion  
an h arm on ic.



The p ro g ra m  ou tlin ed  above can be c a r r ie d  out fo r  som e  m o d e ls . One 
such  c a se  w ill be  d e s c r ib e d  in  se c t io n  3. In g en era l, it is  d ifficu lt  to  ca st 
the m a th em a tics  in the above fo rm  if  one wants to  w ork  with a v e ry  g en era l 
type o f  m a n y -b od y  H am iltonian.

2. 2. C om m u tator m ethod

A . In its  s im p le s t  fo rm  th is m ethod co n s is ts  o f  look in g  fo r  an o p e ra to r  
Qt, w hose  com m u ta tor  with the H am iltonian H is  a n u m e rica l m u ltip le  
o f  it s e lf ,  i .  e . ,

[ H ,Q t ]= h u Q +  (2 .8 )

w h ere  h u  is  a n u m ber. T h is  equation  au tom atica lly  guarantees (take 
the H erm itean  con ju gate  and r e v e r s e  the sign)

[H ,Q ] = -  h u Q  (2 .9 )

W ithout any lo s s  of g en era lity  w e m ay assu m e ñ u  to  be  p o s it iv e ; b e ca u se , 
i f  it is  not, then - h u  is ,  and h ence a ll that is  n e ce s s a r y  is  to  r e v e r s e  
the r o le s  o f  Q and Q+.

Now, i f  Ï  is  an e igen fu n ction  o f  H belon g in g  to  the eigenvalue E 
then Eq. (2. 8) guarantees that Q + Ï is  a lso  an e igen fu n ction  o f  H belong in g  
to  the e igenvalue  E + h u . The p r o o f  fo llo w s ;
G iven

Ш  = E Ï

E q. (2 . 8) en su res

HQ+Ï - Q t m  = huQ+Y

o r

H (Q+¥) -  E (Q+Y) = ft u Q+Ï

o r

H (Q +¥) =(E + h u ) (Q+T)

w hich  p r o v e s  the re q u ire d  re su lt . In a s im ila r  m an n er,on e  can  p ro v e , 
with the help  o f  Eq. (2 .9 ) ,

H (Q¥) = (E -  ft u) (Q¥)

Thus Qt acts  as the s tep -u p  o p e ra to r  fo r  en erg y , and Q as the step -dow n  
o p e r a to r . In p a rt icu la r , i f  ¥o den otes the ground state o f  H, then

QY0 = 0 (2. 10)

554 p a l

b e ca u se  Q¥0 w ould have to  have an en erg y  lo w e r  than that o f  the ground 
state by  ftu , w h ich  is ,  by defin ition  o f  the ground state , im p o s s ib le .
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It is  c le a r  that the m ethod , d e s c r ib e d  so  fa r , is  ap p licab le  to  any 
H am iltonian , and not n e c e s s a r ily  to  that o f  an o s c i l la t o r .  W e have found 
that fo r  any g en era l H am iltonian  i f  Qf , as defin ed  by  Eq. (2. 8), e x is ts , 
the sp ectru m  o f H is  g iven  by

E n = E0 + nhu, n = 0, 1, 2 ..........  (2 .1 1 )

C le a r ly , it is  im p o ss ib le  to  know what E 0 is  w ithout sp e c ify in g  the 
H am iltonian  H in  deta il.

B . W e now g e n e ra lize  the com m u ta tor  m ethod  in  the fo llo w in g  m an n er. 
Suppose we have found a set o f  o p e ra to rs  A+ (i = 1, 2, . . . . ,  N) w hich  
sa tis fy

[ H, A t ] = E  ̂M jj At = (M A ^  (2. 12)

fo r  each  i  = 1, 2 , . . . . ,  M is  a n u m e rica l m a tr ix  and M is  its  t r a n s 
p o se d . Can we then say  anything about the sp ectru m  o f H?

T o  an sw er th is qu estion  w e f ir s t  d ia gon a lize  the m a tr ix  M , and find 
its  e igen va lu es ea {a = 1, 2 , . . . ,  N) and the X^a), co rre sp o n d in g  e ig e n v e c to rs  
X “  having com pon en ts X ( “) , . , X ^  . B y  d efin ition

E M X (a) = e X (a), i  = 1, 2 , _____ N (2. 13)
j  = l  i j  j  a i

L et us now co n s tru ct the fo llo w in g  o p e r a to rs  with th ese  e ig e n v e c to rs :

N .
Q-r = L X 09 AÎ, a  = 1, 2, . .  . ,  N (2. 14)

a i = i 1 1

W e substitu te E qs (2. 12) and (2. 13) in to the fo llo w in g  com m u ta tor  and
obtain :

[H ,Q + ] = E X<°» [H , A+]
i = 1

N Г N / ч I
E ]  E M jiX Í^  y At 

j = 1 U  = l

e E X ^ A Î  = e Q +c a  j J a (2 .1 5 )

C om p arin g  th is e x p re s s io n  w ith r e su lts  p ro v e d  in su b section  A, we 
con clu d e  that in  the p re se n t ca se  th ere  is  a se t o f  s tep -u p  o p e ra to rs  
Q t ,  a  = 1,  2 , . . . . ,  N, w hich  step  up the en erg y  by  e a. The c o rre sp o n d in g  
H erm itian  con jugate o p e ra to rs  Q n w ill step  down the en erg y  by  ea , and 
a ctin g  on the ground state  ï 0 o f  H they  w ill p ro d u ce  a z e r o  re su lt :

Q J o  = 0, a = 1, 2, . . . ,  N (2 .1 6 )
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B elow  w e d em on stra te  a s im p le  ap p lica tion  o f  th is m ethod fo r  
so lv in g  the h a r m o n ic -o s c i l la to r  p ro b le m , defin ed  by  the H am iltonian 
(2. 1). U sin g  the ca n o n ica l com m u tation  re la t io n  (2. 3) we obtain

[ H , a ] = - ^ 7 T  (2 .1 7 a )

[H , 7r] = ih C a  = ihBu2a  (2. 17b)

M = ( _ih  ) (2. 18)
S - 0 '

T h ese  equations can  be  co m p a re d  w ith the g e n e ra l sy ste m  o f  lin e a r  
r e la t io n s  de fin ed  by  E q . (2 .1 2 ) .  T h e re fo r e , as p ro v e d  th e re , we 
d ia gon a lize  the tra n sp o se d  o f the c o e ffic ie n t  m a trix :

0 ihBw2\
-Ü
В

T h e e igen va lu es e a re  so lu tion s o f  the se c u la r  equation

I -  e iftBu2 i 
°  = j ih  j = € 2 - (hu)2

- —  - eВ

o r

e = ± h u  (2 .1 9 )

L et us r e c a l l  ou r e a r l ie r  statem ent in  su b section  A  that w e w ould lik e  
to  a s so c ia te  the p o s it iv e  quantity ftu w ith the o p e ra to r  Qt. H ence, we 
c o n s id e r  the c a s e  o f  e = + ftu, and lo o k  fo r  the c o rre sp o n d in g  Q+. 
A c co r d in g  to  the re su lt  p ro v e d  e a r l ie r  in  th is  su b se ct io n  w e r e q u ire , 
f o r  th is p u rp ose , the c o rre sp o n d in g  e ig e n v e c to r  o f  (2 . 18). D enoting 
th is  v e c to r  by

w e obta in  fr o m

M X  = ftuX

the re su lt :

iftBu2X 2 = huX j

o r
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A b so rb in g  X j  in  the o v e r a ll  n o rm a liz a tio n  constan t N o f  the v e c t o r  we, 
th e r e fo re , obtain

in a c co rd a n ce  w ith  the g e n e ra l r e su lt  (2. 14). We ch o o s e  the n o r m a liz a 
tion  constant N to  be  (Bu/2h)^, w hich  m ak es Q t d im e n s io n le ss  and 
guarantees the fo llo w in g  b o so n  com m u ta tion  ru le  fo r  Q and Q+:

One can  v e r ify  Eq. (2. 20) by  the s tra ig h tforw a rd  u se  o f  E qs (2 . 21a, b) 
and (2 . 3).

In th is  s im p le  ex am p le  we have an e x p lic it  fo rm  fo r  H, g iven  by
E q . (2. 1), and it is  p o s s ib le  to  find E0, and h en ce  a co m p le te  e x p re s s io n
fo r  E n as fo llo w s . U sing E q s(2 . 21a, b ) and (2. 3), we can  show  in  a
stra ig h tfo rw a rd  m ann er that

as it shou ld .
T he g e n e ra l m ethod  d e s c r ib e d  in  th is su b se ct io n  is  v e ry  w e ll su ited  

fo r  the trea tm en t o f  the n u c lea r  H am iltonian . In v iew  o f the g en era l 
nature o f  th is m ethod  it is  cap a b le  o f  y ie ld in g  both  the s in g le  "q u a s i
p a r t ic le " - t y p e  as w e ll as the "v ib ra t io n a l" -ty p e  so lu tion s o f  the m any- 
bod y  H am iltonian . W e sh a ll se e  la te r  on  in th is  pap er that H is  v e ry  
con v en ien tly  e x p re s s e d  in  the se co n d -q u a n tize d  fo r m . If w e u se  the 
s in g le -p a r t ic le  c re a t io n  o p e r a to rs  and the d e s tru ctio n  o p e r a to rs  fo r  A+

[Q,Q+] = 1 (2 . 20)

T he fin a l e x p re s s io n s  fo r  Q and Qt a re  g iven  by

(2. 21a)

(2. 21b)

(2. 22)

S ince QY0 = 0, w e obta in  fr o m  E q. (2 . 22)

Ш 0 = \ hu ïo
i .  e.

E 0 = i  hw

T h e re fo r e

a c c o rd in g  to  the g e n e ra l r e su lt  (2. 11). T h is  r e su lt  a g re e s  w ith Eq. (2. 5a)
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in the g e n e ra l re la tio n  (2 . 12) then, in  g en era l, one d oes  not get a set 
o f  lin e a r  re la t io n s  con n ectin g  th ese  qu an tities . The ap p lication  to  the 
n u clea r  "q u a s i -p a r t ic le "  m ode, th e r e fo re , r e l ie s  on ap prox im ation s 
that re d u ce  th ese  com m u ta tors  to  a se t o f  lin e a r  re la tio n s  fo r  the s in g le 
p a r t ic le  c re a tio n  and d es tru ction  o p e r a to rs . In the sam e w ay, i f  one 
u se s  the 1 hp c re a tio n  o p e ra to rs , o r  the q u a s i-p a r t ic le  p a ir  c re a tio n  
o p e r a to rs  fo r  the A f, and in trod u ces  su itab le  ap prox im a tion s to  obtain  
a se t  o f  lin e a r  re la t io n s  lik e  (2 .1 2 )  then the resu lta n t Q4 o p e ra to rs  g ive  
r is e  to  the s o - c a l le d  v ib ra tion a l sta tes . It is  c le a r  that in  both  c a se s  
w e have ap p rox im a tion s , and h ence  in  p r a c t ic a l ap p lication s to  n u cle i 
one w ill have to  w o rr y  about ca lcu la tin g  the c o r r e c t io n s ,  to o . W e 
em p h a size , th e r e fo re , that the g en era l m ethod  as d e s c r ib e d  h e re  d oes 
not g ive  exact r e su lts  when applied  to-the n u clear  m a n y -b od y  H am iltonian, 
unlike the s im p le  exam p le  o f  the h a rm on ic  v ib ra to r , w here it p rod u ced  
exact r e su lts  b e ca u se  the lin ea r  re la t io n s  ( 2 . 17a, b) w e re  exact in  th is 
la tte r  c a s e .

2 .3 .  T im e-d ep en d en t treatm en t

It is  p o s s ib le  to  r e w r ite  the m ethod o f se c t io n  2. 2B by  u sin g  a t im e - 
dependent fo r m a lis m . S ince one is  alw ays pron e to  p ic tu re  v ib ra tion  as 
the tim e-d ep en d en t o s c i l la t o r y  m otion  o f so m e  dyn a m ica l v a r ia b le , th ere  is  
a g e n e ra l fe e lin g  that the a b stra ct com m u ta tor  m ethod b e c o m e s  m o re  p h y s ica l 
and m o re  u nderstan dab le  when ca st  in  the new language. S ince we want to 
ta lk  in  te r m s  o f tim e -d ep en d en t d yn am ica l v a r ia b le s , it w ill be  convenient 
to  u se  the H e isen b erg  re p re se n ta tio n . In th is r e p re se n ta t io n  the t im e - 
independent o p e ra to r  fi fo r  any dyn a m ica l v a r ia b le  o f  the S ch röd in ger  
re p re se n ta t io n  changes to  a tim e-d ep en d en t o p e ra to r  fi, defin ed  by

- ¿ H t  ¿ H t
fi = e * fi  e* (2. 23)

w hich  sa t is f ie s  the fo llo w in g  equation  o f m otion :

ih | Û = [ H ,  fi] (2 .2 4 )

O f c o u r s e , the d efin ition  (2 .2 3 )  te l ls  us that H and H a re  the sa m e . If
w e now  re q u ire  the tim e -d e p e n d e n ce  o f  fi  to  b e  o f  an o s c i l la t o r y  type , i .  e .
p ro p o rt io n a l to  e x p (- ie t /f t ) ,  then E q. (2 . 24) r e d u ce s  to

efi = [H, fi] (2 .2 5 )

N ow  le t us apply  such an equation o f m otion  to  H and a set o f A ¡ 
sa tis fy in g  E q . (2 . 12). B e ca u se  o f the u n itary  nature o f the tra n sfo rm a tio n  
(2 . 23), it is  e a sy  to  s e e  that E q . (2 .1 2 ) en su res

N

[H ,Â t ]  = Â- (2 .2 6 )

j = i

w ith the sa m e m a tr ix  M . T h e re fo r e , w e have the fo llo w in g  set o f  equations 
o f  m otion  fo r  the tim e-d ep en d en t v a r ia b le s  A t ;
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N

iñ ^  Â+ = [H, Â+ ] = Y  Mji ÂJ = (2. 27)

j = i

F r o m  what has been  d e s c r ib e d  ab ove , the equality  im p lied  b y  the la st step  
h olds on ly  i f  A ¡ h as an o s c i l la t o r y  tim e  depen den ce e x p ( - ie t /h ) . T he sy ste m  
o f  equations (2 . 27) f o r  i  = 1, 2, . . . ,  N d e s c r ib e  an e igen va lu e  p ro b le m  fo r
the m a tr ix  M ; the e ig en v a lu es  d efin e  the p erm itted  fr e q u e n c ie s  (ft"1e) o f
v ib ra tion  o f  the d y n a m ica l v a r ia b le s . The e ig e n v e c to rs  X^“ ) , a  = 1, 2, . . . ,  N 
defin e a new set o f d y n a m ica l v a r ia b le s

N

Qa = X X i(a>ÂÎ (2 -2 8 )
i = l

w hich  a re , in  c la s s ic a l  language, the n orm a l c o -o r d in a te s  o f  v ib ra tion . T he a l 
low ed  fre q u e n c ie s  =h_1e a re  the fr e q u e n c ie s  o f the n o rm a l m od es  o f  v ib ra tio n . 
T h e tim e-d ep en d en t m otion  o f the o ld  v a r ia b le s  A Î , i  = 1, 2, . . . ,  N w ere  
cou p led  to  each  oth er through  the m a tr ix  M in E q . (2 . 27), w hile the t im e -  
dependent m otion  o f  the new v a r ia b le s  Q t ,  the n o rm a l c o -o r d in a te s , are 
uncoup led  fr o m  each  o th er . T he fo llow in g  u ncoup led  equation , sa tis fie d  
b y  Q t ,

= a = 1 , 2 .......... N (2 .2 9 )

can  be  e a s ily  v e r if ie d  fr o m  E q s (2 . 27), (2 . 28) and the d e fin ition  (2 .1 3 ) 
f o r  the e igen va lu es o f  M .

T h e re  is  a sligh t la ck  o f r ig o u r  in what we have stated  u nder E q . (2 . 27). 
The set o f  lin e a r  equations

N

^  M j; Xj = e X j ,  i  = 1 ,2 , . . . , N  (2 .3 0 )

i - 1

can be  in terp re ted  as the e igenvalue  equations fo r  the m a tr ix  M  on ly  if 
the e lem en ts  X 1, X 2, . . X N o f the e ig e n v e c to r  a re  s c a la r  n u m b e rs . In 
E q. (2 . 27 ),the quan tities p laying  the r o le  o f  the e lem en ts  o f the e ig e n v e c to r  
w ere  A j ,  A\,  . . . ,  A¿J, w hich  w e re  o p e r a t o r s . T o  m ake ou r in terp re ta tion  
r ig o r o u s  we have, th e r e fo re , to  r e p la c e , by  som e  c le v e r  d e v ic e , the o p e r a 
t o r s  in E q . (2. 27) by  so m e  s c a la r  n um bers without sp o ilin g  the v a lid ity  o f 
th ese  equ ation s. T h e s im p le s t  w ay to  do th is is  to  take the m a tr ix  e lem en ts  
o f  th is se t o f equ ation s betw een  tw o e ig en sta tes  and | ° f  the
H am iltonian  H, be lon g in g  to  the e igen va lu es E and E 0, r e s p e c t iv e ly .
Then  we e a s ily  obtain  

N

X M ji < ф1 Â] I V  = e < ф 1 Âjf I * o >  (2 .3 1 a )
j  = i

w hich  is  ex a ctly  id e n tica l with E q .(2 .3 0 )  with the defin ition

Х; = < * | А [ | Ф 0> (2 .31b )
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T h is  quantity g iv e s  u s the tra n sition  am plitude fr o m  the state Ф0 to  the 
state Ф through  the action  o f the o p e ra to r  A ¡ ; it can a lso  b e  in terp re ted  
as the p ro b a b ility  am plitude o f the b a s is  state А* | Ф 0> in the ex cited  
n u c le a r  state  | Ф̂ >. T he quantity e can  be  fu rth er  in terp re ted  b y  tra c in g  
b a ck  its  o r ig in  in  E q . (2 . 31a), v ia  E q . (2 . 27) as fo llo w s :

е.<Ф|А*|Ф0 > = Ш ^ < ф |А^|ф о >

= m  St  < Ф I e "B H'A i е* ' Фо>

= m \ßt e * (E E0)t }  < ф i A i 1 ^o>

= ( E - E 0) e ' ï (E' Eo)t < Ф| A  ¡| Ф0>

= (E - E 0)<  Ф I e " íHt A ¡ e^Ht | Ф0> = (К - E 0)<  ф| Â t| Ф0>

T h u s, е is  the d iffe r e n c e  in en erg y  betw een  the tw o n u c le a r  states 
Ф and Ф 0. T he above re su lt  w ould have a lso  fo llo w e d  by  w ritin g  iü (3Ä j /9 t)  
as [H , Â Î] w hich  is  equ a l to  (H Â[ - Â *H ), and then lettin g  Ê(= H) o f  the 
tw o te r m s  op e ra te  on  the le ft on <(ф| and on the r igh t on |Ф0Х  r e s p e c t iv e ly .

N ow , the set o f  E qs (2 .3 1 a ) is  tr iv ia l ly  sa tis fie d  i f  a ll the am plitudes 
< ф |А1|ф 0> ,  i = l , 2 ,  . . . , N  f o r g iv e n  Ф and Ф0 a re  id e n tica lly  z e r o .  N on 
tr iv ia l  v a lu es  o f th ese  am plitudes c o rr e sp o n d  to  the e ig e n v e c to rs  o f M 
be lon g in g  to  the v a r io u s  eigen va lu es o f  the la tte r . Thus, w e con clu d e  that 
w e obtain  a set o f n o n -t r iv ia l am plitudes con n ectin g  tw o n u c le a r  states 
Ф0 and Ф on ly  if  th ese  sta tes  d if fe r  in en erg y  through  an eigen va lu e  o f  M , 
w hich  in cid en ta lly  is  the e n e rg y  o f a v ib ra t io n a l quantum . P a ir s  o f  n u c lea r  
sta tes  d iffe r in g  in e n e rg y  b y  tw o o r  m o re  v ib ra tio n a l quanta w ill  a ll have the 
tra n sitio n  am plitu d es, < ф |А?|ф0)>, equ al to  z e r o .

It is  ob v io u s  that the sa m e type o f in terp re ta tion  cou ld  have b e e n  g iven  
a lso  to  the tim e-in d ep en d en t E qs (2. 12), b y  taking m a tr ix  e lem en ts  b e 
tw een  <(ф| and |ф 0 >̂. T h e m a tr ix  e lem en t o f  the com m u ta tor  [H, Aj ]
= (H AÎ - A tH ) then b r in g s  in (E - E0) <( Ф | AÎ| Ф„ У in  the m ann er exp la ined  
a b ove . W e fin a lly  get the sam e se t  o f equations as (2 .3 1 a ) and (2 .3 1 b ) 
w ith the tim e-d ep en d en t o p e ra to rs  re p la ce d  e v ery w h ere  b y  the c o r r e s p o n d 
ing tim e-in d ep en d en t o n es .

3. D E R IV A TIO N  OF N U CLEAR V IB R A TIO N A L  EQUATIONS

3 .1 .  P h e n o m e n o lo g ica l V ib ra tion a l M od el

T h is  m o d e l is  an exam ple  o f a c a se  w h ere  it is  p o s s ib le  to  c a r r y  out 
the p ro g ra m  m en tioned  at the end o f s e c t io n  2 .1  in a stra ig h tforw a rd  
m a n n er. T h e m o d e l is  b a sed  on the assu m ption  that n u c le a r  v ib ra tion  
co n s is ts  o f  the o s c i l la t o r y  m otion  o f a w e ll-d e fin e d  sharp  n u c le a r  s u r 
fa c e .  If R 0 is  the equ ilib r iu m  value o f the n u c le a r  ra d iu s , then the 
r a d ia l c o -o rd in a te  R (9,ф)  o f  a point on the n u c lea r  su r fa ce  in the d ir e c -
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tion  (0, ф) at any g iven  tim e  during the o s c i l la t o r y  m otion  o f the su r fa ce  
is  g iv en  b y  the g e n e ra l m u ltip le  expan sion :

=o x

R(0,*y= R 0 { l +  Y  X  (3 1 )
X=0 Ji=-X

w h ere  is  the n o rm a liz e d  sp h e r ic a l h a rm on ic  o f o r d e r  X and p r o je c t io n  
¡x . The tim e-d ep en d en t quan tities (t) defin e the d e fo rm a tio n  o f the 
s u r fa ce ; when th ese  quan tities o s c i l la t e  with tim e , each  point on the 
n u c lea r  su r fa ce  a lso  p e r fo r m s  the sam e o s c i l la t o r y  m otion  a c co rd in g  
to  Eq . ( 3 .1 ) .

T ak ing  a h y d rod y n a m ica l m o d e l o f  the n u cleu s it is  p o s s ib le  to  d e r iv e  
the e x p re s s io n s  o f  the k in etic  and p oten tia l e n e rg ie s  o f the v ib ra tion  to 
the lo w e st o r d e r  in ¿ x M and a Xß . T h e se  e x p re s s io n s  a re  g iven  b y  A laga 
in th ese  P r o c e e d in g s , and have the fo llow in g  fo r m s :

T = f ^ B xK | 2
Хм

v = ! I c *k /

The m a ss  p a ra m e te r  B j  has an e x p lic it  e x p re s s io n  in  te r m s  o f the d en sity  
o f the n u c le a r  flu id , w hile the sp rin g  constant С x is  determ in ed  b y  the 
su r fa ce  ten sion  o f the n u c le a r  flu id  and the C ou lom b re p u ls io n  o f the 
n u c le a r  ch a rg e . A s a m a tter  o f fa c t , th ese  tw o b a s ic  p ro p e r t ie s  o f  n u cle i 
com p ete  w ith each  oth er  in d eterm in in g  С x. W hen the n u cleu s d eparts  
fr o m  its  eq u ilib r iu m  s p h e r ic a l shape, its  su r fa ce  a re a  in c r e a s e s , and 
h ence  the e n e rg y  due to  su r fa c e  ten sion  a lso  in c r e a s e s ; the C oulom b 
en erg y  o f the d e fo rm e d  d rop , h o w ev er , is  lo w e r  than that o f  .the s p h e r ic a l 
liqu id  d rop  and th e r e fo re  th is e ffe c t  g iv e s  a. n egative  con trib u tion  to  С x.
F o r  sm a ll d e fo rm a tio n s , the su r fa ce  ten sion  te r m  is  la r g e r  than the 
C ou lom b te rm  and C x turns out to  be  p o s it iv e . T h e r e fo r e , a c co rd in g  
to  s e c t io n  2. 1, the H am ilton ian  defin ed  by  (3 . 2a, b) d e s c r ib e s  a set of 
uncoup led  v ib r a to r s , each  a kjJ behaving  as a v ib r a to r  c o -o rd in a te .

3. 2. T im e -d e p e n d e n t m ic r o s c o p ic  th eory

In the in trod u ction  we m en tioned  that the m ic r o s c o p ic  p ic tu re  of 
n u c le a r  v ib ra tion  is  b a sed  on the o s c illa t io n s  of the o n e -b o d y  d en sity  of 
the n u cleon s m ov in g  in the a v era g e  n u c le a r  f ie ld  and in teractin g  with each  
o th er  through  a r e s id u a l in te ra ctio n . The a v erag e  p oten tia l is  con n ected  
s e l f -c o n s is te n t ly  w ith  the den sity , and h en ce  any o s c illa t io n  in  the den sity  
g e n e ra te s  a re sp o n se  on  the a v era g e  p oten tia l, and v ic e  v e r s a .  In d e te r 
m in in g  the equations o f  n u c le a r  v ib ra tio n  in ou r  tim e-d ep en d en t m ic r o s c o p ic  
th e o ry  we sh a ll m ake the fo llo w in g  b a s ic  s tep s : we sh a ll apply  an o s c i l la t o r y  
p ertu rb ation  on the a v era g e  p o ten tia l V , and then d eterm in e  its  r e sp o n se  
on the o n e -b o d y  d en sity  by  the standard tim e-d ep en d en t pertu rb ation  th eory . 
T h e s e l f -c o n s is te n t  change in the p oten tia l gen era ted  by  th is change o f 
den sity  is  then put equ al to  the p ertu rb a tion  in the a v era g e  p oten tia l fr o m

(3. 2a) 

(3 . 2b)
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w hich w e sta rted . C le a r ly , when th is equation  is  sa tis fie d  the n u clear  
o s c illa t io n  induced  b y  the pertu rb ation  w ill  be  su sta ined . W e sh a ll see  
that th is con d ition  g iv e s  us a set o f equations d eterm in in g  the fre q u e n c ie s  
o f  the n o rm a l m od es  o f v ib ra tion  o f the n u cleu s.

A . B a s ic  D efin ition s

T o  c a r r y  out the p ro g ra m  outlined above we sh a ll need the b a s ic  
d e fin ition s  o f  the o n e -b o d y  d en sity  p, the av era g e  s e l f -c o n s is te n t  potentia l 
V , and a few  b a s ic  p ro p e r t ie s  o f  the p ertu rb ed  d en sity  fu nction . Som e 
o f th ese  d e fin ition s  a re  g iven  in the p a p ers  on H a r tr e e -F o c k  (HF) c a lc u la 
t ion s  in  th ese  P r o c e e d in g s . W e w ill b r ie f ly  reca p itu la te  them  fo r  the 
sake o f c o m p le te n e s s .

In the eq u ilib r iu m  HF state Ф0 o f the n ucleu s a set o f s in g le -p a r t ic le  
sta tes o f  V  a re  o c cu p ie d  b y  the n u c le o n s . T h ese  w ill be denoted b y  the 
le t te rs  h, h ' , . . . ,  e tc . ("h "  fo r  "h o le "  s ta tes ). T he states w hich  a re  u n o ccu 
p ied  above  the F e r m i le v e l w ill be  denoted by  the sy m b o ls  p , p ' , . . . ,  e tc . 
( "p "  f o r  " p a r t ic le "  s ta te s ). W h enever we want to  design ate the h o le  and 
p a r t ic le  sta tes tog e th er  b y  a s in g le  sy m b o l, we sh a ll then u se  the le tte rs  
i , k, Í ,  . . . A l l  th ese  Latin le t te r s , th e r e fo re , stand fo r  the s e l f -  
con s is ten t s in g le -p a r t ic le  sta tes o f the HF p oten tia l. In the H F -w ork , 
the b a s ic  quan tities p, V , e tc . a re  defined  u su a lly  with r e s p e c t  to  a set 
o f b a s is  s in g le -p a r t ic le  sta tes (u su ally  the h a r m o n ic -o s c i l la to r  sta tes).
F o r  th ese  sta tes  w e sh a ll a lw ays u se  the G reek  le tte rs  a,  ß,  . . . ,  e tc .

(i) H aving defin ed  th ese  con ven tion s, le t us now  w rite  down the d e 
fin ition  o f the H F -p o te n tia l V ;

< a | v | ß >  = ^(<*h|v|ßh) (3 .3 )
h

w here

(ah| v| ßh) = (a h j  v| ßh^> - ■(o'h|v|hß)> (3 .4 )

T he ro u n d e d -b ra ck e t  m a tr ix  e lem en t o f the tw o -b o d y  p oten tia l v , acting 
betw een  a p a ir  o f n u c leon s , co n s is ts  o f  the d ir e c t  m inus the exchange 
m a tr ix  e lem en ts ; the p o in ted -b r a c k e t  m a tr ix  e lem en ts o f E q .(3 .4 )  a re  
the o rd in a ry  tw o -b o d y  m a tr ix  e lem en ts , i . e .

< oh | v | ß h >  = J  d3rj ф * ^ )  ф *(?2) vfr^ - ? 2 ) фв ( ? 1) фь ( ? 2)

(ii) Any s e l f -c o n s is te n t  s in g le -p a r t ic le  state is  ca lcu la ted  as a lin ea r  
sum  o f  the b a s is  s ta tes . T hus,

| 1 > = £ х £ >  |or> (3 .5 )
Of

U sin g  th is kind o f an e x p re s s io n  fo r  | h^ in E q . (3. 3) one obtains
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X  X<T x(6h)
y, 6 h

= ^  (ay\ v|ß6) <6| p| Y> (3 .6 )

7.6

w here

< ô I p| T >  = ^ X ( h ) >:? x W  (3 .7 a )
h

E x p r e ss io n  (3 .7 a ) d e fin es the o n e -b o d y  den sity  p , and E q .(3 .6 )  con n ects  
the H F -p o te n tia l with it . In th is fo r m , the den sity  p ap p ears lik e  an 
o b s cu r e  m a th em a tica l quantity . W e sh a ll d e r iv e  b e lo w  s e v e r a l  a l t e r 
native fo r m s  o f  the d en sity  o p e ra to r , and show , in  p a rt icu la r , that its 
c o -o r d in a te -s p a c e  rep re se n ta t io n  is ,  indeed , re la te d  to  the p ro b a b ility  
d en sity  o f  e le m e n ta ry  quantum m e ch a n ics .

(iii) A c co r d in g  to  E q . (3. 5), w ritten  fo r  |h)>, w e have

X (6h ) = < 5 | h > , X<yh> * = < h | 7 >

H en ce , E q . (3 . 7a) y ie ld s

< 6  |p |y > = ^ < ó | h > < h | y >  
h

that is ,

p = £  I h > <  h| (3 .7 b )

h

F r o m  the o r th o n o rm a lity  o f the sta tes  |h^>, | h ' )>, e tc . we im m ed ia te ly  
obtain

h , h '  h

T h is  is  a v e r y  im portan t p r o p e rty  o f the den sity  o p e r a to r , and w ill  be 
u sed  la te r .

(iv ) E quation  (3. 7b) a lso  g iv e s  us v e r y  e a s ily  the m a tr ix  e lem en ts 
o f  p in the H F -re p re se n ta tio n :

<h|p|h '>  = < h | ^ | h "> < h "| h '>  
h ”

= < h|h ’ > = 6h h . (3 .9 a )

| h > < h | h « > < h '| = )  |h><h| = p (3 .8 )

<«|V |ß>=V ( o'y I v| ß6)
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and

< h | p | p >  = < p | p | p ' > = O (3 .9 b )

in a s im ila r  m an n er. T h e se  r e su lts  a lso  a re  v e r y  u se fu l.

(V) In the c o -o r d in a te -s p a c e  re p re se n ta tio n  p y ie ld s

< r | p | r '>  = Y  < r | h > < h | -r ' > 
h

= (ЗЛОа)

h

w h ere  ф w ith the a p p rop r ia te  la b e l stands fo r  the s e l f -c o n s is te n t  s in g le 
p a r t ic le  w ave fu n ction . T he d ia gon a l com pon ent <( r| p| r  w ill be  d e 
noted , f o r  b re v ity , b y  p (r ) , and it is  c le a r ly  g iven  by

р (г )=  < r| p | r>  = ^ | ф ь (?)| 2 (3 .10 b )
h

In th is fo r m  the con n ection  o f p w ith the s in g le -p a r t ic le  p ro b a b ility  d en sity  
b e c o m e s  o b v io u s . T he m a n y -b o d y  HF state Ф0 conta in s s e v e r a l  o ccu p ie d  
s in g le -p a r t ic le  sta te s . E ach  such  state h con trib u tes , a c co rd in g  to  e le 
m en ta ry  quantum  m e ch a n ics , the p ro b a b ility  d en sity  | (?) ]2 . A  su m m a
tion  o v e r  a ll the o c cu p ie d  sta tes in  E q . ( 3 . 10b), th e r e fo re , y ie ld s , as 
e x p ected , the o n e -b o d y  d en sity  o p e ra to r  c o rre sp o n d in g  to  the H F -sta te  Фо.

(v i) Ф0 is  a determ in a n ta l state w ith ro w s  (o r  co lu m n s) la be lled  
b y  the o c cu p ie d  s in g le -p a r t ic le  sta tes h, h ' , . . . ,  e tc . and the co lu m n s 
(o r  ro w s ) la b e lle d  b y  p a r t ic le  c o -o r d in a te s  , r 2 , . . . ,  e tc . It is  v e r y  
e a s y  to  obtain  the exp ecta tion  value f o r  th is state o f a s in g le -p a r t ic le - 

A
type o p e ra to r  à(r  - ? t ), w here the su m m ation  runs o v e r  a ll  the n u c leon s.

1 = 1
A c co r d in g  to  the standard re su lt :

A

< * o l ^ n i l * o >  = £ < h | n | h >
1 = 1 h

w h ere  Г2 is  any o n e -b o d y  o p e ra to r , we obtain  

A

= I / № ) 6 ( ? ' ? i ) ,M ? i ) d 3 r i
1 = 1 h

= X  I (3 .1 0 c )
h

<Ф01 У
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T he la st equ a lity  fo llo w s  fr o m  E q . (3 . 10b). E quation  ( 3 . 10c) sh ow s u s 
how  to  obtain  the s in g le -p a r t ic le  d en sity  p (r ) at any point ? ,  when the 
m a n y -b od y  state Ф0 is  known. A ctu a lly , th is  defin ition  is  m o r e  g e n e ra l 
than the e a r l ie r  on es in th is se c t io n , b e ca u se  it can b e  u sed  f o r  any 
g e n e ra l m a n y -b o d y  state Ф0 w hich  is  not n e c e s s a r ily  a s in g le  determ inant.

(v ii) The sa m e re su lt  can b e  rew ritten  in  a d iffe ren t m an n er. Let 
us c o n s id e r  the p rod u ct Ф0 (r , r 2 , r 3 , . . . ,  Г д )1® ^ ^  r 2 , . . . ,  rA) and c a r r y  
out an in tegra tion  o v e r  the c o -o r d in a te s  r2 , r 3 , . . . ,  rA , i . e .  the c o 
ord in a tes  o f a ll the n u c leon s, leavin g  a s id e  the f i r s t .  T he r e su lt  o f  th is 
in tegra tion  w ill lea ve  us w ith a fu nction  o f  r  w hich  we can  take to  be  the 
defin ition  o f A "1 p ( ? ) . A s  a m a tter  o f fa c t , su ch  a defin ition  o f p (r ) and

A

E q. (3 .1 0 c )  ( i . e .  in te r m s  o f  the m a tr ix  e lem en t o f a re
I = i

id e n tica l. F o r  a s in g le  d eterm in an ta l state it is  v e r y  e a sy  to  e sta b lish  
th is fa c t .  W e w rite  th is new  defin ition  as fo llo w s :

A '1 p(?) = J  d 3r2 . . .  J d 3rA Ф0(?, r2 , ? 3, . . . ,  ?A) tf¿(?, ?2 , ?3 , . . . ,  ?д ) .

= f  d 3r 2 . . . J d 3rA < r , r2 , . . . ,  rA I Ф0><Ф 0| r ,  ?2, . . . ,  ? A>

= < r | { T r a c e 2.......A | Ф„ > < Ф0|} | r  > (3 .1 1 )

T h e in te g ra ls  can  c le a r ly  b e  in terp re ted  as the t r a c e  o f  a m a tr ix  fo r
I Ф о^ ^  Ф0 I in the c o -o rd in a te  rep resen ta tion ; th is is  in d icated  in  the 
fin a l step  o f E q . (3 .1 1 ) .  T h us,

p = A  T r a c e 2.......А 1фо Х фо1 (3 -1 2 )

and the g e n e ra l n on -d ia g on a l m a tr ix  e lem en t o f p in the co -o rd in a te  
sp a ce  is  c le a r ly  g iven  by

< r | p | r '>  = < r|  {A  T r a c e 2.......A | Ф0 > <Ф01} | ? '>

= A  J  d3r 2 . . - f d 3rA < ? , ? 2 , . . . , г А |Ф0 > < Ф 0| г ', г 2 . . , , r A >

(3 .1 3 )

T he m ean ing  o f the tw o fa c to r s  in the in tegrand o f E q . (3 .1 3 )  is  ob v iou s .
T he f ir s t  fa c to r  den otes a m a n y -b od y  w ave fu nction  with the p a rt ic le  
c o -o r d in a te s  P, ? 2 , . . . ,  ?A , w hile the secon d  fa c to r  den otes the co m p le x  
con jugate o f the w ave fu nction  o f  the sa m e  m a n y -b od y  state but th is tim e
the p a rt ic le  c o -o r d in a te s  a re  r '  , r2 , . . . ,  r A; that is ,  on ly  the co -o rd in a te s
o f the f ir s t  p a r t ic le  a re  d iffe ren t, w hile the c o -o r d in a te s  o f  the rem ain in g  
p a r t ic le s  2, . . . ,  A  a re  the sam e in the tw o m a n y -b od y  w ave fu n ction s . We 
should lik e  to  em p h a size  on ce  again  that the d e fin ition s ( 3 . 10c), (3 .1 1 ) , 
(3 .1 2 ) and (3 .1 3 ) a re  v e r y  g e n e ra l and v a lid  fo r  any g e n e ra l m a n y -bod y  
state Ф0, w hich  is  not n e c e s s a r ily  a s in g le  determ in an t. W hen Фд has



the s p e c ia l  fo r m  o f a sin g le  determ inant, a ll th ese  d e fin ition s degen erate  
to  the s im p le r  d e fin it ion s  o f p g iven  by  E qs (3 .7 a , b) and (3. 1 0 a ,b ).

(v iii) T h e re  is  yet another defin ition  o f p in te r m s  o f the c re a tio n  and 
d e s tru ctio n  o p e r a to rs , w hich  is  va lid  fo r  any g e n e ra l m a n y -b od y  state 
Ф0, and w hose iden tity  with the e a r lie r  defin ition s in the c a s e  o f  HF s in g le -
determ in a n ta l state Ф0 is  e a sy  to  p r o v e . T h is  d e fin ition  is  g iven  by

<ß| p| “ > = <Ф 01с 1с в 1фо> (3 .1 4 )

w h ere  С t is  the c re a tio n  o p e ra to r  fo r  the state a , and C s is  the d es tru ction  
o p e ra to r  fo r  the state ß . T o  p ro v e  its  eq u iv a len ce  w ith the e a r l ie r  d e f i 
n ition s fo r  the HF Ф0, w e w rite  down the fo llow in g  equation  w hich  is  o b 
v io u s ly  equ ivalent to  E q . (3 .5 ) :

C ¡ = Y ¿ * c l  (3 .1 5 a )
a

Since the states |a )> and the sta tes | i)> both  fo r m  com p le te  se ts  w ithin the 
sub.space ch osen  fo r  the H F -ca lcu la tio n , the re la tion  (3. 5) can be  in verted  
to  y ie ld

|«> = )  X (i)* |i>
L__i a
i

and h en ce  the c o rre sp o n d in g  equ ivalent re la tion :

C i = X x(i f c I (3 .1 5 b )
Í

Substituting e x p re s s io n  ( 3 . 15b) f o r  C^, and the H erm itian  con jugate 
re la t io n  (w ith a  r e p la c e d  b y  ß)

Cß = Z X 8) C i (ЗЛ 5С)
]'

in  the d e fin ition  (3 .1 4 ) w e obtain

< ß | p | «>  = < * 0 l Y X a * X(B C ?C i ^ ° >  
i.j

In o r d e r  that C jl't'o)*  be  n on -van ish in g  fo r  the H F -s ta te , j m ust be  one 
o f the sta tes h o c cu p ie d  in  Ф0, b e ca u se  w e cannot o th erw ise  d e s tro y  th is 
state fr o m  Ф0. F o r  the sam e re a so n  the quantity Ф0| c f  is  n on -van ish in g  
(th is is  the H erm itian  con jugate o f  C¡ |Фо^) on ly  if  1 is  an o ccu p ie d  state 
in  Ф0. So, w e r e p la c e  C^Cj b y C jJ C h,, and th e n u s e  C jC h. = - C h. C j  + 6hh. . 
T he te rm  СЬ.С^|Ф 0)  p ro d u ce s  z e r o , b e ca u se  i f  we c re a te  the state h 
through  C j  w e v io la te  the P a u li e x c lu s io n  p r in c ip le . Thus,
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N ote that th is r e su lt  a g re e s  with E q. (3 . 7a), and p r o v e s  ou r e a r l ie r  
sta tem en t.

(ix) W e next w rite  the defin ition  o f  the o n e -b o d y  p oten tia l, g iven  by  
E qs (3 .3 )  and (3 .4 ) ,  in the c o -o rd in a te  sp a ce . T he righ t-h an d  sid e  o f 
(3 .3 )  is  g iven  by

w h ere  the o n e -b o d y  poten tia l VD, a s so c ia te d  with the d ir e c t  te r m , is  lo c a l  
and is  g iven  by

w hile the p oten tia l V E , a s so c ia te d  with the exch an ge te rm , is  n o n - lo c a l  
and g iven  by

The e x p re s s io n s  ( 3 . 1 7 a ,b ) have b een  w ritten  down b y  a d ir e c t  c o m p a r is o n  
o f  both  s id e s  o f E q .(3 .  16), and then substituting the d e fin ition s  (3 . 10 a ,b ) 
f o r  the m a tr ix  e lem en ts  o f p. T h us, the lo c a l  part o f the d en sity  o p e ra to r  
g iv e s  r is e  to  the lo c a l  p art o f the H F -p oten tia l, and the n o n - lo c a l  part o f 
the d en sity  g en era tes  the n o n - lo c a l  part o f  the H F -p oten tia l.

(x) F in a lly , w e c o n s id e r  som e  im portan t p r o p e r t ie s  o f the den sity  
o p e ra to r  d e s c r ib in g  the n u cleu s when it is  no lo n g e r  in an equ ilib r iu m  c o n 
d ition . T h is  is  the situ ation  w hen the n u cleu s v ib r a te s . Such a p w ill be  
t im e -d ep en d en t, and we denote it b y  p. If the depa rtu re  fr o m  the equ ilib r iu m  
con d ition  is  sm a ll ( i . e .  i f  w e r e s t r ic t  o u rs e lv e s  to  sm a ll o s c illa t io n s )  
then we can  o b v io u s ly  m ake an expan sion  o f p b y  taking the equ ilib r iu m  
p as the r e fe r e n c e  poin t. T hus, up to  the secon d  o r d e r  o f  sm a lln e ss , 
w e have

W e have put a "h a t" on the top  o f a ll t im e-d ep en d en t qu an tities . The 
eq u ilib r iu m  value p is  tim e -in d ep en d en t and h ence

h

(3. 17a)
h

h

(3 .1 8 )

(3 .1 9 )

p(1) and p (2) a r e , r e s p e c t iv e ly , f i r s t -  and s e c o n d -o r d e r  quantities 
co m p a re d  to  p. Since

P 2 = P
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we obtain  fr o m  E q . (3 . 18)

p2 + [ppi1) + pW p] + [pp(2> + p(2) p + { p(1> }2 ] = p + p ^  + p

On the le ft-h a n d  s id e , w e have g rou ped  tog eth er  and e n c lo se d  in square 
b ra ck e ts  the f i r s t - o r d e r  qu an tities , and a lso  the s e c o n d -o r d e r  qu an tities . 
S ince p2 = p, the z e r o -o r d e r  quantities on the tw o s id e s  a re  equal. Next 
we equate f i r s t - o r d e r  quan tities fr o m  both  s id e s  and obtain

p p (1) + p (1) P  = p (1) (3 .2 0 a )

S im ila r ly , equating the s e c o n d -o r d e r  quan tities w e obtain

pp( 2) + p<2>p + {p<1>}2 = p<2> (3 .2 0 b )

W e f ir s t  c o n s id e r  the con seq u en ces  of E q . (3 .2 0 a ) . L et us take its
m a tr ix  e lem en ts  in the H F -rep resen ta tion , and u se  the p r o p e rt ie s  
(3 . 9a, b ) . W e thus obtain

<h| p (J) |h*> = ^ [< h | p |  i>< i|  p W  I h 1 > + <h| pW  I i>  <i| p| h 1 > ]

= <h| PI h> <(h| p i1) | h '> + < h | p (D  I h 1 > <( h ' I p I h ' >

= 2 <h|p<] )| h '>

T h e r e fo r e ,
<h|p<: ) I h* > = 0

S im ila r ly ,
< p | p (1) I p ’ > = 0

But

< h| p (1) I p > = < h| p I h> < h| р<х> |p> +<h|p(1> |p X p |p |p >

= < h | p d ) |p>

w hich  is  an iden tity . Thus E q . (3 . 20a) d o e s  not g ive  us any n o n -tr iv ia l 
in form a tion  about h| pt1) | p ]> . And, in g en era l,

< h | p (1) |p> ф0,  < p | p (1) |h> ф 0 (3 .2 1 c )

W e next study the m a trix  e lem en ts o f p(2) in the H F -re p re se n ta tio n  
u sin g  E q . (3 . 20b). F o r  ou r fu ture p u rp o se s  it w ill su ffic e  i f  w e study on ly  
tw o s p e c ia l ty p es  o f  m a tr ix  e lem en ts:

(3 . 21a) 

(3 . 21b)

(1) <h| p (2) I h> = <h| p I h><h| p (2) I h> + <h| p (2) | h > < h| p | h > + <h| { p (1)} 2 | h>



IAEA-SMR 6 /2 5 569

o r

<h| p̂ 2) I h > = - <h| {p(1) }2 I h>

= -  I p X p I p ( 1) l h > (3 .2 2 a )
P

(2) < p |p (2) |p> = < p |p |p><p|p(2 )|p> + < p |p (2) Ip X p I p Ip )  + < p H p (1)} 2 ! p >

In w ritin g  the la st steps o f  E qs (3 .2 2 a ) and (3 .2 2 b ) we have m ade u se  
o f  the p r o p e r t ie s  (3 . 21a, b , c) o f  the m a tr ix  e lem en ts  o f p (1 ).

B. S e lf -c o n s is te n t  o s c illa t io n  o f  H F -p oten tia l

H aving in trodu ced  a ll th ese  d e fin ition s  and b a s ic  p r o p e r t ie s , we 
sh a ll now c a r r y  out the p ro g ra m  sk etch ed  in the beginning  o f s e c t io n  3 .2 .

L et us denote the tim e-d ep en d en t p ertu rb ation  of the H F -p o te n tia l 
by  Л. F o r  the en tire  n ucleu s the p ertu rb a tion  is  obtained by  sum m ing 
o v e r  a ll the n u cleon s:

It w ill  be c le a r  fr o m  the fo llow in g  d e r iv a tio n  that w e do not r e q u ire  any 
e x p lic it  kn ow ledge o f  the o p e ra to r  /  fo r  an in vestiga tion  o f  the n o rm a l 
m od es  o f  v ib ra tion  o f  the n u cleu s.

' B e fo r e  the o s c i l la t o r y  p oten tia l w as ap p lied , ou r grand state w ave 
fu nction  w as g iven  by

o r

< p I p (2) I p >  = < P | {P (1)} 2 I p >

(3 . 22b)
h

A

2 (3 .23a)

l=l

S ince A. has to  be H erm itian , we a ssu m e its tim e  depen den ce  to  be o f 
the fo rm

(3.23b)
A

and h en ce  the c o rre sp o n d in g  ^  is  g iven  by

H 1 = H 1 e ‘ 1“ t + H * e iwt (3 .23 c)

w h ere

(3.23d)
I = ‘ 1
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w h ere  Wo is  the en erg y  o í th is sta tion ary  state . D enoting the unperturbed  
n u c le a r  H am ilton ian  by  H w e have

ih J¡; j  = H í ( e - i w0 t/fi = W 0 Ф0 e ' iw° t/fl (3 .24)

If the o th er  e x cite d  states o f the H am iltonian  a re  denoted by  Фп with en erg y
W n , n = 1, 2, .e t c . ,  the pertu rbed  ground state w ave function  î '(t )
can be expanded in te rm s  o f Ф0 and the e n tire  set o f  Ф as fo llo w s :

* ( t )  = a 0 (t) i o e ‘ iW» t/Tl + ^  a n(t) Фпе ' Ш « ‘ /п (3 .25)

n=l

At t = 0, when the p ertu rb ation  (3 .23c)- is  ap p lied , a Q(t=0) = 1, and 
a n (t=0) = 0. A s tim e g o e s  on the quantities a n(t) build up at the co s t  o f 
a 0(t). A s is  w e ll  known fro m  e lem en ta ry  quantum m e ch a n ics , the value 
o f a n(t) can  be d e term in ed  to  v a r iou s  o r d e r s  o f  the tim e-d ep en d en t 
p ertu rb ation  th e o ry . We sh a ll use the re su lts  up to  the f ir s t  o r d e r  in 
the p ertu rb ation  (se e  any tex ib ook  on quantum m e ch a n ics ) and w rite

4'(t) = * 0 e - iWo t/fi a(^(t) * n e - iWn‘ /fi (3.26a)

n = l

w here

à n1)(t> = " b  < ф п l â i W b o )  e " lWn0t/ü (3.26b)

and
Wn0 = Wn -  W0 (3 .26 c)

The s u p e r s c r ip t  i on a n den otes that th is is  the e x p re s s io n  in f i r s t -o r d e r  
p ertu rb ation  th eory , and the dot overh ead  den otes the tim e d e r iv a tiv e .

T o  c a r r y  out the tim e  in tegra tion  in E q . (3 .26b) we h a v e 'to  m ake use 
o f  the e x p lic it  fo r m  (3 .23 c) fo r  H ^ t ) ,  and the bou n dary  cond ition  
a (1)(t) = 0 at t = 0. Thus

(1)a
n

г е " й  ^W n0 „  -h (W no + t i w )  t
(t) = -  - к ф  |н, |ф„> — —-------- -----------  + <ф |н* |фл > — —-------- —  уv ' L n 1 1 1 о '  Wn0 - hu 4 n I I I о y w n0 + fiu J

(3.27)

E quation s (2 .26a) and (3.27) re p re se n t the so lu tion  fo r  the pertu rb ed  
g ro u n d -s ta te  w ave fu nction  in the low est o r d e r  o f the p ertu rb ation  th eory .

W e sh a ll next ca lcu la te  the den sity  p fo r  the state Ф^) by  u sin g  the 
g e n e ra l d e fin ition  (3 .13 ) and re p la c in g  Ф0 by  Ф. It is  c le a r  fr o m  E q . (3.26a) 
and

< r I p I r r )  = A I'd3r 2 / d 3-d r  a O ,  r 2 , ..., r A |Ф^)> <Ф (^  j r ' , r „ ,  . . . ,  r  >

(3.28a)
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that the lo w e s t -o r d e r  term  o f p is  the eq u ilib r iu m  d en sity  p co rre sp o n d in g  
to  the unperturbed  state Ф0 . The f i r s t - o r d e r  term  p(i) c o r r e s p o n d s  to  the 
c r o s s -p r o d u c t  betw een  the Ф0 term  and the Фп te rm s  o f  E q . (3 .26a ). Thus

ч
o/< r  |p(!) |r' > = A J d 3r 2 ■■•J' ̂ 3 r A ) - j e iWn° t/,fl a ( i ) ' ' ' (t) <^r, ? 2 . . . ,  г д |'Ф

П -1

X <(ф I r 1 , r  .. г /  + е ~lWnO a(i) a )  / J  ?  . . .  r  |ф У <(Ф I r 1 , r n , . . .  ?
n 2 A  n '  '  x  2  A  1 n 0 1 2 A  J

(3 .28b)

Our next task is  to  com pu te the change in the a v era g e  potentia l generated  
by  th is pM  , and then fin a lly  we have to equate the re su lt  with e x p re s s io n  
(3.23b) fo r  s e l f - c o n s is te n c y .  T h is com pu tation  is  a ctu a lly  b e tte r  c a r r ie d  
out with e x p re s s io n  o f p (4 in the H F -re p re s e n ta tio n , ra th er  than in the 
c o -o rd in a te  sp a ce  re p re se n ta tio n  (3 .28b ). H ow ever , i f  we d e c id e  to 
c o n s id e r  on ly  the lo c a l  part p (4 (7 ), and h ence on ly  the lo c a l  part o f  V 
in a ch iev in g  s e l f - c o n s is te n c y ,  then the com pu tation  u sin g  c o -o r d in a te -  
sp a ce  rep resen ta tion  is  not d ifficu lt . Such an ap prox im a te  ca lcu la tion , 
h o w e v e r , is  quite in stru ctiv e  in its p h y s ica l content, and h en ce  we sh a ll 
do such  a m od e l ca lcu la tion  b e fo r e  undertaking the exact s e l f -c o n s is te n t  
treatm en t.

C. A lo c a l  m od e l fo r  the m ic r o s c o p ic  th eory

We have show n in E q . (3 .10 c) that the lo c a l  part o f  the den sity  can 
be re p re se n te d  in  a v e r y  s im p le  w ay as the m a tr ix  e lem en t o f a 6 -fu n ction  
betw een  the m a n y -b od y  state . F o r  r  = r 1 the defin ition  (3.28'a) and such 
a defin ition  are  equ ivalent. T h e r e fo r e , w e start fr o m

A

< r  I p I r >  = p (r )  = < ^ (t) I ^  6 (r  - ?J ) I * (t )  > (3 .29)

i=i

U sing E q . (3 .26a ), we obtain , as b e fo r e ,  the lo w e s t -o r d e r  te rm  o f p (r) 
to  be the equ ilib r iu m  d en sity  p (r) c o rre sp o n d in g  to  Ф0 . The f i r s t - o r d e r  
quantities a re  g iven  by

A

P ( 1 )  ( r )  =  Y  { а ( п 1 ) ! : ' М  e 1  w n 0 t / 1 i  O n  I У  ô  ( r  -  F j )  I  Ф 0 >
n=l - 1=1

A

» < » „ | £  M ? - F[) |t n >}

(3.30)

1=1

S in ce , by d e fin ition , Фп (n = 1, ....... , 00) f  ф 0, and the o p e ra to r
A

S  6 (r  - Tj ) is  a o n e -b o d y  type o p e ra to r , Фп d if fe r s  fr o m  \&0 on ly  in



572 PAL

the state  o f  one n ucleon  and not m o r e . That is  to sa y , \tn in E q . (3 .30) 
is  a lh p -ty p e  state w ith r e fe re n ce  to  the ground state Ф0. O nce again ,

the standard re su lt  fo r  a lh p  state and any o n e -b o d y  o p e ra to r  
is  g iven  by  1=1

With th is lo c a l  part o f  the tim e-d ep en d en t d en sity  we get the t im e - 
dependent change in the o n e -b o d y  poten tia l fr o m  E q. (3 .17 a ). Let us 
denote th is by Д У  (F j) .  Thus

w h ere  p (4 ( r 1 ) is  g iven  by  E q . (3 .32 ).
We have to  equate th is e x p re s s io n  w ith ou r in itia l p ertu rb ation  o f 

the a v era g e  p oten tia l. T o  keep  the m o d e l s im p le , w e no lo n g e r  take a 
g e n e ra l 2 ,  but m ake the fo llow in g  p r e s c r ip t io n  fo r  d eterm in in g  a c o n 
ven ien t fo r m  fo r  it: We assu m e  that du ring  the c o u r s e  o f  v ib ra tion , as 
the n ucleu s gets  d e fo rm e d , its  su r fa ce  co -o rd in a te  R in the d ir e c t io n  
(б , ф) is  defin ed  by  an equation  independent o f  ф:

th is is  a v e r y  s p e c ia l c a se  o f the g e n e ra l e x p re s s io n  (3 .1) with X = 2 
and ß = 0 on ly . T h is  a ctu a lly  m eans that the n u c le a r  su r fa ce  is  a sp h ero id  
w ith its s y m m e try  ax is  a long  the Z -a x is  o f  ou r c o -o rd in a te  sy ste m . 
ß (t) is  a s im p le r  notation  fo r  a 20 (t). W e fu rth er  assu m e  that each  
s p h e r ic a l su r fa ce  o f  rad iu s r 0 in side the n ucleu s a lso  gets d e fo rm e d  to 
à sp h e ro id a l su r fa ce  having the sam e d e form a tion  p a ra m e te r  ß (t). That 
is  to sa y , the c o -o rd in a te  г  (в,  ф) o f  a point on this s m a lle r  sp h ero id  is  
a ls o  g iven  by

A

A

and, h en ce , in ou r ca se  
A

p h

T h e r e fo r e , ou r e x p re s s io n  fo r  p W  (? ) r e d u ce s  to

(3.33)

(3.34)

r (fl )  = r0 { l  + ß ( t )  Y  q (6) j- (3.35)
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The a v era g e  p oten tia l V fo r  the eq u ilib r iu m  sp h e r ic a l n ucleu s is  
s p h e r ic a lly  s y m m e tr ic ,  i .e .  the equ ipoten tia l s u r fa c e s  a re  sp h e re s .
W e assu m e  that an equ ip oten tia l su r fa ce  o f rad iu s r 0 gets d e fo rm e d  to 
a sp h e ro id a l su r fa c e , du ring  v ib ra tion , g iven  b y  e x p re s s io n  (3 .35 ). The 
situ ation  is  show n in F ig .3 .1 . It is  quite rea son a b le  to  take the potentia l 
e v e ry w h e re  on the d e fo rm e d  equ ipoten tia l su r fa ce  to  have the sam e 
value as it had on the sp h erica l_eq u ip oten tia l su r fa ce  b e fo r e  d e fo r m a 
tion . T h e r e fo r e , the potentia l V a fte r  d e form a tion  at r  is  g iven  b y  the 
old p oten tia l V at r 0 :

"v (r ) = V ( r Q) (3.36)

But, a c co rd in g  to  E q . (3 .3 5 ), we have fo r  sm a ll d e form a tion  ß

> o  = r  { l  + ß ( t )  Y* ( б ) } '

*  r  - r ß ( t )  Y 02 (в)

We u se  th is value o f  r 0 in  E q . (3 .36) and m ake a T a y lo r  expan sion :

V ( r )  = V ( r )  - r  g  ß (t)-Y g (в) (3 .37a)

H en ce , a c c o rd in g  to  th is  p r e s c r ip t io n , the p ertu rb ation  in the av era g e  
poten tia l is  g iven  by

2  = V (r) - V (r )
(3.37b)

= " r 57 Y°2 (e) ß (t)
It is  u su a l, in th is m o d e l, to  assu m e  the eq u ilib r iu m  potentia l V to  be 
e ith e r  a s q u a re -w e ll  o f  rad iu s R 0 and depth V 0 o r  the h a r m o n ic - 
o s c i l la t o r  p oten tia l (1 /2 )  С r 2. In th ese  tw o c a s e s  r  d V /d r  is  g iven  by

dVr  - —  = V0 R 06 (r  -  R 0) (sq u a re -w e ll)  (3 .38a)

= C r 2 (h arm on ic  o s c i l la t o r )  (3.38b)
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We sh a ll u se  h ere  the se co n d  fo r m , and w rite

2  = -  C r 2 y 2  (6) ß (t)

= - C Q 0 (r) | ß e ' ilJt + ß* e iüJt

w here

Q o (r) = r 2 Yo (6)

and

ß (t) = ß e " lwt + ß * e i“Jt (3.40b)

T h is co m p le te s  ou r p r e s c r ip t io n  fo r  the pertu rbation  in the average  
p oten tia l.

A s m entioned  e a r l ie r ,  we re q u ire  e x p re s s io n  (3.39) to be equal to 
e x p re s s io n  (3.33) fo r  s e l f -c o n s is te n c y . The a lgeb ra  w ill be s im p le  if  
we in trod u ce  so m e  m o r e  s im p lifica tio n s  in our m odel: let us assu m e 
that the tw o -n u c le o n  potentia l V (r  - r* ) o f  E q . (3 .33) be sep a ra b le  and 
g iven  by

V (r  - ? ' )  = - X Q 0 (r ) Q o ( r ' )  (3 .41)

w h ere  r  and r ' a re  the co -o rd in a te s  o f  the two in teractin g  n u cleon s, and 
X is  the stren gth  o f th is qu ad ru pole -type  in teraction . With this a ssu m p 
tion  (3 .33) s im p lif ie s  to

Д У Й  = - x Q0(ï) f  d 3r ' Q 0 ( ? )  (? ' )

E quating th is e x p re s s io n  with e x p re s s io n  (3 .39) we obtain

ß e " iwt + ß * e iwt = C '1 x J d 3r'  Q q ( ? ' ) p d> ( r 1 ) (3.42a)

C om p arin g  e x p re s s io n  (3.39) with ou r g e n e ra l e x p re s s io n  (3.23b) we 
con clu d e

¿  = A*  = - C ß  Q o (r )  (3.43)

We u se  th is e x p re s s io n  fo r  /  and A* in  the g e n e ra l equation  (3.27) fo r
a hp W  anc  ̂ obtain

<1  m  -  с  <  p  I q ,  I h  >  <3 - « >
v hpO hpO ^

(3.39)

(3.40a)

w here w e have u sed  the standard resu lt fo r  a o n e -b o d y  type o p e ra to r



1AEA-SMR 6 /2 5 575

and re p la ce d  < ФЬр | l y  Q 0 ( ? t ) | Ф0 > by  < p | Q 0 | h >. Substituting 

E q . (3 .44 ) in E q. (3 .32 ) we obtain

(? ) = c  ¿  < p  |q 0 |ь;

h,P

ß e ~
WhpO WhpO +bw

Фъ ( ? ) Ф*  (?)

+ co m p le x  con ju gate . 

F r o m  E q . (3 .42a) and th is e x p re s s io n  we now obtain

X К  h I Q о I P > I

h.P

J_e_ i : ; e

+ co m p le x  con jugate

= (ß e ' iwt + ß* e iwt ) 2 x У  

h.P

Whpo
W h2po

’ h IQn IP >
(bu )'

2x
Whpo I < h 1 Q p 1 p > I

W 2 - Ifн о ) 2, 
hpO v ’

(3 .45)

T h is equation  d e te rm in e s  the fre q u e n c ie s  o f  v ib ra tion  u. A 
g ra p h ica l so lu tion  fo r  Rio fr o m  th is equation  is  v e r y  in s tru ct iv e . The 
quan tities Whpo (= W hp - W0) a re  the e n e rg ie s  o f the lh p  sta tes with 
re s p e c t  to  the ground state . U sua lly , th ese  e n e rg ie s  a re  taken fro m  
the e x p e rim e n ta l data. In F ig .3.2 the sq u a res  o f  th ese  e n e rg ie s  c o r 
respon d  to the poin ts 1, 2, 3, . ..  e tc . on the a b s c is s a . We denote the 
righ t-h an d  s id e  o f E q . (3 .45) by  F  (u2) and p lot th is as a fu nction  o f (ftu)2 
in the d ia gra m . W h enever fiw ap p roa ch es  any o f the Whpg fro m  le ft  the

(ficd)2 ->

FIG . 3 .2 .  G ra p h ica l s o lu tio n  fo r  th e  v ib r a t io n a l fr e q u e n c ie s .
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fu nction  g o e s  to  + oo b eca u se  (Wh 0 -  ñu) fo r  hu < Whp0 is  p o s it iv e ; as 
soon  as w e c r o s s  o v e r  to  the right o f  the en erg y  W hp0 , the function  
F ( u 2) is  s t i l l  in fin ite ly  la rg e  but it g o e s  to  - °o b e ca u se  now (W hp0 -  ñu) 
is  n ega tive . In betw een , any two co n se cu tiv e  v e r t ic a l  lin es  p a ssin g  
through tw o co n se cu tiv e  va lu es o f Whp0, the fu nction  F ( u 2) can , th e r e 
fo r e ,  beh ave bnly as the cu rved  lin es  show n iri the d ia gra m . H ow ever, 
be low  the low est W ĥ  and above the h igh est Whp0 the fu nction  has to 
behave d iffe re n t ly . T h e  fu nction  g o e s  to  z e r o  when (ñu)2 -> T « a s  shown 
in the fig u re . The dashed h o rizo n ta l lin e  re p re s e n ts  1 /2 X . H en ce , the 
a llow ed  va lu es o f  ñu a re  the poin ts w h ere  th is dashed lin e cuts the 
c u rv e s  fo r  F (и 2). T h ese  poin ts a re  m ark ed  w ith c r o s s e s  in the d ia 
g ra m . It is  c le a r  that th eçe  a re  two types o f so lu tion s fo r  ñu : (i) those 
fa llin g  in betw een  the lo w e st and h igh est Whp0 , and (ii) the s in g le  s o lu 
tion  to the le ft  o f  the lo w e st W hp0. It is  c le a r  that the lo ca t io n  o f th is 
so lu tion  is  v e r y  se n s itiv e  to the stren gth  y o f  the quadrupole potentia l.
If x is  v e r y  sm a ll then the dashed lin e  (2 y ) _1 is  v e ry  high up, and hence 
th is so lu tion  is  v e r y  c lo s e  to the low est hp state . If, on the o th er hand,
X is  v e ry  s tron g , the dashed cu rv e  is  v e r y  n ear the a b s c is s a , and h ence 
it m ay  m eet F (и 2) cu rve  even  on the negative sid e  o f  (ñu)2 . T h is s o lu 
tion , th e r e fo r e , c o r r e s p o n d s  to  an im a g in a ry  freq u en cy  fo r  a v e ry  stron g  
quadrupole  p oten tia l, and h ence is  c o m p le te ly  u n p h ysica l. In an in d ire ct 
w ay such a situ ation  te l ls  us that the assu m ed  ground state is  not r e a lly  
stab le  u nder d e fo rm a tio n . F in a lly , fo r  a m o d e ra te ly  stron g  the 
lo w e st  so lu tion  is  obtained at a sm a ll p o s itiv e  value o f (hu)2 . Th is 
situ ation  is  sa id  to  c o r r e sp o n d  to a c o l le c t iv e  v ib ra tion a l sta te , a state 
that is  pushed down a lo t fr o m  the u npertu rbed  hp sta tes.

D. R P A  equations o f  n u c le a r  v ibra tion

We now go back  to  E q. (3 .28b) o f su b section  B , and p r o ce e d  to  c a r r y  
out the p ro ce d u re  m en tioned  below  that equation . W ithout going  into the 
d e ta ils  o f  determ in a n ta l a lg e b ra  (taking Ф0 to  be the H F -d eterm in a n t 
and Фп a determ inant o f  the lh p  typ e ), it is  p o s s ib le  to  s im p lify  the 
re su lts  o f the in tegra tion  in  (3 .28b) by an a logy  with the re su lt  (3 .31) fo r
the d ia gon a l com p on en t o f  p . F o r  r  = r ' , A /  d 3r 2 ....... /  d 3r A in
the f ir s t  te rm  o f E q . (3 .28b) had led  to e x p re s s io n  (3 .31 ). By an alogy , 
we e x p ect f o r  r  f  r ' , the resu lt  ф* ( r ' ) (r ) b eca u se  the s in g le -p a r t ic le
state  p is  p resen t in  < ФЬр |, w hile the state h is  contained  in |^0/ ,  and 
h en ce  Ф* m ust ap p ear  with ( r 1 ) w hile фь ap p ears with (r ). B y  a s im ila r  
an a logy , the se co n d  te rm  o f  the righ t-h an d  side  o f E q . (3 .28b) should 
g ive  r is e  to фр (г) (r ' ). F in a lly ,

Ф „(?)<*£ (? ' ) + e 'iwhp°t/h (t)tfp(r)tf*(r*)
h.P

e 1 whPo t/fl a (ĥ  * (t) I h >< p I + e '  iWhP° иъ a [4 (t)
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T h ere fore> as an o p e ra to r , p W  is  g iven  by

¿(D = a (ir-;c(t) Ih >< p I + g " 1 w hP°t/fl a $  (t) | p > < h | |

h' p (3.46)

T h is e x p re s s io n  en ables us to evaluate the m a trix  e lem en ts  o f p ^  in 
the H F -re p re s e n ta tio n . O nly n on -van ish in g  m a trix  e lem en ts a re  o f the 
h o le -p a r t ic le  type and a re  c le a r ly  g iven  by

.P IP (i) ■iWhpot/fi a (l) (t )

1 Hi
W hpO - ñ u

(3.47)

- iwt II ф 0/
w .hpO +Í10J

The m a tr ix  e lem en t <h| p (1) |p^ is  ju st the co m p le x  con jugate o f this 
e x p re s s io n . In the fin a l step  o f E q . (3 .47) we have a lrea d y  substituted 
fr o m  E q . (3 .27) fo r  a ^  (t). Next u se  fo r  H j and H* the e x p re s s io n  g iven  
by  (3 .23d) and w rite  th e ir  m a tr ix  e lem en ts betw een  | and |ф о /
fr o m  standard resu lts :

< P :<i) < P  M l h >
hpO

( X .  e '  
hp

-ñw
< P 1 I h >
W hpO +  f lu

+ Y * 
hP

e iaJt )

(3 .48a)

w here we have u sed  the abbrev ia ted  notations:

Х . , ' 4 И-  ' 2  <3-49»»
hpO 

and

Y *  = (3 .49b)
hp W ,  „+ ñ u  

hpO

T h e re fo r e , the co m p le x  con jugate o f  E q . (3.48a) fu rth er  y ie ld s

< h  I p t1» |p > = -  (Y hp e ’ 1“ 1 + X * hpe iwt) (3 .48b)

W e use E qs (3 .4 8 a , b ), to g e th e r  w ith the defin ition  (3 .6) fo r  the s e l f -  
con s is ten t p oten tia l, to  com pu te the s e l f -c o n s is te n t  change in  the 
a v e ra g e  potentia l (AV) g en erated  by the change in d en sity  p t1) .  We have
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<( p | Д V | h /  = У  (p i I v I h i 1 ) <( i ' I pW  I i>  

i, i'

= У  [ (p h '  j v  I h  p 1) ^ p ' | p ^ 1 * | h ' ^  + (p p ' j v j h  h 1 ) < ^ h '  | p  W | p' \ ]

h' P

(p h 1 I v I h p 1) -í X  e " iwt + Y* e iwt1 1  ' h'p' h'p'
h' ,p'

+ (p p ' I v I h h ') | Y h, p, e ' iwt + X :;h. p, e iwt j  (3.50a)

We have to equate^this with the m a tr ix  e lem en t betw een  <( p | and |h / o f 
the p ertu rb ation  A  we had started  w ith. The la tter  is  g iven , a c co rd in g  
to  E q s (3 .23 b ), (3 .49a) and (3 .49 b ), by the fo llow in g  e x p re s s io n :

< P | /  I h > = < p I ¿  I h > e " lwt + < p j A*  j h > e 1UJt

(3.50b)

= (Whp0 - hu) X hpe + (W hp0 +.ftU) Y*p e iwt

Equating e x p re s s io n s  (3 .50a) and (3.50b) w e actu a lly  obtain  two se ts  of 
equ ation s, one set com in g  fro m  the c o e ffic ie n ts  o f exp (-  iwt) :

(W hPo ' hlJ) X hp= -  | v | h p ') X h.p, + (pp- | v | h h ')Y h, p, ]

h’ p' (3 .51a)

and the o th er set o f  equations fro m  the co e ffic ie n ts  o f exp (+ iu t):

(W hPo +ÎUJ>YiP = - D (pp' | v | h h ')X * IpI+ (p h ' |v|hP' ) Y * pI]

(W hp0 + h u ) Y hp = - У  [ (PP' | v | h h ')* X h.p,+  (p h ' | v| h p ')*  Y h. p.]

hp (3.51b)
E quation s (3 .51a) and (3.51b) tog eth er  p rov id e  us with a set o f coup led  
lin e a r  equations fo r  the unknown am plitu d es X  hp and Y hp. V a lu es o f  fuj 
f o r  w hich  th is sy s te m  o f equations y ie ld s  n o n -t r iv ia l so lu tion s fo r  these 
am p litu d es , a re  the n o rm a l fr e q u e n c ie s  o f v ib ra tion . T h is sy ste m  o f 
equ ation s is 'k n ow n , in the lite ra tu re , as the "ra n d o m -p h a se -a p p ro x im a tio n  
(R P A )" equations fo r  v ib ra tio n . The nam e has a h is t o r ic a l  o r ig in  in a 
set o f  s im ila r  equ ation s d e r iv ed  fo r  the p la sm a  o s c illa t io n  m ode o f an 
e le c tr o n  gas w ith the assu m ption  that the ex cita tion  am plitud es o f a p a ir  
o f  e le c tr o n s  c o rre sp o n d in g  to  d iffe re n t m om entum  tr a n s fe r s  have a 
c o m p le te ly  ran dom  phase w ith r e s p e c t  to each  oth er.
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It is  e a sy  to r e w r ite  the sy ste m  o f  E qs (3 .51a , b) in te rm s  o f 
m a tr ic e s  by in trodu cin g  the fo llow in g  d e fin ition s  o f the two m a tr ice s  
A and B:

E ach  h p -s ta te  d e fin es  a row  o r  colum n  o f th ese  m a tr ic e s . In view  o f the 
d e fin ition  (3 .4) o f  the ro u n d e d -b ra ck e t m a tr ix  e lem en t, w e have in te r 
changed with a r e v e r s a l  o f sign  the o rd e r in g  o f  h and p ' in the tw o -b o d y  
m a tr ix  e lem en t o c cu rr in g  in E q . (3 .52 a ), as com p a red  with the o r ig in a l 
o rd e r in g  in E qs (3 .51 a , b ). We a lso  in trod u ced  the notation  o f a colum n  
v e c t o r  X  w hose e lem en ts  a re  X  hp, and a s im ila r  colum n  v e c to r  Y 
w hose  e lem en ts  a re  Y hp. Then it is  e a sy  to  v e r ify  that E qs (3 .51 a , b) can 
be re p la ce d  by the fo llow in g  m a tr ix  equation :

It is  c le a r  fr o m  the d e fin ition s  (3 .52a , b) that A is  H erm itian , and В 
s y m m e tr ic . U sing th ese  p r o p e rt ie s  we have

that is ,  M is  a H erm itian  m a tr ix . H ow ever , one m u st n o tice  that 
E q . (3 .5 3 ), b e ca u se  o f  the p r e se n ce  o f  the m inus sign  with Y on the 
righ t-h an d  s id e , is  not an e igenvalue  equation  fo r  the m a tr ix  M . 

Since E q . (3 .53 ) conta in s the fo llow in g  tw o m a trix  equations:

A . ,, , = W. . 6 . . .  ó .hp, h p hpO hh pp
- (p h 1 j v I p' h) (3 .52a)

and

B. ., , = (p p 1 v h h 1hp, h p i I (3 .52b)

(3.53)

We denote the m a tr ix  on the le ft-h a n d  s id e  by M:

(3.54)

(3.55a)

A X  + B Y  = -fiu X (3.56a)

B VX  + A * Y  =-ñu Y (3.56b)

we can  e a s ily  re w r ite  the se co n d  equation  as

- B * X  - A-*Y = tiu Y (3 .56c)
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and then re p la ce  the set (3 .56a , b) by  the set (3 .56 a , c ) . The la tter  can 
then be w ritten  as

L et us n o tice  now E q . (3 .57a) is  indeed the eigenvalue equation  o f the new 
m a tr ix  M ' . But b e ca u se  th ere  are  m inus sign s in the secon d  line o f M ' , 
one can  e a s ily  v e r ify  that it is  not a H erm itian  m a tr ix . Thus the RPA 
equations re p re se n t the eigenvalue p rob lem  fo r  a n on -H erm itian  m a trix .

S ev era l im portant m ath em atica l p r o p e rt ie s  o f th is m a trix  w ill now 
be w ritten  down:

(i) The H erm itian  m a trix  M has r e a l e ig en v a lu es . It is  p o s s ib le  to 
p ro v e  (se e  the A ppendix  to th is section ) that these r e a l e igen va lu es are  
p o s it iv e  d e fin ite , i f  our equ ilib r iu m  state Ф0 c o rre sp o n d s  to a m inim um  
o f en erg y  as a fu nction  o f the d e form a tion . F ro m  this p ro p e rty  o f the 
e ig en v a lu es  o f  M, it is  then p o s s ib le  to d e r iv e  that the e igen va lu es o f the 
R PA  m a tr ix  M ' a re  r e a l . T h is p ro o f w ill be a lso  g iven  in the A ppendix.

(ii) E quations (3 .57 a , b) a re  equivalent to E qs (3 .56a , c ) .  Let us 
take the co m p le x  con jugate o f the la tte r , keeping  in m ind that ftco is  r e a l, 
and we obtain

T h is e s ta b lish e s  the se co n d  p ro p e rty  w hich  we wanted to p ro v e : The

(3.57a)

with

M' (3.57b)

A *X * + B *Y * = ftw X:

-B X *  -  A Y * = hu Y :

By r e s e r v in g  the sign  we re w r ite  th ese equations as

A Y * + BX* = -hu Y ;

-B * Y *  -  A *X * =-hojX:

The la st tw o equations can  be c le a r ly  w ritten  in m a trix  fo rm  as

(3.58)

e ig en v a lu es  o f M 1 o c c u r  in p a irs  ± fiu; i f 'X is  a v e c to r  fo r  e igenvalue

ñu then Y
X- :) i s ,  a c c o rd in g  to  E q. (3 .5 8 ), an e ig e n v e cto r  be lon g in g  to

the e igen va lu e  -tnj.
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(iii) A th ird  p ro p e rty , w hich  a lso  fo llo w s  fr o m  the p o s itiv e  
d e fin ite n e ss  o f  the e ig en v a lu es  o f  M , is  g iven  by

hw ( I X  I2 - I Y I2 ) ê 0

i .e .  in m o re  d eta il,

(3 .59)

h .P

T h is p ro p e rty  p ro v id e s  us with a conven ient n o rm a liza tio n  o f  the e ig e n -

is  p o s it iv e  d e fin ite , and h ence  we can  n o rm a liz e  the c o rre sp o n d in g  
e ig e n v e c to rs  to

F o r  a n egative  en erg y  ñu , the co rre sp o n d in g  n orm a liza tion  is  to m inus 
unity. A c co r d in g  to  the p ro p e rty  (ii) stated a b ov e , X  fo r  a negative 
en erg y  so lu tion  is  Y* fo r  the c o rre sp o n d in g  positive ' e n e rg y  so lu tion , 
and Y  fo r  the sa m e n egative e n e rg y  so lu tion  is  X *  fo r  the co rre sp o n d in g  
p o s it iv e  e n e rg y  so lu tion . H en ce , the n o rm a liza tio n  o f a n e g a tiv e -e n e rg y  
so lu tion  is  a u tom a tica lly  guaranteed on ce  we a s su re  the n orm a liza tion
(3 .60 ) fo r  the p o s it iv e -e n e r g y  so lu tion .

A d eta iled  in terp re ta tion  o f the R P A -e q u a tio n s , and am plitudes w ill 
be g iven  la te r  in th ese  le c tu r e s , a fte r  we have d er iv ed  the sa m e equations 
by an a ltern a tiv e  m ethod . Som e o f the p r o o fs  le ft  out above a re  g iven  in 
the fo llo w in g  A ppendix .

A . I .  C on dition  fo r  a H F -m in im u m  and the p o s itiv e  d e fin iten ess  o f  M

If the equ ilib r iu m  H F -sta te  c o r r e s p o n d s  to  a genuine m in im um  point 
on e n e r g y -v e r s u s -d e fo rm a t io n  c u r v e , then the g ro u n d -s ta te  en erg y , a fter  
the pertu rb ation  has b een  in trod u ced , m u st, by  d e fin ition , be la r g e r  than 
the equ ilib r iu m  H F -e n e rg y . W e sh a ll ca lcu la te  the change in e n e rg y  and 
r e q u ire  that it be p o s it iv e .

F o r  a p o s it iv e  e n e rg y  ñu, the su m m ation  in re la tio n  (3 .59)

(3.60)

h.P

A P P E N D IX  TO  SECTION 3
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T he e x p re s s io n  fo r  the g rou n d -s ta te  en erg y  is  g iven  by

< H >  = ^ < h | T | h >  + |- У  (hh' I v| hh' ) (3 .6 1 )
h h,h'

If we use an a r b itr a r y  re p re se n ta tio n  (3 . 5) and the defin ing equation  (3 . 7a), 
then th is e x p re s s io n  can be e a s ily  re w r itte n  in a m o re  conven ient and g en era l 
f o r m :

< н > = У < а  |T|ßXß |p |or> У  (aß|v|76) < 6  |p|ß> < 7  |p| a> (3 .6 2 )
a,ß- a,ß,y,0

If we use the equ ilib r iu m  value o f  p in th is e x p re s s io n , w e obtain  the e q u il i
b r iu m  value o f  the g rou n d -s ta te  en erg y . On the oth er hand, u sin g  the p e r 
turbed  d en sity :

p = p

in the sam e e x p re s s io n  w e obtain  the e n e rg y  o f  the pertu rb ed  state . W e 
denote the la tter  by  ^H)> and obtain

< H >  =У<£*| T |ß></3 I {p + p (1) + p (2 ) }<*>  
a, ß

+ ^  X  ^  I v | y5) <( ê j {p + p^1) + p (2) } |)3><-y| (p + P(1) + p^2̂ |û')> (3 .6 3 )
“ » ß . y , 6

W e have u sed , up to  s e c o n d -o r d e r , te rm s  in p , and h ence sh a ll be sa tis fie d  
b y  evaluating “\H^> to  se co n d  o r d e r . The z e r o -o r d e r  te r m  in E q .(3 .6 3 )  
c o m e s  fr o m  p e v e ry w h e re , and hence e x a ctly  a g re e s  w ith the equ ilib r iu m  
value < (lO , as g iven  by  Eq. (3 . 62). W e w ill w rite  e x p lic it ly  the f i r s t -  and 
s e c o n d -o r d e r  te r m s  o f  E q .(3 .6 3 ) .  D enoting the o rd e r  by  the co rre sp o n d in g  
s u p e r s c r ip ts  w e have

< Н < «>  = ^ | Т | З Х Э | Р < » | ^ + У  [aß I v| yà)  < 5 |p\ß > \ 7  j p ^  |ar>
a. ß a . ß .y  ,6 ( 3 . 6 4 )

In w rit in g  the potentia l e n e rg y  te rm  in Eq. (3 . 64) w e n otice  that th ere  a re  
two f ir s t - o r d e r  t e r m s : <( 6 |p(J) |/3 У ( у  | p | аУ and 6 |p | <(71p(i) | аУ.
B e ca u se  o f the su m m ation  o v e r  a , ß , y ,  6 th ese  tw o te rm s  lead  to  id en tica l 
r e s u lt s . W e h ave , th e r e fo re , kept one o f  these fa c to r s  in  E q .(3 .6 4 )  and 
have c a n ce lle d  the fa c to r  1 /2  in (3 . 63) with the fa c to r  o f  2 w hich  we acq u ired  
fr o m  the iden tity  o f  the two te r m s . In a s im ila r  m ann er, w e c o l le c t  the 
s e c o n d -o r d e r  te rm s  o f the type p p(2) , p (2)p  and р(Ч р(У fr o m  E q .(3 .6 3 )  
and obtain
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< H (2)> = Y < a |т I /3 > < ß \  P(2 )\a>^
0 ,0  •

+ ^  (a.ß|v |т5) <6 |p |ß> < т| р(2) |<2>
“ .В .  У, à

+ \  I v M )  <6 |p(1) |ß> <7 |p(1) Ia > (3 .6 5 )

« . 0,y,6

W e sh all f ir s t  s im p lify  Eq. (3 . 64) and show that this f i r s t - o r d e r  change 
in en erg y  is  z e r o .  F ir s t  in se r t  the d efin ition  o f  the HF potential V fro m  
E q . ( 3 .6 )  in the secon d  term  o f  E q . (3 . 64) and obtain

Q '>+^<£* |v |y > < y |p (1) |«>
0 , 0  a , y

= |(T + V) |ß> < 3 I P™ |<*>
o . ß

N otice  that th is fo rm  is  a ctu a lly  a t r a c e  o f  (T  + V ) p ^  in our a r b itr a r y
r e p r e s e n t a t io n » ,  ß ,  ..........e tc . S ince the tra ce  is  in varian t with r e s p e c t
to  re p re se n ta t io n , w e exam ine th is e x p re s s io n  in the H F -re p re s e n ta tio n , 
w h ere  the H F s in g le -p a r t ic le  H am ilton ian  (T  + V ) is  d iagon al, and p ^  , 
as p roved  e a r l ie r ,  has on ly  m a tr ix  e lem en ts con n ectin g  a hole state with 
a p a rt ic le  state . ’ In the H F -re p re s e n ta tio n

<H ™ > = £ < i | ( T  + V)| j> < j| p (1) |i>

Ui

= Y eió« I = 0 (3-66)
i . j

b eca u se  the re q u ire m e n t <5¡j is  c o n tra d ic to ry  to the p ro p e rty  o f  p ^  just 
now m en tioned , and m akes <j |p ^  | 0  van ish . H ere  is  the e n e rg y  o f 
the H F -s ta te  i.

W e next exam ine the s e c o n d -o r d e r  e x p re s s io n  (3 .6 5 ) .  O nce again 
use the d efin ition  (3 .6 )  and obtain

< Й (2)> = Y  < a | (T +  V )| ß> < ß  |p (2) |e>
0,0

+ i X  ^  lv b ó ) < 6 |p(1) |ß><7 |p(1) |a> 
a , 8 , y ,  6

Now w e use the H F -re p re s e n ta tio n , togeth er  w ith the p r o p e rt ie s  (3 .2 1 a ,b ,c )  
and (3 .2 2 a ,b ) .  T h is g iv e s  fo r  the f ir s t  lin e  o f

< H ( 1 ) >  = У < « | т  | 3 >  < 0  |p(1) I
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£ < h | ( T  + V) |h> <h  |p<2> |h> + ^ < p | (T + V ) | p > < p | p ( 2> |p> 

h p

= X  (ep '  e h> < h |p(1) Ip > <  P |p( 1 ) |h>
h ,p

w h ere  (ep - e^) = Whp0 is  the en erg y  o f the unperturbed  h o le -p a r t ic le  state 
w ith  r e s p e c t  to the g ro u n d -s ta te  en erg y  W0 . C om bin ing  th is with the secon d  
lin e  o f  w e obtain  the fin a l e x p re s s io n :

< H C 2 ) >  = ^ w hp0< h | p (1> | p > < p | p (1) |h>  

h,p

+ \  X  X [ (p 'p | v | h 'h )  < h | p (1) | p> < h '| p (1) |p* > 

h .p  h 'p '

+ (h 'h | v| p »p ) < p  |p(1) |h> < p ' |p(1) |h* >

+ (h1 p| v| p1 h) ^h  I I p)> < p ' I |h' У

+ (p 'h | v | h 'p )  < p | p (1) | h > < h '| p (1) |p«>] (3 .6 7 )

The r e s u lts  (3 . 66) and (3 . 67) have an in terestin g  p h y s ica l m eaning . We 
n o tice  that w hen w e d istu rb  the n u cleu s fr o m  its  e q u ilib r iu m , the f i r s t -  
o r d e r  change in d en sity  cannot gen era te  any f i r s t - o r d e r  change in en erg y . 
The lo w e s t -o r d e r  change in en erg y  is  g iven  b y  E q. (3 . 67) and it is  qu ad ratic  
in the d en sity  flu ctuation  ß^  . T h is has a c la s s ic a l  a n a lo g y ‘in te r m s  o f 
what happens to  a v ib r a to r . O ff e q u ilib r iu m , the v ib ra to r  has an en erg y  
w hich  is  qu ad ra tic  in the v ib r a to r  c o -o rd in a te . T h e r e fo r e , Eq. (3 .6 7 ) can  
be  u sed , w ith  su itab le  m o d e ls , to  com pu te the sp rin g  constan t o f n u clea r  
v ib ra tion . It w ill  be an in terestin g  e x e r c is e  fo r  the student to  try  th is p r o 
g ra m  fo r  the m o d e l d e s c r ib e d  in  se c t io n  3C .

W e in trod u ce  the fo llow in g  s im p lifie d  notation :

< p  IpCD jh) = x,

and h ence

jd )  
w ritten  as

h p

<h|p(D  |p> = x*p

U sing de fin ition s (3 .5 2 a ,b ) ,  E q .(3 .6 7 )  can  be

< Й < 2 )>  2  X  X  ^X hp A h p Ih , p* X h 'p '  +  ^ p ^ b p . h ’ p '  X h 'p '
h , p  h*p*

+ x* B , , ,  , x*  , + x, B, , x , ,  , 
hp hp .h 'p '  h.p hp hp, h 'p '  h 'p '

s ¡  (x* x) (в* aB0  Ù * )  (3-68)
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w h ere  x and x* a re  v e c t o r s  having com pon en ts x hp and x^p(r e s p e c t iv e ly .
The con d ition  fo r  a genuine H F -m in im u m  then gu aran tees e x p re s s io n  (3. 68) 
being  g re a te r  than z e r o ,  i . e .

( x * x ) M ^ * j > 0  (3 .6 9 )

If is  any e ig e n v e cto r  M having eigenvalue m  then

A x  + B y  = m x

and
B *x  + A * y  = m y

Since the e igen va lu e  m  o f the H erm itian  m a tr ix  M is  r e a l  w e get, by  taking 
the co m p le x  con jugate o f  th ese  tw o equ ation s,

A y* + B x* = m y*

B *y* + A *x *  =m x*

A s  a m a tr ix  equation  we, th e r e fo r e , have

M (x*) =m( Í
T hus, each  e igenvalue  o f  M is ,  at le a s t , doubly  d eg en era te . The e x is te n ce

o f an e ig e n v e c to r  ^  a u tom a tica lly  e n su res  the e x is te n ce  o f  another ^  ^

a s  p roved  a b ove . A n y  lin e a r  com bin a tion  o f  th ese  tw o v e c t o r s  w ill a ls o  be 
an e ig e n v e c to r  o f  M belon g in g  to  the sam e e ig en v a lu e . T h us, in p a rt icu la r ,

and ( Ц - Л \У  +  x  /  \ - i ( y - x * ) .and J  (3 .7 0 )

a re  e ig e n v e c to rs  be lon g in g  to  the sa m e e igen va lu e . Both  o f  these v e c to r s  
have the fo r m  o f  the s p e c ia l v e c to r  appearin g  in in equ ality  (3 . 69). B ecau se  
o f the d iffe re n t s ign s  in the two v e c t o r s  (3 .7 0 )  one o f  them  at le a s t , w ill be 
n on -v an ish in g . T h e r e fo r e , w e have proved  w ith the aid o f  in equ ality  (3 . 69), 
w h ere  x is  a r b itr a r y , that fo r  e v e ry  eigenvalue m  o f  the m a tr ix  M , th ere 
is ,a t  le a s t , one e ig e n v e c to r  in  the sp e c ia l fo r m  o f e x p re s s io n  (3 .6 9 ) ,  w hich  
sh ow s that each  eigen va lu e  o f  M is  p o s itiv e  d e fin ite .

A .2 .  E igen va lu es o f  M 1 a re  r e a l

T he r e s u lt  p roved  ab ove  w ill  enable us to  show that the e igen va lu es o f

M 1 a re  r e a l .  F ro m  d efin ition  (3 . 53), i f  w e u se  an e ig e n v e cto r  ( y )  o f  M 1 
belon g in g  to  the e igenvalue  ftu, w e have

(X* Y* ) M Q i )  = hu (X * Y *)

= hu ( I X I 2 - |y |2) (3.71)
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But a ll the e igen va lu es o f  the m a trix  M being  r e a l  and p os itiv e  d efin ite , 
the le ft -h a n d  side  w hich  is  the expectation  value o f  M fo r  an a rb itra ry  state 
( i . e .  not an eigen sta te  o f  M) m u st a lso  be r e a l and p os itiv e  d efin ite . 
T h e re fo r e ,

h u ( | x |2 - I y|2 ) = r e a l  and ë 0 (3 .7 2 )

Since the quantity e n c lo s e d  in the p a ren th eses is  r e a l ,  w e p rove  that hu,
the e igenvalue  o f  M 1 , is  r e a l .  The in equ ality  in (3 . 72) then r e q u ire s  that

| x |2 - J Y |2 > 0 when hu > 0

< 0 when ftu < 0 (3 . 73)

4 . G E N E R A L M ICROSCOPIC TH EO RY -  Q U A S I-P A R T IC L E  MODE

4 .1 .  B a s ic  con cep t o f  q u a s i-p a r t ic le s

In this se c t io n  w e sh a ll d e r iv e  a g e n e ra l m ic r o s c o p ic  th e o ry  o f  n u clear  
sta tes  in a m anner that w ill m ake it a p p licab le  to  a ll the th ree c a se s  m entioned 
in the in tro d u cto ry  s e c t io n . The secon d -q u a n tized  v e rs io n  o f  the m any- 
bod y  H am ilton ian , w hich  w ill be used fo r  th is p u rp o se , is  g iven  by

H = |T|j3> c Tac ß + ¿  £  <«0|v|7 6 >  c 2 c j c 6 c y (4 .1 )
a.ß a,0, y,6

+
w h ere  c „ ,  c ß, e tc . a re  the c re a tio n  and d estru ction  o p e ra to rs  fo r  a se t o f  
s in g le -p a r t ic le  b a s is  sta tes. The fa c to r  1 /2  in fron t o f  the secon d  term  
has to be changed to  1 /4  i f  we want to use the ro u n d e d -b ra ck e t m a trix  e le 
m ent (aß | v| 7 6 ) in fo rm u la  (4. 1) defined b y  Eq. (3 . 4 ). H ow ever , it is  not 
n e c e s s a r y  to  do th is . The fo rm  (4 .1 )  a u tom a tica lly  g iv e s  r is e  to  the d ir e c t -  
m in u s-ex ch a n g e  te rm s  o f  the tw o -b od y  potential in actu al ca lcu la tio n s .

The d e stru ctio n  o p e ra to r  u sed  above has the fo llow in g  im portan t p r o p e r 
ty : the p h ys ica l vacuum  state | (O  does not conta in  any n u cleon s by  d e fin i
tion , and h ence it should be im p o ss ib le  to d e s tro y  any n u cleon  fro m  this 
sta te , that is ,

cg| 0>  = 0 fo r  a ll ß (4 .2 )

T o  g e n e ra liz e  th is c o n ce p t, let us f ir s t  exam ine what happens fo r  the 
H F -s ta te , i . e . ,  the situation  dep icted  in F ig s  1 .1 a  and 1 .2 a .  The H F -sta te  
|¥0> conta in s a se t o f  o ccu p ied  s in g le -p a r t ic le  sta tes h, h 1 , . . . . e tc . and 
h ence  it is  im p o ss ib le  to  c re a te  another p a rt ic le  in an occu p ied  state h 
w ithout v io la tin g  the Pau li e x c lu s io n  p r in c ip le . T h e re fo r e ,

c h 1 0̂ У = 0 ô r  a-4 h o c c u Pie d in 'J'o (4 . 3a)

The state l^o/* d o e s  not contain  any o f the u n occu p ied  s in g le -p a r t ic le
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sta tes  p, p 1, . . . , e tc . and h ence  it should be im p o s s ib le  to  d e s tr o y  any 
such  state fr o m  I'i'o^

Cp|?0 У = 0 fo r  a ll p u n occu p ied  in ¥ 0 (4 . 3b)

If w e now defin e a new d e stru ctio n  o p e ra to r  fo r  the s e l f -c o n s is te n t  sin g le  - 
p a r t ic le  sta tes by  the fo llow in g  re la t io n :

b j = c tf  w hen i = h, i . e .  any o f  the o ccu p ied  sta tes ,

= Cj w hen i = p, i . e .  any o f  the u n occu p ied  sta tes , (4 . 4)

then E qs (4 . 3 a ,b )  can  be  com b in ed  and w ritten  as

b¡ |f0 > = 0 fo r  a ll i (4 . 5)

N ow , n o tice  the fo r m a l s im ila r ity  betw een  E qs (4 . 2) and (4 .5 ) .  W e can , 
th e r e fo r e , in te rp re t the H F -s ta te  I'J'o^ as the vacuum  state fo r  the new 
o b je c t s  w h ose  d es tru ction  o p e r a to rs  a r e  defin ed  by  E qs (4 .4 ) .  T h ese  new 
o b je c ts  a re  c re a te d  by  the o p e ra to rs  w hich  a re  H erm itian  con ju gate  to  the 
o p e ra to rs  (4 .4 ) ,  that is ,  by

bT = C; w hen i is  any o f the o ccu p ie d  sta tes,

= c f  w hen i is  any o f the u n occu p ied  sta te s . (4 .6 )

W e c a ll  th ese  new o b je c ts  the "q u a s i-p a r .t ic le s "  and the H a r tr e e -F o c k  state 
Y0 p lays the r o le  o f  the vacuum  fo r  th ese  qua s i -p a r t ic le  s . The q u a s i
p a rt ic le  sta tes a r e  ce r ta in ly  d is tin c t fr o m  the p a r t ic le  sta tes w e s tart ed  
w ith , b e ca u se  W0 d oes  conta in  a lo t  o f  p a rt ic le  sta te s , even  though it d oes 
not conta in  any q u a s i-p a r t ic le .  A s  a m atter o f  fa c t , the q u a s i-p a r t ic le  in 
the p re se n t exam ple  is  e ith er  a "h o le "  in the H F -s ta te  o r  a " p a r t ic le "  above  
the o ccu p ie d  states in • T h is  is  a con seq u en ce  o f  defin ition  (4 .6 ) ,  the
f ir s t  lin e  o f  w hich  sa y s  that i f  w e d e s tro y  a p a rt ic le  state in the F e r m i sea 
( i . e .  the set o f  o ccu p ie d  sta te s ), and th ereb y  c re a te  a " h o le " ,  in that state , 
th is op era tion  b e c o m e s  equ ivalent to  the c re a t io n  o f a "q u a s i -p a r t ic le " ;  
on the oth er hand, the secon d  lin e  o f  d e fin ition  (4 . 6) g iv e s  us another a l t e r 
native w ay  o f  getting a q u a s i-p a r t ic le ,  i . e .  b y  cre a tin g  a "p a r t ic le "  above 
the F e r m i se a .

In the g e n e ra l m ic r o s c o p ic  th e o ry  to  be  d e s c r ib e d  h e re , it  is  our aim  
to obtain  a ground state in the m o re  co m p lica te d  c a s e s  (b) and (c ) o f  F ig . 1. 1 
and (b) o f  F ig . 1 .2 , w h ich  a lso  s a t is f ie s  a p ro p e rty  lik e  E q .(4 .5 ) .  Since the 
p ro b a b ility  d is tr ib u tion  n ear the top  o f  the F e r m i sea  in  F ig . 1. 2b is  v e r y  
m uch  sp rea d  out, in th is m o re  g e n e ra l c a s e  we cannot sp eak  o f  a pure "h o le "  
state in sid e  the F e r m i se a , o r  a pure "p a r t ic le "  state above the F e r m i se a . 
H en ce , the q u a s i-p a r t ic le  w ill o b v io u s ly  lo s e  the s im p le  de fin ition s (4 .4 )  
and (4 .6 ) .  T he m ain  o b je c t  o f  the th e o ry  is  to  find the q u a s i-p a r t ic le s  su itab ly



588 PAL

s o  that the ground state in the m o re  g e n e ra l situ ation  can  a lso  beh ave a s  a 
vacuum  state fo r  th ese  q u a s i-p a r t ic le s .

4 .2 .  Q u a s i-p a r t ic le  tra n sfo rm a tio n  o f  the H am ilton ian

E ven w ithout w ritin g  down the q u a s i-p a r t ic le  o p e ra to rs  ex p lic itly , it 
i s  p o s s ib le  to  d e r iv e  a g e n e ra l fo rm  fo r  the tra n s fo rm e d  H am iltonian .
F o r  th is  p u rp o se , w e on ly  assu m e  that a ground state e x is ts  w hich  is  a 
vacuu m  state fo r  the q u a s i-p a r t ic le s , and that th ere  e x is ts  a tr a n s fo r m a 
tion  fr o m  the p a rt ic le  c re a tio n  and d estru ction  o p e r a to rs  to  the co rre sp o n d in g  
o p e ra to rs  fo r  the q u a s i-p a r t ic le s .

A c co r d in g  to  the W ic k 's  th eorem  w hich  h olds fo r  any prod u ct o f  a set 
o f  c re a tio n  and d estru ction  o p e r a to rs , w e can  w rite  the fo llow in g  id en titie s :

c ac ß = : c I c ß : + < c l c ß> (4 .7 )

6 = : c £ c î c , С

+ : c^Cg : < c 6c r > + < c £ c ¡ >  : с бС),:

+ : c ¿ V  <Cß 4 >  + < ca c r> : c î c6 :

- : c I < V  < c j c y > - < c ¿ c 6 > : c\cy:

+ < cI c ß > < c 6 c y> + < 4 с у > < св с б> - < S Î c 5 > < c 8c y> (4 - 8)

In th ese  e x p re s s io n s  У den otes an exp ecta tion  valu e w ith  r e s p e c t  to  the 
ground state w hich  is  the vacuum  state o f  the q u a s i-p a r t ic le s . T h is is 
u su a lly  ca lle d  the co n tra ctio n  o f  the pa ir  o f  o p e ra to rs  e n c lo s e d  b y  the pointed 
b r a c k e ts . The sy m b o l : : denotes the n o rm a l p rod u ct o f  the o p e ra to rs  a p 
pearin g  in  betw een  the d o ts . T o  evaluate the n orm a l p rod u ct one h as , f ir s t  
o f  a l l , to  e x p re s s  a ll p a rt ic le  c re a tio n  and d e stru ctio n  o p e ra to rs  in te rm s  
o f  the q u a s i-p a r t ic le  c re a t io n  and d estru ction  o p e r a to rs , and then perm ute 
a ll the q u a s i-p a r t ic le  d es tru ction  o p e ra to rs  to the r igh t o f  a ll the q u a s i
p a rt ic le  c re a tio n  o p e r a to rs ; the sign  has to  be p lus o r  m inu s, depending 
on the even  o r  odd nature o f  the perm u tation  n eeded . Since we have not yet 
defin ed  ou r tra n sform a tion  fr o m  the p a rt ic le  o p e ra to rs  to  the q u a s i-p a r t ic le  
o p e r a to rs  w e sh a ll have to  k eep  the n orm a l p rod u cts  in th e ir  sy m b o lic  fo r m s , 
fo r  the tim e  bein g . The e x p lic it  evaluation  o f  the co n tra ct io n s  w ill a ls o  in 
v o lv e  substitu ting the p a rt ic le  o p e ra to rs  b y  the q u a s i-p a r t ic le  o p e ra to rs  and 
then s im p lify in g  the e x p re s s io n  w ith the h elp  o f the b a s ic  p ro p e rty  o f  the 
g rou nd  sta te , i . e .  that a q u a s i-p a r t ic le  d e s tru ctio n  o p e ra to r  p ro d u ce s  z e r o  
on it . T h is  e x p lic it  evaluation  a lso  has to  w ait, fo r  the tim e bein g . W e 
p r o ce e d  tra n sfo rm in g  our H am ilton ian  (4. 1) w ith the standard r e su lts  (4 . 7) 
and (4 .8 ) .  E ven  though w e have m e r e ly  quoted th ese  standard r e s u lt s , the 
en te rp ris in g  re a d e r  m ay a lre a d y  have d is co v e r e d  the r u le s  o f  the gam e on 
h is  own. T h e ru le  is  f ir s t  to w rite  down the n o rm a l p rod u ct o f  the w hole 
e x p re s s io n  (the f ir s t  te r m s  o f e x p re s s io n s  (4 .7 )  and (4 .8 ) ) ;  then co n tra ct
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a ll p o s s ib le  p a irs  o f  o p e ra to rs  and m u ltip ly  by  the n o rm a l p rodu ct o f  any 
o p e ra to r  that m ay be le ft  (th is g iv e s  the secon d  te rm  o f e x p re s s io n  (4 . 7) 
and the se co n d , th ird  and fou rth  lin e s  o f  Eq. (4 . 8 )); continue the co n tra ctio n  
p r o c e s s  with an additiona l pa ir  and m u ltip ly  by  the n o rm a l p rodu ct o f  any 
o p e ra to r  that m ay be le ft  (th is g iv e s  the la s t  lin e  o f  E q . (4 . 8 )); s top  when 
a ll the o p e ra to rs  have been  con tra cted  p a irw ise . In each  te r m , take the sign  
as plus o r  m inus depending on the even  o r  odd nature o f  the perm u tation  o f  
o p e r a to rs  that has taken p la ce  in the p a rticu la r  te rm  w ith r e s p e c t  to  the 
o rd e r in g  o f  the o p e ra to rs  on the le ft-h a n d  s id e . T h is exp la in s the m inus 
sign  in  the fourth  lin e  and the la s t  te rm  o f  E q . (4 . 8).

W e substitute the e x p re s s io n s  (4 . 7) and (4. 8) in the o r ig in a l H am ilton ian  
(4 . 1). T h e re  w ill be te rm s  contain ing on ly  co n tra ct io n s , and h ence  these 
te rm s  r e p re s e n t  a pure n u m ber. W e sh a ll denote th is part o f  H b y  H0 (z e r o  
den otes that th ere  a re  no o p e ra to rs  in th is part o f  H ). T hen, th ere  w ill be 
a se co n d  se t  o f  te rm s  w hich  w ill contain  the n o rm a l p rod u ct o f  a pa ir  o f  o p e r a 
to r s .  Such te r m s  w ill be denoted b y  H2 (2 den otes that th ere  a re  tw o o p e ra to rs  
in it ). F in a lly , w e sh all have a part H4 com in g  fr o m  the f ir s t  lin e  o f  
E q .(4 .8 ) .  W e sh a ll w rite  th ese d iffe ren t p arts o f H one a fte r  an oth er.
F ir s t ,

K° = ^  I T I ß> < c^Cg > + i  ^<a|3|v| yô> K c t c ¡ X c 6c y>

«.в oi,ß,y,6

+ < c I c r >  < c ßc 6> - < c I c6 X c J c r >]
(4 .9 )

S ince 7 , and 6 a re  su m m ation  sy m b o ls  w e can  in terch an ge them  in  the la st 
te rm , w hich  then b e c o m e s

- \  Y  <a0lv I ^ X ^ C y X c e C j )
« . S ,y,&

T h is te rm  then can  be  com b in ed  with its  p r e d e c e s s o r  to  g ive

\  Y  ( ^ | v | 7 6 )< c ^ c y> < c g c 0> (4 .1 0 )

“ .8.y,6

N otice  the a p p ea ra n ce  o f  the ro u n d e d -b ra ck e t  m a tr ix  e lem en t fr o m  the 
d ir e c t -m in u s -e x ch a n g e  te r m s . If w e use defin ition  (3 . 14) fo r  the d en sity  
o p e ra to r  (w hich  w as v a lid  fo r  any g e n e ra l g ro u n d -s ta te  w ave function  f 0), 
and d efin ition  (3 .6 )  fo r  the s e l f -c o n s is te n t  potentia l V , then the k in etic 
e n e rg y  te rm  o f  e x p re s s io n  (4 . 9) and the la s t  two te rm s  (g iven  by  e x p re s s io n  
(4. 10)) g iv e  r is e  to

^<or| T  |/3><ß |p| » > Y (orß I v  176 ) <7 1 p I ас > <6 I p I /3 >
S c t ,ß ,  y,&

= ^ < a | ( T  + i  V ) I ß><0| p| a>  (4 .1 1 )

a ,В
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T h is  e x p re s s io n  a g re e s  w ith e x p re s s io n  (3. 62), w hich  w as the grou n d - 
state e n e rg y  fo r  a H F -s ta te . In the p resen t c a s e ,  H0 i s ,  indeed , the en erg y  
o f  the ground state b e ca u se  the te rm s H2 and H 4 o f the H am ilton ian  w ill 
conta in  n o rm a l p rod u cts  o f  o p e ra to rs  in w hich  the q u a s i-p a r t ic le  d es tru ction  
o p e r a to rs , by  de fin ition , appear on the r ig h t, and h ence they p rod u ce  z e r o  
op eratin g  on the ground state ¥0 . W e n otice  that the p resen t e x p re s s io n  fo r  
the e n e rg y  o f  the ground state , w hich  is  m o r e  g e n e ra l than the H F -s ta te , 
con ta in s an ex tra  te rm , i . e .  the term  ^ c ^ c  “( c ¿c o f E q . ( 4 .9 ) .  T o
study the co n se q u e n ce  o f th is te rm  w e in trod u ce  the fo llow in g  d efin ition  o f  
the pa irin g  d en sity  к :

K6y = < c ê c y> ' (4 .1 2 a )

such  that

< a  = < Ca 4 >  = < CSC/  (4 - 12b>

Since the d e s tru ctio n  o p e ra to rs  an ticom m u te  w ith each  o th er , we have

K y& = < c yc 6> = - < c 6c y> = - Kiy  (4 .1 2 c )

W e , th e r e fo re , w rite  the extra  term  o f  Eq. (4 . 9) as

\  Y  <<*ß| v | y ó >  (c*a |  (<c6 y  -  к у & )

= \  X  ^ M Y 6 ) K * a K6  ̂ (4 .1 3 )

a ,8,7.6

In w rit in g  the la s t  step  w e have in terch an ged  y  and 6 in  the term  w ith 
, th ereb y  p ick in g  up the ro u n d e d -b ra ck e t m a tr ix  e lem en t o f  x with the 

d ir e c t  m inus exch an ge. N ow , w e in trod u ce  the fu rth er d efin ition  o f  a 
p a irin g  p oten tia l:

Л а 6 = I X  (o ^ M -y ó )  к&7 (4 .1 4 )

У.6

and then e x p re s s io n  (4 . 13) s im p lifie s  to

2 X  15̂
a,S

A dding e x p re s s io n  (4 .1 5 )  to  e x p re s s io n  (4. 11) w e obtain  the fin a l form u la  
fo r  the g ro u n d -s ta te  e n e rg y  H 0, as g iven  by  E q .(4 . 9),

H 0 = £  {<а I (T  + i  V) I ß > <ß| p|<*> + I  AaßK* a } (4 .1 6 )

a ,В
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W e next c o l le c t ,  by e x p re s s io n s  (4 .7 )  and (4 .8 ) ,  a ll te rm s  o f E q .(4 .1 )  
w hich  conta in  the n o rm a l p rodu ct o f  a p a ir . T hus,

= ^ < < * | t |(3> : c * c ß : + ~  ^  <aß | v | t 6 >  [ .'c^Cg1-: < c 6c y>a, В a,B,y,&
+ < c TcI>  : c , c  : + : c^c : ( c j c . )  + <^c^c )> : c j c ta ß  6 y a y  ß ó ' a y  B 6

: CI C6 : < c ßc y> - < CI C6> : c ¡ c  :] (4 .1 7 )

S ince <̂0-/3 [ v I уЬУ = ( y b  | v  |a )̂>, stra ig h tforw a rd  in terch an ge o f  su m m ation  
la b e ls  w ill v e r i fy  that the f i r s t  tw o te rm s  in the potentia l e n e rg y  a re  H e r 
m itian  con ju g ates  o f  each  o th er . S im ila r ly , s in ce  ( ß a  |v |ó7 У = ( a ß  | v| 76 X  
the next two te rm s  in the potentia l e n e rg y  can  be  p roved  to  be  equal to one 
an oth er; fo r  the sa m e r e a s o n , the la s t tw o te rm s  o f Eq. (4 . 17) a re  a lso  equal. 
F u r th e r m o r e , b y  the in terch an ge o f  su m m ation  la b e ls  the la s t te rm  can  be 
co n v e rte d  to  - ( a ß  | v| 6уУ <( c^ cy У : c j c ¿ :. Taken  w ith the co rre sp o n d in g  
p o s itiv e  te rm  in E q .(4 .  17) w e thus obtain  the ro u n d e d -b ra ck e t  m a trix  e le 
m ent o f  v . A s  fa r  as the f ir s t  te rm  in the potentia l e n e rg y  is  c o n ce rn e d , 
w e can  get the ro u n d e d -b ra ck e t  m a tr ix  e lem en t by  re p la c in g  к&у w ith (|)(к6), -ку6) 
and then u sing  the tr ic k  that went into E q .(4 . 13). W ith a ll th ese  s im ip l if ic a -  
tio n s ,E q . (4 . 17) w ill  read

^ < a | T |  ß> : c ^ c ß : (aß |v I7 Ô) <6 | p | ß> : c * c
a. ß  a , ß ,y ,5

\  Y  [(aß I v|7 ó) : c j c ß: + H erm itian  con jugate]+ •4
а, B.y.Ô

O nce again , u sing  the d e fin ition s  o f  V and A ,w e  get

H 2 = Y  <a l (T  + V) I jS > : c * c 0 : + {Да ß : c^ c^ : + H erm itian  con ju g a te }

a.ß a,В (4 .1 8 )

T i*F in a lly , the e x p re s s io n  fo r  H4, w hich  c o m e s  fr o m  the : c ¿ c ¿ c sc  : te rm  
o f E q . ( 4 .8 ) .  F r o m  (4 . 1) it is  g iven  by

H4 = |  Y  ( a ß  |v |7 6> : c j c ^ c ^  : 
aß у 6

= ï  ^  (a?ß|v|-yö) ; c ^c ßc ö c y : (4 .1 9 )
a д у б

The la s t  step  fo llo w s  a fter  w ritin g  c 5 cy = (| )(c6 c }, - с  c 6) and then m aking 
in terch an ge o f the su m m ation  in d ice s  7 , 6 in the negative te rm .
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4 .3 .  S e lf -c o n s is te n t  H a r tr e e -F o c k  and H a r tr e e -F o ck -B o g o ly u b o v  
th eory

W e have now co m e  to  a stage w h ere  we can  try  to d eterm in e  the ground 
state Yo b y  m in im iz in g  H 0, w hich  is  the exp ecta tion  value o f  the H am iltonian  
w ith r e s p e c t  to th is state . F o r  this p u rp ose , le t  us f ir s t  note the s tru ctu re  
o f  the p a irin g  d en sity  (4 . 12a) and the pa irin g  potential (4 . 14). In Eq. (4 . 12a) 
w e a re  startin g  with the ground state ¥0 on the r ig h t, d es troy in g  tw o p a r 
t ic le s  in sta tes  у  and 6, and then try ing  to re a ch  the state again  on the
le ft . Such a quantity can  c le a r ly  be n on -van ish in g  on ly i f  conta in s w ave
fu nction s w ith d iffe ren t num ber o f  p a r t ic le s . If num ber con se rv a t io n  o f  p a r 
t i c le s  h o ld s  s t r ic t ly  tru e fo r  ¥0 , then a fter  c ¿ c y has op erated  on it we re a ch  
a state o f  a n ucleu s having tw o n u cleon s le s s ,  and h ence the o v e rla p  o f
a num ber co n s e rv in g  <Д0| with c &c y I'Fg^ is  z e r o .

T h e r e fo r e , fo r  s im p lic ity , le t us f ir s t  co n s id e r  a g rou n d -s ta te  w ave 
fu nction  fo r  w hich  con se rv a t io n  o f  the num ber o f p a r t ic le s  is  s t r ic t ly  
v a lid . T he te rm s  contain ing the pa iring  potential in E qs (4 . 16) and (4. 18) 
a re  then absen t. A s  fa r  as the d eterm in ation  o f  ¥0 is  c o n ce rn e d , w e m ay
apply  the v a r ia tion a l p r in c ip le , and re q u ire  that

H 0 = y < f f | (T + i  V)|j3><j3|p |f f> (4 .2 0 )
a,ß

be  m in im ize d . In the parts on H F -th e o ry  in th is p a per, w e have seen  that 
th is is  e x a ctly  what the H F -p ro g ra m  d o e s . W e r e c a l l  that the so lu tion  to 
th is v a r ia tion a l p ro b le m  is  as fo llo w s : W e defin e a se t o f  s in g le -p a r t ic le  
sta tes

| 1 > - Х х « 1 » > .  о г с Ь ^ Х ^ с ^  (4 .2 1 a )
a a

and then the v a r ia tio n a l p a ra m e te rs  x ÿ  that m ake H0 a m in im um  sa tis fy

^ < a | (T + V )| ß > X (ei) = е ; Х ^  (4 .2 1 b )
8

T h is  sy s te m  o f  equations fo r  the d eterm in ation  o f  X ^  a re  the H F -eq u a tion s , 
and they have to  be so lv e d  s e l f -c o n s is te n t ly , b eca u se  V a lre a d y  conta in s p, 
w h ich , in its  turn , conta in s the unknown c o e ffic ie n ts  X ^  (se e  E qs (3 .6  and 
(3 .7 a ) ) .

If, h o w e v e r , w e want to m in im ize  the co m p le te  H 0, with the p a ir in g - 
potential te rm  in clu ded , w e know a v a r ia tion a l state Yg, in  w hich  the num ber 
o f  p a r t ic le s  is  c o n s e rv e d , w ill not be adequate. W e, th e r e fo re , c o n s id e r  
a g e n e ra liz e d  v a r ia tion a l state Уд, w hich  conta in s a su p erp osition  o f  the 
w ave fu nction s o f  n u cle i having d ifferen t n u m bers o f  n u c leon s. If w e want 
to  apply  such a th e o ry  to  a g iven  n u cleu s, then, o f  c o u r s e , w e sh a ll have
to  c a r r y  out the v a r ia tio n a l ca lcu la tion  on H0 , su b je ct  to the con stra in t that
the a v e ra g e  value o f  the num ber o f n u cleon s in the state 'F0 be equal to the 
g iven  num ber o f  n u cleon s o f  the nucleu s under co n s id e ra tio n . A s  is  w ell
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known, the co n s tra in t in a v a r ia tion a l p rob lem  is  sp e c if ie d  in te rm s  o f a 
L agran ge  m u lt ip lie r . T h e r e fo r e , instead, o f  m in im iz in g  <'¥0 1H [ ï » ) ,  i . e .  
Ho o f  Eq. (4 .1 6 ) ,  w e have to  m in im ize  in th is c a s e  <̂ 'P0|(H-XN)|'i'0 /  w h ere  
X is  the L ag ran ge  m u ltip lie r  and N is  the o p e ra to r  fo r  the to ta l num ber o f 
n u cleon s :

IN = ) c î c .

If w e had tra n s fo rm e d  H -X N  in stead  o f  H into H 0, H2 and H 4, then it is  
c le a r  fr o m  the fo r m  o f N, i . e .

N= Z c« c“ = Z  {<c« c“> + :c“c“:} (4,22)
a  a

that the te rm  -XN w ould have con tribu ted  a te rm  to H  ̂ and a te rm  to Щ ,  
lea v in g  H4 u n a ltered . In an a logy  to  the k in e t ic -e n e rg y  te r m , it is  obv iou s 
that th ese  ex tra  te r m s  w ill be  obtained be r e p la c in g  the o p e ra to r  T by 
T - X 1 , w h ere  1 is  the unity o p e r a to r , in both H0 and H2. W e w rite  th ese 
e x p re s s io n s  fo r  H0 (X) and H2(X) fr o m  Eqs (4 .16) and (4 .1 8 ) ,  togeth er  with 
the r e c ip e  m en tioned  ju st now :

Ho(X) = Y  K « | (T  - X I + I  V)|j3><j3|p| a >  + I  Дае« | а } (4 .2 3 a )
a . ß

H2(X) = У < а | (Т  - X 1 + V) Iß> : 4 c ß: + i V [Л аВ: с У &:
я „ (4 .2 3 b )a , &  a , &

+ H erm itian  con jugate]

In an a logy  to  the tra n sfo rm a tio n  (4 . 21a) w e now u se  a g e n e ra lize d  t r a n s 
fo rm a tio n :

(4 .2 4 )

w h ere  the c o e f fic ie n ts  x ^  and y ^  a re  the v a r ia tio n a l p a ra m e te rs . T h ese  
o p e r a to rs  b f  a re  the c re a tio n  o p e ra to rs  fo r  our q u a s i-p a r t ic le s  and w ill 
be  co m p le te ly  d e term in ed  w hen the m in im iza tion  p ro g ra m  fo r  Hq(X) is  c a r r ie d  
out. T h is  p ro ce d u re  g iv e s  r i s e ,  in an alogy  to  the H F -c a s e ,  to a set o f 
cou p led  equ ation s fo r  the v a r ia t io n a l p a ra m e te rs , w hich  on ce  again  w ill have 
to  be  so lv e d  s e l f -c o n s is te n t ly . T h is  s e l f -c o n s is te n t  m ethod o f  finding the 
q u a s i-p a r t ic le s  is  c a lle d  the H a r tr e e -F o ck -B o g o ly u b o v  (H F B ) m ethod , and 
the q u a s i-p a r t ic le  equation  (4 .2 4 )  is  ca lle d  the H F B -q u a s i-p a r t ic le  t r a n s 
fo rm a tio n . T he s e l f -c o n s is te n t  equations o f  th is m ethod a re  show n in the 
A ppendix  to th is s e c t io n . An o b serv a n t r e a d e r  m ay have a lre a d y  n oticed  
that the H F B -tra n s fo rm a tio n  equation  (4 .2 4 )  is ,  in deed , b a sed  on the c o n 
ce p t o f  p a rt ic le -n u m b e r  n o n -co n s e rv a t io n  in the s ta te s . The f ir s t  part o f
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b /  adds a p a r t ic le ,  w h ile  the secon d  part r e m o v e s  a p a r t ic le , operating  
on any state ; thus b î  p rod u ces  w ave fu nction s o f  d iffe re n t num ber o f  n u cleon s 
actin g  on any w ave fu nction .

H e re , in  the m ain  bod y  o f th is p a p er, w e sh a ll fo llo w , instead  o f the 
fu lly  s e l f -c o n s is te n t  H F B -p r o c e d u r e , a tw o -s te p  m in im iza tion  p ro g ra m  o f 
H0 (X) w hich  “we sh a ll now d e s c r ib e .

4 .4 .  S im ple pa irin g  th e o ry  o f  the B C S -type

In th is s im p lifie d  th e o ry , as the f ir s t  step  o f  m in im izin g  H0 (A) w e shall 
om it the pa irin g  potentia l te rm  o f Eq. (4 . 23a). The resu ltan t m in im iza tion  
p ro g ra m  is  c le a r ly  id en tica l w ith what w e have done e a r lie r  in  con n ection  
with E q .(4 .2 0 ) .  The on ly  d iffe r e n c e  now is  the extra  te rm  - X I .  But the 
d ia gon a liza tion  p ro b le m  o f  (T + V ) ,  as show'n in E q .(4 .2 1 b ) ,  is  r e a lly  not 
changed by  th is extra  te rm . The e ig e n v e c to rs  o f (T + V )  and (T  + V -X  1) 
a re  o b v io u s ly  the sa m e , on ly  the e n e rg ie s  a re  sh ifted  fr o m  to -X  . 
T h e r e fo r e , at th is stage o f dealing  w ith Ho(X) w e have the set o f  s in g le 
p a rt ic le  s e l f -c o n s is te n t  states o f  E q .(4 .2 1 b )  and the co rre sp o n d in g  e n e rg ie s  
(e¡ - X ). A t the next step  o f  dea lin g  w ith H 0(X) w e use the sta tes |i> as the 
b a s is  and r e w r ite  it as

H0 (X) = £ < i | ( T -  A l  + | V )  | j> < j| p | i>  + |  Y  A i j 4  (4 - 25)
i.j i.i

w h ere

O l  p | 0  = < c j  Cj> ( 4 . 26a)

* II о ( 4 . 26b)

A ij = 1  ^ ( i j| v | k f )K |k ( 4 . 26c)
k, t

V | j>  = ^  (ik | v | ji) < i| p | k > ‘ (4 . 26d)

k.i

W e then do a fr e s h  m in im iza tion  fo r  H 0(X) using a q u a s i-p a r t ic le  tr a n s 
fo rm a tio n  that is  m uch s im p le r  than the Eq. (4 . 24). T h is  s im p le r  t r a n s 
fo rm a tio n  w hich  w e a re  go in g  to  in trod u ce  so o n , is  c a lle d  the B C S -(B a rd e e n , 
C o o p e r , S ch r iffe r )  tra n s fo rm a tio n , a fter  the nam e o f the peop le  who f ir s t  
ap p lied  a s im ila r  tra n sfo rm a tio n  to  the th e o ry  o f  su p ercon d u ctiv ity  o f  
m e ta ls .

T o  p re p a re  the ground fo r  the B C S -tra n s fo rm a tio n  le t  us f ir s t  exam ine 
the c h a r a c te r is t ic s  o f  the s e l f -c o n s is te n t  s in g le -p a r t ic le  sta tes | 0  • In a 
sp h e r ic a l n u c leu s , such  a state is  sp e c ifie d  by the quantum n u m bers SL, j 
and m , and a ls o  the num ber o f  n odes n in the ra d ia l w ave function . A ll the
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states having sam e ( n i  j) but d iffe re n t m (= - j ,  . . . . , +j) a re  d eg en era te . The 
state I n i  j m )  has a t im e -r e v e r s e d  partner w hich  is  g iven  by

( - l ) j ' m I n i  j ,  -m >  (4 .2 7 )

W e sh all denote these tw o partn er sta tes , in shorthand n otation , as |i)> 
and |i so m e tim e s  | О  w ill a lso  be  w ritten  as s¡ | - i X  w here s¡ is  the 
phase fa c to r  o f  e x p re s s io n  (4 .2 7 )  and | - O  stands fo r  the sam e quantum 
n u m bers ( n i  j)  as in | i )  but the p ro je c t io n  quantum num ber r e v e r s e d  in 
sign . In a m o r e  g e n e ra l situation  w hen the s in g le -p a r t ic le  sta tes c o rr e sp o n d  
to  a n o n -s p h e r ic a l V , |i)> or  |i)> a re  not as s im p le  as ab ove . But a state
I О  in th is m o re  co m p lica te d  c a se  can  s t ill  be  expanded in te rm s  o f  sta tes 
o f  the type | n i jm )  :

= X  x n f jm ln i j m > (4 .2 8 a )

n St jm

In th is c a se  the t im e -r e v e r s e d  partn er |l)> is  obtained by  using E q .(4 .2 7 )  
fo r  e v e ry  te rm  in the su m m ation :

|i> = Х х п « т (_1)) Ш i n i  (4 .2 8 b )
n i j m

If V has a sp h e ro id a l sy m m e try  then m  is a good  quantum n u m ber, and th ere  
is  no su m m ation  o v e r  m  in E qs (4 .2 8 a ,b ) ,  and the states |i) and |i У have
m  and -m  r e s p e c t iv e ly  as a la b e llin g  quantum n u m ber. Even in a m o re
co m p lica te d  c a se  lik e  Eq. (4 . 28b) w e sh all denote |i У s y m b o lic a lly  as 
Sj | -iX  The r e s u lt  that is  o f  m ost im p orta n ce  to  us about the t im e -r e v e r s e d  
partner |i )>is the fo llow in g .

L e t us c a r r y  out a secon d  tim e r e v e r s a l  on the state (4 . 27). T h is  c le a r ly  
g iv e s

|i> = ( - l ) i-m ( - l ) j + m I n i j ,  + m >  = - I xú jm  > = -| i>  (4 .2 9 a )

S im ila r ly , fo r  the m o re  co m p lica te d  state (4 .2 8 b ) a ls o , w e obtain

Yj “ 1 ) j m  ( - 1 )J + ш I n i j m  )> = - |i У (4 .2 9 b )
n Í  j m

In both the c a s e s  the m inus sign  is  a con seq u en ce  o f  the phase fa c to r  ( - l ) 2j , 
w h ere  2j is  a lw ays an odd in te g e r . T h is  e x p lic it  g e n e ra l r e su lt  (4 .2 9 a ,b )  
te l ls  us that our sy m b o lic  quantity s¡ has the fo llow in g  p ro p e rty :

s_i = - s ¡  (4 .2 9 c )

T he step s in  p rov in g  th is im portan t re su lt  is  as fo llo w s : by defin ition

|i> = s ; I - i>
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and hence

i >  = s.s ..|  + i>

or, by  c o m p a r is o n  w ith  E qs (4 .2 9 a ,b ) ,

s .s  . = -11 "I

w hich  is  the sa m e a s  E q .(4 .2 9 c ) .
In a H F -ca lcu la t io n  fo r  even  n u c le i, a state |i)> is  u su a lly  found to  be 

degen era te  w ith  its  t im e -r e v e r s e d  partn er |i)> = s ¡| - 0 .  L et us exam ine 
now the con seq u en ce  o f  crea tin g  a p a rt ic le  in the s in g le -p a r t ic le  state |iX  
and d es troy in g  its  t im e -r e v e r s e d  partner | iX  The f ir s t  p r o c e s s  is  a ch ieved  
b y  the o p e ra to r  c*j, w h ile  the secon d  p r o c e s s  is  g en era ted  by  the op era tor  
SjC It is  known fr o m  the angular m om entum  p ro p e rty  o f the s e c o n d - 
quantized o p e r a to rs  that, under a ro ta tion  o f  the c o -o rd in a te  sy s te m , the 
o p e ra to r  c j y m and the o p e ra to r  ( - l ) * 'm c nij _m both  tra n s fo rm  w ith  the sam e 
ro ta tion  m a tr ix :

m*

M ) J‘mCn«.-m Ь  У -m* Í 30b>
m*

Equation  (4 .3 0 a ) can  be taken as a de fin ition , b e ca u se  с ^ т  p rod u ces  the 
state | n ijm ^  and th is state tr a n s fo r m s  w ith under ro ta tion . It is
le ft  to  the re a d e r  as an e x e r c is e  to  p ro v e  that r e la t io n  (4 .3 0 b ) is  a c o n s e 
qu en ce  o f r e la t io n  (4 . 30a). A ll  that is  n e c e s s a r y  is  to  take the H erm itian  
con ju gate  o f  r e la t io n  (4. 30a), and then u se  som e  standard p r o p e rt ie s  o f  the 
S> - fu n c tio n s .

U sing th ese  b a s ic  p r o p e r t ie s , and the exp an sion s (4 .2 8 a ,b ) ,  it is  
stra ig h tfo rw a rd  to  e sta b lish  that c| and SjC.j beh ave s im ila r ly  under ro ta tion . 
T h e r e fo r e , in stead  o f u sing  the m o s t  g e n e ra l H F B -tra n s fo rm a tio n  o f  (4 .2 4 ), 
w e now u se  the s im p lifie d  B C S -tra n s fo rm a tio n  g iven  by

b.T = UjcJ - v  j s ¡c_ . (4 .3 1 )

T he c h o ic e  o f  the m inus sign  in the secon d  te rm  s im p ly  d e fin es our phase 
con ven tion  fo r  v.¡ . One can  c re a te  a p a rt ic le  in state i on ly  i f  it  is  em pty, 
and one can  d e s tro y  a p a rt ic le  fr o m  a c e rta in  state  on ly  i f  it is  o ccu p ie d .
T h e r e fo r e , u ¡ m u st be  the p ro b a b ility  am plitude o f  getting the state i em pty
(p ro b a b ility  o f  n o n -o ccu p a tio n ), w hile v .¡ m ust be  the p ro b a b ility  am plitude 
fo r  o ccu p a tion  o f  the co rre sp o n d in g  t im e -r e v e r s e d  state . B y  de fin ition , 
th e r e fo r e .

u? +  V¡2 = 1 = U?J +  v jj (4 .3 2 )
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b e ca u se  the tota l p ro b a b ility  o f  n o n -o ccu p a tio n  plus o ccu p ation  plus occu pation  
o f  any state i  o r  - i  m ust be unity. Equation  (4 .3 1 ) a u tom a tica lly  g iv e s  the 
qua s i -p a r t ic le  d e s tru ctio n  o p e ra to r

w h ere  we have u sed  the p ro p e rty  (4 . 2 9 c).
It is  c le a r  fr o m  defin ition  (4 .31) that th is fo r m a l e x p re s s io n  cou ld  be 

u sed  even  in the H F -c a s e .  T h e re , h o w e v e r , u¡ and Vj have known va lu es:

That is  to sa y , in the H F -c a s e ,  even  i f  we fo r m a lly  w rite  tw o te rm s  in 
e x p re s s io n  (4 .31 ), u su a lly  one o r  the o th er su r v iv e s . T h e re  w ill be 
e x ce p tio n s  to th is ru le  w hen ever we en cou n ter the fo llow in g  situ ations in 
the H F -g rou n d  state: (1) a. state i is  u n occu p ied  but its  t im e -r e v e r s e d
p a rtn er  is  o ccu p ie d ; in th is c a s e , both te rm s  in e x p re s s io n  (4.31) w ill be 
p re se n t; (2) the secon d  ca se  is  the op p os ite  w here i is  occu p ied  and its 
t im e -r e v e r s e d  p a rtn er  u n occu p ied ; then both te rm s  in e x p re s s io n  (4.31) 
van ish . T h ese  e x ce p tio n a l s itu ations u su a lly  n ev er  happen in even  
n u c le i, in w hich  e ith e r  both |i)> and | i /  a re  o ccu p ied  o r  u n occu p ied .

In the c a s e s  d ep icted  in F ig s  1.1a and b and the occu p ation  p rob a b ility  
and n o n -o ccu p a tio n  p ro b a b ility  o f  sta tes n ear the F e r m i su r fa ce  a re  non
van ish in g  fra c tio n a l qu an tities , and h ence both te rm s  in the B C S- 
tra n s fo rm a tio n  (4.31) su rv iv e . T h e r e fo r e , in such c a s e s  the tr a n s fo r m a 
tion  (4 .31 ) indeed g iv e s  r is e  to n u cleon  num ber n o n -co n s e rv a t io n , and 
h en ce  it is  ab le  to take into a ccou n t the co n se q u e n ce s  o f  the pa irin g  
poten tia l in H0 (X) and H 2 (X).

We now re q u ire  that the q u a s i-p a r t ic le  o p e ra to rs  behave as fe rm io n s . 
T h us, the fe rm io n -a n tico m m u ta tio n  p r o p e rt ie s

( 4 . 33a)

or
s i b  _ i = + V j c f  +  S j U . j C . , (4 .3 3 b )

Uj = 1 fo r  a p a r t ic le  state ,
= 0 fo r  a h ole  state ,

v ¡ = 1 fo r  a h ole  sta te ,
= 0 fo r  a p a rt ic le  state.

(4 .34)

(4.35a)

and

(4.35b)

w ill have to be en su red . F ro m  E q . (4 .31) w e have

= (+UjVj -  U .jV .j ) s j
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W e have used  h e re  the standard an ticom m u tation  ru le s  o f  c [  , c j e tc .
In the H F -c a s e ,  th is resu lt  is  alw ays z e r o ,  beca u se  a state is e ith er  
o c cu p ie d  o r  u n occu p ied  and h ence e ith er  u o r  v fo r  any state has to be 
z e r o .  But in  the m o re  g e n e ra l B C S -ca s e  an ticom m u tation  dem ands

u ¡vj = u -j v . ;  (4.36a)

N ext we apply E q . (4 .35b) to g e th e r  w ith E qs (4.33a) and (4 .31 ). T h is 
g iv es

0 i j  =  | b i  .  b 1) !  = j ( u iCi - V .J  S i  c ! j  ) ,  ( U j c /  - V . j S j C . j )

u iUj 6ц + V.JV.J s ¡s j  

(U 2 +  V 2 ) 6 ц

T h us,the req u irem en t is

u\ + v?. = 1 (4 .36b)

T aking E q . (4 .36b) tog eth er  w ith Eq. (4 .32 ) we p rove

v.2 = v 2 and u2 = u 2j (4.37)

T h us, a state i and its t im e -r e v e r s e d  p a rtn er  i m ust have the sam e value 
fo r  th e ir  occu p ation  p ro b a b ility  and n o n -o ccu p a tio n  p ro b a b ility . Then 
E q . (4 .36a) r e q u ire s  e ith er

u ¡ = u_i , v ¡ = v .j (4 .38a)

u i = " u - i ’ v i = _v -i (4 .38b)

We w ill  ch o o s e  the phase convention  o f E qs (4 .38a ). The statem ent u n d e r 
lin ed  above  is  u su a lly  taken as an assu m ption  to  start w ith, in w hich  ca se
one w rite s  v¡ instead o f  v_¡ in the B C S -tra n s fo rm a tio n  (4 .31) fr o m  the
v e ry  begin n ing . The p re se n t ap p roa ch  is  m o re  p h y s ica l and r ig o r o u s .
Now that we have p roved  E qs (4 .38 a ), we sh a ll not use a negative su b 
s c r ip t  any lo n g e r  in the defin ing  equations (4.31) and (4 .33b) w hich  b e co m e

b !  = u c [  -  v s с (4.39a)

and

S jb .j = -Vj Cj - u . s . c . j  (4 .39b)

It is  e a s y  to  in vert th ese  re la t io n s  w ith the help  o f  E q . (4 .32 ). One then 
obtains

(4.40a)
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and hence

t
u. b, + v. s. b_. (4.40b)

We a re  now fu lly  equipped to  go  ba ck  to  the equations (4.25) and 
(4 .26 a , b , c) and do the m in im iza tion  o f H 0 (X), treatin g  u¡ and v; as 
the v a r ia tio n a l p a ra m e te rs  su b ject  to the con stra in t u2j + v¡2 = 1 .  We 
sh a ll u se  the b a s ic  defin ition

b i I фо /  = 0 fo r  a ll i  (4 .41)

and evaluate E qs (4 .26a) and (4.26b) with the h elp  o f  E qs (4 .40 a , b ). Thus

< j|p ! i>  = < ф0 I (и Д Т + V jS jb . j  ) (u j bj + v. s .b *  ) I Ф0>

= < I b -i b -j I ф о> v i vj s i s j (4 .42a)

= 6 y v 2

and

. i t t i 4
Kij = < фо I (u i b i + v i s i b -i ) (u j b i + vj sj b -j ) I фо>

= < ф0 ! b i b -j 1ф о> u i v j s j (4 .42b)

= 6J..J u jV jS j

In s im p lify in g  the e x p re s s io n s  (4 .42a , b) we have u sed  d efin ition  (4.41) 
and its H erm itian  con ju gate , and then the an ticom m u tator  { b ; , b^ } = 6 ^ ,
i .e .  b ;b j  = -  b*j b ¡ + ó¡j .

U sing the above e x p re s s io n  o f we obtain , f o r  the p a irin g  potentia l 
o f  (4 .2 6 c ), the fo llow in g  resu lt :

A ij 2\  У  (i J I v I k l )  u kvk s k

к, 1

2 (i J Ы  к , k) u kv k 

к

It is  e a sy  to show  fro m  the t im e -r e v e r s a l  in va ria n ce  o f  the tw o -b o d y  
poten tia l v that in the ab ove  e x p re s s io n  the state j m ust be the t im e - 
r e v e r s e d  p a rtn er  o f  i. Thus

4 r (i, i I V I k, k) u kv k (4 .42c)
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S im ila r ly  fr o m  re la t io n s  (4 .42a) and (4.26d)

< i I V I j > = ^  (i к I v I j k) v j

к
In sertin g  e x p re s s io n s  (4 .42a , b, c , d) into E q. (4 .25) we obtain 

H „(A ) = y  < i  |(T 7 A l )  | i>  v f + \  Y  A i,T u i v i

J X  < i | v | i >  v?

1 v"1
< i I (T  - A t  ) I i  )  v.2 + -  J (i, i I v  I k , k) u kvku. ^

i , k

+ i  )  (i к I V I i  k) v ¡2 2 
V k

i, к

We now m in im ize  e x p re s s io n  (4.43b) by  requ irin g

fo r  each  a, u sin g

2 , 2 u = 1 - v 3

Э u a Vj
Э v ,  u„

in c a r ry in g  out the d iffe ren tia tion . We thus obtain

2  ( « a  -  * )  v a  +  \ )  ( a - a  I v  I k > k ) u kv k ( u a v  a )

2 (e -  A) v + Д . -i u - -ä -' a  ' a  a , a  I a  u

= 2 u ; ( e a ' X ) u a v a +  |  Д  a . i  ( U a '  v a > = 0

(4.42d)

(4.43 a)

(4.43b)



IAEA-SMR 6 /25 601

o r ,  s in ce  u a is  n on -v an ish in g ,

(ea -  * ) u av a + |  Д аД (u2 - v a2 ) = 0 (4.44)

2 2In v iew  o f  u + v ,  = 1, we can ea 'sily  so lv e  th is equation  by  putting

c o s  ea = va , sin  ea = u a

E quation  (4 .44) then y ie ld s

(e a - X) s in  2 6a = Д а c o s  2 0 a

tan 2 i

In th ese  equations w e have defined
(4.45)

(4.46)

(a, a I v I k, k) u kv k

w hich  is  a p o s it iv e  quantity in v irtu e  o f  the s p e c ia l m a tr ix  e lem en t o f  v 
being  a ttra c tiv e . T h is  m a tr ix  e lem en t o f  v  w hich  takes a p a ired  state 
(a state  and its t im e -r e v e r s e d  p a rtn er) to anoth er p a ire d  state is  ca lle d  
the p a irin g  m a tr ix  e lem en t o f  the p oten tia l. U sing the secon d  re la tion
(4 .45 ) with u2 + va = 1  w e obtain

u2 = — 1 + ee ~ ^a 2 I E ,
1 .  ea -  X (4.47)

w h ere

E a = V ( e a - X)2 + Д a (4 .48)

S im ila r ly , su bstitu tin g  the f ir s t  re la tio n  (4 .45 ) into E q . (4 .46 ) we obtain

= -  ï  I  (a. S I v I k. k) |fc- (4.49)



F u rth e r m o r e , fr o m  E q . (4 .42a) we have

I 0
\/ I

vf.2

w h ere  N is  the to ta l-n u m b e r  o p e ra to r . A c co r d in g  to  our e a r l ie r  s t ip u la 
tion , th is e x p re s s io n  should  be equated to  the g iven  n um ber o f n ucleon s 
(A , say) in the nucleu s w hich  we want to ca lcu la te . Thus,

E quations (4.49) and (4 .50 ) a re  a sy stem  o f coup led  n o n -lin e a r  equations 
(due to  d e fin ition  (4.48) of. E a) in the unknown quantity X and the set o f 
Д а. The to ta l n um ber o f the la tter  depends upon the tota l num ber of 
s in g le -p a r t ic le  sta tes adm itted in the ca lcu la tion . T h ese  equations can 
be so lv e d  fo r  the unknown quan tities , startin g  with a g iven  tw o -b od y  
poten tia l. O nly a v e ry  s p e c ia l type o f m a tr ix  e le m e n ts , n am ely  the 
pa ir in g  m a tr ix  e le m e n ts , o f  the potentia l a r e , h o w ev er , re leva n t at th is 
stage o f the ca lcu la tion . K now ing X and the A'as it is  then tr iv ia l to 
com pu te the o ccu p ation  p ro b a b ilit ie s  o f  the v a r iou s  states (v|) fr o m  
E qs (4 .47 ) and the e n e rg ie s  E a fro m  E q. (4 .48 ).

T o  help  the r e a d e r  in  h is  a ss im ila tio n  o f fa c ts  we m en tion  that the 
k ey  equ ation s in the lon g  d er iv a tion  g iven  above  a re : 1) E quation  (4 .39a , b) 
defin in g  the q u a s i-p a r t ic le  tra n sfo rm a tio n , (2) E qs (4 .47 ) w hich  d e te r 
m ine the tra n sfo rm a tio n  c o e ffic ie n ts  ua and v a in  the q u a s i-p a r t ic le ,
(3) E q .(4 .4 8 )  w hich  d e term in es  E a, (4) E qs (4 .49) and (4 .50) w hose 
so lu tion s  d e term in e  X and the set o f Д а. A s a m atter o f fa c t , one has 
to  start the com pu tation  by so lv in g  th ese  equations and then go to  the 
equations m en tioned  in 1) to  3) f o r  the determ in a tion  o f the v a r iou s  
quan tities .

T rea tm en t o f  H2 (X) and in terpreta tion  o f  E a

We sh a ll next show  that the m in im iza tion  o f Hg (X) has a v e r y  
in te re st in g  con seq u en ce  on Н г(Х ) o f E q . (4 .23b ). F ir s t ,  we re w r ite  this 
equation  in te rm s  o f the H F -re p re s e n ta tio n , in w hich  the f ir s t  term  
T  - X I  + V is  d ia gon a l and Д has n on -van ish in g  e lem en ts o f  the type 
Д ; ] .  T h e r e fo r e ,

(4.50)

a a

H 2 (X) = I
(4 .51)

+ H erm itian  con jugate]

We p r o ce e d  to  an evalu ation  o f the n o rm a l p rod u cts  fr o m  th e ir  defin ition  
and E q s (4 .40 a , b ). Thus,
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O nly in one te rm , i .e .  in v ¡ b .jb L j we had to  take the d e s tru ctio n  o p e ra to r  
to  the right o f  the c re a tio n  o p e ra to r  through one p erm u tation , and hence 
th is te rm  has a m inus sign . With a s im ila r  a lgeb ra  we obtain

: c } c ! ¡ :  = : (u¡ b /  + v i s i b_i ) (U jb* - v ; s, b¡ ) :
(4.52b)

= u i b i b - f  - v f b . ,  b, - U iv iS i ( b j b i + b \ b _ .  )

U sing E qs (4 .52 a , b) in E q . (4 .51) we get

H2 (X) = (X) + H20 (X) + H 02 (X) (4 .53)

w h ere  the tw o su b s cr ip ts  den ote , r e s p e c t iv e ly , the n um ber o f  q u a s i
p a r t ic le  c re a tio n  and d e s tru ctio n  o p e r a to rs . T hus, p ick in g  up the a p 
p ro p r ia te  te rm s  fr o m  E qs (4. 52a, b) we obtain

H l l W  = Z  (ei -  * )  ( « W b j  -  v i2 b ! i  b ) -  ^  ' A i, - u j v i ( b / b j  +  b î j b . , )

1 1 (4 .54)
We can  s im p lify  th is e x p re s s io n  fu rth er  by  noting that q  and e . ¡ , the 
e n e rg y  fo r  the t im e -r e v e r s e d  sta te , a re  equal. H en ce , by  changing i to 
- i  in the su m m ation  o f  the term  b t jb . ;  , we obtain  the f ir s t  te rm  sim p lifie d  
to

ÿ  (<4 - X) (u 2 - v 2) b j  b j (4.55a)
i

L et us do s im ila r  t r ic k s  with bt¡ b_¡ o c cu rr in g  with the p a irin g  potentia l. 
H ere  A ¡¡ s  Sj A it changes to  s ¡  A .¡  ¡ when - i -*  i. The la tter  is  
equ a l to  - S j  Д _¡ ¡ = - A ^ j  • H ow ever , a c co rd in g  to  the defin ition  (4 .42c)
- A ] ¡ = A ¡ ] . T h e re fo r e , under - i  -» i ,  the term  bt¡ b _¡ A ¡ ¡ , s im p ly
ch an ges to  A ¡ -¡ b t b j . T h e re fo r e , the secon d  term  o f E q . (4 .54 ) s im p lifie s  
to

- 2  У  А ;Л  u ¡Vi b j bj (4 .55b)

i
A dding e x p re s s io n s  (4 .55 a , b) we obtain

H l l  M  = Y  [ ■ x ) (u i -  V ? )  -  2 A u \  U j V j  ] b ¡ b ¡

2 t

= У  [ (e ¡ -  X) co s  2 ea + A ¡ s in  2 ] b] b j (4 .56)

= У  E ,  b [  b j  

i

In s im p lify in g  th is e x p re s s io n  we have used  the f ir s t  lin e o f  E q . (4 .46 ), 
and E q s (4 .45 ) and (4 .48 ).
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In a s im ila r  m anner we p ick  up the a p p rop ria te  te rm s  fro m  
E qs (4 .52 a , b ), put them  into fo rm u la  (4 .51) and obtain

H 2o(X) + H 02 (X) = y  (e , -  X) UjVj Sj ( b j b j  + b . ; b. )

+ I  )  [ Д 1,Т s i (u i ъ\ b-i - v f b . j  b¡ )
(4 .57)

+ H erm itian  con jugate]

(<Ч - X) UjVj + Д ,
/ ¿ 
(u i

2 ч 
Vi ) (b ! b [ + b_s b. )

L et us co m p a re  the quantity e n c lo s e d  in sq u a re  b ra ck e ts  w ith the e x 
p r e s s io n  o c c u r r in g  in the m in im iza tion  con d ition  (4 .44 ). T h ey  a re  
e x a c tly  id en tica l. H ence the m in im iza tion  con d ition  a u tom a tica lly  
gu a ra n tees that e x p re s s io n  (4.57) is z e ro :

H 20(X) + H02 (X) = 0 (4 .58)

T h is  is  the in terestin g  con seq u en ce  to  w hich  we have alluded e a r l ie r .
We can  now su m m a rize  the tra n sfo rm e d  H am iltonian :

H = H 0 (X) + . b.T b. + H 4 (X) (4.59a)

w h ere  H 0 (X) and H4 (X) a re  g iven  by e x p re s s io n s  (4.43a) and (4 .19 ), 
r e s p e c t iv e ly . The te rm  Но (X) is  the g rou n d -s ta te  e n e rg y  and s im p lifie s  
to  the fo llo w in g  e x p re s s io n  when we use the e x p re s s io n  fo r  u¡ v¡ fro m  
fo rm u la s  (4 .45 ):

-Ho(X) = > < i T - X 1 + - V i >  v ?  . 1  у A l
1 4 ,L  E. (4 .59b)

and

< i  I V (i к к) (4 .59c)

The se co n d  te rm  o f the H am iltonian  (4 .59 a ), w hich  is  the s o le  s u rv iv o r  
o f H 2 (X), o b v io u s ly  r e p re s e n ts  the en erg y  o f sin g le  q u a s i-p a r t ic le s . 
T h is can  be seen  as fo llo w s :
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F o r  the tim e  bein g , le t us n eg lect  H4 (X), and c o n s id e r  a state having 
one q u a s i-p a r t ic le ,  i .e .  a state b j  |ф̂ > . The en erg y  o f th is state is  g iven

The tr ic k  o f  c a r ry in g  out the a lg e b ra  h ere  is  to  p erm u te  the d e s tr u c 
tion  o p e r a to rs  to  the e x tre m e  r igh t by u sin g  the an ticom m u tator  re la t io n s , 
and then drop p in g  te r m s  in w hich  a d e s tru ctio n  o p e ra to r  s its  next to 
I Ф0 /  > o r  a c re a tio n  o p e ra to r  s its  next to Фд |. The en erg y  o f the 
state Ф0 is  H 0 (X), and the en erg y  of the state having one q u a s i-p a r t ic le  
in  state к in addition  to  Ф0 is  found to be Н0 (X) + E[<. T h e r e fo r e , the 
n atural in terp re ta tion  o f E k is  that it is  the e n e rg y  c a r r ie d  by  the sin g le  
q u a s i-p a r t ic le .

The te rm  H4 (X) a ctu a lly  conta in s the in te ra ctio n  betw een  q u a s i
p a r t ic le s ,  and a p r o p e r  ca lcu la tion  o f  the co n se q u e n ce s  o f H 4 (X) is  the 
m a jo r  task o f  the g e n e ra l m ic r o s c o p ic  th e o ry . The d eve lop m en t so  fa r  
has led  us on ly  to  independent q u a s i-p a r t ic le  ex cita tion s  o f  the n u cleu s. 
The trea tm en t o f  H4 (X) w ill g ive  r is e  to  o th er m od es  o f  e x cita tion .
T h is  w ill  be done in the next se c t io n .

In terp reta tion  o f  X

T he quantity X u sed  in the th e o ry  is  ca lle d  ch e m ica l p oten tia l and it 
has the fo llow in g  in terp re ta tion . L et us c o n s id e r  the e x p re s s io n  (4.47) 
f o r  v|, the occu p ation  p ro b a b ility  o f  a sta te . The fa ct that it is  the 
occu p a tion  p ro b a b ility  can  be v e r ifie d  by evaluating <( Ф0| с 2 c a | Ф0 У ; 
the r e su lt  is  indeed  v f  as dem on stra ted  by E q . (4 .42a ). N ow , 
e x p re s s io n  (4.47) r e v e a ls  the fo llow in g  fa c ts :

L et us now look  at the cu rv e  o f  F ig .1 .2 b . The occu p a tion  p ro b a b ility  o f 
d eep -d ow n  states is  ^  1, w hich  a lso  fo llo w s  fr o m  re la tio n  (4 .47) by 
m aking e a v e ry  sm a ll , i .e .  ea - X ^  - X and E a ^  X. A s e a b e co m e s  
co m p a ra b le  to  X, a c c o rd in g  to  re la tio n  (4 .4 7 ), v f  sta rts  d e c re a s in g  fr o m
1 and ap p roa ch es  0 .5  fo r  ea -*■ X. On the o th er s id e  o f X, e a d e c r e a s e s  
b e low  0.5 and even tu a lly  re a ch e s  z e r o ,  a c c o rd in g  to  r e la t io n  (4 .47) when 
e a °°. Thus X is  the s in g le -p a r t ic le  e n e rg y , on both s id e s  o f  w hich  the 
occu p a tion  p ro b a b ility  d ep a rts  s ig n ifica n tly  fr o m  the id ea l H F -v a lu e s .
It, th e r e fo r e , be lon g s  to  the sa m e e n e rg y  re g io n  w h ere  the F e r m i le v e l

by

(i) when e a < X, v a = 0.5
(ii) when e a > X, v ?  = 0.5

(iii) when e a = X, v a = 0.5

v a = 0.5 
va = 0.5 
v j  -  0.5
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w ould have be lon ged  i f  w e had ign ored  the e x is te n ce  of c lo s e - ly in g  le v e ls  
n ear the F e r m i su r fa ce  and had allow ed the n ucleon s to go  to  the low est 
a v a ilab le  sta tes . The quantity X is ,  th e r e fo re , v e ry  often  lo o s e ly  ca lled  
the F e r m i le v e l.

In terpretation  o f  the quantities A a

F r o m  the e x p re s s io n  o f the q u a s i-p a r t ic le  en erg y  E a, it is  c le a r  
that even  if the H F -e n e rg y  ea o f  the state a c o in c id e s  with the F e r m i 
le v e l X, th ere  is  a m in im um  value o f  E a w hich is  g iven  by  the p os itiv e  
quantity Д а , w hich  ow es its o r ig in  e n tire ly  to  the p a irin g  m a tr ix  e lem en ts 
o f the tw o -b o d y  p oten tia l. F o r  rea son s to  be explained  la te r , in the 
q u a s i-p a r t ic le  th e o ry , the even  n u cle i, a re  a s so c ia te d  with a ground 
state Ф0 , w hich  beh aves as the q u a s i-p a r t ic le  vacuu m , and the ex cited  
sta tes o f such  n u c le i a re  taken to have 2, 4 , . . . . ,  e tc . q u a s i-p a r t ic le s .
T he low est ex cited  sta tes o f such n u cle i have at lea st two q u a s i-p a r t ic le s , 
and h ence an en erg y  w hich  is ,  at le a st, tw ice  the p a ra m e te r  Д . T h ese  
p a ra m e te rs  a r e , th e r e fo r e , ca lle d  the e n e rg y -g a p  p a ra m e te rs , the gap 
being  rou gh ly  h a lf o f  the en erg y  d iffe re n ce  betw een  the ground state and 
the f ir s t  set o f  ex cited  sta tes o f even n u cle i. H ow ever , one m ust keep 
in m ind the in tera ction  te rm  H 4 (X) o f  the H am iltonian . A s we have 
stated qu a lita tive ly  in the in trodu ction , the in tera ction  betw een  p a irs  of 
q u a s i-p a r t ic le s  m ay bu ild  up co lle c t iv e  e f fe c t s ,  and p rod u ce  a coh eren t 
state that m ay v e ry  w e ll d iffe r  m a rk ed ly  in  e n e rg y  fr o m  the unperturbed 
e n e rg ie s  o f  the q u a s i-p a r t ic le  p a ir . If that happens then, o f  c o u r s e , the 
o b s e rv e d  f ir s t  ex cited  state o f  an even n ucleu s w ill not show a v e ry  
pronou n ced  e n e rg y  gap with re s p e c t  to the ground state.

The odd n u cle i in th is th eory  a re  a s so c ia te d  with odd n um bers of 
q u a s i-p a r t ic le s , the lo w e st states being  1 and 3 q u a s i-p a r t ic le -ty p e  
sta te s . A ll the o n e -q u a s i-p a r t ic le  states have a m in im um  en erg y  Д, 
and h ence the le v e ls  n ear the ground state o f  odd n u cle i a re  n ev er  e x 
p ected  to show  an en erg y  gap with re s p e c t  to  the ground s ta te .

S p e cia l p a irin g  fo r c e

In our d er iv a tion  o f the q u a s i-p a r t ic le s  we u sed  a g en era l potential 
but we saw that the s p e c ia l B C S -tra n s form a tion  p ick ed  up on ly  the 
p a irin g  part o f it in  the fundam ental e n e rg y -g a p  equations o f  the th eory . 
F o r  th is r e a so n , so m e tim e s  the en tire  th e o ry  is  w orked  out with a 
m o d e l tw o -b o d y  p oten tia l, ca lle d  the p a irin g  potentia l (not to be con fu sed  
with ou r e a r l ie r  Д ij, w hich w as ce rta in ly  not the tw o -b od y  p oten tia l).
T h is id ea lized  p oten tia l is  defined  to have n on -van ish in g  m a trix  e lem en ts 
o f  the fo llow in g  type w ith a constant m agnitude:

(a , a j Vp| b , b) = - G (4.61)

In the sp e c ia l c a se  o f  sp h e r ic a l s in g le -p a r t ic le  states we have

( - l ) J‘ m ( jm ; j ,  -m  I v p I j ' m ' ; j 1 , - m 1 ) ( - l ) J'"m’ = - G (4.62)

In th is secon d  fo rm  the pa irin g  potentia l has the im portan t p ro p e rty  o f
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being  n on -van ish in g  on ly  fo r  the tw o -b o d y  J = 0 state . T o  p ro v e  th is 
statem en t w e p r o ce e d  as fo llo w s :

( J i J s J M  I v  I Ü  J ' M ' )

-J l  32 J “ - j 'i  ih Jl -
_ m j n̂ 2 M _ mj  ̂ m'2 M ' ( j l  m l J j 2 m 2 I v p | Л m i , i'r, m 2 )

m !  m '

= - g  у j l  j2 J " i' i 1 T1n  hL . “ Л M _ _ m 'j m^ M ' _ ó i 3 ^  m 2 , - m .12 ¿ 1 j * ^  ш '  , - m  
1 2  2  2

X ( - l ) Jz' mi (-1 )  jI -m’ i

= - G m x - m x 0 I
i 1 i* T»Ji h  J 
т \  - m 'j  0

In th is e x p re s s io n Jl J2

X ó ..n ó . ó.  . ó . , . ,MO M' O j u ,  i \ i \

is  a C le b sch -G o rd a n  c o e f fic ie n t , and

we have m e r e ly  u sed  the defin ition  (4.62) fo r  the n on -v an ish in g  m a trix  
e lem en ts  o f v p . The su m m ation  in the fin a l step  can  be c a r r ie d  out with 
the standard orth ogon a lity  p ro p e rty  o f  the C le b sch -G o rd a n  c o e ffic ie n ts . 
The re su lt  is  g iven  by

Ï
j j J
m -m  0 ( - 1 ) J j j J

m  -m  0 ( - 1 ) ]
j 0 j 
m  0 m

j j J ' j j 0 "
_ m -m 0 _ _ m -m 0 _ J ( 2 ]  + 1) (4 .63a)

= ó jo  S 2Í + 1

The ex tra  C le b sch -G o rd a n  c o e ffic ie n t  in trod u ced  in the d er iv a tion  is 
id e n tica lly  equ al to  unity. U sing th is standard re su lt , we fin a lly  have

( j . j ,  J M  I v I j '  j '  J ' M ') = - 6. , 6 . 6 6 ó G X J (  2j +1 ) (2 j ' +1)1 2  P i 2 j l)2 j* j*2 MO м -o jo v 4 i V Ji ’

(4 .63b)
F o r  the s p e c ia l p a irin g  fo r c e  (4 .61 ) o r  (4 .62 ), the e n e rg y  gap 

equ ation s (4.49) b e co m e  v e ry  s im p le . We h ave, a c co rd in g  to  re la tio n  (4 .61 ),

Да -  + G y 1 A k
4 L E k
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Since the su m m ation  on the righ t-h an d  side  is  independent o f the state a, 
it is  c le a r  that Д а now is  a ctu a lly  independent o f  a; th ere  is  on ly one 
e n e rg y  gap Д fo r  a ll  the s in g le -p a r t ic le  sta te s . T h e re  is  on ly  one gap 
equ ation , and that is

л G V  Д 

к

1 ■ Г  Z  ж ;  - l4'M»
к

One has to  s o lv e  on ly  th is  equation and E q . (4 .50 ) s im u lta n eou sly .

The g ro u n d -s ta te  w ave function

F in a lly , we w ish  to show  that a g rou n d -s ta te  w ave fu nction  sa tis fy in g

b ¡ |ф0/  = 0 fo r  a ll i (4.65)

a ctu a lly  e x is t s , and it can be con stru cted  in te rm s  o f the p a rt ic le  
c re a tio n  o p e ra to rs  as fo llo w s :

П +  V,
. t  t (4.66)

w h ere  | 0 /  is  the vacuum  state fo r  the p a r t ic le  o p e ra to rs  and sa t is f ie s

с .  I 0 )  = 0 fo r  a ll i (4 .67)

T o  show  that | Ф0 /  s a t is f ie s  E q . (4 .65 ), we w rite

b i = u i c i -  v i s i  c î i

and le t it op era te  fr o m  the le ft on state (4 .66 ). It is  c le a r  that c¡ and 
cx/ can be com m u ted  past a ll the fa c to r s  in state (4 .66 ) f o r  w hich  к /  i. 
When we en cou n ter  the fa c to r  к = i, we sh a ll have to exam ine what 
happens to it when b-¡ o p era tes  on it fr o m  the le ft . We have

(u i c ¡ -  v¡ s i c -i ) (u ¡ + v í s í c !  )
(4.68)

= u i c i - u i v i s i c ! i  + u i v i s i ci c! cli - vf c-icI c '-i

The la st te rm  is  z e r o  b e ca u se  it conta in s two c l ¡  and hence v io la te s  the 
P a u li e x c lu s io n  p r in c ip le . The f ir s t  te rm  can  be com m u ted  past a ll
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oth er  fa c to r s  w hich  a re  k / i ,  and eventua lly  it o p era tes  on | 0 /  and 
p ro d u ce s  z e r o  a c c o rd in g  to  E q . (4 .67 ). The th ird  term  can  be w ritten  as

t  f t  U . V .  S.  С . + U . V . S .  C .  C . C.1 1 1 - 1  1 1 1 1 - 1 1

w h ere  w e have u sed  { c ¡  , c î }  = 1. The f ir s t  te rm  h ere  c a n ce ls  with 
the secon d  te rm  o f E q . (4 .6 8 ), and the secon d  te rm  p ro d u ce s  ze ro  
a ctin g  on the state | 0 /  . Thus we have estab lish ed  the p ro p e rty  (4.65) 
f o r  ou r g rou n d -sta te  w ave function  (4 .66 ).

T h is w ave function  c le a r ly  conta in s states o f  0 , 2, 4 , 6, . . .  , e tc . 
p a r t ic le s ,  when a ll the fa c to r s  a re  m u ltip lied  out. The p r o c e s s  of 
fix in g  X in the ca lcu la tion  en su res  that the stren gth  o f the A -p a r t ic le  
w ave function  in th is su p erp os ition  w ill have a m axim u m . B eca u se  of 
th is fo rm  o f  Ф0 , it is  n e ce s s a r y  that we r e s t r ic t  the q u a s i-p a r t ic le  
ground state Ф0 to  the d e s cr ip tio n  o f the ground state o f  an even  n u cleu s. 
O nce w e let b î  = u ; ct ~ v i s i c -i op erate  on Ф0 , the new w ave function  
b ^ l * 0 > c le a r ly  b e c o m e s  a su p erp os ition  o f  1, 3, 5, . . .  , e tc . p a r t ic le s . 
T h is is  the rea son  why odd n u cle i a re  d e s c r ib e d  in te rm s  o f an odd 
n um ber o f q u a s i-p a r t ic le  e x cita tion . In the sa m e w ay an even  num ber 
o f q u a s i-p a r t ic le  o p e ra to rs  op eratin g  on Ф0 , alw ays g en era tes  a wave 
fu nction  having a su p erp os ition  o f an even  num ber o f n u c leon s. T hus, in 
th is th e o ry  the ex cited  sta tes o f  even  n u c le i a re  a s so c ia te d  with an even  
n um ber o f  q u a s i-p a r t ic le  e x cita tio n s .

S p ecia l c a se  o f s p h e r ic a l n u cle i

We have show n e a r l ie r  that a lo t o f s im p lifica tio n  takes p la ce  if  
one u se s  the sp e c ia l pa irin g  fo r c e  o f  constant strength  G. E ven  without 
th is s p e c ia l ap p rox im a tion  about the tw o -b o d y  f o r c e , the g e n e ra l 
equations (4 .49 ) take a s im p le r  fo rm  fo r  s p h e r ic a l n u cle i. F o r  such 
n u cle i the s in g le -p a r t ic le  sta tes a re  o f  the t-ype ( n i  jm ) .  F o r  s im p lic ity  
we keep  the (n i )  quantum u n d erstood  in the fo llow in g  d e r iv a tio n . F o r  
s p h e r ic a l n u cle i it is  p h y s ica lly  not p o s s ib le  to  m ake any sp e c ia l ch o ice  
o f  the z -a x is ,  a ll d ir e c t io n s  in sp a ce  bein g  equ ivalent fo r  them . T h e r e 
fo r e ,  we know that the quantities u a, va , E a, Д а, e tc . cannot depend on 
the p r o je c t io n  quantum num ber m a o f the state a. We keep th is fa ct in 
m ind and w rite  E q. (4 .49) as fo llo w s :

A j = - ~  ( - l ) j_m (j m ; j ,  -m  f v I j ! , m ! ; j 1 , - m ')  ( -1 )  j ’_m’ ~ ~  (4.69)

j\nr

We r e p la c e  in this e x p re s s io n  the tw o -b o d y  states by the co rre sp o n d in g  
an g u la r-m om en tu m  cou p led  sta te s , i .e . ,

j 'm ' ;  j 1 , -m ' j '  J' J'
m ' -m ' 0 j ' j ' J ' O )  (4.70a)
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In the exch an ge te r m  o f the m a tr ix  e lem en t in  (4 .69 ) w e w ill  have the 
state

J - - m ';  J m ' ; j '  j '  J '
-m ' m ' 0 j 'J 'J '0 >

(4.70b)

I' -m' 1

In the fin a l step  w e have u sed  a standard sy m m e try  re la tio n  o f the 
C le b sch -G o rd a n  c o e ffic ie n t . U sing E qs (4 .70a) and (4.70b) we have

(jm ; j ,  -m  | v | j 1 m 1 ; j '  , - m 1 ) =

< jm ; j ,  -m  I v I j '  m 1; j 1 , -m ' > - < jm ; j ,  -m  | v | j 1 , - m ';  j 'm '  >

j j J ' " j ' j ' J ' '

■ m -m  0 - m ' -m ' 0 < j j J 0  I v I j ' j ' J O )  {1  + ( -1 )1}

H ere  we have u sed  the p r o p e rty  o f the p oten tia l v w hich  r e q u ire s  J 
to be equ al to  J' •. The la st fa c to r  te l ls  us that J m ust be an even  in teg er , 
w h ich  in  turn  gu aran tees the a n tisy m m etry  o f the state on the right-hand 
sid e  (it is  known that the a n tisy m m e tric  sta tes o f  two equ ivalent n ucleon s 
in  the sa m e n l  j - o r b i t  can have on ly  even  J -v a lu e s ) . T h e r e fo r e , we 
re p la c e  the fa c to r  1 /2  { l  + ( - l ) J } t im e s  the tw o -b o d y  m a tr ix  e lem en t by

(jj-JO  I v I j '  j '  J 0)

w h ere  the rounded b ra ck e t , as u su a lly , denotes the m a trix  e lem ent 
with r e s p e c t  to  a n tisy m m e tr ic  tw o -b od y  an gu la r-m om en tu m  coup led  
sta te s . When th ese  e x p re s s io n s  are  u sed  in  re la tio n  (4 .69) we obtain

(j j JO I v  | j 'j '  JO)
j*J', m'

In th is e x p re s s io n  the su m m ation  o v e r  m* can be c a r r ie d  out im m ed ia te ly  
by  u sin g  the standard resu lt  (4 .63a). Thus,

0,0 )  ( j jJ O  | v | j ' j 'J O )  7( 2j' + 1)
j .

J' (4.71)

= '  k  L \,/ I j T T  ^ J = 0 ’ M = 0 I V I j ' j '  J = 0, M = 0 ) f i

A . = J
J

m
j 0 

-m  0

( - i ) rm  (-1 )
j'-m' j ' j '  J

m ' -m ' 0
j  J J
m -m  0
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In obtain ing the fin a l e x p re s s io n  we have substitu ted  ( - l ) i " m (2j + l ) ' 1/2 
fo r  the s p e c ia l C le b sch -G o rd a n  c o e ffic ie n t . T hus, we find that fo r  a 
s p h e r ic a l n u cleu s, even  though we have a set o f Д j ' s that a re  cou p led  
through E q . (4 .7 1 ), the part of the in tera ction  potentia l v w hich  is 
re sp o n s ib le  fo r  th is cou p lin g  is  m e r e ly  the in tera ction  in the tw o -b od y  
state o f  an gular m om entum  J = 0.

A P P E N D IX  T O  SECTION 4 

H a r tr e e -F o ck -B o g o ly u b o v  E quations

In th is appendix  w e g iv e  the d eriv a tion  o f  the H a r tr e e -F o ck -B o g o ly u b o v  
(H F B )-e q u a tio n s . T h ese  a re  the equ ation s sa tis fie d  by  the tra n sfo rm a tio n  
c o e f fic ie n ts  x ^  and y t y  o f  E q .(4 .2 4 )  in the tex t. One p o s s ib le  w ay  o f  a r 
r iv in g  at th ese  equations is  to m in im ize  e x p re s s io n  (4 .2 3 a ) fo r  the g rou n d - 
state en e rg y . A m uch s im p le r  der iv a tion  can  be  obtained b y  posin g  the p r o b 
le m  in the fo llow in g  w ay : W e want fo r  our H am ilton ian  (4 . 1) an ex cita tion  
m od e o f  the type (4 . 24) w hich  is  a lin ea r  su p erp os ition  o f  the c re a t io n  and 
d e stru ctio n  o p e ra to rs  c „  and c a . A c co r d in g  to the r e su lts  o f  s e c t io n  2. 2. B , 
the e x is te n ce  o f  such a m od e r e q u ire s  that the co m m u ta to rs  o f  a ll the c^ and 
c a with the H am ilton ian  (4. 1) g iv e  r i s e  to a lin e a r  sum  o f  th ese  o p e r a to rs .
If su ch  r e s u lts  can  be  p ro v e d , then the q u a s i-p a r t ic le  o p e r a to rs  b¡' can  be 
co n stru cte d  fr o m  a ll the c<| and c a a c co rd in g  to  r e la t io n  (2. 14). T h is  is  
the p ro g ra m  w hich  w e sh a ll fo llow  h e re .

B y  s tra ig h tforw a rd  a lg e b ra  and u sin g  standard an ticom m u tation  r u le s , 
w e obtain

[< ¿c a. CÍI = c « c e c í  - с М с в

4 CI -  ( ' 4 s t + c K > c ß

= 6. c T (4 .7 2 a )
6|i a  4 7

and

[ c ac 6 c 6c r  c ¿] = c i c ß[c 6 c r  V

с c j ( c ,  с с,; - С.Тсхс )а 0 ' о у М Ч О у ’

= 4 CJ (ô 7tlC6 -  c 5 c j c r - с ^ с 5 су)

= с « с Те(йу(1с 6 - ó ¿(1c r ) (4 .7 2 b )

U sing th ese  r e s u lts  with e x p re s s io n  (4 . 1) w e obtain  

[H, c j ]  = ^<<*1 T\ß > 4 +  i  Y  W 3 ! v| Тб> с^ с^ (6у(, с й - 6&¡¡c y)

ft a ß y  ô

aßy

ß C y ( 4 . 7 3 )
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An in terch an ge o f the su m m ation  in d ice s  y  and 6 in the % Cy te rm  w ill e a s ily  
c o n v in ce  the r e a d e r  that th is te rm  is  equal to the ô^Cg te rm . T h is a ccou n ts 
fo r  the fa c to r  o f  | in the final step  o f  Eq. (4 . 73).

The exact r e su lt  (4 . 73) te l ls  us that the com m u ta tor  o f  cĵ  w ith the 
H am iltonian  d oes  not g ive  r is e  to  a lin ea r  sum  o f s ing le  d es tru ction  and 
sin g le  c re a tio n  o p e ra to rs  on ly. A cco rd in g  to  our e a r lie r  statem ent, such 
a lin ea r  sum  is  a p re re q u is ite  fo r  ha'ving a q u a s i-p a r t ic le  ex cita tion  m ode 
o f  the type (4 .2 4 ) .  T h e re fo r e , w e con clu d e  that the q u a s i-p a r t ic le  m ode 
is  an ap prox im a te  m ode o f  the H am iltonian  H, and the ap p rox im a tion  n e c e s 
sa ry  fo r  th is pu rpose  w ill now be d is cu ss e d .

In an alogy  w ith the re su lts  contained  in E qs (4 . 7) and (4 .8 ) ,  w e can 
w rite  the fo llow in g  exact e x p re s s io n :

c l c ß c y = : c ac Bc r  + < cß c y > c a - < c I c r > c ß + < c« c ß >  c y (4 - 7 4 >

The f ir s t  te r m , b y  d e fin ition , conta in s th ree  o p e ra to rs  and cannot be  red u ced  
to  s in g le  c re a tio n  or  d estru ction  o p e r a to rs . On the oth er hand, the r e 
m ain ing te rm s  in E q .(4 .7 4 )  a re  lin ea r  in the o p e r a to rs , c^ , c^ , e tc . Thus, 
the re q u ire d  ap prox im a tion  fo r  the q u a s i-p a r t ic le  m ode is  to  n eg lect  the f ir s t  
te rm  in E q. (4. 74). T h is ap p rox im a tion  is  often  r e fe r r e d  to  as the l in e a r iz a 
tion  o f  Eq. (4 .7 3 ) .

W ith the lin e a riza tio n  ap p rox im a tion , th e r e fo re , E q .(4 .7 3 )  r e d u ce s  to 

[H ,cJ ]  = У  <a I t|m > c j+  i  У  (aß | v|my) { < c * c y > c £  - < c j c y> c£ }
a  aßy

+ \  У  H 3 | v | m y )< c*c*>  c r 

aßy

= У < а-| т| м >  CI  + У  (° 'ß | v | p 7 )< c^ cy > e t
a aßy

+ \  У м | у |м7)<с ^с з>  Су (4 .7 5 )
aßy

O nce again , we have u sed  the tr ic k  o f  in terch an gin g  the sum m ation  in d ice s  
a  and ß to  show that the te rm  in volv in g  - “(c ^ c ^  У c ^ i s  equa.1 to  the term  
contain ing  (c ftCy У c^ ; h ence the fin a l step  (4. 75) fo llo w s . W e next use 
the defin ition  (3 .6 )  fo r  V , and the d efin ition  (4 . 14) fo r  Д , and re w r ite  
E q .(4 .7 5 )  as fo llo w s :

[H ,c ¡ ]  = £ < o r | (T  + V )|íí>  с* + (4 .7 6 )
a  a

Since w e a re  d is cu ss in g  a p a rt ic le -n u m b e r  n o n -co n s e rv in g  th e o ry , fo r  
r e a so n s  exp la ined  in the text, w e should actu a lly  have w ork ed  with the
H am ilton ian  Н(Л) = H -X  2  c t ,c „  instead  o f  H. A cco rd in g  to  (4. 72a) thea “  a
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extra  term  in H(A) con tr ib u tes  -X  ô^cj^ to the  com m u ta tor , and h en ce  we 
fin a lly  obtain

[H (X ),C; i  = £ < e | ( T - X l  + V ) l » > c t  + Y  Д*а с а
а  a

= ^ < M| ( T - X l + V ) | a > * c t  + Л *  (4 .7 7 а )
а а

H ere  w e have u sed  the h e rm it ic ity  o f  the o p e ra to r  (T  - X I  + V ).
T o  obtain  a c lo s e d  sy stem  o f  lin ea r  equations lik e  (2 . 12) w e a ls o  need 

the com m u ta tor  o f  H(X) w ith с w hich  is  e a s ily  obtained by  taking the 
H erm itian  con ju gate  o f  E q .(4 .7 7 a )  and r e v e r s in g  the sign , b e ca u se
[H(X), c„] = (H(X) C(1 - CjJH(X)) = (с^Щ Х) - H (X )c ; ) f  = - [H(X), c ^ T .  T h e r e fo r e ,

[H(X), C(I] = - - £ < / i | ( T - X l  + V ) | a > c a (4 .7 7 b )
a  a

W e now co m p a re  the set o f  E qs (4 . 7 7 a ,b ) w ith Eq. (2 . 12). L e t us 
a ssu m e  that w e have N cre a tio n  o p e ra to rs  c j  and N d e s tru ctio n  o p e r a to rs  ' 
c a at our d is p o sa l. T h ese  2N o p e ra to rs  h e re  p lay the r o le  o f  N o p e ra to rs
A Î ( i  = l , 2 , .......... .. N) o f  Eq. (2 . 12). In the p resen t c a s e , the m a tr ix  M can
be w ritten  w ith  the h elp  o f  E qs (4 .7 7 a ,b ) ,  a s  fo l lo w s :

s .  ( > * - ” * * •

T h is  is  c le a r ly  a 2N X 2N m a tr ix , and each  o f  the su b m a tr ice s , Д , Д *, 
( T - X l + V ) ,  a n d ( T - X l  + V )* a re  N X  N m a tr ic e s . A c co r d in g  to 
s e c t ió n  2. 2. В , ou r im m ed ia te  task  is  to  d ia gon a lize  M . The la tter  can 
be obtained fr o m  E q .(4 . 78a) b y  in terch an gin g  the r o w s  and co lu m n s and 
then taking the tra n sp osed  o f  each  su b m a trix . R e m e m b e r in g  that Д = - Д, 
and Г  î  = Г, i . e . , r = r f|!, w h ere  r = ( T - X l + V ) ,  w e obtain

I4 - ™ »

F r o m  the p r o p e rt ie s  o f  the m a tr ic e s  Г  and Д , stated a b ov e , one can  show 
that M  is  a H erm itian  m a tr ix . W hile taking the H erm itian  con jugate o f  M , 
one has to  in terch an ge f ir s t  the ro w s  and co lu m n s in Eq. (4 . 78b), and then 
take the H erm itian  con ju gate  o f  each  su bm atrix .

T h is  H erm itian  m a tr ix  has r e a l  e ig en v a lu es . L e t us co n s id e r  the

e ig e n v e c to r  (. ^  j  c o rre sp o n d in g  to  the e igenvalue  E r  E ach  o f  the quan-
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t it ie s  x «  and y ^  co n s is ts  o f  N e lem en ts o f the type x ^  , y M , e tc . W ritin g  
out the e igen va lu e  equation  in  d eta ils  w e obtain

) (4 . 79a)

or

r x (i) + A y (i) = E ; X (i) ( 4 . 79b)

-Д * х С ; > - Г * у (1) = E i y ( ^ (4 . 79c)

If w e take the co m p le x  con ju gate  o f th ese  tw o fequations, and r e v e r s e  th eir  
s ign s  th roughout, re m e m b e rin g  that E* = E j, w e obtain

T h e r e fo r e , the e ig en v a lu es  o f  the m a trix  (4 . 78b) o c cu r  in ±  p a irs . G iven 
the v e c to r  fo r  a p o s itiv e  e igen va lu e , the v e c to r  fo r  the co rre sp o n d in g  
n egative  e igenvalue can be obtained e a s ily  through the re la tio n sh ip  e x 
p r e s s e d  b y  E qs (4 . 79a) and (4 . 80).

L e t us c o n s id e r  a p o s itiv e  e igenvalue E ¡, and the co rre sp o n d in g  e ig e n 
v e c to r  as appearin g  in E q .(4 .7 9 a ) .  A c co r d in g  to  E qs (2 .1 4 ) and (2 .1 6 ) we 
can  co n s tru c t  the s te p -u p  op era tor

ГУ 15* + A x (i)* = - E j y (i)*

- д * у ( 0 *  = - E i X ^ *

w hich  a re  equ ivalent to

(4. 80)

(4 . 81a)
a

and its  H erm itian  con jugate

(4. 81b)
a

T h ese  o p e r a to rs  have the fo llow in g  p r o p e r t ie s :

H b J I V  M E o + E j J b t l ' J ' o ) (4. 82a)
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w h ere  I^q )1 is  the ground state o f  H having en erg y  E 0. The state Ь^|¥0 )> 
w hich  has an en erg y  E¡ ab ove .th e  ground state is  a o n e -q u a s i -p a r t ic le  
sta te , the q u a s i-p a r t ic le  being  in a state i.  The o p e ra to r  b ; is  the d e s 
tru ction  o p e ra to r  fo r  a q u a s i-p a r t ic le ,  and E q .(4 .8 2 b )  guarantees that 
the ground state d oes  not conta in  any q u a s i-p a r t ic le  to start w ith.
N otice  that the e ig e n v e cto r  c o rre sp o n d in g  to  -E ¡ ,  as g iven  by  E q .(4 . 80), 
w ould  have le d , a c co rd in g  to  E q .(2 . 14), to the lin ea r  com bin a tion  (4 .8 1 b ); 
th e r e fo re , in g e n e ra l, the lin ea r  com bin a tion  (4 . 81b), operatin g  on any 
eigen sta te  o f  H, g iv e s  r is e  to  another e igen sta te  w ith e n e rg y  stepped  down 
by  -E j .  T h is  fu rth er  co n fir m s  the in terp reta tion  o f  the o p e ra to r  b¡ as the 
d e s tru ctio n  o p e ra to r  o f  a q u a s i-p a r t ic le  o f  en erg y  E ¡ . In g e n e ra l, the
2N X 2N m a tr ix  M y ie ld s  2N e ig en v a lu es , o f  w hich  N w ill be p o s it iv e , and
the rem ain in g  N, the negative p a rtn ers  o f  the p os itiv e  set. The lin e a r  c o m 
b ination s lik e  (4 .8 1 a ) fo r  the N p o s itiv e  e igen va lu es have an in terp reta tion  
as N d iffe re n t q u a s i-p a r t ic le  c re a tio n  o p e r a to rs , w h ile  s im ila r  lin e a r  c o m 
b ination s (4 .8 1 b ) co rre sp o n d in g  to the negative e igen va lu es g iv e  the d e s tr u c 
tion  o p e ra to rs  fo r  the sam e set o f N q u a s i-p a r t ic le s .

W ritten  out in d eta il E qs (4 .7 9 b ,c )  fo r  the q u a s i-p a r t ic le  tra n sform a tion  
c o e f fic ie n ts  r e a d  as fo llo w s :

У  {< a | r| ß > x (̂  + АаВУ(0° }  = E .x ^  (4 .8 3 a )
ß

+ < a | r * | ß > y (ßi ) } = - E . y «  (4 .8 3 b )
8-

T h ese  equations a re  ca lle d  the H a r tr e e -F o c k -B o g o ly u b o v  (H FB) equ ation s. 
T h e ir  ap p earan ce  as lin ea r  equ ation s is  ra th er  d e ce p tiv e , b e ca u se , by  d e 
fin ition , the m a tr ix  e lem en ts  o f  Г  and Д conta in  the den sity  and the pa iring  
m a tr ix , r e s p e c t iv e ly , and the la tter  a re  qu ad ratic  in the tra n sform a tion  
c o e f fic ie n t s  th e m s e lv e s . In c lo s e  an alogy  to  the H F -c a s e ,  the H F B - 
equations a lso  re q u ire  a s e l f -c o n s is te n t  treatm en t fo r  the p r o p e rt ie s  o f  
T a n d  Д stated a b ov e . W e now p r o ce e d  to a d er iv a tion  o f  the e x p re s s io n s  
fo r  the den sity  and pa irin g  m a tr ix  e le m e n ts , such that the s e l f -c o n s is te n t  
m ethod can  be d e s c r ib e d  in d eta il.

W e f ir s t  w rite  down the fo llow in g  orth ogon a lity  p ro p e rt ie s  o f  the e ig e n 
v e c to r s  o f  the H erm itian  m a tr ix  M . The orth ogon a lity  o f  an e ig e n v e cto r  
o f  p o s itiv e  e igenvalue E¡ and another o f  negative  eigenvalue -E j is  e x p re s se d , 
a c c o rd in g  to  E qs (4 .7 9 a ) and E q .(4 .8 0 ) ,  by

(y<1) ¿ » i ß » ) . , ,

or

and

bi I'i'o) = 0 (4 .82b)

У  (y ^  + хФ y ^  ) = 0
w  a  a a  J a

a
( 4 . 84a)
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S im ila r ly , the s c a la r  p rod u ct of two e ig e n v e c to r s , be lon g in g  to two d iffe ren t 
p o s itiv e  e igen va lu es E¡ and Ej is  a lso  z e r o .  H ow ever , i f  E¿ = E j, i . e .  
i f  w e c o n s id e r  the s c a la r  p rod u ct o f an e ig e n v e cto r  o f  p os itiv e  eigenvalue 
with it s e lf ,  the r e s u lt  can  be n o rm a lize d  to unity. Thus

(XU)* y ( i ) * )  / x (i)
y y ( i )  j  5 4

o r

+ y ai)* y<a )) = aij ( 4 .84b )

It is  tr iv ia l to  v e r ify  fr o m  the d e fin ition s (4 . 8 1 a ,b ) and the an ticom m u tator 
r e la t io n s  o f c ¿ ,  c ß , e tc . that the sum m ation  on the le ft-h a n d  side  o f  E q .(4 .84a ) 
is  equal to  { b j , b j }  and that in E q. (4 . 84b) is  equal to { b î ,  b ¡ } .  Thus, the 
orth ogon a lity  p r o p e rt ie s  (4 .8 4 a ,b )  o f  the e ig e n v e c to rs  o f  M a u tom atica lly  
guarantee that the q u a s i-p a r t ic le s  a ls o  sa tis fy  fe rm io n  an ticom m u tation  
p r o p e r t ie s  :

{ b j , b¡ } = 0, {b j ,  bi } = 6 ij (4 .8 4 c )

E quations (4 .8 4 a ,b )  fu rth er guarantee the fo llow in g  r e su lt :

T U  y \ ( x *  y \ _  f  XX1* +УУ1 xy  + yx \ _ f  1  O'
y *  X */  \y* X *  J \y*  x* J  V y f X  J  V y * x t+ x * y t y * y  + x * x j  \ 0  1

(4 .8 5 )
In this equation  w e have trea ted  x and y  as m a tr ic e s  having e lem en ts 
x ^  and y ( ¡) w h ere  i stands fo r  the index sp e c ify in g  the ro w , and a s p e c if ie s  
the co lu m n .

N otice  that the tra n sfo rm a tio n  equation  (4 . 8 1 a ,b ) can  be  w ritten  as

H ere  b* and b stand fo r  co lu m n s having e lem en ts b^ (i = 1 , 2 , .........., N) and
b ¡( i  = 1 , 2 , ............,N ). S im ila r ly , c^ and с a ls o  stand fo r  co lu m n s having
e lem en ts  с £(a = 1, 2, . . . , N) and c a(a = 1, 2, . . . . , N ). It is  c le a r  fr o m
E q .(4 .8 5 )  that the in v e rse  o f  th is equation  is  g iven  by

x y V  Л Л  - ( xT ÿ V bT
у *  * )  \ b ) \ y ï  х Д ь

= Х (хТ )“ Ь1Г + 
i

= ̂ ( x (£J)*bJ' + y(j) b¡) (4. 87a)
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c a = У  Ыа * b!  + 4 î ) b i) (4 .8 7 b )
i

E quations (4 .8 7 a ,b )  and (4 .8 2 b ) now enable us to  ca lcu la te  the d en sity  
and pa iring  m a tr ic e s . In a stra ig h tforw a rd  m ann er, u sing  E q .(4 .8 4 c )  
w h en ever n e c e s s a r y , w e obtain

<a|p |ß> = <'J'olcßca l'i'o> = Y  у£° Уа (4.88a)
i

and

K 6 r  = < * o l c ô c y K >  = £ 4 °  y ? ’ * (4 - 8 8 b >
i

T h ese  e x p r e s s io n s , togeth er  w ith the de fin ition s (3. 6) fo r  V and E q .(4 .  14) 
fo r  Д , co m p le te ly  d e term in e  the H F B -eq u a tion s  (4 .8 3 a ,b ) .

A p r a c t ic a l p ro ce d u re  fo r  so lv in g  the H F B -eq u a tion s  s e l f -c o n s is te n t ly  
is  as fo llo w s : (1) F ir s t ,  so lv e  the H F -p r o b le m  s e l f -c o n s is te n t ly . (2) Start 
the H F B -so lu tio n s  w ith a value o f the ch e m ica l potentia l in the n e ig h b o u r 
hood o f  the h igh est f i l le d  H F -le v e l ;  the startin g  d en sity  m a tr ix  e lem en ts 
a re  a ls o  taken fr o m  the H F -r e s u lt s .  Take so m e  kind o f  gu ess  v a lu es  fo r  
the pa irin g  d en sity  (3) F ind V and Д fr o m  the startin g  p , к and the g iven
tw o -b o d y  m a tr ix  e le m e n ts . D iagon a lize  the H F B -m a tr ix  M . (4) R e ca lcu la te  
p and к fr o m  the e ig e n v e c to r s . R epea t the en tire  p ro ce d u re  until the m a trix  
e lem en ts  o f  p and к in  two s u c c e s s iv e  ite ra tion s  a re  the sam e to  the d e s ire d  
d e g re e  o f  a c c u r a c y . (5) C h eck  with the fin al s e l f -c o n s is te n t  e ig e n v e c to rs  
w hether the equation  fo r  the ch e m ica l potential

A = £ < *
a i

is  sa tis fie d  o r  not. H e re , A is  the num ber o f  n u cleon s in the n u cleu s w hich  
w e want to c a lcu la te . In g e n e ra l, Eq. (4 . 89) w ill  not be sa tis fie d  at this 
stage o f  ca lcu la tio n . (6) Change the value o f  X su itab ly , and re p e a t  the en tire  
p ro ce d u re  until E q .(4 .8 9 )  is  sa tis fie d  to the d e s ire d  a c c u r a c y .

A co m p le te  H F - ,  and H F B -ty p e  ca lcu la tio n  fo r  a heavy  n ucleu s is  s t ill  
com p u ta tion a lly  in tra cta b le  on m ost o f  the p re se n t-d a y  e le c tr o n ic  com p u ters  
i f  w e w ish  to keep a ll the n u cleon s in a ch iev in g  the s e l f - c o n s is te n c y .  In 
m o s t  p r a c t ic a l ca lcu la tio n s , th e r e fo r e , one om its  the c o r e -n u c le o n s  in the 
fille d  m a jo r  sh e lls , and d oes  the s e l f -c o n s is te n t  ca lcu la tion  on ly  fo r  the 
outer n u cleon s in the v a len ce  m a jo r  sh e ll . In such ca lcu la tio n s , the m a tr ix  
e lem en t <̂ a| T | iO  o f the k in etic  e n e rg y  is  to  be  re p la c e d , fo r  obv iou s r e a s o n s , 
b y  e a 6ag w h ere  ea is  the s in g le -p a r t ic le  e n e rg y  o f  a s in g le  n u cleon  in state 
a  ou tside the c lo s e d  m a jo r  s h e lls .  The quantity A o f  E q .(4 .8 $ )  then stands 
fo r  the num ber o f  n u cleon s in the v a le n ce  sh e ll.

H e n c e

p a
> ■ 1 1

y(i)У a (4 . 89)
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T ra n s fo rm a tio n  o f  H;>(X)

The d ia gon a lization  o f the H F B -m a tr ix  M , and the resu ltan t q u a s i
p a rt ic le  tra n sform a tion  (4 .8 1 a ,b ) ,  a u tom atica lly  re d u ce  the e x p re s s io n  
(4 .2 3 b ) o f  HgtX) to a v e r y  s im p le  fo r m . The n e c e s s a r y  m a th em a tics  takes 
a v e r y  elegant fo rm  i f  we in trodu ce  the o p e ra to rs  d j  (I = 1 ,2 , . . .  . N,
N + 1 , ............ .. 2N), defined  in  the fo llow in g  m an n er:

d* = c I  (4 .9 0 a )

and

a  +  N

w h ere

d L N = c „  (4 .9 0 b )

«  = 1 .2 ..........N

It is  c le a r  fr o m  th is defin ition  that d j d j , w h ere  I and J = 1 , 2 , . . . . ,  2N, 
c o n s is t  o f  fou r  d iffe re n t types o f  te r m s :

d l d ß = c2 c ß 

d a d &+N = Ca c В
(4 . 91а)

d a + N d g  -  C a C ß

h  t  H z  p  p t
a +  N ß+N  a ß

In these e x p re s s io n s  both a ,  ß extend o v e r  the ran ge  1 ,2 ,  . . . . , N. In a 
s im ila r  m an n er, the m a tr ix  M o f  E q .(4 .7 8 b )  has the fo llow in g  fou r  types 
o f  m a trix  e le m e n ts :

м аВ= < e |(T -x a +v )| /3 > ,  Ma>0+N= Д aß

M a+ N , ß =  - A%  M a+N>ß+N= - < < H ( T - X U + V ) | ß * >

(4 . 91b)

W ith the h elp  o f  E qs (4 . 9 1 a ,b ) w e can , th e r e fo re , r e w r ite  e x p re s s io n  
(4 .2 3 b ) a s  fo l lo w s :

H2(X) = \  У  М ц íd /d j  : (4 .9 2 )i I.J

W e have u sed  h ere  the iden tity  : с аств: = - : c j c a :
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I f  w e r e c a l l  the d e fin ition s  o f  the m a tr ic e s  x  and y , g i v e n  under E q. ( 4 .  85), 
then it  is  e a sy  to  v e r ify  that the e igen va lu e  equations (4 . 83a, b) can  be w ritten  
in the fo llow in g  m a tr ix  fo r m :

ч п -г и п О « -0,)
w h ere  S  is  a d iagon al m a tr ix  w h ose  e lem en ts a re  g iven  by  E j. W e denote 
the m a tr ix  in volv in g  x , y,  e tc . by  U 1". It can  be  e a s ily  show n fr o m  the 
orth ogon a lity  and co m p le te n e ss  o f  the e ig e n v e c to rs  that U is  a u n itary  m a tr ix . 
H ence w e w rite  (4 . 93 as

m  = u  Tie  u

w h ere  IE is  the d iagon al m a tr ix  in E q .(4 .  93). T h e re fo r e

2N N

M Tj
K=1 k = l

*14 IN

[ u = X  UIKE KUKJ = X  Ek (U IkUkJ - Ulîk + N U k+Nj )  (4 .9 4 )

W e substitute e x p re s s io n  (4. 94) in to re la t io n  (4 . 92), and s im p lify  the e x 
p r e s s io n  with the help  o f  the fo llo w in g  r e s u lt s :

2N N N

X  4 k  d l = X  (Ui  d «  + UI +N,kdT« +N> = X  (X“k) C“  + y « ) c « } = b k ( 4 ‘ 95a)
1=1 a=1 a=1

S im ila r ly

2N N N

Xukj d j = £  <UaJd « + Ua+N, ,d a+N) = Y  Ы $ * с а + û k>*cl )  = b k (4 . 95b)
J= 1 a= 1

and

X  Ul!k + N d Í b b 
1 = 1 
2N

X U k + N , j d i  = b  I

( 4 . 95c)

(4 . 95d)

J = l

In v iew  o f  the iden tity

w e have the fin a l r e su lt

: b kb j :  = - : b ^ :  = - b j b k

H 2

IN

^ ) = X E Xbkb k ( 4 ' 96)
k = l
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A s in  the s im p le  B C S -c a s e , w e n otice  that H 2(X) r e p re s e n ts  the s in g le  
q u a s i-p a r t ic le  part o f  the H am ilton ian , and the te rm s  in it having two 
q u a s i-p a r t ic le  c re a tio n  o r  d estru ction  o p e ra to rs  have d isap p ea red  
a u tom a tica lly .

M in im iza tion  o f  Hp (X)

T he d is cu s s io n s  on the H F B -p r o c e d u r e  w ill be com p le te  i f  w e can  show 
that th is m ethod m in im ize s  H0 (X), the g ro u n d -s ta te  en erg y .

F o r  th is p u rp ose , w e f ir s t  in trod u ce , in an a logy  with the N X  N den sity  
m a tr ix

<<* |p|ß> = < c j c a > 

the fo llow in g  2N X  2N m a tr ix  R :

<I|R| J>  = < d jd i>  (4 .9 7 )

W ith the h elp  o f  e x p re s s io n s  (4 . 91a), it is  e a sy  to  see  that R has the fo llow in g  
stru ctu re  :

R = ( PK* (4 .9 8 )

Under the tra n sfo rm a tio n  (4 .8 1 a ,b )  the m a tr ic e s  p and к tra n s fo rm  as 
fo llo w s  :

< a| p| ß>  -> < b t b ¡>  = 0

and

Kaß~* < b ib j > S 0

The van ish ing o f th ese  e x p re s s io n s  is  a con seq u en ce  o f E q .(4 .8 2 b ) .  T hus, 
the m a tr ix  R u n d erg oes  the fo llow in g  tra n sfo rm a tio n

H- R' ■(? i)
It w as p roved  b y  E q. (4 . 85) that the qua s i -p a r t ic le  tra n sfo rm a tio n  fr o m  
e t ,  с  to b î ,  b is  un itary . H ence the a lg e b ra ic  iden tity

R '2 = R»

guarantees

R2 = R (4. 99)

T h is equation  is  the analogue o f p2 = p fo r  the den sity  m a trix .
W e next sp lit  up the m a tr ix  M o f  Eq. (4 . 78b) into two p a rts :

M = j?+  M' (4. 100a)
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w here

and

M '= (  У* ¿ V J  (4 .1 0 0 с )

T hen  the g rou n d -s ta te  e n e rg y  H0(X) o f  (4 . 23a) can  be w ritten  in the fo llow in g  
fo r m

H 0(X) = è T r a c e  [(J ?+  | M ') R ]  - \ T r a c e  (T  - X 1 + | V) (4 . 101)

T o  a r r iv e  at E q .(4 .  101) one has to m ake use o f  (1) the h e rm itic ity  of 
p and V , such that T r a c e  Vp = T r a c e  V *p * , and (2 ), the h e rm itic ity  o f 
the tw o -b o d y  potential w hich  w ill-le a d  to  T r a c e  Дк * = T r a c e  Д*к.

In the v a r ia tion a l treatm en t o f  H0(X), we sh a ll have to v a ry  R ( i . e .  
v a r y  p and к) su b je ct to the con stra in t (4 . 99) and then find out the c o n d i
tion  fo r  m in im iza tion . T h is p ro ce d u re  is  co m p a ra b le  to  what one d oes in 
the H F -c a s e .  In the la tter  c a s e , the g rou n d -s ta te  e n e rg y  is  g iven  by

ОУир. = £ <  e|T + | v | ß > < ß | p  |e>
a, ß

= T r a c e  (T  + I  V) p (4 . 102)

and w e a re  re q u ire d  to m in im ize  this e x p re s s io n  with r e s p e c t  to v a r ia tion s  
6p su b je ct to the con stra in t p 2 = p. W e sh all c a r r y  out th is s im p le  H F - 
m in im iza tion  f ir s t ;  the m in im iza tion  con d ition  o f  E q .(4 . 101) w ill then be 
c o n s id e re d  as a s tra ig h tforw a rd  g en era liza tion .

W ritin g  out <(« |v|ß)> in te rm s  o f  the den sity  m a tr ix , w e have

(H0) HF= ^ < « | T | ß > p ßa +  Y  («ß I v |т 6) P&&Pya
aß a  ßy6

T he equation  o f con stra in t is  g iven  by

p2 = p

T he e lem en t a y  o f  th is m a trix  equation  is  g iven  by

Z  p« ß pßr - = 0
ß

W e m u ltip ly  th is equation  by a L agran ge m u ltip lie r  ц and then sum  ov er
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a ll va lu es o f a  and 7 . Subtracting the resu lta n t e x p re s s io n  fr o m  (H o)^  we 
have the fin al e x p re s s io n  to be m in im ize d :

In the H F -p r o ce d u r e ,th is  is  a ch ieved  through the s e l f -c o n s is te n t  d ia g o n a li
za tion  o f  the HF H am iltonian  T + V. In the resu lta n t HF re p re se n ta tio n  
(T + V )  is  a d iagon al m a trix  w ith e lem en ts e ¡ ,  and p is  a lso  a d iagonal m a trix  
having e lem en ts  1 fo r  the occu p ied  sta tes , and 0 fo r  the u n occu p ied  sta tes .
T he two d iagon al m a tr ic e s  (T  + V) and p com m u te , and h ence  the m in im iz a 
tion  con d ition  (4. 103) is  sa tis fie d .

The g e n e ra liza t io n  o f  this p ro ce d u re  to  the H F B -c a s e  is  s tra ig h tforw a rd . 
T he v a r ia tion  in R d oes  not p rodu ce  any change in  the se co n d  te rm  o f  Eq. (4 .101 ), 
and h ence  the e x p re s s io n  to  be m in im ized  is  g iven  b y  (taking in to c o n s id e r a 
tion  the equations o f  con stra in t)

c*,ß aßy Ô a , y ß
T h e r e fo r e , the con d ition  o f m in im iza tion  is  g iven  by

0 = I T Iß > 6pß a + £ (« ß | v | 7 ä )  [PM«Py a + e*fcePya]
a ß y  S

W e m ake use o f  the d efin ition  o f  V , and equate the c o e ffic ie n t  o f  ópga o f 
th is e x p re s s io n  to z e r o .  The final con d ition  is ,th u s5g iven  by

<<* I T |ß > + |v |ß> - <a |/u p | /3> - <pr |pju j + (a |/u | ß> = 0

or

T + V + n - (/up + p ;u ) = 0

Taking the com m u ta tor  with p w e re w r ite  this e x p re s s io n  as

[(T  + V ),p ]  + [ju,p] - (/up + p/u)p +PÍMP + № )  = 0

S ince p2 =p , the te rm s  in volv in g  ß c a n ce l e x a ctly , and the con d ition  o f 
H F -m in im iza tio n  fin a lly  s im p lifie s  to

[(T  + V ), p] =0 (4. 103)

I.J I .J
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M ath em a tics , v e r y  s im ila r  to  w hat has been  done a b ov e , fin a lly  lea d s  to 
the m in im iza tion  con d ition :

W e have a lre a d y  show n above that the H F B -d ia g on a liza tion  o f  M a u tom a tica lly  
e n su re s  the d iagonal fo r m  R 1 fo r  the m a trix  R . Thus Eq. (4. 104) is  sa tis fie d .

5. M ICRO SCO PIC T H E O R Y  -  V IB R A TIO N A L  MODE

5 .1 .  G e n e ra l e x p re s s io n  of the q u a s i-p a r t ic le  in tera ction

In the la st s e c t io n  w e started  tra n s fo rm in g  the m a n y -b o d y  H am ilton ian , 
and show ed that a part o f it re p re s e n ts  the g ro u n d -s ta te  en erg y  (H o), and 
an oth er part re p re s e n ts  en erg y  o f s in g le  q u a s i-p a r t ic le s  (H n ). W hat r e 
m ain s of the H am iltonian  a fte r  th is , is  the te rm  H 4 o f E q . (4 .1 9 ) .  In v iew  
o f its  im p o rta n ce  in bu ild in g  up c o lle c t iv e  v ib ra t io n a l sta tes , w e sh a ll 
d evote  th is  s e c t iö n  e n tire ly  to  the treatm en t o f th is p a rt icu la r  te r m , w hich  
a ctu a lly  r e p re s e n ts  the in te ra ctio n  betw een  q u a s i-p a r t ic le s .

W e had se e n  in the p re v io u s  s e c t io n  that a B C S -ty p e  q u a s i-p a r t ic le  
tra n s fo rm a tio n , g iven  by  E qs (4 .3 9 a ,b ) ,  w h ere  u ¡ and v , a re  both  n on 
van ish in g  and com pu ted  fr o m  E qs (4 .4 7 ) ,  d e s c r ib e  the c a s e  o f n u c le i 
having a d iffu se  F e r m i su r fa c e . Such a q u a s i-p a r t ic le  is  p a rtly  a "h o le "  
and p a rtly  a " p a r t ic le " .  On the o th er hand, we a ls o  found that the sam e 
tra n s fo rm a tio n  equations can  b e  fo r m a lly  u sed  to  d e s c r ib e  the q u a s i
p a r t ic le s  a lso  in a n u cleu s having a sharp F e r m i se a  ( i . e .  a c lo s e d -s h e l l  
n u cleu s , o r  a n ucleu s w h ere  the H F -ca lcu la tio n  p ro d u ce s  a la rg e  en erg y  
gap betw een  the o c cu p ie d  and u n occu p ied  s in g le -p a r t ic le  s ta te s ) .  In th is 
ca s e , h o w e v e r , w e m u st r e m e m b e r  to  put sp e c ia l v a lu es  o f u¡ and v ¡ , 
n am ely  Uj =1 and v¡ = 0 if  i  is  an u n occu p ied  ( i . e .  a " p a r t ic le " )  state, 
w hile u ¡ = 0 and v¡ = 1 i f  i is  an occu p ie d  ( i . e .  a "h o le " )  sta te . In oth er 
w o rd s , the q u a s i-p a r t ic le s  h e re  a re  e ith er  pu re  " p a r t ic le "  o r  p u re  "h o le "

K eeping  th is fa c t  in  m ind, w e sh a ll w rite  down the g e n e ra l e x p re s s io n  
fo r  H 4 w ith the su bstitu tion s (4 .4 0 a ,b ) ,  and then apply  the sa m e fo r m a l 
e x p re s s io n  with the a p p rop r ia te  v a lu es  of u ¡ and v ¡ to  d e s c r ib e  both  types 
o f n u c le i m en tioned  ab ove .

S ince the B C S -tra n s fo rm a tio n  w as done with H F -ty p e  s in g le -p a r t ic le  
sta te s , we f ir s t  r e w r ite  H 4 o f E q .(4 . 19) in the H F -re p re se n ta tio n :

[ ( jr+  M ') ,R ]  =0

or

[M ,R ] = 0 (4. 104)

sta te s .

(5 .1 )

i . j . M

W e have to  substitu te fr o m  E qs (4 .4 0 a ,b )  and then p erm u te  in each  term  
the d e s tru ctio n  o p e ra to rs  to  the right o f the c re a t io n  o p e r a to rs ; fin a lly .
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the a p p rop ria te  sign  o f each  te rm  has to  be  in co rp o ra te d  a c co rd in g  to  the 
ru les  o f fo rm in g  n o rm a l p rod u cts  d e s c r ib e d  u nder E q. (4 . 8). It is  c le a r  
fr o m  E qs (4 .4 0 a , b) that th ere  w ill be  one te rm  in e x p re s s io n  (5. 1) w hich  
conta in s fo u r  q u a s i-p a r t ic le  c re a tio n  o p e r a to rs , and one te rm  having 
fo u r  d e sctru ct io n  o p e r a to rs . T h ese  te r m s  have o b v io u s ly  the c o e ffic ie n ts  
u ¡u jv k v 4 and v ¡ V ju ku f r e s p e c t iv e ly . W e sh a ll denote th ese  te r m s  by  
H40 and H 04 w h ere , as u su a lly , the two su b scr ip ts  sp e c ify  the num ber 
o f c re a tio n  and d e stru ctio n  o p e r a to rs , r e s p e c t iv e ly . The fo llo w in g  e x 
p r e s s io n s  a re  e a s ily  obtained:

H40= i  У  (ij|v|k, J )u ¡ u j v í v k b lt b jtb ¡ b 1[ (5 .2 a )

i j k i

H 04 = H erm itian  con ju gate  o f H 40. (5 . 2b)

H ere  a state with a b a r  on top  d en otes the co rre sp o n d in g  t im e -r e v e r s e d  
state, i . e .  |Tt  ̂ = s k|-k)> w here s k is  the p h a s e -fa c to r  appearin g  in 
E qs (4 .4 0 a ,b ) .  S ince k, I  a re  su m m ation  in d ice s  we had m ade the 
leg itim a te  re p la ce m e n ts  к -*■ -  к, and SL~* - Si in  obtain ing e x p re s s io n  (5. 2a).

In a s im ila r  m a n n er.it is  c le a r  fr o m  E qs (4 .4 0 a ,b )  that th ere  w ill 
be  fo u r  te r m s  in e x p re s s io n  (5 .1 )  having one q u a s i-p a r t ic le  d es tru ction  
o p e r a to r , and th re e  c re a tio n  o p e ra to rs  (H31); the num ber o f te rm s  with 
the r o le s  o f d es tru ction  and c re a tio n  o p e ra to rs  r e v e r s e d  (H13) is  a lso  
fo u r . It is  p o s s ib le  to  r e la b e l the su m m ation  in d ice s  in  the v a r io u s  te r m s  
o f H31and H 13 and then obtain  the fin a l e x p re s s io n s :

Нз1 =  !  Z  [ u i u j v k V 4 M k , i )  + u i v j v k v * (i,I|  v|3 , к ) ] ь [ ь [ ь кь 4 (5 .2 c )
i j k i

H13 = H erm itian  con jugate o f H 31 (5. 2d)

T h e la st se t o f  te r m s  contained  in e x p re s s io n  (5. 1) have tw o q u a s i
p a r t ic le  c re a tio n  and two q u a s i-p a r t ic le  d estru ction  o p e ra to rs  (H 22). T h e ir  
to ta l num ber is  s ix , but on ce  again  a re la b e llin g  of the su m m ation  in d ices  
can be  done to  w rite  H 22 in the fo llo w in g  com p a ct fo r m :

H 22 = I  У  Uu iu j uku £ + v ív jv kv í ) i(ij|  vl kÆ) 
i j k i

- (U iV jU kV j+ V jU jV kU jH j, k | v| i, i ^ b t b j b , ^  (5 .2 e )

A s  a m a tter  o f fa c t , if  we co m p a re  e x p re s s io n  (5. 2e) with the secon d  
te rm  o f e x p re s s io n  (4 .1 ) ,  w e a re  at on ce  s tru ck  b y  th e ir  s im ila r ity .
Such a c o m p a r is o n  lea d s us to  an in terp reta tion  o f  the expan sion  e n clo se d  
in  sq u a re  b ra ck e ts  as (  ij| v q | ki^>, w here vq- is  the e ffe c t iv e  in teraction  
poten tia l betw een  tw o q u a s i-p a r t ic le s . Such a c le a r  id e n tifica tion  o f the 
o th er  te r m s , (5 .2 a -d ) ,  as the in tera ction  betw een  q u a s i-p a r t ic le s , is  
not v e ry  ob v iou s , b e ca u se  th ese  te rm s  do not c o n s e rv e  the n um ber of 
q u a s i-p a r t ic le s  w hile (5. 2e) d o e s . E x p re ss io n  (4 .1 )  c o n s e rv e s  the
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n um ber o f p a r t ic le s ,  and h en ce  the fo r m a l  s im ila r ity  is  ev iden t on ly  fo r  
the te rm  (5 . 2e) w hich  c o n s e r v e s  the num ber o f q u a s i-p a r t ic le s .

5: 2. A p p lica tio n  to  the H F -c a s e

5 .2 ,1 .  D ia g ra m m a tic  r e p re se n ta t io n  o f the in tera ction

B y  the H F -c a s e  h e re  w e m ean  th o se  n u cle i w here a H F -ty p e  ground 
state having a sh arp  F e r m i sea  is  a good  d e s cr ip t io n . T he q u a s i-p a r t ic le s  
a re  e ith e r  p u re  h o le s  o r  p u re p a r t ic le s .  T he c o e ffic ie n ts  u ¡ , v i(  e tc . 
in  e x p re s s io n s  (5. 2 a -e ) w ill  now  te l l  us w hether a g iven  state  has to  be 
a h o le  o r  a p a r t ic le .  F o r  ex a m p le , in  the te r m  H 40 o f (5 . 2a), the fa c to r s  
UjUj and v {v k t e l l  us that i, j  a re  p a rt ic le  sta tes and k, £ a re  h o le  sta te s . 
T h e r e fo r e , b jb J b jb J  o c c u r r in g  in  th is  e x p re s s io n  d e s c r ib e  the c re a tio n  
o f tw o h o le -p a r t ic le  p a ir s .  In the m a tr ix  e lem ent o f v , the state on the 
righ t is  the in itia l sta te , and that on the le ft is  the fin a l sta te . H ence 
the h o le  state к is  go in g  to  p a r t ic le  state i, w h ile  the h o le  state  i  is  go in g  
to  the p a r t ic le  state  j ,  as a r e su lt  o f the tw o -b o d y  in te ra ctio n . The a p 
p e a ra n ce , in  the tw o -b o d y  m a tr ix  e lem en t, o f a t im e -r e v e r s e d  state 
c o rre sp o n d in g  to  a h o le  has its  o r ig in  in  the tra n s fo rm a tio n  p ro p e rty  
u nder ro ta tion  d e s c r ib e d  by  E q . (4 . 30b).

A l l  th ese  fa c ts  can  be  d e s c r ib e d  b y  a d ia gram  in w hich  a dashed 
h o r iz o n ta l lin e  can  b e  taken  to  re p re s e n t  v , and so lid  lin e s  m ov in g  t o 
w ard s o r  aw ay fr o m  p oin ts to  r e p re s e n t the v a r io u s  sta te s . T o  d is 
tin gu ish  betw een  h o le s  and p a r t ic le s , we attach  an a rro w  to  a lin e  and 
m ake the con ven tion s d e s c r ib e d  in F ig . 5. 1. T he d ia g ra m s (a) and (b)

t  \  \  \

( a )  ( b )  ( c )  ( d )
F IG . 5 .1 .  P a r tic le  and h o le  states (s e e  te x t ) .

have upw ard  a r r o w s  and a re  taken  to  r e p re s e n t p a r t ic le  s ta tes , w h ile  
(c) and (d) having dow nw ard a r r o w s  re p re s e n t h o le  s ta te s . F o r  p a r t ic le s ,  
an a r ro w  m ov in g  aw ay fr o m  a poin t, as in  (a), den otes c re a tio n  at that 
poin t, w hile an a r ro w  m ov in g  tow ard s a poin t, as in  (b) r e p re s e n ts  d e 
stru c tio n  o f the p a r t ic le  at that po in t. In the c a s e  o f  h o le s , the convention  
is  ju st the o p p o s ite : d ia gram  (c) having a h o le - l in e  m ov in g  tow ard s a 
point den otes the c re a tio n  o f the h o le , w hile (d) w ith a h ole  lin e  m ovin g  
aw ay fr o m  a point den otes the d estru ction  o f the h o le .

K eeping  th ese  con ven tion s in m ind we d e s c r ib e  the in te ra ctio n  te rm  
H40 b y  F ig . 5 .2 .  N otice  that the se n se  of the a r r o w s  indeed  te l ls  u s that 
the state к is  going  to  i, and the state  i  is  go in g  to  j ,  as d e s c r ib e d  in  
the f i r s t  p a ra grap h  o f th is  su b se ct io n . A cco rd in g  to  (a) and (c ) o f F ig . 5 .1  
w e indeed  have in F ig . 5. 2 the c re a tio n  o f the h o le  к and i ,  and cre a tio n  
of the p a r t ic le s  i and j .  E ach  "h en  tr a c k "  in F ig . 5. 2 c o r r e s p o n d s  to  a 
"h o le -p a r t ic le "  p a ir , and the d ia gram  co rr e s p o n d s  to  the c re a tio n  of 
tw o such  p a ir s , as d e s c r ib e d  in the above m en tioned  pa ra graph .

In a s im ila r  m an n er the H erm itian  con jugate o f  H4o, i . e . H 04 o f 
(5 . 2b) d e s c r ib e s  the d e s tru ctio n  o f tw o h o le -p a r t ic le  p a ir s , and is  r e 
p re se n te d  b y  F ig . 5 .3 .
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к  Ц  / f
F IG . 5 .2 .  In te ra ctio n  H 40 •

FIG . 5 .3 .  In te ra ctio n  H 04.

F IG . 5 . За. T h e  first term  o f  H 3 1 .

W e next exam in e H 31. T h e re  a re  tw o te r m s  in e x p re s s io n  (5. 2c), 
and the u, v c o e ffic ie n ts  in  the f ir s t  te rm  te l l  u s that it c o r r e s p o n d s  to 
the c re a tio n  of tw o p a r t ic le s  (i, j) and a h o le  (k) and the d es tru ction  
o f a p a r t ic le  ( Í ) . T he m a tr ix  e lem en t o f v  appearin g  in th is te rm  te lls  
us that к is  go in g  to  i and I  is  going  to  j .  Thus the d ia gram  is  g iven  by 
F ig . 5 .3a . The d ia gram  m ak es it obv iou s that th is te rm  r e p re s e n ts  the 
in te ra ctio n  o f a h o le -p a r t ic le  p a ir  w ith a p a r t ic le .  In the sa m e m anner 
the re a d e r  can co n v in ce  h im s e lf  with a little  e x e r c is e  that the secon d  term  
o f H 31 re p re s e n ts  the in te ra ctio n  of a h o le -p a r t ic le  p a ir  with a h o le  state. 
D raw ing s im ila r  d ia g ra m s fo r  H 13 o f  (5 . 2d) and th e ir  ap p rop r ia te  in te r 
p reta tion  a re  a lso  le ft as an e x e r c is e  to  the re a d e r .

F in a lly , w e 'c o n s id e r  the e x p re s s io n  H22 o f E q . (5. 2e). T h ere  a re  
th re e  d iffe re n t types o f  te r m s  in it. T he f i r s t  type co m e s  fr o m  the 
u ¡u ju ku f te rm  o f the f ir s t  lin e . C le a r ly , a ll the states i, j ,  k, t  a re  
re q u ire d  to  b e  p a r t ic le  sta te s , o f w hich  i  and j a re  c re a te d  and k, SL 
d e s tro y e d  (b eca u se  o f b f b jb jb k ) .  Taking p r o p e r  re co g n it io n  of the 
tw o -b o d y  m a tr ix  e lem en ts  we can  e a s ily  draw  F ig . 5. 4. T h is  d iagram  
re p re s e n ts  the in tera ction  betw een  tw o p a r t ic le s , and h ence  it is  u su a lly  
ca lle d  the " p a r t ic le -p a r t i c le "  in te ra ctio n  te r m . In a s im ila r  m ann er, 
w e exam ine the se co n d  te rm  in the f ir s t  lin e  o f E q . (5. 2e), w here the 
v - c o e ffic ie n ts  t e l l  us that i, j ,k ,  SL a re  a ll  h o le  sta te s . T h is  te rm , th e r e 
fo r e ,  re p re s e n ts  a "h o le -h o le "  in tera ction , and is  g iven  by  the d iagram  
o f F ig . 5 .5 .  T he th ird  type  o f te rm  in H 22 co r r e s p o n d s  to  the secon d  
lin e  o f  E q . (5 . 2e). F r o m  argum ents s im ila r  to  what has b een  repeated  
ab ove  s e v e r a l  t im e s , w e con clu d e  that th is te rm  c o r r e sp o n d s  to  the in te r 
a ction  betw een  a h o le  and a p a r t ic le  and is  r e p re se n te d  by  the d iagram  
of F ig . 5 .6 .

F in a lly , we m ust point out that w e have fo llo w e d  h e re  a convention  
o f draw in g  on ly  one d ia gram  co rre sp o n d in g  to  an a n tisy m m e tr ic  (rounded 
b ra ck e t) m a tr ix  e lem en t v . M any au th ors sp lit up such a m a tr ix  e lem ent 
e x p lic it ly  into the d ir e c t  and the exch an ge p a rts  and re p re se n t th ese  
p r o c e s s e s  by  sep a ra te  d ia g ra m s . T o  g ive  an exam p le , let u s_con s id er  
the h o le -p a r t ic le  te r m , w hich  conta in s the m a tr ix  e lem en t (j, k| v| SL, i)
= < j ,  k| v| SL, i )  -  j ,  k| v|T, SL y .  The d ir e c t  te rm  w ill s t i l l  c o rr e sp o n d  to 
a d ia gram  5 .6 , w hile in the exch an ge te rm  state i g o e s  to  j ,  and state 
SL g o e s  to k. H en ce if w e d e c id e  to  draw  a sep a ra te  d ia gram  fo r  the 
exch an ge p r o c e s s  then it look s  lik e  F ig . 5 .7 .  P e o p le  fo llo w in g  the c o n 
ven tion  o f  draw ing  the d ia gram  5 .6  f o r  the d ir e c t  part o f the h o le -p a r t ic le

............. - Vv

v

j/'V
K J - ...........
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FIG . 5 .4 .  T h e  p a r t i c le -p a r t i c le  in te r a c t io n  term  o f  H 22 .

F IG . 5 . 5 . T h e  h o l e -h o le  in te r a c t io n  term  o f  •

F IG . 5.6. T h e  h o le -p a r t i c l e  in te r a c t io n  term  o f  H22 •

F IG . 5 .7 .  A n  e x p l ic i t  d ia g ra m  fo r  th e  e x ch a n g e  part 

o f  th e  h o le -p a r t i c l e  in te r a c t io n . f к
in tera ction , and the sep a ra te  d iagram  5. 7 fo r  the exchange part o f the 
sa m e in tera ction  r e fe r  to  th e se  d ia gram s as the " la d d e r "  and "h e n -tra ck "  
d ia g ra m s , r e s p e c t iv e ly . T h ese  n om en cla tu res  a re  b a se d  on obv iou s 
v isu a l s im ila r it ie s .

5 .2 .2 .  T a m m -D a n co ff  ca lcu la tion  f o r  l h - l p  states

A  lo o k  at the e x p re s s s io n s  (5 . 2 a -e ) w ill con v in ce  the re a d e r  that 
excep t fo r  H40, a ll o th er  p a rts  o f  the in tera ction  H am iltonian  conta in  a 
d e s tru ctio n  o p e ra to r  fo r  q u a s i-p a r t ic le  (in the p resen t c a se  a q u a s i-p a r t ic le  
is  e ith e r  a "h o le "  o r  a "p a r t ic le " )  to  the ex tre m e  r igh t. Thus operatin g  
on the ground state |Ф0]> on ly  the H 40 part can p rod u ce  a n on -van ish in g  
re su lt ; as a m a tter  o f fa c t the d is cu ss io n  o f se c t io n  5 .2 .1  te l ls  us that 
the resu lt  is  a 2 h -2 p -ty p e  sta te . T h e re fo r e , when the in te ra ctio n  is  
sw itch ed  on, the ground state a cq u ire s  an ad m ixtu re  o f 2 h -2 p -ty p e  states 
in  the low est a p p rox im a tion . What is  im portant is  that th ere  is  no term  
in  the in te ra ctio n  H am ilton ian  that can  m ix  a lh - lp - t y p e  state into | .
T h is  w e ll-k n ow n  re su lt  o f the H F -th e o ry  has been  d e r iv e d  in s e v e r a l 
p o s s ib le  w ays b y  d iffe re n t le c tu re r s  in th is c o u r s e .

The lh - lp - t y p e  states re p re s e n t ex cited  stàtes o f the H am iltonian , 
and it fo llo w s  fr o m  ou r u npertu rbed  H am iltonian: H 0 + H n  that such a 
tw o q u a s i-p a r t ic le  state has an u npertu rbed  en erg y  E h + E  w here E h 
and Ep a r e  g iven  b y  E q . (4. 55a), and not b y  E q . (4. 48). T h is  is  b e ca u se  
the la st te rm  of E q . (4 . 54) is  z e r o  f o r  the H F -th e o ry , the p rodu ct uv 
van ish in g  fo r  both  o ccu p ie d  and u n occu p ied  sta te s . K eeping in m ind the 
s p e c ia l  v a lu es  o f u, v  f o r  the h o le  and p a r t ic le  sta tes, we have fr o m  
E q . (4 . 55a)

E h = - (eh -X) - X - eh (5. 3a)
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and

Ep = ep -X  (5 .3 b )

w h ere  X is  the e n e rg y  o f the F e r m i le v e l .  T h ese  re su lts  a ctu a lly  fo llo w  
fr o m  co m m o n  se n se  i f  w e r e m e m b e r  that a p a r t ic le  state is  above the 
F e r m i le v e l, w hile a h o le  state is  b e lo w  it. F in a lly , fr o m  E qs (5 .3 a ,b ) ,  
w e have the u npertu rbed  e n e rg y  o f a lh - lp - t y p e  state , g iven  by

E h + E p = e p - e h (5 .4 )

A l l  the lh - lp - t y p e  sta tes that a re  obtained  by  lift in g  a n u cleon  a c r o s s  one 
m a jo r  sh e ll, have th e ir  u npertu rbed  e n e rg ie s  (5 .4 ) ly in g  w ithin a few  
M eW  o f each  o th e r . The u np ertu rbed  e n e rg ie s  o f  the 2 h -2 p -ty p e  sta tes 
a r e , on the o th er  hand, rou gh ly  double o f th is va lu e .

W e next exam ine what happens to  the lh - lp - t y p e  sta tes when the 
in te ra c tio n  H4 is  sw itch ed  on . It is  c le a r  fr o m  the e x p re s s io n  (5 . 2e) o f 
H22 that the h o le -p a r t ic le  in tera ction  p art o f it can g iv e  a n on -van ish in g  
m a tr ix  e lem en t con n ectin g  the l h - l p  sta tes  with each  o th e r . S im ila r ly , 
the te rm  H31 o f (5. 2c) can  p ro d u ce  a n on -van ish in g  m a tr ix  e lem en t betw een  
a lh - lp - t y p e  state and 2 h -2 p -ty p e  sta te . T he e a s ie s t  w ay to  se e  th is  is  
that H 31 has one d e s tru ctio n  o p e ra to r  to  its  ex trem e  r igh t, and h en ce  the 
state  it o p e ra te s  on m u st have at lea st one q u a s i-p a r t ic le ;  the lh - lp - t y p e  
sta tes  each  h as 2 q u a s i-p a r t ic le s  and h en ce  m eets  th is c r it e r io n . F u rth e r 
m o r e , H 31 c re a te s  th re e  q u a s i-p a r t ic le s  a fte r  d e s tro y in g  one, that is ,  
it p ro d u ce s  2 ad d ition a l q u a s i-p a r t ic le s ; 2h -2p  sta tes have 4 q u a s i-p a r t ic le s , 
w hile l h - l p  sta tes have 2, and h en ce  a fte r  the p rod u ction  of 2 add itiona l 
q u a s i-p a r t ic le s  the l h - l p  state changes n atu rally  to  a 2h -2p  state . T h is 
kind o f argum ent, even  though e lem en ta ry , h as b een  g iven  h e re  in d eta ils  
on ce  f o r  a ll, s o  that a new  student o f th is su b ject can  understand the lo g ic  
beh ind s im ila r  sta tem en ts to  b e -m a d e  in  the fu tu re without repeatin g  the 
r e a s o n s .

A c co r d in g  to  the p ertu rb a tion  th e o ry , th e r e fo re , the e ffe c t  o f the 
in te ra ctio n  is  to  p ro d u ce  a ground state and a se t  o f  e x cite d  sta tes o f 
the fo llow in g  s tru ctu re ;

1ф о> "  > = 1ф о> + X  f hp,h’ p' | * (h p ;h 'p ')>
hp; h* p*

I « ( h p ) > -  |ф*(hp )> = I* (h p )>  + y  g hp;h,p, I * ( h 'p > ) >

h'p'

W e have w ritten  h e re  on ly  the lo w e s t -o r d e r  p ertu rb ation  t e r m s . The 
h o le -p a r t ic le  in d ice s  in p a ren th eses  fo llo w in g  а Ф s p e c ify  the h o le -p a r t ic le  
ex c ita t io n s  p re se n t in that p a rt icu la r  b a s is  sta te . The quan tities f  and 
g  conta in , a c c o rd in g  to  p ertu rb ation  th e o ry , the a p p rop r ia te  m a tr ix  e le 
m ent o f  H 4 in  the n u m era tor  and an e n e rg y -d e n o m in a to r  w hich  is  equal 
to  (Eh +E p  + E h, +Epi) f o r  f  and (E(,i+  E p. - Eh - E p) f o r  g . S ince the e n e rg y - 
d en om in ator  o f  g is  m u ch  s m a lle r  than that o f f ,  we can  c o n s id e r  an a p 
p ro x im a te  trea tm en t o f f  in  the fo llo w in g  m ann er: w e n e g le c t  any m o d if i 
ca tion  o f the g ro u n d -s ta te  through  the in tera ction , but c o n s id e r  the a d -

(5 .5 a )

(5 .5 b )
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m ixtu re  o f the l h - l p  type sta tes  with each  o th e r . A  ca lcu la tion  ba sed  
on th is  point o f v iew  is  ca lle d  the T a m m -D a n co ff  A p p rox im a tion  (T D A ).

A s  a m a tter  o f fa c t , the e n e rg y -d e n o m in a to r  (E h> + E p< -E h - E p) can, 
in p r in c ip le , even  van ish  when the e n e rg ie s  E h »+ E p> and Eh + E p a re  
a cc id e n ta lly  d eg en era te . A t any ra te , a l l  the lh - lp - t y p e  sta tes a c r o s s  
a g iven  m a jo r  sh e ll, as m en tioned  e a r l ie r ,  fo r m  a n e a r -d e g e n e ra te  bunch 
o f le v e ls  and h en ce  th e ir  ad m ixtu re  can  b e  b e tte r  taken into a ccou n t by  a 
m a tr ix  d ia gon a liza tion  (d eg en era te  p ertu rb a tion  th e o ry ), ra th er  than a 
p ertu rb a tion  treatm en t lik e  (5 .5 b ) .  The ca lcu la tion  in the T D A , th e r e fo re , 
c o n s is ts  o f settin g  up the m a tr ix  o f the h o le -p a r t ic le  p art o f  H22 in the 
l h - l p  sp a ce , adding the u npertu rbed  e n e rg ie s  a long  the d iagon a l, and 
then d ia gon a liz in g  the resu ltant H am ilton ian  m a tr ix . W e p r o ce e d  to  w rite  
dow n the e x p re s s io n  f o r  a ty p ica l m a tr ix  e lem en t.

T he tw o te r m s  in  the h o le -p a r t ic le  part o f E q . (5 . 2e) c o r r e s p o n d  to 
the fo llow in g  tw o p o s s ib il it ie s :

(1) UjVj u kv { te rm : i = p a r t ic le , j = h o le ;
к = p a r t ic le , SL = h o le . '  ’ a '

(2) v ¡ u j v ku { te rm : i = h o le , j = p a rt ic le ;
к = h o le , SL = p a r t ic le .  ' ' '

W e want the m a tr ix  e lem en t o f  th e se  te r m s  con n ectin g  the h o le -p a r t ic le  
state bpbh I Ф0 У with an oth er, (  Ф 0 1 bJ>bT,. In the u su a l s h e ll -m o d e l n ota 
tion  th ese  sta tes a re  denoted  b y  |h_1p)> and Ih 1' 1 p 1)  r e s p e c t iv e ly .
N otice  that, a c co rd in g  to  (4 .3 9 a ) the h o le  c re a tio n  o p e ra to r  b j  c o r r e sp o n d s  
to  ShC.(,= cu, and h ence  it c o r r e s p o n d s  to  a v a ca n cy  in  the s h e ll -m o d e l 
state  E (and not h). T h is  fa c t  a ccou n ts fo r  the equivalent s h e ll -m o d e l n o 
ta tion s m en tioned  a b ov e . W e r e c o r d  th ese  co r r e s p o n d e n ce s  fo r  fu tu re  u se

I h "xp > = b jb J I  Ф0 > (5 .7 a )

< h , ' 1P , l = < ф01Ьь'Ь р' (5 - 7b)

W e now  take the o p e ra to r  b jb  Jb<,bk fr o m  E q . (5 . 2e) and e a s ily  a r r iv e  
at the fo llo w in g  re su lts :

b Éb k | h '1p > =  b Æb kbJbiJ| Ф0>

= («kpSfl, - ô khS{p) K >  (5 .8 a )

< h - - V | b íb J =  < ф 0| b hibplb J b î

= < * o l ( V V  - 6i h V  <5 - 8b)

In d e r iv in g  th ese  re su lts  w e have m ade u se  o f  the a n ticom m u tators  o f 
the c re a tio n  and d e stru ctio n  o p e r a to rs  to  perm u te  the d e s tru ctio n  o p e r a 
to r s  on to  I Ф 0 )  and the cre a tio n  o p e r a to rs  on  to  •( Ф0| both  o f w hich  a re  
z e r o  a c c o rd in g  to  (4 . 5). W hen we m u ltip ly  E q . (5 . 8b) and (5 . 8a), the 
re q u ire m e n ts  (5 . 6a) and (5. 6b) t e l l  u s that tw o te r m s  out o f  the fo u r  a re  
n on -v an ish in g . Thus,putting E qs (5 . 8b), (5 .8 a ) ,  (5 . 6 a ,b ) and (5. 2e) tog eth er  
we fin a lly  obtain
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U sing the t im e -r e v e r s a l  in va rian ce  o f v , we can e a s ily  con v in ce  o u r 
se lv e s  that the tw o te r m s  in  th is e x p re s s io n  a re  equal, and the fin a l 
resu lt  is  g iven  by

It has b een  a lre a d y  m en tioned  that betw een  the sa m e two states the un
pertu rb ed  part, (H 0 + H n ), o f the H am iltonian , g iv e s , a c co rd in g  to  (5 .4 ) ,

E quations (5. 9) and (5. 10) enable us to  set up the m a tr ix  o f the 
H am iltonian , in the TD A , u sing  the lh - lp - t y p e  states as b a s is .  In p r a c t ic a l 
ca lcu la tion s  the p a r t ic le  and h ole  e n e rg ie s , ep and e h , a re  taken fro m  
ex p erim en ta l data; the h a r m o n ic -o s c i l la to r  sta tes are  u sed  fo r  p, h e tc . 
a long  with so m e  fo r m  fo r  the tw o -b o d y  potentia l V  to  ca lcu la te  the m a trix  
e lem en ts (5 .9 ) .  H ow ever , the o b s e rv e d  sta tes in n u c le i have good  to ta l 
angular m om entum  J, and is o sp in  T , and h en ce  instead  o f evaluating 
(5 .9 )  one evaluates

w h ere  the sy m b o ls  h ',  p ',  h, p e tc . do not contain  any lo n g e r  the p r o je c t io n
quantum n u m bers , and h en ce  the t im e -r e v e r s e d  sy m b o l on top  o f h, h '
a re  no lo n g e r  n e c e s s a r y . M o re o v e r , the to ta l p r o je c t io n  quantum n um bers
M and M T have not been  w ritten  in e x p re s s io n  (5 .1 1 ) e x p lic it ly , b e ca u se
the m a tr ix -e le m e n ts  o f v  a re  actu a lly  independent o f th ese  quantum n u m bers .
T he d e ta ils  o f th is an gu la r-m om en tu m  coup ling  a re  g iven  in the appendix to  th is
se c t io n .

F o r  the tw o -b o d y  p oten tia l v  one can e ith er  take w e ll-b e h a v e d  Yukawa, 
G au ssian  e tc . fo r m s  with ad ju stab le  ran ge , depth, and e x ch a n ge -d ep en d en ce . 
The ad ju sta b le  p a ra m e te rs  can b e  fix e d  p a rtly  fr o m  oth er sh e ll-m o d e l type 
s p e c t r o s c o p ic  ca lcu la tio n s , and a lso  fr o m  the TD A ca lcu la tion  it s e lf .  In 
m o r e  re ce n t w ork , e ffe c t iv e  m a tr ix  e lem en ts of r e a lis t ic  tw o -b o d y  poten tia ls 
lik e  the H am ada-Joh nston  and Y ale  p oten tia ls  have a lso  b een  u sed . T h ere  
w as on e h is t o r ic a l  stage o f th ese  ca lcu la tion s  when the u se  o f sch em a tic  
m o d e l p oten tia ls  f o r  v  w as a lso  quite fa sh ion a b le . Such sch e m a tic  c a lc u la 
tion s  did th row  som e  light on the o r ig in  o f co h e re n ce  o f one o f the states 
that r e su lt  fr o m  the T D A -d ia g on a liza tion . Som e d eta ils  of th is type of 
w ork  a re  g iven  in the A ppendix  m en tioned  ab ove .

F in a lly , a few  w ord s  about the c h o ic e  o f the l h - l p  b a s ic  sta te s . It 
is  c le a r  that f o r  a p r a c t ic a l  com pu tation  w e have to  lim it the n u m ber of 
such  states to  a re a so n a b le  m agnitude. The liftin g  o f a n ucleon  through 
one m a jo r  sh e ll p ro d u ce s  a change o f p a rity , and h en ce  such  l h - l p  states 
have odd p a rity . T h e re fo r e , f o r  the ca lcu la tion  o f o d d -p a r ity  sta tes , like  
the o ctu p o le  3 " , T  = 0, and giant d ip o le  1*, T  = 1 sta tes , it is  rea so n a b le  
to  tru n cate  the l h - l p  b a s is  to  the su b sp a ce  o f  ex cita tion s  a c r o s s  one m a jo r  
sh e ll on ly . In the c a se  o f the e v e n -p a r ity  states the situation  is  not so

< h ' - V | H 22|h-ip> = - (p ',h | v | p ,h ') (5 .9 )

< h -- ip -| (H 0 + H l l )| h -ip >  = ôhhl6pp, ( e p - e h) (5 .1 0 )

< ( h ' - 1 p ')J T | H 22|(h-1p )J T > (5 .1 1 )
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u nam bigu ou s. Such sta tes can  b e  o b v io u s ly  p ro d u ce d  by  lift in g  one n u cleon  
a c r o s s  tw o m a jo r  sh e lls  o r  tw o n u cleon s a c r o s s  one m a jo r  sh e ll . Both  
th ese  typ es w ill have m o r e  o r  le s s  the sa m e  u npertu rbed  en erg y . H ence 
the fo rm u la s  w hich  we have g iven  h e re , f o r  the lh - lp - t y p e  sta tes on ly , 
a re  not adequate f o r  the trea tm en t o f  e v e n -p a r ity  ex cited  sta tes in c lo s e d -  
sh e ll n u c le i. An in te lligen t r e a d e r  w ill b e  ab le  to  d e r iv e  the m a tr ix  e le 
m en ts of H 22 fo r  the 2 h -2 p -ty p e  sta tes and th o se  o f  H 31, con n ectin g  a l h - l p  
state w ith a 2 h -2 p -ty p e  sta te . W e w ould h o w ev er , lik e  to  m ake the g e n e ra l 
r e m a rk  h e re  that v e r y  often  the e v e n -p a r ity  sta tes  o f c lo s e d -s h e l l  n u c le i 
can  have 4 h -4 p -ty p e  s tru ctu re  a lso , and then the qu estion  o f a p o s s ib le  
d e form a tion  of such  states b e c o m e s  v e r y  im portan t. T o  sum  up: the 
th e o ry  o f the e v e n -p a r ity  sta tes o f  c lo s e d -s h e l l  n u c le i is  ra th er  d ifficu lt  
and in vo lved  through  the p r e s e n ce  o f 2h -2p , 4h -4p  sta tes , and the p o s s i 
b ility  o f  d e form a tion ; at the p re se n t t im e  su ch  th e o r ie s  a re  in a ra th er  
u n s a tis fa c to ry  sta te .

It is  in terestin g  to  co m p a re  the T D A -m a tr ix  e lem en t of the H am ilton ian , 
w hich  is  a sum  o f (5 . 9) and (5. 10), with the e x p re s s io n  (3. 52a) o f the 
А -m a tr ix , that o c c u r r e d  in  ou r e a r lie r  B P A  d er iv a tion . A s  a m a tter  o f 
fa c t Whp0 = (W hp- W 0) is  indeed  equ al to  (5 .1 0 ) , w hile the secon d  te rm  o f 
A  is  equ al to  ^ h '^ ip ' | H22 | h _1p У , a c c o rd in g  to  ou r  new n otation s. The 
sligh t d if fe r e n c e  fr o m  (5 .9 ) ,  w h ere  h and h 1 o c c u r  in stead  o f h and h ' , is  
r e a lly  not s ig n ifica n t. It has b een  m en tioned  e a r l ie r  that w e m ust do the 
angular m om entum  cou p lin g  in (5 .9 ) .  B e ca u se  o f  ou r  p re se n t c h o ic e , 
b j  = shc .h, the h o le  state  b f l ^ o ] )  tr a n s fo r m s  as an angular m om entum  
state  j h w ith p r o je c t io n  m h; th is fa c t  r e v e a ls  it s e lf  in the o c c u r r e n c e  o f 
the fo llo w in g  C le b sch -G o rd a n  c o e ffic ie n t  in the sta tes o f e x p re s s io n  (5. 11):

|(h’ 1p )J M > =  У jh jp J
m , m  M h . p 4 mP b V ” h K >  <5 Л 2 >

mh* mp

H ere  the o p e r a to r , b^mjj = ( - l ) Jh' mh c j h,-mh , o c c u r s  a long  w ith the f ir s t  
co lu m n  jhm h o f the C le b sch -G o rd a n  c o e ffic ie n t . On the o th er  hand, we 
cou ld  have done the sa m e angular m om entum  cou p lin g  b y  u sin g  Cjhmh 
as the o p e ra to r , to g e th e r  with a p h a s e -fa c to r  ( - l ) Jh "mh and the colum n  
j h, -m h in the C le b sch -G o rd a n  c o e ffic ie n t . In w ritin g  (3 . 52a) the v a ca n cy  
w as taken to  b e  in the sta tes ( j h m h) and ( j him hi), ra th e r  than in the t im e -  
r e v e r s e d  s ta te s . Thus with the e x p re s s io n  (3 .5 2 a ) the an gular m om entum  
cou p lin g  has to  be  done a c co rd in g  to  the secon d  a ltern a tiv e  m en tioned  ab ove . 
H ow ever , in  v iew  o f the su m m ation  o v e r  m h in (5 . 12) it r e a lly  d oes  not 
m a tter  w hich  o f the two a ltern a tive  notation s we fo llo w  in doin g  the angular 
m om entum  cou p lin g . Thus in the angular m om entum  cou p led  e x p re s s io n s  
(3 . 52a) and (5. 9) g iv e  id e n tica l r e s u lts .

5 .2 .3 .  A ltern a tiv e  d er iv a tion s  o f the T D A -equ ation s

T h e re  a re  v a r io u s  a ltern a tive  w ays o f  d e r iv in g  the T D A -e q u a tio n s .
W e sh a ll d e s c r ib e  tw o su ch  m eth od s in  th is su b se ctio n .

(1) C om m u tator m ethod  w ith lin e a r iza tio n

In th is  m ethod  w e evaluate the co m m u ta tor  o f H w ith b p b í.  B ein g  a 
n u m ber H 0 com m u tes  w ith it . W e next evaluate the fo llo w in g  com m u ta tor :
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l b ¡ b i .  b jb * ]  = b J t b j .b J b J ]

S ince

b i b P b í  = 6 iP b í  - b J b i b í  

= 6 ipb h - á ih b í + b í b hb i

w e have

[b ¡> b p b j]  = 6¡p b j  -  ó ihbp (5 .1 3 )

T h e re fo r e ,

[ b l b i ,  b j b j ]  = ó ipb j b h -  6 ¡hb fb ¿

and henee

[HU i b J b í ] =  Y  E i t b t b i . b j X ]
i

= (Ep + Eh)bpbJ (5 .1 4 )

= (ep - EhJbJbtf

F in a lly , as a step  tow ard s evaluating the com m u ta tor  with the h o le -  
p a r t ic le  p a rt o f  H 22 w e evalu ate, with the help  o f (5 .1 3 ) ,  the resu lt

[ b f b / b ^ . b j b i ]  = b i b j l b ^ . b p t b i ]

= b T b J ib J b k .b J b J ] + [ b ^ b jb j l b k }

= b j b j i f i k p b i b j  -  SkhbibpT +  ô ipb j b k -  6 ihb p b k}

b  i b  j { ^ k p  à ^  ^ kh  ^ i p  ^ kh  b p b i  -  ^ k p b h b  I

+  ó íp b h b k - S f t b j b k i  ( 5 . 1 4 )

W e a re  fin a lly  g o in g  to  u se  the t r ic k  m en tioned  in  the la st paragrap h  of 
s e c t io n  2. 3. W hen | Ф0 У stands to  the r igh t o f e x p re s s io n  (5 .1 4 ) ,  the 
la st fo u r  te r m s  o b v io u s ly  p ro d u ce  z e r o . T h e re fo r e , in  the subsequent 
s te p s , we keep on ly  the f ir s t  two te r m s  o f e x p re s s io n  (5 .1 4 ) and obtain  
fr o m  E qs (5 .2 e )  and (5 .6 a ,b )

[H 22, b£b£] = - |  Y  {u iv j b 1t b Jt (j, p| v | h ,i)  - V; u .b J b J i j .h M p , ! ) }
i.J

= X  bP’b h' U h '« P l  v l h . P ' )  + ( P ' » h | v | p , h , )j 

h 'p '

= - ^  ( p ' ,h | v | p ,h ') b ¿ .b ¡ .  (5 .1 5 )

h ‘ p '
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O nce again  w e have u sed  the t im e -r e v e r s a l  in v a ria n ce  o f  v  to  equate the 
tw o m a tr ix  e lem en ts ; fu r th e r m o r e , we have taken note o f the fa c t that 
u¡ Vj in  the f i r s t  t e im  re q u ire s  i to  b e  a p a r t ic le  state (p 1) and j to  b e  a 
h o le  state  (h 1), w hile v ¡U j in the secon d  te rm  im p o se s  ju st the op p os ite  
re q u ire m e n t . In the secon d  te rm  b j 'b í '  has b een  re a rra n g e d  to  -h p ib^ i. 
T he p r o ce d u r e  d e s c r ib e d  u nder E q . (5 .1 4 ) o f putting | Ф0^ to  the righ t 
and (  ф| to the le ft  o f  the com m u ta tor , has enabled u s to  th row  away 
te r m s  w hich  a re  not lin e a r  in the l h - l p  c re a tio n  o p e ra to rs  b p ib ji. T h e r e 
fo r e ,  th is  p ro ce d u re  is  u su a lly  ca lle d  the m ethod o f lin e a r iza tio n . N otice  
that the com m u ta tor  m ethod  o f d ia gon a liz in g  a H am iltonian , d e s c r ib e d  in 
se c t io n  2 s u c ce e d s  on ly  if  it is  p o s s ib le  to  obtain  a c lo s e d  sy stem  of 
lin e a r  equations con n ectin g  a g iven  set o f  o p e r a to rs . T h is has b een  
a ch ieved  in E q . (5 .1 5 ) .  Putting (5 .1 4 ) and (5 .1 5 ) to g e th e r , w e a re  on ce  
again  led , a c co rd in g  to  the g e n e ra l d e r iv a tio n  o f S ec . 2, to  the d ia g o n a liza 
tion  o f the sa m e  h o le -p a r t ic le  m a tr ix  o f  the H am ilton ian  that w e d e s c r ib e d  
in  the p re v io u s  su b se ctio n .

(2) Q u a s i-b o so n  m ethod ;

In th is  m ethod  w e f ir s t  in trod u ce  the o p e r a to rs  Ahp w hich  c re a te  a 
h o le -p a r t ic le  p a ir ;

The H erm itian  con ju gate  o f th is o p e ra to r  d e s tr o y s  a h o le -p a r t ic le  p a ir  and 
i s  g iv e n  by

It can  be  e a s ily  v e r if ie d  fr o m  the an ticom m u tators o f b h, b , b j ,  b !  e tc . 
that

The co m m u ta tor  o f  a p a ir  d e s tru ctio n  o p e ra to r  w ith a p a ir  c re a tio n  
o p e r a to r  can  b e  s im ila r ly  w ork ed  out with the h elp  o f E q . (5 .1 3 ) .  W e 
obtain

( 5 . 16a)

Ahp bj[ b p ( 5 . 16b)

(5 . 16c)

and

[ A h p .  A h >p i ]  = [ A hp, A ^ t p J  = 0 (5 . 17a)

® hh'6ppi ■ Ь у Ь ^ б р р , - bp tb pô ^ jj. (5 . 17b)

In troducin g  the sh ort-h an d  notation

(5 .18)
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w e r e w r ite  E q . ( 5 . 17b) as fo llo w s :

[A hp, A Í ,pJ = 6 hh,6pp, - 6 pplN h,h -  6hh, N p,p (5

O n ce  again , if  w e u se  th is  com m u ta tor  w ith the | Ф0 )> on its  r igh t then 
the la st tw o te r m s  p ro d u ce  z e r o  and w e obtain

= 6h h . V l * o >  (5 .2 0 )

T h e r e fo r e , as long  as we have the state | Ф to  the r igh t, the c re a tio n  
and d e stru ctio n  o p e r a to rs  o f the h o le -p a r t ic le  p a irs  sa tis fy  the com m u ta 
tion  re la t io n s  ( 5 . 17a) and (5. 20) w hich a re  ju st the com m u tation  re la tion s  
sa tis fie d  by  a set o f  b o so n  o p e r a to rs . T he o p e ra to rs  A hp, A f , p- e tc . 
a re  ca lle d  q u a s i-b o s o n  o p e r a to rs ; the a d je c tiv e  'q u a s i ' h e re  is  a re m in d e r  
to  the fa c t that (5 . 20) is  not an exact o p e ra to r  equation  f o r  the com m u ta tor , 
i t s v a l id i t y b e in g r e s t r ic t e d t o t h e p r e s e n c e o f  | Ф0 )> to  the r igh t.

The co m m u to r  o f  th ese  q u a s i-b o so n  o p e ra to rs  with the o p e ra to r  Ñ ¡ j  
o f  (5 .1 8 ) is  a lso  stra ig h tforw a rd  to d e r iv e . W e have, u sin g  (5 . 13), 
the re su lt :

*

[N .-p A jp ]  = [b p b j , bpb^]

= b¡, [ b j . b jbh1']

=  « i p b W  -  5 i h b i ’ b J

= 6ipA hi. + S ihA ^ .p  (5 .2 1 a )

F r o m  the H erm itian  con jugate o f th is equation  w e have

[Ñü, , A hp] = - (6ihA ilp + 6ip A hi,)  (5 .2 1 b )

The next step  in the d er iv a tion  is  to evaluate the com m u ta tor  o f A|,p 
w ith the part o f the H am ilton ian  that is  trea ted  b y  the T D A . The part 
H 0 g iv e s  z e r o  to  the com m u ta tor ; the p a rts  H :1 and the h o le -p a r t ic le  p a rt o f 
H22 a re  re w ritte n  b e lo w  in te r m s  of the new  o p e r a to rs :

H il ■IE ,N „ (5. 22a)

and

H o le -p a rt ic le  p art o f  H 22 = - ^  У  ^  {(h 1 p"| v| h n p ! ) A ^ p iA ^ -p -

h*p•; h"p"

+ (p 1 h " I v  I p n h ')A p ih. A  p”h"}

= - £  Y  (P ,h " M P n h , ) A h'P’A h"P" (5 .2 2 b )
h1p' h”pM

W e have u sed  h e re  the t im e -r e v e r s a l  in v a ria n ce  o f  v  and E q . ( 5 . 16 c).
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T he com m u ta tors  a re  now  e a sy  to  evaluate with the h elp  o f  E qs (5 . 17a),
(5 . 19) and (5 .2 1 a ) . O nce again , we sh a ll m u ltip ly  the com m u ta tor  by  
| Ф 0 )> fr o m  the righ t and <ф| fr o m  the le ft  in  a c co rd a n ce  w ith the t r ic k  
d e s c r ib e d  in s e c t io n  2 .3 , and h en ce  the s im p le r  re su lt  (5 .2 0 ) ,  instead  
o f (5. 19) can  b e  u sed . In th is  w ay, w e have

[H n , A hfp]= (E h + E p)A ¿ p= (e p- e h) A ¡ p (5 .2 3 a )

and

[H 22, A íp] = - £ ( p 'h | v | p h ') A Î . p. (5 .2 3 b )

h p '
T h ese  equations a re  id e n tica l with E qs (5 . 14) and (5 . 15). Thus the l in e a r iz a 
tion  in  the m ethod d e s c r ib e d  e a r l ie r  is  -equivalent to  u sin g  the q u a s i-b o s o n  
com m u tation  ru le  (5 .2 0 ) ,  in stead  o f the exact r e su lt  (5 .1 9 ) .  O nce  again, 
when w e m u ltip ly  the com m u ta tors  fr o m  righ t by  | Ф0)  and fr o m  the le ft 
b y  <( Ф| , E qs (5 . 23a) p lus (5. 23b) b e c o m e  a sy stem  o f lin e a r  equations 
f o r  the am plitudes <̂ ф| A^p| Ф0)> w ith a ll p o s s ib le  h, p adm itted  in the c a l 
cu la tion . T he so lu tion  to  th is sy stem  o f equations is  obtained by  d ia gon 
a liz in g  the TD A m a tr ix  in the h p -s p a ce . The am plitudes <(ф| AjJp | Ф0 )> 
a re  g iven  b y  the e lem en ts  o f  the e ig e n v e c to r , and they  c le a r ly  c o r r e s 
pond to  the am plitude o f the b a s ic  h o le -p a r t ic le  sta tes p re se n t in the 
expan sion  o f the e x cite d  state | Ф)>.

5. 2 .4 .  R P A  ca lcu la tion  f o r  l h - l p  sta tes

It is  c le a r  fr o m  the p re v io u s  tw o su b se ctio n s  that the TD A c a lc u la 
tion  d ia g o n a lize s  on ly  a lim ite d  part o f the in tera ction . T he im p rov em en t 
o v e r  the TD A cou ld  b e  a ch iev ed  in tw o p o s s ib le  w ays: (i) b r in g  in sta tes 
w ith la r g e r  n um ber o f  hp p a ir s , o r  at le a st 2h -2p  p a ir s . T hen  as m e n 
tion ed  e a r l ie r  the part H 31 and H 13 b e c o m e  e ffe c t iv e  in con n ectin g  l h - l p  
sta tes with 2h -2p  sta tes  and v ic e  v e rs a ; th ere  is  a secon d  im portan t 
co n se q u e n ce , i . e .  H40 con n ects  the state |Ф0)  with 2h -2p  s ta tes , and 
H 04 has the op p os ite  e ffe c t .  T h e r e fo r e , a c co rd in g  to  th is a p p roa ch  one 
m u st set up the m a tr ix  in  the sp a ce  o f | Ф 0)> a ll the l h - l p  sta te s , and 
2h -2p  s ta tes . d o e s  not m ix  d ir e c t ly  with the l h - l p  sta tes  but
d o e s  so  through  the in te rm e d ia ry  o f the 2h -2p  sta te s . Such a ca lcu la tion  
is  u su a lly  c a lle d  the 'H igh er  T a m m -D a n co ff  A p p ro x im a tio n 1 (H TD A ).
O ne h as to  e x e r c is e  c a r e  in  co n stru ctin g  the 2h -2p  states in su ch  a c a l 
cu la tion , b e ca u se  А^рА^'р'| Ф 0)  f ° r  aU h< P and h 1, p ' a r e  not n o n -t r iv ia l 
sta tes ; w h en ever  h = h ' and p = p ' such  b a s ic  sta tes do not e x is t  due to  
P a u li p r in c ip le  (that is ,  due to  the an ticom m u tation  o f  F e r m io n  o p e r a to rs ). 
W h ile  co n s id e r in g  angular m om entum  cou p lin g  in th e se  o p e r a to rs  one has 
to  take c a r e  that one k eeps on ly  sta tes  in  w hich  (hh) and (pp) cou p le  to 
even  v a lu es  o f J f o r  T  = 1 and odd v a lu es  o f J fo r  T  = 0, w h ere  J and T 
a re  the resu ltan t angular m om entum  and is o s p in  o f  the two h o le s  o r  the 
tw o p a r t ic le s .  (2) In the secon d  m ethod  o f im p ro v in g  upon the T D A , one 
d oes  not have to  in trod u ce  e x p lic it ly  the sta tes  w ith h igh er  n um ber o f  hp 
p a ir s . But the e ffe c t  o f 2h -2p  p a irs  o r  h igh er  n um ber h o le -p a r t ic le  p a irs  
in  the ground state is  in d ir e c t ly  taken into accoun t in th is type o f c a l 
cu la tion . In o th er  w o rd s , th is m ethod  a llow s u s to  take into a ccou n t the
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e ffe c t  o f  the c o r r e la t io n  in the ground state . W e sh a ll, in th is su b section , 
d e s c r ib e  th is m ethod .

T o  understand the b a s ic  p r in c ip le  let us w rite  down the stru ctu re  
of the c o r r e la te d  ground state . In the low est o r d e r  o f  ap p rox im a tion  th is 
is  g iven  b y  E q. (5. 5a). In a s im ila r  m anner let us c o n s id e r  what happens 
to  the m ixed  l h - l p  sta tes  o f the TD A in the next h igh er  ap prox im a tion  
when they  m ix  with the 2h -2p  sta tes . F o r  s im p lic ity  we w rite  a m ixed  
l h - l p  TD A  state  as Ф (1Ь -1р). T h is state changes to  |Ф')>, g iven  by

It is  c le a r  fr o m  E qs (5. 5a) and (5. 24) that the am plitude <Ф'| A ¿  | Ф0 > is  
la rg e  and o f the o r d e r  o f unity. B e ca u se  o f the secon d  te rm  (w hich  r e 
p re se n ts  c o r r e la t io n  in the ground state) in E q . (5 . 5a) an am plitude o f  the 
type  (  Ф11 A hp I ^ is  a lso  n on -van ish in g  and a r is e s  through  the c o n 
n ection  o f Ф(Ьр, h 'p ' )  o f E q . (5 .5 a ) with \&(lh - lp ) o f E q .(5 .2 4 )  
v ia  the p a ir -d e s tr u c t io n  o p e ra to r . Such an am plitude is  c le a r ly  
o f the o r d e r  o f fhp.h'p1» i - e - ° f  f ir s t  o r d e r  o f sm a lln e ss  co m p a re d  to 
<(ф'I A^p I Ф д > . In the sa m e m anner, it is  c le a r  fr o m  E qs (5. 5a) and 
(5. 24) that an am plitude o f  the type < Ф[,|]$г 1 1 Ф'0^ is  qu ad ra tic  in f, 
w hile < Ф ' I N ¡.¡|Ф'0 У is  b i lin e a r  in f  and 7 . Both  o f th ese  am plitudes 
a r e , th e r e fo re , o f s e c o n d -o r d e r  of sm a lln e s s  co m p a red  with the la rg e  
am plitude <( Ф' | А^р | Ф^ >̂, and one o r d e r  s m a lle r  co m p a re d  with 
(  Ф 1 I A hp| Ф} у  . T h e r e fo r e , the natural ex ten sion  o f the T D A  m ethod is  
to  co n s tru ct a set o f equations in w hich the am plitudes <( Ф ' | A^gJ ФД У and 
<( Ф ' I Ahp I Ф'0 У a re  reta in ed  w hile  am plitud es o f the type < Ф' | N r i| Ф0'̂ > 
a re  n e g le c te d . F o r  s im p lic ity  in ou r notation  w e sh a ll om it, fr o m  now 
on, the p r im e s  on the c o r r e c t e d  ground and ex cited  sta te s , and keep on 
denoting them  b y  the o ld  notation s Ф0 and Ф.

The a lg e b ra ic  p r o ce d u r e , on ce  again , is  to  evaluate the com m u ta tor  
o f  H with A j  , and sandw ich  the resu lt betw een  <[ ф| and | Ф0> . F ro m  
the resu ltant e x p re s s io n  one has to  drop  a ll the te rm s  that a re  o f  a 
s m a lle r  o r d e r  o f m agnitude than the am plitude (  ф| A hp| Ф0)> . T o  r e 
co g n iz e  q u ick ly  su ch  te r m s  w hich  w ill  b e  ig n ored  in  the end, w e c a r r y  • 
out the fo llo w in g  b o o k -k e e p in g  type o f w ork  with the su p p re ss io n  o f the 
h o le -p a r t ic le  su b s cr ip ts  on a ll  A t and A  o p e r a to rs . The o p e ra to rs  c a r r y  
e ith e r  tw o h ole  o r  tw o p a r t ic le  la b e ls , and th ese  w ill  a lso  b e  su p p re sse d . 
One ex cep tion  w ill  be  m ade in  the c a se  o f  the h o le -h o le  and p a r t ic le -  
p a r t ic le  p art o f H 22 [the f ir s t  lin e  o f E q . ( 5 .2 e ) ] , w h ere  the su b scr ip ts  
w ill be  e x p lic it ly  reta in ed  at A t and A  b e ca u se  in th is c a se  th ese  o p e ra to rs

e te r m s  H 40 and H 04, as g iven  by  E qs (5. 2 a ,b ) , have the fo llow in g  
stru ctu re :

(5 .2 4 )

h ' p ' h " p ”

w ill c a r r y  tw o p a r t ic le  o r  tw o h ole  la b e ls , as d istin gu ish ed  fr o m  A t
hp

H40-  A t A t (5. 25a)

(5.25b)
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S im ila r ly  H 31 and H 13 o f (5. 2c, d) have the sch e m a t ic  co m p o s it io n

H3 1 - A t N  (5 .2 5 c )

H 13- N A  (5. 25d)

T he h o le -p a r t ic le  part o f H22 w as a lre a d y  e x p lic it ly  w ritten  down in 
E q . (5 . 22b) and it has the fo llo w in g  s tru ctu re :

H 22 (h o le -p a r t ic le )  -* A tA  (5 .2 5 e )

In co n tra st to  th is , the h o le -h o le  and p a r t ic le -p a r t ic le  part o f H 22 [the 
f ir s t  lin e  o f E q . (5 . 2e)] has the ap pearan ce

H 22 (h o le - h o l e ) -> A hjh2 A  (5 .2 5 f)

H 22 (p a r t ic le -p a r t ic le )  -  A ^  A psp< (5. 25g)

W e next u se  the co m m u ta to rs  (5 . 19) and (5. 21e), and obta in  fr o m  
the fo llo w in g  sch e m a tic  e x p re s s io n s  fr o m  re la t io n s  (5 . 2 5 a -e ) :

[h 40, a T] -  0 (5. 26a)

[H 04, AT] -  A  + N A +  AN (5 . 26b)

[H 31,A T ] -  AT AT (5. 26c)

[H 13, AT] - a T A + Ñ + N N (5 . 26d)

[H 22(h o le -p a r t ic le ) , AT] -  AT + ATÑ (5. 26e)

T o  evaluate the com m u ta tor  o f  r e la t io n  (5 .25 f, g) w ith A T, a l it t le  ex tra  w ork  is  
re q u ire d . F ir s t  w e have to  evaluate the com m u ta tors  o f A h h and А РзР4 
w ith AjJp , w hich  can  b e  done in a m anner an alogou s to  e x p re s s io n  (5. 17b). 
T h is  w o rk  is  le ft  to  the re a d e r  as an e x e r c is e .  F in a lly , one obtains

[H 22 (h o le -h o le ) .  A t ]  -  A f N (5 .2 6 f)

[H 22 (p a r t ic le -p a r t ic le ) ,  A t ]  -*■ A^Ñ (5. 26g)

If w e now put < Ф | to  the le ft , and | Ф0 У to  the righ t o f re la tion s  
(5 .2 6 a -g ) ,  w e obtain , b e s id e s  the am plitud es Ф | A11 Ф„ )> and <̂ ф| A| Ф » ) , 
the fo llo w in g  ty p es  o f qu an tities : < ф| N| Ф „> , < ^ | N N ^ 0> , <Ф|МА|Ф0> ,
< ф|А15|Ф0> ,  < ф| А+]Я|Ф0>, < ф | А +А | ф 0> ,  and <^ф| A t A t  I Ф0> . It has 
b een  a lre a d y  re m a rk e d  u n der E q . (5 . 24) that <( ф| N| Ф0)  is  o f sm a lle r  
o r d e r  than ^ф| A| Ф0)  . T o  exam in e the o th er  am plitudes w hich  a re  
b ilin e a r  in  the o p e r a to rs  AT, A  o r  N, w e fo llo w  the p r a c t ic e  o f in trod u cin g  
a co m p le te  set o f sta tes I  ^ ф п I *n betw een  the tw o o p e r a to r s . A s

n
a d em on stra tion  o f the type o f argu m en ts that w ill  fo llo w  th is  p r o ce d u r e ,
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le t u s c o n s id e r  the c a se  o f <̂ ф| А Ш  |Ф0)> . A fte r  the in trodu ction  o f the 
in term ed ia te  states th is te rm  y ie ld s

< * | А * Й | * 0 > = y < * l A t | * > < * n|N|*0 > (5 .2 7 )
n

R e c a l l  that b y  ou r c h o ic e  o f  notation  the p resen t Ф0 is  a ctu a lly  the sam e 
as S&J of E q . (5 . 5a), and in  the la tter  equation  the f ir s t  te rm  r e p re s e n ts  
the state w ith no h o le  o r  p a r t ic le .  T hus, the secon d  fa c to r  Фп | N| Ф0)> 
o f  (5 . 27) gets  a n on -van ish in g  con tribu tion  on ly  fr o m  the secon d  te rm  of 
r e la t io n  (5. 5a), and w ith the ch o ice  of the tw o -h o le  tw o -p a r t ic le  states 
fo r  Фп . T h e re fo r e , th is  fa c to r  o f (5 . 27) is  a lrea d y  lin ea r  in the f -  
c o e ffic ie n ts  o f (5 . 5a), and h en ce  of the sam e o r d e r  as <( ф| A| Ф0> . The 
o th er  fa c to r  < (ф | А ^ Ф п)> o f E q .(5 .2 7 )  under the sam e c ir cu m sta n ce s  
( i . e .  f o r  Ф п equ al to  a tw o -h o le  tw o -p a r t ic le  state) is  e x tre m e ly  sm a ll 
(in fa c t z e r o  in the low est approx im ation ) b e ca u se  Ф is  p redom in an tly  
lin e a r  com bin ation  o f o n e -h o le  o n e -p a r t ic le  type sta te s . Thus the term  
A1' N in the com m u ta tor  o f H with A^p can  be  ign ored  in  co m p a ris o n  with 
the A  ̂ and A  te r m s . In the sa m e m ann er, it is  p o s s ib le  to  argue that 
a ll the o th er  b ilin e a r  te r m s  in A t ,  A , N, with the ex cep tion  o f (  ф| AÑ| Фо)> 
and <̂ ф| А т А + | Ф 0]>, can be  ig n ored . W e w ill se e  b e low  that the c o n t r i 
bution  o f <Ф| АЙ |ф0> is  kept in the R P A -th e o ry , w hile <̂ ф| A 1, A 1" | Ф0)> 
is  u su a lly  ig n ored .

G oing b a ck  to  re la t io n s  (5. 26a -g ) w e, th e r e fo re , con clu de  that in the 
R P A  d er iv a tion  on ly  the com m u ta tor  with H 04 and the A t te rm  in the c o m 
m u tator o f  H22 (h o le -p a r t ic le )  need b e  w ork ed  out in d e ta ils . A s a m a tter  
o f fa c t , the la tter  te rm  has a lrea d y  b een  evaluated c a re fu lly  in the T D A - 
th e o ry ; h en ce  a ll w e need to  do h ere  in d eta il is  to  evaluate e x p re s s io n  
(5. 26b) in d eta il.

F o r  th is  p u rp o se , w e go b a ck  to  re la tio n  (5 . 2b) and w rite  th is e x 
p r e s s io n  as

H 04 = - \  Y ,  (p " p ’ M h ’ h ") A h’ p 'A h"p" 
h "p”h 'p '

= |  X  (P " P -| v ]h " h > )A h,p,A h.,p„ (5 .2 8 )

h " p " h ' p ‘

N ext w e evaluate its com m u ta tor  with A b u s in g  (5 .1 9 ) .  If w e d ec id e  to
keep on ly  the te r m s  conta in in g  one A  o p e ra to r , w e om it the last tw o te rm s
o f (5 .1 9 ) and obtain

[H 04, A htp] = |  Y  (PP' I v| hh"1 )A hipi (5 .2 9 )
h'p'

T h is  r e su lt  i s ,  h o w e v e r , not quite r igh t. The fa c to r  1 /2  w ill  actu a lly  
b e  absent in a m o r e  c a r e fu l d er iv a tion . T he s o u r ce  o f th is e r r o r  lie s  in 
the u se  o f  the q u a s i-b o s o n  com m u tation  re la t io n  [the f ir s t  te rm  o f Eq.
(5. 19)] . A s a m a tter  o f fa c t  if  w e had u sed  the en tire  e x p re s s io n  (5. 19),
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we w ould have obtained te rm s  having the stru ctu re  o f the la st tw o te rm s  
of E q . (5 . 2 6 b ). W e w ill show  b e lo w  that the te rm s  of the type ^ Ф | AN| Ф0 )> 
have so m e  | A| Ф0 co n ce a le d  in them .

T he te r m s  that have to  be  added to  the right hand sid e  o f  E q . (5. 29) 
a re  obtained  fr o m  E q . (5 . 28) and the la st tw o te rm s  o f E q . (5 .1 9 ) .  T h ese  
a re  g iven  by

' i l l  ( p " p '| v | h " h ') [ A h,p,(6pp,.Nhh„+  6hh" N pp"

h” F

+  ( V N hh'+ ô h h ' N p p ' ) A h"p"J <5 - 3 0 >
'S +

L et us exam ine the f ir s t  te r m , A h,piNhh" = I v  b ptbhb h" . W hen w e in sert 
^ф| and |Ф0 >̂ to  the le ft and righ t and 2  1фп^ ^ ф п1 m id d le , it
a p p ears  that th is te rm  is  á lw ays of a s m a lle r  o r d e r  o f m agnitude than 
■( ф| A h,p,| Ф0)  , b e ca u se  of the se co n d  fa c to r  <̂ Ф0| b j b hn I Ф0 )> [we a re  h ere  
co n s id e r in g  the ca se  Фп = Ф0] . It is ,  h o w ev er , not v e r y  apparent that 
th ere  is  a p o s s ib ility  o f obtain ing a n on -van ish in g  resu lt  f o r  the ca se  
Фп = Ф, as w e ll. T o  se e  th is , a l l  that w e need is  to  r e w r ite , by  p e r 
m uting o p e r a to rs ,

A h ' p A h "  = b h’b p'b l V  = - b h ' b í b p’b h" = b h ' b I V ' V

With the c h o ic e  Фп = Ф, th is e x p re s s io n  y ie ld s  <̂ ф| b h>b^| Ф)> <(ф| b h,.bp,| Ф ]̂) . 
The f ir s t  fa c to r  is  la rg e  when h = h ' (actu a lly  equ al to  6hhi, when Ф is  
n o rm a liz e d  to  unity), w hile the se co n d  fa c to r  is  the am plitude <̂ ф| A h p , | ^оУ ■ 
T h is  e s ta b lish e s  the a s se r t io n  we m ade above  rega rd in g  the co n ce a le d  
p r e s e n ce  o f ^ф|А|ф0 )> in <^Ф|АЙ|Ф0 )> . The secon d  te rm  o f e x p re s s io n  
( 5 . 3 0 )  can a lso  be  handled s im ila r ly  to  y ie ld  an am plitude o f the type 

ф| A| Ф0> . A  s im ila r  attem pt with the th ird  and fou rth  te r m s , h ow ev er , 
w ill  fa i l  to  y ie ld  anything. In a ll th is d er iv a tion  we have to m ake -the c o n 
sisten t assu m ption  that ^ф|]§|ф0)>, w hich  is  the p ro b a b ility  o f getting  a 
p a r t ic le  o r  a h o le  in the e x cite d  state is  an o r d e r  of m agnitude sm a lle r  
than <(ф| At I Ф0> . The d eta ils  o f  the a lgeb ra  in d icated  ab ove , to b e  applied  
to  the f ir s t  tw o te r m s  of e x p re s s io n  ( 5 .  3 0 ) ,  a re  left h e re  as an e x e r c is e .  
W ith th is extra  con trib u tion , one fin a lly  obtains

[Ho4,  A * , ]  = Y ( P P ' | v | h h ' ) A h,p , ( 5 . 3 2 )

h ' p ’

C o lle ct in g  re la t io n s  (5. 23 a ,b ) and (5 .3 2 ) tog e th er  w e have

[H, A¿p ] = (ep - eh) a Jp- ^  (p> h| v| ph ' )A ¿ ,p, + (pp'| v| h h ' ) A h,p,

h'p'  h'p'  ( 5 . 3 3 a )

T aking the H erm itian  con ju gate  and re v e r s in g  the sign  one obtains 
im m ed ia te ly

tH - A hpl = * ( e p -  eh ) A h p + X  (p^ '  H P 1*») A h ' p ' - X  (hh'| v|pp ') A h ,p.
h 'P' h ' p ’ ( 5 . 3 3 b )
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In the u su a l w ay the sy ste m  o f equations (5 .3 3 a ,b )  g ive  r is e  to  a set o f 
lin e a r  equations f o r  the am plitudes <(ф| А^р| Ф0> = ichp and < ф | А Ьр|ф0 >
= y hp. T he m a tr ix  to  b e  d ia gon a lized  is  c le a r ly  o f the fo r m  (3. 57b), 
w ith the fo llo w in g  d e fin ition s  o f A  and B:

A-hp;h1 p' “ (ep çh ) ¿hh* ¿ pp' “ ( P h 1 I v l P ! h )  ( 5 .3 4 a )

B h p ; h 'p '  =  (PP1 |v|hh ') (5 .3 4 b )

E xcep t fo r  the p h a s e - fa c to r , and sign  o f the p r o je c t io n  quantum n u m bers 
o f  the h o le -s ta te s , th e se  defin ition s a g re e  w ith defin ition s (3 . 52a, b ).
T h is  s ligh t d if fe r e n c e  in  the h o le -s ta te s  o r ig in a te s , as m en tion ed  e a r lie r  
in the T D A -d e r iv a tio n , fr o m  the defin ition  b j  = s hc_t,. The statem en ts 
m ade e a r l ie r  about angular-m om en tu m  cou p lin g  a re  a lso  tru e  in the 
p re se n t c a s e . The d e ta ils  o f the cou p lin g  a re  g iven  in the A ppendix  to  
th is s e c t io n .

5 .3 .  T h e o ry  o f v ib ra tio n  in the BCS c a se

T he trea tm en t o f  the q u a s i-p a r t ic le  in te ra c tio n  g iven  in s e c t io n  5 .1  
in  the c a s e  o f  a B C S -ty p e  n ucleu s is  now  a s tra ig h tforw a rd  g en e ra liza tio n  
of what we have a lre a d y  done in se c t io n  5 .2 .

A . D efin ition s

In an alogy  to  the h o le -p a r t ic le  p a ir  and num ber o p e ra to rs  o f 
s e c t io n  5.2 we now in trod u ce  the q u a s i-p a r t ic le  p a ir  and n um ber o p e ra to rs :

A rnn “ b n b m, A mn “ b mb n, ^mn “ bm bn (5.35)

U sing the b a s ic  an ticom m u tion  ru le s  we obtain

[ b ¡ ,  bTn b 1m ] = 6in bTm -  6im b l  (5.36)

By a stra ig h tforw a rd  a p p lica tion  of re la tio n  (5.36) we then d e r iv e  the 
fo llow in g  com m u ta tor  re la t io n s :

[ A u , A fmn [ bi bj , b\ b ¡ J

b j t b j ,  bj, bm ] + [ b¡ , k n b m ] bj

6- b - b T j n i m 6jm bi bTn + ôin bmbj -  6 im b > j

ôjn b ib ^ Ójm b. b 1" 1 n + 6 in N mj -  6im N nj (5.37a)

(6im 6jn -  6 in 6 jm ) + ó jm N ni ‘  6jn Nn
(5.37b)

+ «in N mj -  6im N nj

The q u a s i-b o so n  ap p rox im a tion  c o n s is ts  o f  dropp in g  a l l  the te rm s  c o n 
tain ing the n u m ber o p e ra to r  in e x p re s s io n  (5 .37b ). In this a p p ro x im a -



tion  we h ave, by  v irtu e  o f the K ro n e ck e r  deltas in sid e  pa ra n th eses in 
(5 .37b):

[ А „ , ^ 1  = 1 . [ A 1S, Atjj ] = -1  (5.38)

F r o m  d efin ition  (5 .35) we have

A1".. = -  АТ. n ij

and h en ce  the two equations (5.38) a r e , in fa ct, the sa m e . T h e re fo r e , 
in sp ite  o f  the tw o te rm s  with the K ro n e ck e r  deltas in e x p re s s io n  (5 .37b ), 
the o p e ra to rs  A ¡j , Á*¡j indeed behave as boson  o p e ra to rs  in the above 
ap p rox im a tion .

In an analogou s m ann er we d e r iv e  the fo llow in g  com m u ta tor :

[ N ij  , ATmn ] = 6 jn Afmi - 6 jm A fni (5 .39)

F in a lly , we w rite  dow n the obv iou s re su lts :

I Atij - AtmJ  = [ А Ц. A mn] = 0 . (5.40)

B. T D A -equ ation s

In the m anner o f s e c t io n  5.2 we evaluate the com m u ta tor  o f  the p a ir  
c re a t io n  o p e ra to r  A ^ , with H 11 and H22. U sing the com m u ta tor  (5 .39 ), 
we obtain:

[ H u , A+mn] = £  E , [ Ñ ü , A +m„ ]  = (E m + E n) A +mn (5.41)
i

w h ere  Em is  the e n e rg y  o f the q u a s i-p a r t ic le  m .
The o p e ra to r  in H 22 is  c le a r ly  A^ A Jk , and its com m u ta tor  with 

A +mr a c c o rd in g  to  the q u a s i-b o so n  com m u tation  re la t io n , is  g iven  by

[ A+ . A , A+ ] = A + . [ A .. , A + ]11 ik mn ji ik mn J
(5 .42)

A  j i  im  ^ kn ^ fn  ^ k m  )

U sing the com m u ta tor  (5 .42) tog e th er  with the c o e ffic ie n t  in re la tion  (5 .2e) 
we obtain:
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By in terch an gin g  the la be ls  i, j and using = - A^j togeth er  with the
t im e -r e v e r s a l  in va rian ce  o f the m a trix  e lem en ts o f  v , we can e a s ily  
estab lish  that (i) thé f ir s t  term  in the la st line o f  Eq. (5.43) is  equal to 
the secon d  term  in the secon d  lin e , and (ii) the f ir s t  te rm  in the secon d  
lin e  is  equal to the secon d  term  o f the th ird  lin e . T h e r e fo r e , we reta in  
the secon d  te rm s  in the secon d  and third lin es o f (5.43) and re m o v e  the 
fa c to r  o f 1 /2  fo r  th ese  two lin e s . Thus,

E quations (5.41) and (5.44) g ive  r is e  to a lin ea r  set o f equations fo r  the 
am plitud es Ф | A+¡j | Ф0/ '  ^^e m a trix  to  be d ia gon a lized , th e r e fo re , is 
the c o e ffic ie n t  m a trix  on the right-hand side  o f Eq. (5.44) togeth er  with 
the q u a s i-p a r t ic le  p a ir  e n e rg ie s  (E m + E n) of e x p re s s io n  (5.41) along 
the leading  d iagon al. A s in the h o le -p a r t ic le  ca se  o f  se c tio n  5.2 this 
T D A -ca lcu la tio n  is  id en tica l with the d ia gon alization  o f the unperturbed 
H am iltonian  plus the q u a s i-p a rt ic le  in tera ction  in the sp a ce  o f a ll qu a s i
p a r t ic le  p a ir  states o f the type A +mn | Ф ^/ . F in a lly , in p e r fe c t  analogy 
with the T D A -th e o ry  o f  se c tio n  5 :2 , the u se  o f the q u a s i-b o so n  com m u ta 
tion  ru le  in w ritin g  dow n Eq. (5 .42) is  ju stifie d  by the fact that the r e 
m ain ing te rm s  o f e x p re s s io n  (5.37b) p rod u ce  z e r o  when the BCS state 
I Ф0 /  s its  to  the right.

C. R P A -eq u a tion s

A s in se c tio n  5 .2 , the part H40 o f the q u a s i-p a rt ic le  in tera ction  can 
m ix  fou r q u a s i-p a r t ic le  states into the BCS ground state | Ф0/ -  The 
tw o q u a s i-p a r t ic le  e x cite d  states d e s cr ib e d  above can a lso  m ix with the 
fou r  q u a s i-p a r t ic le  sta tes v ia Н 31. A h igh er T D A -ca lcu la tio n  can, th e r e 
fo r e ,  be done by  m ixin g  z e r o , two and fou r  q u a s i-p a r t ic le  sta tes. An 
a ltern a tive  w ay to trea t the e ffe ct  o f  c o r r e la t io n  in the BCS ground state 
is  the RPA m ethod , w hich  adm its o f  two types o f  am plitudes ■(ф|а^пп |Фо/. 
and ^ Ф | A mn |ф0 >. being  the c o rr e la te d  ground state .

By argum ents s im ila r  to those p resen ted  in se c tio n  5.2 one can show 
that the R P A -tre a tm e n t, in the p resen t c a se  a lso , re q u ire s  the evaluation  
o f on ly one m o re  com m u ta tor , nam ely  that o f  H 04 with АщП , in d eta ils .

A cco rd in g  to  e x p re s s io n  (5.2b) the e x p re s s io n  fo r  H04 is  given  by

A s in se c tio n  5 .2 , if  we keep on ly the q u a s i-b o so n  te rm s  o f (5 .37b), we 
obtain.

)
_1
2

1 j I v j m n■)
+  K v j u m v n  +  v i u j v m u n  I  v  I  « îG ) i) A+j (5.44)

(5.45)

i j k f i

Z (k ü | v | n m ) (u mu nvk v { + vm vnu ku t ) A k| (5.46a)

T h is , h ow ev er , is  not the c o r r e c t  resu lt  b eca u se  the o th er te rm s  in
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E q . (5 .37b) g ive  r is e  to  te rm s  in the com m u ta tor  of the type AN and NA 
o f w h ich  the fo r m e r  y ie ld s  som e  ex tra  A ^  type te rm s  in the fin a l re su lt . 
T e r m s  o f the type NA, on the o th er hand, y ie ld  <(ф|N |Ф / <^ф|А |ф 0 )> which 
is  s m a lle r ,  in o r d e r  o f  m agnitude, than ^Ф |a  |ф 0/ ,  b eca u se  the fa c to r  
<ф|Й|ф>, w hich  re p re s e n ts  the p ro b a b ility  o f  getting a g iven  q u a s i
p a r t ic le  in the e x c ite d  state Ф m ust be v e ry  sm a ll co m p a re d  with unity 
(Ф bein g  a co h e re n t su p e rp o s itio n  o f m any q u a s i-p a r t ic le  p a ir  states in 
the lo w e st  a p p rox im a tion ). T h e re fo r e ^  we w rite  on ly  the ex tra  te rm s  
in the above com m u ta tor  o f  the. type AN, and show  how th ese  te r m s  lead 
to  so m e  ex tra  con trib u tion  o f the type A k{ :

\  ^  (k ï  I v I ij) u ¡Uj v { v k A kí | ó jm N ni - 6 jn Nmi + 6Ы Nmj - 6 lm N nj j  

ijki

T he f ir s t  te rm  o f e x p re s s io n  (5 .46b ), fo r  ex a m p le , y ie ld s , when the 
su m m ation  in d ices  к and Z, in turn, a re  equ al to  n, the fo llow in g  resu lt :

A ki N n = b k b ,b !  b. 6 t o  b k b i +  6 kn b i b i (5 .46c)

N otice  that, when Z -  n, к is  n e c e s s a r ily  not equ al to  £ o r  n (becau se  i f  
k = Z, bkb £ = 0 ), and h ence  b k can  be taken to  the righ t o f  b j ;  the sam e 
o b se rv a t io n  h olds fo r  the c a se  к = n, when b j  can  be taken to  the righ t o f 
b,! w ithout trou b le . A s a m a tter  o f fa ct in (5 .46 c) we have substituted
bibn+and P  kb i 

b„ b,-
in the tw o c a s e s  by 6 ¡¡n and 6^  and om itted  the oth er 

te rm s  - b¿ b ¡  and -Ь ^ Ь к. T h ese  te r m s , tog eth er  w ith  the oth er two 
d e s tru ctio n  o p e r a to rs , have the stru ctu re  NA, and we have a lrea d y  
argued  that th ey  lead to  te rm s  s m a lle r  in o r d e r  o f  m agnitude than

'T he type o f  w ork  c a r r ie d  out in re la tio n  (5 .46 c) can  be r e -< « | A | * 0>.
peated fo r  a ll the te rm s  in e x p re s s io n  (5.46b) w hich  then y ie ld s  a new 
set o f  A te r m s . A dding th ese  to E q . (5.46a) we obtain  fin a lly

[H o *  A Tra
1 -( к 4 v n m) (u u v, v . + v u, и л) '  i 1 / v m n k £  m n k i 7

k,  il

+ (k n  jv I i  m) u mv nv ku f - (k m  |v| I  n) v mu nv к u  Í A KÍ

(5.47)

E q s (5 ,4 1 ), (5 .44) and (5.47) tog e th er  g ive  the com m u ta tor  [H, A ^  ] 
in the R P A  a p p rox im a tion . The com m u ta tor  [H, A mn ] can then be 
w ritten  dow n by  taking the H erm itian  con jugate and re v e r s in g  the sign . 
T o g e th e r , they p rov id e  us with the re q u ire d  sy ste m  o f  lin e a r  equations
fo r  the am plitudes Ф A kt Ф, and <( Ф A ki о/ • O nce again  the
task  o f an gu lar-m om en tu m  cou p lin g  is  ta ck led  in the A ppendix.
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A P P E N D IX  TO SECTION 5

A n g u la r-m om en tu m  cou p lin g  in the h o le -p a r t ic le  ca lcu la tion

L et us fo rg e t  about the coup ling  o f is o sp in  fo r  the tim e bein g , and 
c o n s id e r  the an gu la r-m om en tu m  cou p led  states (5 .12 ). U sing re la tion s  
(5 .7a , b) and (5.9) a long  with th is e x p re s s io n  we obtain

(hV1 p ' ) J M  I H 221 (h -ap) J M >  = Y  Y,

m h ' m pm h - lr 

X  <  h '  " 1

Jh Ip 
m h m p M

ih1 Ip* J

H 22

ï  Ï
m,mn mVm* h  p  n p

' h J V Jp' J "
m . m M . m . . m  , M .h P n P

(P1 h

h 1 p >

P. h ' )

M

(5.48)

The m a tr ix  e lem en t o f  v is  now e x p lic it ly  w ritten  u sin g  the j and m 
quantum n u m b ers , re m e m b e rin g  that | Е /  = ( - l ) Jh"mh | - т ^  У .
F in a lly , we do the a n gu la r-m om en tu m  cou p lin g  in the m a tr ix  e lem en t. 
In th is w ay,

(p- h I H 22| p h ')  = (j m  ; j h , -r

I
J* .M '

p '  P ' 

№-ть + ̂ '" т Ь’

H 22Npm p; V '

*C l.
1

’ jp  jh' j f
Lm p, -m h M 'J [ m p -m h. M'J

)  ( - l ) jh - m h  ( - l ) V -

(jp-jhJ ’ Iv I j pj h.J ' )

(5.49)

The sy m b o ls  e n c lo s e d  in sq u a re  b ra ck e ts  in E qs (5.48) and (5.49) a re  
the C le b sch -G o rd a n  c o e ffic ie n ts . In E q . (5 .48 ), the quantum n um ber M 
being  g iven , on ly  tw o o f the su m m ation  sy m b o ls  a re  independent; they 
sa t is fy  m h + m p = m h. + m pl = M. S im ila r ly , in E q. (5 .49) the su m m a
tion  o v e r  M ' is  a ctu a lly  redundant b eca u se  M ' is  r e q u ire d  to  be equal 
to  m p. -  m h = m p -  m h.. The tw o -b o d y  m a tr ix  e lem en t in E q. (5 .49) is  
a ctu a lly  independent o f  M ' b eca u se  H 22 is  a s c a la r , and h ence we have 
om itted  M ' in th is m a tr ix  e lem en t. Substituting e x p re s s io n  (5.49) in 
E q . (5 .4 8 ), and u sin g  an gu la r-m om en tu m  a lg e b ra  (the d eta ils  a re  le ft  to 
the re a d e r ) to  c a r r y  out the su m m ation  o f  the p rodu ct o f  fo u r  C le b sch - 
G ord on  c o e ffic ie n ts  o v e r  the tw o independent m agn etic  quantum n u m bers, 
we obtain

< ( h ' '1 p 1 ) JM  IH 22 I (h '1 p) JM  > = - ( - l ) Jb+Jh,+Jp + y  Y  (2 J '+ l )W ( jhj pj pIj hf; J J ')

X (i i J ' I v I i i J ' )
u h V  1 1 V J p  '

H ere  W is  R a c a h 's  s ix  j - s y m b o l .
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The re su lt , w ith the is o sp in  cou p lin g , can  be s im ila r ly  d e r iv e d , and 
is  a lm o st  obv iou s fr o m  re la tion  (5 .50 ). We s im p ly  quote it below

< (H1' 1 p ' )  J M ; T M T| H 22| (h ^ p ) J M; T M ^ '

= - ( . l )  jh+V +jp+v V  ( 2 J '+ l ) ( 2 T '+ l ) W ( j  j j , j  ; J J ' ) W (|||| ; T T ' )
/  i h p p n
t * j *

X ( V p . J 'T '  I V  h h.jp J 'T < )

(5.51)

So, g iven  the tw o -n u c le o n  m a trix  e lem en ts  o f  v , one can e a s ily  c a r r y  
out the su m m ation  show n in E q . (5 .51) and obtain  the h o le -p a r t ic le  
m a tr ix  e lem en ts . B eca u se  o f th e ir  v e ry  frequ ent o c c u r r e n c e  in  n u clear  
stru ctu re  th e o ry , the fo llow in g  s p e c ia l sy m b o ls  a re  g e n e ra lly  used:

G '( a b c d ;  J T )  = ( a b J T  I v I c d J T )  (5.52a)

F  ( a b e d ;  J T) = < ( a _1b) J T  | H 22|. ( c _1d) J T > (5.52b)

G can  be ca lcu la te d , e ith e r  by taking a w e ll-b e h a v e d  v , o r ,  in the ca se  
o f a 'r e a l i s t i c 1 tw o -n u cle o n  p oten tia l, by assu m in g  that it is  equal to the 
re a c tio n  m a tr ix  e lem en ts  ca lcu la ted  by  a B r u e ck n e r -lik e  th eory .

B y fo llow in g  the above coup ling  p r o ce d u r e , one can  e a s ily  show 
that the righ t-h an d  s id e  o f  E q . (5 .10) rem a in s  unchanged w hen we use the 
cou p led  sta tes [ as ap pearin g  on the le ft-h a n d  sid e  o f  E q . (5 .51 )] on the 
le ft-h a n d  s id e  o f  th is equation . T h e re fo r e , the d ia gon a liza tion  to be 
done is  that o f  the F -m a tr ix  o f  d e fin ition  (5.52b) with the h o le -p a r t ic le  
e n e rg ie s  (e p - e^) a long  the m ain  d iagon al.

We w ould be led  to  the sam e co n c lu s io n  i f  w e had u sed  the m o re  
sop h is tica ted  equations (5 .23a , b ). We f ir s t  in trodu ce  the angular 
m om entum  c o u p le d .p a ir -c r e a t io n  o p e ra to rs :

A T ( h p j  M; T M T) = Y  Y  

mhmp ^ p

Jh
Lm h

J Pm
J

M
2 T

M T b . b .
’p 'V p  ^ "V h

(5.53)

w h ere  n h and p a re  the p r o je c t io n  o f  is o sp in  fo r  .the h ole  and the 
p a r t ic le .  In defin in g  b ^ m ^  we sh a ll now in trod u ce  an ex tra  phase due 
to  is o sp in , L e - b jhmh|Jh = ( - l ) ih ' mh ( - i ) i - ( * h  C jh l-mh; i.-Mh w here С 
is  the d e s tru ctio n  o p e ra to r  fo r  a s ta te 's p e c i f ie d  by the s u b s cr ip ts .

L et is  now in trod u ce  the C le b sch -G o rd o n  co e ffic ie n ts  o f  E q . (5.53) 
in  E q . (5 .23a , b) and c a r r y  out the in d icated  su m m ation . That p rod u ces  
[ H, (h p J M ; T M T)] on the le ft-h a n d  s id e . On the righ t-h an d side 
o f  E q . (5 .23 á ), the sa m e p ro ce d u re  p ro d u ce s  (h p J M; T M T), p r o 
v id ed , o f  c o u r s e , the e n e rg ie s  e p , e h a re  independent o f  the p ro je c t io n
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quantum  n u m bers (true fo r  s p h e r ica l n u c le i). On the righ t-h an d  sid e  of 
E q . (5 .23b ), th is p ro ce d u re  y ie ld s  the righ t-h an d  s id e  o f E q . (5 .48 ), 
m u ltip lied  by A 1" (h' p 'J M ;  T M T), with tw o an alogous C le b sch -G o rd o n  
c o e ffic ie n ts  contain ing  is o sp in . The r e s t  o f  the p ro ce d u re  co n s is ts  o f  
u sin g  (5 .49 ), with o f c o u r s e  the in clu s ion  o f is o sp in , and o b v io u s ly  the 
fin a l resu lt  w ill be F (h p h 1 p 1 ; J T) m u ltip lied  by  (h1 p 'J M ;  T M T).
We w rite  a ll th ese  re su lts  fin a lly

«

[ H, A T (h p J M ; T M T)] = (ep - eh ) AT (h p J M ; T  M T )

(5.54)

+ Y  F ( h p h 'p ' ; J T )  AT ( h 'p 1 J M ; T M T)

Jh'jp'

In troducin g  <[ Ф ] and | Ф0 /  to the le ft and righ t we obtain  the sy ste m  o f 
lin e a r  equations fo r  the am plitudes ^ Ф | A^ (h' p 'J M ,  T M т ) | Ф0 У . The 
c o e ffic ie n t  m a tr ix  to be d ia gon a lized  is  c le a r ly  the h o le -p a r t ic le  m a trix  
F w ith (e p - e h ) a long  the d iagonal.

We next m ove on to  the angular m om entum  coup ling  in the R P A - 
equations (5 .33a , b ). The f ir s t  line o f  E q . (5.33a) w ill o b v io u s ly  lead to 
E q . (5 .54) b eca u se  this lin e  is  nothing but the TD A equation . T o  tack le  
the se co n d  lin e w e in trod u ce  the o p e ra to r  A (h p J M ; T M T), w hich  is 
ju st the H erm itian  con jugate o f Eq. (5 .53);

A (h p J M ; T M T) = Y  Y

mh-mp^h"Mp

' k  h  J~
1 i. T2 2 J

L m h m p MJ -»b ^ p  M T-
b,. b :

W p

(5.55)

W hile in d icating  so m e  o f  the steps in th is angular m om entum  cou p lin g , 
w e sh a ll f ir s t  om it the is o sp in  cou p lin g , w hich  can be in trodu ced  into the 
fin a l r e su lt  by  an alogy . A s a resu lt o f the coup ling  A  ̂ (hp  J M) on the 
le ft-h a n d  s id e  o f  E q . (5 .33a) w e obtain  on the righ t-h an d  s id e  fo r  the 
secon d  lin e

1 1  z
V V  m'hm p mhmp

Jh Jp J
m . m M ■ h p -

(p p 1 I v I h h ' ) A h. (5.56a)

U sing d e fin ition  (5.55) in the r e v e r s e  d ir e c t io n , we obtain  (with the 
o m is s io n  o f isosp in ) the fo llow in g  identity;

A ■ I Jh’
m.

V
m

P’

J 1
M ’ A (h' p ' J ' M ' ) (5.56b)

S in ce , on the le ft  hand sid e  w e have a lre a d y  coup led  A^p to  J M , on ly 
the te rm  J 1 =J and M ' = -M  in the above sum  w ill con tribu te  to  the fin a l 
r e su lt  (b eca u se  H is  s c a la r ) .  H tim es A1" (h p J M ) tra n s fo rm s  as a
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te n so r  o f  rank J and com pon ent M. The part o f  E q . (5.56b) that has 
s im ila r  tra n sfo rm a tio n  p ro p e rty  a ctu a lly  c o rre sp o n d s  to  J ' = J , M ' = -M . 
The oppos ite  sign  o f  the p r o je c t io n  quantum num ber is  due to the fact 
that A  (h1 p ' J ' M ' ) is  the d e s tru ctio n  o p e r a to r , w hile AÎ (hp  J M) is  a 
c re a tio n  o p e ra to r . U sing on ly  this p a rt icu la r  te rm  o f (5 .56b) in (5.56a) 
w e obtain

3h Jp J
m h m p M.

«¡h* J p*
m * m ! -Mh p

Lm p m  p. M'm i
Г jh,jp, m'hm'p mhmp

X (_ l ) ih -mh ( jpjpI J. I v I j ^ . J ' )  A ( h 'p 'J ,  -M )

Jh Jh' J ' 
- m h -m h. M ' _

(5 .56c)

T he th ird  and fourth  C le b sch -G o rd a n  c o e ffic ie n ts  and the su m m ation  o v e r  
J 1 in  th is e x p re s s io n  have resu lted  fro m  the rep la cem en t o f  the m a trix  
e lem en t o f  v in (5.56a) by  the an gu la r-m om en tu m  cou p led  m a tr ix je le -  
m ents of v in (5 .5 6 c). The p h a s e -fa c to rs  have resu lted  fr o m  the h and 
h 1 in (5 .56a ). O nce again , M 1 is  not independent, and on ly  two o f the 
m a gn etic  quantum n u m ber su m m ations in e x p re s s io n  (5 .56c) a re  in 
dependent. L et us c a r r y  th ese  su m m ations out by  standard a lg e b ra  and 
u se  the e a r l ie r  defin ition  o f  the F -m a tr ix  to obtain  fo r  e x p re s s io n  (5 .56 c):

Y  F (h p p ' h ' ; J) ( -1 )^ 1' + ^P'"I ( -1 )J+ M A ( h 'p 'J ,  -M ) (5.56d)

Jh' ip’

The ex ten sion , to in clude is o sp in  cou p lin g , is  ob v iou s . The resu lt  o b 
tained in th is w ay has to  be added to  E q. (5 .54) to  p rod u cé  the fin al 
equation  fo r  R P A :

[H , A T (h p  J M; T M X)] = (e p - e h ) A 1* (h p J M ; T  M T)

+ ^  | f  (h p h 1 p 1 ; J T) A T(h! p 1 J M; T M T) + F  ( h p p 'h ' ;J  T) ( - l ) ih,+ip’ ' I' T

v y

X ( - 1 ) , + M+T+ MT a  ( h 'p 'J ,  -M ; T , - M T)|  (5.57)

T he equ ivalent o f  the p h a s e -fa c to r  ( -1 )^ ' + У  1 , ap pearin g  in  E q . (5 .56d) 
in the ca se  o f  is o sp in  cou p lin g  is  ( - 1 ) 2 + г ' т ; th is phase exp la in s the 
change in the o v e ra ll  m inus sign  o f (5.56d) t o a  plus sign  o f the c o r 
resp on d in g  te rm  in E q . (5 .5 7 ), and the ap pearan ce  o f  the p h a s e -fa c to r  
( - iy h '+y  ' J " T . The o th er p h a s e -fa c to r  ( - i )J  + M +T+MT ai ong wjth the 
A  (h' p ' J , -M ; T , - M T) g iv e s  the p r e c is e  tra n sfo rm a tio n  p ro p e rty  under 
ro ta tion  to th is te r m , id en tica l to  that o f  (h p J M ; T M T). T h is p h a se - 
fa c to r  is  .s im ila r  to  the ( - l ) ]h" mh o c cu rr in g  w ith Cjh> - foh w hich  m akes 
the rota tion a l tra n s fo rm a tio n  o f the la tte r  equ ivalent w ith that o f
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E quation  (5.57) en ab les one to  w rite  down the e x p re s s io n  fo r  
[  H, A (h p J , -M ; T , - M T] ( - 1)J+  M  + T  + M T  with the h elp  o f  its H erm itian  
con ju gate . Thus

J + M + t +Mt A ( h p J ,  -M ; T , - M j  = - (ep - e h ) A (h p  J , -M ;T ,-M t) ( -1 ) i+m+t+mt

-  ^  | f  ( h p h 1 p ' ; J T )  A  (h1 p’ J , - M ;  T , - M T ) ( - 1) I + M + T + MT (5.58)

Jh  * • j  p *

+ F (h p p 1 h1 ; J T )  ( - l ) Jh' + V  ‘ 1 ' T A T (h1 p ' J , -M ; T , - M T)j-

In the usual w ay, E q s (5 .57) and (5.58) g ive  r is e  to a set o f  lin ea r  
equations fo r  the am plitudes Ф | A t (h p J M; T M т ) | Ф0 and

SI/ | A  (h p J , - М ; Т , - М т )|фо )> ( - 1)J + M + T + Mx . The m a tr ix  to  be d ia - 
g on a lized  can  be iden tified  fro m  these equations and is  g iven  by

M ' = ( EÍ F  J . F ) (5.59a)

w h ere  E and F  a re  m a tr ic e s  defined by

Ehp; h'p' (e p “ eh) ^hh' ^pp' (5.59b)

F ( h p h 'p 1 ; J T )  = F  ( h p p 'h 1 ; J T )  (-l)>h, + V J' T (5 .59c)

It is  e a sy  to  esta b lish  that the m a trix  M ' o f (5.59a) has a l l  the p ro p e rt ie s  
o f  M ' , defin ed  by  E q . (3 .57b ). Deonting the am plitudes w ith A t and A  by 
Xhpjx and Y hpjT . it then fo llo w s  that th ese  am plitudes sa t is fy  the 
p r o p e r t ie s  (3 .5 8 ), (3 .59) and (3 .60 ).

A n g u la r-m om en tu m  cou p lin g  in the q u a s i-p a r t ic le  ca lcu la tion

T he a n gu la r-m om en tu m  coup ling  in the equations o f  s e c t io n  5.3 is  
a lso  fa ir ly  stra ig h tfo rw a rd . W e sh a ll s p e c i f i c a l ly  dea l w ith the ca se  
o f  s p h e r ic a l n u cle i w h ere  the c o e ffic ie n ts  U j, Vj e tc . a re  independent 
o f  the p r o je c t io n  quantum n um ber. The q u a s i-p a r t ic le  e n e rg ie s  a lso  
have the sa m e  p ro p e rty . In m ost ap p lica tion s o f  th is th e o ry  the q u a s i
p a r t ic le  p a ir  is  taken to  be e ith er  a p a ir  o f  p ro ton  o r  a p a ir  o f  neutron  
q u a s i-p a r t ic le s . Th is is  b e ca u se  the s p e c ia l BCS type tra n sform a tion ,
We a re  co n s id e r in g , tre a ts  on ly  the J = 0 part o f  the tw o -n u cle o n  in te r 
a ction  (w hich is  the s tron g  fo r c e  on ly fo r  a p a ir  o f  p ro to n s , o r  a p a ir  o f  
n eu tron s; fo r  a n n - p  p a ir  the in tera ction  in J = 1, T  = 0 state  is  s tro n g e r  
than that in the J = 0, T  = 1 state) at the stage o f prod u cin g  the independent 
q u a s i-p a r t ic le s .  S ince a p a ir  o f  proton  o r  neutron  q u a s i-p a r t ic le s  w ill 
a lw ays have T  = 1, the la tter  is  a redundant quantum n u m ber, and it is
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n e c e s s a r y  and su ffic ie n t ju st to  cou p le  the angular m om enta  jm , j n of 
the p a ir  o f  q u a s i-p a r t ic le s .

W e in trod u ce  the fo llow in g  obv iou s de fin ition s :

F o llo w in g  a p r o ce d u r e  s im ila r  to  what w as adopted above fo r  the h o le -  
p a r t ic le  c a s e , and u sin g  the defin ition s (5 .60a , b) one obtains e a s ily  
(the d e ta ils  a re  le ft  to  the re a d e r ) fr o m  the E qs (5 .4 1 ), (5 .44) and (5 .47):

out o v e r  a p a rt icu la r  p a ir  (a, b) on ly  o n ce , and not tw ice  as a, b and b , a. 
T o  a ch ie v e  th is r e su lt  w e have u sed  obv iou s sy m m e try  re la tio n s  betw een  
A 't ( a b J M ) ,  A t  (b a J M) and A  (a b  J , -M ) and A  (b a J , -M ), fo llow in g  fro m  
the p ro p e rty  o f  the C le b sc h -G o r d o n  c o e ffic ie n t  in E qs (5 .6 0 a ,'b ) . S im ilar  
s y m m e try  re la tio n  betw een  G (a b m n; I) and G (b a m  n; I) has a ls o  been  
u sed . E quations (5 .6 1 a , b , c ) ,  added to g e th e r , g iv e [H , A ^ m n J M ) ] .
A s  in the h o le -p a r t ic le  c a se  w e a re  led  to the d ia gon a liza tion  o f  a m a trix  
lik e  M 1 o f  E q . (5 .59a ), in w hich  F (h p h 1 p1 ; J T ) and F  (h p h 1 p 1 ; J T) a re  
r e p la ce d  r e s p e c t iv e ly  b y  the e x p re s s io n s  e n c lo s e d  in sq u a re  b ra ck ets  
in E q s (5 .61b) and (5 .6 1 c ). S im ila r ly  the d ia gon a l m a trix  e lem en ts o f  S,

(5.60a)

and

A ( m n J M )  = £  [ m Í (5.60b)

[ H n , A  T (m  n J M )] = (E m + E n) A t (m n J M ) (5.61a)

+ (vnubum v n + u av bv mu n) F (m n b a; J) ( - l ) a + b ‘ r

-  (uav bu m v n + vau bvm Up ) F (m n a b; J) A T(a b J M)

(5.61b)

( a . b )

-  (ua vbu nv m + v au bvnum) F  (a b m  n; J)

+ (va u bu nv m + u av bvnum) F (bam n ; J) ( -1 ) a+b '  ? ]

X ( - 1 ) J+M A  (a b  J ; - M ) (5 .61c)

In E qs (5 .61 b , c) the su m m ation  (a ,b ) im p lie s  that it has to  be ca r r ie d



650 PAL

instead  o f b e in g  g iven  by  (5 .59b ), a re  g iven  by  (Em + E n) as appearing  
in  (5 .61 a ). The e ig e n v e c to rs  o f  the m a tr ix  M ' now d eterm in e  the 
am plitudes X mnj and Y mnJ w h ere  X mnj = <(ф | A ^ (m n J M ) | Ф0 /  and 
Ymnl = (-1)J + M <®| A ( m n J , - M )

C a lcu la tion s  u sing  sch e m a tic  m od els  fo r  the tw o -b o d y  potential

Som e g e n e ra l fea tu res  o f  the th eory  o f  v ib ra tion , as w ork ed  out 
h e re , can  be v e ry  e leg an tly  dem on stra ted  by u sin g  sch e m a tic  m od els  
fo r  the tw o -b o d y  poten tia l.

The o ld es t m o d e l o f  th is type is  the 6 -fu n ction  poten tia l. Without 
g iv ing  the d e ta ils  o f  the der iv a tion , we quote below  the G -m a tr ix  e l e 
m ents o f  the 6 -fu n ction  potentia l:

G (a b с d; J T) = -  V® j? (a  b c  d) j  j l  + (-  1)J n |  g (a b J) g ( c d j )  fo r  T = 1

(5.62a)

f  (a b  J) f  ( c d  J) +|  j l  - ( - l ) J n j  g(abJ )g (cdJ )

fo r  T = 0 (5.62b)

H ere  - V j and - V® a re  the depths o f the 6 -fu n ction  potentia l in the 
s in g le t -e v e n  and t r ip le t -e v e n  tw o -n u cleon  sta tes . The 6 -fu n ction  p oten 
t ia l, by  d e fin it ion , a cts  on ly  when the two n ucleon s a re  co in cid en t in 
sp a c e , and h en ce  on ly  w hen they have a sp a tia lly  sy m m e tr ic  (consequ ently  
' even ' ) sta te . T h is a ccou n ts fo r  the n o n -o c c u r r e n c e  o f  the od d -sta te  
poten tia l depth in E qs (5 .62 a , b ). The q u a n tity ^ (a b с d) is  the rad ia l 
in te g ra l, w hich  is  a ctu a lly  a s in g le  in te g ra l by  v irtu e  o f  the 6 -fu n ction :

oo oo
^ ■ (a b c d )  = J  r ^ d r j  J  r 2d r 2 R a ( г г ) R b (r 2 ) 6 i r l~ r 2 ) R c (r^ ) R d (r2 )

n n 1

- Vtey ( a b c d )

r  d r  R a (r )  R b (r) R c (r) R d (r) (5.63)

The fu nction  R (r) is  the ra d ia l w ave function  o f the s in g le  n ucleon  in the 
state  la b e lle d  by  the su b s cr ip ts . In E q. (5 .62a , b) the quantity П is  e ith er  
+1 o r  -1  depending on the even  o r  odd p a rity  o f  the tw o -n u cleon  states '
I a b J T  )>, o r  equ iva len tly  | c d J T ) .  The fa c to r s  f (a b J) and g (a b J) 
a re  g iven  by

I £
(-1)

a + b a b J
i  X  i .2 2 J*.

(5.64 a)

i
I 1 \a " * +{аГа b J
(‘ X) U  - i  0

(5.64b)

w h ere  i a is  the orb ita l-a n gu lar-m om en tu m  quantum n um ber fo r  the state a.
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The h o le -p a r t ic le  m a tr ix  e lem en ts F , c o rre sp o n d in g  to  the above G, 
can be w ork ed  out fr o m  E q s (5.52b) and (5 .51 ). O nce again  we on ly  quote 
the fin a l r e su lts , lea v in g  the d eta ils  to  the re a d e r :

F (h p h ' p ' ; JT ) = C x f (h p  J) f (h1 p ' J) + C'T g (h p J) g ( h 'p 1 J) (5.65a)

w h ere

f  ( h p j )  = ( - l ) 'h  f  (h p J ) (5.65b)

g (h p  J) = ( - l ) ih g (h p J ) (5 .65c)

C T=0 = - s  S ( h p h ’ p ' )  | 2 V te + ( - l ) J П (V te + 3 V ® ) |  (5.65d)

= i  J ? ( h p h 'p ')  (3 V se - V * )  (5 .65e)

C T=1 = i  J?(h p h 'p ' )  | 2 V f  + ( - l ) J П (Vte : V * ) j  (5 .6 5 f)

C ’T=1 = {  S ( h p h ' p ' )  (Vte + V f )  (5.65g)

F r o m  the sy m m e try  p ro p e rty  o f the C le b sch -G o rd o n  c o e ffic ie n ts  in 
E qs (5 .64 a , b) and the de fin ition s (5 .65b , c) one obtains

— fib* + £*■>• +h* +D*“ J -f ( p 'h 'J) = (-1 ) h P F f ( h 'p 'J )  (5.66a)

and

g (h 'h 1 J) = - ( - l ) {h,+ V  ( - l ) h' +P' + fh' + V  g (h 'p ' J) = - ( - l ) h' +P’ g ( h 'p '  J)

(5.66b)
U sing th ese  e x p r e s s io n s , tog eth er  with E qs (5.65a) and (5 .5 9 c), 

we e a s ily  p rove

F ( h p h 'p ' ; J T )  = СТ П (-1 )Т f  ( h p J ) f ( h 'p 'J ) - C ^ .  ( -1 )J+T g ( h p J ) g ( h 'p '  J)

(5.67)

The sch e m a tic  m o d e l can be fu rth er s im p lifie d  by fo llow in g  e ith er  o f 
tw o a ssu m p tion s : (i) the B r o w n -B o ls te r li  assu m ption  -  the ra d ia l in tegra l 
(5 .63) is  independent o f  the s in g le -p a r t ic le  quantum n u m bers; (2) M o s z 
k o w sk i1 s s u r fa c e -d e lta  in tera ction  -  a ssu m e  that the ra d ia l part o f  the 
6 -fu n ction  p oten tia l is  such  that it is  n on -van ish in g  on ly  at the n u clear  
su r fa c e , r j  = r2 = R 0, w here R 0 is  the n u c le a r  rad iu s. ’ T h is  im p lies  
that in the ra d ia l- in te g ra l (5.63) we have an additiona l fa c to r  6 (r  -  R 0), 
and the in teg ra l then re d u ce s  to  R 2 R a(R0) R b (R 0) R c (R Q) R d (R 0).
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U nder e ith e r  o f the above two assu m ption s the m a trix  e lem en ts 
(5 .262a , b) have the fo llow in g  g en era l fo rm :

° K L  = Xf f K f L .+  X ggK g L (5.68a)

w hile  the m a tr ix  e lem en ts  (5.65a) o r  (5 .67) have the g e n e ra l fo rm :

F KL = x'f V l +  x'g g K g L (5.68b)

= Xf f K f"L + Xg g K g L (5 -68 c)

H e re , K, L  a re  shorthand notations standing fo r  an angular m om entum  
cou p led  state lik e  (abJ ), w hile the stren gth s x x ' > X can  be e ith er  
a ttra c tiv e  (negative) o r  r e p u ls iv e  (p os itiv e ) depending on the exact 
v a lu es  o f  V e , V k and the value o f J, П and T . T h ese  stren gth s can  be 
e a s ily  read  o ff  fr o m  (5 .62 a , b ), (5 .65 d -g ) and (5 .67 ).

O w ing to  the fa c to ra b le  nature o f  E q s (5 .6 8 a -c )  the d iagon a lization  
o f  the TD A o r  RPA m a trix  can  be c a r r ie d  out in a som ew hat c lo se d  
fo r m . T o  illu s tra te  th is le t us f ir s t  d ia gon a lize  the T D A -m a tr ix  
F  (a b e d ;  J T) a ssu m in g  that the d iagon al m a trix  S  , w hose e lem en ts 
a re  ( e p - e h), is  a constant t im es the unit m a tr ix . T he la tter  can then 
be le ft  out o f  the d ia gon a liza tion , the constant d iagon a l e lem en t s im p ly  
g iv ing  us the r e fe r e n c e  point fo r  the e ig en v a lu es  o f  F .

T he e igen va lu e  equation  in  the notation  o f E q . (5 .68b) is  g iven  by

F k l X l - E X k

L  Ч ' Л  + * ' . í i K i l » X l - E X K l 5 - 6 9 >

T o  fu rth er  s im p lify  m a tters  le t  us assu m e  that the f-te rm  is  n eg lig ib le  
co m p a re d  to the g -te rm . Then

x ’ = e x k  ( 5 ' , 0 a )
L

w h ere

X K = K' 1 x'g С g K 

C = X  X  lS l , = E_1 Xg c X ( g L) 2 [using (5 .70a) :
L L
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E = Z( g L>2

T h is g iv e s  us one eigen va lu e  o f the p ro b le m ; the К -th  e lem en t o f  the 
co rre sp o n d in g  e ig e n v e c to r , X K, is  p ro p o rt io n a l, a c c o rd in g  to E q . (5 .70a ), 
to  g K. The constant o f  p ro p o rt io n a lity  is  fixed  by the n o rm a liza tio n  o f  
the v e c to r . The e ig e n v e c to r  be lon g in g  to any o th er e igenvalue  has to be 
orth ogon a l to th is one. If the К -th  e lem en t o f  su ch  a v e c to r  is  denoted 
b y  X 'K we then have

о = X  Х к Х 'к = I  § k X 'k ( 5 -71)

But the e igen va lu e  equation  fo r  this e ig e n v e c to r  is  g iven  by

v 1 > g g X 1 = E ' X ' x g Z-, к L L к
L

But the su m m ation  S l X 'l ’  p resen t on the le ft-h a n d  s id e ,is  z e r o  
L

a c c o rd in g  to  E q. (5 .71 ). H ence we con clu d e  E 1 = 0. T h e re fo r e , a c co rd in g  
to  th is m od e l, on ly  one e igen va lu e , E o f (5 .70b ), is  d isp la ce d  with 
r e s p e c t  to the unperturbed  p o s itio n  o f  the h o le -p a r t ic le  sta tes  (w hich a re  
d eg en era te  by  ou r  assu m ption  about <#); a ll the o th er e ig en v a lu es  E ' 
r em a in  co in c id en t with the u nperturbed  en erg y .

An ex ten sion  can  now be m ade in tw o w ays; (i) U se the unperturbed  
e n e rg y -m a tr ix  #  w ith e lem en ts  (e p -  ej,) w hich  a re  not con stan t, (2) use 
the co m p le te  e x p re s s io n  (5.69) conta in in g  both the f  and g te r m s .

In the f ir s t  ca se  we have, denoting e p - eh by  $  K

i  { ^ K ÓKL + *g M L}  X L = E X K <5 -72)
L

o r

(E - e g ,

X K = X'
JJL. (5 .73a)

w here

L
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1 = V  Ü L l 2
L,  E - «

T h is  s o -c a l le d  d is p e rs io n  equation then d eterm in es  the e n e rg ie s  E . 
K now ing E , the co rre sp o n d in g  e ig e n v e cto r  is  determ in ed  up to a 
n orm a liza tion  fa c to r  by e x p re ss io n  (5 .73a). A  g ra p h ica l m ethod of 
so lu tion , analogous to that d e s cr ib e d  under E q. (3 .45) and delineated  
in F ig . 3 .2 , can  be applied  to  E q . (5.73b) with v e ry  s im ila r  r e su lts .

L et us now do the secon d  ex ten sion  by u sing  the en tire  e x p re s s io n  
(5 .69 ). We have, instead o f E q . (5 .72 ), the fo llow in g  equation :

V kl + x
' f f  + f К L X l = E X k

(5.74)

o r

(E - ^ K) X K Xf C f^K  + Xg C g g K (5.75a)

w here

C f = i  f_L X L* C g =  X g L X L <5 - 7 5 b >
L L

L et us u se  E q. (5 .75a) to  obtain X  K and then use the re su lt  in the two 
equations (5 .75b). That w ill g ive  two lin ea r  h om ogeneou s equations fo r  
C f and C g. The determ inant o f  the c o e ffic ie n t  m a tr ix , equated to z e r o , 
g iv e s  the s e c u la r  equation  fo r  E . T h is  is  le ft to  the re a d e r  as an 
e x e r c is e .

The fin a l stage is  to  so lv e  the e igen va lu es and e igen fu n ction s of 
the R P A -m a tr ix  (5 .59a ). In the conden sed  notation  the equations are  
g iven  by

X { ^ K 6 KL + F Kl ) X L + F KL Y l}  = E X K ( 5 - 7 6 a )
L

and

Z { - F k l X l - ^ k 6 k l + F k l ) Y l }  = E Y k <5 - 7 6 b >
L ;

We u se  E q. (5 .68 c) fo r  F KL . B y  a p ro ce d u re  s im ila r  to what has been 
dem on stra ted  ab ove , we have

(E -  ^ K) X K = (X- C f + x f D f ) f K + (x-g C g + Xg D g ) g K (5.77a)
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-(E  + # K) Y K = (x f C f + x ' f D f ) f K + (x g C g + X'g Dg ) I K (5.77b)

w here

and

■z ‘ l x f ■ I ¡ l x l
(5 .77c)

Df = ^ f LY L , D g = ^ g LY L (5.77d)

L L

O nce again  one has to  substitu te  fr o m  E qs (5 .77 a , b) f o r  X L, YL , into 
E qs (5 .7 7 c , d) to  obtain  a set o f  fou r  lin ea r  h om ogen eou s equations in 
C f , C g , D f and D g . The se c u la r  determ inant equation  o f  the co e ffic ie n t  
m a tr ix  d e te rm in e s  E .

In the two p r a c t ic a l  c a s e s ,  n am ely  the c a se  o f  giant d ip o le  reson a n ce  
(J = 1, П = -1 and T = 1), and octu p o le  v ibra tion  (J = 3, П = -1  and T = 0), 
the above equations a re  co n s id e ra b ly  s im p lifie d . A s  an illu s tra tio n  let 
us c o n s id e r  the la tter  c a s e , fo r  w hich , a c co rd in g  to E qs (5.67) and 
(5 .6 5 a ), w e have

f k l  +  f k l  2 c t  S k  S l

f kl + F kl = 2 C t V l

(5.78a)

(5.78b)

S im ila r  s im p lifica tio n s  o c c u r  in the ca se  o f  g ia n t-d ip o le  reson a n ce  
as w e ll. It is  now advantageous to add and su btra ct (5 .76a , b) and use 
z£>  = X K + Y K and = X  K - Y K . We thus have

E Z K -  ^ ^ E k 6kl + 2 C T f K f L j-  Z ^  (5.79a)

L

and

E  z ( K }  =  I  { E k 6 k l  +  2 C 't  i K i L }  ( 5 - 7 9 b )

L

L et us substitu te  fo r  Z ^  fro m  e x p re s s io n  (5.79a) into (5 .79b ), and v ice  
v e r s a . If w e in trod u ce  the n otations:

(5.80)
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w e obtain  e a s ily :

Z (K+) = 2 ( E 2 - á?2) '1 | c ' T 3?(+) g K + С ТЧГ(_) f j -  (5 .81a)

Z (K_) = 2 (E 2 - á 12) ' 1 { С т ^ ^  + C ^ W g J  (5.81b)

Substituting e x p re s s io n s  (5 .81a , b) back  into E q s (5.80) w e obtain  two 
lin e a r  h om ogen eou s equations in and , and then the solu tion  
p r o ce e d s  as u sual. The fin al d is p e r s io n  equation  fo r  E is  ex a ctly  
s im ila r  to  E q . (3 .45 ), in as m uch as it conta in s ( s \  ~ E 2) in the den om in ator. 
The task  o f obtain ing th is equation  is  le ft  to the re a d e r  as an e x e r c is e .

S ch em atic  m od e l fo r  the q u a s i-p a r t ic le  ca lcu la tion

T o  be ab le  to apply  the fa c to ra b le  sch e m a tic  m o d e l to  E qs (5 .6 1 a -c ) , 
we m u st f ir s t  o f  a ll v e r ify  that the p rod u cts  o f  u , vb e tc . a lso  fa c to r iz e  
a u tom a tica lly . In the usu al w ay in trodu ce

. i t  , .
X  L = < Ф A (a b J M) Ф > 

ab 4 1  '  ' 1 0

Y ab = < * 1  A ( a b J ,  -M ) ! Ф0>

z <k = x  к + Y к. z ( k = X  . -Y  .ab  ab  ab  ab  ab  ab

M ultip ly  [H, AT (m n J m ) ] ,  w hich  is  the sum  o f  E q s (5 .6 1 a -c )  by  Ф |
and I Ф0) ,  and w rite  the re su lt  in te rm s  o f the am plitud es X  and Y , as
defin ed  ab ove . L et us c a r r y  out s im ila r  th ings with the equation  fo r  
[H, A (m n J M ) ]  and add and su btra ct th ese  two equations and fin a lly  
obtain  the fo llow in g  equations sa tis fie d  by Z ^  :

E Z (+) = (E + E ) Z (_) + >  H ( m n a b J )  Z (; 5 (5.82a)mn 4 m n; mn ' ab ' '
( a . b )

E Z mn = <E m + E n) Z £2 + X  K <m n a b  J ) Z ab ( 5 ‘ 82b>
( a . b )

w here

H ( m n a b  J) = G (m n a b  J) (umun + vm vn ) (uau fe + va v fe)

-  | f  (m n a b  J ) + ( - l ) a+b' J F ( m n b a J ) |  (u mv n - v mu n)(u av b-  v a u b )

(5.82c)
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K  (m  n a b J) = G (m  n a b  J) ( u mu n -  vm v n) (u au b - v av b)

- j^F ( m n a b  J) - ( - l ) a+b"J F (m n b a J ) j  (u mv n + vm u n)(u av b + v au b)

( 5.8 2d)

E quations (5 .8 2 c , d) d em on stra te  that the fa c to r  in volv in g  the u, v c o 
e ffic ie n ts  do fa c to r iz e  out au tom atica lly . T h e r e fo r e , i f  we adopt the 
fa c to ra b le  fo r m s  o f  the F  and G m a trix  e lem en ts g iven  e a r l ie r  fo r  the 
sch e m a t ic  m o d e l we can  on ce again  obtain  so lu tion s o f E q s (5 .82 a , b) by 
the sa m e p ro ce d u re .

A s exp la ined  e a r l ie r ,  w e co n s id e r  in th is th e o ry  e ith er  a p a ir  o f 
p roton  q u a s i-p a r t ic le s  o r  a p a ir  o f  neutron q u a s i-p a r t ic le s , fo r  w hich  
is o s p in  T is  id e n tica lly  1. U sing T = 1 in E qs (5 .59 c) and (5.67) we 
obtain

F  ( m n a b j )  = -  (1) а+и F ( m n b a J )

= - c  n f  (m n J ) f  ( a b j )  + с 1 ( -1 )1 g ( m n j )  g ( a b j )

H ere  w e have su p p re sse d  the su b s cr ip t  T = 1 on с  and c ' . U sing this 
e x p r e s s io n  in the c a se  o f  the quadrupole v ib ra tion  (J = 2, П = +1), fo r  
e x a m p le , we have

F  ( m n a b j )  + (-1 )  a+b’ J F (m n b a  J) = 2 c f ( m n j )  f ( a b j )  (5.83 a)

F (m n a b J )  -  (-l)a+b-J jr (m n b a J )  = 2 c '  g ( m n J ) g j a b J )  (5.83b)

W hile applying the s ch e m a tic  m o d e l in this c a s e , u su a lly  an e x cu se  is 
g iven  to ig n ore  the G (m n a b J )  te rm  in E qs (5 .8 2 c , d ). If th is is  p e r 
m itted  then it is  im m e d ia te ly  c le a r  that E qs (5 .82 a , b) b e co m e  ex a ctly  
s im ila r  to E q s (5 .79 a , b); the on ly  d iffe re n ce  is  that in the p resen t ca se  
w e have fa c to r s  lik e  f ( a b j )  (u avb - v au b) and g (a b J )  (u avb + v au b) instead 
o f  f  (a b J) and g (a b J ) .

A n oth er type o f sch e m a tic  m o d e l that has been  used in th is c a lc u la 
tion  is  ba sed  on the u se  o f  a m u ltipole  type tw o -b o d y  potential:

v = v . Q 
12 * К 1

w h ere  xk  stren gth  o f  the potentia l o f  m u ltip o la rity  K. The
o p e ra to r  fo r  the ith n u cleon  (i = 1 and 2 in the above e x p re s s io n  fo r  
v  12 ) j is  g iven  by

Г2К = r K Y K (6. , ф. ) 
q i q i i '

w h ere  (r ¡ , 0 ¡ ,  <¿>¡) a re  the c o -o rd in a te s  o f  the i-th  n u cleon , and Y ^  
is  the n o rm a liz e d  s p h e r ic a l h a rm o n ic . In p a rt icu la r , the m u ltipole
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poten tia ls  co rre sp o n d in g  to К = 2 (quadrupole) and K = 3 (octu p o le ) have 
been  e x te n s iv e ly  u sed  fo r  trea tin g  the quadrupole and octu p ole  v ib r a 
tion a l sta tes r e s p e c t iv e ly . The sch e m a tic  m o d e l o f  th is type m akes 
the fu rth er  a p p rox im a tion s : (i) the G -ty p e  m a tr ix  e lem en ts can be 
ig n ored  co m p a re d  with the F -ty p e  m a tr ix  e le m e n ts , and (2) in w ork in g  
out the F -m a tr ix  e lem en t the d ir e c t  part can be ign ored  com p a red  with 
the exch an ge pa rt. U se the defin ition  (5 .50) fo r  the F -m a tr ix  e lem en t 
and r e p la ce  (a n | V | m b) by  the exchange te rm , i .e .  - < ^ a n | v | b m / ;  
then apply the standard resu lt  o f Racah a lg e b ra  to w rite  down

a n  I Г2К| b m )  e x p lic it ly , and to c a r r y  out the su m m ation  o f the 
p rod u ct o f  two W -fu n ction s  o v e r  J ' . In th is w ay one obta in s , in the 
p re se n t sch e m a tic  m o d e l, the F -m a tr ix  e lem en t o f  the m u ltipole  
poten tia l o f  o r d e r  K, g iven  by

F ( m n a b j )  = 6 Ю xj g ' ( m n j )  g ' ( a b j )  (5 .84a)

w here
00

g 1 (a b J )  = (4тT p  g ( a b J )  J  r 2 dr R a (r) r  K R b(r) (5 .84b)
0

Thus the quadrupole and the octu p o le  potentia ls g ive  non vanish ing 
m a tr ix  e lem en ts  in J = 2 and J = 3 states r e s p e c t iv e ly . U sing the d e 
fin ition s (5 .84 a , b) and the fa ct that G w ill be ign ored  in co m p a riso n  to
F , we obtain  fr o m  E qs (5 .8 2 c , d)

H ( m n a b J )  = - j l  - ( - 1 )Jj- Xj g 'j ( m n j )  g 'a ( a b j )  (5.85a)

K ( m n a b J )  = - j l  + ( -1 )J j  Xj g'g ( m n j )  j* ( a b j )  (5 .85b)

w here

g\ ( a b J) = g ' ( a b J) (u av b - vau fa), g '2 ( a b j )  = g ' ( a b j )  (u av b + v au fa)

(5 .85 c)
It is  c le a r  fr o m  E q s (5 .85 a , b) that H = 0 and К  f  0 fo r  J = 2 (quadrupole 
v ib ra t io n ), w hile the r e v e r s e  is  true fo r  the octu pole  state . In the ca se  
o f the quadrupole  v ib ra tion , fo r  e x a m p le , the E qs (5 .82 a , b) then red u ce  
to

E Z «  = (E m + E „ )  Z «  (5.85d)

E Z ( '> = (E + E ) Z «  - 2y  g ' ( m n j )  ) g 1 ( a b J ) Z M  (5 .85e)
m n  v m  n '  m n  J 6  2 '  '  6  2  '  ' ab  '

( a , b )

Substituting fr o m  the f ir s t  equation  into the secon d  we obtain

j s 2 - (E m + E n)2}  Z H  = - 2 X j ^ ) g r (mn J ) (5 .86a)
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w here

^ (+) = ^  g'2 ( a b J ) E Z W  = J  g«2 ( a b j )  (E a + E fa ) Z H  (5.86b) 

(a.b) (a.b)

S olve E q . (5 .86a) fo r  Ẑ m„ and substitu te th is so lu tion  fo r  in e x 
p r e s s io n  (5 .86b). T h is  y ie ld s  the d is p e r s io n  equation  fo r  the e n e rg y  E :

1 = - 2 X j ¿  { E 2 - (E a + Е ь ) 2 [ - !  (E a + E b) jg '2 ( a b J ) p  (5 .87)

(a.b)

O nce again , note the c lo s e  c o rre sp o n d e n ce  o f  th is equation  with E q .(3 .4 5 ) .

C a lcu la tion  o f  tra n sition  p rob a b ility

A ny o n e -b o d y  o p e r a to r , Xj M jj(I), w here the su m m ation  g o e s  o v e r
I

a ll  the p a r t ic le s , is  g iven  in the secon d -q u a n tized  notation  by

Y  M q(I) = £  < a I M q I b > c ¡ c b (5 .88)

I a ,b

In the s p e c ia l  ca se  o f  e le c tro m a g n e tic  tra n sition  M q is  the e le c t r o 
m a gn etic  tra n sition  o p e ra to r  o f  m u ltip o la rity  JC and com p on en t q. We 
sh a ll c o n s id e r  on ly  the c a se  o f  e le c t r ic  m u ltipo le  tra n sitio n , in w hich  
ca se  M q = r KY ^ (0 ,  ф), the quantities (г , 0, ф) being  the c o 
ord in a tes  o f  a p ro ton . In g e n e ra l,

< a I ^ q l b ] < a II ÍT  I] b >  (5.89a)

T h is  equation  d e fin es ou r con ven tion  fo r  the defin ition  o f the d o u b le 
b a rre d  red u ced  m a tr ix  e lem en t.

We substitu te fr o m  (4 .40a , b) f o r  c a and c b and w rite  the p rodu ct
as

c aT <=b = K b l  + v as ab_a ) (u bb b + v b s bb ! b )

(v a2 ó ab + u au bb l b b + v av bs as fa b !b b _a )

+ (u av bs bb I b ! b + v au bs ab . ab b) (5.89b)

T o  evaluate the tra n s ition  m a tr ix  e lem en t betw een  states | and | Ф0)> 
w e have to substitu te e x p re s s io n  (5.89b) into E q s (5 .85 ) w ith  M ^ =
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and then m u ltip ly  the resu ltant e x p re s s io n  fr o m  the le ft  and righ t by 
<( Ф I and I Ф0 )> r e s p e c t iv e ly . The la st lin e  o f  (5 .89b) then g iv e s  r is e  to 
am plitudes o f  the type ^ Ф | | Ф0 ^ and < Ф | A  | Ф0) ; , the f ir s t  lin e  o f
this equation , on the o th er hand, g iv es  r is e  to  am plitudes o f  the type 
<( Ф I N I Ф0/  fr o m  the secon d  and th ird  te r m s , w hich  a re  sm a lle r  in 
o r d e r  o f  m agnitude com p a red  w ith < Ф | A  | Ф 0/  , and h ence w ill  be c o n 
s is te n tly  n eg lected  as w as done e a r l ie r  in  the R P A  d er iv a tion . The 
f ir s t  te rm  o f  the f ir s t  lin e  o f  E q . (5 .89b) being  a s c a la r  num ber p ro d u ce s  
e x a c tly  z e r o  when sandw iched betw een  tw o d iffe re n t sta tes <Ф | and |фо /  . 
T h e r e fo r e , fr o m  now on, we w ork  on ly  w ith the secon d  lin e  of. E q . (5.89b) 
and do the angular m om entum  cou p lin g  in each  o f  them . We have

= - b V > :  =a -b -b a Z
a b J 

- m b q
A ' (a b J q) (5 .89 c)

b a b. -a b ■ I

a b J 
-m a m b - q j A (a b  J , -q )  (5 .89d)

The C le b sch -G o rd a n  c o e ffic ie n t  in  E q. (5 .89a) guarantees th atq  = m a- m b , 
and th is fa ct has been  u tilized  in the C .G . c o e ffic ie n ts  o f E q s  (5 .8 9 c , d) . 
T he su m m ation  in E q . (5 .88) c o n s is ts  o f that o v e r  m a, m b and a ll other 
s in g le -p a r t ic le  quantum num bers c o lle c t iv e ly  design ed  by a and b. The 
sum  o v e r  m a , m b can  be c a r r ie d  out e a s ily  by  p ick in g  up the C .G . 
c o e ffic ie n ts  o f  E qs (5 .89a) and (5 .8 9 c , d ). A r e s tr ic t io n  К  = J then 
au tom atica lly  ap pears in the re su lt . Putting every th in g  tog eth er  we 
fin a lly  obtain

a I f t 1 I b >  С Г C u
q  ’ a b■

I a ,b

= -  ^  g ' (a b  J) j u avb AT (a b  J q) + v aub ( - l ) I+q A ( a b j ,  - q ) j  
a,b

(5.90)

In the h o le -p a r t ic le  c a s e , beca u se  o f  the uv fa c to r s , the f ir s t  term  
is  n on -van ish in g  when a = p, b = h, and the secon d  te rm  is  n on -van ish in g  
when a = h, b = p. We a lso  rew rite  A^ (p h J q) as - ( - l ) h+p"J A ^ (p h J q ) ,  
w hich  fo llo w s  fr o m  its d efin ition  (5 .53 ). F in a lly  we obtain

< * | ) V ( I )  | Ф 0 >  = - X  { g ' ( h p J > Y hp '  ( " 1)h+P_I g ' ( P h J >X h p }
I h,p

U sing E qs (5 .66b) and (5 .84 b ), we have

- ( - l ) h+P'J g ' ( p h J )  = ( - 1 ) 1 g'  (h P J)
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and hence

< * | ^ n Jq| * 0>= - Y g ' (hpJ) { y ,h p + ^ X h p f (5 .91)

h ,p

In the q u a s i-p a r t ic le  c a se  w e put tog e th er  the te rm s  a , b and b , a 
con ta in ed  in E q . (5 .9 0 ), and in the su m m ation  count a p a ir  (a ,b ) on ly  
o n ce . In th is w ay we obtain

<Ф|]Г nq(I) I = ~ Y  è'(abJ) { U a V b  +  ( ' 1 )J  VaUb}{"̂ bX ab + ( - ! ) J Y a

J ( a . b ) (5.92)

A s an e x a m p le , le t us c o n s id e r  the qu adru pole  state with the sch e m a tic  
qu adru pole  p oten tia l m o d e l. Then  th is e x p r e s s io n  re d u ce s  to

^ g - ( a b J )Z<a;> = - ^ E - i ( E a + E b ) g - ( a b J ) Z ( a-b) (5 .93)

( a . b ) ( a . b )

T he la st step  fo llo w s  fr o m  E q .(5 .8 5 d ).  A lthough th is e x p re s s io n  can  be 
evalu ated  e x a c tly  a fte r  one has so lv e d  the E qs (5 .85 d , e ) ,  we should  like 
to  show  h e re , by  so m e  rough  w ork , that th is tra n s ition  p ro b a b ility  is  
indeed  v e ry  la rg e  fo r  the sta te  Ф that g e ts  pushed down (se e  F ig .3.2) 
by  a la rg e  am ount fr o m  the v ic in ity  o f  the u npertu rbed  s ta te s . F o r  th is 
state it w ill be a fa ir ly  good  a p p rox im a tion  to  r e p la c e  the p a ir  e n e rg ie s  
(E a + ) by an a v e ra g e  value &  ̂ , su ch  that (5 .93) b e c o m e s

< * |  Y  K >  = - ( * 0 / Е ) X  (a b J )  Z ab (5 ‘ 94a)
I ( a . b )

w hile E q . (5 .86a) te l ls  us that Z^j„ is  now  p ro p o rt io n a l to g^ ( m n j ) .
In te r m s  o f an o v e ra ll  n o rm a liza tio n  c o n s t a n t s ,  w e have

Z ( ‘ } = JT g' (m n J )  (5 .94b)
m n  2

w h ere  is  d e term in ed  a c c o rd in g  to  E q . (3 .60 ) by

= V  Z (+) Z (_) = ( r f . / E )  'S/  . m n  m n  0 ‘ /  ,
Z (' 5

m n I [g 1,  (m n J ) (5 .94 c)

( m . n ) ( m . n ) ( m . n )

T h us,the tra n s itio n  p ro b a b ility  (5 .94a) is  g iven  by

-  ( s 0/ e ) ^ y  ®2 (a b j> 2 - j r ’ 1 = { 4 Y  [®'2 (mnj) 2?  (5,94d)
( a . b )  ( m . n )
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n 2 _ j¡> 2
0 l'a ( a b j )

(a,b)

g'2 (a b J)

a ,b

Substituting this in E q . (5 .94d) we con clu de

l < * | £  f i Jq(i ) l V  |> V2 (m n J )
21 i

m ,n

(5 .94e)

It is in terestin g  to com pu te the tra n sition  p ro b a b ility  in the T D A - 
a p p rox im a tion  u sin g  the sam e m o d e l, and co m p a re  it with the inequality  
(5 .9 4 e ). U se E qs (5 .61 a , b) with G = 0; assu m in g  (E m + E n ) ^  <#0 , one 
e a s ily  obtains

( E - á ’ ) X  = - ) ( u v . u  v + v u , v  u ) F  (m n a b ;  J) X
'  O ' m n  a b  m  n a b  m  n '  1 ' ab

w h ere  the su m m ation  a , b g o e s  o v e r  both (a, b) and (b ,a ) .  U se F fro m  
E q s (5 .84a , b) and the sy m m e try  re la tion s  (5 .66b) and X faa = - ( - l ) a + b" J X  afe, 
to  re w r ite  the above  equation  as

with

T h e r e fo r e ,

<E - * V X mn = (m n J )

= Y  g'2 (a b J) x ab

( a , b )

X mn=^ '  S' (m n J )

w h ere  Л'  is  a n o rm a liza tio n  constant and d eterm in ed  by

l\ ( m n j )

(5 .95a)

(5.95b)

(5 .95c)

(5.95d)

m n
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Putting Y ab = 0 in E q. (5 .92) we obtain  the tran sition  p ro b a b ility  in the 
TD A w hich  is  g iven  by  (fo r  J = 2)

| < * |  £  1 ® о > 1  = X  ( a b J ) x ab

I ( a . b )

(5 .95e)

( a . b )

2

У
( a .b )

In obtain ing th is re su lt , we s u c c e s s iv e ly  u sed  E qs (5 .95 c) and (5 .95d ). 
T h us, the RPA tra n sition  p ro b a b ility  (5 .94e) is  la r g e r  than the T D A - 
e st im a te  (5 .9 5 e ). The T D A -v a lu e  is  a lrea d y  m uch  la rg e r  com p a red  with 
a ty p ica l s in g le -p a r t ic le  tran sition  p ro b a b ility  by  v irtu e  o f  the su m m a 
tion  p re se n t in E q . (5 .9 5 e ). T he sam e kind o f d em on stra tion  can be 
g iven  fo r  the h o le -p a r t ic le  ca se  as w ell; the g e n e ra l resu lt  is  that the 
TD A tra n sition  m a tr ix  e lem en t fo r  the state that show s c o lle c t iv e  type 
o f lo w e rin g  in en erg y  (pushing up in the ca se  o f giant d ip o le  reson a n ce ) 
is  a lre a d y  v e r y  la rg e  co m p a re d  to the s in g le -p a r t ic le  tran sition  
p ro b a b ility , and the RPA p ro d u ce s  a fu rth er enhancem ent in this 
quantity.

6. REVIEW  OF A P P L IC A T IO N S OF THE TH EO RY

In this se c tio n  w e sh all p resen t a re v ie w  o f  so m e  o f the ca lcu la tion s  
ba sed  on the th eory  deve lop ed  in the p reced in g  p a ges . The p u rpose  o f  this 
en tire  se t o f  le c tu re s  being  p ed a gog ic , no attem pt w ill be m ade to su rv ey  
the ex istin g  lite ra tu re  in a co m p le te  and co m p re h e n siv e  m anner. The s p e c i 
f ic  a p p lica tion s  d is cu ss e d  h e re , and a lso  the r e fe r e n c e s  c ite d , w ill be r e 
p resen ta tiv e  and ty p ica l o f  what has been  done. The s e le c t io n  o f  the m a ter ia l 
d oes not r e f le c t ,  in any w ay, the s u p e r io r ity  o f  any o f  the pu b lica tion s r e 
la tive  to o th ers  that have not been  s p e c if i c a lly  r e fe r r e d  to . In co n fo rm ity  
w ith the attitude d isp la yed  in the in trodu ction , the m a te r ia l w ill be s u b 
d iv ided  into th ree c a te g o r ie s : (i) H o le -p a r t ic le  sta tes and th e ir  coh eren t 
su p e rp o s itio n  in c lo s e d -s h e l l  n u c le i, (ii) q u a s i-p a r t ic le  states and their 
coh eren t su p e rp o s itio n  in -sp h e r ica l heavy n u c le i, w h ere  pa iring  e ffe c ts  are  
im portan t, and (iii)  v ib ra tion a l sta tes in d e fo rm e d  n u c le i, w h ere  a lso  the 
la tter  e ffe c ts  a re  qu ite im portan t. Som e m o re  deta ils  o f  the ex ten sion  o f 
the th e o ry  w ill a lso  be p resen ted  in the ap p rop r ia te  context w hile d is cu ss in g  
s p e c if i c  a p p lica tion s . '

6 .1 . C lo s e d -s h e ll  n u cle i

The nucleu s that has been  the testin g  ground o f  m any th e o re tica l c a l 
cu la tion s is  160 .  Som e ca lcu la tion s  have been  done fo r  40 Ca and 208 P b , as 
w e ll.
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T h e s in g le -p a r t ic le  and s in g le -h o le  e n e rg ie s  needed  in the ca lcu la tion  
a re  in v a ria b ly  taken fr o m  the n eigh bou rin g  odd n u c le i ( e .g .  170 ,  17 F  and 
150 ,  15N in the c a s e  o f  16O). In the 40Ca r e g io n , th ere  is  v e r y  se r io u s  
doubt w hether the lo w -ly in g  le v e ls  o f  the n eigh bou rin g  odd n u cle i can  at a ll 
be in te rp re te d  as s in g le -p a r t ic le  o r  s in g le -h o le  le v e ls .  T o  that extent 
the treatm en t o f  40Ca as a c lo s e d -s h e l l  n ucleu s is  a lso  doubtful. H ow ever , 
standard  h o le -p a r t ic le  d iagon a lization  ca lcu la tio n s  have been  done b y  s e v e r a l 
au th ors fo r  th is n u cleu s .

The o th er  n e c e s s a r y  in gred ien t fo r  th ese  ca lcu la tio n s  is  the tw o -n u cleon  
potentia l. In the e a r lie s t  w ork  by  E llio tt  and F lo w e r s  the authors u sed  the 
R o se n fe ld  exch an ge m ixtu re  w ith a Y uk aw a-type ra d ia l depen den ce :

v12 = . t2 {0 . 3 + 0 . 7a j - ct2} (6 .1 )

w h e r e ?  a n d o  a re  the iso p in  and sp in  o p e ra to rs  o f  the n ucleon  la b e lle d  by  
the su b s cr ip t . T h ese  au th ors used the L S -co u p lin g  re p re se n ta t io n  fo r  th eir  
ca lcu la tio n , and h en ce  the s p in -o r b it  cou p lin g  o f  the s h e ll -m o d e l potentia l, 
n a m ely  ? ?  - s w as a ls o  u sed  e x p lic it ly  as a part o f  the in tera ction  w hile 
doing the d ia gon a liza tion . The ra d ia l in teg ra ls  o f  Ç w e re , h o w ev er , ch osen  
to  re p ro d u ce  the e x p e r im e n ta lly  o b s e rv e d  s in g le -p a r t ic le  sp littin g  o f  d 5/ 2 
and d3/2 le v e ls  in  170  ( 17F ) and the sp littin g  o f  the h ole  le v e ls  p 3/ 2 and p -^  
in 15N (150 ) .

The sch e m a tic  6 -fu n ction  potentia l d e s c r ib e d  in the A ppendix  o f  s e c 
tion  5 has a ls o  been  u sed  b y  s e v e r a l au th ors with v a r io u s  types o f  exchange 
d epen d en ce . One o f  the fa v ou rite  brands is  the Soper m ixtu re

(0 .3  + 0. 43 PM + 0. 27 PB ) (6. 2)

w h ere  PM and PB a r e , r e s p e c t iv e ly , the M ajoran a and B a rtle tt  exchange 
o p e r a to rs .

The m ost e x ten siv e  ca lcu la tio n s  have been  p e r fo rm e d  by  G ille t and 
c o -w o r k e r s  2, 3 w ho d e term in ed  the >  potential by  le a s t  sq u a res  fit 
to  s e v e r a l  le v e ls .  T h e ir  potentia l has a G au ssian  shape and is  g iven  by

V0 e x p { - ( j ) } ( W + BPB + HPH+MPM) (6.3a)

w her e PH is  the H e ise n b e rg  exchange o p e ra to r . The va lu es o f  the v a r io u s  
p a ra m e te r s , as d eterm in ed  by  the le a s t -s q u a r e s  fit , a re  g iven  by

M -W  = 0, M + W -  B -  H= 0 .4 ,  H = 0 .4  (6 .3 b )

V0 = -4 0  M eV , * i/b  = 1 .0  (6 .3 c )
«

w h ere  b is  the h a r m o n ic -o s c i l la to r  p a ra m e te r , and w as ch osen  to be 1. 68 fm  
fr o m  the o b s e rv e d  r . m . s .  ra d iu s  o f  160 .  The fou r  p a ra m e te rs  W , M , B , H 
o b e y  the n o rm a liz a tio n :

W + M  + H + B =  1 (6.3d)
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In r e ce n t  y e a r s , e ffe c t iv e  s h e ll -m o d e l m a tr ix  e lem en ts  o f  the Tabakin  
p oten tia l, and the h a r d -c o r e  H am ada-Joh nston  (HJ) potentia l have a ls o  been 
evaluated . T h ere  is  one ca lcu la tio n  with the Tabakin  potentia l by  V inh -M au  
(J. P . Svenne, p r iv a te  com m u n ica tion ) on the giant re so n a n ce  o f 160 .
G .E . B row n  r e fe r s  to  ca lcu la tion  on the sa m e  states o f  208Pb by  using the 
e ffe c t iv e  m a tr ix  e lem en ts  o f  the H J -p oten tia l in the P ro ce e d in g s  o f  the 
Dubna Sym posiu m  on N u clear S tru ctu re (1968), published  b y  the IA E A .

T he s tru ctu re  o f  the v a r io u s  le v e ls  o f  16О that has e m e rg e d  fr o m  a ll 
th ese  ca lcu la tio n s , and a lso  fr o m  e x p erim en ta l o b serv a tion s  has been  su m 
m a r iz e d  in T ab le  6 .1 .  It is  c le a r  fr o m  this tab le  that th ere  a re  m any e x 
c ite d  le v e ls  in  th is n ucleu s w hich  a re  not o f  the 1 hp type. The e x p e r im e n 
ta l ev id e n ce s  on the d e form a tion  o f  so m e  o f  th ese  s ta te s , and th e ir  fo rm in g  
s e v e r a l  ro ta tion a l bands a re  su m m a rized  in F ig . 6 .1 ,  w hich  has been  taken 
fr o m  the w o rk  o f  C a rte r  et a l. [4] . A c.tually, the 1 h p -ty p e  ca lcu la tio n s  that 
w e a re  d e s cr ib in g  now do not even  apply  to  the le v e ls  o f  th is c a te g o ry .

T A B L E  6 .1 . ST ATES OBSERVED  IN leO (fr o m  R e f .[3 ]  )

Energy in  M e V , f T P roposed d e s cr ip tio n

6 .0 6 0 + 0 D e fo rm e d

6 .1 4 3 " 0 l p - l h

6 .9 2 2+ 0 R o ta tio n a l o n  6 .0 6  M e V  state

7 .1 2 1 ' 0 l p - l h

8 .8 8 2 " 0 3 p -3 h

9 .5 9 1 " 0 3 p -3 h  (d e fo rm e d )

9 .8 5 2 + 0 D e fo rm e d

1 0 .3 6 4+ 0 R o ta tio n a l on  6 .0 6  M e V  state

1 0 .9 5 o - 0 l p - l h

1 1 .2 6 0+ 0 D e fo rm e d

1 1 .6 2 3~ 0 R o ta tio n a l o n  9 .5 9  M e V  state

1 2 .4 3 1 " 0 l p - l h

1 2 .5 2 2~ 0 l p - l h

1 2 .7 8 0 ' 1 l p - l h

1 2 .9 6 2 " 1 l p - l h

1 3 .1 0 1" 1 l p - l h

1 3 .2 6 3~ 1 l p - l h

1 3 .9 8 2~ 0

1 6 .3 0~ 0

1 7 .3 1 ' 1 l p - l h

1 9 .5 2 V

2 2 .4 1 ' 1 l p - l h

2 4 .5 r 1 l p - l h
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F I G .6 .1 .  E x cited  states o f  160  (R e f. [ 4 ] ) .  O  and •  p o s it iv e -p a r ity  le v e ls ; □  n e g a t iv e -p a r ity  le v e ls .

L eavin g  them  aside  we a re  le ft  with the T = 1 and T  = 0 states o f J1' = Г , 2 ' 
and 3 . W ith the ex cep tion  o f  the 2+ state at 19 .5  M eV , a ll other p os itiv e  
pa rity  sta tes lis te d  in T ab le  6. 1 belong  to the rota tion a l bands and need a 
d iffe re n t kind o f  treatm en t. A m on gst the m ost notable d e fo rm e d  o d d -p a r ity  
sta tes a re  the 9 .5 9  M eV Г  sta te , and the 11 .62  M eV 3 ' state , w hich  a re  
b e lie v e d  to  be the f ir s t  two le v e ls  o f a ro ta tion a l band. The oth er notable 
o d d -p a r ity  le v e l that is  found, in this ta b le , to be a n o n -c o n fo r m is t  to the
1 hp p ictu re  is  the 8. 88 M eV 2 state ; th ere is  d ir e c t  ex p erim en ta l ev iden ce  
that th is state cannot be ex cited  in in e la s tic  proton  sca tter in g  w hich  ru le s  
out its  having a 1 h p -type  stru ctu re .

W e now d is cu ss  the J ïï = Г  , 2 ',  3 '  states o f  T = 1 and T = 0 that a re  
fa ir ly  w e ll d e s cr ib e d  by  a 1 h p -type  TDA and R P A  ca lcu la tion . The g en era l 
o b se rv a tio n s  a r e :  (i) the T D A -an d  R P A -ty p e  th e o r ie s  a re  both equ ally  
s u c c e s s fu l in explain ing the o b serv ed  e n e rg ie s , p rov id ed  one ad ju sts the 
o v e ra ll  strength  V0 o f the tw o -n u cleon  in tera ction  in the two c a s e s  sep a ra te ly ; 
(ii) the a g reem en t in the tran sition  p rob a b ility  is  better  w ith the R P A -th e o ry  
in  the c a s e s  o f  the c o lle c t iv e  3 ” (T  = 0 ), and 1" (T  = 1) sta te s . T h ese  states 
o c cu r  at 6. 14 M eV (3 ) and 22 M eV -25  M eV (1"). F o r  the other o d d -p a r ity  
sta te s , w hich  do not show a c o lle c t iv e  enhancem ent o f  the tra n sition  p r o 
ba b ility , th ere is  not m uch o f a d iffe re n ce  betw een  the T D A - and R P A - 
p r e d ic t io n s ; (iii )  fin a lly , the ag reem en t in en erg y  in the hp ca lcu la tion  is  
som ew hat better fo r  the T = 1 sta tes than fo r  the T = 0 sta tes.

T h ere  a re  two im portan t d is cr e p a n c ie s  in the re su lts  o f  the c a lc u la 
tion s  on d ip o le  sta te s . The ex p erim en ta l situation  is  show n in F ig . 6 .2 .
M ost o f  the d ip o le  c r o s s -s e c t io n  is  found to  be lo ca te d  in the e n e rg y -ra n g e  
21 M eV -25  M eV . T h e o re t ica lly , one gets two stron g  d ipole  states in  th is 
e n e rg y  r e g io n  fr o m  the fo llow in g  m ech a n ism : le t  us think o f  an id ea lized  
d ip ole  state Tb|¥0 X  w h ere  Yq is  the ground state w ave fu nction , and D the 
d ip ole  o p e ra to r .

z z N

(6.4a)

H ere  Й is  the c o -o rd in a te  o f  the c e n t r e -o f -m a s s  o f  the n u cleu s, i . e .
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F I G .6 .2 .  C u rve  A : ( y , n ) c r a s s -s e c t io n  on  160 .  C u rve  B: (y  , p ) c ro ss -se ct io n  on  16О  ( f o r  so u rce  see  
R ef. [ 3 ] ) .  °

A

Й = A '1 p, and n denote a p roton  and a n eutron ; N, Z  and A a r e ,
i =  1

r e s p e c t iv e ly ,  the num ber o f n eu tron s, p ro to n s , and n u c le o n s . In the s p e c ia l 
c a s e  o f  N = Z  ( i . e .  a c a se  lik e  160  o r  40C a), e x p re s s io n  (6 .4 a ) r e d u c e s  to

A

ö  = (6 .4 b )
i =  1

T3 being  the th ird  com p on en t o f  is o sp in  o f  a n u cleon . In an alogy  w ith the 
state D l'F oX  w e can  a lso  think o f  an id e a liz e d  state w h ere  Ï>o is
g iven  by

D „ = '  \  X (? i -  V T3
i = l

(i) (6 .4 c )

w h ere  и is  the n ucleon  sp in  o p e r a to r , and (г ,  c?;)1 is  the te n so r  o f  rank  1 
obtained b y  com pou nding  r  w ith  <? (it is  a ctu a lly  p ro p o rt io n a l to r 'X  ct). A ctin g  
on the ground state ¥0, S Q g en era tes  a state o f  to ta l angular m om entum  
J = 1, p a rity  гг = -1 ,  and the tota l in tr in s ic  sp in  S = 1 [b y  v irtu e  o f  the p r e 
se n ce  o f  the sp in  v e c to r  a in E q .( 6 .4 c ) ,  and the fa c t that Yq has S = 0] . W e, 
th e r e fo r e , r e fe r  to  the state В о |¥0)> as the s p in - f l ip  d ip o le  sta te . It is  
c le a r  that, i f  ß  |f0 У is  an ex a ct e igen sta te  o f  the H am ilton ian  then a ll the 
d ip o le  tra n s ition  p ro b a b ility  w ill  be  exhausted by  this sta te , and a ll o th er 
s ta te s , b y  v irtu e  o f  th e ir  o rth ogon a lity  with th is sta te , w ill have z e r o  E l 
tra n s ition  p ro b a b ility  to  the ground state . H o w ev er , in a m o re  r e a lis t ic  
situ ation  ( i . e .  fo r  the ex a ct n u c lea r  H am iltonian ) th is id e a liz e d  state m ay 
be  sh ared  betw een  s e v e r a l actu al s ta tes , and then a ll th ese  sta tes p rod u ce  
a n on -van ish in g  E l tra n sition  p ro b a b ility . In p a rt icu la r , the s p in -f l ip  
d ip o le  state  can  m ix  fa ir ly  w e ll w ith d|¥0 >̂ through the s p in -o r b it
cou p lin g , and then w e ex p e ct the d ip o le  tra n sition  p rob a b ility  to  be la rg e  
fo r  the two states w hich  a re  m ix tu res  o f  Dj Yq and D o|^0)>. T h is idea  o f 
a sp littin g  o f  the g iant d ip o le  r e so n a n ce  into tw o stron g  com p on en ts betw een  
2 0 -25  M eV , w as f ir s t  p ro p o se d  by  F e r r e l l ,  and la te r  substantiated by  F e r r e l l ,
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F IG . 6 .3 .  V a r ia tio n  o f  d ip o le  strength  as a  fu n c t io n  o f  th e  strength  o f  sp in -o rb it  p o te n t ia l . (Y .  C . L e e , 
R e f. [ 5 ] ) .

T A B L E  6 .2 .  R E SU LTS OF E L L IO T T -F L O W E R S  AND 
S C H E M A T IC -M O D E L  CA LCU LA TIO N S

1 3 .1 1 7 .3 2 0 .4 2 2 .6 2 5 .2
C a lc u la te d  en erg y

1 3 .7 1 7 .6 2 0 .0 2 2 .2 2 5 .0

T ra n s itio n  strength 0 1 0 67 32

(°f°) 1 1 1 68 29

F a l l ie r o s  and P a l, P a l and L e e , and L ee  [5 ]. F ig u re  6. 3 d em on stra tes  this 
m ech a n ism  o f the sp littin g  o f  the 160  d ip ole  r e so n a n ce . In the deta iled  c a l 
cu la tion s  o f  R e f . [ l ]  and the sch e m a tic  m od e l ca lcu la tio n s  o f  v a r io u s  au th ors, 
the sp littin g  into two stron g  p ea k s , one around 22 M eV  and the oth er around 
25 M eV , w as w e ll  esta b lish ed . H ow ever , one o f  the d is c r e p a n c ie s  w ith e x 
p er im en ta l data, r e fe r r e d  to e a r l ie r ,  has to  do with the d is tr ibu tion  o f the 
d ip o le  stren gth  betw een  th ese  tw o le v e ls . T he r e su lts  o f  the E llio t t -F lo w e r s  
and the s c h e m a t ic -m o d e l ca lcu la tion  a re  shown in T ab le  6 .2 .  T he f ir s t  and 
secon d  lin e s  fo r  each  datum  co rre sp o n d  to  R e f. [1] and the sch em a tic  m od e l, 
r e s p e c t iv e ly . The c lo s e n e s s  o f  the tw o ca lcu la tio n s  is  v e r y  o b v io u s . The 
ex p e rim e n ta l v a lu es  o f  the strength  fo r  the e n e r g y -r e g io n  around 22 M eV 
(the in tegra ted  area  under the cu rv e ) and the r e g io n  around 25 M eV  a re  o f 
r a t io  1 :1  ra th er  than o f  the ca lcu la ted  ra tio  2 : 1 .

T he oth er d is c r e p a n c y  r e fe r r e d  to  e a r lie r  c o n c e rn s  the d ip ole  sum  r u le . 
W e sh a ll f ir s t  d e r iv e  the sum  ru le  and then d is cu s s  the d is cre p a n cy . The
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tra n sition  stren gth  B(E L)  fo r  the m u ltip ole  tra n sition  o f  o r d e r  L  (in  the p r e 
sent c a se  L  = 1) is  defined  to  be

V < « J f) ( E L > = 2j7 T i I  (6 .5 )
M

H ere  (J iM ¡) a re  the g rou n d -s ta te  angular m om entum  and its  p ro je c t io n ;
Q ^ is  the m u ltipo le  o p e ra to r , and ( a j f mf ) sp e c ify  the state that is  decay in g  
b y  the m u ltipo le  tra n sition . O nly two o f  the su m m ation  in d ices  m ¡, m f ,
M a re  a ctu a lly  independent. B (E L ) is  an ex p erim en ta lly  m ea su ra b le  quan
tity , and sum  r u le s  can  be d e r iv e d  by  sum m ing it o v e r  a ll p o s s ib le  states 
( a j f ) .  A  m o re  u se fu l sum  ru le  is  obtained by  w eigh ing  e x p re s s io n  (6 .5 )  
w ith  the e n e rg y  in vo lved  in the tra n sition , i . e .  (E f - E ¡) and then ca rry in g  
out the su m m ation  o v e r  ( a j f ). In this w ay

Y  (E f - E , )  В ^ ( с ф (Е Ь ) = Y  Y  ( Ef E i>
otJf M j .M  oiJfMf ( 6 . 6 )

The le ft-h a n d  sid e  can  be  evaluated fr o m  ex p erim en ta l data, and the r ig h t- 
hand s id e  can  be estim a ted  fr o m  th e o re t ica l co n s id e ra tio n s  in the fo l lo w 
ing m ann er. The fa c to r  (E f - E ; ) in E q .(6 .6 )  can be p rod u ced  a u tom atica lly  
out o f  the com m u ta tor  o f  o r  w ith H. T hus,

Y  (E f - E ^K o-Jf Mf J jM j>  I2
aJfMf

s  Y  [2  (E f - E i ) < J iM i |í2LM;i:|aJf M f> < a JfM f | < | ^ М ;>  
aJfMf

- | (E ¡ - E f ) < J iM i |nLNf| a J f M f > < a J f Mf | ^  | j,M ,> ]

= i  Y  « J i M j Q ^ l a J f M f X ^ J f M f  I lH n J j - n ^ H jI j jM j )
aJfMf

- < J¡ M ¡ |(HÍÍ¿,* - П ^ Н ) |ajf Mf > <arJf Mf| |^М ; >]

= I  < J i M i |nLM* [H ,n ^ ]  - [ H . n ¿ * ] n ¿ | j 1M ,>  (6 .7 а )

T he o p e ra to r  H p ro d u ce s  Ef and E ¡ , b y  de fin ition , when it op era tes  on the 
sta tes (aJ fM f) and (J jM j). The re p la ce m e n t o f (E f - E ¡) and (E ¡ - Ef ) by 
the com m u ta tors  is  thus exp la ined . In the final step  o f  E q .(6 .7 a )  we have 
u sed  the c lo s u r e  re la t io n  to  c a r r y  out the su m m ation  o v e r  (aJf M f). Next 
w e r e c a l l  that th ere  is  a sum  o v e r  M in Eq. (6. 6) and c le a r ly

X ( ‘ 1)M [H ' n -M] n M= X  ( - 1 )M [H ' n M]
M  M  M

=  X [H ' n M* (6 - 7b)
M
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A ll w e have done h e re  is  to  r e la b e l the su m m ation  index M by  -M . U sing 
E qs (6 . 7b) and (6 . 7a) in Eq. (6 . 6) w e fin a lly  obtain

£ ( E f -  E ^ B j . ^  (E L ) =-2 (2 j i+ 1 )  £  | jiM i>

“ jf Mj.Mf (6 .8 )

If th ere  is  no v e lo c ity -d e p e n d e n ce  and sp a ce -e x ch a n g e  in the n u c lea r  p oten 
tia l then [H,$7¿j] can  be substituted by  [T , Г2 ]̂ w h ere  T  is  the k in etic  en erg y  
o p e r a to r . In the sp e c ia l c a se  o f d ip ole  tra n s ition , is  g iven , a c co rd in g  
to  (6 .4 a ) ,  by

p=l  n=l

w h ere  the M -co m p o n e n t o f any v e c to r  A  is  defined  to be

A 2, Aj. j  -  + (A x + iAy)

The k in etic  en erg y  o p e ra to r  T  is  equal to a sum  o v e r  a ll n u cleon s o f the 
o p e ra to r  ( - h 2 /2 m ) V 2, m  being  the n u cleon  m a s s . U sing the b a s ic  c o m 
m utation  re la t io n s  betw een  the com pon ents o f  m om entum  and c o -o rd in a te  
one can  e a s ily  evaluate Zv [В м - [T , Dm ! ] > w hich  is  equal to (N Z /A )(tiz/m ) .

M
Thus the th e o re t ica l estim a te  o f  the sum  ru le  (6 .8 ) ,  w ith the ap prox im a tion  
o f  no v e lo c ity -d e p e n d e n ce  and sp a ce -e x ch a n g e  in the n u clea r  potentia l, is  
g iven  by

V”1 NZ h 2^  (E f - E l) В ^ ( ч )  (E L ) = -  (6 .9 )

“ Jf

The actu a l tw o -n u c le o n  potential contained  in H has so m e  v e lo c ity  d ep en 
d en ce  and sp a ce -e x ch a n g e . T h is  part o f  v  g iv e s  a n on -van ish in g  com m u ta tor  
w ith  D and h en ce  extra  con tribu tion  to  the sum  ru le  (6 .9 ) .  It is  p o s s ib le  to 
m ake re a so n a b le  estim a te  o f  th is extra  con trib u tion .

A c co r d in g  to  the h p -ca lcu la tio n  o f  the g iant r e so n a n ce , w e shou ld , th e r e 
fo r e ,  e x p e ct that the sum  on the le ft-h a n d  sid e  o f  the sum  ru le  (6 . 9) c a r r ie d  
o v e r  a ll the d ip ole  sta tes (w hich  a re  a ll below  2 5 -2 6  M eV ), should  be fa ir ly  
c lo s e  to  the estim a te  m entioned  ab ove . In p r a c t ic e , the ex p erim en ta l value 
o f  the su m  is  about h a lf o f  the estim a ted  sum  ru le  i f  one r e s t r ic t s  the sum  
on the le ft  hand side  to states up to about 25 -26  M eV . The rem ain in g  h a lf 
o f  the sum  ru le  is ,  th e r e fo re , conta in ed  in ra th e r  h ig h -ly in g  s ta te s . In the 
h p -ca lc u la t io n , h o w ev er , w e have no such sta te s . A  w ay out o f  th is d i s 
c re p a n cy  is  to extend the h p -ca lcu la tio n  b y  adm itting states with la r g e r  n um 
b e r  o f  h p -p a ir s . Such sta tes w ill  m ix  with the d ip o le  sta te , and w ill be v e r y  
h ig h -ly in g  in en erg y . The lit t le  b it o f  tran sition  strength  that they a cq u ire  
in th is w ay , w hen w eigh ted  by  the fa c to r  (E f - E ¡) can  v e r y  w e ll accou n t fo r  
the tra n s fe r  o f  about h a lf o f  the sum  ru le  to sta tes above  2 5 -2 6  M eV .
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TABLE 6. 3.  STATES OBSERVED IN 40Ca (from  R e f . [3] )

E nergy
(M e V )

7Г
J P roposed  d e s cr ip tio n

3 .3 5 0+ D e fo rm e d

3 .7 3 3 - l p - l h

3 .9 0 2+ R o ta tio n a l o n  3 .3 5  M e V  state

4 .4 8 5" l p - l h

5 .2 7 3 "  o r  1 " 3 p -3 h  basis o f  an o d d  pa rity  ro ta t io n a l band

5 .6 2 4 + R o ta tion a l on  3 .3 5  M e V  state

5 .8 9 1"

6 .2 9

3' l R o ta tio n a l o n  5 .2 7  M e V  sta te  and l p - l h
6 .5 6 3 -  J
6 .9 4 1 ' l p - l h

7 .1 2 ( > 6 +) R o ta tio n a l on  3 .3 5  M e V  sta te  ( ? )

7 .9 1 4+

8 .0 9 2 +

8 .3 7 5~ I p - l h  o r  ro ta t io n a l o n  5 .2 7  M e V  state

T he r e s u lts  fo r  40Ca and 208Pb w ill be  v e r y  b r ie f ly  d e s c r ib e d  now.
T ab le  6. 3 l is t s  the sta tes o f  40Ca and th eir  s tru c tu re . The situ ation  is  
v e r y  s im ila r  to  160 ,  n am ely  th ere  a re  som e  states w hich  a re  d e fo rm e d  
and som e  states w hich  can  be exp la ined  in  te r m s  o f 1 h p -type  c o n fig u ra 
tion s . In the c a s e  o f 208P b , th ere  a re  two ra th er  in te re stin g  r e s u lt s :
(i) The e n e rg y  o f  the octu pole  state (2 -6  M eV) can  be fa ir ly  w e ll re p ro d u ce d  
on ly  i f  one m ix e s  a la rg e  num ber (about 45) o f  h o le -p a r t ic le  co n fig u ra tion s  
having u npertu rbed  e n e rg ie s  up to  15 M eV . If, on the oth er hand, the num ber 
o f  b a s ic  sta tes is  cut down by  r e s tr ic t in g  to a lo w e r  u nperturbed  e n e rg y  (o f 
about 6 M eV ) the en erg y  o f  the c o lle c t iv e  octu p o le  state is  v e r y  u n s a t is fa c 
to r y . T h is  r e s u lt  is  show n in F ig . 6. 4 . (ii) The secon d  in terestin g  re su lt  
c o n c e rn s  the giant d ip ole  state . E x p er im en ta lly , th is c o l le c t iv e  state o c c u r s  
in the e n e rg y  r e g io n  1 3 .5 -1 5  M eV . The th e o re t ica l ca lcu la tio n s  using 
G i l le t 's  potentia l o r  the e ffe c t iv e  potentia l d e r iv e d  fr o m  the H am ada -Joh n ston  
potential (r e fe r e n c e  to  G .E . B row n  c ited  e a r lie r )  pushes th is state on ly  up 
to  about 11 M eV . T o  a ch ie v e  a sa t is fa c to r y  r e s u lt  one n eeds an a r t i f ic ia l  
b o ls te r in g -u p  o f the o v e ra ll  strength  o f  the tw o -n u c le o n  potentia l b y  about a 
fa c to r  o f  tw o.

6 .1 .1 .  D e fo rm e d  states o f  c lo s e d -s h e l l  n u cle i

T h ese  sta tes  need a sp e c ia l trea tm en t, and the th e o re tica l understanding, 
at the m om en t, is  in a ra th er  u n sa tis fa cto ry  state . A lm o s t  a ll the attem pts 
so  fa r  have been  r e s t r ic te d  to  the d e fo rm e d  0+ (6 .0 6  M eV ) state in 160 .

A t one tim e  1 h p -type  ca lcu la tio n s  w e re  done b y  s e v e r a l  w o rk e r s  on 
th is sta te . H o w ev er , it w as soon  r e a liz e d  that the m on op o le  tran sition  
fr o m  th is state to the ground state had no c o l le c t iv e -ty p e  enhancem ent
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FIG . 6 .4 . C a lcu la t io n  by G il le t  et a l. (see Ref. [3 ]) on the 3" state o f 208Pb. The  solid and dashed curves 

are T D A  and RPA results respective ly .

at a ll . T h e r e fo r e , it w as su rm ise d  fo r  som e  tim e that th is state c o n s is ts  
predom in an tly  o f  2 h p -type  co n fig u ra tio n s , although it w as ra th er  p o o r ly  
u n d erstood  at that stage w hy the 2 h p -type  states should co m e  so  low  in 
e n e rg y . Then th ere ca m e  a su ggestion  fr o m  B oh r and M otte lson  that th is 
sta te , and the s im ila r  lo w -ly in g  0+ state in m any oth er even  n u c le i, m ay 
c o rr e sp o n d  to  a d e form ed  shape o f the n u cleu s. If one lo o k s  at the N ilsson
s in g le -p a r t ic le  le v e l d ia gram  then one is  s tru ck  by  the fa c t that as one m ov es
on the p os itiv e  d e form a tion  s id e , a s in g le -p a r t ic le  le v e l fr o m  the upper sh e ll 
c o m e s  down c lo s e  to the u p p erm ost s in g le -p a r t ic le  le v e l fr o m  the lo w e r  
sh e ll, and thus the gap betw een  m a jo r  sh e lls  g ets  a lm o st  d e s tro y e d  as a r e 
su lt o f the d e form a tion . S ince the 6 .0 6  M eV  state has to  have m o re  than 
one hp p a ir , it w as su ggested  that it c o n s is ts  p r im a r ily  o f  2 hp p a ir s , and 
the re a so n  the state is  so  low , is  b eca u se  the 2 hp state tends to a cq u ire  
a d e form a tion ; a s  soon  as the n ucleu s a cq u ire s  a d e fo rm a tio n , a c co rd in g  
to  the p rev iou s  statem en t, v e r y  litt le  en erg y  is  r e q u ire d  to  tra n s fe r  a pa ir  
o f  n u cleon s fr o m  the top m ost le v e l o f the p -s h e ll  to  the lo w e st  le v e l o f  the 
s -d  sh e ll . On the b a s is  o f  th is su g gestion . B row n  and G reen  [6] did a 
p h en om en o log ica l type o f  ca lcu la tion  m ixin g  the d e fo rm e d  2 hp and 4 hp 
J = 0 states w ith the sp h e r ica l J = 0 state (w hich has 0 hp p a ir ). T h ey  a lso  
c o n s id e re d  the J = 2 state b y  m ixin g  the d e fo rm e d  2 hp and 4 hp sta te s . L et 
us denote the num ber o f the h o le -p a r t ic le  pa ir  by  N, and denote the v a r iou s  
sta tes b y  |n , J X  T hen, B row n  and G reen  (BG) have th ree  m a trix  e lem en ts  
o f  the n u c le o n -n u cle o n  potential to  dea l w ith :

M 1 = < 0 ,0  |v| 2, 0 > , M 2 = < 2 ,0 | v | 4 ,0 > , M 3 =< 2, 2 | v| 4 , 2 >

T he h ole  and p a rt ic le  sta tes o f  the d e fo rm e d  n u c le i a re  taken to be

h -s ta te : x'| p3/2, | >  + y '  |p1/2, i >  (6 .1 0 a )

"*'v
p -s ta te :'' x | d5/2, § >  + y | 2 s1/2, i >  + z | d 3/2, | >  (6 .1 0 b )
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w h ere  the secon d  num ber in each  b a s is  state den otes the angular m om entum  
p r o je c t io n . BG take the d e fo rm a tio n  ß fo r  the 2 hp state a s  ß = 0 .3 ,  and 
ß = 0 . 5  fo r  the 4 hp sta te . The v a lu es  o f  x , y , z fo r  a g iven  value o f the 
d e fo rm a tio n  is  known fr o m  N ils s o n 's  w ork . F o r  ex am p le , fo r  ß = 0 . 3 ,  
one has

x =  0 .8 2 8 , . y  = 0 .5 3 7 , z = -0 . 160

A ctu a lly , fo r  the h -s ta te  BG u sed , instead  o f the e x p re s s io n  g iven  ab ove , 
the fo llow in g  a p p rox im a tion : it w as taken to  be a pure | p i/2, I  /•state, but 
then the m a tr ix  e lem en ts  w e re  m u ltip lied  in the end by an o v e r la p  fa c to r  
( = 0. 75 fo r  ß = 0. 3) to  take in to a ccou n t the d e fo rm a tio n  o f  the sta te . In 
th is w ay  BG obtained an estim a te

Mi = -4 .3  M eV

F o r  the o th er two m a trix  e le m e n ts , M 2 and M 3, v e r y  rough  e s t im a te s , 
ba sed  on SU3 -type  w ave fu nction s w e re  u sed :

M 2 = - 1 . 8  M eV , M 3 = - 1 . 6  M eV

T h e unpertu rbed  e n e rg ie s  o f  the sta tes ap pearin g  in  the m a trix  e lem en ts 
w e re  a ls o  trea ted  as e m p ir ic a lly  ad ju stable  qu an tities . D enoting th ese  
by  E j(N ), the v a lu es  ch osen  by  BG a re

E „(0 ) = 2. 31 M eV , E 0(2) = 8. 51 M eV , E 0(4) = 6. 51 M eV

E 2(2) = 10 .83  M eV , E 2(4) = 7 .6 1  M eV

The fin a l r e s u lts  obtained a re  su m m a rized  in  T a b le  6 .4 .
In sp ite  o f  the h igh ly  s u c c e s s fu l  nature o f  th ese  r e s u lt s , one n eeds a 

m o re  fundam ental ca lcu la tio n  b a sed  on le s s  num ber o f  e m p ir ic a lly  d e te r 
m ined  qu an tities . The m o st in te re st in g  ap proach  o f th is kind started  with 
the in itia l w o rk  by  B a s s ic h i 's  and R ipka [7] . T h ese  authors co n s id e r  
sta tes o f  the type (6 . 1 0 a ,b ) and d eterm in e  the c o e ffic ie n ts  x ' , y 1 , x ,  y 
and z b y  H a r tr e e -F o c k  (H F) ca lcu la tio n s . The c lo s e d -s h e l l  g rou n d -sta te  
w ave fu n ction , |o)> sa y , w as taken a s  an in ert c o r e ,  o v e r  w hich  2 h p - and 
4 h p -type  ex cita tion s  w e re  a llow ed  to  take p la ce . The u nperturbed  s in g le 
p a rt ic le  and s in g le -h o le  e n e rg ie s  (e) w ere  ch o se n  in such  a w ay that a HF 
ca lcu la tio n  y ie ld e d  the c o r r e c t  s in g le -p a r t ic le  sp ectru m  o f  170  and 150 .
T he tw o -n u c le o n  in te ra ctio n  (V) used  fo r  th is p u rpose  w as taken to  be a 
w e ll-b e h a v e d  G au ssian  potentia l w ith R o se n fe ld  exchange m ix tu re , the sam e 
in te ra c tio n  that had been  u sed  e a r l ie r  in  the HF ca lcu la tion s  on s -d  sh e ll 
n u c le i by  o th er au th ors . The H F -H am ilton ia n  Г  fo r  the s e l f -c o n s is te n t  c a l 
cu la tion  o f N -h p  sta te s , is  defin ed  in the h arm on ic  o s c i l la t o r  r e p re se n ta tio n  
by

< n f  jm r 3 IГ  I n1 i ' j '  m r3 > = enij 6 nn, 6 6 jjt
N  N

+ 2 X n i  jm r 3; p j  v | n 'i 1 j 1 m r3; p. > - ^ < n i jm T 3; h.| v | n 'i  ' j '  m r3 ; h .>

¡ = 1 i  = l  ( 6 . 1 1 )

w h ere  t 3 is  the p r o je c t io n  o f  is o s o p in ; (n ijm ) is  a s p in -o r b it  co m p le x  
h a r m o n ic -o s c i l la to r  sta te ; p¡ and h¡ a re  sh ort-h an d  n otations fo r  the
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T A B L E  6 .4 .  SUM M ARY OF FIN A L RE SU LTS
In the f ir s t  co lu m n  Jn denotes the nth state o f angular m om entum  J.

State Energy

Am plitudes o f basis states

оn2

N  = 2 N  = 4

°г 0 0.874 0.469 0.130

6.07 -0 .262 0.229 0.937

o3+ 11.36 -0 .410 0.853 -0.323

2,+
6.92 0.377 0.923

4 11.52 0.923 -0.377

В (E2) va lu es in units o f  e2 (fm )4

Transition

B(E2) va lue

Ca lcu la ted Experim enta l

2+ ( 6.93 M e V )  -+ 0+ (0 M eV ) 5 .3 4 .6  ± 1.0

2+(6. 93 M eV ) -* 0 ¿ (6 .0 6  M eV ) 103 40

4+ (10 .36  M eV ) -*2+ (6 .93  M eV) 152 117 ± 10

quantum n u m bers o f  the p a rt ic le  and hole s ta tes . In the c a se  o f 4 -h p  
sta tes the d eterm in an ta l w ave function  to be co n s id e re d  has the fou r h o les  
in  the state (6 . 10a) and its t im e -r e v e r s e d  sta te , and the fou r p a r t ic le s  in 
the state (6 . 10b) and its t im e -r e v e r s e d  state . Such a determ inant a u to 
m a tica lly  has a tota l is o sp in  T  = 0. In the c a se  o f 2 -h p  type states th is 
is  not the c a s e  and the au th ors en su red  the c o r r e c t  tota l is o sp in  by su itable 
cou p lin g  in the determ in an ta l w ave fu n ction s. T h ere  a re  c le a r ly  th ree p o s 
s ib i l i t ie s :  1) the tw o h ole  states a re  cou p led  to  T ' = 1, and the two p a rtic le  
sta tes a re  cou p led  to  the sam e is o sp in , and fin a lly  th ese  is o sp in s  a re  cou p led  
to the total T  = 0 ; the T* = 1 state o f  two h o le s  o r  two p a r t ic le s  have to 
be a n tisy m m e tr ic  in the s p a c e -s p in  com p on en ts , and h en ce  we have on ly 
one p o s s ib ility , n am ely  the two h o le s  m ust be in  d iffe re n t s p a c e -s p in  states 
(the state (6 . 10a) and its  t im e -r e v e r s e d )  and the two p a rt ic le s  m ust a lso  
be in d iffe re n t s p a c e -s p in  states (the state (6 .1 0 b ) and its t im e -r e v e r s e d ) .
2) in the c a s e  o f  T ' = 0, on the oth er hand, the s p a c e -s p in  part o f  the two 
h o le s  as w e ll as the two p a r t ic le s  m u st be s y m m e tr ic , and hence tw o a l t e r 
n atives e x is t : the p o s s ib ility  m entioned  above and a ls o  the p o s s ib ility  of 
the two h o le s  going  to  the sa m e  state (6 . 10a) and the two p a rt ic le s  going 
to  the sam e state ( 6 . 10b). R ipka and B a s s ich is  denote th ese  th ree  p o s s i 
b i lit ie s  fo r  2 -h p  sta tes as (a ), (b) and (c ) ,  r e s p e c t iv e ly .

The s e l f -c o n s is te n t  e n e rg ie s  o f the 2 -h p  type states (c a s e s  a , b , c )  and 
the e n e rg y  o f  the 4 -h p  state a re  show n as fu nction s o f  the strength  o f  the
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tw o -b o d y  in tera ction  in F ig . 6 .5 ,  taken fro m  R e f. [7] . T h ese  e n e rg ie s  c o r 
re sp on d  to the e n e rg ie s  o f  the in tr in s ic  sta tes . A ssu m in g  that each  in tr in s ic  
state g iv e s  r i s e  to  a ro ta tion a l band, one can  find the en erg y  o f the o b se rv e d  
0+ state fr o m  the ca lcu la ted  en erg y  o f the in tr in s ic  state by su btractin g  the 
value o f A J 2 , w h ere  the p a ra m eter  A  is  ob v iou sly  re la te d  to  the m om ent 
o f  in ertia  o f the d e fo rm e d  in tr in s ic  sta te . T h is w as ca lcu la ted  by the authors 
fr o m  the cra n k in g -m o d e l e x p re s s io n , and then the en erg y  o f  the 0 + state w as 
obtained fr o m  the so lid  cu rv e  m ark ed  4p -h  by  su btractin g  A<̂  J2 X  The dotted 
cu rv e  m ark ed  E0 in F ig . 6. 5 w as obtained in th is w ay.

20

15

ï  10

FIG. 6. 5. H artree-Fock results (Ref. [7 ]) fo r 2-hp 

(a ,b ,c )  and 4 -hp states in  160 .  For further explanation 

see text.

5

0

It is  c le a r  fr o m  this d ia gram  that, fo r  su itab le  va lu es o f  the in teraction  
stren gth , the d e fo rm e d  4 -h p  state c o m e s  v e ry  m uch below  the d e fo rm e d  2 -h p  
type sta te s . T h is exp la in s w hy the 6 .0 6  M eV state o f  160  is  predom in antly  
co m p o se d  o f  4 -h p  sta tes ra th er  than 2 -h p  s ta tes . The m ain  in te re s t  that now 
l ie s  in the ca lcu la tion  o f  th is state is  w hether or  not a rea so n a b le  tw o -b od y  
in tera ction  w ill r e a lly  push down the 0+ state to 6. 06 M eV . F ro m  F ig . 6 .5 ,  
it is  c le a r  that the R ip k a -B a s s ich is  potential with a strength  around 32 M eV 
can  do the jo b . H ow ever , it is  b e lie v e d  at the p resen t tim e that m o re  
r e a lis t ic  tw o -b o d y  poten tia ls w ill not sa tis fy  th is c r it e r io n  too  w e ll.

T h ere  is  an in terestin g  ca lcu la tion  by B a n er jee  and Stephenson, J r . [8] 
w ho show that it is  lik e ly  that the 0+ state o f  160  has a d e fo rm e d  tr i-a x ia l  
shape, ra th er  than the a x ia lly  sy m m e tr ic  shape assu m ed  by the p rev iou s  
w o r k e r s . The 4 -h p -ty p e  state in a tr ia x ia l H F -p oten tia l g o e s  m uch low er 
than the s im ila r  state in an a x ia lly  sy m m e tr ic  potentia l. O nce again  th ere 
is  the need o f  doing such  ca lcu la tion s  with m o re  r e a lis t ic  tw o -b o d y  in teraction .

6 .2 .  S p h erica l v ib ra tion a l n u cle i

6 .2 .1 .  Input data

The s in g le -p a r t ic le  e n e rg ie s  a re  u su a lly  taken fro m  ex p erim en ta l data 
on n u cle i w ith c lo s e d  sh e ll p lus one n u cleon  in the neighbourhood  o f the n u cle i
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bein g  ca lcu la te d . A sm ooth  v a r ia t io n  cf th ese  e n e rg ie s  w ith the m a ss  num ber 
(A ), o f  the type A  ( i . e .  in v e r s e ly  p ro p o rtio n a l to  the ra d iu s  o f  the n u c leu s), 
is  a lso  a llow ed  in m any ca lcu la tio n s . W h e re v e r  ex p erim en ta l data a re  not 
a v a ila b le , one u se s  th e o re t ica l v a lu es  o f  the s in g le -p a r t ic le  e n e rg ie s  c a l 
cu la ted  w ith the S a x on -W ood s -ty p e  a v era g e  p oten tia l; one set o f  e n e rg ie s  
and w ave fu n ction s is  g iven  by  B lo m q v is t  and W ahlborn  [9] .

The o th er type o f input data co n c e rn s  the tw o -b o d y  poten tia l. V e ry  
lit t le  in form a tion  w as a v a ila b le  fr o m  s h e ll -m o d e l-ty p e  ca lcu la tio n s . The 
potentia l u sed  in the e a r lie s t  w o rk  by  K iss lin g e r  and S oren sen  [10] c o n s is te d  
o f  the id e a liz e d  pa irin g  in tera ction  vp , defin ed  by  Eq. (4 . 63b) and the 
sch e m a tic  qu ad ru p ole  potentia l defined  b y  Eq. (5 . 84a) w ith К = 2 . The 
B C S -eq u a tion s  a re  so lv e d  on ly  w ith  v p to  obtain  the independent q u a s i
p a r t ic le s  and the v ib ra tion a l equations o f  sep tion  5 a re  so lv e d  on ly  with 
the m od e l e x p re s s io n  (5 .8 4 a ) . In th e ir  f ir s t  paper dea lin g 'w ith  s in g le -  
c lo s e d -s h e l l  n u c le i ( i . e .  n u cle i in w hich  e ith er  the n eutron s o r  the p r o 
tons a re  in c lo s e r  s h e lls ) , th ese  authors u sed  an ad iabatic m ethod o r ig in a lly  
su ggested  b y  B oh r and M otte lson , to obtain  the v ib ra tion a l en e rg y . In the 
secon d  p a p er, dea lin g  w ith n u cle i having both n eutron s and proton s in un
f il le d  sh e lls  (the u n filled  le v e ls  o f  n eutron s w e r e , h o w ev er , m uch above 
th ose  o f  the p roton s so  that, at the stage o f ca lcu la tin g  the qua s i -p a r t ic le s ,  
the n e g le c t o f  the pa irin g  in te ra ctio n  betw een  neutron s and proton s cou ld  
be ju s t if ie d ), th ese  au th ors u sed  a m o re  so p h is tica te d  tech n iq u e , v e r y  m uch 
akin  but not e x a c tly  an alogou s to  that d e s c r ib e d  in s e c t io n  5. T he strength  
o f  the pa irin g  in tera ction  u sed  in th eir  ca lcu la tio n s  w as obtained by  fitting 
the ö d d -e v e n  m a ss  d iffe re n ce  on the assu m p tion  that th is is  a lm o st  e n tire ly  
d e term in ed  b y  the pa irin g  e ffe c t . T o  e lu cidate  the p r o ce d u r e , le t  us c o n 
s id e r  the binding e n e rg ie s  (BE ) o f  th ree  n eigh bou rin g  n u cle i and com pu te

B E (Z , N - 1 ) -2 B E (Z , N) + B E (Z , N + l)

w h ere  the le t te r s  in  p a ra n th esis  denote the p roton  and neutron  n u m bers o f 
the n u c le i. The n ucleu s (Z ,N )  is  e v e n -e v e n , w hile  the o th er tw o a re  e v e n - 
odd ( i . e .  odd m a ss ). If one ig n o re s  the e ffe c t  o f  the re s id u a l qua s i -p a r t ic le  
in te ra ctio n  th is quantity should be equated to  2 E min, w h ere  Emin is  the e n e rg y  
o f  the s in g le -n e u tro n  qua s i -p a r t ic le  state that r e p re s e n ts  the ground state 
o f  the two o d d -m a s s  n u c le i. The strength  o f the p a irin g  fo r c e  d e term in es  
the e n e rg y  gap and through that the quantity and hence a determ in a tion
o f  the fo r m e r  b e c o m e s  p o s s ib le  in  th is m ann er. K iss lin g e r  and S oren sen  
found the stren gth  o f the p a irin g  fo r c e  G to be g iven  by  (1 9 /A ) and (2 3 /A ) M eV 
in  the n eigh bou rhood  o f Sn and Pb r e s p e c t iv e ly . T he strength  o f  the quadrupole 
fo r c e  X w as d eterm in ed  by  fittin g  the en erg y  o f  the f ir s t  ex cited  2+ state . 
Instead  o f  treatin g  X as an ad ju stab le  p a ra m eter  fo r  each  in div idual n u cleu s, 
th ey  tr ie d  to attribute a sm ooth  A -d e p e n d e n ce  to  th is p a ra m eter  so  that the 
tren d  o f  the 2+ le v e l o f  a w hole  set o f  n u cle i in  a p a rticu la r  m a ss  num ber 
r e g io n  is  fa ir ly  w e ll r e p ro d u ce d . The fin al value obtained by th ese  authors 
is  g iven  by  (5 /4тг) (n + 3 /2 )2 b 2X = 110 A ’ l  w h ere  b is  the h a rm on ic  o s c i l la t o r  
constan t and n is  the num ber o f h a rm on ic  o s c i l la to r  quanta a s so c ia te d  with 
m o s t  o f  the le v e ls  (i. e . w ith the ex cep tion  o f  the le v e l that c o m e s  down fr o m  
the upper sh e ll through the sp in  o rb it  cou p lin g ) o f  the u n filled  m a jo r  sh e ll.

In th e ir  secon d  paper K iss lin g e r  and S oren sen  u sed  equal p a ir in g - fo r c e  
stren gth  fo r  the n eutron s and p ro to n s , G n and G p. T h ey  ig n ored  pa irin g
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FIG . 6 .6 . Energies o f 2pty2 and l f 5y2 s in g le -pa rtic le  states measured w ith  respect to the 2pa/il-state, plotted 

as a fun ction  o f mass number.

e ffe c ts  betw een  a neutron  and a p roton  fr o m  argum ents stated e a r l ie r .  The 
qu adru pole  fo r c e  betw een  tw o n eu tron s, tw o p ro ton s  and betw een  a neutron  
and a p roton  w as assu m ed  to have the sam e stren gth : Xn = Xp = X np. E s t i 
m ates o f  th ese  quan tities and G n, Gp w e re  taken fr o m  the f ir s t  p a p er . In 
ad d ition , they u sed  a sh o r t -r a n g e  (6 -fu n ctio n -ty p e ) potentia l betw een  a 
neutron  and a p roton  and c o n s id e re d  e x p lic it ly  the e ffe c t  o f  th is  in te ra ctio n  
in changing the p roton  s in g le -p a r t ic le  e n e rg y  as the n eutron  num ber in c r e a s e s  
and v ic e  v e r s a . T h is , in  fa c t , am ounts to  c o n s id e r in g  on ly  the con trib u tion  
o f  the 6 -fu n ction  potentia l to the a v era g e  potentia l acting  on a p ro ton , o r  
a n eutron . A p a rt fr o m  th is s p e c if i c  change in the s in g le -p a r t ic le  e n e rg ie s  
w ith  m a ss  n u m ber, the sm ooth  A -ty p e  depen den ce  o f  th ese  quan tities m e n 
tioned  e a r l ie r  and another sm ooth  A -d ep en d en t te rm  (to r e p re s e n t  the change 
o f  s p in -o r b it  cou p lin g  e ffe c ts  w ith A ) w e re  a ls o  co n s id e r e d . F o r  the d eta ils  
the re a d e r  is  r e fe r r e d  to  the A ppendix  II o f  the se co n d  p aper by K iss lin g e r  
and S oren sen .

M any o f  the la te r  w o rk e r s  have u sed  m o re  deta iled  fo r m s  o f  the tw o - 
n ucleon  potentia l. A rv ie u  and c o -w o r k e r s  [11] have u sed  a sp in -d epen d en t 
G aussian  p oten tia l, w h ose  ran ge  depth and the ra t io  o f  s in g le t -t o -t r ip le t  
stren gth s w e re  trea ted  a s  p a ra m e te rs  in a le a s t -s q u a r e s  fit to  the en erg y  
le v e ls  o f  o d d -m a s s  n u c le i. T he sa m e potentia l w as then u sed  to  p re d ic t  
the 2+ state o f  the even  n u c le i. The w o rk  w as done in the Sn- and P b -r e g io n s .

In the Ni and Sn r e g io n s  m any d iffe re n t w e ll-b e h a v e d  ce n tra l poten tia ls 
have b een  u sed  [12 , 13] . A set o f  p h en om en o log ica lly  determ in ed  tw o -b od y  
m a tr ix  e lem en ts  due to  the A rgon n e g rou p  have a ls o  been  u sed  [12] . T w o - 
b od y  m a trix  e le m e n ts , startin g  fr o m  the r e a lis t ic  H am ada-Joh nston  tw o - 
n u cleon  in te ra ctio n  have been  ca lcu la ted  in the N i-r e g io n  by  Kuo [14] and
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in  th'e S n -re g io n  ca lcu la ted  and applied  by  G m itro  and c o -w o r k e r s  [15] . The 
la tter  w o rk e r s  have a ls o  u sed  the sep a ra b le  n o n -lo c a l T abakin  in tera ction .
In both R e fs  [14 , 15] , the e ffe c t  o f  ex cita tion  o f  the c o r e -n u c le u s , in r e 
n orm a liz in g  the tw o -b o d y  m a trix  e lem en ts , have been  taken into a ccou n t. 
G m itro  g iv e s  a d eta iled  a ccou n t of th is type o f  w o rk  in  th ese  P ro ce e d in g s .

6 .2 .2 .  The in v e rse -g a p -e q u a tio n  m ethod

G ille t  and R ho [16] have su ggested  a new w ay o f  supplying the input to 
the q u a s i-p a r t ic le  ca lcu la tio n . T h is is  now known as the in v e r s e -g a p -  
equation  m ethod . T o  understand the p r in cip le  o f  th is ap p roa ch , le t  us 
co n s id e r  E q .(4 .7 1 )  and e x p lic it ly  pu ll out the a ttra ctiv e  strength  -V 0 of 
the potentia l; denote the r e s t  o f  the tw o -b o d y  m a trix  e lem en t by  m 0( j j '  ) 
w h ere  the su b scr ip t  r e fe r s  to  the tota l J. In th is m anner Eq. (4. 71) can 
be re w r itte n  as

Gfc)Aj=I  (бл2а>
3*

w h ere

- Щ .  <6 Л 2 Ь >

and

-V 0 m 0( j j ' )  = ( jjJ  = 0, M = 0 1 v| j ' j 1 J = 0, M = 0) (6 .1 2 c )

If the strength  o f  the potential V 0 is  treated  as an unknown quantity at the 
beginning o f  the ca lcu la tion  and m 0( j j '  ) and Ej fo r  a ll j and j 1 a re  taken to 
be known, E q .(4 .  12a) b e c o m e s  the eigenvalue — e ig e n v e cto r  equation  fo r  the 
known m a trix  M o f w hich  V^1 is  the e igenvalue  and the quan tities Aj are  
p ro p o rtio n a l to the e lem en ts o f  the e ig e n v e cto r . In g e n e ra l, M w ill have
m any e ig en v a lu es ; h ow ev er , the eigenvalue fo r  w hich  the e lem en ts  of
the e ig e n v e cto r  a re  a ll r e a l  p os itiv e  quantities w ill a lone s e r v e  our pu rpose  
b e ca u se  the e n e rg y -g a p  p a ra m eters  m ust n e c e s s a r ily  be r e a l and p o s itiv e . 
Since the m a trix  e lem en ts on the r igh t-h an d  s id e  o f  Eq. (6 . 12c) a re  a ttra c tiv e , 
the m a trix  M is  p os itiv e  defin ite  and b y  a th eorem  due to F ro b e n iu s , such 
a m a trix  has one, and on ly  on e, eigenvalue fo r  w hich  the e ig e n v e cto r  has 
a ll the e lem en ts p o s it iv e . T h is th eorem  guarantees the type o f so lu tion  we 
w ant, and in v iew  o f the uniqueness o f  the la tter  th ere  is  no am bigu ity  in 
the m ethod .

It is  c le a r ,  h ow ev er , that the q u a s i-p a r t ic le  e n e rg ie s  Ej fo r  a ll j m ust 
be known at the beginning o f an IGE ca lcu la tion . U sually , one a ssu m e s  that 
the lo w e st  few  le v e ls  o f  the o d d -m a ss  n u cle i w ill be v e ry  n ea r ly  pure s in g le 
q u a s ip a rt ic le  type sta tes . T h e re fo r e , th eir  o b se rv e d  e n e rg ie s  can  be d ir e c t ly  
fed  as input data fo r  Ej in the IGE m ethod . The re su lts  w ill be u n re lia b le  
to the extent that th is startin g  h ypothesis about the nature o f  the le v e ls  o f 
the o d d -m a ss  n u cle i g o e s  w ron g .
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The fo llow in g  ch e ck  fo r  the co n s is te n c y  o f  the m ethod is  u su a lly  ap p lied . 
W e have a lre a d y  re m a rk e d  that the e lem en ts o f  the s p e c ia l e ig e n v e cto r  o f  M, 
in w hich  we a re  in te re s te d , a re  p ro p o rtio n a l to the e n e rg y  gap p a ra m e te rs  
Aj ; th is is  b e ca u se  the sy stem  o f E qs (6 . 12a) fo r  a ll j fo rm  a set o f  h o m o 
gen eou s equations fo r  the unknown quan tities A j and as such re m a in  u n a ltered  
through the m u ltip lica tion  o f any o v e ra ll  c o n s ta n t^ s a y ,!  . L et us denote the 
e lem en ts  o f  the e ig e n v e cto r  by  A j and then A j = § A j w h ere  I  has to  be d e te r 
m in ed . F o r  this p u rp ose , one f ir s t  w r ite s  down (e j - X) fr o m  Ej and A j

(Cj - X ) 2 + A ?  = E 2

or

(€j -X ) = ±  { E 2 - A j}^  = ±  { E 2 -Ç 2 A 2}* (6 . 13)

T o  settle  the sign  o f  th is e x p re s s io n  one h as, on ce  again , to  take r e c o u r s e  
to  ex p erim en ta l fa c ts . The in form ation  needed  is  w hether o r  not the o c cu p a 
tion  p ro b a b ility  v ?  o f  the le v e l j as m ea su red  in n u cleon  stripp in g  or  p ic k 
up ex p erim en ts  e x ce e d s  A c co r d in g  to  the in terp re ta tion  o f  X g iven  in the 
su b se ct io n  fo llow in g  E q .(4 .6 0 ) ,  we know that (e j - X) is  negative or  p o s it iv e , 
depending on w hether v 2 is  g re a te r  o r  le s s  than r e s p e c t iv e ly . Having 
settled  the sign  in th is m ann er, the e x p re s s io n  (6. 13) fo r  (ej - X) b e c o m e s  
sp e c if ie d  to  the extent o f  an as yet undeterm in ed  ? . The la tter  is  then 
d e term in ed  by  u sing  e x p re s s io n  (6. 13) in  E q .(4 .5 0 ) .  S ince Ej has to  be 
la r g e r  than A j , i . e .  С A j,  w e con clu d e  that the p o s itiv e  num ber I m ust be 
le s s  than (E j /A j) .  V e ry  often  E q .(4 .5 0 )  cannot be e x a ctly  sa tis fie d  with 
th is r e s t r ic t io n  on 5 . In p r a c t ic e , th e r e fo re , one u se s  the value o f  § , su b 
je c t  to  the ab ove  r e s t r ic t io n ,  such  that the depa rtu re  o f  the r igh t-h an d  side 
o f  Eq. (4 . 50) fr o m  the g iven  n u cleon  num ber A be a m in im um . W hen 
(e j - X) fo r  a ll the le v e ls  have been  co m p le te ly  d e term in ed  in th is m ann er, 
one can  e a s ily  ca lcu la te  the e n e rg ie s  €j o f  a ll the s in g le -p a r t ic le  sta tes (not 
q u a s i-p a r t ic le )  with r e s p e c t  to  one o f th em , say  £j., to be trea ted  a s  the 
r e fe r e n c e  state . If the w hole p ro ce d u re  is  rep ea ted  fo r  a few  o d d -m a ss  
n u cle i in a g iven  r e g io n  then the va lu es o f  r e la t iv e  to the r e fe r e n c e  state 
can  be plotted  as a fu nction  o f  the m a ss  n u m ber. F o r  the in tern a l co n s is te n cy  
o f the w hole  ap p roa ch  w e m ust ex p ect that the depen den ce on the m a ss  num ber 
o f  th is cu rv e  be as sm ooth  and as slow  as p o s s ib le . The r e su lt  o f  th is c o n 
s is te n cy  ch e ck  fo r  the o d d -m a ss  N i- is o to p e s  a re  show n in F ig . 6 .6 ,  taken 
fr o m  the w o rk  o f  G am bhir [17] . The th ree  cu r v e s  in each  d ia gram  la be lled  
E IC , EIA and s - ô  c o r r e s p o n d  to  th ree  d iffe re n t se ts  o f  tw o -b o d y  m atrix  
e lem en ts  fo r  the d e ta ils  o f  w hich  the re a d e r  is  r e fe r r e d  to the or ig in a l paper. 
It is  c le a r  that the co n s is te n cy  ch e ck  o f  the IGE m ethod is  ra th er  d istu rb in g , 
w h ich , in tu rn , m ay im p ly  that som e  o f  the actu a l le v e ls  o f  the o d d -m a ss  
n u cle i u sed  in  the ca lcu la tio n  can not be in terp re ted  as fa ir ly  good  o n e -q u a s i
p a rt ic le  sta te s .

6 .2 .3 .  Salient fe a tu re s  o f  n u m e rica l ca lcu la tio n s

T he IGE m ethod o r  the s tra ig h tforw a rd  so lu tion  o f  the B C S -equ ation s 
(as done in R e fs  [1 0 ,1 1 ] ) both y ie ld  a set o f  v a lu es  fo r  the q u a s i-p a r t ic le
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e n e rg ie s  Ej and the co rre sp o n d in g  tra n sfo rm a tio n  c o e ffic ie n ts  and Vj .
W ith th ese  qu an tities one then so lv e s  the v ib ra tion a l equation  fo r  the even  
n u c le i. T he s in g le -q u a s i-p a r t ic le  e n e rg ie s  can  be ch eck ed  against the en erg y  
le v e ls  o f  the o d d -m a ss  n u c le i, w hile the lo w e st  e igenvalue o f the v ib ra tion a l 
equation  g iv e s  the e n e rg y  o f the f ir s t  2 state o f  the even  n u c le i. T h is  g e 
n e ra l p ro g ra m  w as c a r r ie d  out in the w ork  o f  R e fs  [10 , 11] . The B (E 2) va lu es 
w e re  a lso  ca lcu la ted  fob  the d eca y  o f  the 2 + -s ta te  to  the ground sta te . F o r  
the o d d -m a ss  n u cle i K is s lin g e r  and S oren sen  [10] ca lcu la te d  m agn etic  and 
qu adru pole  m om en ts . E x p re ss io n  (5 .8 9 b ) fo r  any s in g le -p a r t ic le  type o p e r a 
tor  can  be u sed  to  evaluate its  exp ecta tion  value in  a o n e -q u a s i -p a r t ic le  
sta te . O nly the f ir s t  lin e  o f  th is e x p re s s io n  co n tr ib u te s , b eca u se  the secon d  
lin e  ch a n ges the num ber o f  q u a s i-p a r t ic le s ,  acting  on any sta te . One can  
e a s ily  v e r i fy  that the m a gn etic  and qu adru pole  m om ent o f  a s in g le -q u a s i
p a rt ic le  state w ill be equal to that o f a s in g le -p a r t ic le  sta te . Thus the q u a s i
p a rt ic le  th e o ry  cannot g ive  any a g reem en t w ith the o b se rv e d  va lu es o f  these 
qu an tities ú n le ss  one u ses  e ffe c t iv e  g y rom a g n etic  ra t io s  and an e ffe c t iv e  
ch a rg e  fo r  the n u cleon . A n understanding o f  the la tter  quantities i s ,  h ow 
e v e r , beyond the ca p a b ility  o f  a th eory  that t r ie s  to  in te rp re t o b se rv e d  ground 
state o f  o d d -m a s s  n u cle i as a o n e -q u a s i -p a r t ic le  sta te . F o r  the m agnetic 
m om en t, K is s lin g e r  and S oren sen  [10] u sed  a ¿ -fu n ct io n  in tera ction  to p r o 
duce ad m ixtu re  o f  o th er s h e ll -m o d e l con fig u ra tion s  w hich  cou ld  then cau se  
ad d ition a l con trib u tion  to  the m agn etic  m om en t. Sw itching on o f  the q u a s i
p a rt ic le  in te ra ctio n  is  not o f  v e r y  m uch h elp . T h is  p rod u ces  a m ixtu re  of 
th r e e -q u a s i -p a r t ic le  sta tes  with the o n e -q u a s i-p a r t ic le  sta te . T h e re  is  a 
co h e re n t m ixtu re  o f  tw o -q u a s i-p a r t ic le  sta tes w hich  is  iden tified  as the 
v ib ra tion a l 2 + state (ph on on -sta te ) o f  the even  n u c leu s . So th ere is  a s p e c ia l 
th r e e -q u a s i -p a r t ic le  state that can  be look ed  upon as a s in g le -q u a s i-p a r t ic le  
cou p led  to  the phonon. In the w o rk  o f  R e f. [10] , the ad m ixtu re  o f  th is state 
to the o n e -q u a s i-p a r t ic le  state w as taken in to co n s id e ra tio n . T h is  type o f 
a d m ixtu re  ch a n ges the e le c t r ic  quadrupole  p r o p e r t ie s , but d oes  not v e r y  m uch 
change the m a gn etic  m om en t. F o r  a ll the deta iled  r e s u lts ,  the re a d e r  is  
r e fe r r e d  to  the or ig in a l p a p ers  [1 0 ,1 1 ] .

6 .2 .4 .  E xten sion  o f R P A -w o r k  — m od ified  T a m m -D a n co ff  m ethod

The w o rk  re v ie w e d  above  b e c o m e s  n e a r ly  u s e le s s  i f  one attem pts to 
exp la in  the le v e ls  above the f ir s t  2+ state in even  n u cle i and le v e ls  above 
the f i r s t  few  in  the o d d -m a ss  n u c le i. A c co r d in g  to the s im p le  R P A -th e o ry , 
one e x p e cts  to  get sta tes at rou g h ly  tw ice  the en erg y  o f the ca lcu la ted  2 
state w hich  have 2 -p h on on  ( i . e .  a sp e c ia l ad m ixtu re  o f fo u r -q u a s i-p a r t ic le  
sta tes) c h a r a c te r . The oth er tw o -q u a s i-p a r t ic le  sta tes w hich  a re  orth ogon al 
to  the on e -p h on on  state a ls o  o c c u r  in  th is g e n e ra l neigh bou rhood  o f  en erg y . 
H en ce it b e c o m e s  im p e ra tiv e  to d ev e lop  a th e o ry  that a llow s the adm ixtu re 
o f  tw o - and fo u r-q u a  s i -p a r t ic le  sta tes . S ince the z e r o -q u a s i -p a r t ic le  state 
is  cou p led  b y  the part H40 o f  the q u a s i-p a r t ic le  r e s id u a l in te ra ctio n  to the fo u r - 
q u a s i -p a r t ic le  s ta te s , one is  led  to the d iagon a liza tion  o f  the q u asi - p a rt ic le  H am il - 
tonian in the sp a ce  o f  z e r o ,  tw o - and fo u r -q u a s i-p a r t ic le  sta te s . T h is  p r o c e 
dure is  u su a lly  c a lle d  the m od ified  T a m m -D a n co ff  ap p rox im a tion  (M TDA) 
b e ca u se  it is  a natural ex ten sion  o f  the d ia gon a liza tion  in the tw o -q u a s i
p a r t ic le  sp a ce  w h ich  is  known by  the nam e T D A . Just as the TD A can  be 
g e n e ra liz e d  to  R P A  by  a llow in g  both c re a t io n  and d estru ction  o f  q u a s i
p a rt ic le  p a ir s , the M TDA m ethod can  a lso  be g e n e ra liz e d  by  a llow in g  the
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d e stru ctio n  o f  tw o - and fo u r -q u a s i-p a r t ic le  sta tes togeth er with th e ir  c re a tio n . 
Such a treatm en t is  ca lle d  H igher R andom  P h ase A p p rox im a tion  (H R P A ). F o r  
d e ta ils  o f  th ese  m ethods the r e a d e r  is  r e fe r r e d  to  the w o rk  o f  R e fs  [13 , 12] .
In the re v ie w  presen ted  h e re  w e sh a ll m ention  on ly  a few  im portan t points 
o f  the M T D A -a p p roa ch .

F o r  the o d d -m a ss  n u cle i the M T D A -ca lcu la tio n  should adm ix o n e - ,  
th re e -, and f iv e -q u a s i-p a r t ic le  sta tes . In the ca lcu la tio n s , done so  fa r , 
on ly  the ad m ixtu re  o f o n e - and th r e e -q u a s i-p a r t ic le  sta tes has been  taken 
in to accou n t.

One o f  the im p ortan t poin ts about the th r e e - ,  and fo u r -q u a s i-p a r t ic le  
b a s is  sta tes  w as f i r s t  pointed out by Saw ick i [13] who w as a lso  the o r ig in a to r  
o f  the m ovem en t tow ards H RPA and M TDA m ethods and ca lcu la tio n s . It is  
w e ll-k n ow n  fr o m  the s h e ll -m o d e l c la s s if ica t io n  o f  states that a llow ed  an ti
s y m m e tr ic  sta tes o f  th r e e -  and fo u r -fe rm io n s  in  the le v e l (n ij)  span on ly  a 
su bsp ace  o f  a ll p o s s ib le  sta tes . The sam e r e su lt  is  true a lso  fo r  q u a s i
p a r t ic le s  b e ca u se  they a re  a lso  fe r m io n s . L e t us co n s id e r  a th r e e -q u a s i -  
p a rt ic le  state o f  the type [ ( b j ,  b?)J ' , bjt] ^  , w h ere  J and M a re  the total 
angular m om entum  and its  p r o je c t io n , J 1 is  the angular m om entum  o f the 
f ir s t  tw o q u a s i-p a r t ic le s ; the th ird  q u a s i-p a r t ic le  has then been  cou p led  
to  J ' to  p rod u ce  the to ta l J. A c co r d in g  to  our o b se rv a tio n  a b o v e , m any 
such states w ill id e n tica lly  van ish , and so m e tim e s  tw o o r  m o re  sta tes with 
d iffe re n t J 1 but sam e J w ill be lin e a r ly  dependent on each  o th er . The sam e 
kind o f  ob se rv a t io n  h olds fo r  fou r  q u a s i-p a r t ic le  sta te s . If w e r e c a l l  our 
e a r lie r  w o rk  on TD A then the p ro ce d u re  fo r  d er iv in g  the M TDA equations 
b e c o m e s  pretty  o b v io u s : w e w ill  have to evaluate the com m u ta tor  o f  H with- 
o n e - and th r e e -q u a s i -p a r t ic le  c re a tio n  o p e ra to rs  (in  the c a se  o f  odd n u cle i) 
and tw o - and fo u r -q u a s i-p a r t ic le  o p e ra to rs  in the ca se  o f  even  n u c le i. Since 
a ll th r e e -q u a s i -p a r t ic le  c re a tio n  o p e ra to rs  o f  the above types and s im ila r  
fo u r -q u a s i-p a r t ic le  c re a tio n  o p e ra to rs  a re  not independent, it is  c le a r  that 
w e have to  e x e r c is e  cau tion  in obtain ing a set o f  equations in volv in g  a set 
o f  non -redu ndant o p e ra to rs .

In the w o rk  o f R e f. [12] a co m p le te  se t o f  a n tisy m m e tric  states o f  th re e - 
and fo u r -q u a s i-p a r t ic le  sta tes have been  co n stru cte d  by  standard sh e ll-  
m od e l m ethods and the m a trix  e lem en ts  o f  the q u a s i-p a r t ic le  in tera ction  
con n ectin g  d iffe ren t sta tes have been  obtained b y  a com bin ation  o f  s h e ll -  
m od e l and secon d -q u a n tized  tech n iq u es .

S aw ick i and c o lla b o r a to r s  [13] fo llo w e d  a som ew hat d ifferen t technique 
ba sed  on the Schm idt o rth ogon a liza tion  p ro ce d u re  to co n s tru ct th eir  non- 
redundant se t o f  sta tes .

A n oth er im p ortan t cau tion  that h a s ’ to be e x e r c is e d  in th is kind o f  w ork  
w as a ls o  f ir s t  pointed out by Saw ick i [13] . T h is  has to do w ith the e lim in a 
tion  o f  sp u r iou s  sta tes . The e x is te n ce  o f  a sp u riou s  0 + state in the tw o- 
q u a s i-p a r t ic le  sp a ce  is  fa ir ly  w e ll-k n ow n  to e a r lie r  w o rk s . T h is sp u riou s 
state can  be d e r iv e d  in  the fo llow in g  w ay. C on sid er  the e ffe c t  o f  the total 
num ber o p e ra to r  N op eratin g  on the ground state Ï q . Since

(u a -  ^ > Ь 1 Ь а +  u a v a s a ( b I b -Ta +  b -aba)  
a a a a

and b j b a as w e ll as b_a b a p rod u ce  z e r o  acting  o n ï 0 , w e have

> + ) ^ u a v a s a b I b-Ta l ' !' o >
a a

Ñ K >  = y  v a2K
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In the q u a s i-p a r t ic le  th eory  one equates Z /V a2 w ith  the n u cleon  num ber A .

H ad th ere  b een  a s t r ic t  c o n se rv a t io n  o f  the num ber o f  n u c le o n s , w e th e r e 
fo r e  should have obtained on ly  the f ir s t  te rm  on the r igh t-h an d  s id e . The 
secon d  te rm  o f th is e x p re s s io n , i . e .

|ÿ>= ^ u ava s a btab t a | ï„>  
a

is ,th u s ,a n  e n tire ly  sp u riou s state . B y  doing the an gu lar-m om en tu m  coup ling  
fo r  s p h e r ica l n u c le i, w h ere  u a, v a do not depend on the p ro je c t io n  quantum 
n u m ber, one can  e a s ily  show that th is r e p re s e n ts  an angular m om entum  z e r o  
sta te .

A n y  fo u r -q u a s i-p a r t ic le  state obtained  by  coup ling  a tw o -q u a s i-p a r t ic le  
state to  the above  is ,  th e r e fo re , sp u r iou s . S im ilar ob se rv a tio n  h olds 
fo r  th r e e -q u a s i -p a r t ic le  sta tes . T h ere  can  a ls o  be m o re  co m p lica te d  sp u riou s 
states in the fo u r -q u a s i-p a r t ic le  c a s e ; fo r  ex am p le , one can  exam ine the 
r e s u lt  o f  Ñ2 on ¥0 and iden tify  an additiona l sp u riou s sta te , and so  on. In 
the w ork  o f  R e f. [12] , the sp u riou s  sta tes a r is in g  fr o m  | ^ Х  as defined  ab ove , 
have been  e x p lic it ly  p ro je c te d  out. In R e f. [13] the au th ors have taken c a r e  
to  e lim in ate  som e  m o re  sp u r iou s  sta tes . H ow ever , th is sch em e  o f obtaining 
new sp u riou s  states b y  taking h igh er p ow ers  o f  N apparently  lo o k s  lik e  a 
n e v e r -e n d in g  p r o ce d u r e . It s e e m s  that the p ro ce d u re  should be better  u n d e r
stood  b e fo r e  g e n e ra liz in g  it too  m uch.

F o r  a ll the m a th em a tica l d eta ils  and n u m e rica l r e s u lts  the r e a d e r  is  
r e fe r r e d  to  the or ig in a l p a p e rs . Only a few  im portan t a sp e cts  o f  the re su lts  
w ill be d e s c r ib e d  b e low .

F ig u re  6 .7 ,  taken fr o m  Saw icki [18] , show s the unperturbed  e n e rg ie s  
o f  2 - ,  4 -  and 6 -q u a s i-p a r t ic le  states in the Sn and C d -r e g io n . It is  c le a r  
that th e re  is  c o n s id e ra b le  o v e r la p  betw een  the upper part o f  the 2 q p -sp e c tru m  
w ith the lo w e r  part o f  the 4 q p -sp e c tr u m , and so  on . In the M TDA ca lcu la tion , 
a con ven ien t u pper c u t -o f f  to the unperturbed  e n e rg y  is  u su a lly  ch osen  at the

н и ■ Ü

я 6 q p 6 q p

4 t f P  7 Q

4 q p

5.9

W//////¡/A 2 q p
■r.:. = -  -

2.1

0

Ш /////Л ,
2 q p

Sn Cd

FIG . 6 .7 . A  schem atic representation o f the bands o f the possible tw o -, four- and s ix-qp "unperturbed" 

exc ita tion  energies o f IQ M  in  the cases o f Sn and Cd  appropriate to 0+, 2+, 4+, e tc . (energies in  M eV).
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T A B L E  6 .5 .  Q U A S I-P A R T IC L E  CO N TRIBU TIO N  TO TH E M AG NETIC 
M OM EN T IN N U C LEA R M AG N ETO N , l q p  DEN O TES TH E VA LU E FOR 
A  S IN G L E -Q U A S I-P A R T IC L E  S T A T E , AND /л IS THE VALU E 
C A L C U L A T E D  W ITH THE Q U A S I-P A R T IC L E  W A V E  FUNCTIONS 
HAVING T H R E E -Q U A S I-P A R T IC L E  A D M IX T U R E , (se e  R e f. [12] )

f v A  = 59 A  = 61 A  = 63 A  = 65

1/2" 0.64 0.74 0 .75 0.68 0.65

3/2" -1 .91 -2 .14 -2 .22 -2 .12 -1 .97

5/2" 1.36 1.35 1.36 1.38 1.38

T A B L E  6 .6 .  M l-T R A N SIT IO N  STRENGTH  В (M l)  IN UNITS OF 
SQUARED N U CLEAR M AGNETON (R e f. [12] )

В (M l)

Transition Nucleus M T D A xqp

1 /2 --» 3 /2 - 59 0.91 1.05

61 0.88 1.02

3/2~ -*■ 1 /2 “ 63 2.00 2 .05

65 2 .16 2.13

e n e rg y  at w hich  the 6qp e n e rg ie s  start overla pp in g  w ith the 4 q p -e n e rg ie s . 
U n less such a c u t -o f f  is  ch osen  the num ber o f 4 q p -s ta te s  b e c o m e s  v e r y  la rg e  
and one g ets  e n e rg y  m a tr ic e s  o f  t e r r ib ly  la rg e  s iz e  to  d ia gon a lize .

T ab le  6 .5  l is t s  the m agn etic m om ent o f s e v e r a l o d d -m a ss  n u c le i in the 
N i-r e g io n , ca lcu la ted  in R e f. [12] . A s  re m a rk e d  e a r l ie r ,  the ad m ix tu re  o f 
the th r e e -q u a s i -p a r t ic le  sta tes ca u se s  v e r y  litt le  change in  the m agn etic 
m om en t; the ca lcu la ted  ch an ges a re  o f  the sam e o rd e r  o f  m agnitude a s  the 
b a s ic  u n certa in ty  o f  about 0 .2  nm (n u clear  m agneton) in heren t in the m a g 
n etic  m om en t o p e ra to r  it s e lf .  T ab le  6 .6  show s s im ila r  r e su lts  fo r  the M l -  
tra n sition  stren gth , on ce again  the sam e ob se rv a t io n  about the u nim portan ce  
o f th r e e -q u a s i -p a r t ic le  adm ixtu re  is  seen  to  h old . T a b le  6 .7  l is t s  the E 2 - 
tra n sition  strength  o f o d d -m a ss  n u c le i. H ere  the M TDA valu es a re  s o m e 
tim es s ig n ifica n tly  d iffe re n t fr o m  the o n e -q u a s i -p a r t ic le  v a lu es .

T a b le s  6 .8 ,  6 .9  and 6. 10 show  som e  o f  the r e s u lts  o f  ca lcu la tion  in 
R e f . [12] on the even  N i-is o to p e s . T he o b s e rv e d  B (E 2) va lu es a g re e  w e ll 
w ith the ca lcu la ted  va lu es w ith a fa ir ly  c o n s is te n t c h o ic e  o f  the e ffe ct iv e  
ch a rg e  o f  a n u cleon . T h ere  a re  s e v e r a l im portan t fea tu res  re v e a le d  by  the 
p ercen ta ge  stren gth  o f  the fo u r -q u a s i-p a r t ic le  sta te s , show n in b ra ck e ts  
in T ab le  6 .8 .  In the f ir s t  p la ce , the f ir s t  e x c ite d  0+ arid 4+ a re  n ev er  p r e d o 
m inantly  fo u r -q u a s i-p a r t ic le  sta tes and h ence  th e ir  in terp reta tion  as tw o - 
phonon states is  not v a lid . Such an in terp re ta tion  is  to le ra b ly  good  on ly  fo r  
the secon d  2+ -s ta te . In a ll c a s e s  th ere  is  a s ign ifica n t adm ixtu re o f  tw o -
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T A B L E  6 .7 .  E 2 -TRANSITION STRENGTH IN UNITS OF eeff F  W H ERE 
F  = IO '13 cm  AND e eff IS THE E F F E C T IV E  CHARGE OF THE NEUTRON 
( R e f . [1 2 ])

Transition Interaction

A

InnQP

= 59

M T D A

A  =

гчр

61

M T D A

1/2" 3/2- EIC 6.1 10.8 0. 53 3. 5

EIA 6.2 12.9 0.50 6.6

QQ 6.9 12.4  , 0.77 2 .9

S-Ó 6 .6 3.6 0.59 0.19

5/2'-+ 3 /2 ‘ EIC 1.5 0.46 0.02 0.32

EIA 1.6 0.98 0.03 0.16

0 0 1.6 0.05 0.03 1.55

S-Ô 1.5 3 .9 0.02 1.2

A = 63 A == 65

3/2- -» 1/2- EIC 2.0 1.1 15.5 20.2

EIA 2.2 0.38 15.6 8 .0

0 0 1.4 0.03 13.3 5.1

S-Ô 2.1 1.9 15.9 2 .4

3/2--* 5 /2 ' EIC 0.50 0.87 2 .2 1.8

EIA 0.50 1.7 2 .2 3 .9

0 0 0.44 2 .9 2 .0 3 .2

S-Ô 0.49 0.09 2 .2 0.78

and fo u r -q u a s i-p a r t ic le  sta tes ; in the phonon language,th is is  cau sed  by  the 
an h arm on icity  o f  v ib ra tion .

F ig u re s  6. 8 and 6. 9 show the ca lcu la ted  sp e ctra  fo r  the Ni and Sn- 
is o to p e s . In the fo r m e r  c a s e , the ch i-s q u a r e  value co rre sp o n d in g  to  the 
fit to a ll the o b s e rv e d  le v e ls  with the tw o -b o d y  m a trix  e lem en ts d eterm in ed  
b y  the A rgon n e grou p  [19] has n ea r ly  the sam e m agnitude as a ch ieved  by  the 
d ir e c t  le a s t  sq u a res  fit o f  these authors ( i . e .  R e f. [19] ). In the c a se  o f  the 
S n -iso to p e s  the m od el pa irin g  plus quadrupole fo r c e  w as u sed  fo r  the c a lc u 
la tion . It is  c le a r  that, although this m od e l is  fa ir ly  su c ce s s fu l fo r  the f ir s t  
2+ le v e l ,  the r e su lts  fo r  the h igher e x cite d  sta tes  a re  e x tre m e ly  d iscou ra g in g . 
T h ere  is  in va ria b ly  a la rg e  gap in  the ca lcu la ted  sp e ctra  betw een  the f ir s t  
e x c ite d  2 + le v e l and the next ex cited  le v e l ;  and a fter  that the ca lcu la ted  le v e ls  
a re  crow d ed  in sid e  too  sm a ll an en erg y  band. T h is  sh ortcom in g  o f the r e 
su lts has b een  a s so c ia te d  co n c lu s iv e ly  w ith the in adequacy  o f the p a ir in g - 
p lu s-q u a d ru p ole  m od e l in tera ction .

The n u m e rica l r e su lts  by  Saw icki and c o lla b o r a to r s , using r e a lis t ic  
tw o -b o d y  m a trix  e lem en ts  w ith c o r e -e x c ita t io n  c o r r e c t io n , in the re g io n  
o f  Sn a re  p resen ted  in th ese  P ro ce e d in g s  by G m itro . Only a v e ry  sm a ll



T A B L E  6 .8 .  C A L C U L A T E D  EN ERG Y L E V E L S  (M eV ) OF Ni ISO TO PES. NUM BERS IN PAR EN TH E SES D EN O TE 
P E R C E N T A G E  A D M IXTU R E  OF F O U R -Q U A S I-P A R T IC L E  ST A T E S. TH E TW O  EN TRIES FO R EACH  L E V E L  
CO RR ESP O N D , R E S P E C T IV E L Y , TO  THE BCS AND IGE VALU ES OF U N P E R TU R B E D  Q U A S I-P A R T IC L E  EN ERGIES 
AND O CCU PATIO N  PR O B A B IL IT IE S (SEE T E X T  FO R THE E X P L A N A T IO N  OF BC S AN D IG E ). THE STRENGTH  OF 
TH E Q • Q IN T E R A C TIO N , USED IN THE C A L C U L A T IO N , IS GIVEN B Y  тг1Ь4Х = 0. 097 W H ERE b IS THE 
O SC ILLA TO R  W E L L  P A R A M E T E R  (b2 = ft/M u) (R e f. [12] )

0+ 2+ 4+

A EIC EIA Q-Q EIC EIA Q .Q EIC EIA Q .Q

58 2.17 2.17 2.3.1 1.12 1.18 1.28 1.92 2.14 2,23

2 .10 1.99 1.06 1.10 1.90 2.07

3. 69 3.36 3.32 2.40 2 .57 2.09 3 .34 3. 55 2.97

3 .29 2.90 2.26 2.40 3 .24 3.26

60 2 .47  (10.6) 2 .45  (11.4) 2 .3 8 (27 .7 ) 1 .7 7 (0 .4 ) 1.78 (0 .1 ) 1 .49  (2.3) 2 .2 2 (1 8 .7 ) 2 .62  (5.0) 2 .62  (3.1)

2 .47  (11.7) 2 .4 1 (1 1 .2 ) 1 .8 0 (0 .5 ) 1 .75  (0.1) 2 .2 4 (2 1 .5 ) 2 .60  (19.7)

3 .45  (39.2) 3 .11  (60.9) 2 .97  (21.6) 2 .37  (66.2) 2 .3 8 (8 3 .7 ) 2 .34  (40.0) 2 .86  (86.4) 3 .00  (97 .1 ) 2 .85  (6.4)

3 .41  (38. 6) 2 .96  (74.8) 2 .36  (66.6) 2 .21  (91.8) 2 .86  (84.2) 2 .80  (82 .8)

62 2 .5 0 (1 1 .3 ) 2 .43  (19.4) 2 .55  (26.9) 1 .8 3 (2 .6 ) 1.86 (0.4) 1.57 (0.9) 2 .1 9 (3 3 .8 ) 2 .67  (32.9) 2 .8 0 (3 .3 )

2 .26  (17.2) 1 .9 0 (25 . 5) 1 .82  (4.2) 1.83 (7. 5) 2. 50 (31.4) 2. 80 (4 . 9)

3 .22  (47.4) 2 .98  (55.6) 2.91  (14.8) 2 .29  (74 .2) 2 .26  (86.7) 2 .35  (62.3) 2 .8 0 (7 1 .7 ) 2 .97  (71.5) 2.90  (3 .7 )

3. 30 (30.4) 2 .8 4 (2 5 .3 ) 2 .26  (49.9) 2 .28  (47.8) 2 .72  (74.4) 3 .04  (95.8)

64 2 .46  (4.1) 

2. 60 (4. 5)

2 .37  (12.9) 

2 .2 8 (1 9 .4 )

2 .6 6 (10 .5 ) 1.70 (2 .2 ) 

1.84  (0.4)

1.77 (0.9) 

1 .8 0 (1 .1 )

1.52 (1.0) 2 .2 8 (2 3 .1 )  

2 .50  (8 .5 )

2. 74 (22. 9) 

2 .83  (16.7)

2 .72  (1.4)

3 .25  (44.2) 

3 .71  (95.9)

3 .05  (51.9) 

3 .17  (67.7)

2.86  (15.3) 2 .45  (57.7) 

2. 58 (69. 5)

2 .45  (80 .5 ) 

2 .3 9 (8 3 .5 )

2 .45  (64.1) 2 .8 4 (8 0 .7 )

2 .8 8 (9 2 .8 )

3 .2 2 (8 0 .4 )  

3 .07  (83.0)

3 .0 1 (4 .9 )

IA
E

A
-S

M
R

 
6/25 
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T A B L E  6 .9 .  В (Е2) VA LU ES OF Ni ISOTO PES IN UNITS OF e j f F 4 
W H ERE F  = 10-13 c m , AND eeff = E F F E C T IV E  CH ARGE OF THE 
N EU TRO N . THE COLUM N HEADINGS D EN O TE THE VARIOUS E2 
TRANSITIONS CONNECTING THE GROUND L E V E L  (0 ), AND E X C ITE D  
ST A TE S (J ). THE SU BSCRIPT ON AN Y E X C ITE D  ST A TE  J HAS THE 
FO LLO W IN G  M EANING: 2 lt  22 D EN O TE, R E S P E C T IV E L Y , THE 
F IR ST AND SECOND E X C ITE D  STATES OF AN GU LAR M OM ENTUM  
J = 2. THE L A S T  COLUM N GIVES THE Q U AD RU PO LE M OM ENT OF THE 
2 j ST A TE  IN BARNS (= 10'24 c m 2). TW O  LINES FOR EACH OF E IC , EIA 
R E F E R  T O  BCS AND IGE (R e f. [ 12] )

A
Poten

t ia l V °
22 -0 2 f 21 V ° i V 2 i V 2! V 2 2 < Q >

60 0 0 72.35 0.43 8. 50 0.82 34.72 9.82 0.13 -0 .074

EIC 56.96 0.62 25.41 6.25 0.58 10.88 0.93 -0 .051

57.88 0.74 26.42 5.87 0.67 9.86 0.93 -0 .044

EIA 57.64 0.55 32.26 9. 67 3 .64 7.70 2.28 -0 .047

66.14 0.15 34.85 7.39 3.59 6.98 2.21 -0 .033

62 0 0 85.63 0.073 24.62 0.002 16.96 1.55 1.11 -0.037

EIC 66.82 0 .44 23.07 2.64 1.70 3.86 0.014 -0 .029

56.00 3.14 23.00 0.93 0.73 2.36 0 .65 0.025

EIA 71.38 0.52 33.99 4 .29 5.58 3.19 0.91 -0.0007

45. 55 11.31 18.29 1.10 6.34 0.08 0.26 0.064

64 0 0 80.72 0.078 24.40 0.011 4 .28 0.04 4 .67 0.019

EIC 59.58 1.77 13.89 0.091 2.40 0.33 0.47 0.023

63.81 0.022 19.38 0.34 6.09 2.06 0.89 0.055

EIA 67.97 0.08 23.72 1.81 6.45 0.60 0.004 0.039

68.10 0.72 25.20 1.45 10.16 0.13 0.071 0.054

part o f  th e ir  r e s u lts , ca lcu la ted  with the 6 -fu n ction  in tera ction  is  p resen ted  
h e re  in T a b le s  6 .1 1  and 6. 12. T h ese  two ta b les  r e fe r  to  2 + and 4+ sta tes , 
r e s p e c t iv e ly . T he penultim ate colum n  in th ese  ta b les show s the re su lts  
o f  s im p le  T a m m -D a n co ff  ca lcu la tion s  using tw o -q u a s i-p a r t ic le  states on ly. 
T he co lu m n  b e fo r e  that g iv e s  the p ercen ta ge  o f  fo u r -q u a s i-p a r t ic le  states 
in  the w ave fu n ction s . The secon d  and th ird  co lu m n s g ive  the ca lcu la ted  
e n e rg ie s  w ithout and w ith p r o je c t io n  o f  the sp u r iou s  s ta tes . A co m p a ris o n  
w ith the la s t  co lu m n , w hich  g ives  the o b se rv e d  e n e rg ie s , w ill im m ed ia te ly  
e sta b lish  the n e c e s s ity  o f  the re m o v a l o f  sp u riou s  sta tes . F o r  m any other 
im portan t r e s u lts  by  th is g rou p  o f w o rk e rs  the re a d e r  is  r e fe r r e d  to  the 
o r ig in a l r e fe r e n c e s  and the paper by  G m itro  in th ese  P ro ce e d in g s .
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T A B L E  6. 10. E X P E R IM E N T A L  VALU ES OF В (E2) FOR 2j -0  IN UNITS 
OF 10+2e 2F 4. A VA LU E OF e eff = 1 .3 5 e  GIVES E X C E L L E N T  
A G R E E M E N T OF THESE VALU ES W ITH THE CORRESPONDING 
RE SU LTS IN T A B L E  6 .9  FOR EIC (R e f. [12] )

Nucleus
Experim ent B(E2) 

2 j -0

58N i 1 .46  ± 0.07

60N i 1 .94  ± 0.08

62 N i 1. 68 i  0.08

w N i 1 .74  ± 0.17

116Sn 4 .24  ± 0.25

118Sn 4 .60  ± 0.27

120Sn 4 .40  ± 0.22

—  2*

-2* — 2*

- £ =2° : e |: _  _ » 2— 0+ 
— U*

=  — Ь* — 2*2 — 2* —  Î* 0* — 0*
—  2*—  2*

—  Д* - 2 *
—  0*  ~ k* — О*,2* 

— 0 — 4*
0*

— 2* —  2*
—  2* — 2* ■2*

—  T — 2♦ — 2*

0 —o —o —0 — 0 — 0 — 0 — 0*—0* — 0* — o* —0* — 0*
EXP SM BCS EXP SM BCS EXP SM BCS EXP SM BCS

58 60 62 6¿

FIG. 6. 8. Energy leve ls o f even N i isotopes (58-64). EXP: experim enta l spectra; SM: spectra ca lcu la ted  

w ith  EIC  m atrix ' e lem ents in  Ref. [1]); BCS: spectra ca lcu la ted  by the M T D A  method and EIC two-body m atrix  

e lem ents in  the present work.

6 .3 .  V ibra tion a l le v e ls  in d e fo rm e d  n u cle i

In d e fo rm e d  n u c le i the s in g le -p a r t ic le ,  as w e ll as s in g le -q u a s i-p a r t ic le  
states a re  not sp e c ifie d  by  g iven  angular m om entum  quantum n u m bers . In 
the c a se  o f  d e form a tion  with ax ia l sy m m e try  on ly  the p ro je c t io n  quantum 
n um ber is  a good  quantum num ber fo r  these s ta te s , w hile fo r  deform ation  
having no a x is  o f  sy m m e try  even  th is is  not tru e . H ow ever , under v e ry  
g e n e ra l c ir c u m s ta n ce s , a s in g le -p a r t ic le  state o f a d e fo rm e d  n ucleu s and 
its  t im e -r e v e r s e d  states a re  u su a lly  found to be degen era te . T h is has been 
v e r if ie d , fo r  ex am p le , in a ll the H a r tr e e -F o c k -ty p e  ca lcu la tion s  done up to 
the p re se n t t im e . So, we take the d e g e n e ra cy  o f a q u a s i-p a r t ic le  state m 
and its  t im e -r e v e r s e d  state m , to be granted . F u rth e rm o re , we keep in 
m ind the g e n e ra l r e su lt  (4 .2 9 b ) , n am ely , |m)> = -| m ^
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ЗГ

—  O* ___o*
__---?*

—  4*

----O*

O---- O* -----O*
EXP TH 

116

----O* -----O
EXP TH 

118

—  O* ----O
EXP TH 

120

FIG . 6. 9. Energy leve ls o f even Sn isotopes (116-118). EXP: experim enta l spectra; T H : spectra ca lcu la ted  

w ith  Q  - Q  in te raction.

Since the s in g le -q u a s i-p a r t ic le  sta tes do not have g iven  angular m o 
m en ta , w e do not do the angular m om entum  cou p lin g  in the q u a s i-p a r t ic le  
pa ir  c re a tio n  and d estru ction  o p e r a to rs , a s  we did fo r  sp h e r ica l n u c le i.
On the other hand, w e use the R P A -e q u a tio n s  w ithout th is an gu la r-m om en tu m  
cou p lin g  d e r iv e d  in se c t io n  5 and em bod ied  in E qs (5 .4 1 ) ,  (5 .4 4 ) and (5 .4 7 ) .  
B e ca u se  o f  the p re se n ce  o f a sum m ation  o v e r  k , i  in E q .(5 .4 7 ) ,  w e can  c le a r ly  
r e w r ite  the righ t-h an d  side  changing the su m m ation  in d ice s  to  k , f  th rou gh 
out. The equation  fo r  the com m u ta tor  [H ,A mn] w hich  can  be d e r iv e d  e a s ily  
fr o m  [ H . A j j  as m entioned  under Eq. (5 . 4 7 ), can  a ls o  be changed to  an equ a
tion  fo r  the com m u ta tor  [H , A—- ]  w here

■^mñ “ kjñbñ
In the u su al w ay , w e sandw ich  these equations betw een  <4'| and and
defin e the fo llow in g  a m p litu d es :

(6 .1 4 )

A dding  and su btra ctin g  the equations fo r  [H , A mn] and [Н ,А Й- ]  sandw iched 
betw een  | and |ÿ0]> we e a s ily  obtain  the fo llow in g  cou p led  equations 
sa tis fie d  by  the above  am plitudes :

( i. j )

- {(jm I v| ni ) + ( im I v | nj ) } (umvn - v mun) (u iVj - v iUj)] Z ^ 5

(6. 15a)

( i . j )

- { ( jm  I v  I ni) - (im  I v|nj )}  (umv n + vmun)(u¡Vj + VjUj)] z W ^ . l ö b )
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T A B L E  6 .1 1 .  RE SU LTS FO R TH E FOUR LO W EST-LYIN G  2+ ST A TE S OF 
THE QUA S I-P A R  TIC L E  SECOND T A M M -D A N C O F F  (QSTD) 
C A L C U L A T IO N S [13] FO R EV EN  TIN ISOTOPES

f  = 2 + 

A

Leve l energy (M eV ) 

(case a)
b components

те
(case 2)

O T D

leve ls

(M eV )

Observed

le v e l

energies

(M eV )
(1) No 

pro jection

(2) W ith  

pro jection

116 0.40 1.49 19 1.56 1.291

1.24 2 .05 - 27 2.62 2.108

1,42 2.28 42 2.90 2.224

1.56 2.49 23

118 -0 .06 ' 1 .29 14 1.36 1.229

0 .78 1 .95 24

1.03 2.04 40

1.40 2 .38 78

120 -0 .41 1.18 12 1.27
1.166

0.42 1.81 23

0.77 2 .09 40

1.29 2 .36 73

122 -0 .66 1.13 10 1.23 1.142

0.15 1.76 20

0.59 2.17 60

1.24 2 .33 56

124 -0 .85 1.10 8 1.21 1.132

-0 .06 1.74 17

0 .47 2 .19 92

1.22 2.39 25

H ere  the b ra ck e ts  round tjie su m m ation  sy m b o ls  i ,  j denote that a g iven  
p a ir  ( i ,  j )  w ill  be  coun ted  on ly  on ce  in the su m m ation  and not tw ice  as (i ,  j) 
and ( j ,  i ) .

In c o n fo r m ity  w ith what has been  done fo r  s p h e r ica l n u c le i, one can  
in trod u ce  m o d e ls  fo r  v  in  o r d e r  to  s im p lify  th ese  g e n e ra l equ ation s. The 
usu al assu m p tion  is  to  ig n o re  the m a trix  e lem en ts  (ij|v|m n) and substitute 
the m a tr ix  e lem en t (jm |v|ni) by  a fa c to ra b le  fo r m
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T A B L E  6 .1 2 . RE SU LTS FOR THE FOUR LO W EST-LYIN G  4+ STATES OF 
THE QSTD  C A LCU LA TIO N S [13] FOR EVEN  TIN ISO TO PES.

'"=
î 

> 
II
 +

L eve l energy (M eV ) 

(case a)
b components

do)
(case 2)

Q TD

leve ls

(M e V )

Observed

le ve l

energies

(M eV)
(1) No 

projection

(2) W ith 

projection

116 1.07 2 .15 20 2.44 2 .391

1.74 2.61 23 3.16 2.531

1.90 2 .95 58 3.49 2.803

2.19 3.01 65 3.75 3.047

118 0.59 1.87 17 2.30 2.278

1.74 2.81 96

2.01 3.12 20

2.03 3.37 16

120 0.27 1.78 15 2.27 2.183

1.78 2.76 98

1.92 3.39 96

1.96 3.41 21

122 0.02 1.74 12 2 .25

1.83 2.71 99

1.87 3.33 98

1.93 3.65 64

124 -0 .16 1 .75 10 2.22

1.79 2.65 99

1.84 3.41 99

1.94 3.70 88

- ( jm  I v I ni) = ^ K x< j| n ^ | i> < m | n ^ í |n> (6 .1 6 )

T h is e x p re s s io n  w ill  fo llow  fr o m  a m u ltipole  potential o f  the type

V = K ^ n ^ l ) í / * ( 2 )  (6.17a)
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w h ere  1 and 2 denote n u cleon  c o -o r d in a te s , denotes the strength  o f the 
in tera ction  and the m u ltipole  o p e ra to r  is  u su a lly  taken to be

i^ ( r )  = г  Х¥ ^ е , ф )  (6 .1 7 b )

It is  c le a r  that e x p re s s io n  (6. 16) a ctu a lly  c o r r e s p o n d s  to the exchange part 
o f  the m a trix  e lem en t on the le ft -h a n d  side  when one u ses  thé potential 
( 6 . 17a).

F o r  the sta tes | iX  |j^ e tc . one can use expan sion s in te rm s o f ba sis  
sta tes |a)>, | /0  e tc . w hich  a re  c h a ra cte r iz e d  by good  angular m om entum  
p r o je c t io n , e tc . Thus

|i> = (6 . 18a)
a

and

| T > = ^ x ‘a ( - 1)J« - m« | -* >  (6 .1 8 b )
a

w h ere  stands fo r  a se t o f  quantum n um bers in w hich  the p ro je c t io n
quantum num ber is  - m a . In m o s t  a p p lica tion s  o f  the th eory ,on e  s p e c if ic a lly  
a ssu m e s  the e x iste n ce  o f  an a x is  o f  sy m m e try  fo r  the n u cle i and h ence the 
state I О  is  c h a ra cte r iz e d  by  a g iven  p ro je c t io n  quantum num ber and the 
sam e quantum num ber g o e s  w ith a ll the b a s ic  sta tes |a)> on the r igh t-h an d  
s ide  o f  E q . (6 . 18a).

The m od e l potentia l, d e s c r ib e d  by  E q .(1 6 ) ,  co n v e rts  the E qs (6 . 15a ,b ) 
to  equations o f  the type (6. 8 5 d ,e ) . T h is  task  is  le ft  as a s im p le  e x e r c is e  
to the r e a d e r . The so lu tion s o f  such equations had a lre a d y  been  w ork ed  
out in E q .(5 .8 7 ) .  U sually  one takes a sum  o f  q u a d ru p o le -p lu s -o c tu p o le - 
type potentia l fo r  v . The m a trix  e lem en ts a re  then obtained fro m  Eq. (6 . 16) 
b y  adding the r e su lts  fo r  X = 2 and Л = 3. The pa rity  o f  th ese  m u ltipo les 
te l ls  us that in the c a se  o f  X = 2, the q u a s i-p a r t ic le  pa ir  sta tes (m ,n ) ,  ( i , j ) ,  
e tc . that a re  cou p led  through E qs (6 . 15a, b) have even  p a rity , w hile in the ca se  
o f  X = 3 ,  the pa ir  sta tes have odd p a rity . Thus, the v ib ra tion a l equations 
c o rre sp o n d in g  to these tw o m u ltip o les  in the potential a re  c o m p le te ly  d e 
cou p led  fr o m  each  other and can  be so lv e d  se p a ra te ly .

F o r  d e ta ils  o f  the th e o re tica l d er iv a tion  and the p r o p e rt ie s  o f  n u cle i 
ca lcu la te d , the re a d e r  is  r e fe r r e d  to  the w ork  by  S o lov iev  [20] . A few  
ty p ica l r e su lts  a re  shown in F ig s  6. 10, 6 .1 1 ,  6. 12, 6. 13 and 6. 14. A l 
though the g e n e ra l tren d s a re  re p ro d u ce d  in th ese  ca lcu la tio n s , the m od el 
potentia l u sed  in the w ork  se e m s  to  be too  r e s t r ic t iv e .

6 .4 .  O utlook

In these le c tu re s  w e have p resen ted  a sy ste m a tic  m ethod o f ca lcu latin g  
v ib ra tion a l sta tes ba sed  on an expan sion  in te rm s  o f  n um ber o f q u a s i
p a r t ic le s ; in  a p p lica tion s  the expan sion  has been  cut o ff  at fo u r -q u a s i
p a r t ic le s  fo r  even  n u c le i and th r e e -q u a s i -p a r t ic le s  fo r  o d d -m a ss  n u cle i.
No in vestig a tion  has been  m ade into the ra p id ity  o f  co n v e rg e n ce  o f  th is e x 
pansion . T h e re  is  an a ltern a tiv e  ap proa ch  ba sed  on an expan sion  in te rm s
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FIG. 6 .10 . Energies [20] o f firs t 2+ and 0+ exc ited  quadrupole states in  the reg ion 154 ^ A  £  182, for

k(2) = 1 0 A " 4/3h ú 0, k (2) = k (2)0 nD

Kir exp. theor.

2+ 2"

0+ Д

FIG . 6 .11 . Energies [20] o f first 2+ and 0+ exc ited  quadrupole states in  the reg ion 228 £ A  £ 2 5 4 , for

Kn exp. theor.

2+ 2 '

0+ -

o f num ber o f  phonons. Som e o f the pertin en t r e fe r e n c e s  [21] a re  g iven  at 
the end; no s p e c if i c  ca lcu la tion  ba sed  on th is m ethod is  known to  the p resen t 
a u th o r .

The g rou p s in B ologn a and T r ie s te  (p rep rin t and p rivate  com m u n ica tion ) 
a re  engaged in re m o v in g  one im portan t d e fic ie n cy  o f  the m ethod presen ted  
h e r e . S ince deta iled  a g reem en t is  being  sought fo r  the sp e ctra  o f  individual



1AEA-SMR 6 /2 5 693

B(E2)

. FIG.. 6 .12 . C a lcu la ted  B(E2) values in  s in g le -pa rtic le  units. Experim enta l values g iven  w ith  error bars. 

Th eo re t ica l values for k ( 2) = 9 .5 A ' 4/ 3 denoted by and fo r a>0«  cj®x P b y — • —  (R e f.[2 0 ]).

FIG. 6 .13. Energies [20] o f first 0" and 2" exc ited  octupo le  states in  the reg ion 152 s A s  182, for 

k ( 0  = 0 .0 0 1 0 2 b d ) ( , .

Ктг exp. theor.

O' 0"

2" 2 '
a -

n u c le i, th ese  authors r ig h tly  la y  the em p h a sis  on p ro je c tin g  the c o r r e c t  
num ber o f  p a r t ic le s  out o f the q u a s i-p a r t ic le  w ave fu n ction s.

K lein  and c o lla b o ra to r s  [22] have be^en w ork in g  on an a ltern ative  th eory  
that c o n s e rv e s  the num ber o f  p a r t ic le s  through the en tire  fo r m a lis m .

The m a jo r  c r it ic is m  against a ll th ese  th e o r ie s  is  that they are  based  
on a sin g le  eq u ilib r iu m  shape o f the n u c leu s . The K u m a r-B a ra n g er  th eory  
ém p h a size s  the dyn a m ica l r o le  that the d e form a tion  p a ra m eter  should play. 
The H ill-W h e e le r  m ethod w hich  u ses  a v aria tion a l w ave function  in w hich  
an in tegra tion  has been  c a r r ie d  o v e r  the d e form a tion  p a ra m eter  has the 
a b ility  to s e r v e  as a b r id g e  betw een  the ap proa ch  p resen ted  h ere  and the 
dyn a m ica l ap proa ch  that is  n e c e s s a r y  fo r  a m o re  sa t is fa c to r y  th eory .
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F IG .6 .14 . Energies [20] o f first 0" exc ited  octupole states in  the reg ion 228 ^ A  ^ 254 , for к ( 3)= 0.00052htj0.

Kir exp. theor.

0" 0~
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REALISTIC POTENTIALS IN 
NUCLEAR-STRUCTURE CALCULATION

M. GMITRO 
Nuclear Research Institute, 
Rez, Prague, Czechoslovakia

Abstract

REALISTIC  PO TEN TIA LS  IN N U C LE AR -STR U C TU R E  C A LC U LA T IO N .

1. Residual in teraction; 2. Reaction m atrix; 3. Approx im ations; 4. M o d e l space.

1. RESID U AL IN TERACTIO N

T he use o f  s im p le  sch em a tic  in tera ction s  (lik e  pa irin g  fo r c e  and 
q u ad ru p ole -q u a d ru p ole  fo r c e )  p erm its  a v e ry  s im p le  and fru itfu l se a rch  
fo r  new phenom ena in the n u c lea r  s tru ctu re  and c la r if ic a t io n  o f  the q u a li
ta tive  fea tu res  o f  n u clear  sta te s . H ow ever , in so  doing one m ust not 
ex p ect a deta iled  quantitative d e s cr ip tio n . On the oth er hand, quite c o m p li
ca ted  ph en om en o log ica l potentia ls w id e ly  used r e ce n tly  in vo lve  unfavourable  
fr e e d o m  in the c h o ic e  o f  ad ju stable  p a ra m e te rs . The sam e c r it ic is m  a p 
p lies  to  the " e f fe c t iv e -m a tr ix -e le m e n ts  ap proa ch " p ion eered  by  T a lm i: 
tw o -p a r t ic le  m a trix  e lem en ts th e m se lv e s  w e re  u sed  as p a ra m eters  o f  the 
th e o ry . T o  avoid  in cre a s in g  the num ber o f th ese  p a ra m e te rs  v e ry  m uch, 
on ly  ra th er  lim ited  con fig u ra tion  m ixin g  can be a llow ed  fo r .

T he p resen t n otes a re  devoted  to  the use in n u clear  s p e c tro s co p y  o f the 
potentia ls w hich  w e re  d eterm in ed  fro m  an a n a lys is  o f  the n u cleon -n u cleon  
s ca tte r in g  and deu teron  data. Such r e a lis t ic  poten tia ls u su a lly  c o n s is t  o f 
ce n tra l, te n so r , s p in -o r b it  (L . S. and L .S . ) [ 2 ]  te r m s  togeth er  w ith v a r iou s  
exchange c h a r a c t e r is t ic s .  In the d e scr ip tio n  o f  lo w -e n e r g y  n u clear  ph en o
m ena u su ally  on ly  S - ,  P -  and D -s ta te s  togeth er with 3Sj - 3D j coup ling  term  
a re  co n s id e r e d . .

T he change o f  sign  in the "̂ Sq state phase sh ift at about 240 M eV in the 
fr e e  N -N  sca tte r in g  sh ow s that the ch a ra cte r  o f  tw o -n u cleon  in tera ction  at 
sh ort d is ta n ces  is  re p u ls iv e . A c co r d in g  to the technique used fo r  d e s cr ib in g  
th is p e cu lia r  ch a ra cte r  o f  the in tera ction , tw o c la s s e s  o f  the r e a l is t ic  p o 
ten tia ls  can  be in trod u ced .

A  dynam ic d e s cr ip t io n  o f  the re p u ls io n  m entioned  w as ch osen  in the n on 
lo c a l  se p a ra b le  o r  v e lo c ity -d e p e n d e n t poten tia ls . The b est p resen tly  a v a il
ab le  potentia l o f  th is type is  that o f  Tabakin  [1] . The p o s s ib ility  o f  the 
d ir e c t  use o f  this potentia l in the n u clear  s tru ctu re  ca lcu la tion  and in the 
H -F  p ro ce d u re  should be pointed out.

Static r e a lis t ic  poten tia ls [2 ,3 ] a re  ch a ra cte r iz e d  by  a re p u ls iv e  c o r e  
o f  in fin ite m agnitude (hard c o r e )  at sh ort d is ta n ces  about r  = с = 0 .4  fm . 
S o m e t i m e s  h a r d -c o r e  re p u ls io n  can  be re p la ce d  by  le s s  stron g  " s o f t " - c o r e  
re p u ls io n . Both  h a r d -c o r e  and s o f t - c o r e  potentia ls p rod u ce  m a trix  e le 
m en ts w hich  a re  v e r y  la rg e  (in fin ite  in the c a se  o f  hard c o r e ) .  Such p o 
ten tia ls  cannot be ap p lied  d ir e c t ly  in the n u clea r  s p e c tro s co p y . A c co r d in g  
to  the r e a c t io n -m a tr ix  th e o ry , an ap p rop ria te  m o d ifica tio n  is  to  r e p la c e  
the potential v  by  the B ru eck n er  re a c tio n  m a trix  t [4] .

697
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2. R E A C T IO N  M A TR IX

B r u e c k n e r 's  m ethod can  be illu s tra ted  [5] b y  c o n s id e r in g  the in te r 
a ction  o f  tw o d istin gu ish ab le  'p a r t ic le s  having a m utual in tera ction  d e s c r ib e d  
b y  a potentia l v . T he in te ra c tio n  en erg y

ЛЕ = E - E 0 (1)

defin ed  b y  the S ch röd in g er  equations

Н0ф = E 0ф (2)

and

(H 0 + v) Y = EY (3)

can  be evaluated  by  the p ertu rbation  m ethods i f  the in tera ction  is  w eak 
enough. In the c a s e  o f  a stron g  re p u ls iv e  c o r e  in the potentia l, a ll the 
m a tr ix  e lem en ts  in vo lved  b e c o m e  in fin ite , and the co rre sp o n d in g  p e r 
turbation  expan sion  is  m e a n in g le ss . At the sa m e t im e , h ow ev er , ДЕ can  
be fin ite . T h is  su g gests  that w e should lo o k  fo r  an expan sion  in volv in g  
som e  o p e ra to r  d iffe re n t fr o m  the potentia l v . F o r  th is pu rpose  E q .(3 )  can 
be re w r itte n  :in the in te g ra l fo rm

* =Ф " H 0Q E ' (4)

w here

Q = 1 - |'Ф><Ф|

p r o je c ts  out the state  ф. M ultip lying E q .(4 )  by  (H 0 -E ) , w e can ch eck  the 
eq u iv a len ce  o f  E qs (3) and (4 ). The e igen va lu e  con d ition  or ig in a tes  in the 
fo rm

ЛЕ:= <ф I v| Y> (5)

In troducin g  an o p e ra to r  Q w hich  con n ects  the w ave functions Y and ф:

Ч=Пф (6)

a new o p e ra to r  t can  be defin ed

w hich  s a t is f ie s  the equation

t = vS2 (7)

(8)
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The e n e r g y  sh ift Д Е is  then g iven  by

ДЕ = < Ф | Ф >  (9)

F o r  a w eak  potentia l v the la s t fo rm u la  r e d u ce s  to  the u su al p ertu rb ation  
exp an sion ; it g iv e s , h o w e v e r , a so lu tion  fo r  the e n e rg y  sh ift ДЕ in the • 
c a se  o f  stron g  potentia l as w e ll , p rov id ed  that Eq. (8) is  so lv e d  e x a ctly -o r  
in  so m e  ap p rox im a tion .

T he m ain  point o f  th is p ro ce d u re  can  be seen  i f  the ite ra tiv e  so lu tion

t = v - ^ v  + v ^ v V . . .  (10)e e e

is  exam in ed . F r o m  th is it is  c le a r  that the in trod u ction  o f  the re a c tio n
m a tr ix  in v o lv e s  r e -a r ra n g e m e n t  o f  the p ertu rb ation  s e r ie s  p rov id in g  
su m m ation  o f  the in tera ction  up to  a ll o r d e r s .  T h is s itu ation  is  illu s tra te d  
in F ig . 1, w here ' the w avy lin e  s y m b o liz e s  the t -m a tr ix , and the dashed 
lin e  the potentia l v.

r\J~^TW H-----

FIG. 1. Reaction m atrix  corresponds to the sum m ation o f po ten tia l up to a l l  orders.

3. A PPR O X IM A T IO N S

F o r  a m a n y -b o d y  p ro b le m  lik e  that o f  n u c lea r  s tru c tu re , an equation  
s im ila r  to  E q .(8 )  is  obtained w hich  d i f fe r s ,  h o w ev er , in the en erg y  d e n o m i
n ator and the P au li p r o je c to r  Q .

The m ain  d iff icu lt ie s  in the so lu tion  o f  su ch  an equation  co m e  fr o m  the 
p rop a g a tor  P  = Q /e .  T he idea o f the a p p rox im a tion  [4] c o n s is ts  in ch o o s in g  
s im p le  fo r m s  fo r  P' and v  w hich  p rod u ce  at the sam e tim e  a fa ir ly  a ccu ra te  
f ir s t  a p p rox im a tion 1 to  the re a c t io n  m a tr ix . F r o m  tw o se ts  o f  equations fo r  
ex a ct t and ap p rox im a te  tA m a tr ice s

QP = — e

Q = 1 -  Pt

P .  = Qa

i - t W

t = VÍ7 t A= v . ßA  A

t T = n V
1 A  “ AV A
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the fo r m a l iden tity  can  be  w ritten

t = t - t | (n + P t -  1 )+ (Г ^  + ̂ ар £ -  l ) t

w h ere  t stands fo r  H erm itian  con ju gation . The la st equation  lea d s  d ir e c t ly  
to  the re q u ire d  re la t io n  o f  the exact and ap p rox im a te  re a c tio n  m a tr ice s

3 .1 .  The sep a ra tion  m ethod by  M oszk ow sk i and Scott u se s  the d iv is io n  o f  
the potentia l into sh o r t -r a n g e  and lo n g -ra n g e  parts

T he sep a ra tion  d is ta n ce  d is  ch osen  so  that the a ttra ctiv e  part o f vs ba la n ces 
the re p u ls iv e  c o r e .  Then what re m a in s  is  e sse n t ia lly  vL . W ith an au x ilia ry  
re a c t io n  m a tr ix  con stru cted  fo r  Q A = 1 and v A .= v s , Kuo and B row n  [4J found 
b y  itera tin g  e x p re s s io n  (11) m a tr ix  e lem en ts o f  the s in g le t-e v e n  H am ada- 
Johnston  potential

w h ere  v TL stands fo r  the lo n g -ra n g e  part o f  the te n so r  poten tia l.

3 .2 .  T he r e fe r e n c e  sp ectru m  m eth od . W hen the potentia l outside o f  the 
r e p u ls iv e  c o r e  is  n ever  a ttra ctiv e  ( e .g .  t r ip le t -o d d  and s in g le t-od d  H am ada- 
Johnston  potentia l) the sep a ra tion  m ethod is  no lon ger  ap p licab le  s in ce  it is  
b a sed  on the ba la n ce  o f  the a ttra ctiv e  and the re p u ls iv e  parts o f  the potential. 
The r e fe r e n c e -s p e c t r u m  m ethod p ro v id e s  a u se fu l ap prox im ation  in  such 
c a s e s .  T w o varian ts o f  th is m ethod c o rr e sp o n d  to  the tw o s in g le -p a r t ic le  
b a s e s  w hich  allow  the sep a ra tion  o f the re la t iv e  m otion  and the c e n t r e -o f -  
m a ss  m otion  in the pa ir  s ta te s . P la n e -w a v e s  and h a r m o n ic -o s c i lla to r  
fu n ction s a re  th ese  c a s e s .

(a) The n u clea r  re a c t io n  m a tr ix  t is  expanded in te rm s  o f a " r e fe r e n c e  
re a c t io n  m a trix

t = t\ +  « / ( v  - v l )  Г2 + t\ (P \  - P) t (ID

(12)

(n i ST 111 n ' f  ' ST) s  ôee, (n iS T J  |vL |n' I  'ST  J) (13)

and o f the tr ip le t  even  sta tes  o f  H am ada-Joh nston  poten tia l:

(n i ST j t |n»i' ST) s  (n iST JI vL - vTL 3 v TL-t s| v TL-vTL| t s jn 'i 'S T J )  (14)

(15)

i f  the p la n e-w av e  in term ed ia te  sta te s , su ggested  by  the n u clear  m atter 
th e o ry  a re  co n s id e r e d . E s is  "s ta r t in g "  en erg y= en erg y  in the in itia l sta te .
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(b) The g rou n d -s ta te  w ave fu nction  o f  a bound n u cleu s i s ,  h ow ev er , 
lo c a liz e d .  F o r  th is r e a so n , in term ed ia te  sta tes o f  a h a r m o n ic -o s c i l la to r  
b a s is  w e re  su ggested  r e ce n t ly  [6] . Such an ap proa ch  can  be su pported  by  
the p r e fe ra b le  ca n ce lla tio n  o f  s e v e r a l im portan t d ia g ra m s in e n e rg y  c a l 
cu la tion  [6] . E m e ry , Eden and Sam pathar p ion eered  the u se  o f  the h a rm o n ic -  
o s c i l la t o r  b a s is  in the B ru e ck n e r  th e o ry . W e sh a ll c a ll  Q EE the a p p ro x im a 
tion  to  the P au li p r o je c to r  in trod u ced  by  th ese  au th ors . The e n e rg y  o f  a 
tw o -p a r t ic le  sy s te m  when w ritten  in the in div idual n u cleon  (n j , Í  x, n 2 , i 2) 
quantum  n u m b ers , can  be s im p ly  tra n s fo rm e d  to  the sy ste m  o f  r e la t iv e  and 
c e n t r e -o f -m a s s  m otion :

(2n j + jfj + 2n2 + ,C2)h u  = (2n + í  +2N  + £ f)fru  (16)

In the c a s e  o f  the 160  n ucleu s a ll sta tes with

2jli + j f ;S l  (17)

a re  o ccu p ie d . T h is  c o r r e s p o n d s  to  the x 1 s in  F ig . 2. The exact P au li 
o p e ra to r  r e s t r ic t s  sca tte r in g  to  the pa ir  sta tes in d icated  by  c i r c l e s .  Sum 
m ing con d ition s (17)

2щ  + J¿i + 2n2 + St'2= 2n + £ + 2N + ^ 2  (18)

too  w eak a r e s t r ic t io n  is  obta in ed : a ll pa ir  sta tes ly in g  above  the dashed 
lin e  a re  open  fo r  the sca tte r in g . E m e r y -E d e n 's  ap prox im a tion  Q EE p erm its  
sca tte r in g  to  the sta tes above  fu ll lin e  on ly . T he f ir s t  ap p rox im a tion  to 
the re a c tio n  m a trix

*R = v  -  v  h  os^ L E_ e  *.r  ( 1 9 )

a lre a d y  con ta in s , at le a s t , a part o f  the P au li e x c lu s io n  e ffe c ts  and it is  
found that the secon d  ap p rox im a tion  con tr ib u tes  on ly  a few  p er  cent o f  tR.

FIG . 2. Em ery-Eden 's

approx im ation for the pa ir states. '’ г
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R ela tion  o f the exact and ap prox im ate  re a c tio n  m a tr ic e s  is  again  g iven  
by  Eq. (11) w ith v  = v A:

t -  tR + tR Qa Q t (20)

w h ere  QA/ e A is  taken equal to l / ( h p,w- - E s) o r  Q E E /(h°scll‘ _Es) f ° r  the 
plane w ave and h arm on ic  o s c illa to r  b a s is ,  r e s p e c t iv e ly .

T he qu estion  o f  the p ro p e r  in term ed iate  states re m a in s , h ow ev er , 
s t i l l  open  [ 6 ,7 ] .  So lon g  as h igh -ly in g  sta tes a re  m ost im portan t in the 
ca lcu la tion  o f  the re a c tio n  m a trix , the p la n e-w av e  ap prox im ation  should 
be co n s id e re d  m o re  a p p rop r ia te . S ev era l c o m p lica tio n s  ap pear, h ow ev er , 
in th is a p p roa ch . A ctu a lly , s in ce  the en tire  se t o f  s in g le -p a r t ic le  states 
should be an orth ogon al se t , the p lan e-w ave sta tes should be o rth ogon a lized  
to  the lo c a liz e d  sta tes (o ccu p ie d  and ex cited ) and then th ese  orth ogon a lized  
plane w aves should be orth ogon a lized  to  each  o th er.

4 . M OD EL SP A C E

W e con clu d e  that the r e a lis t ic  n u c leon -n u cleon  potentia ls can be used 
in  the n u clear  stru ctu re  ca lcu la tion  either d ir e c t ly  o r  in the re a c t io n -m a tr ix  
ap p rox im a tion . In an a ltern a tive  ap proach  E llio tt et a l. [8] d e r iv e  red u ced  
sh e ll m od e l m a trix  e lem en ts o f  the tw o -b od y  n u clear  fo r c e  d ir e c t ly  fro m  
the ex p erim en ta l phase sh ifts and found that they a re  c lo s e  to  the c o r 
resp on d in g  e lem en ts o f  the Tabakin potential.

A d ir e c t  c o rre sp o n d e n ce  o f  the m a trix  e lem en ts o f  r e a lis t ic  potentials 
to  the e ffe c t iv e  m a trix  e lem en ts ex tracted  fr o m  ex p erim en ts  cannot be , 
h o w ev er , e x p ected . In standard s h e ll -m o d e l ca lcu la tion s  with p h en om en o
lo g ic a l  n u c le o n -n u cle o n  potentia ls o r  with ad ju stable  red u ced  m a trix  e le 
m ents to  be d eterm in ed  fro m  X2 fits to s e le cte d  p ie c e s  o f  data, the e f f e c 
tive  fo r c e s  a lre a d y  r e n o rm a liz e d  fo r  the c o r e -e x c ita t io n  e ffe c ts  a re  c o n 
s id e re d . T h is is  by defin ition  not the ca se  w ith m a trix  e lem en ts o f  a "b a r e "  
r e a lis t ic  poten tia l. H ere  an e x p lic it  co n s id e ra tio n  o f the re n o rm a liza tio n  
p r o c e s s e s  is  n e ce s s a r y . C on figuration  sp a ce  o f  the v a len ce  o rb ita ls  is  c l e a r 
ly  too  lim ited  and p o s s ib ilit ie s  fo r  including  m o re  sin g le  p a rt ic le  sta tes into 
e x a ct d ia gon a liza tion  a re  s tron g ly  r e s t r ic te d  by the ca p a city  o f  p re se n t-d a y  
c o m p u te rs . The usual ap p roach  [4] c o n s is ts  in in trodu cin g  a m od el sp a ce . 
Solution  ¥ o f the S ch röd in ger  equation

(H0 + v )¥  = Е¥ (21)

can  be expanded o v e r  unperturbed  w ave function  ф, defined  by the equation 
Н0Ф j = In the c a s e  o f  a stron g  in teractin g  potential v w e m ust ex p ect,
h o w ev er , that such an expansion  cannot be lim ited  to  a fin ite  num ber o f  te r m s . 
An in fin ite  s e r ie s  w hich  lea d s  to  an in fin ite m a tr ix  d iagon a liza tion  is  m ea n in g 
le s s ,  on the other hand. A m od e l w ave function  фы can  be defined by  a fin ite 

m . M
expan sion  фы = ^  a ^  . Then

i  =  l

(22)



F IG .3 . Second-order bubbles diagrams o f  core  polarization .

w h ere

(23)

and
00

i = m + l

T he re la t io n s  (22) -  (23) r e d u ce  the p ro b le m  to a f in ite -d im e n s io n a l on e . 
T h ey  can  be  e a s ily  ch eck ed  by  u tiliz in g  the orth ogon a lity  con d ition s  fo r  
ф ¡ . The re su ltin g  e igenvalue  equation  re a d s

and v f2 Mis  ca lle d  a m od el in te ra ctio n . T he o p e ra to r  f2M p ro v id e s  a 
g e n e ra liza t io n  o f  the o p e ra to r  H u sed  in the d e fin ition  o f the t -m a tr ix , 
in the se n se  that in clu d es  a ll the e ffe c ts  o f  and, in add ition , takes 
c a r e  o f  s e v e r a l  in term ed ia te  states w hich  w e re  not in cluded  in the Q. 
B ea rin g  th is in m ind , w e can  r e w r ite  Eq. (24) in the fo rm

w h ere  o p e ra to r  takes c a r e  o f  the in term ed ia te  states le ft  out both on 
the co n s tru ctio n  o f  the re a c t io n  m a trix  and o f  the m od e l sp a ce .

Im portant in term ed ia te  sta tes o f  th is type a re  th ose  o f  th ree  p a rt ic le s  
and one h o le . C orresp on d in g  F eynm an d ia gra m s a re  g iven  in F ig .3 .  
S tarting fr o m  th ese  d ia g ra m s an a lytic  e x p re s s io n s  fo r  the c o r e -p o la r iz a t io n  
c o r r e c t io n  te rm s  can  be w ritten  d ir e c t ly  using the w e ll-k n ow n  F eynm an  
r u le s .  H is to r ic a lly , th ese  fo rm u la e  w e re  f ir s t  d er iv ed  in the s e c o n d - 
quantization  fo r m a lis m  [4] . H e re , w e r e p o r t  a u se fu l m o d ifica tio n  [9] .

In troducin g  the is o to p ic  sp in , w e can  w rite

<H 0 + V ^ M = E ^M (24)

(25)

G ( a b c d J 'T ')  ( jaj bm am  ß | J 'M ')

X ( j c Jdm r m5 | J 'M ')  ( I  I  t a t  b I T ' M^, ) ( H  tc t j  T* ИЦ ., ) (26)
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< а  ß I U 17 ó > = -2  Y  F (a c d b J MTn) s ß s y(ja jc m a - m r | jnM n)

ГМ”Т"МТ»

X ( jdj bm 5 - m ß | j"M " )  ( - ) "̂‘ Ь" l° ( H t a - t c |T"M r . ) ( ü t d - t j T " ^ , . )

(27)

w h ere  s ïï = (-)^Р"Ш’Г. The sy m b o ls  G t a b c d J 'T ’ ) and F ( a c d b j " T " )  a re  just 
the p a r t ic le -p a r t ic le  and p a r t ic le -h o le  type re d u ced  m a trix  e lem en ts in the 
notation  an alogou s to that o f  B a ra n ger  [10] . T he G , F  (abcd JT ) sa tis fy  
se v e r a l  s im p le  and obv iou s sy m m e try  re la t io n s .

Kuo and B row n  [4] have g iven  e x p lic it  fo rm u la s  fo r  the s e c o n d -o r d e r  
c o r e -p o la r iz a t io n  c o r r e c t io n s  fo r  e lem en ts w ith the p a r t ic le -p a r t ic le -ty p e  
v e c to r  co u p lin g s :

< abJT  I t ( q / e) t |cdJT > = NjJ Д<2>G (abcdJT ) (28)

H ere  N ^ =  - 2 ( 1 +  ó ab)_i (1 + 6cd )^ is  a n orm a liza tio n  constan t, and 
A (2)G (a b cd J T ) is  the c o r e -p o la r iz a t io n  c o r r e c t io n  to  the co rre sp o n d in g  
G (abcdJT ) com pu ted  w ith the an tisy m m etrized  t o p e ra to r .

The form u la  fo r  the c o r r e c t io n  ¿Í2) F (a cd b J T ) to the f i r s t -o r d e r  
F (a cd b J T ) com in g  fr o m  the v e ry  sa m e s e c o n d -o r d e r  d ia g ra m s o f  the c o r e  
p o la r iza t io n  is  m uch  s im p le r  beca u se  o f m o re  natural v e c to r  cou p lin gs in 
lin e  w ith the p a r t ic le -h o le  p r o je c to r  in th is c a s e .

T he tra n sfo rm a tio n  fro m  G to F  is  r e a d ily  defined  as

F (a cd b J T ) = - ^  ? 12T 12W (jaj bj cj d ; J 'J )  W ( H  H ; T 'T )  G (b a cd J 'T '
Г Г  <29>

w h ere  J = (2J + 1)^.
U sing E q . (1) o f  Kuo [4] and p e r fo rm in g  the tra n sfo rm a tio n  o f  E q . (29 ), 

we e a s ily  a r r iv e  at the fo llow in g  form u la  fo r  the s e c o n d -o r d e r  c o r e -  
p o la riza tio n  c o r r e c t io n  to F (a cd b J T ):

A (2)F (a cd b J T ) = I(acd bJT ) + ( - ) J+T ^  j 12^12 | ja jc || | ^  j  j. j I'+t*

J’ T’ . b d 2 2 (30)

X [ ( - ) Jc + Jd I ( a d c b J 'T ')  + ( - ) Ja + Jb I ( b c d a J 'T ') ] + ( - ) Ja + Jb + Jc + Jd I(bd caJT )

w h ere

N ^ N ^ F (a b p h J T ) J  F (p h cd J T )

In the ab ove  e x p re s s io n  the p rop ag ator  q / e  to  the le ft  o f  an e lem en t F (p h s s 'J T )  
conta in s e = [E ° - E^ - (E ° - E s°, )] , w h ere  h stands fo r  the h ole  sta te , p fo r  
the p a rt ic le  state o f  the th ird  (c o r e )  n u cleon  in vo lved , and s , s 'b e lo n g  to  the 
v a len ce  s h e lls ;  E^ d en otes the sin g le  -p a r t i c l e  s h e ll -m o d e l (H a r tr e e -F o ck )  ’ 
en erg y .
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S e v e ra l s im p le  ap p rox im a tion s  fo r  the P au li p r o je c to r  q w e re  used 
in n u m e rica l ca lcu la tion  (q sy m b o liz e s  th ree  p a r t ic le s ) .  Kuo and B row n  [4] 
ap prox im a ted  q = 1 fo r  A  = 18 n u c le i, s in ce  the com p le te  s -d  sh e ll is  o c c u 
p ied  b y  two p a rt ic le s  on ly . The en erg y  den om in ators in th e ir  w o rk  w ere  
con v en ien tly  taken as e = 2hw b e ca u se  o f  pa rity  con se rv a t io n .

S lightly  m o re  co m p lica te d  is  the situation  in heavy n u cle i m a in ly  b e 
ca u se  o f  the s p in -o r b it  sp littin g , w hich  puts s in g le -p a r t ic le  (s . p. ) le v e ls  
o f  op p os ite  pa rity  c lo s e  to  each  o th er . The fo r m e r  lim ita tion  e = 2hu 
is  no lo n g e r  a p p lica b le ; the en erg y  den om in ators m ay be quite sm a ll and 
the ca lcu la ted  c o r r e c t io n s  so m e tim e s  b e co m e  se n s itiv e  to  the ch osen  set 
o f  s . p. e n e rg ie s . W e found such  a situation  in the c a se  o f  tin is o to p e s  [9] . 
R e lia b le  quantitative fits  to  the ex p erim en ta l data c a ll  fo r  a s in g le -n u c le o n  
b a s is  determ in ed  w ith the H a r tr e e -F o c k -B o g o ly u b o v  s e l f -c o n s is te n c y .  Such 
ca lcu la tio n s  a r e , h o w ev er , not yet ava ilab le  in the r e g io n  o f  tin is o to p e s .

S ev era l s e m i-e m p ir ic a l  se ts  o f  the s . p. e n e rg ie s  w e re  used  in the f ir s t  
paper [9] devoted  to the d eriv a tion  o f  the e ffe ct iv e  in tera ction  in the tin 
r e g io n . On a fu rth er  .stage [11] , the sam e re n o rm a liza tio n  p ro ce d u re  w as 
s u c c e s s fu lly  applied  with s . p. e n e rg ie s  ca lcu la ted  in  the n u m e rica l so lu tion  
o f  the S ch röd in g er  equation  w ith  a W ood s -S a xon  s . p. poten tia l. F in a lly , 
a v e r y  s im p le  s e l f -c o n s is te n t  p ro ce d u re  [12] w as su ggested  w hich  p r e s e r v e s  
the h a r m o n ic -o s c i l la to r  shape o f  s . p. o rb ita ls  ( i . e .  H a r tr e e -F o c k  p r e s 
cr ip tio n  lim ited  to the s p h e r ica l sh ape). S. p. e n e rg ie s  w ritten  in the fo rm

es = <s  |u |s>-^s(et ) (31)

w h ere

й 5 = ^ Т Т  X  ^ j * '  +1 F (ss s l s 'J = 0 ,e t ) (32)
s s*

can  be ca lcu la ted  a c c o rd in g  to the sch em e

et '

F<") = F(e(tn>) e(tn + 1) = e t (F (n))

F(n)

w hich  u su a lly  c o n v e rg e s  v e r y  ra p id ly , in  th ree  to  fiv e  ite ra tio n s . S p e c tro 
s c o p ic  r e su lts  [12] obtained w ith the m entioned se ts  o f  s .  p. e n e rg ie s  show 
a re a so n a b le  s ta b ility .

C o re  p o la riza tio n  c o r r e c t io n s  w e re  studied e .g .  fo r  p -s h e ll  n u cle i [13 ], 
A  = 18 [4 , 14] , A = 20 [15] and A  = 21 [16] n u cle i and fo r  n ick e l [4] iso top es  
in the fra m e w o rk  o f  the sh e ll m od e l; fo r  n ick e l [17] and tin [9] is o to p e s  with 
the use o f  the q u a s i-p a r t ic le  th e o r ie s . E xam ples o f  such ca lcu la tion s  a re  
g iven  in F ig s  4 -9 .
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F IG .4.

PROTON-PROTON INTERACTION FOR
Ч»/2

P V

-I

-2

iv Em p ir ic a l (Cohen, Lawton
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Com parison o f ca lcu la ted  and e m p ir ica l proton-proton m atrix  elem ents (Ref. [22]).
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FIG . 5. O w ing to the core -po la r iza tion  spectra are "opened", the 0+ le ve l pushed down, the leve ls  o f 

higher angular m om enta up ( Ref. [22]).
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FIG . 6. Energy leve ls o f 20Ne (T  = 0) states obtained by using the renorm alized  Ham ada-Johnston potentia l. 

Results obtained w ith  com plete  (co lum n a) SU3-basis fo r 4 partic les in  the s-d she ll are com pared w ith those 

obtained in  d ifferent restricted bases (colum ns b and c) and w ith experim ent. N o  such stab ility  was, however, 

obtained in  the case o f 20O nucleons (Ref. [15]).
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FIG. 7. Com parison o f the ca lcu la ted  and em p ir ic a l m atrix  e lem ents in  the n ic k e l isotopes (Ref. [4 ]).
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C alcu la ted  c o r r e c t io n s  a re  g e n e ra lly  la rg e  and r e f le c t  the g rea t im 
porta n ce  o f  the ex cited  con fig u ra tion s  o f  c o r e  n u cleon s in m ic r o s c o p ic  
s p e c tro s co p y  with a r e a lis t ic  poten tia l. The e ffe c ts  o f  the c o r r e c t io n s  
in qu estion  a re  tw ofo ld  in the c a se  o f  su p ercon d u ctive  n u cle i ( e .g .  tin 
is o to p e s ) in co n tra st to  th ose  in the n orm al state [9] . In fa c t, the changes 
in  the e ffe ct iv e  pa irin g  fo r c e ,  i . e . in the ca lcu la ted  en erg y  gaps and the 
ch e m ica l poten tia ls , a re  even m o re  im portan t than the changes in  the 
e ffe c t iv e  re s id u a l in tera ction  re sp o n s ib le  fo r  the con figu ra tion  m ixin g .

S p e ctro s co p ic  r e su lts  obtained with d iffe ren t r e a lis t ic  potentials a re  
v e r y  s im ila r . Дп p a rt icu la r , w e w ould lik e  to m ention  h ere  co m p a riso n  
o f  the Y a le , R eid  and H am ada-Joh nston  potentia ls in light n u cle i [18] , 
equ iva len ce  o f  Tabakin  and Y ale potentia ls in tin is o to p e s  [19] and equ iva 
le n ce  o f  H am ada-Johnston* s and T abakin 1 s potentia ls found in A  = 21 
n u cle i [ 16] .
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FIG . 8. Energy leve ls o f A  = 21 nu c le i ca lcu la ted  w ith  T a b a k in 's  rea lis t ic  po tentia l. Measured spectra 

o f the 21 Ne and 21 Na n u c le i are g iven at the sides o f the figure  (Ref. [16]).
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FIG . 9. Spectrum o f the lowest ly ing  0+, 2+ and 4+ energy leve ls  o f 116Sn ca lcu la ted  in  the Tam m -D anco ff 

approxim ation w ith  the Tabak in  potentia l. Inclusion o f the processes w h ich  correspond to the d ifferent diagrams 

o f F ig . 10 (co lum n  IS2) does not change appreciab ly the renorm alized potentia l (co lum n  S2).



710 GMITRO

V
о '

FIG . 10. An  exam ple  o f the RPA-type bubble diagrams in  the co re -po la r iza tion  corrections.
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F IG .13 , Exam ples o f the th ird-order co re -p o la r iza tion  corrections.
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One w on d ers  n atu ra lly  about the r e la t iv e  im p o rta n ce  o f  the se v e r a l 
p r o c e s s e s  d iffe re n t fr o m  the s im p le s t  Зр- lh  ex cita tion  c o n s id e re d  s o  fa r . 
Sum m ing up, we can say  that the in clu s io n  o f m o re  p -h  b u bb les , F ig . 10 [9] 
("ex ch a n g e  o f  a phonon" , in R e f. [20] )) lea d s  to  n eg lig ib le  c o r r e c t io n s  on ly . 
The tw o -p a r t ic le  ex cita tion s  [4 , 14] o f  F ig . 11, on the other hand, w e re  
found to  be quite im portan t. T h e p ertu rb ative  treatm en t o f  the tw o -h o le  
e x cita tion  (F ig . 12) is  not quite adequate, as has been  argued  s e v e r a l  t im es 
[4 , 14] . H ow ever , Kuo and B row n  [14] in cluded  both  2p and 2h c o r r e c t io n s  
in o r d e r  to  study th e ir  r e la t iv e  im p o rta n ce .

The qu estion  o f  how adequate is  the lim ita tion  to  the lo w e st  (secon d ) 
o r d e r  in the a b ove -m en tion ed  Зр- lh  c o r r e c t io n s  s t il l  rem a in s  open . R ecen t 
in vestig a tion s  o f  the p ro b le m  [21] g iv e  so m e  in d ica tion  that th is c la s s  o f 
d ia gra m s has to  be  sum m ed up to  a ll o r d e r s  (ex a m p les  o f  the th ir d -o r d e r  
graphs a re  shown in F ig . 13; w e can  draw  18 th ir d -o r d e r  graphs in  a ll) .
The p ro m is in g  r e su lts  o f  s e v e r a l p a p ers  ba sed  on the s e c o n d -o r d e r  c o n t r i 
bution , h o w e v e r , g ive  so m e  hope that the h ig h e r -o rd e r  con trib u tion s  p a rtly  
ca n ce l, and the re su ltin g  c o r r e c t io n  w ill not be v e r y  d iffe ren t fr o m  the 
s e c o n d -o r d e r  te rm s  c o n s id e re d  h e re .
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Abstract

EFFEC T IVE  E LEC TR O M A G N ET IC  OPERATORS.

The  fundam ental ideas o f the theory o f e ffe c tiv e  in teractions and e le ctrom agne tic  operators are re 

viewed (sections 1 and 2). T he  advantages and drawbacks o f the m icroscop ic  and phenom eno log ica l de te rm i

nations o f the e ffe c tiv e  quantities are discussed in  section  3. T he  method o f separating core and va lence 

energies is described in  section  4. T he  e x p lic it  formulas for the e ffe c tiv e  em operators are g iven in  section  5. 

Tw o  ca lcu la t ion s  concern ing t in  and n ic k e l isotopes are described in  sections 6 and 7, and the results are 

discussed.

1. INTRODUCTION

An e ffe c t iv e  e le c tro m a g n e tic  (em ) o p e ra to r  is  an o p e ra to r  w hich , when 
u sed  >to ca lcu la te  m a tr ix  e lem en ts betw een  m o d e l w ave fu n ction s , g iv e s  the 
sa m e re sù lts  as g iven  by  the tru e  em  o p e ra to r  betw een  the c o rre sp o n d in g  
tru e  w ave fu n ction s. T h e r e fo r e , to  get e x p re s s io n s  f o r  the e ffe c t iv e  em  
o p e r a to rs , it is  n e c e s s a r y  to  know the p r e c is e  re la tion sh ip  betw een  the 
m o d e l and tru e  w ave fu nction s and, in turn, th is re la tion sh ip  is  con n ected  
with the defin ition  o f the e ffe c t iv e  H am ilton ian  [1].

O u r s ta rtin g  poin t is  the s h e ll -th e o r y  H am iltonian

H = H 0 + V  (1)

w h ere  H0 = Ç ea Na is  a o n e -b o d y  o p e ra to r . W e c a ll  V the re s id u a l in te r 
action . W e d iv id e  the le v e ls  o f  H 0 into v a r io u s  g rou ps (s e e  F ig . 1). T h e 
c o r e  le v e ls  a r e  su pp osed  to  b e  f i l le d  to  a la r g e  extent in  the n u c le a r  ground 
and lo w -ly in g  e x cite d  sta tes. T h e v a le n ce  le v e ls  a re  p a rt ia lly  f ille d . T h e 
n ucleon s in th ese  le v e ls  change e sse n t ia lly  th e ir  sta te  in go in g  fr o m  one 
lo w -ly in g  n u c le a r  sta te  to  another. T h e  u p p er  le v e ls  a r e  su pp osed  to  be  
em pty to  a la r g e  extent. T h ey  a r e  fu rth e r  d iv ided  into h igh u p p er  and 
m ed iu m  u p per le v e ls .  T h e high u p p er  le v e ls  a re  th o se  w hich  can b e  a s 
su m ed  to  b e  co m p le te ly  em pty  b e ca u se  a B r u e c k n e r -H a r tr e e -F o c k  c a lc u 
la tion  has b een  p e r fo rm e d  to  p ro d u ce  the H am ilton ian  (1 ) o r ,  at any ra te , 
b e c a u se  the tw o -b o d y  potentia l in  V  is  sm ooth  enough. T h e m ed iu m  u pper 
le v e ls  a re  the f ir s t  few  le v e ls  beyon d  the v a le n ce  re g io n . Just as the to p 
m o s t  c o r e  le v e ls ,  they a re  often  o f  a n o n -n e g lig ib le  im p o rta n ce  fo r  
s p e c tr o s c o p y , but a r e  not in clu d ed  am ong the v a le n ce  le v e ls  in  o r d e r  to 
h ave s e c u la r  m a tr ic e s  o f r e a so n a b le  d im en sion s.

W e ca ll a H ilb ert sp a c e  co m p le te  i f  it is  spanned by  a ll the co n fig u ra 
tion s obtained b y  putting the n ucleon s o f  the g iven  n ucleu s in the c o r e ,  
v a le n ce  and m ed iu m  u p p er  le v e ls .  T h e  w ave fu nction s obtained by  
d ia gon a liz in g  the H am ilton ian  (1) in the co m p le te  H ilb ert sp a ce  a re  the
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FIG. 1. S ing le-partic le  leve ls  in  shell-theory.

tru e  w ave fu n ction s. A  H ilb ert sp a ce  w ill b e  ca lle d  m o d e l H ilb ert sp a ce  
i f  it is  .spanned b y  a ll the con fig u ra tion s  obtained b y  fill in g  co m p le te ly  the 
c o r e  le v e ls  and putting the rem ain in g  n ucleon s in the v a le n ce  le v e ls .  T h is  
is  the state  v e c t o r  sp a ce  in w hich  w e want to  do the s p e c tr o s c o p y  o f the 
lo w -ly in g  n u c le a r  sta tes b y  d ia gon a liz in g  so m e  e ffe c t iv e  H am iltonian . W e 
sh a ll s e e  how  to  d efin e th is e ffe c t iv e  H am iltonian  and what is  the re la tion  
o f its  e igen fu n ctions (the m od e l w ave fu nction s) to  the tru e w ave fu n ction s. 
A ctu a lly , the H am iltonian  (1) is  a lrea d y  an e ffe c t iv e  H am iltonian  in the 
se n se  o f the e lim in ation  o f the high u p per le v e ls ,  s o  that ou rs  is  a tw o -s te p  
p ro ce d u re . T h e fo r m a l th e o ry  of the tw o steps is  the sa m e , but in p r a c t ic e  
the im portan t con trib u tion s a re  quite d ifferen t. T h is  is  p r e c is e ly  the. 
r e a so n  why a tw o -s te p  p r o ce d u r e  is  conven ient. W e do not c o n s id e r  h e re  
the f ir s t  step .

F o r  an e le c tro m a g n e tic  o p e ra to r , the p r o ce d u r e  to  get the e ffe c t iv e  
o p e ra to r  shou ld  a lso  c o n s is t  o f two step s . H ow ever, it is  u su a lly  b e lie v e d  
that the f ir s t  step , w hich  e sse n t ia lly  takes into accoun t the v e r y -s h o r t -r a n g e  
c o r r e la t io n s  in trod u ced  in  the n u c le a r  w ave fu nction s by  the re p u ls iv e  c o r e
in the f r e e  n u c le o n -n u cle o n  in tera ction , is  not im portan t fo r  the em  o p e r a 
to r s . A c co r d in g ly , in the se co n d  step w e sh a ll s im p ly  u se  the o p e ra to rs  
c o rre sp o n d in g  to  the in tera ction  of the em  fie ld  with fr e e  n u cleon s.

2. SCHRÖDINGER EQUATION AND P E R T U R B A T IO N  EXPANSIONS

T h e S ch röd in g er  equation in  the co m p le te  (as defin ed  above) H ilbert 
sp a ce  is

(E  - H0) I ф У  = V|<//> (2)

T h e  w ave fu nction s \,ф У  a re  the tru e  w ave fu n ction s. L e t P  be  the p r o 
je c t io n  o p e ra to r  on the m o d e l H ilb ert sp a ce , and Q the p r o je c t io n  o p e ra to r  
orth ogon al to  the co m p le te  H ilb ert sp a ce . C le a r ly  P  and Q com m u te  with 
H0 . In c o rr e sp o n d e n ce  to  any e igenvalue E o f Eq. (2) w e defin e an e ffe c t iv e  
in te ra ctio n  V eff by

y e f f  = y  + y  Q y e f f  ( 3)
bj -  Ho

w hich  is  m ean ing fu l p ro v id e d  that the o p e ra to r  (1 - V  Q /(E  - H0))_1 ex ists . 
T h is  is  not the c a s e  if  P| <// У = 0. F r o m  o u r  co n s id e ra tio n  we exclu d e



IAEA-SMR 6 /5 2 715

th ose  so lu tion s o f  Eq. (2) w hich , c le a r ly , w e cannot preten d  to  d e s c r ib e  
w ithin the m o d e l H ilbert sp a ce . F r o m  Eq. (2) it fo llo w s

It d iffe r s  fr o m  an ord in a ry  S ch röd in g er  equation b y  the fa ct that the in te r 
action  P  V effP  depends on E. T h e re fo r e , the so lu tion s | фм У  fo r  d ifferen t 
v a lu es of E a r e  not orth ogon al b e ca u se  they c o rr e sp o n d  to  d ifferen t 
H am ilton ians. C le a r ly , th is is  a con seq u en ce  o f the c o rr e sp o n d e n ce  (5) 
w hich  does not c o n s e rv e  orth ogon ality .

F o r  the or ig in a l S ch röd in g er  p ro b le m  (2 ), we have substitu ted  an 
equivalent p ro b le m  in the m o d e l sp a ce  through the defin ing  Eq. (3 ). It is 
im portant to  note that fr o m  the kn ow led ge of the e ffe c t iv e  in te ra ctio n  V èff 
and o f the m od e l w ave fu nction  | фмУ  , the k n ow led ge o f the tru e  w ave 
fu nction  I ф У  fo llo w s . In fa c t, i f  Veff and | фм У a re  so lu tion s o f  E qs (3) and
(6 ), we put

It is  c le a r  that Eqs (3 ), (6) and (7) a re  nothing e ls e  than a w ay o f rew ritin g  
Eq. (2).

W e can  expand Eq. (3) by  itera tion . W e obtain

and fr o m  Eq. (3)

so  that, b e ca u se  o f the e x is te n ce  o f (1 -  V  Q /(E  -  Hq) ) '1

Veff P  j (//> = V I <//>

It is  then easy  to  s e e  that, i f  w e defin e the m o d e l w ave fu nction  | Ф ^ Ь у

(4)

I Ф м У  = p| ФУ

it s a t is fie s  the S ch rô d în g e r -ty p e  equation in the m od e l sp a ce

( E - H 0) U M > = P V eff \фи У

(5)

(6)

Р \ ф У = \ ф м У ,  Q  I ФУ = v e f f  I фму (7) .

It fo llo w s  that I ф У  s a t is fie s  Eq. (4 ). Then

(E  -  H0) I ф У  = (E  -  H0)| фмУ + Q V eff I i//M> 

= P V e f fU M> +  Q V eff | ^ >

= v e f f  I ФиУ  = V l '/'>

V + ____ (8)
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T h is  s e r ie s  lo o k s  lik e  a B r illo u in -W ig n e r  p ertu rb a tive  expansion , and, in
fa c t, what w e have done is  p r e c is e ly  the B r illo u in -W ig n e r  pertu rbation  
th eory  fo r  degen era te  o r  q u a s i-d e g e n e ra te  sy s te m s . W e can get a d ia g ra m 
m a tic  re p re se n ta tio n  o f the te rm s  in the expansion  (8). b y  in sertin g  com p le te  
sets  o f  e igen sta tes o f H 0. If w e c o n s id e r  the m od e l in tera ction  P  V effP , as 
g iven  by  Eq. (8 ), w e se e  that it c o rre sp o n d s  to ou r in tu itive idea  that it 
shou ld  contain  a ll th ose  p r o c e s s e s  fo r  w hich  the in itia l and fin a l states a re  
in  the m o d e l sp a ce , w hile the in term ed ia te  states l ie  outside.

T h e  e ffe c t iv e  em  o p e ra to r  O eff c o rre sp o n d in g  to  the fr e e -n u c le o n  
o p e ra to r  О is  defin ed  by

T h e  n orm a liza tion  fa c to r  is  n e ce s s a r y  b e ca u se  Eq. (5) d oes not a llow  to  
n o rm a liz e  both  the m od e l and the tru e  w ave fu nction s.

In p r a c t ic e , in m ost c a s e s , one u se s  the f i r s t - o r d e r  p ertu rbation  
th e o ry  as defin ed  b y  the tru ncated  expansions

L a te r  on, w e sh all d is cu ss  the ap p lica tion  o f th is p ertu rb a tive  treatm en t 
to  the tin  and n ick e l is o to p e s .

T h e e ffe c t iv e  em  o p e ra to rs  O eff a re  o p e ra to rs  fo r  an ^ -p a r t ic le  sy stem , 
П bein g  the n um ber o f  v a le n ce  p a r t ic le s . It is  obv iou s that they a re  not 
s im p le  o n e -b o d y  o p e ra to rs . F o r  exam ple , u sin g  f i r s t - o r d e r  pertu rbation  
th e o ry , the la s t  te rm  in Eq. (10e) contains con tribu tion s w hich  can  b e  r e 
p re se n te d  by  the d ia gram s o f F ig . 2. T h e la b e ls  v , с  and u m ean  v a len ce , 
c o r e  and m ed iu m  u p p er, r e s p e c t iv e ly , and the unperturbed  ground state 
o f the c o r e  is  u sed  as a vacuum . D iagra m s 2c and 2f g ive  r i s e  to  a 
tw o -b o d y  p art in O eff. L e t us drop  a ll d ia gram s o f the types 2c and 2f 
excep t th o se  w hich  can be  r e - in te rp r e te d  as o n e -b o d y  d ia gra m s. T h e se  
a re  re p re se n te d  in F ig . 3. D iag ra m s 3a and 3b a re  fo rb id d en  by  the P au li 
p r in c ip le  and, in fa c t, they ex a ctly  ca n ce l th ose  con tribu tion s fro m  
d ia gra m s 2a and 2b w hich a re  fo rb id d en  b e ca u se  the p a r t ic le  ex cited  fro m  
the c o r e  is  in a state  v  w hich is  a lrea d y  occu p ied  by  sa m e  fr e e ly  p r o p a 
gating v a le n ce  p a r t ic le .  But th is ca n ce lla tion  depends on what the 
o c cu p ie d -v a le n c e  s in g le -p a r t ic le  le v e ls  a re . T h e re fo r e , when w e w rite  
the o p e r a to r  f o r  an r j-p a r tic le  sy stem  O eff as a o n e -b o d y  o p e ra to r , a new 
state  depen den ce a r is e s  w hich  is  o f  a new kind with re s p e c t  to  the state

< ^ 'M|oeff Um> = U '  > <Ф k >  |o I Ф> (9)

p  yeff = p  v  + p  v  — Q V 
-  Ho (10a)

Q V eff = Q V (10b)

(10c)

= < ^ ' m I °  U m > +  < ^ ,m I 0 Ë ^ Ï Ï ' o V | ^ > +  ^ ' m I V E ^ H o ° ^ m >  ( 1 0 d )

(10e)
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FIG. 2. F irst-order contributions to  the e ffe c tiv e  e le ctrom agne tic  operator Oe ff.
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FIG. 3. Pa rticu la r two-body terms in  Oe ^.

FIG. 4. A  d iffe ren t way o f draw ing diagrams 3c and 3d.

dep en den ce  g iven  b y  the en erg y  d en om in ators . S im ila r ly , the d ia gram s 
3c and 3d, w hich  a re  u su a lly  draw n as 'in F ig . 4, a re  sta te-dep en d en t 
b e ca u se  they do not ex ist i f  the s in g le -p a r t ic le  state  v  is  em pty. F in a lly , 
w e n ote  that the o n e -b o d y  o p e ra to r  in Oeff depends a lso  on the n um ber o f 
p a r t ic le s  in the v a le n ce  le v e ls ,  i. e. on the p a rt icu la r  n ucleu s w hich  we 
a re  trea tin g  in  the g iven  reg ion .

O ne can  h ope , h o w ev er , that a ll th e se  tro u b le s  a re  not te r r ib ly  im 
portant. T h e tw o -b o d y  te rm s  shou ld  b e  le s s  im portan t than the on e -b o d y  
on es b e ca u se  they re q u ire  that tw o p a r t ic le s  a r e  s im u lta n eou sly  in the 
con d ition s to  in tera ct with the photon. T h e  sta te  depen den ce  co m in g  fro m  
the en erg y  d en om in ators is  w eak if  the ran ge  o f the e n e rg ie s  o f  the n u clear  
sta tes in  w hich  w e a re  in te re ste d  is  sm a ll co m p a re d  with the u npertu rbed  
en erg y  c o rre sp o n d in g  to  the ex it fr o m  the m o d e l sp a ce . T h e  state
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depen den ce co m in g  fr o m  w ritin g  O ff as a o n e -b o d y  o p e ra to r  is  w eak when 
the occu p ation  p ro b a b ility  o f the v a le n ce  le v e ls  is  sm a ll b e ca u se  in  su ch  a 
c a s e  the inhibition  o f the c o r e -v a le n c e  p r o c e s s e s  is" sm a ll and the 
v a le n ce -u p p e r  p r o c e s s e s  a re  n e g lig ib le . W hen the n um ber o f v a le n ce  
p a r t ic le s  is  la r g e  w e a re  u su a lly , b e ca u se  of the p a ir in g  e ffe c t , in a 
p o s itio n  to apply the q u a s i-p a r t ic le  T a m m -D a n co ff  a p p rox im a tion s , a c 
co rd in g  to  w hich  the d is tr ibu tion  of p a r t ic le s  am ong the v a le n ce  le v e ls  is  
e sse n t ia lly  that of the ground state  a lso  f o r  the ex cited  sta tes . F in a lly , 
the n ucleu s depen den ce  is  not stron g  b e ca u se  the c o r e -v a le n c e  p r o c e s s e s  
a r e  rou gh ly  p ro p o rt io n a l to  the unoccu pation  p ro b a b ility  o f the v a le n ce  
le v e ls  w hile the v a le n ce -u p p e r  p r o c e s s e s  a re  rou gh ly  p ro p o rt io n a l to  the 
occu p ation  p rob a b ility . S in ce  one finds that a ll con tribu tion s a r e  coh eren t, 
the tw o e ffe c ts  a p p rox im a te ly  com p en sa te  each  other.

W hat has b een  sa id  in the la st tw o pa ra graph s on the e ffe c t iv e  em  
op e ra to rs  O eff can  b e  rep ea ted  with su itab le  m o d ifica tio n s  fo r  the e ffe c t iv e  
in tera ction  in the m o d e l sp a ce  P V effP ,

3. TW O  W AYS OF DETERM INING TH E E F F E C T IV E  IN TE RAC TIO N

T h e re  a re  tw o p o s s ib le  w ays of determ in in g  the e ffe ct iv e  in tera ction  
and the e ffe c t iv e  em  o p e ra to rs . O ne w ay is  to  try  to  ca lcu la te  them  m ic r o 
s c o p ic a l ly  fr o m  the fr e e -n u c le o n  in tera ction  and em  o p e ra to rs . O f c o u r s e , 
m any ap p rox im a tion s  a re  n e c e s s a r y  in  o r d e r  to  s im p lify  the ca lcu la tion s  
rea son a b ly . T h e se  ap p rox im a tion s a r e , f ir s t ,  the n eg lect of a ll m a n y -b od y  
te r m s , o f any kind o f  sta te  depen den ce, o f the nucleu s depen den ce  in a 
ce rta in  re g io n . F u rth e rm o re , even w ithin th ese  lim ita tio n s , one is  c o m 
p e lle d  to  lim it  the co n s id e ra tio n s  to  s e le c te d  p r o c e s s e s ,  d is re g a rd in g  a ll 
the r e s t  in the p e r tu rb a tiv e  expan sion s.

T h e a ltern a tiv e  to  the m ic r o s c o p ic  ca lcu la tion  is  the p h en om en o log ica l 
determ in ation . In th is type o f ap proach , one lo o k s  fo r  an e ffe c t iv e  in te r 
a ction  w hich  g iv e s  the sa m e  n u clea r  en ergy  le v e ls  as g iven  by  experim en t. 
T hen  u sin g  the m o d e l w ave fu nction s obtained in th is w ay, one lo o k s  fo r  
e ffe c t iv e  em  o p e ra to rs  w hich  have the sa m e m a tr ix  e lem en ts as th ose  
ex tra c te d  fr o m  experim en t. It is  obv iou s that the p ro b le m , as fo rm u la ted  
ab ove , has an in fin ite  n um ber o f so lu tion s. T h e hope o f  ch o o s in g  a p h y s i
ca lly  a ccep ta b le  so lu tion , i. e. a so lu tion  such  that the fundam ental 
re la tio n  (5) is  a p p rox im a te ly  sa tis fie d , is  b a sed  on the fa ct that ce rta in  
assu m ption s a re  m a de, s o  that one fits  a la rg e  num ber of n u c lea r  le v e ls  
by  ad ju sting  a sm a lle r  (p o s s ib ly  m uch sm a lle r )  n um ber o f p a ra m e te rs . 
T h e se  assu m p tion s a re  u su a lly , (a)' that P V effP  is  a tw o -b o d y  o p e ra to r  
independent o f the state  and o f the p a rt icu la r  n ucleu s in the re g io n  w e a re  
co n s id e r in g ; (b) that the tw o -b o d y  o p e ra to r  in p  y e ffp  has a defin ite  fo rm  
conta in in g  few  p a ra m e te rs . T h e  assu m ption s conta in ed  in (a ), as w e know, 
can  be  v a lid  on ly  as ap p rox im a tion s . A ssu m ption  (b) cou ld  b e  a ffe cted  by  
o n e 's  e a r l ie r  e x p e r ie n ce  in th is su b ject , in w hich  c a s e  one w ould have c o n 
ce a le d  p a ra m e te rs . C le a r ly , th ere  is  a ce rta in  am ount o f danger o f d is 
to r t in g  the p h y s ica l situ ation , i. e. o f getting m od e l w ave fu nction s w hich 
do not sa tis fy  Eq. (5 ). T h e s u c c e s s iv e  p h en om en o log ica l determ in a tion  óf 
the e ffe c t iv e  em  o p e ra to rs  cannot a ffe ct the v a lid ity  o f Eq. (5 ). A ssu m ption s 
an alogou s to  (a) and (b) a re  m ade fo r  the em  o p e ra to rs  in o r d e r  to  obtain  a 
s ign ifica n t co m p a r is o n  with experim en ta l data.
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T h e pseudon iu m  ca lcu la tio n s  have show n that it is  p o s s ib le  to  su cce e d  
in the fittin g  p r o ce d u r e  even  when th ere  a re  tru e  w ave fu n ction s w hich  have 
ra th e r  sm a ll com p on en ts in the m o d e l H ilb ert sp a ce . T h is  does not 
n e c e s s a r ily  im p ly  that the re su lts  a re  w rong. It on ly  m ean s that, fro m  
the s u c c e s s  o f the fittin g  p r o ce d u r e , one cannot con c lu d e  that the ad m ixtu res 
in the tru e  w ave fu nction s fr o m  con fig u ra tion s  ly in g  ou tsid e  the m o d e l sp a ce  
a re  sm a ll. It w ould be  in terestin g  to  know the re su lts  o f a ch e ck  o f  Eq. (5 ).

T h e re su lt  o f  ou r  d is cu ss io n  is  that the tw o w ays of d eterm in in g  the 
e ffe c t iv e  in tera ction  both  have tro u b le s , but qu ite d iffe ren t in ch a ra cte r .
T h e  m ain  tro u b le  with the m ic r o s c o p ic  ca lcu la tio n s  is  the p o s s ib le  n eg lect 
o f  im portan t con trib u tion s . On the o th er  hand, the m ain  tro u b le  with the 
p h en om en o log ica l determ in a tion  is  that the fittin g  p r o ce d u r e  cou ld  lea d  to 
a r e su lt  having lit t le  to  do with the p h y s ica l situation . T h e fa ct that the 
e ffe c t iv e  in te ra ctio n s  obtained with the two m ethod s g en era lly  a g re e  in a 
s a t is fa c to r y  w ay [2] is  a su pport fo r  both  o f them .

4. E N ERG Y  CONSIDERATIONS

T h e equations w hich  w e have w ritten  so  fa r  cannot b e  u sed  as they a re  
in the n u c lea r  sh e ll m od e l. In fa c t , the e n e rg ie s  w hich  ap pear in th ese  
equations a re  the tota l en e rg ie s  o f the sy ste m , w hile  in the sh e ll m o d e l one 
has to  do with e n e rg ie s  r e la t iv e  to  the ground state  en ergy  o f the c o r e .
T h e w ay o f sep ara tin g  the c o r e  en erg y  has b een  show n by  B lo ch  and 
H orow itz  [3]. T h e m ethod  is  ba sed  on a th e o r em  on the ca n ce lla tio n  of 
c la s s e s  of d ia gram s w hich  w e sh all s im p ly  state  w ithout p ro o f.

L e t Д Е b e  the en ergy  sh ift defin ed  by

E = E q + Д E (11)

w h ere

E0 = <(</>m I Ho| Ф м У  (12)

T h e  u npertu rbed  en erg y  E 0 can  b e  sp lit  in to a c o r e  and a v a le n ce  p a rt by 
w ritin g

Eo = ®0c + Eov (13)

® 0 c  =  ‘v ' / ' m I  H q c I  ФмУ > H o c  =  / L  e a - ^ a  ( 1 4 )

a = core

Eov  = ( Ф м !  H-Ovl Ф м У  ’  ^Ov = Д  ea-^a (1^)

a = va lence

If ДЕ .̂ is  the g ro u n d -s ta te  en erg y  sh ift o f the p ro b le m  o f the c o r e  a lone, 
then the quantity

Ec = E 0c + Д Е С (16)

is  ju st the g ro u n d -s ta te  en erg y  of the c o r e . T h e  en erg y  sh ift Д Е  can  a lso  
b e  sp lit in to a p art due to  the c o r e  n u c leon s, and a part due to  the v a le n ce
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n ucleu s by  u sin g  the equation

Д Е = Д ЕС + A E V (17)

as a defin ition  o f  ДЕ„.
W e now d iv id e  the d ia gram s re p re se n tin g  the v a r iou s  te rm s  in the 

p ertu rb a tive  expansion  into th re e  c la s s e s :

a) the c o r e  d ia g ra m s, in w hich  no in tera ction  lin e  is  attached to  the e x 
tern a l lin e s  (w e u se  the unpertu rbed  g rou n d -s ta te  o f the c o r e  as a vacuum , 
so  that the ex tern a l lin es  a re  v a le n ce  lin e s );
b) the v a le n ce  d ia g ra m s, in w hich a ll in tera ction  lin e s  a re  con n ected  to 
ex tern a l lin e s ;
c) m ix e d  d ia g ra m s, a ll rem ain in g  d ia g ra m s, in  w hich  on ly  a part of the 
in tera ction  lin es  is  attached to  externa l lin e s .

E xam p les o f the th ree  c la s s e s  o f d ia gram s á re  g iven  in F ig s  5a, 5b, and 
5c, r e s p e c t iv e ly . N ote that no m ixed  d iagram  ex ists  in f i r s t - o r d e r  p e r 
tu rbation  th eory . W e now u se  the a lg e b ra ic  identity

I  = I + I ( . 6 e ) I  (18)
о eo

w h ere  e = e0 + 6e, to  m od ify  the en ergy  d en om in ators in the c o r e  and v a le n ce  
d ia g ra m s. P r e c is e ly ,  w e put -

e ö -  E q + A E C - H0

¿¡e — Д Ev

fo r  the c o r e  d ia g ra m s , and

eo -  E 0 + A E V -  H 0 

6e = AEi;

fo r  the v a le n ce  d ia gra m s. It can  b e  shown that the con tribu tion s fr o m  the 
se co n d  te rm  in Eq. (18) ex actly  ca n ce l the m ix ed  d ia gra m s. W e a re , th e r e 
fo r e ,  le ft  with the c o r e  d ia gram s (with en ergy  den om in ators E0 + ДЕС - B^) 
and the v a le n ce  d ia gram s (w ith en ergy  den om in ators E 0 + Д Е , -  H0) only.

§ §

FIG. 5. Exam ples o f core (a), va lence  (b) and m ixed (c) diagrams.
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C o n s id e r  now the con tribu tion  o f the c o r e  d ia gram s to  Veff p .  T h e se  d ia 
g ra m s le a v e  the in itia l unperturbed  m od e l state  u ndistu rbed , s o  that th e ir  
con tribu tion  is  a m u ltip le  of the identity  in the m o d e l sp a ce . T h e fa c to r  
is  c le a r ly  ju st A E C, s in ce , apart fr o m  the externa l v a le n ce  lin e s , th ese  
d ia gram s fo r m  the B r illo u in -W ig n e r  expansion  f o r  Д ЕС. T h e r e fo r e

V effp  = AEgP + Vveff P  (19)

w h ere  Vveff P  contains on ly the v a le n ce  d ia gram s and the en erg y  d e n o m i
n ators  E 0 + Д Е , - H0 a re  used . N oting that

H0 P = E 0cP + H 0v (20)

and r e ca llin g  the defin itions (11 ), (13), (17), the S ch röd in g er  equation in 
the m od e l sp a ce  (6) can  b e  w ritten

(Ev - H 0v) k M> = p v / f f | ^ M; (21)

w h ere

E v = Eov + A E V (22)

T h e en ergy  d en om in ators in Vveff P  can conven iently  be w ritten

E0 + A E V - H0 = Ev - (H 0 -  E 0c) = E v -  H0 (23)

w h ere

.Ho = -  V  eaÑah°les + Y , eaÑa , Ñ^les = 2 ja + 1 -  Ñ , (24)
a = core a f  core

Equation  (21) is  ju st a s h e ll -m o d e l eigenvalue equation , p ro v id e d  that the 
depen den ce o f Vveff P on Ev is  not too  stron g .

In f i r s t - o r d e r  p ertu rbation  th eory , the u se  o f  the ca n ce lla tio n  th eorem  
is  not needed . In fa c t, s in ce  no m ixed  d iagram  e x is ts , it is  su ffic ien t to 
n eg lect Д Е , and Д ЕС in the en ergy  den om in ators of the c o r e  and v a le n ce  
d ia gra m s, r e sp e c t iv e ly . T h is  is  p e r m is s ib le  in the dom ain  o f v a lid ity  of 
f i r s t - o r d e r  th eory .

A  treatm en t s im ila r  to  that g iven  above should  b e  g iven  fo r  the em 
o p e ra to rs . T h is  is  t e r r ib ly  co m p lica te d  when the gen era l e x p re s s io n  (9) 
is  u sed , but again  b e c o m e s  v e r y  s im p le  in f i r s t - o r d e r  th eory . In th is c a se  
a ll d ia gram s a re  "v a le n c e "  d ia g ra m s, and the on ly  thing w e have to  do is  
to  n eg lect Д Е С in the en ergy  den om in ators . A gain  th e se  b e c o m e  E v -  H0 . 
F o r  m o r e  e la b ora te  treatm en ts s e e  R ef. [4].

In what fo llo w s  w e fo cu s  ou r attention on the ca lcu la tion s  of the e ffe c t iv e  
em  o p e ra to rs  and on the u se  o f th ese  in the ca lcu la tion  of o b se rv a b le  
quantities in  p r a c t ic a l c a s e s .
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T h e m ost obv iou s m ethod  of elim in ating  the state  depen den ce o f the 
en erg y  den om in ators in f i r s t - o r d e r  th eory  is  to  r e p la c e  the B r illo u in -W ig n e r  
den om in ators by  R a y le ig h -S ch rö d in g e r  d en om in ators . W e note, h ow ever, 
that s e v e r a l varian ts a re  p o s s ib le  if  the essen tia l cond ition  is  fu lfille d  that 
the m ain  part in the den om in ators is  the u nperturbed  en ergy  co rre sp o n d in g  
to the exit fr o m  the m od e l sp a ce .

If the en ergy  den om in ators E0v - H 0 a re  u sed , Eq. (10e) g iv e s , f o r  the 
o n e -b o d y  part in O eff,

° î a  = ° e a - ^ VBxa, e - en + e a - eb°* x  " £  °x,r e - en + eb -  ea <25>
irx * X

w h ere  V^xair a re  the an tisy m m etrized  tw o -b o d y  m a tr ix  e lem ents o f the 
in tera ction . A s u su al, g reek  su b scr ip ts  in d icate  all s in g le -p a r t ic le  quantum 
n u m bers , and the co rre sp o n d in g  la tin  ones in d icate  the sa m e  quantum 
n um bers excep t the th ird  com pon ent o f angular m om entum . T h e sum m ations 
run o v e r  the th ree  grou ps of excita tion s c o r e -v a le n c e ,  c o r e -u p p e r  and 
v a le n ce -u p p e r . Equation (25 ), h ow ev er, does not take into accoun t the 
inh ib ition  o f c o r e -v a le n c e  p r o c e s s e s  due to  the P au li p r in c ip le  and the 
inhibition  o f  v a le n ce -u p p e r  p r o c e s s e s  s in c e  the v a le n ce  le v e ls  a re  only 
p a rtia lly  f i l le d . W e sh all take in to accoun t th ese  e ffe c ts  in  the s im p le s t 
w ay, i. e. by  m u ltip ly in g  the con tribu tion  fr o m  c o r e -v a le n c e  p r o c e s s e s  by 
the a v era g e  u noccu pation  p rob a b ility  o f the v a le n ce  le v e ls  q and m ultip ly in g  
the con tribu tion  fr o m  v a le n ce -u p p e r  p r o c e s s e s  by  the occu p ation  p rob a b ility  
1 -  q. O ne cou ld  a lso  u se  d iffe ren t occu pation  and u noccu pation  fa c to r s  fo r  
d iffe ren t v a le n ce  le v e ls . O w ing to  the co h e re n ce  of the v a r io u s  c o n tr i
bu tions , the re su lts  a re  not v e r y  m uch  se n s itiv e  to  th is ch o ice .

T ak ing  into accoun t the rotation a l p r o p e rt ie s  of the em  o p e ra to r  and 
the in tera ction , Eq. (25) g iv e s , f o r  v a le n ce  n eutron s,

5. CA L C U LA TIO N  OF E F F E C T IV E  EM  O PERA TO R S

<b| | O xeff||a> = < b | | o J |  a>

x+ 2
Pn (protons)

I  (F (b  ap n , X 0) -  F (b  apn , X 1)
ep ■ en + ea ■ eb

*< Р 11 O x 11 n> + < h  11 О х| I p> e _ ^  —  I  (F (b  a np, X 0 )

- F ( b a n p ,  X l ) j  + 2  Z  I  (F (b  ap n , X 0) + F (b  ap n , ¡I l ) j
(neutrons) *

1 -  /  l l ^ l l  4 . /  I I ~  I I \ 1 1

(26)

< p | | o J | n > +  <n || O x ||p>% -  en + ea -  eb Cp_ £n + Cb .  £a 2

XÍF(b an p , X 0) + F (b  an p , X 1)

w h ere  the re d u ced  m a tr ix  e lem en ts a re  defined  as in Edm onds [5] and the 
quantities F  a re  the p a r t ic le -h o le  cou p led  m a tr ix  e lem ents o f the in teraction  
as defin ed  in  R e f. [6 ]. Equation (26) is  to  b e  u sed  in ca lcu la tion s .
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W e sh a ll now d e s c r ib e  the re su lts  of a ca lcu la tion  [7] c o n c e rn in g H 6Sn. 
T h is  n ucleu s is  d e s c r ib e d , as u su a lly , in te rm s  o f a 50 n eutrons -  50 p ro ton s  
c o r e .  T h e rem ain in g  16 v a le n ce  neutrons a re  d istr ibu ted  am ong the fiv e  
v a le n ce  le v e ls  2 s 5/2 , l g 7/2 , 3 s !/2 , 2d3/2 and l h n / 2. T h e  c o r e ,  v a le n ce  
and m ed iu m  u p p er  le v e ls  in clu d e  a ll le v e ls  betw een  m a g ic  n u m bers 8 and 
126. T h e sm ooth  fo r c e  w hich  is  u sed  is  the Y a le -S h a k in  re a c tio n  m a tr ix .

, T h e s in g le -p a r t ic le  w ave fu nction s a re  ap prox im ated  by  th ose  o f  the 
h a rm o n ic  o s c i l la t o r  with -Tv = 0. 46 F "1. T h e  s in g le -p a r t ic le  e n e rg ie s  a re  
th o se  g iven  by  a re a so n a b le  W ood s-S a xon  potentia l. D eta ils  a re  g iven  in 
R e f. [7 ]. W e on ly  quote that the ran ge  of the f iv e  v a le n ce  le v e ls  
eih 11/2 “ ^2d 5/2 is  3. 36 M eV , that the gap betw een  c o r e  and v a le n ce  le v e ls
e2d 5/2 '  e i g 9/2 is  4. 72 M eV , and the gap betw een  v a le n ce  and u pper le v e ls
e2f 7/ 2" eih ii /2 is  4. 90 M eV . An a v era g e  occu p ation  p ro b a b ility  o f  the
v a le n ce  neutron  le v e ls  equal to  | is  assu m ed  in the c o r r e c t io n  fa c to r s  fo r
c o r e -v a le n c e  and v a le n ce -u p p e r  p r o c e s s e s .  T he e ffe c t iv e  em  o p e ra to rs  
w hich  a re  obtained a re  u sed , in con jun ction  with a p p rop r ia te  Q S T D n u c le a r  
w ave fu n ction s, to  ca lcu la te  o b s e rv a b le  em  quantities. T h e  n u c le a r  w ave 
fu n ction s fo llo w  fr o m  an e ffe c t iv e  in tera ction  d e r iv e d  fr o m  the Y a le -S h ak in  
f o r c e  co n s is te n t ly  with the m ethod  u sed  to get the e ffe c t iv e  em  o p e r a to rs .

T h e  re su lts  f o r  the E 2 -o p e ra to r  e r 2 Y2(J a r e  g iven  in  T a b le  I. T h is 
ta b le  g ives  the e ffe c t iv e  ch a rg e  m a tr ix , i. e. the m a tr ix  o f the r a tio s  o f  the 
s in g le  p a r t ic le  m a tr ix  e lem en ts of the e ffe c t iv e  o p e ra to rs  to  the c o r r e 
sponding  m a tr ix  e lem en ts o f the o p e ra to r  w hich  is  obtained by  assu m in g  
a r e fe r e n c e  e ffe c t iv e  ch a rg e  equal to  1 fo r  the v a le n ce  n eutron s. It is  
seen  that the a ll m a tr ix  e lem en ts a re  o f  the sa m e  sp in  and o r d e r  o f m a g n i
tude. T h ey  a r e  actu a lly  grou p ed  in  tw o c lu s te rs : th o se  som ew hat h igh er  
than 1 and th ose  som ew hat s m a lle r  than 0. 7. T h e  c o m p o s it io n  o f the nine 
e lem en ts o f  T a b le  I in te rm s  o f the con tribu tion s o f  the v a r io u s  g rou ps o f 
tra n s ition s  is  g iven  in R e f. [7 ]. W e on ly  m en tion  that the c o r e -u p p e r  
tra n sition s  con trib u te  a ra th er  la r g e  am ount (30 -  40% o f  the tota l e ffe ct iv e  
ch a rg e ). T h e a v a ilab le  e x p erim en ta lly  m e a su re d  E2 quantities in 116Sn a re  
the á j  -> 0J tra n s ition  p ro b a b ility  and the quadrupole  m om en t of the 2{ state. 
F o r  the B (E 2, 2 \ -»0J ) the ex p erim en ta l va lu es ran ge  fr o m  200 to  500 e ^ 4 , 
with a m o s t  p ro b a b le  va lu e  o f about 400 e2F 4 . T h e  ca lcu la te d  e ffe c t iv e  
o p e ra to r  g iv e s  259. 4 e 2F 4 . F o r  the quadrupole  m om en t, the ex p erim en ta l 
v a lu e  is  0. 4 ± 0. 3 b a rn  and the th e o re tica l va lu e is  0. 094 barn , at the 
lo w e r  lim it  o f the ex p erim en ta l e r r o r .  It is  to  b e  noted , h o w ev er , that 
the qu ad ru pole  m om en t o f the 2\ state  is  a ra th er  u n stab le  quantity, v e ry

T A B L E  I. E2 -  E F F E C T IV E -C H A R G E  M A T R IX  F O R  TIN

6. A P P L IC A T IO N  T O  116Sn
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T A B L E  II. E F F E C T IV E  M AG NETIC REDU CTIO N  M A T R IX  FO R  TIN

se n s it iv e  to  sm a ll com pon en ts in  the n u c le a r  w ave function . T h e th e o re tica l 
v a lu e  o f B (E 2 , 2j ->0J) can b e  c o n s id e re d  in good  agreem en t with e x p e r i
m ent. It is  to  b e  noted that the B (E 2) depends q u a d ra tica lly  on the e ffe ct iv e  
ch a rge .

T h e re su lts  f o r  the M l-o p e r a t o r  a re  g iven  in T a b le  II in the fo r m  o f an 
" e f fe c t iv e  m a gn etic  red u ction  m a tr ix " . T h is  is  the m a tr ix  o f the ra t io s  o f 
the s in g le -p a r t ic le  m a tr ix  e lem en ts o f the e ffe c t iv e  o p e ra to r  to  the c o r r e 
sponding  m a tr ix  e lem en ts o f the "b a r e "  o p e ra to r  due to  the m a gn etic  m om ent 
o f  the v a le n ce  n eutron s on ly . T h e elem en ts la b e lle d  by  °o a re  z e r o  in the 
b a re  o p e ra to r  b e ca u se  o f ra d ia l fo rb id d e n n e ss , w h ereas they a re  d ifferen t 
fr o m  z e r o  in the e ffe c t iv e  o p e ra to r  b e ca u se  th is p a rt icu la r  se le c t io n  ru le  
is  re la x e d  by  Eq. (26). W e se e  that the con tribu tion s fr o m  the se co n d  and 
th ird  te rm s  in Eq. (1 0 e ), w hich  a re  a ll coh eren t (ap art fr o m  the c o n t r i
butions due to  the p ro ton  cu rre n t w hich  a r e  v e ry  sm a ll), a re  o f op p os ite  
sign  with r e s p e c t  to  the f ir s t  te rm , so  that the net e ffe ct  is  that o f a r e 
duction  o f a c o n s id e ra b le  am ount o f the b a re  v a lu es . T h e on ly  a v a ilab le  
ex p erim en ta lly  m e a su re d  M l-q u a n tity  is  the m a gn etic  m om en t o f the f ir s t  
e x c ite d  5 j state. T h e  v a lu e  g iven  fo r  the g iro m a g n e tic  ra tio  is  
-0 . 065±  0. 005. T h e th e o re tica l va lu es a re  -0 . 1504 i f  the b a re  o p e ra to r  
is  u sed  and -0 . 0648 i f  the e ffe c t iv e  o p e ra to r  is  u sed . W e se e  that the f ir s t  
va lu e  is  in sharp  d isa g reem en t with experim en t w hile the secon d  is  in 
e x ce lle n t ag reem en t.

F u rth e r  a v a ila b le  e le c tro m a g n e tic  ex p erim en ta l data on 116Sn co n ce rn  
the in e la s t ic -e le c t r o n -s c a t t e r in g  fo r m  fa c to r s  with excita tion  o f  the 2J and 
3a sta tes. C a lcu la tin g  th ese  quantities in  the B orn  ap prox im a tion  (w hich  
shou ld  b e  a good  one at the e n e rg ie s  o f the experim en t) am ounts to  c a lc u 
la te  the n u c le a r -m a tr ix  e lem en ts o f the o p e ra to rs  e j2 (q r )  and 
e j 3 (q r ) Y3), , r e s p e c t iv e ly , q b e in g  the m om entum  tra n s fe r . T o  ca lcu la te  
the co rre sp o n d in g  e ffe c t iv e  o p e r a to rs , Eq. (26) m ust b e  u sed  at each  value 
o f q. T h e obtained  re su lts  a re  in good  agreem en t with the exp erim en ta l 
data fo r  the Of -> 2 j tra n sition , both  f o r  the abso lu te  va lu e and fo r  the 
an gular d istr ibu tion . F o r  the 0Í -» 3{ tra n sition  the angular d is tr ib u tion  is  
again  co n s iste n t with the experim en ta l data, but the abso lu te  va lu e is  too  
sm a ll b y  a fa c to r  about 10 (i. e. a fa c to r  3 fo r  the e ffe c t iv e  ch a rg e ). T h is  
re su lt  is  not su rp r is in g  b e ca u se  the 3 i state  is  known [8] to  have im portan t 
ad m ix tu res  fr o m  c o r e -e x c it e d  con fig u ra tion s , s o  that it is  ou tside  the 
dom ain  o f v a lid ity  o f the p ertu rb a tiv e  approach .

S u m m ariz in g , one can  sa y  that the ap p lica tion  o f  the p re se n t th e o ry  to 
116Sn g ives  e sse n tia lly  good  re su lts  both  fo r  the E 2 - and fo r  the M l - c a s e s .
It is  to  b e  s t r e s s e d  that the ca lcu la tion s  in v o lv e  no ad ju stab le  p a ra m e te r .
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A  treatm en t s im ila r  to  that of tin  can b e  u sed  fo r  the n ick e l is o to p e s  [9]. 
T h e assu m ed  c o r e  c o n s is ts  o f 28 n eutron s and 28 p ro to n s . T h e  v a le n ce  
n eutron s a r e  d is tr ibu ted  am ong the fo u r  v a le n ce  le v e ls  2p3/ 2 , I f 5/ 2» З р -^  
and lg g /2- T h e c o r e  le v e ls  in cluded  in the ca lcu la tion  o f the e ffe c t iv e  
in tera ction  and em  o p e ra to rs  a re  lp 3/2 , lP i /2 > l d 5/2, S s -^ ,  l d 3/ 2 and 
I f 7/2- up p e r  le v e ls  a re  l g 7/2, 2d5/ 2, 2 d 3/ 2 and З в ^ .  S in ce  the o c c u 
pation  p ro b a b ility  o f  the v a le n ce  le v e ls  is  sm a ll, w e do not c o r r e c t  f o r  the 
p a rt ia l in h ib ition  o f the c o r e -v a le n c e  p r o c e s s e s  due to  the P a u li p r in c ip le . 
F o r  the sa m e  re a so n , w e do not take into accoun t the v a le n ce -u p p e r  p r o 
c e s s e s .  T h e en erg y  den om in ators a re  s im p lifie d , i. e. th ey  a re  taken 
equal to  the d iffe r e n c e  betw een  p a r t ic le  and h o le  s in g le -p a r t ic le  e n e rg ie s . 
T h e s in g le -p a r t ic le  w ave fu nction s a re  ap prox im a ted  by  th ose  o f  the 
h a rm on ic  o s c i l la t o r  with a s iz e  p a ra m e te r  b = 2. 063 F . T h e s in g le  
p a r t ic le  e n e rg ie s  a re  ch osen  to  be

elp3/2 = elp l/2  = eld5/2 = e2sl/2 = eld3/2 = " 10 M eV , elp7/2 = " 5 M eV , 

e2 p3/2 = 0, ei ps/2 = 0. 78 M eV , e2pl//2 = 1. 08 M eV , ei g 9/2 = 3. 5 M eV , 

elg7/2 = e2d5/2 = e2d3/2 = e3sl/2 = 10 M eV

T h e  e n e rg ie s  o f the low est th ree  v a le n ce  le v e ls  a re  obtained  fr o m  the 
ex p erim en ta l sp ectru m  o f 57N i. F o r  e igg/2 se v e r a l v a lu es  w e re  tr ie d . T he 
ch o se n  va lu e  gave the b e s t r e su lts  f o r  the 3 “ sta tes (the rem ain in g  states 
w e re  p r a c t ic a l ly  in se n s itiv e  to  «a gg/г ). T h e c r it e r io n  f o r  the c o r e  and

7. A P P L IC A T IO N  TO  NICKEL ISOTOPES

T A B L E  III. E2 E F F E C T IV E -C H A R G E  M A T R IX  F O R  NICKEL

2pi/z 2Рз/г lf&/2 1?9/г

2pi/z - 0.4694 0. 8091 -

2рз/г 0.4710 0. 8552 -

1̂ 5/г 0.8266 -

lgg/г 0. 5116

T A B L E  IV. E F F E C T IV E  M AGNETIC RE D U CTIO N  M A T R IX  F O R  NICKEL

2 Pi/2 2рз/г 1*5/2 1g9/2

2pi/2 0. 8478 0. 4220 - -

2p3/z 0. 5262 00 -

1̂ 5 /г 0.4121 -

!g9/2 0. 5216



T A B L E  V. REDU CED  TRAN SITION  P R O B A B IL IT Y  B (M 1 , (  5 /2 " ) i  -» (3 /2 " ) i  ) F O R  61N i C A L C U L A T E D  WITH B A R E  
AND E F F E C T IV E  M l-O P E R A T O R S

A n ■A 13 A 31 ■A33 B(M1) Exp,

bare 0. -0. 012 -0. 006 -0. 009 7 .7  X 10-4
2 .49  X 10“2

e ffec tive -0 .105 0. 006 0.002 -0. 004 1. 02 X 10-2

Note: T he  units are squared nuclear magnetons. Co lum ns la b e lle d  A n , A 13, A 31, and A 33 g ive  contributions to the transition am p litude  due to parts o f  nuclear 

states w ith  d ifferent numbers o f  quasi-partic les.
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u p per le v e ls  is  that o f a s im p le  re a so n a b le  ch o ice . T he on ly  d e lica te  le v e l 
is  1Í7/ 2 . A  sm a lle r  va lu e of the ( l f 7/2 ) -  v a le n ce  en ergy  gap w ould be  
p rob a b ly  m o r e  r e a lis t ic  s in ce  the 2. 6 M eV  le v e l o f 57Ni is  in d icated  as an 
excita tion  fr o m  the l f ^/2 sh e ll but, f o r  a s ign ifica n tly  s m a lle r  va lu e , it 
w ould b e  h ard  to  b e lie v e  in the adopted p r o ce d u r e  o f ca lcu la tin g  the e ffe c t iv e  
quantities. E sse n tia lly , the sm a lle s t  va lu e fo r  w hich  the adopted p ro ce d u re  
is  m eaningful is  ch osen , and its con seq u en ces  a re  tested . T h e e ffe c t iv e  
em o p e ra to rs  w hich a re  obtained a re  u sed , tog eth er  with the con s isten t 
a p p rop ria te  Q S T D  n u clea r  w ave fu n ction s, to  ca lcu la te  o b s e rv a b le  em 
quantities. T h e obtained E2 e ffe c t iv e -ch a rg e  m a tr ix  is  g iven  in T a b le  III.
It turns out that the elem en ts o f th is m a trix  a re  too  sm a ll to  g iv e  the la r g e  
ex p erim en ta l va lu es o f  B (E 2, 2J -» OJ). A ctu a lly  an e ffe c t iv e  ch a rg e  about
2 w ould be  n e ce s s a r y . T h is  is  e sse n tia lly  con s isten t with what is  obtained 
by  o th er authors with d ifferen t m o d e ls  and e ffe c t iv e  in tera ction s . On the 
o th er hand the ca lcu la ted  e ffe c t iv e  ch a rg e  m a tr ix  o f T a b le  III has e lem en ts 
equal to  about 0. 5 o r  0. 8 . B etter  re su lts  cou ld  b e  obtained by  m od ify in g  
the va lu e o f elp 7/2> but it se e m s  m o r e  rea so n a b le  to  con c lu d e  that the 
p a r t ic le -h o le  th eory  of the e ffe c t iv e  E 2 -o p e ra to r  fa ils  in the fr a m e  of the 
con fig u ra tion  m ix in g  c o n s id e re d  h e re . T he m o s t  natural thing to  do w ould 
b e  to  in clude  the excita tion s fr o m  the H 7/2 p ro ton  le v e l in  the con figu ra tion  
m ixin g . W e m en tion  that the co m p a r is o n  betw een  th e o re tica l and e x p e r i
m en ta l va lu es fo r  in e la s tic  e le c tro n  sca tte r in g  g ives  e sse n tia lly  the sa m e 
re su lts  as fo r  tran sition  ra tes .

T h e e ffe ct iv e  M l red u ction  m a tr ix  is  g iven  in T a b le  IV. T h e redu ction  
e ffe ct  is  ra th er  stron g , be in g  n ear to  50% fo r  a ll the elem en ts excep t one 
w hich  is  red u ced  by 15%. T h e a v a ilab le  ex p erim en ta lly  m e a su re d  M l data 
r e fe r  to  61Ni and a re  the m a gn etic  m om en ts of the ( 3 /2 " ^  state 
( -0 ;  74868 n. m . ), the m a gn etic  m om ent o f the (5 / 2 - )г state  (± 0. 3 n. m . ) 
and the ( 5 /2 " ) !^  (3 / 2 - )г tra n sition  ra te  (B (M 1, (5 / 2 - ) j_—» (3/2")]^ ) =
2. 49 10 '2 (n. m . )2 ). U sin g  the b a re  M l o p e ra to r  one gets fo r  the m a gn etic  
m om en ts the v a lu es -1 . 75 n. m . and 1. 30 n. m . r e sp e c t iv e ly . T h e  e ffe ct iv e  
M l o p e ra to r  g ives  -0 . 93 n. m . and 0. 49 n. m . r e sp e c t iv e ly . W e se e  that 
th ese  va lu es a re  in co n s id e ra b ly  b e tte r  agreem en t with experim en t than 
the va lu es g iven  by  the b a re  op e ra to r . A  su rp r is in g  re su lt  is  obtained  fo r  
the B (M 1). T he th e o re tica l va lu e with the b a re  o p e ra to r  is  7. 710 '4(n. m . )2 , 
in  re a so n a b le  agreem en t with the ex p erim en ta l va lu e  (r e m e m b e r  that the 
B(M 1) depends q u ad ra tica lly  on the e ffe c t iv e  o p e ra to r). T h e re a so n  o f the 
enhancem ent is  u n d erstood  by  look in g  at T a b le  V . It is  seen  that the resu lt 
with the b a re  o p e ra to r  is  sm a ll b e ca u se  the 1 q .p . - 1 q. p . te rm s  van ish  
due to  ra d ia l fo rb id d en n ess . On the o th er hand, the break in g  o f th is 
s e le c t io n  ru le  in the e ffe c t iv e  o p e ra to r , though sm a ll K 5 /2  |]yeff|| 3 /2 > =
0. 7668 n. m . ) is  su ffic ien t to  accoun t fo r  the la rg e  o b s e rv e d  valu e of 
B (M 1).

S u m m arizin g  the re su lts  f o r  116Sn and fo r  the n ick e l is o to p e s , one can  
sa y  that the p a r t ic le -h o le  th eory  o f the e ffe c t iv e  em  o p e ra to rs  is  s a t is 
fa c to r y , excep t in  th ose  c a s e s  in w hich  the ad m ixtu res in the tru e  n u c lea r  
w ave functions fr o m  con fig u ra tion s  ou tside  the m o d e l sp a ce  a re  v e r y  la rg e  
and im portant. T he m o st im portan t fea tu res  o f th is kind o f ca lcu la tion s  
is  that they a llow  us to  tes t  the n u c le a r  w ave fu nction s on the e le c t r o 
m a gn etic  ex p erim en ta l data w ithout in trodu cin g  new ad ju stable  p a ra m e te rs .
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SH ELL-M O D EL  DESCRIPTION O F N U C LE AR  REACTIONS.
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analogue states; 8.3. F in e  structure and neutron decay o f IAR; 8.4. T he  basis states and the ir m utual coupling; 

8.5. Isospin m ix ing  at the IAR; 8 .6 .Spectroscopic in fo rm ation.

1. IN TRODUCTION

T h ese  le c tu re s  a re  devoted  to the ex ten sion  o f  the s h e ll -m o d e l to the 
d e s cr ip t io n  o f  n u c le a r  r e a c t io n s . W e sh a ll, th e r e fo re , not dea l w ith the 
g e n e ra l th eory  o f  n u c le a r  r e a c t io n s , w hich  is  independent o f  the ch o ice  o f  
any dyn a m ica l m o d e l. The r e s t r ic t io n  to the s h e ll -m o d e l is  not as l im i 
tative as it  a p p ea rs , b e ca u se  o f  the fo llow in g  re a so n s : f ir s t ly , the m ain  
fe a tu re s  o f  the r e su lts  w hich  w ill be  g iven  b e low  rem a in  unchanged i f  
one r e p la c e s  the s h e ll -m o d e l p r o p e r  by  any m o d e l w here the exact 
H am itonian H is  d e co m p o s e d  as the sum  o f  a m o d e l H am iltonian  H0 and 
a re s id u a l in tera ction  V , and w h ere  H is  d ia gon a lized  in a su itab ly  chosen  
sp a ce  o f  fu nction s spanned by  the e ig en sta tes  o f  H q . S econ d ly , a tru ly  
g e n e ra l th eory  o f  n u c le a r  r e a c tio n s  d oes  not e x is t  y e t, in ou r  op in ion .
The s o - c a l le d  g e n e ra l th e o r ie s  a ll im p ly  a n um ber o f  a ssu m p tion s . M o r e 
o v e r , th ese  th e o r ie s  b e c o m e  u sefu l on ly  when a d yn am ica l m o d e l is  in tr o 
du ced . F in a lly , w e b e l ie v e  that the s h e ll -m o d e l ap p roach  p ro v id e s  a c o n - 
s is  tent and s im p le  fra m e w o rk  fo r  the study o f  m any in te re stin g  p h ys ica l 
phenom ena , lik e  r e so n a n ce  r e a c t io n s , d ir e c t  r e a c t io n s , the g iant r e s o 
n a n ces , the in term ed ia te  stru ctu re , the is o b a r ic  analogue re so n a n ce s , 
and the o p t ica l m o d e l.

In th is p a p er, w e can on ly  touch  a few  o f  th ese  to p ic s . W e sh a ll d is cu ss  
the ex ten sion  o f  the s h e ll -m o d e l to the continuum , and its  ap p lica tion  to 
the giant r e so n a n ce s , the in term ed ia te  s tru ctu re  and the is o b a r ic  analogue 
r e s o n a n ce s . W e aim  n e ith er  at g en era lity  n or  at c o m p le te n e s s . R ath er, 
w e sh a ll try  to em p h a size  the m ain  p h y s ica l id ea s and r e s u lts .  A  deta iled  
and ra th er  co m p le te  a ccou n t o f  the p re se n t state o f  the s h e ll -m o d e l ap proach  
to n u c le a r  re a c tio n s  is  g iven  in a re ce n t b ook  by W eid en m ü ller  and the 
author [1 ], to w hich  one can r e fe r  fo r  m o r e  d e ta ils , o r  fo r  the app lication  
o f  the th eory  to o th er  t o p ic s .  W e fo llo w  the n otation s o f  R e f. [1 ].
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2. TH E INDE P E N D E N T -P A R T IC L E  M O D E L

2.1 . In troduction

In the p re se n t se c t io n , w e study the in d ep en d en t-p a rtic le  m od e l, 
w h ere  the re s id u a l in te ra ctio n  V is  n e g le c te d . The H am iltonian o f  the 
m o d e l is  s im p ly  a sum  o f  s in g le -p a r t ic le  H am iltonians:

A A

H o = X h o(n ) = I [ t (n ) + Vo(n )] (2.1)
n = 1 n =1

H ere , A  is  the tota l n um ber o f  n u cleon s o f  the sy stem , t(n) the k in e tic -  
en erg y  o p e r a to r  fo r  n u cleon  n, and vq (n) the s in g le -p a r t ic le  potentia l. 
C le a r ly , v0 m u st have a fin ite  depth s in ce  we want to d e s c r ib e  sca tter in g  
phenom ena . It is  usu ally  assu m ed  that v0 (n) is  the H a r tr e e -F o ck  potentia l 
f o r  the n u cleu s with A  n u c le o n s . A s d is cu ss e d  in the se m in a rs  by 
V autherin , v 0 is  then n o n -lo c a l .  F o r  the sake o f  s im p lic ity  (th is is  by no 
m ean s r e s t r ic t iv e ) ,  w e sh a ll h e re  take v0 to have the W ood s-S a xon  shape, 
p lu s a o n e -b o d y  C ou lom b potential and a s p in -o r b it  potential:

v 0 = V ce m (r ) + V s. o / - S  + V cont ( 2 -2 )

The standard  w ay o f  ch oos in g  v0 c o n s is ts  in ad justing  the p a ra m e te rs  
o f  the W ood s-S a xon  potentia l to re p ro d u ce  the ex p erim en ta l v a lu es  o f  the 
s in g le -p a r t ic le  e n e rg ie s , as determ in ed  fr o m  the ad jacen t n u c le i. Th is 
p r a c t ic e  is  ce rta in ly  not quite s a t is fa c to ry  and a s e l f -c o n s is te n t  d e te rm i
nation  o f  vq w ould  p rob a b ly  be  p r e fe ra b le . W e sh a ll, n e v e r th e le ss , co n 
fo rm  o u r s e lv e s  to the standard  p ro ce d u re , f o r  s im p lic ity .

2 .2 . S in g le -p a r t ic le  bound states

T h e re  e x is ts  a fin ite  n um ber o f  bound s in g le -p a r t ic le  sta tes in the 
p oten tia l v0 . T hey a re  ch a ra cte r iz e d  by  a p r in c ip a l quantum num ber n, 
ал o r b ita l angular m om entum  $ , a tota l angular m om entum  j and a 
m a gn etic  quantum n um ber m . We denote the s in g le -p a r t ic le  e n e rg ie s  o f  
these bound sta tes  by E^-i, and the a s so c ia te d  n o rm a liz e d  s in g le -p a r t ic le  
bound states by

7Wbs j ( r ,  к ^ ) з Д О  (2.3)

b v m у»
H e re , w £j is  the ra d ia l p a rt o f  the w ave fu nction , and ^  (r ) is  an e ig e n - 
fu nction  o f  the o p e r a to rs  f  2, f 2 and j z , w ith e igen va lu es j ( j '+ l ) ,  P(H+\) 
and m , r e s p e c t iv e ly . The bound states a re  d eg en erate  w ith r e s p e c t  to 
the m a gn etic  quantum n u m ber m .

L et u s  g ive  the ex am p le  o f  the s in g le -p a r t ic le  sta tes in 1бО, by 
m ean s o f  w hich  w e sh a ll often  illu s tra te  the d is cu ss io n . The s in g le 
p a r t ic le  e n e rg ie s  a re  re p re se n te d  in F ig . l .  The shaded re g io n  re p re s e n ts  
the continuum  se t o f  s in g le -p a r t ic le  e n e rg ie s .
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¿6C.

-4.534---------------------- id,. 'ds,j---------------------- -4 -15
2s,h----------------------- -3.27

-12.13 -

-18.«---------------------- 1P3)j

1p,,2_______________ -15.65

.-21,60

(-40)---------------------- 1sVj 1s,,2-----------------------(-40)

( P )  (n )

F I G . l .  Neutron and proton s in g le -pa rtic le  leve ls  in  16O.

2.3 . S in g le -p a rt ic le  s ca tte r in g  states

The sca tte r in g  e ig en sta tes  o f  ho m ay  b e  ch a ra c te r iz e d  by  the quantum 
n u m bers I ,  j, m  and by  the en erg y  E (o r  the a s so c ia te d  w ave n um ber k ). 
The s in g le -p a r t ic le  w ave function  has the sa m e fo rm  as (2 ,3 ):

i Ui j(r, (f )  (2.4)

The ra d ia l w ave fu nction  u„r (r ,k )  is  the re g u la r  so lu tion  o f  the fo llow in g  
d iffe re n t ia l equation :

(E - D ij)u  jj (r , k) = 0 (2 .5)

H ere , the o p e ra to r  D jj is  defin ed  by

2 2 2

= - ê ï ^  + | ^ r i i l Î i l  + Vcent+ Vs. o . Â j+ VCoui (2 .6a)

with

- ( Í  + 1) fo r  j = jP -i
( 2 -6b>

+ £ fo r  j = (  + j

W e n o rm a liz e  и ^ ( г ,к )  to a б -fu n ction  o f  the en ergy :

y 'd r u i j ( r , k ) u l j ( r ,k , ) = 6 ( E - E ' )  (2.7)
0
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The co m p le te n e ss  re la tio n  rea d s

Y  w i j ( r ’ k n )w£j (rl ’ k n V  /  dE u cj( r ,k I )u £j( r ,k )  = 6( r - r '  )
n 0

( 2 .8 )

2.4 . The sca tter in g  function

F o r  la rg e  va lu es o f  k r , we have

u ij (r > k) = X ij(k )0 { j(r , к) + y jj (k )I4j (r , k) (2.9)

The fu nction s Ogj and I^j a re  the outgoing  and in com in g  w ave fu nction s, 
re s p e c t iv e ly :

O jj = exp [ i { k r  - n lo g  2kr - 7r + a0 }] (2.10a)

I £j- = exp |-i| k r  -  r\ lo g  2kr - j  Лтг + сгд} J (2.10b)

H ere , r; is  the C ou lom b p a ra m eter  and the C ou lom b phase sh ift fo r  
Î = 0. The ra tio  of the am plitude o f  the ou tgoing  w ave to that o f  the in com in g  
w ave is  the sca tter in g  function  S{j :

S i j ( k) = - | ^  (2.11)

T h e con se rv a t io n  o f  flux im p lie s  that |SÊj |2 = 1. H ence, we can w rite

Sjj (k) -  exp (2i6£j- ) (2 . 12)

The r e a l angle 6jj is  the potentia l sca tter in g  phase sh ift.
In g e n e ra l, S jj(k ) is  a sm ooth  function  o f  k . It can, h ow ev er , d isp lay  

a stron g  en ergy  dependence in the v ic in ity  o f  a s in g le -p a r t ic le  re so n a n ce . 
T hen, we can w rite

S { j ( k ) ^ e x p ( 2 < Y l - i ------- — =------- )  (2.13)
4 E -Ç a] + | iF nJ/

An exam ple  is  p rov id ed  by  the d3/2 s in g le -p a r t ic le  re so n a n ce  in the 
s ca tte r in g  o f  n eutron s by  160 .  It o c c u r s  at = 998 keV  and has a width

s 9 7  k eV . W e note that i f  we sligh tly  deepen  v 0 fo r  the d 3/2 sta tes, 
th is s in g le -p a r t ic le  re so n a n ce  d isap p ea rs and a l d 3/2 bound sin g le  - p a rtic le  
state a p p ea rs .
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In the a b sen ce  o f  re s id u a l in tera ction , the in com in g  n u cleon  is  
s ca tte re d  e la s t ica lly  b y  the av era g e  s in g le -p a r t ic le  p oten tia l. The c r o s s -  
se c t io n  is  sm ooth , e x ce p t  fo r  the p o s s ib le  o c c u r r e n c e  o f  s in g le -p a r t ic le  
r e s o n a n ce s . T h ere  e x is ts  no p o s s ib ility  fo r  the in com in g  n u cleon  to sh are  
its en erg y  with the n u cleon s o f  the ta rget, and no com pou nd state can be 
fo r m e d . Thus, it is  v ita l to in trod u ce  the re s id u a l in tera ction  i f  one wants 
to d e s c r ib e  n u clea r  r e so n a n ce s . The r o le  o f  the re s id u a l in tera ction  is 
q u a lita tive ly  d is cu ss e d  in se c tio n  3.

2 .5 . E igen sta tes  o f  Ho

The e ig en sta tes  o f  H 0 a re  con stru cted  by  d istribu ting  the A n ucleon s 
in s in g le -p a r t ic le  o r b ita ls , and b y  coup ling  the individual angular m om enta 
to a g iven  total angular m om entum  J .  The parity  it is  g iven  by

A

E h
7T = ( - ) i=1 (2.14)

W e denote by Фп (n = 1, ...,M ) the bound e igen sta tes o f  H0 (a ll n ucleon s 
in bound s in g le -p a r t ic le  o r b ita ls ) .  They a re  c a lle d  qu a si-b ou n d  sta tes, 
o r  bound states em bedded  in the continuum  (B SE C ). W e have

Н 0Ф „= Е ПФП (2.15)

W e denote by  xe the sca tter in g  e igen sta tes o f  H 0, w ith one nucleon  
in the continuum , i .e .  in a s in g le -p a r t ic le  sca tter in g  state . The low er  
index E r e fe r s  to the en ergy

H0X e = E x e  (2.16)

The upper in dex  с s p e c if ie s  the state o f  the ( A - l )  n u cleon s o f  the target, 
the o rb ita l and tota l angular m om entum  o f  the n u cleon  in the continuum , 
the total angular m om entum  J o f  the sy ste m  (and its p r o je c t io n ) . The 
e x p lic it  fo rm  o f  xS is  the fo llow in g :

E

X°E = - ^ { 7  u £r(r A. к с)^ с| * (2.17)

H ere , a n tisy m m e tr ize s  with r e s p e c t  to the Ath n u cleon  and the f ir s t
( A - l )  n u c leon s, and k c is  the w ave n um ber in channel c:

fi2 2
2 M k c = E - £c <2Л 8>

e c is  the th resh o ld  en ergy  o f  channel c , i .e .  the r e s t  m a ss  o f  the sy stem  
ta rg et + n u cleon . The su r fa c e  function  ipc is  obta in ed  by coup ling  в ^ у (A) 
to the w ave function  S2C o f  the target, so  that the sy ste m  has total angular 
m om entum  J, p r o je c t io n  M .
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L et u s  g ive  an exam p le  fo r  the fu nction s Фп and Xe- W e take the c a se  
o f  160  ( F ig . l ) .  W e assu m e  that the w ave function  o f  160  in its ground 
state is  fo rm e d  by fill in g  the s in g le -p a r t ic le  sta tes l s ^ ,  1р з /2> lP i /2 ■
We denote th is state  by  | Ф0 >̂ and take it as r e fe r e n c e  state , w ith  re s p e c t  
to w h ich  w e sh a ll count the p a r t ic le s  and h o le s . The state Ф0 is  a q u a s i
bound state (th is te rm in o lo g y  is  aw kw ard in th is c a s e ) .  A nother B SEC, 
w hich  w e denote by  Ф1( is  obtained  by ra is in g  a neutron  fr o m  the l p 3/ 2 
o r b ita l to the 2s-¡y2 sta te . W e have, w ith the usual notation ,

^ ( S s x / s X l P a / z i 1 (2Д9)

A c co r d in g  to F ig . l ,  E j  is  equal to 18.53 M eV  (we take Eo as r e fe re n ce  
e n e rg y ). An exam ple  o f  a continuum  state x£ is  p rov id ed  by the ca se  
w h ere  a neutron  is  s ca t te re d  by  a ta rg et 150 .  The index с s p e c if ie s  the 
ta rg et state , ( fo r  in sta n ce , a h ole  in  the l p x/2 sh e ll), the o rb ita l angular 
m om entum  (J? = 0, fo r  in stan ce) o f  the n eutron , its  tota l angular m om entum  
(j = 1 /2  in  the p re se n t ex a m p le ), the tota l angular m om entum  o f  the sy ste m  
(J = 1, fo r  in stan ce) and the p ro je c t io n  M o f  the total angular m om entum . 
T he la tte r  quantum num ber is  o f  little  p h y s ica l in te re st ( fo r  u n p olarized  
b e a m s) b e ca u se  the c o ll is io n  m a trix  is  d iagonal in M and independent o f  M. 
The th resh o ld  en erg y  ec in the p resen t c a se  is  ec = 15.65 M eV . W e sh all 
r e fe r  to channel с as

c = {(e 1/2) ( lp 1/2)’ 1 }J = 1 (2 .20)

T h is  exam ple  exp la in s the o r ig in  o f  the te rm in o lo g y  "bound state 
em b edd ed  in the continuum " u se d  h e re  fo r  the sta tes Фп. Indeed, the 
e n e rg y  Ej. o f  Фх is  la r g e r  than the th resh o ld  en ergy  ec . H ence, the e ig en 
valu e E j l ie s  in a continuous sp ectru m  o f  e igen va lu es o f  H o. The te r m i
n o log y  is  d e r iv e d  fr o m  p ion eer in g  w ork  b y  Fonda and co lla b o ra to r s  [2 ].

The B SE C  Фп and the channel functions xe w ith one n ucleon  in the 
continuum  a re  the on ly  on es w hich a re  in trod u ced  in the s h e ll -m o d e l 
ap p roa ch  to n u c lea r  r e a c t io n s . Th is m o d e l was d eveloped  by  C. B loch  [3 ]. 
A ll w ave fu nction s w hich  w ill be co n s id e re d  a re  thus lin e a r  com bination s 
o f  the b a s is  fu nction s Фп and Xe • In this sp a ce  o f  fu n ction s, the unit 
o p e r a to r  is  g iven  by

M

•‘■In = l c=l ec>

3. Q U A L IT A T IV E  DISCUSSION

3 .1 . R e so n a n ce s  and BSEC

In s e c t io n  2 .5 ., w e have seen  that th ere  e x is t  bound e ig en sta tes  o f  H0 
w hich  lie  in the continuous sp e ctru m . In tu itively , w e ex p e ct that th ese 
bound sta tes  d isapp ea r  when the re s id u a l in tera ction  is  tu rned  on . If the 
r e s id u a l in tera ction  is  su ffic ie n tly  w eak, w e e x p ect that thè BSEC w ill 
b e c o m e  m eta sta b le  sta tes w ith a long  l i fe - t im e , i .e .  r e so n a n ce  sta te s .
T h is w ill b e  su bstantiated  in the next s e c t io n s . In the p re se n t se c tio n ,

I фп> < Л  I + У J V | x CE. X x EC.| (2.21)
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we d is cu ss  qu a lita tiv e ly  how the re s id u a l in tera ction  a llow s  the population  
o f  re so n a n ce  s ta tes .

W e co n s id e r  the exam p le  o f  the BSEC Фх o f  E q .(2 .1 ) and o f  the channel 
с  o f  E q .(2 .1 ). In the a b sen ce  o f  re s id u a l in tera ction  (V = 0), the S]y2 neutron 
is  s c a tte r e d  by  the a v e ra g e  potentia l due to the ta rget 150 .  No re so n a n ce  
can o c c u r .  In a ll p h y s ica l sy s te m s , the o c c u r r e n c e  o f  an is o la te d  reson a n ce  
is  a s s o c ia te d  with the ex cita tion  o f  a n o rm a l m od e o f  m otion  o f  the sy s te m . 
L et us se e  how a n o rm a l m od e o f  the n ucleu s 16 O, n am ely  the BSEC Ф ,̂ 
can be  e x c ite d  by  the in com in g  n eu tron . If V ^ O , the in com in g  neutron  can 
in te ra ct w ith the n ucleon s o f  the ta rg e t 15 O , and e x c ite  them  into un
o c cu p ie d  s ta te s . In p a rt icu la r , when the k in etic  en ergy  o f  the neutron  is  
equal to 2.88 M eV , the neutron  can r e le a s e  6.15 M eV by fa llin g  into the 
2 Sx/2 o r b ita l. T h ese  6.15 M eV  can b e  u se d  by  a neutron  o f  the (1рз/г) 
sh e ll to ju m p into the h o le  a v a ilab le  in the ( l p ^ )  sh e ll . T h e re b y , the 
BSEC Ф]̂  is  fo rm e d  v ia  the in tera ction  o f  the in com in g  neutron  w ith a 
neutron  o f  the ( l p 3/ 2) s h e ll . In turn, the re s id u a l in te ra ctio n  V a llow s the 
deca y  o f  Ф̂  into the ch a n n els . C le a r ly , the neutron  in the (2s-y/2) sh e ll can 
be  r e -e m it te d  in channel с by  p ick in g  6.15 M eV  fro m  a n eutron  in the 
( 1 p 1/ 2) sta te . T h is  is  the p r o c e s s  o f  reson an t e la s t ic  s ca tte r in g . The 
state Фх can a lso  decay  into o th er ch an n els . F o r  in sta n ce , the neutron  
in the (2S-L/2) state can fa ll in the h ole  in the ( 1P3/ 2) sh e ll . T h e re b y , it 
l ib e ra te s  18.53 M eV w hich  can be  u se d  b y  a p roton  o f  the (1 Pw2) sh e ll to 
e s c a p e . T h is is  then the ch a rg e  exchange reson an t re a c tio n  1Ю (п ,р )15N.

A c co r d in g  to th is s im p le -m in d e d  p ic tu re , we ex p ect th e r e fo re  a 
re so n a n ce  to o c c u r  at 18.53 M eV ex cita tion  en erg y  in 160 .  H ow ever, we 
have g r o s s ly  o v e r s im p lif ie d  the p h y s ica l situ ation , and the r o le  o f  the 
re s id u a l in tera ction  is  m uch  m o r e  co m p le x  than we have d e s c r ib e d . T h is 
is  qu a lita tive ly  d is cu s s e d  in the next s e c t io n .

3 .2 . R o le  o f  the re s id u a l in tera ction

In se c t io n  3 .1 , w e ex h ib ited  one r o le  o f  the re s id u a l in te ra ctio n , 
n am ely  that w hich  co n s is ts  in esta b lish in g  the con n ection  betw een  the 
chann els and the B S E C . T h is part o f  the re s id u a l in te ra ctio n  is  e sse n t ia l 
fo r  the o c c u r r e n c e  o f  com pound n u c le a r  r e so n a n ce s . It is  con ta in ed  in 
the f ir s t  cu r ly  b r a c k e ts  o f  the fo llow in g  equation , d e r iv e d  fr o m  E q .(2 .2 1 ):

M A »

41 I / dK« i X ® i | v | x cE> < x cE

i = l  c = l  %

M A

i — 1 C=1 <¡c

M  M

i = l  j=l

(3.1)
С=1 C =1 £c ус=1 с =1
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The se co n d  cu r ly  b ra ck e ts  contain  the p ie c e  o f  the re s id u a l in te r 
a ction  w hich  con n ects  the B SE C  one to an oth er . T h is is  the part o f  the 
re s id u a l in tera ction  w hich  is  in clu ded  in the standard  b ou n d -sta te  s h e ll -  
m o d e l ca lcu la tio n s . It m ix e s  the BSEC with one an oth er. Even when on ly 
one B bE C  (Фх) is  p resen t, it sh ifts  the re so n a n ce  en ergy  by  an am ount 

(a few  M eV ).
The la s t cu r ly  b ra ck e ts  contain  that p art o f  the re s id u a l in teraction  

w hich  d ir e c t ly  con n ects  channel с  to channel c 1 . It is  a s so c ia te d  to the 
d ir e c t  r e a c tio n s  [4 ,5 ] ,  and is  r e fe r r e d  to as d ir e c t  ch a n n el-ch a n n el, o r  
d ir e c t  continu u m -continu u m  cou p lin g . It is  on ly  in the ab sen ce  o f  d ire c t  
ch a n n el-ch a n n el cou p lin g  that an e x p lic it  a lg e b ra ic  e x p re s s io n  can be 
g iven  fo r  the s ca tte r in g  m a tr ix . In the fo llow in g , we assu m e that the 
d ir e c t  ch a n n el-ch a n n el cou p lin g  is  n eg lig ib le :

T h is assu m ption  is  u su a lly  not ju s t if ie d  n u m e rica lly , but is  su ffic ie n t fo r  
ou r  p u rp o se . V a riou s  n u m e rica l m ethods to include the d ir e c t  channel- 
channel cou p lin g  a re  d e s c r ib e d  in R e f . [ l ] ,  The two m ain  m ethods co n 
s is t  in u sin g  p ertu rb ation  tech n iques o r  in tra n sfo rm in g  the m a n y -bod y  
S ch röd in g er  equation into a se t o f  cou p led  in te g r o -d iffe re n tia l equ ation s. 
M ost o f  the n u m e rica l r e su lts  d e s c r ib e d  b e low  have been  obta in ed  by  the 
la tte r  m eth od . H ere , w e a re  m o r e  in te re s te d  in obtain ing a p a ra m e tr ic  
e x p re s s io n  o f  the S -m a tr ix , in o r d e r  to study the in term ed ia te  stru ctu re  
phenom enon .

4. THE BASIC EQUATIONS

4 .1 . R em in d er  o f  the b ou n d -sta te  p rob lem

In the standard  b ou n d -sta te  s h e ll -m o d e l ca lcu la tion s , one d ia gon a lizes 
the fu ll H am iltonian  H in the sp a ce  spanned by  M bound e igen sta tes 
Si (i=  1, . . . ,  M) o f  H 0. W e have the dynam ica l equations

(3.2)

H= H0 + V (4.1)

H o V E i  <  Ф !1 ф з > =  ó i j
(4 .2 ) '

W e want to c o n s tru ct  w ave functions o f  the fo rm

M

(4.3)
i  = l

in su ch  a w ay that

n nm (4.4)
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In o th er  w o rd s , we want to d iagon a lize  H in the sp a ce  o f  fu nction s { Ф;} , 
i .e .  to co n s tru ct the e ig en sta tes  o f  the o p e ra to r

M

H

i .  j = i

1V1

= Y  l ^ i X ^ i l H l í j X í j l  (4 .5)

In troducin g  e x p re s s io n  (4 .3 ) into E q .(4 .4 ), and taking E qs (4.2) into accoun t, 
w e find  that the co e ffic ie n ts  b n(i) fu lf il l  the fo llow in g  set o f  h om ogen eou s 
equations:

^  [ (Ej - Xn)6ÿ + Vy ] b n(i) = 0 (4.6)
i

w h ere

Vy =<Ф ,|у |ф^  (4 .7 )

The e n e rg ie s  Xn o f  the bound e ig en sta tes  o f  H are  thus d eterm in ed  by  the 
r o o ts  o f

d e t [(E j -Х )6 Ч + УЦ] = 0 (4 .8a)

The w ave fu nction s a re  g iven  by

M

= I  9ni$i (4-8b)
i  = l

w h ere  Q is  the m a tr ix  w hich  d ia g on a lizes  the r e a l s y m m e tr ic  m atrix

ЕЛ к + ^ к

4 .2 . The sca tte r in g  p ro b le m

B y analogy with the b ou n d -sta te  p ro b le m , w e lo o k  fo r  a w ave function  
o f  the fo rm

M  Л °o

ФЕ = ^ГЬе ( п)фп+ X  fd-E'4(V',c')xi (4.9)
n = 1 с* = 1 eci

and su ch  that we have

< ^ | ^ 1 > = б сс, б ( Е - Е ' )  (4.10)

< * '  |Н|^> = Е6СС<6 ( Е - Е ' ) (4.11)



740 MAHAUX

The d iffe re n ce s  with the b ou n d -sta te  m o d e l a re  the follow ing*
(1) .T he en ergy  sp ectru m  o f  H is  continu ou s, above  the lo w e st th resh o ld . 
H ow ever, w e w ould lik e  to find an equation analogous to E q .(4 .8 ) w hich 
w ould determ in e the re so n a n ce  e n e rg ie s  and w idths.
(2) The w ave fu nction s a re  c h a ra cte r iz e d  not on ly by the en ergy , but 
a lso  by the boundary con d ition . T h is is  in d icated  by the u pper index с 
w hich  m eans h ere  that Фе has an in com in g  w ave in channel c , on ly . H ence, 
ф£ has the fo llow in g  a sym p totic  b eh av iou r  (if  the ra d ia l coord in a te  гд
o f  n u cleon  A  tends tow ards infin ity)

° ¿ ( r A ' k c ' ) ] < P c ' (4.12)

B y d e fin ition , Scc< is  the c c 1 e lem en t o f  the sca tter in g  m a tr ix . The m eaning 
o f  the o th er  sy m b o ls  has b een  g iven  in se c t io n s  2.4 and 2 .5 . The re la tion  
betw een  the S -m a tr ix  and the c r o s s  se c tio n  is  given  in the re v ie w  a r t ic le  
by  Lane and T h om as [22 ]. The e x p re s s io n  o f  S ^ c  in te rm s o f  the c o e f f i -  
fic ie n ts  bg (i) can be  found by  com p a rin g  the asym p totic  fo rm  o f  E q .(4 .9 ) 
w ith E q .(4 .1 2 ). We obtain

S Cc , :=  exP(i6c+i6cO 6 ^ - 2 1 7 .  2^ b E (3 ) V j  ( E )  

j = i

(4.13)

w here

V е (E) = < i °  IV I Ф >
J Ь J

(4.14)

W e have u sed  assu m ption  (3 .2 ), and the n orm a liza tion  im p lied  by  E q .(4 .2 3 ) 
b e lo w .

Equation  (4.11) is  equ ivalent to the fo llow in g  sets  o f  equations

<Ф; |н |Фе> = E  < ® í |*e > (i = 1......... M) (4.15a)

<Х^|Н|ФЕС> = E < X ^  (с , с ' = 1......... A) (4.15b)

W e r e c a l l  that

<X = 6CC. Ô ( E - E ' ) (4.16)
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In sertin g  E q .(4 .9 ) into E q .(4 .1 5 a ), and u sin g  the defin itions (4 .7) and (4 .14 ), 
w e obtain

E quations (4.17a) and (4.17b) a re  the b a s ic  equations o f  the s h e ll -m o d e l 
a p p roa ch  to n u c le a r  r e a c t io n s , in the a b sen ce  o f  d ir e c t  continuum-? 
continuum  cou p lin g .

4 .3 . The L ipp m an n -S ch w in ger equation

The g e n e ra l so lu tion  o f  E q .(4 .17b ) re a d s

The constan ts A cc* have to b e  determ in ed  fro m  the bou n dary  condition  
defin in g  \&E, w hich  w as not y e t u se d . W e note that a E(E ' ; c 1 ) o c c u r s  in 
an in te g ra l o y e r  E ' (s e e  E q .(4 .9 )) , so  that w e have to s p e c ify  how we 
in teg ra te  in the v ic in ity  o f  the s in g u larity  at E 1 = E  o f  the la s t  te rm  in 
E q .(4 .1 8 ). T h is  is  a w ell-k n ow n  p ro b le m  o f  sca tte r in g  th e o ry . W e take 
the convention  that the path o f  in tegra tion  p a sse s  b e low  the sin gu larity  
E ' = E . T h is am ounts to r e p la c e  E by  E + ie  (e~*0) and to le t  £ -*0 . We 
r e c a l l  th is convention  by  w ritin g  an u p p er  index + to E . W e have

i f  the ran ge  o f  in tegra tion  in clu d es  E 1 = E . H ere , p f  is  the p r in cip a l value 
in te g ra l. If f (E ' ; r) beh av es  a sy m p to t ica lly , f o r  la rg e  v a lu es  o f  r , like  
x O (r , k ) + y l ( r ,  k ), the in teg ra l (4 .18) b eh a v es  a s y m p to tica lly  lik e  0 ( r ,  k) [6 ]. 
T h us, we w rite

M A

(E t -E )b £ ( i )+  Y  Vjj b E (j) +
j = l

v f ( E 1) = 0 (4.17a)

E quations (4 .9 ), (4 .15b) and (3.2) y ie ld

M

(4 .17b)
j =1

M

a ^ ( E ' ; c ' ) = A cc, 6 ( E - E ' ) + 1 4 1T  £  (E< ) (4.18)
j =1

I Í7rf(E; r)

(4.19)

M

4  (E 1 ; C  ) = 6cci 6(E -  E ' ) + 1 T ^ Ë i £  (E ' )
j= i

(4.20)
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E quations (4 .16) show  that .

(i) = <̂ i Î E > i а£(Е';с') = <х^|ф'> (4.21)

F r o m  E q s (4 .17a ), (4 .14) and (4 .7 ), we obtain

b E ( i )  :
1

E -E , < $ 1 |v|$j X * j

£  f  dE'<eJv|x¿Xxí I *E> (4.22)
с  =1 6„»

E quation s (4 .2 0 ), (4 .21) and (4.14) y ie ld

M

а Е(Е , ; с , ) = бс с 'ё (Е - Е , ) + Ё^ГЁ ^ I  <х £ М Ф ;> < Ф ;| * ес > (4.23)
j= l

E quations (4 .9 ), (4 .22) and (4.23) g ive  the fo llow in g  fo rm  fo r  ФЕ:

M

* E =X E+ I  ё т ^ Х ^ М * , ) « ^ ! « “ )  
i. j = l

M Л °o

+ Z X /  ^ ' ë i ë J ^ X ^ M x ^  X x ^  |фЕ>
i = lc*='leci 

М Л »

+ I I / ® ' ё 4 | ¥ > < ¥  Iv |®i><*kl ФЕ > (4-24) i=l ¿̂=1̂

R e m e m b e r in g  that the unit o p e r a to r  is  g iven  by  E q .(2 .2 1 ), and that w e m ade 
assu m p tion  (3 .2 ), w e se e  that E q .(4 .2 4 ) is  nothing but the L ippm an n - 
Schw ing'er equation

^ С = ХЕ + Ё ( 4. 25)

W hen the d ir e c t  continu u m -continu u m  cou p lin g  is  not om itted , ca re  m u st 
b e  taken in  handling the L ipp m an n -S ch w in ger equation  (4.25) [1 ].
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In the p re se n t se c t io n , we s o lv e  the fundam ental equations (4.17a) and 
(4 .2 0 ). W e r e c a l l  that the equations h old  on ly  i f  E q .(3 .2 ) is  fu lfille d . They 
do n e v e r th e le ss  conta in  the e sse n t ia l p h y s ica l fea tu res  w hich  a r e  o f  
in te re s t  h e re . W e in s e r t  E q .(4 .2 0 ) in  E q .(4 .1 7 a ) and obtain

5. THE SCATTERING MATRIX

M

I 
j = i

( Е - Е ^ - У ц

A

Iс =1 e j

VT
d E '

( E ') V f  (E 1 ) 

E + - E 1 b g (j)  = +Vi (E) (5.1)

T h is  sy s te m  o f lin e a r  equ ation s fo r  the unknow ns bE (j) is  an alogou s to 
E qs (4 .6) o f  the b ou n d -sta te  p ro b le m . The m ain  d iffe re n ce  is  that the 
sy s te m  is  now  in h om ogen e o u s . T h is r e f le c t s  the fa c t  that the en ergy  
sp e ctru m  is  continu ou s, s o  that w e do n ot have an eigenvalue p ro b le m . 
W e co m e  b a ck  to th is point b e lo w . L et u s  defin e the m a tr ix

g  = <D « > (5.2a)

with
Л “  V C,( E ') V C,(E ')

D l j ( E )  = ( E - E j )6ij - V y  - > I dE- J
■ I  / c

с =1 e j
E ’ - E 1 (5.2b)

The so lu tion  o f  E qs (5 .1) rea d s
M

Ье (J) = У  ( Q 1 )ji Vi (E )
i = l

(5.3)

In sertin g  th is r e su lt  in E q .(4 .1 3 ), we obtain  the e x p re s s io n  o f  the sca tter in g  
m a tr ix

Scc'  = e x P (iô c +  i6 c* ) 6cc' -2ir Y  ^ (E K ^ Jy V f lE ) (5.4)
i. j = 1

L e t u s in trod u ce  the co m p le x  orth ogon a l m a tr ix  0 —which d ia gon a lizes  the 
co m p le x  sy m m e tr ic  m a tr ix  D:

ivi

X  ^ i jD jm ^ r r f  ( E - < ^ ) ô u (5.5)

j. m=l

The e ig en v a lu es  S j  a re  com p lex :

(5.6)
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The quantities ©  and S t a re  en ergy-dependen t, b e ca u se  o f  the la s t te rm  
in E q .(5 .2 b ). In the a b sen ce  o f  s in g le -p a r t ic le  r e so n a n ce s , h ow ev er , this 
en erg y  dependence is  qu ite sm ooth  and can sa fe ly  b e  n e g le c te d . The 
s in g le -p a r t ic le  r e so n a n ce s  can b e  trea ted  on  the sa m e footin g  as the BSEC 
ä’ j [1 ] . W e in trod u ce  the states

W e r e c o g n iz e  the m a n y -le v e l B r e it -W ig n e r  fo rm u la . The p a rtia l w idths 
a re  TjC, the re so n a n ce  e n e rg ie s  Çj and the w idths T j . It is  p o s s ib le  to 
show  [1] that Tj > 0. B e ca u se  o f  the con serv a tion  o f  the tra ce  o f  a m a tr ix  
u n d er o rth ogon a l tra n sfo rm a tio n s , we h ave, fr o m  E qs (4 .19 ), (5 .5) and (5 .6 ),

it  is  p o s s ib le  to show  that the quantities Г]с a re  then r e a l.  In the ca se  o f  
a n a rrow  but not is o la te d  re so n a n ce , we on ly  have the w eak er sum  ru le  [1]

M

(5.7)
1 = 1

and the a s so c ia te d  quantities

M

(5.8)

E quation  (5 .4) can be  w ritten  in the fo rm
i

(5.9)

M M M

(5.10)

w h ere  the sum s o v e r  c + run o v e r  the open  chann els . In the c a se  o f  an 
is o la te d  re so n a n ce , E q .(5.10) y ie ld s

A

(5 .11)

A

(5.12)

T h e re so n a n ce  e n e rg ie s  are  the ro o ts  o f  the equation

det D = D(E) = 0 (5.13)
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(T h is  equation  shou ld  b e  co m p a re d  with E q .(4 .8 a )). A t th ese  (com p lex ) 
e n e rg ie s , the h om ogen eou s sy ste m  o f  equ ation s obta in ed  b y  putting the r ig h t- 
hand s id e  o f  E q .(5 .1 ) equal to z e r o  has a n o n -t r iv ia l so lu tion . H en ce, the 
h om og en eou s L ipp m an n -S ch w in ger equation  (E q .(4 .2 5 ) with Xe = 0 on the 
righ t-h an d  side) has a so lu tion . T h is m ean s that the S ch röd in g er  equation 
has a p u re ly  ou tgoing  re g u la r  so lu tion . T h is is  a "r a d io a c t iv e  s ta te "  and 
co r r e s p o n d s  to the defin ition  o f  r e so n a n ce s  g iven  b y  H um blet and 
R o se n fe ld  [7 ].

6 . G IANT RESONANCES IN LIGHT E V E N -E V E N  NUCLEI

M ost o f  the n u m e rica l a p p lica tion s  o f  the fo r m a lis m  d e s c r ib e d  above 
co n ce rn  the d ip ole  ph oton u clea r  re a c tio n s  on ligh t e v e n -e v e n  n u c le i. The 
giant re so n a n ce  o f  160  has been  com pu ted  by  m any au th ors [ 1 , 8 - 12], 
who u sed  d iffe ren t trea tm en ts fo r  the continu u m -continu u m  cou p lin g . 
R e cen tly , the giant re so n a n ce s  o f  12C, 40Ca and 28Si w e re  a lso  stud ied  [13 ]. 
S ince the ground states o f  th ese  n u c le i a re  0 + sta tes with is o sp in  T =  0 (at 
lea st.w ith in  a v e r y  g ood  ap p rox im a tion ), e le c t r ic  d ipole  tra n sition s  lead in g  
to th ese  ground states m u st co m e  fr o m  the T = 1 com pon en ts o f  1 sta tes .

T h ere  e x is ts  ex ten siv e  th e o re tica l w ork  on the d ip ole  sta tes  in  16 O, 
w hich  we take h ere  as an ex a m p le . The e a r ly  ca lcu la tion s  u sed  the 
standard  b ou n d -sta te  s h e ll -m o d e l,  with h a rm on ic  o s c i l la t o r  potential 
w e lls .  W e c ite  the p ion eer in g  paper by  E llio tt  and F lo w e r s  [14] and the 
w ork  o f  G ille t  and Vinh Mau [15 ]. T h e re , the re s id u a l in te ra ctio n  is  
d ia gon a lized  am ong a se t  o f  l p - l h  states co n s tru cte d  by  putting the p a rt ic le  
in the s - d  sh e ll, and the h ole  in the lp - s h e l i .  S ince the C ou lom b in tera ction  
is  om itted , the states obta in ed  in th is w ay have pure is o sp in  T  = 1 o r  T =  0. 
G ille t  and Vinh Mau [15] find  T  = 1 J" = 1' s t a t e s ^  (se e  E q .(4 .8 b )) at 13..5,
18 .1 , 19 .6, 22.7 and 25 .4  M eV excita tion  en ergy ; J1 = 1 " , T = 0 sta tes o c cu r  
at 15, 16.7 and 22 M eV . M ore  than 95% o f  the tota l d ip ole  tran sition  p ro b a 
b ility  is  c a r r ie d  by  the sta tes at 22.7 and 25.4 M eV , w hich  we expect, 
th e r e fo re , to lea d  to p rom in en t bum ps in the p h oton u clear c r o s s -s e c t io n s ,  
on ce  the e ffe c t  o f  the continuum  w ill be  in clu ded . E x p e r im e n ta lly , it  is  
in deed  found that two m ain  peaks o c c u r  at about 22.3 and 24.8 M eV . The 
le v e l at 22.7 M eV is  m a in ly  a ( ld s /2) ( l p 3/2 )-1 con figu ra tion ; that at 25 .4  M eV 
has the m ain  com pon ent (1 d 3/ 2) ( lP 3/ 2 ) '1 •

The d ip ole  ph otoa bsorp tion  c r o s s -s e c t io n  (7 , c) is  p ro p o rt io n a l to 
|МС(Е)|2 , with

M C(E )=  <0|E1 |*g> (6.1)

H ere , |0̂ > is  the ground state o f  the ta rg et n u cleu s , E l  the e le c t r ic  d ipole  
o p e r a to r  and Фе the w ave function  (4 .9 ). H en ce, the s h e ll -m o d e l th eory  
a llow s the ca lcu la tion  o f  p h oton u clear r e a c t io n s . M ost o f  the ca lcu la tion s  
d e s c r ib e d  b e low  a re  b a se d  on the cou p le d -ch a n n e ls  m ethod  fo r  so lv in g  the 
L ipp m an n -S ch w in ger equation  (4 .2 5 ). T h is m ethod  in clu d es  the continuum - 
continuum  part o f  the re s id u a l in te ra ctio n . S in ce  E l is  a sum  o f  o n e -b o d y  
o p e r a to rs , on ly  the l p - l h  con fig u ra tion s  Ф¿ and xe ° f  ^ e con tribu te  to 
'M C(E) (we take |o^> as v acu u m ).



E(MeV)

F IG .2. T o ta l 160 (y ,p) cross-section, in c lu d in g  the channels w ith  ( lp ^ g ) " 1 and tarSet states*
The  fu l l  curve is the result when no isospin m ix ing  is in c luded . T h e  dashed curve takes isospin m ix ing  

in to account. T h e  dot- and dash curve represents experim enta l results (from  Ray na l et a l. [9 ]) .
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T h ere  e x is t  two types o f  continuum  ca lcu la tio n s . In the f ir s t  ca se , 
one n e g le c ts  the d iffe r e n c e  betw een  neutron  and proton  w ave fu nction s, 
fo r  s ca tte r in g  as w e ll as bound s in g le -p a r t ic le  s ta te s . The fu ll cu rve  o f  
F ig .2 re p re s e n ts  the tota l 160 (y , p) c r o s s -s e c t io n ,  com pu ted  in th is way 
by  R aynal et a l. [9 ]. The dashed cu rve  in clu d es  the d iffe r e n c e s  betw een  
neutron  and proton  w ave fu n ction s . T he d o t-a n d -d a sh  cu rv e  re p re se n ts  
ex p erim en ta l r e su lts  [16 ]. W e se e  that the m ain  d iffe re n ce  betw een  the 
dashed and fu ll cu rv e s  c o n s is ts  in the ap pearan ce  o f  stron g  en erg y  d e 
pen den ces at 14.7 and 16.9 M eV . T h ese  a re  a s so c ia te d  w ith the T  = 0 
sta tes found by  G ille t  and Vinh Mau [15] at 15 and 16.7 M eV . Indeed, 
th ese  states do now have T  = 1 ad m ix tu res , s in ce  the C oulom b in teraction  
is  taken into accou n t. H en ce, they m ay a lso  g ive  r is e  to r e s o n a n ce s . We 
note that the re so n a n ce  at 14.7 M eV has a p e cu lia r  shape. T h is shape can 
be  in te rp re te d  by  assu m in g  that the m ain  is o sp in  im purity  o f  th is le v e l 
a r is e s  fr o m  one continuum  w ave function  xE [17 ].

W hen com p a rin g  the th e o re tica l and e x p erim en ta l resu lts ,- two 
c h a r a c te r is t ic  fea tu res  e m e rg e . F ir s t ly , the ex p erim en ta l c r o s s -s e c t io n  
is  m u ch  sm a lle r  than the th e o re t ica l on e . T h is cannot be  re m e d ie d  by 
m od ify in g  the in tera ction  p a ra m e te rs  o f  the m o d e l. It is  p rob a b ly  due to 
the fa ct that on ly  a few  channels a re  in trod u ced  in the ca lcu la tion , nam ely 
those co rre sp o n d in g  to ( l p i / 2)’ 1 a n d ( lp 3/ 2 )_1 states o f  150  and 1SN. At 
the en erg y  o f  the giant re so n a n ce , m any oth er channels a re  open . The 
e ffe c t  o f  th ese  channels can be  in cluded  p h en om en o log ica lly  by  taking a 
co m p le x  s in g le -p a r t ic le  poten tia l. T h is w as m ade by  B uck  and H ill [8] 
in the ca se  o f  160 ,  and by  M aran gon i and S aru is [13] in the c a s e s  o f  
12C and 40Ca, with re a so n a b le  s u c c e s s .  The se co n d  fea tu re  is  that the 
ex p erim en ta l cu rve  d isp la ys  m uch m o re  s tru ctu re  ( i .e .  a m o r e  co m p li-. 
ca ted  en ergy  dependence) than the th e o re tica l on e . T h is is  attributed [18] 
to the in flu en ce  o f  2p -2h  ex c ita t io n s , w hich  a re  not in cluded  in  the c a lc u 
la tion . T h e se  u n p ertu rbed  con fig u ra tion s  cannot em it e le c t r ic  d ipole  
rad ia tion  to the ground sta te . H ow ever, the re s id u a l in tera ction  m ix e s  
the 2p -2h  with the l p - l h  sta tes , each  o f  the resu ltin g  le v e ls  b e in g  able 
to p rod u ce  a re so n a n ce  in the ph oton uclear c r o s s - s e c t i o n s .  T h is is  r e 
lated  to the in term ed ia te  stru ctu re  phenom enon, w hich  is  d is cu ss e d  b e low .

7. IN TE R M E D IA TE  ST RU CTU RE

7.1 . In troduction

T he in te rm e d ia te -s tru c tu re  phenom enon has been  one o f  the fash ionable  
su b je cts  o f  n u c le a r  re a c tio n  th eory  in  the la s t few  y e a r s  [1 ,1 9 , 20]. Much 
ex p erim en ta l w ork  has a lso  b een  devoted  to the se a rch  fo r  in term ed iate  
s tru ctu re . One m u st adm it that the e x p erim en ta l ev id en ce  is  not v e ry  
con v in cin g , ex cep t perh aps fo r  a few  is o la te d  c a s e s  (se e  be low ) and fo r  
the im p ortan t exam p le  o f  the is o b a r ic  analogue r e so n a n ce s . A s  exh ib ited  
by  S trutinsky, in term ed ia te  s tru ctu re  has a lso  been  o b s e rv e d  in n eu tron - 
in du ced  f is s io n .

T he co n ce p t o f  in term ed ia te  s tru ctu re  (and o f  doorw ay  state) is  not a 
new  o n e . A ctu a lly , it g o e s  b a ck  to the w ork  done by L ane, T h om as and 
W ig n er  [21] on the in term ed ia te  coup ling  th e o ry . It has b een  fo rm u la ted  
in a d iffe re n t and m o r e  appealing  w ay b y  F esh b ach  and h is c o lla b o ra to r s



748 MAHAUX

[19] fo llow in g  a p ro p o sa l by  W e issk o p f [4 ]. One c a lls  in term ed ia te  - 
s tru ctu re  re so n a n ce s  the bum ps o f  width o f  s e v e r a l  tens k eV  w hich  s o m e 
tim e s  ap pear  in c r o s s -s e c t i o n s  av era g ed  o v e r  s e v e r a l  tens keV , in a 
re g io n  o f  ex cita tion  en erg y  w here the a v era g e  width o f  the com pound 
n u c le a r  r e so n a n ce s  is  o f  the o r d e r  o f  1 k eV . The e x p re s s io n  " in te r 
m ed ia te  s t ru c tu re "  e x p r e s s e s  the fa ct  that the width o f  th ese  bum ps is  
m u ch  la r g e r  than the w idth o f  the com pound n u c le a r  r e so n a n ce s , and 
sm a lle r  than the width o f  the giant r e so n a n ce s  (a few  M eV ). T h ere  ex ist 
s e v e r a l  d iffe re n t p h y s ica l m o d e ls  w hich  can p re d ic t  the e x is te n ce  o f  such 
bu m p s. H ere , we study on ly  one o f th ese  m o d e ls , nam ely  the d oorw a y - 
state m o d e l. B um ps o f  in term ed ia te  width m ay as w e ll be  due to flu ctu 
ation s in the w idths o f  the com pound n u c le a r  re so n a n ce s , fo r  in stan ce  [23 ].

7 .2 . D oorw ay  states

In th e ir  ov erw h e lm in g  m a jo r ity , the com pound n u c le a r  re so n a n ce s  
o r ig in a te  fr o m  BSEC w hich  are  cou p led  to the channels by  the re s id u a l 
in te ra ctio n . T h is  cou p lin g  is  e x p re s se d  by  m a tr ix  e lem en ts  o f  the fo rm

VjC = <X° I V | » j>  (7.1)

The fundam ental re m a rk  o f  the d o o rw a y -s ta te  con cep t is  that V^ van ish es 
i f  3>j and xe d iffe r  by  m o re  than fou r  q u a s i-p a r t ic le s , i .e .  by  the o c c u 
pation  n u m bers o f  m o re  than fou r  s in g le -p a r t ic le  sta tes . T h is re su lts  
fr o m  the tw o - and o n e -b o d y  ch a ra cte r  o f  the re s id u a l in tera ction  V . This 
im portan t point is  illu s tra te d  in F ig .3 . T h e re , we assu m e  that the ta rget 
n u cleu s S7C co rre sp o n d in g  to xe is  a doubly  c lo s e d  sh e ll n u c leu s . The 
state xe is  thus a o n e -p a r t ic le  ( lp )  state (F ig .3 a ). The state Ф1 re p re se n te d  
in F ig .3 b  has van ish in g  m a tr ix  e lem en t V f ,  b e ca u se  m o re  than one " c o l 
l is io n "  betw een  tw o n u cleon s a re  needed  to go fr o m  xE to the BSEC Ф̂  
o f  F ig .3 b . T he BSEC Ф} show n in F ig .3 c  m ay have a n on -van ish in g  V j . 
H en ce, the BSEC with n on -van ish in g  Vj? a re , in th is s im p le  exam ple ,
2 p - lh  s ta te s . T h is  is  no lo n g e r  true i f  Г2С has a co m p lica te d  s tru ctu re .

W e defin e a d oorw a y  state o f  a channel с  by  the p ro p e rty  that it  has 
a n on -v an ish in g  cou p lin g  to the channel w ave function  Xg- A  co m p lica te d  
state o f  channel с is  a BSEC w hich  has van ish in g  m a tr ix  e lem en t o f  the 
re s id u a l in tera ction  w ith x e - L et í ¡  b e  a co m p lica te d  state and Ф0 be  a
d oorw a y  sta te . The state  can decay  to channel с  on ly  v ia  the "d o o rw a y "
ф0:

< Ф ^ К > < Ф 0 М х ! >  ^ 0  (7.2)

W e r e c a l l  that w e a ssu m ed  that the d ir e c t  ch a n n el-ch a n n el cou p lin g  
v a n ish e s . O th e rw ise , a  route d iffe ren t fr o m  e x p re s s io n  (7 .2 ) w ould  b e  
av a ila b le  fo r  the decay  o f  Ф1 to channel c :

<ф11 v|xĉ Xx^i I V|xg >/=° (7.3)

T h is re la tio n  u s e s  the fa c t that the p ro p e rty  o f  b e in g  a doorw ay  state is  not 
a p ro p e rty  o f  a BSEC by  it s e lf .  A  g iven  BSEC Ф4 m ay b e  a co m p lica te d
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X

F IG .3 . (a) represents the scattering state Xg. (b) a com p lica ted  state (3p-2h) fo t channe l c , and (c) a 

doorway state (2p - lh ).

state fo r  channel c , and a doorw ay  state fo r  channel c 1 . W e a lso  note that 
a lin e a r  com bin ation  o f  d oorw a y -s ta tes  o f  channel с  has a n on -van ish in g  
cou p lin g  to x £ • C orresp on d in g ly ,' a lin e a r  com bin ation  o f  c o m p lica te d  
sta tes (o f  channel c) has van ish in g  cou p lin g  to x£ • Thus, it  w ill be  c o n 
v en ien t to extend the e a r l ie r  d e fin ition s o f  co m p lica te d  and doorw ay  
states to lin e a r  com bin a tion s  o f  B SE C .

7 .3 . A  s im p le  m od e l

In the rem ain in g  p a rts  o f  th is s e c t io n , w e study a s im p le  m o d e l w hich  
conta in s the e sse n t ia l in gred ien ts  o f  the in term ed ia te  s tru ctu re  phenom enon. 
F ro m  the ou tset, we w arn  the r e a d e r  that th is m o d e l is  too  s im p le  to be 
ap p lied  to the is o b a r ic  analogue r e s o n a n ce s , d esp ite  c la im s  to the 
co n tra ry  [24 ]. N e v e rth e le ss , the m o d e l is  qu ite in s tru ct iv e , b e ca u se  o f  
its s im p lic ity . W e assu m e  that on ly  one channel с is  open , that the c lo s e d  
channels can b e  n e g le c te d . Thus, we can o m it the in dex  c .  W e in clude 
on ly  one doorw ay  state , Ф0, and N co m p lica te d  states (j = 1, . . . ,  N ).
W e n e g le c t  the continu u m -continu u m  cou p lin g , and in trod u ce  the fo llo w in g  
n otation s ( j ,k =  0, . . .N ) :

[ Г * ( Е ) ] *  =(2jr)*<®0 lv U E>. Vjk = X e J V  I Фк>  (7.4)

°° t
е о = < Ф о| н | ф 0> + р / й Е ' ^ ^ 1  (7.5)

%
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W e a ssu m e  that Г  and e 0 a re  independent o f  en erg y  in the en erg y  re g io n  
o f  in te re s t .

T he sca tte r in g  fu nction  is  g iven  by E q .(5 .4 ), w hich  can be  g iven  the 
s im p le  fo r m  (i, = 1, . . . ,  N)

S = exp(2ió) det D* 
det D (7.6)

w here

det D

E - e 0 + | i r T

'Oí

v 0i

(E - E. )ó ' i ; i £ i£

(7.7)

Equation  (7 .6) exh ib its the u n itarity  o f  the S -fu n ction . L et us d iagon a lize  
the H am iltonian  in the sp a ce  o f  the co m p lica te d  sta tes {4^} (i = 1, . . . ,  N ). 
W e c a ll  О the orth ogon a l m a tr ix  w hich  d ia g o n a lize s  the r e a l  sy m m e tr ic  
m a tr ix  E jó^  + V i4 (i, Í  = 1, . . . ,  N ). We in trod u ce  the defin itions

h  = Y  6 u ® i' V
Í = 1

e i 6 i£

N

■ I
j .  m = l

E quation  (7 .6) can thus b e  w ritten  in the fo rm

(7.8a)

(7.8b)

S = ex p (2 iô )^ j-

w h ere

(7.9)

d =

E - e . +  | i r f v.0 ¿ i

í (E -  e £)éií 

The ca lcu la tion  o f  the determ inant d is  s tra ig h tforw a rd . W e find

(7.10)

d (E )=  П (E -C j)  
Í =1

E - eQ+ j  ir^-
N 2 

VJ■I
j=i

E - e , (7.11)
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Hence, we have

j =1
S= e x p  (2 ió )

N 2
(7 .12)

j = l

If no co m p lica te d  sta tes w e re  p resen t, the S -fu n ction  w ould  b e  g iven  by

T he next se c t io n s  a re  devoted  to the study o f  the e ffe c t  o f  the e x is te n ce  
o f  N co m p lica te d  s ta te s . W e f ir s t  study the a v e ra g e  c r o s s - s e c t i o n ,  and 
then the fin e  s tru ctu re , i .e .  the c r o s s - s e c t i o n  w hich  w ould  be  m e a su re d  
with a v e r y  g ood  e n e rg y  re so lu tio n .

7 .4 . A v e ra g e  c r o s s -s e c t io n

W e adopt the fo llo w in g  d efin ition  fo r  the a v e ra g e  o f  a quantity M (E ' ), 
in the v ic in ity  o f  E , w ith an av erag in g  in terva l I:

T hus, the a v era g e  c r o s s -s e c t i o n  is  g iven  by  the av era g e  S -fu n ction . T h is 
is  a unique featu re  o f  the on e open  channel m o d e l. If m o re  than one channel 
w ould b e  open , the ca lcu la tion  o f  - ( a cc У w ould in vo lve  that o f  <( |S cc \2У, 
w hich  is  quite d ifficu lt .

In se c t io n  5 .1 , we m en tion ed  that S(E) has p o le s  on ly  in the lo w e r -h a lf  
o f  the co m p le x  E -p la n e . 'The valu e o f  < S(E) У1 can th e re fo re  e a s ily  be

(7.13)

T hen, the c r o s s -s e c t i o n  w ould  d isp lay  a s in g le  re so n a n ce , o f  w idth .

oo

(7 .14)

T he c r o s s -s e c t io n  is  g iven  by

a = 1 - R e S (7.15)

2
apart fr o m  a tr iv ia l fa c to r  wgj /к  /  Its en erg y  a v era g e  (denoted  by  <( У) 
is  g iven  by

< ct> = 1 - R e <S > (7.16)
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evaluated by  c lo s in g  the in tegration  con tou r in E q .(7 .1 4 ) a long  a la rg e  
s e m i - c i r c le  in the .upper h a lf-p la n e . One finds

< S (E )> I = S(E + iI) (7.17)

F ro m  Eiis (7 .17) and (7 .12 ), we obtain
N 2

E _ eo + i i . i i r 0- )T

< S (E )> j = exp(2i6 ) -----------------------------------------------------  (7 .18)
•N 2

j= l

W e note that

|<S(E)>r| < l (7.19)

T h is co m e s  fro m  the fa ct that by  averag in g  one lo s e s  the part o f  the in 
com in g  flux w hich popu lates the com pound sta te s . T h is part o f  the flux 
c o rre sp o n d s  to the fluctuating part o f  the c r o s s -s e c t io n :

CTflux = <  |SCC |2 > - | < S c c > r  (7.20)

T o  ca lcu la te  the r igh t-h an d  side o f  E q .(7 .1 8 ), we need  the quantity

V  — A _ -  V  v i<E - e i > - i I v i n  2 1 .

L  E - e j + i l  L  (E -e jJ  + I 2 [ ' >
j= i j= i 

2
If the quantities ej and Vj a re  u n iform ly  d istribu ted  on each  sid e  o f  E, 
the r e a l part o f  e x p re s s io n  (7 .21 ) v an ish es . The im ag in ary  part g iv e s , 
assu m in g  N to be la rg e ,

- i l à / ( Ë -E^ T ? d E " - T -  <’ -22>

2 2 w h ere  v denotes the a v erag e  o f  the quantities Vj , and d the average
d istan ce  betw een  the e n e rg ie s  ej
we find

In sertin g  th ese re su lts  in E q .(7 .1 8 ),

< S (E )> I=exp(2i6) 1 - i-
E - е0+ - Н ( Г и г Ч 2 1 )

(7.23)
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w h ere

2
Г ; = 2 ^ -  (7 .24)

The quantity is  ca lle d  the sp rea d in g  width o f  the doorw ay  state , w hile 
Г 1, is  the e sca p e  w idth . W e se e  that the e ffe c t  o f  the co m p lica te d  states 
on the a v e ra g e  c r o s s - s e c t i o n  is  to b road en  the re so n a n ce  due to the d o o r 
way state .

7 .5 . The fin e  s tru ctu re

W h ile  the a v era g e  c r o s s - s e c t i o n  on ly  d isp la ys  on e re so n a n ce  o f  width 
(Г'Ч-Г'И- 21), the c r o s s - s e c t i o n  p ro p e r  has a m u ch  m o r e  co m p lica te d  
s tru c tu re . Indeed, the S -fu n ction  has N + l  p o le s  g iven  b y  the r o o ts  
o f  (s e e  E q .(7 .11))

d(E) = 0 ' (7 .25)

T h e se  N + l  re so n a n ce s  a re  due to the N + l  BSEC $>j(i=0, 1, N) in 
clu d ed  in the m o d e l. T he states Фц (£ = 1, . . . ,  N) a re  not cou p led  d ire c t ly  
to the continuum . N e v e rth e le ss , they g ive  r is e  to r e so n a n ce s  b e ca u se  
they a re  cou p led  to the doorw ay  state  Ф0, w hich  is  it s e l f  cou p led  to the 
channel.

The p ro b le m  a r is e s  o f  how to p a ra m e tr ize  the S -fu n ct io n . F o llow in g  
the sa m e p ro ce d u re  as in se c t io n  5 .1 , we cou ld  w rite  it in the fo r m  (5 .9):

S = exp (2 iô ) 1 -  i

N + l

‘ I (7 .26a)
n = l

with

К  = S n --H r n (7.26b)

C le a r ly , the quantities Çn , Гп, r e a l  p a rt o f  0Ln, im ag in a ry  p art o f  â t a can 
d isp la y  v a r io u s  d istr ibu tion  p a ttern s, depending upon the p ro p e r t ie s  o f  vf , 
e 0 and r t .  A s im p le  r e s u lt  can on ly  b e  obta in ed  i f  w e m ake s im p le  
a ssu m p tio n s . H en ce forth , w e often  use the p ic k e t -fe n ce  m o d e l, w hich  
a ssu m e s  that a ll quan tities v? a re  equal, that a ll e n e rg ie s  a re  e q u i
d istant and that N is  in fin ite . E ven  in the fra m e  o f  that s im p le  m o d e l, it 
is  found that the quan tities and Гп have co m p lica te d  d is tr ib u tion s  [25 ]. 
It is  m o r e  con ven ien t to p a ra m e tr ize  the S -fu n ction  in te r m s  o f  the p o le s  
o f  the К -fu n ction , w hich  is  defin ed  as fo llo w s :

S = e x p (2 i6 > I T i | (7.27)
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F r o m  E q .(7 .1 2 ), we obtain  the e x p lic it  fo rm  o f  К

-4 N

N

E - v X
V.

П <E-ej) 
j= i

(7.28)

E -  e.
j= i

The den om in ator 2£> o f  К  is  the r e a l part o f  the determ inant d. It can be  
w ritten

Щ Е ) ■■
E  -  e o v j

vt (E -C j)a j£
(7.29)

Equation  (4.8a) show s that the z e r o s  o f  S) (and h en ce  the p o le s  o f  K) are  
the e n e rg ie s  o f  the bound e x c ite d  sta tes фп , in a m od el w h ere  the channel 
w ave function  w ould  b e  om itted  fr o m  the b a s ic  se t o f  sta te s . L et us ca ll 
Xn (n = 1, . .. ,N + 1 ) the r o o ts  o f

Щ Щ  = 0 (7.30)

W e can  alw ays w rite

N+l 2 
a„

К ■I E -X (7.31)
n = 1

It can e a s ily  be  ch eck ed  that

a = è r T0 2.n A nfl (7.32)

w h ere  Ono a re  the e lem en ts  o f  the orth ogon a l m a tr ix  w hich  d ia gon a lizes 
the m a tr ix  w hose  determ inant ap p ears in E q .(7 .2 9 ). The m a tr ix  is  
an alogou s to that in trod u ced  in E q .(4 .8 b ). W e note that the quantities O no 
a re  r e la te d  to the BSEC on ly , and not to the channel. W e have (se e  E q .(4 .8 b ))

N

j= l
° n j $ i + O n0*0 (7.33)

H en ce, O no m e a su re s  the p rob a b ility  o f  finding the doorw ay  con figu ra tion  
Ф0 in the state Фп. S in ce  О is  an orth ogon a l m a tr ix , we have

N + l

I
n = l

О 2„ = 1 (7.34)
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E quations (7.32) and (7.34) show  that the fo llow in g  sum  ru le  holds

N +1

(7.35)

2
W e now  study the d istribu tion  o f  the quantities an . W e r e p la c e  E by 

E + i l  in E q .(7 .2 7 ), and u se  E q .(7 .23 ). We find

N+l 2
V  an _ i Г*
¿ E - e 0+ iI  2 E -  e0 + j  i(r * +  21) (7,36)
n = 1

A ssu m in g  that the a2n ' s a re  sm ooth ly  d istribu ted , we can r e p la c e  the 
su m m ation  o v e r  n in E q .(7 .3 6 ) by an in tegra l:

1 Г a (E 1 ) _1  r f
d J  ( E - E ' )  + iI 2 E - e . + ' ^ r ^ I )  ( " 'ш OO V

2
Taking  the im ag in a ry  part o f  E q .(7 .37 ), and denoting by  ( a n X  the average  
o f  aj ca lcu la ted  around E within an en ergy  in terva l I, w e find

2 1 -------- T ^ + 2 1 ) -----------
n 47Г , ,2, l ,r,t ,  nr,2

( £n - e o)"+ i ( r i + 2 I ) 2

W e m u st re m e m b e r  that E q .(7 .38 ) has been  estab lish ed  in the ca se  I »  d. 
W h en ever  Г^< d, E q .(7 .3 8 ) contains lit t le  in form ation  con cern in g  the d is t r i 
bution  o f  the quantities a2 . In g e n e ra l, h ow ev er, Г '1»  21, and the quanti
t ie s  a2 have a L oren tz ia n  d is tr ibu tion , with width at h a lf-m a x im u m  Г 
F ro m  E q .(7 .3 2 ), we obtain  in that ca se

T h is e x p re s s io n  show s the o r ig in  o f  the e x p re ss io n  "sp rea d in g  w idth" u sed  
to design ate Г*. T h is quantity m e a su re s  the extent o f  the sp read in g  o f  the 
state Ф0 o v e r  the com pou nd le v e ls  фп . In the c a se  d as w e ll as F*> d, 
one can esta b lish  the fo llow in g  law , in the fra m e  o f  the p ick et-fen ce  m od el 
[26]:

a" = 2 Í  ‘  2 1 , 2 d r *  (7,40)
(e0 - e n) 4 ( ) ~2тГ
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W e note  in p a ssin g  that the K -m a tr ix  p a ra m etr iza tion  g iven  by  E qs (7.27) 
and (7.31) is  fo rm a lly  v e r y  an alogou s to the R -m a tr ix  p a ra m etr iza tion  [25 ].

7 .6 . E x p er im en ta l ev id en ce

In p r in c ip le , the a n a lys is  o f  an in te rm e d ia te -s tru c tu re  re so n a n ce  in 
a o n e -o p e n  channel situation  w ould  b e  the fo llo w in g . One com pu tes o r  
m e a su re s  the a v era g e  c r o s s -s e c t i o n  and se e s  w hether it can b e  fitted  
with a L o re n tz ia n . T h is  d e term in es  Г 1, Г* and e 0 , w hich  a re  the funda
m en ta l qu an tities . Q uite often , h o w ev er , the av era g e  c r o s s - s e c t i o n  does 
not d isp la y  any n ice  is o la te d  in te rm e d ia te -s tru c tu re  re so n a n ce , and the 
ex tra ctio n  o f  Г* and Г т is  d ifficu lt . In p a rt icu la r , i f  Г * «  Г* (w hich  ap p ears 
to b e  the g e n e ra l c a s e ) , the a v e ra g e  c r o s s  se c tio n  b a re ly  d isp la ys  any 
apparent re so n a n ce . M o re o v e r , the w hole a n a lys is  is  m ean ing fu l on ly i f  
the d o o rw a y -s ta te  m o d e l g iven  above  a p p lie s . T h is should  b e  ch eck ed  
by  look in g  at the d is tr ibu tion  o f  the fin e -s t ru c tu r e  p a ra m e te rs . If should  
b e  p o s s ib le  to f it  the d istr ibu tion  o f  the a2 with E q .(7 .4 0 ). T h is , h ow ev er, 
is  r a r e ly  p o s s ib le , fo r  s e v e r a l r e a s o n s . The deta iled  e x p erim en ta l data 
a re  r a r e ly  a v a ila b le . If it i s ,  th is g e n e ra lly  im p lie s  that on ly  a few  (about 
ten) f in e -s t ru c tu r e  peaks e x is t . T h is is  too  lit t le  fo r  the s ta t is t ica l 
assu m p tion s  (p ic k e t -fe n ce  m od el) to apply . The on ly  two c a s e s  w hich  have 
b een  exam in ed  in deta il c o n ce rn  the re a c tio n  206P b (n ,n )206Pb [27] and 
56F e (n ,n )56F e  [28 ]. The re su lts  o f  th ese  an a lyses a re  en cou ra g in g  but not 
d e c is iv e . M o re  ex p erim en ta l and th e o re tica l w ork  is  ca lle d  fo r  in this 
f ie ld . F ortu n a te ly , the is o b a r ic  analogue re so n a n ce s  p rov id e  a p rim e 
exam p le  (but not a s im p le  one) o f  in term ed ia te  s tru ctu re . T h is is  d is 
c u s se d  in the next s e c t io n .

8 . THE ISOBARIC AN ALO GU E RESONANCES

8 .1 . In troduction

It r e su lts  fr o m  s e c tio n  7 that a doorw ay  state  w ill p rod u ce  an in te r - 
m e d ia te -s tr u c tu r e  re so n a n ce  on ly  i f  the fo llow in g  two con d ition s  a re  fu l
f i l le d  (am ong o th e rs ):

(1) the doorw ay  state is  is o la te d , i . e .  the sep ara tion  betw een  two 
doorw ay  sta tes  is  la r g e r  than the sum  Г^ + Г 1

(2) the e sca p e  w idth r f is  not m uch sm a lle r  than Г 1.
A c co r d in g  to cru d e  e st im a te s  o f  r f and Г*, cond ition s (1) and (2) a re  

not lik e ly  to be  fu lfille d  in g e n e ra l [29 ]. H en ce, in te rm e d ia te -s tru c tu re  
re s o n a n ce s  due to d oorw ay  sta tes w ill b e  o b s e rv a b le  on ly  i f  Г* is  ex ce p t io n 
a lly  sm a ll . L ook in g  at the e x p re s s io n  (7.24) fo r  Г*, th is im p lie s  that v 2 
m u st b e  e x ce p t io n a lly  sm a ll, fo r  in sta n ce , b e ca u se  o f  the e x iste n ce  o f  a 
se le c t io n  ru le  w hich  w ou ld  co n s id e ra b ly  re d u ce  the cou p lin g  o f  the d o o r 
w ay state w ith the co m p lica te d  s ta te s . T h is  is  p r e c is e ly  fu lfille d  in the 
case, ó f  i s o b a r ic  analogue r e so n a n ce s  ( fo r  sh o rt, IA R ). T h e re , the d o o r 
way state h as a p p rox im a te ly  pu re  is o sp in  .T> , w hile the co m p lica te d  states 
have ap p rox im a te ly  pu re is o sp in  T< = T> -  1. H ence, the d oorw ay  state is  
(a lm ost) not cou p led  to the co m p lica te d  sta tes by  the re s id u a l in tera ction .
A t the sa m e tim e , it b e c o m e s  im portan t to im p ro v e  the th eory  to include 
s e v e r a l  r e fin e m e n ts . T h is  w as f ir s t  em p h a sized , in the fra m e  o f  R -m a tr ix



IAEA-SMR 6/22 757

th eory  by  D. R ob son  [30 ]. W e cannot a im  at a deta iled  th e o re t ica l d e s 
cr ip tio n  o f  the IA R . F o r  th is , the re a d e r  is  r e fe r r e d  to ch a pter 13 o f  
R e f. [1 ], w hich  is  it s e l f  la rg e ly  b a se d  upon a p aper b y  M ekjian  and 
M acD on ald  [31 ]. H ere , w e sh a ll on ly  exh ib it the m ain  p h y s ica l fea tu res  
o f  the th eory .

8 .2 . Isosp in  o f  n e u tro n -e x c e s s  n u c le i and is o b a r ic  analogue states

L et u s co n s id e r  a lo w -ly in g  e x c ite d  state o f  a m ed iu m -w e igh t o r  a 
heavy n u cleu s , w ith a la rg e  neutron  e x c e s s .  W e c a ll  N the n u m ber o f  
n eu tron s, Z  the n um ber o f  p ro ton s , and denote the n u cleu s by ZP  (A = Z+N ). 
In a f ir s t  and cru d e  ap prox im a tion , the con figu ra tion  o f  the n ucleu s is  
that d ep icted  in F ig .4. T he shaded a re a  re p re s e n ts  the o r b ita ls  o c cu p ie d  
b y  the Z  p ro ton s , and by  the lo w e st  Z  n eu tron s. W e have taken, fo r  the 
sake o f  d e fin iten ess , the exam ple  o f  the f ir s t  e x c ite d  state  o f  4oZ r. »The 
1 3 -e x c e ss  n eutron s o ccu p y  the o r b ita ls  l g g / 2 ( 1 0 ) ,  2 d 5/ 2 (2) and 3 S]y2( l ) .

F IG .4 . S chem atic representation o f the con figuration  o f the first exc ited  state o f ^ Z r. T he  shaded area 

corresponds to the core  o f 40 protons and 40 neutrons.

The bound proton  o r b ita l with quantum n u m bers (n 0, i 0, j0, m 0) is  a lm ost 
id en tica l to that o f  the co rre sp o n d in g  bound neutron  o r b ita l w ith sam e 
quantum (nQ, £ 0, j 0, m 0).  The o v e r la p  betw een  the two w ave fu nction s is  
la r g e r  than 0 .99, e s p e c ia lly  fo r  the deep ly  bound o n e s . F o r  s im p lic ity  
o f  the d is cu ss io n , le t  u s  assu m e  that th ese  "c o r re s p o n d in g "  o r b ita ls  a re  
id e n tica l. L e t  u s  c a ll  r ( i )  the is o sp in  o p e ra to r  fo r  n ucleon  i, and t+ (i)  
the r a is in g  o p e ra to r  fo r  n u cleon  i .  The o p e ra to r  t + tra n s fo rm s  a p roton
(t = - I )  into a neutron  ( t z  = +|) in the co rre sp o n d in g  o r b ita l. The o p e ra to r

A

Т + = У  r +(i) (8.1)
i  = l

2
r a is e s  the T z com pon en t o f  T , and le a v e s  the eigen va lu e  T> (T > +  1) o f  T 
unchan ged . If ap p lied  to ^P, the o p e r a to r  T + g iv e s  z e r o . Indeed, the 
n eutron  o r b ita ls  co rre sp o n d in g  to the o c cu p ie d  proton  o r b ita ls  a re  
co m p le te ly  f i l le d . T h is  m ean s that Tz cannot b e  in c r e a s e d , i .e .  that 
Tz = T, . H en ce , w e have

T> = | ( N - Z )  (8.2)

fo r  a n u cleu s with e x c e s s  n eu tron . The is o sp in  purity  o f  the lo w -ly in g  
sta tes is  o f  the o r d e r  o f  99% .
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The o p e ra to r  T . can b e  applied  to the state  ^P. It tra n s fo rm s  the 
neutrons into p ro ton s , leavin g  unchanged the quantum n um bers o f  the 
o r b ita ls . In the exam ple o f  F ig .4, the ap p lica tion  o f  T . to ^P y ie ld s  the 
fo llow in g  (n orm alized ) state:

= (13)'* {N /T Ö 'K lg g /a J p ilg ^ );1 jJ=0 

+ \T? [ (2d5/2)p (2 d 5/2) ¡ 1]J = 0

+ [ (3 s 1/(2)p (3Sjy2)n ]j = 0} (8-3)

A
H ere , the p a rt ic le  and the h ole  a re  taken with r e s p e c t  to zP  as r e fe r e n c e  
state; they a re  coup led  to J = 0. The state % is  an eigen sta te  o f  H0, with 
eigenvalue

Е > = ЕР + ДС (8.4)

A
W e denote by  E P the en ergy  o f  the parent state ZP, and by Д с the sin g le  
p a rt ic le  C oulôm b en ergy

H 0 | > >  = E p | > >  (8.5)

H Ф = E Ф (8.6)о > > > ' '

W e note that Ф> is  an e igen sta te  o f  H0 fo r  a sy stem  with Z + l  p roton s and 
N -  1 n eu tron s. It is  ca lle d  the is o b a r ic  analogue state ( fo r  b re v ity  IAS) 
o f  ¿P . It is  a h igh ly  e x c ite d  state o f  the (Z +  1, N -  1) n ucleu s (in  ou r 
exam p le  |jNb). The excita tion  en ergy  is  o f  the o r d e r  o f  10 M eV in 
m ed iu m -w eigh t n u c le i, and 20 M eV in heavy n u c le i. H en ce, Ф5 lie s  in 
a re g io n  o f excita tion  w h ere  the density  o f  BSEC Ф] is  e x tre m e ly  la rg e .
On the o th er hand, Ф> has a s im p le  s tru ctu re . It is  a lin ea r  su p erp osition
o f  l p - l h  sta te s . T h e re fo r e , Ф> is  a doorw ay  state fo r  the channel w here 
a p roton  is  s ca tte re d  b y  the ta rget (Z , N -  1 ). The BSEC ly in g  in the 
v ic in ity  o f  Ф> have the "n o r m a l"  iso sp in  fo r  the ( Z + l ,  N -  1) n u cleu s, i .e .

N -Z
T< = ^ - 1  = ^ - 1  (8.7)

Thus, the m a tr ix  e lem en t o f  the res id u a l n u c lea r  in tera ction  betw een  Ф> 
and the co m p lica te d  BSEC v a n ish es . In re a lity , o f  c o u r s e , it is  not 
c o m p le te ly  c o r r e c t  to assu m e that co rre sp o n d in g  proton  and neutron  
o rb ita ls  a re  id en tica l, and the above co n c lu s io n s  a re  on ly  ap prox im a te ly  
v a lid . S till, w e ex p e ct that Г  *w ill be  p a rt icu la rly  sm a ll fo r  the doorw ay 
state Ф>( so  that we a re  in id ea l cond ition s to o b s e rv e  in te rm e d ia te - 
s tru ctu re  r e so n a n ce s . T h is is  indeed  co n firm e d  by  the ex p erim en ta l 
d is co v e r y  o f hundreds o f  IA R .
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The IAR a re  usu ally  o b s e rv e d  as p ron ou n ced  r e so n a n ce s  in the e la s tic  
s ca tte r in g  o f  p ro to n s . S ince they l ie  at high ex cita tion  en erg y , they a re  
actu a lly  in te rm e d ia te -s tru c tu re  r e so n a n ce s , and we ex p ect to b e  ab le  to 
o b s e rv e  a fin e  s tru ctu re  i f  the e x p e r im e n ta l en ergy  r e so lu tio n  is  re fin e d . 
In heavy  o r  even in m ed iu m -w eigh t n u c le i, the a v era g e  le v e l  sp acin g  o f  
the co m p lica te d  states is  so  sm a ll that the fin e  s tru ctu re  cannot be  r e 
so lv e d . T h is  is ,  h o w ev er , p o s s ib le  in ligh t n u c le i. F ig u re  5 show s the 
ex cita tion  fu nction s o f  40A r(p , p )40A r  [32 ]. The enhancem ent o f  the r e s o 
nance w idth in the v ic in ity  o f  a 3 /2 ’  IA R  at 1.87 M eV is  c le a r ly  exh ib ited .

F IG .5. E xc ita tion  function  o f 40A r(p ,p )4°Ar. In (a), the poor energy resolution data-are shown, in  (b) 

and (c) the f in e  structure is d isp layed (from  Ref. [32]).
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A p lot o f  the re s id u e s  a2 o f  the K -m a tr ix  v e rs u s  An show s that the d is t r i 
bution  is  not L oren tz ia n , as E q .(7 .3 8 ) w ould p re d ic t . R a th er, the d is t r i
bution  o f  the an d isp la ys  an a sy m m e tr ic  peak, with a van ish in g  point at 
about 80 keV  above the re so n a n ce  e n e rg y . T h is  c h a ra c te r is t ic  pattern  is  
a lso  found in o th er  c a s e s ,  and in d ica tes that the m o d e l stud ied  in se c t io n s  
7 .3 -7 .5  is  too  s im p le  to g ive  a good  d e scr ip tio n  o f  the IAR .

A n oth er in terestin g  c h a ra c te r is t ic  o f  the IAR  is  that the (p, n) c r o s s -  
s e c t io n  d isp la ys  a re so n a n ce . F ig u re  6 show s the |2 Z r (p , n)®2 Nb c r o s s -  
se c t io n  in the v ic in ity  o f  the IA R  co rre sp o n d in g  to the f ir s t  e x c ite d  state 
o f  93Z r  (s e e  F ig .4 ). W e se e  that the r e so n a n ce  peak is  a s y m m e tr ic . If 
one su b tra cts  the con trib u tion s o f  the angular m om en ts d iffe ren t fro m  the 
re so n a tin g  Jn = l / 2 +, one fin ds an a s y m m e tr ic  re so n a n ce  peak w hich  again 
d isp la ys  a van ish in g  point sligh tly  above  r e so n a n ce . The sa m e beh av iou r  
is  ex h ib ited  b y  m any (p, n) c r o s s -s e c t io n s  at the IA R . T h is su g gests  that 
the a s y m m e tr ie s  o b s e r v e d  in the f in e -s tru c tu r e  data and in the (p ,n ) 
c r o s s - s e c t i o n s  have the sa m e  o r ig in . In fa ct, both  phenom ena in vo lve  
is o sp in  m ix in g  o f  the d oorw ay  state Ф? w ith the co m p lica te d  sta te s . T h is 
is  ob v iou s  fo r  the fine stru ctu re , and w e now show  that it is  a lso  v a lid  
fo r  the (p ,n ) r e so n a n ce . The re s id u a l n u cleu s |2 Nb has is o sp in  5. Thus, 
the channel n +  92Nb has is o sp in  1 1 /2 , w hile the doorw ay  state has is o sp in  
T> = 1 3 /2 .  H ence, neutron  decay  fr o m  Ф> is  is o sp in -fo rb id d e n , and the 
(p, n) c r o s s -s e c t i o n  can d isp lay  a re so n a n ce  on ly  b e ca u se  Ф> is  m ixed  
w ith the co m p lica te d  le v e ls  o f  lo w e r  is o sp in .

FIG . 6. 92Zr(p, n)92Nb cross-section in  the v ic in ity  o f the IAR corresponding to the parent state represented

in  F ig .4 (from  Ref. [33]).

8 .4 . The b a s is  sta tes and th e ir  m utual coup ling

In the p re se n t s e c t io n , we define the se t o f  sta tes w hich  span the 
sp a ce  o f  fu nction s w h ere  the fu ll H am iltonian H w ill be  d ia gon a lized . 
S e v e ra l c h o ic e s  a re  p o s s ib le . F o r  in stan ce , w e m ight on ly  take the 
bound state  Ф,. obta in ed  by  applying the T_ o p e ra to r  to ^P, and the 
channel w ave fu nction  xE • T h is is  the s o - c a l le d  Lane m o d e l [1 ]. H ow ever, 
Ф> is  not an e igen sta te  o f  H0 i f  c o rre sp o n d in g  proton  and neutron  o rb ita ls  
a re  n ot id e n tica l. It is  th e r e fo re  m o re  con ven ien t to m ake a d ifferen t
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c h o ic e . L et us f ir s t  c o n s id e r  the lin ea r  sp a ce  spanned b y  the 2 T> one 
p a r t ic le -o n e  h o le  BSEC obta in ed  by  applying the T. o p e ra to r  to * P . We 
d ia gon a lize  H in th is r e s t r ic te d  su b sp a ce . It is  then easy  to show  [35] in 
a s ch e m a tic  m o d e l fo r  in stan ce , that one lin e a r  com bin ation  o f  th ese  
l p - l h  sta tes , say Ф0 , w ill have an en ergy  m uch  la r g e r  (by about the 
sy m m e try  en erg y , i .e .  about 10 M eV) than the en ergy  o f  the (2T> - 1) 
o th er  lin e a r  com b in a tion s . The la tter  (m any o f  w hich  m ay be  degenerate) 
a re  c a lle d  the an ti-an a logu e sta tes , o r  con fig u ra tion a l s ta te s . If the w ave 
fu nction s o f  s in g le -p a r t ic le  o rb ita ls  a re  id en tica l, Ф0 is  equal to Ф>. C le a r ly , 
Ф0 m u st be  in clu d ed  am ong the set o f  b a s is  sta te s . W e d ia gon a lize  H am ong 
a ll o th er  bound states o rth ogon a l to Ф0, i .e .  am ong the BSEC d iffe ren t fro m  
the a b o v e -m e n tio n e d  l p - l h  and am ong the an ti-an a logu e sta te s . T h is y ie ld s  
sta tes ip j (j = 1, . . . ,  M ). The sta tes w hich  lie  in the v ic in ity  o f  Ф0 have 
a lm o st pure is o sp in  T< = T> -  1. We in trod u ce  the d e fin ition s

<Ф 0 |н |Ф о>=Е 0 (8 .8)

< ^ | H | ? k> = e J6 jk ( j , k = l ,  . . . ,  M) (8.9)

F in a lly , w e  m ust in clude  the sca tte r in g  states xe (c=  •••> Л ). H ere , с
r e fe r e s  to neutron  as w e ll as to p roton  ch an n els . The n eu tron -ch an n el 
w ave fu nction s have pure is o sp in  T<, but the p ro to n -ch a n n e l w ave function  
is  a m ix tu re  o f  T> and T< sta tes . Th is c o m e s  fr o m  the fa c t  that the 
z -co m p o n e n t o f  the is o sp in  o f  the proton  is  and that o f  the ta rget is  T> - 

W e now d is cu ss  the s iz e  o f  the v a r io u s  m a tr ix  e lem en ts  o f  the re s id u a l 
in te ra c tio n . W e n e g le c t  the re s id u a l C ou lom b in te ra ctio n . S till, w e m ust 
b e  ca re fu l that the re s id u a l n u c lea r  in tera ction  does not com m u te  with J 2,
b e ca u se  it  conta in s the s in g le -p a r t ic le  poten tia ls , w hich  d iffe r  fo r  proton s
and n eu tron s by  the sy m m e try  p oten tia l. N ev e rth e le ss , it is  p o s s ib le  to 
show [1] that on ly  that part o f  V w hich  com m u tes with T 2 is  im p ortan t. L et 
us denote by p the p roton  chann els , and by  n the neutron  ch a n n els . The 
v a r io u s  m a tr ix  e lem en ts  have the fo llow in g  c h a ra c te r is t ic s ;

< Ф о IV j с/?. = V : v e ry  sm a ll (8.10a)

<Ф 0М хРе>=  vjj : n o rm a l s iz e  (8.10b)

< « 0l V iXE> =  vo ; Sma11 (8 .10 c)

<(<f>. IV|x£^> = v ? : sm a ll (8.10d)
J k J

< <p. I V |xp^ = v n: sm a ll (8 .10e)
J *- J

A s w e have done b e fo r e ,  we n e g le c t  thé d ir e c t  ch a n n el-ch a n n el coup ling . 
The s iz e s  quoted in e x p re s s io n  (8 .10 c) a r is e  fr o m  the high is o sp in  purity
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o f  the states Ф0(т >). ^ (Т < )  and X e(T < ). The sm a lln e ss  o f  the m a trix  
e lem en ts  (8 .10d) and (8 .10e) c o m e s  fr o m  the fa c t that the sta tes are  
c o m p lica te d . The v e ry  sm a ll value o f  the m a tr ix  e lem en t (8.10a) is  due 
to both  e f fe c t s . W e note that the states <¡p. a re  obtained  by d iagon aliz in g  
H am ong m any B SEC, so m e  o f  w hich  a re  doorw ay  states fo r  the proton  
o f  the neutron  channels ( fo r  in stan ce , the o n e -p r o to n -p a r t ic le ,  o n e - 
n e u tro n -h o le  sta tes w h ere  the p a rt ic le  and the h ole  angular m om enta  are  
not cou p led  to J = 0). T h e re fo r e , the " c o m p lic a te d "  sta tes o f  the IAR  are  
cou p led  to the ch a n n els . T h is fea tu re , and the sm a lln e ss  o f  v j , a re  the 
m ain  c h a r a c te r is t ic s  o f  the IAR , as em p h a sized  again in the next section

8 .5 . Iso sp in  m ix in g  at the IAR

S in ce  w e assu m e that th ere  e x is ts  no d ir e c t  ch a n n el-ch an n el coupling , 
w e can use the equations o f  se ction  4. The sca tte r in g  m a tr ix  is  g iven  by 
E q .(5 .4 ) . L et us look  at the determ inant D(E) o f  the m a tr ix  D in E qs (5.2b) 
and (5 .4 ). In the p re se n t c a s e , it read s

E - e 0+ è ir o
л

V j + > I d E '  o i g )
J /  . . /  E + -  E 'I P

c = l e .

D (E) =

Ï Ï  
c  = l  £c

dE '
v ¡¡ (E 1 )Vq (E 1 ) 

E + - E ' (E 'e¡)6j£‘Z J dE'
v f(E J )v jf(E ')  

E + - E '
с  =1 с

( 8 . 1 1 )

H ere , the in d ice s  j ,  f  = 1, . . . ,  M , c o r r e sp o n d  to the co m p lica te d  states <p. 
ly in g  in the v ic in ity  o f  the en ergy  eQ o f  the IA R . W e have u sed  the notations 
(s e e  E qs (8 .8) and (8 .9 ))

E o + dE '
^ ( Е ' ) Г
E - E 1 (8 .12)

С =1

Г0= 2ít[vq (E )] ' (8.13)

The m ain  d iffe r e n c e  betw een  the e x p re s s io n  (8.11) and the co rre sp o n d in g  
e x p re s s io n  (7 .10) fo r  the s im p le  m o d e l is  the fo llo w in g . The doorw ay 
state  Ф0 is  co u p led  to the co m p lica te d  state (p¡ not on ly  v ia  the m a tr ix  
e lem en t Vj , but a lso  v ia  the quantity

г  v  ̂(E 1 )v? (E 1 )
F 0j = P J  d E ' -  - E - E ' -------- i ^ ( E ) v g ( E )  (8.14)
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B e ca u se  o f  re la t io n s  (8 .10b) and (8 .1 0 c), the quantities Fqj a re  s iz e a b le  
on ly  when с r e fe r s  to a p roton  channel. B e ca u se  o f  re la t io n s  (8.10d) and 
(8 .1 0 e ), the quantities (j, !  = 1, . . . ,M )

\ d E 1
v J (E ')V i (E ':

E + -  E 1
(8.15)

a re  v e ry  sm a ll . They do not play any im portan t r o le  in the th e o ry . Thus, 
the m ain  c h a r a c te r is t ic  fea tu re  o f  the IA R  is  that the cou p lin g  betw een  
Ф0 and ipj v ia  the proton  channel w ave fu nction s is  la r g e r  than (o r  at le a st 
com p a ra b le  to) the d ir e c t  cou p lin g . T o exh ib it the con seq u en ces  o f  this 
p ro p e rty , it is  conven ient to study the s o - c a l le d  pure ex tern a l m ix in g  
m o d e l, w h ere  the d ir e c t  cou p lin g  m a tr ix  e lem en ts a re  set equal to z e ro :

Vj = 0 (pure ex tern a l m ixin g) (8 .15)

H ere , w e sh a ll on ly  c o n s id e r  the pure ex tern a l m ix in g  m o d e l, in 
o r d e r  to exh ib it.the p h y s ica l o r ig in  o f  the a sy m m e tr ie s  exh ib ited  in 
s e c t io n  8 .3 . W e in clu d e  one p roton  channel, and A n eu tron  channels, 
w hich  we assu m e not to be  coup led  to

vQn = 0  (8.16)

W e u se  the ap prox im a tion

Г v ? (E ')v S (E ')  с  с

P  J  d E '  e - Е '  - v j ( E ) v o ( E ) f c (E ) ( 8 - 1 7 )
«с

The con d ition s  o f  v a lid ity  o f  th is ap prox im a tion  a re  d is cu ss e d  in se c t io n s
8.7 and 13 .7 c  o f  R e f . [ l ] .  It r e s ts  upon the fa c t  that the ra d ia l dependence 
o f  the s in g le -p a r t ic le  s ca tte r in g  w ave function  u c (r , k) (see  E q .(2 .5 )) does 
not change in sid e  the potentia l w e ll when the en ergy  E = íl2 k2 /2 M  v a r ie s  
in an en erg y  ran ge  o f  a few  M eV . T h is ran ge  is  n eg lig ib le  co m p a red  to 
the depth (= 50  M eV) o f  the potentia l w e ll . U sing E qs (8.15) and (8 .17 ), 
the b a s ic  equations (5 .1) b e c o m e  (j = 1, . . . ,  M)

(E - ej)b£ (j) -  (fp-  i7T)vf v0PbP (0) -  Y  (fn - i?r)vj1 Y  V" bE { i )  =
n = i «=1 (8.18a)

M

(E  -  E o)bE ( ° )  -  ( f p -  i 7r) Y  v m b E ( m ) = v 0 

m  = 0

(8.18b)



H ere , w e have w ritten  the fu ll sca tter in g  w ave function  in the fo rm  

M Л «

*E= £  Ь Р<Р^Ь ЕР(0)Ф0+ ^  J  d E 'a P (E ';n )x ^ +  f  dE 1 aE (E 1 ;p)xe*
j = 1 n = l en £p
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E

The c o e ffic ie n ts  a E(E ' ;c )  a re  given  by  E q .(4 .2 0 ):

aP(E> ;c )  = 6cp6 (E -E 1 )+ (E +- E ’ )_1£  v 'b
m = 0

Taking E = E q in E qs (8 .18a) and (8 .18b), w e obtain

л M

(E O -e j)b E0№ -  ^ ( fn’ i7r)X Vi b E0(^  = °

(8.19)

(8.20)

( 8 . 2 1 )

n=l 4=1

In g e n e ra l, th is sy ste m  o f  h om ogeneou s equations fo r  the co e ffic ie n ts  
b E (Í )  has no n on -tr iv ia l so lu tion , so  that

b S m  = o (i = i ,  . . . ,  M)

W e u se  this r e su lt  in E qs (8 .20) and (8.19) and find

( 8 . 22 )

Ф0+ J  dE ' (E0+ - E 1 )" v £ (E ')X£ (8.23)

L et Ф< b e  a n o rm a liz a b le  w ave function , con fin ed  in sid e  the n u cleu s, and 
with is o sp in  T< . W e can use an ap prox im ation  analogous to approx im ation  
(8 .17):

P  J dE> ( E +-  E> )’ 1<Ф< I x£  (E 1 ) ~ f pv  ̂(Е 0 )<Ф.<| x ^  > (8.24a)

*P

U sing th is re la tion  in E q .(8 .2 3 ), we find

<Ф< Iф£>  = < ф<I^ > { 1  + (^ -  i7T)vPbPo (0)}

E quations (8 .18b) and (8.24) y ie ld

<Ф< |фР > = 0 < Ьо

(8.24b)

(8.25)
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T hus, the fu ll s ca tte r in g  w ave function  i'j? has pure is o sp in  T> in the 
in tern a l re g io n  o f  the n u cleu s, at the en erg y  E 0 . A t E 0 , the BSEC cpy 
and the w ave fu nction s xe'> a re  th e r e fo re  not m ix e d  with_$0 . H ence, 
the d is tr ibu tion  o f  the w idths o f  the f in e -s t ru c tu r e  peaks d isp la ys  a ze ro  
at E 0. T h is z e r o  lie s  ab ove  the r e so n a n ce  en erg y  e0 , b e ca u se  the quantity

d E ’ tvo (E 1 )] 
E - E 1

is  u su a lly  n e ga tiv e . Indeed, the m a tr ix  e lem en t v{j (E 1 ) in c r e a s e s  with 
en e rg y , b e ca u se  o f  pen etration  e f fe c t s .

The e lem en ts  S cc'  o f  the s ca tte r in g  m a tr ix  is  p ro p o rt io n a l to 
(Xg| V I У . S ince the state Vx^ has pu re  is o sp in  T<. , in o u r  s im p le  
ex a m p le , S pn v an ish es  at E = E 0 . M ore  p r e c is e ly ,  it can b e  shown that 
the (p, n) c r o s s - s e c t i o n  apn has the shape

upn
(E^En)

(E . eo)2+ j  m 2
(8.26)

T he e x p re s s io n  o f  Г  is  g iven  in R e f. [1 ].
W h en ever the assu m p tion s m ade ab ove  (one open  proton  channel, pure 

ex tern a l m ix in g , E q .(8 .1 7 ), . ..)  a re  r e le a s e d , the z e r o  at E = E 0 is  tra n s 
fo rm e d  into a m in im u m .

8 .6 . S p e c tr o s c o p ic  in form ation

The w ave function  Ф0 o f  the IAS is  in tim ately  re la te d  to that o f  the 
parent state ZP . H en ce, it can be  hoped  that s p e c t r o s c o p ic  in form ation  
re la te d  to £ p  can b e  obta in ed  fro m  the a n a lys is  o f  the IA R . It can b e  shown 
that the va lu e o f  v° (se e  E q .(8 .1 9b )) in the proton  channels с  can b e  obta in ed  
fr o m  the m ea su rem en t o f  the e la s t ic  sca tte r in g  c r o s s -s e c t i o n  in channel c . 
It is  d ire c t ly  con n ected  w ith the va lu e o f  the p a rtia l width Г 0с obta in ed  
fro m  a B r e it -W ig n e r  a n a lys is  o f  the IA R . The kind o f  s p e c t r o s c o p ic  in 
fo rm a tio n  obta in able  fr o m  the IAR  is  p r a c t ic a lly  id en tica l to that a v a il
ab le  fr o m  (d, p) r e a c tio n s  lead in g  to ¿ P  as re s id u a l sta te . A  co m p a riso n  
betw een  the r e su lts  o f  the two k inds o f  ex p erim en ts  can c o r r o b o r a te  the 
v a lid ity  o f  the th eory  o f  strip p in g  r e a c t io n s , on the one hand, and o f  the 
IA R , on the o th e r  hand. The re su lts  obta in ed  up to now a re  v e ry  
en cou ra g in g  [1 , 34].

A s  w e have s t r e s s e d  in  the in trod u ction , th ese  le c tu re s  a re  b a sed  on 
a m on ogra ph  b y  H .A . W eid en m ü ller  and the author [1 ]. W e a re  g ra tefu l 
to  H .A . W eid en m ü ller  fo r  m any en joyab le  d is cu ss io n s .
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THE HARTREE-FOCK APPROXIMATION 
IN CO-ORDINATE SPACE

D. VAUTHERIN
Institut de physique nucléaire,
Division de physique théorique,
Orsay, Frahce

Abstract

T H E  H A RTREE -FO C K  APPR O X IM A T IO N  IN C O -O R D IN A TE  SPACE.

1. The Hartree-Fock in teg rod iffe ren tia l system; 2. Method o f so lu tion; 3. The two-body e ffec tive  

in te raction; 4. Results; 5. A p p lica tions to scattering problems; 6. Conclusion.

1. TH E H A R T R E E tFO CK  IN T E G R O -D IF F E R E N T IA L  SYSTEM

1 .1 .  In troduction

In the last few  y e a r s  tech n iqu es have been  d eveloped  to p e r fo rm  n u clear  
H a r tr e e -F o c k  ca lcu la tion s  by u sin g  a h a r m o n ic -o s c i l la to r  b a s is . E xtended 
ca lcu la tion s  have been  done fo r  sp h e r ica l n u cle i [1] as w e ll as fo r  d e form ed  
n u cle i [2] . The u se  o f  th is exp an sion  has th ree  m ain  advantages: 1) It 
r e q u ire s  on ly  the d iagon a liza tion  o f  m a tr ic e s , 2) the m a tr ix  m ethod 
p ro v id e s  a unique fra m e w o rk  fo r  a treatm en t o f  sp h e r ica l and de form ed  
n u cle i, and 3) the u se  o f  the T a lm i-M osh insky  tra n s fo rm a tio n  g rea tly  
s im p lifie s  the evalu ation  o f  the m a trix  e lem en ts o f  the H a r tr e e -F o ck  fie ld .
On the o th er  hand, th is m ethod has s e v e r a l d raw ba ck s : 1) the am ount o f  
n u m e rica l w o rk  in c r e a s e s  d ra s t ica lly  w ith m a ss  num ber, 2) the c o n v e r 
gen ce  o f  the o s c i l la t o r  expan sion , w hich  is  w e ll e stab lish ed  fo r  light nuclei, 
s e e m s  le s s  r e lia b le  fo r  heavy n u cle i, and e sp e c ia lly  fo r  w eak ly  bound sta tes, 
and 3) th is m ethod is  unable to  rea ch  d ir e c t ly  the continuum  states o f  the 
H a r tr e e -F o c k  fie ld  w hich  are  o f  s p e c ia l in te re st f o r  sca tte r in g  p ro b le m s  [3 ] .

In c o -o rd in a te  sp a ce , the H a r tr e e -F o c k  w ave fu nction s are  so lu tion s o f 
a sy stem  o f  cou p led  in te g r o -p a r t ia l-d iffe re n t ia l equ ation s, w hose  m athe
m a tica l stru ctu re  l s  ra th er  co m p lica te d . The tw o m ain  d iff icu lt ie s  a re  that 
th ese  equations are  n o n -lin e a r  and in vo lve  a n o n -lo c a l on e -b o d y  potential.
Up to  now, the so lu tion  o f  th is system  has not been  attem pted fo r  d e form ed  
n u cle i, but s e v e r a l ca lcu la tion s  are  availab le  fo r  sp h e r ica l n u cle i [4 -6 ] ,  
in clu d in g  heavy sp h e r ica l n u cle i [ 7 -8 ] .

T he aim  o f  th ese  notes is  to  d is cu ss  the p r o p e rt ie s  and the m ethod o f 
so lu tion  o f  the H a r tr e e -F o c k  in te g r o -d iffe re n tia l system  fo r  sp h e r ica l 
n u c le i. The u se  o f  the с о - o r d in a te -s p a c e  rep resen ta tion  a llow s a qualitative 
u nderstanding  o f  the depen den ce o f  the re su lts  on  the p a ra m e te rs  o f  the tw o- 
body  in te ra ctio n . T h ese  re su lts  w ill be d is cu ss e d  in  s e c t io n  4 . Som e 
ap p lica tion s o f  the H a r tr e e -F o c k  tech n iqu es to  sca tter in g  p ro b le m s  w ill be 
p resen ted  in  se c t io n  5.

Since the H a r tr e e -F o c k  equations are  d e r iv e d #in  B ou ten 's  contribution  
to  th ese  P ro ce e d in g s  [9 ] ,  it w ill be s im p ly  re ca lle d  that, fo r  a g iven  system
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o f  A n ucleon s in tera ctin g  v ia  a tw o -b o d y  in te ra ctio n  V , the H a r tr e e -F o ck  
p rob lem  is  to  find a set o f  A v e c to r s  |i), i = 1, 2, A , such  that

Л

( Ф И )  + Y,  ( i k i^ H k) = e i 6ij i 1 )
k = i

In th is  equation  t d en otes the k in e t ic -e n e rg y  o p e r a to r  and V is  an anti
s y m m e tr ize d  m a tr ix  e lem ent

(ik IV  I jk ) = (ik  IV | jk ) - (ik  IVI kj) (2)

The sy stem  o f  E qs (1) is  equivalent to  the fo llow in g

( t + « 0 | i )  = e i| i) (3)

w h ere  the m a tr ix  e lem en ts  o f  the potentia l W  a re  defined  by

A

( i k  |j) = Y ( ik[v jjk) (4)
k = l

The tota l binding en erg y  E o f  the system  is  g iven  by the re la tion  

A  A

E = |  £ [ ( i | t | i )  + e t ] = £ ( i | t + £ 4/  |i) (5)
•i = i  1 = 1

1 .2 .  The c a se  o f  d o u b ly -c lo s e d -s h e l l  nuclei

F o r  d o u b ly -c lo s e d -s h e l l  nuclei the red u ction  o f  angular v a r ia b le s  can 
be  c a r r ie d  out and in  th is ca se  one is  le ft w ith an in te g ro -d if fe re n t ia l sy stem  
in vo lv in g  on ly  the ra d ia l c o -o rd in a te  r .  F o r  th is  p u rp ose , it is  convenient 
to  d efin e  the fo llow in g  n otations, w hich  a re  v e r y  c lo s e  to  th ose  o f  B a ra n ger
[10] . A  s in g le  su b scr ip t  a w ill be used  to  define the fo llow in g  set o f  quan
tum n u m b e rs : the ch a rge  qa , the ra d ia l c o -o rd in a te  ra , the o rb ita l and tota l 
angular m om en ta  £ a and j a , and the m a gn etic  quantum num ber m a , i . e .

a = q , r  , i. , j , m (6a)a a a a a ' '

F o llo w in g  the n otations o f  B a ra n g er , w e define

a s  V  r , .  V  j a (6b)

and le t te rs  like  s and t w ill be u sed  to  denote the s in g le -p a r t ic le  
sy m m e try  type

s = q, Í ,  j (6 c )
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U sing the b a s is  a, de fin ition  (4) o f  the H a r tr e e -F o c k  fie ld  read s

(a I |t) = Y  («0|v|t6)(6|p|/3) (7)
86

w h ere  p is  the o n e -b o d y  den sity

A

(6 |р |j3) = £  (6 |i)(iI /3) (8 )
i = l

It is  e a sy  to  see  fro m  E q .( 8 ) that p can be a s c a la r  under ro ta tion  in the 
on ly  c a se  o f  d o u b ly -c lo s e d -s h e l l  n u c le i. T h is  im p lie s  that the o n e -b o d y  
den sity  is  d iagon a l in  q, £, j and m

In E q .(9 ) t  is  the sy m m etry  type o f  both  6 and ß, and pt is  g iven  by

M W  = 7 T "  Z Unt(ri>Unt(r2) <10)
n . n t E A

assu m in g  that the unknown H a r tr e e -F o c k  w ave fu nction s <j>i can  be w ritten  as 

T )  = ^  u V i ( r )  »  hkmAn,<j)xq(r) ( 1 1 a )

i . e .  in  the a  b a sis

(a|i) = 6 6. . 6. . 6 u ( r  ) / r  ( l i b )
v I ' q  q .  Í { .  ] j .  ш  m .  n . t . '  a1' a 4 'a i a i a i a i  1 1

Since the tw o -b o d y  in te ra ctio n  is  in varian t u nder ro ta tion s it is  co n 
venient to  w rite  it in  the fo rm

(a ß  I V 17 0 )

. . (12)

JM ct y I \ à ß

The fu n ction s Fj a re  the sam e as th ose  o f  T arbu tton  and D avies [11] (ex cep t 
that the p r in c ip a l quantum num ber n has b een  re p la ce d  by the ra d ia l c o 
ord in ate  r) and sa tis fy  the sa m e  sy m m e try  re la t io n s . Substituting e x p r e s 
s ion s  (9) f o r  the o n e -b o d y  den sity  and e x p re s s io n  (12) f o r  the m a trix  
e lem en ts  o f  the tw o -b o d y  in te ra ctio n  in  E q .(7 )  one finds that
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( в  I W ‘ \ y )  = 6 q (13)

w h ere  is  g iven  by

^ ( г г , г 2)

£
(14)

V  r
L  V 2 j ' + i y  J f s

F ro m  re la tio n  (14) the H a r tr e e -F o ck  fie ld  is  a qu ad ra tic  function  o f  the 
unknown ra d ia l w ave fu nction s u nt( r ) .  On the o th er  hand, the u 1 s are 
re la ted  to  the potentia l by equation  (3 ). B ecau se  o f  r e la t io n  (13), this 
equation  can be w ritten

w here w e have su p p ressed  the su b scr ip t n, t f o r  the sake o f  s im p lic ity  and 
w here

E quations (14) and (15) constitu te  the ra d ia l H a r tr e e -F o ck  in te g ro -d iffe re n t ia l 
s y s te m .

L et us note at th is point that fo r  a lo c a l tw o -b od y  in tera ction  the function  
F0 w ill contain  tw o 6 -fu n ction s , w hich  g rea tly  s im p lify  the .n u m erica l ev a lu 
ation  o f E q .(1 4 ) .  In the ca se  o f  a W ign er fo r c e

2m
W 1) i

- u "  + --------- 5-----u +
r  2 / IJ (r , r ! ) u ( r ' ) d r r = e u ( r )  (15)

0

t ie )

(17)
к

one has, fo r  in stan ce ,

(18)

and in  th is ca se  equation  (14) can  be w ritten
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w h ere  p is  the u su a l o n e -b o d y  den sity . In th is equation , the f ir s t  te rm  is  a 
lo c a l  potentia l w hich  co r r e s p o n d s  to  the H artree  te r m . T he se co n d  term  
c o r r e s p o n d s  to the exch an ge te r m .

In the ca se  o f  te n s o r  and L . S fo r c e s  s im ila r  e x p re s s io n s  can be d e r iv e d  
fro m  the m u ltipo le  expan sion s g iven  in  R e fs  [12] and [13] . F o r  n o n -lo c a l 
f o r c e s  the ca lcu la tio n  o f  ( r ¡ , r 2) from  E q .(1 4 ) in v o lv e s  a m uch la r g e r  
am ount o f  n u m e rica l w o rk . T h is  ca lcu la tion  can  be done in p r in c ip le  but 
on ly  p a rt icu la r  c a se s  (a  se p a ra b le  s -s ta te  in te ra ctio n  and a G re e n -ty p e  
in tera ction , fo r  in stan ce ) lead  to  com pu tation s o f  p r a c t ic a b le  s iz e .

The a sy m p totic  b eh av iou r  o f  the H a r tr e e -F o c k  fie ld  w ill be needed  in 
the next s e c t io n . U nfortunately , th ere  is  no ro o m  h ere  to d is cu ss  it in 
g rea t d e ta il. In the ca se  o f  a G au ssian  in tera ction , u sin g  E q . (19) and the 
a sy m p totic  fo rm  o f  v ^ fr j ,  r 2) fo r  la rg e  r , it can  be show n that at la rg e  
d is ta n ce s  the H a r tr e e -F o c k  fie ld  is  lo c a l  and g o e s  to  z e r o  as a lin ea r  
com bin a tion  o f  n eutron  and p ro ton  d e n s it ie s . N ear the o r ig in  one can  show 
that the H a r tr e e -F o c k  f ie ld  beh aves like a constant.

2. M ETH O D  OF SOLUTION

2 .1 .  D e scr ip tio n  o f  the ite ra tio n  p r o c e s s

The e lim in a tion  o f  the a v erag e  fie ld  betw een  E qs (14) and (15) y ie ld s  a 
n o n -lin e a r  sy stem  o f  in te g r o -d iffe re n t ia l equ ation s. Up to  now, the solution  
o f  th is  sy stem  has on ly  been  obtained  by  ite ra tio n . L et u .̂1' denote a f ir s t  
a p p rox im a tion  to  the unknown ra d ia l w ave fu n ction s, e .g . h a r m o n ic -o s c i l la to r  
o r  S axon -W oods w ave fu n ction s . In sertin g  th ese  fu nction s into E q .(1 4 ) y ie ld s  
a f ir s t  ap p rox im a tion  to  the H a r tr e e -F o c k  fie ld . Substituting this
value in to  E q . (15) y ie ld s  a new ap p rox im a tion  u ^  to the ra d ia l H a rtre e - 
F o ck  w ave fu n ction s . T h is  p r o c e s s  eventua lly  co n v e rg e s  to  the exact so lu tion  
u ¡ . S tarting fro m  S a xon -W oods w ave fu nction s w e have found that ten  to  
tw elve  ite ra tio n s  fo r  light n u cle i, 20 to  25 fo r  heavy n u cle i a re  su ffic ien t to 
obta in  good  co n v e rg e n ce .

The com pu tation  o f  the average  fie ld  from  the w ave fu nction s by E q .(1 4 ) 
in v o lv e s  e le m e n ta ry  op e ra tio n s  on ly  (but they are  t im e -co n s u m in g  in 
n u m e rica l a p p lica tio n s ). T he so lu tion  o f  E q .(1 5 ) is  m o re  d ifficu lt . The 
p ro b le m  is  to  find the bound sta tes o f  a g iven  n o n -lo c a l potentia l. S evera l 
m ethod s have a lrea d y  been  p r o p o se d  [1 4 -1 6 ] . The m ethod w hich  w e sh all 
d e s c r ib e  [6] r e d u ce s  the n o n - lo c a l  S ch röd in g er  equation  to a set o f  lo c a l 
equ ation s. F o r  n u m e rica l ap p lica tion s it se e m s  to  be a s im p le  and fast 
m ethod .

2 .2 .  Solution  o f  the n o n -lo c a l  S ch röd in g er  equation  fo r  bound states 

L et us f ir s t  re m a rk  that the n o n - lo c a l  S ch röd in g er  equation

h2
2m

M >

V r ) + /  r (r , r ' ) u a( r ' ) d r '  = eaua(r ) (20)
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w h ere  a  now stands fo r  the set (q, n, Ü, j) ,  is  equ ivalent to  the fo llow in g  
system

u " +
■ w > ) 2m

+ 00

V« (r )  = ^ 7 ) /  r ( r , r ' ) u a( r ' ) d r - (21b)

(21a)

The p oten tia l V „ (r )  is  u su a lly  ca lle d  the lo c a l  equivalent potentia l c o r r e 
sponding to  the state a [17] . W e have a lrea d y  m entioned  that th is potentia l 
is  r e g u la r  at the o r ig in  and g oes  to  z e r o  fo r  la rg e  r  as a lin e a r  com bin ation  
o f  the neutron  and p ro ton  d e n s it ie s . H ow ever, E q .(2 1 b ) show s that this 
potentia l w ill  have a p o le  w h en ever  the ra d ia l w ave fu nction  u a(r )  has a node, 
s o  that E q .(2 1 a ) w ill  be a lo c a l  but g e n e ra lly  s in gu lar S ch röd in g er  equation . 
A  ty p ic a l exam ple  is  show n in  F ig . 1 -w here we have p lotted  the lo c a l  eq u i
valent p oten tia l o f  the 2s 1 /2  le v e l in 40Ca. B eca u se  o f  n o n -lo ca lity , the 
in te g ra l o c c u r r in g  in  E q .(2 1 b ) does not van ish  at the node o f  the rad ia l w ave 
fu nction . As a re su lt  the p oten tia l has a p o le .

F I G . l .  L oca l equ iva lent po ten tia l o f the 2sl/2 neutron le ve l o f  C a .

T o  in vestig a te  the d iff icu lt ie s  cau sed  by th ese  s in g u la r itie s  let us 
su ppose that Va (r )  has a pole  at r  = r Q. In the neighbourhood  o f  r Q equation  
(21b) w rite s

u " ( r )  + u (r) = 0

A pp lying  F u c h s 's  th eorem  [18] one obtains r ( r -1 )  = 0 w hich  show s that 
E q .(2 1 a ) is  o f  the secon d  typ e . The two lin e a r ly  independent so lu tion s have 
the fo llo w in g  fo rm  n ear r0 :

ui ( r ) = ai ( I’ - r0) + a2( r ' r0)2 + ’ ' '

u ( r )  = b + b ( r - r  ) lo g  r - r  + b ( r - r  ) +2 0 1K O' s  1 0 1 2V 0 ;
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F ro m  th ese  expan sion s it is  p o s s ib le  to d e r iv e  an in tegra tion  fo rm u la  
analogou s to  N u m e ro v 's  fo rm u la  [15, 19] to  in tegra te  the s in gu lar S ch röd in g er  
equation  (21a). T h e re  is ,  h ow ever, a s im p le r  m ethod ba sed  on the fo llow in g  
argum ent [6] . F o r  fix ed  e > 0, let us define a potentia l Va (e , r) w hich  is  
id e n tica l to  Va (r )  ex cep t in the in terv a ls  [r0 - e, r 0 + e ] ,  w here r 0 is  one o f  
the s in g u la r itie s  o f  Va (r ) .  Inside such  an in terva l (we assu m e that they 
do not o v e rla p ) Va (e , r ) is  a p ie ce  o f  stra ight lin e . Let us denote by u (e, r) 
the so lu tion  o f  the S ch röd in g er  equation  (we have dropped  the index a)

u " ( r )  + 1 u (r ) + (e > r ) '  e l u ( r ) = 0r ¿ b ¿

It can  be show n that th is fu nction  is  such  that

u (e ,r ) = 0e = 0
T h is re la tio n  su g gests  that the so lu tion  o f  the n o n -lo c a l S ch röd in g er  
equation  can  be ap prox im ated  by the so lu tion  o f  the system

u " (r )  +  ̂ *) u ( r )  + [V (e , r) - e] u ( r )  = 0
r 2 ft2

V (r) u (r ) Г (г , r 1 ) u ( r 1 ) d r 1

(22a)

(22b)

Since V (e , r ) is  re g u la r  E qs (22) can  be so lv e d  by the fo llow in g  ite ra tion  
p r o c e s s

u " (n) (r )  + l i i - t D  u(n )(r )  + I S -  [v<n)(e , r) - e ] u(n)(r) = 0 (23a)
r ¿ f i ¿

(n+l) 1
V = — )u (r )

Г  (r , r 1 ) u^n^(r' ) d r 1 (23b)

E q .(2 3 a ) being  an ord in a ry  S ch röd in g er  equation-w hich  can  be so lved  by 
standard te ch n iq u es . T he value o f  e should not be ch osen  too  sm a ll, o th e r 
w ise  the ite ra tio n  p r o c e s s  w ould  co n v e rg e  on ly  fo r  u (°)(r ) v e ry  c lo s e  to  the 
exact so lu tion . But u sin g  as a startin g  point the so lu tion  fo r  e = e Q one can
so lv e  again  E qs (22) f o r  e = e j  w h ere  e j< e 0 and so  o n ..........  In th is form
ou r p ro ce d u re  c o n s is ts  o f  a double itera tion , s in ce  one has to  ite ra te  E qs(23) 
f o r  each  valu e o f  e . In fa ct, th is p r o c e s s  can  be red u ced  to  a s ing le  ite ra tion  
p r o c e s s  by the fo llow in g  fo rm u la
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(n) Í ( ¿ + 1 )  (n), 2m , (n) , (n)u " (r )  + -  u (r )  + —  [V (en , r ) - e n] u  (r )  = 0

u (n>(r)
Г (г , r 1 ) u ^ ( r '  ) d r '

w h ere  the e 's  now depend on  the ite ra tion  num ber and are  ch osen  such  that 
lim  en = 0. T h is sh orten s  co n s id e ra b ly  the com puting  tim e in  n u m e rica l 
a p p lica tion s  but one m ust be ca re fu l not to  let cn go to  z e r o  to o  ra p id ly .

T o  illu s tra te  the co n v e rg e n ce  w ith e T ab le  I g iv e s  the e igenvalue  e 
c o rre sp o n d in g  to  the p ro ton  2s 1 /2  le v e l in  40Ca fo r  v a r io u s  va lu es o f  e in 
E q .(2 2 ) .  The re su lts  show  that the rate  o f co n v e rg e n ce  is  v e ry  sa t is fa c to r y .

T A B L E  I. V A R IA T IO N  OF THE 2 s i /2  EIG EN VALU E IN 40Ca O BTAIN ED 
BY SOLVING EQS (22) FOR D IFF E R E N T  VALU ES OF e . THE NON
L O C A L  P O T E N T IA L  IS THE H A R T R E E -F O C K  FIE L D  OF 40Ca O BTAIN ED 
F R O M  IN TE R A C TIO N  BI OF R e f. [2 8 ].

3. TH E T W O -B O D Y  E F F E C T IV E  IN TE RAC TIO N

3. 1. N o n -s in g u la r  tw o -b o d y  fo r c e s

S ev era l e ffe c t iv e  in te ra ctio n s  su itab le  fo r  pure H a r tr e e -F o c k  c a lc u 
la tion s a re  now a v a ila b le . T h ese  in te ra ctio n s  can  be c la s s if ie d  into two 
grou p s w hich  c o rre sp o n d  to  d ifferen t ap p roa ch es  to  the n u c le a r  p rob lem
[20] : i) In the f ir s t  ap proa ch  one sta tes that the sh o r t-ra n g e  rep u ls ion  
o f  the n u c le o n -n u cle o n  in te ra c tio n  is  not s tron g  enough to  in va lida te  the use 
o f  con ven tion a l p ertu rb ation  th e o ry . I f th is is  the ca se , then the c o m p li
ca tion s o f  B ru e ck n e r  th e o ry  can  be avoided  and the s im p le  H a r tr e e -F o c k  
p ic tu re  should  p ro v id e  a rea son a b le  f i r s t - o r d e r  d e s cr ip t io n  o f  som e  n u clear  
p ro p e r t ie s  (su ch  as n u c le a r  ra d ii and d e n s it ie s . . . ). F ro m  th is point o f  
v iew , the tw o -b o d y  in te ra ctio n  has to  sa tis fy  at lea st the fo llo w in g  r e q u ir e 
m en ts : 1) it m ust fit the tw o -b o d y  sca tte r in g  data; 2) n u c le a r -m a tte r  
sa tu ra tion  m ust be obta in ed  ap p rox im a te ly  in  f ir s t  o r d e r  with sm a ll s e co n d - 
o r d e r  c o r r e c t io n s .  O f c o u r s e , it is  fa r  fro m  obv iou s that th ere  e x is ts  a 
potentia l sa tis fy in g  at the sam e tim e req u irem en ts  1 and 2. T o  fit the 
phase sh ifts  and to  obta in  sa tu ration  in n u c lea r  m a tter, th is potentia l w ould 
ce rta in ly  have so m e  sh o r t -r a n g e  re p u ls io n . The req u irem en t fo r  se co n d -
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o r d e r  c o r r e c t io n s  to be sm a ll is  a se v e re  r e s tr ic t io n , and fo r  a long  tim e 
it has been  adm itted that tw o -b o d y  data and sa tu ra tion  p r o p e rt ie s  exclu de  
sm a ll s e c o n d -o r d e r  c o r r e c t io n s .  H ow ever, a f ir s t  in d ica tion  o f  the con tra ry  
has b een  g iven  in  1963 w ith  T ab ak in 's  potentia l [21] . T h is  p oten tia l g iv es  a 
rea so n a b le  fit to  the tw o -b o d y  sca tte r in g  data. In f ir s t  o r d e r  sa tu ra tion  is  
obtained  at k F = 1.6 fm -1 w ith E /A  = -8  M eV . In secon d  o r d e r , E /A  has a 
m inim um  o f  -1 4 .1  M eV  at k F = 1.8 fm -1. M o re  re ce n tly , B a ra n g e r  and 
c o -w o r k e r s  [22] have p ro p o se d  s e v e r a l in tera ction s  w hich  g ive  even  sm a lle r  
s e c o n d -o r d e r  c o r r e c t io n s , but in  th is c a se  the fit to  tw o -b o d y  sca tte r in g  
data is  on ly  ap p rox im a te . Though en cou ra g in g  th ese  re su lts  a re  not 
co m p le te ly  sa t is fa c to r y  (sa tu ra tion  w ith T ab ak in 's  potentia l is  obtained , fo r  
in sta n ce , at too  high a d en sity ). M o re o v e r , ow ing e sse n tia lly  to  the 
e x ten siv e  developm en t o f  tech n iqu es fo r  trea tin g  h a r d -c o r e  potentia ls 
[23, 2 4 ] ,  the p ro b le m  o f  the e x is te n ce  o f  a sm ooth  potentia l has b een  s o m e 
what n eg lected  in  re ce n t y e a r s  and is  s t i l l  open , ii)  The startin g  point o f 
the secon d  ap p roach  is  the o b se rv a t io n  that the average  n u c lea r  fie ld  can 
be obtained by som e  H a r tr e e -F o c k - l ik e  ca lcu la tio n s . T h is a v erag e  n u c lea r  
fie ld  m ight be the re su lt  o f  the su m m ation  o f  a g rea t num ber o f  d ia g ra m s, 
but one is  on ly  in te re ste d  in  p a ra m e tr iz in g  an " e f fe c t iv e "  in te ra c tio n  w hich  
w ould re p ro d u ce  in  f ir s t  o r d e r  the resu lt o f  m o re  e la b ora ted  ca lcu la tion s .
O f c o u rse , the p ro b le m  o f  know ing what d ia g ra m s con tribu te  to  the e ffe c t iv e  
in te ra ctio n  is  co m p le te ly  le ft out in  th is ap p roach . Im m ed ia te ly  th is fa ct 
in tro d u ce s  stron g  lim ita tio n s . In p a rt icu la r , the ca lcu la tion  o f  h ig h e r -o r d e r  
e ffe c ts  is  m ea n in g less  in  th is s c o p e . A lso  the re la tion sh ip  betw een  the 
" e f fe c t iv e "  in te ra ctio n  and the tw o -b o d y  sca tte r in g  data is  ra th er  o b s cu r e . 
Som e p re lim in a ry  w ork  has been  done by B ethe [25] in  o r d e r  to d e r iv e  the 
p a ra m e te rs  o f  the e ffe c t iv e  in tera ction  fro m  the r e a c t io n -m a tr ix  th eory .

We sh all m en tion  on ly  two in tera ction s  belon g in g  to  th is g rou p . The 
f ir s t  one is  that o f  Skyrm e [2 6 ], w hich  is  a d en sity -d ep en den t e ffe ct iv e  
in tera ction . It can  be w ritten  in the fo rm

v ( ? ) = ( t0 + t3 p ( R ) ) 6 ( r )  + ^ - ( v 26 (? )  + 6 ( ? )  V 2) '  + t 2V Ô ( î )V

w h ere  p (Й) den otes the lo c a l  den sity  at the point (1 /2 )  ( r a + r 2 ). T h is  in te r 
action  sa tu ra tes n u c lea r  m a tter  at k F = 1.37 fm  w ith  E /A  = - 16.8 M eV . It 
a lso  g iv e s  a good  fit to  the ex p erim en ta l binding e n e rg ie s  and ra d ii o f  
s e v e r a l s p h e r ica l n u cle i in  a v a r ia tio n a l ca lcu la tion  u sin g  h a rm o n ic - 
o s c i l la t o r  w ave fu n ction s.

O ther types o f  e ffe c t iv e  in te ra ctio n s  have b een  co n s id e re d , in  p a rt icu la r  
by V o lk o v  [27] and by B rin k  and B o e k e r  [28] . M ost o f  th ese  in te ra ctio n s  are  
lo c a l  and then w e ll adapted fo r  H a r tr e e -F o c k  ca lcu la tion s  in  c o -o rd in a te  
sp a ce , in  the fo llow in g  paragraph , we sh a ll d is cu ss  in  m o re  d eta il the 
in te ra c tio n  that has b een  u sed  in  m ost o f  ou r  ca lcu la tion s .

3 .2 .  The e ffe c t iv e  in te ra c tio n  BI o f  B rink  and B o e k e r  [28]

A m on g  oth er  ty p es , B rin k  and B o e k e r  studied, f o r  d iffe re n t va lu es o f  
the p a ra m e te rs , in te ra ctio n s  w hich  a re  su m s o f  tw o G au ssian  te rm s

- ( V \ ) 2 - (^ /"2 )г
v ( ri2) = A i ( :  ' т 1 + т 1Р м ) е + А2(1 _ т 2+ т 2 Рм )  e (24>
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one o f  w hich  is  a ttractive  and the o th er one re p u ls iv e . In teraction  B1 is  
defined  by the fo llow in g  set o f  p a ra m eters

jUj = 0. 7 fm A j = 389.5 M eV m = - 0. 529

(25)
(i = 1 . 4 f m  A 2 = -  14 0 .6  M eV m2 = 0 .4 864

T h ese  va lu es o f  the p a ra m e te rs  w ere  d eterm in ed  to  g ive  in  f ir s t  o r d e r  
n u c le a r -m a tte r  satu ration  at k F = 1 .4 5  fm ^ w it h  E /A  = - 1 5 .7 5  M eV and 
the binding en erg y  and den sity  o f  helium  4. B rin k  and B o e k e r  a lso  rem ark ed  
that in te ra ctio n  B1 g iv e s  rea son a b le  s in g le -p a r t ic le  e n e rg ie s  in  160 .  By 
fitting  n u c lea r  m a tter  and helium  4 one hopes that f i r s t - o r d e r  ca lcu la tion s  
w ill y ie ld  rea son a b le  re su lts  fo r  in term ed ia te  n u cle i. In the fo llow in g  we 
sh all see  that th is hope w ill  be pa rtly  fu lfille d .

L et us note that in tera ction  (24) is  a p a rt icu la r  ca se  o f  the fo llow in g  one

V = £  e ' ( “ /|Ji) [Wi + B ¡ P0 - H ¡PT - M ;P  Pr ] (26)
i-1

B rin k  and B oek er  w ere  in te re ste d  on ly  in  the p ro p e rt ie s  o f  N = Z  n u cle i. In 
th is c a s e , H a r tr e e -F o c k  ca lcu la tion s  in volve  on ly  lin ea r  com bin ation s S and 
G o f  the exchange p a ra m e te rs

S = 4 W + 2 B  - 2H - M = A (4 -5 m ) ^

G = W + 2B - 2H - 4M  = A  ( l -5 m )

F o r  in stan ce , the binding en erg y  o f helium  4, ca lcu la ted  from  h a rm o n ic - 
o s c i l la t o r  w ave fu nction s can be w ritten

2

E ( l s 4) = 2 .2 5  fiu) + 2 Y  (S j - G ¡) X?

i  — 1

w h ere  X¡ = ц^/^Ъ2 +ц2 , b denoting the o s c i l la t o r  p a ra m e te r  %/ft/ m u.
In the c a se  o f  n u c lea r  m a tter, the binding en erg y  p e r  p a rt ic le  is  g iven  by

Ж = —  -  k 2 + - î - i s ^  - G A  10 m k F + ^  t 13 12 G
1 ^  -X2 3 , 1 , f  t \

- ^  + ^  + T e r f <x >

w here x =/ukF and w h ere  w e have dropped  the index i .  The e r r o r  function  
is  g iven  by

Л

er f  (x) = (2/\Tjr) Jexp ( - t2) dt
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3 .3 .  E xten sion  o f  B I to  N f  Z  sy ste m s

F o r  N f  Z  n u cle i the ca lcu la tion  o f  the average  fie ld  in v o lv e s  a ll the 
exch an ge p a ra m e te rs  in  E q .(2 6 )  and the know ledge o f  S and G is  no lo n g e r  
su ffic ie n t to  d e term in e  the in te ra c tio n . But u sin g  the sam e guid ing id ea  as 
B rin k  and B o e k e r , it is  p o s s ib le  to  defin e an ex ten sion  o f  B I to  N f  Z  sy s te m s . 
I f  the e ffe c t iv e  in te ra ctio n  has to  re p ro d u ce  a p p rox im a te ly  the binding 
e n e rg y  and d en s it ies  o f  s p h e r ica l n u cle i, then it is  rea son a b le  to  re q u ire  
that it a lso  fits  the sy m m e tr y -e n e rg y  co e ffic ie n t  a,, in  n u c lea r  m a tter . T h is 
c o e ffic ie n t  is  defin ed  by

E /A  = - aQ + a 2a.T w h ere  а = (N  - Z ) /A

In the ca se  o f  the in te ra ctio n  (26) one has

i  Y  - x *  ix + — ) e —х /  x

- (2W - В) x 3 + (H + 2M ) x (exp  ( -x 2) - 1)

w h ere  x = д к р and w h ere  w e have dropp ed  the index  i .  The quantities S 
and G a re  defin ed  by E q .(2 7 ) .  S ince w e have fou r  p a ra m e te rs  at ou r 
d is p o sa l to  fit the "e x p e r im e n ta l"  va lu e o f  the sy m m e tr y -e n e rg y  co e ffic ie n t  
(28 - 32 M eV [2 9 ]), w e ch oose  a r b itr a r ily  B j = Hj = 0, B 2 = H2 . We keep> 
the W ig n er  and M ajoran a  te r m s  as they are  defined  by  E q .(2 5 ) ,  s in ce  it can 
be seen  that th is p ro ce d u re  le a v e s  the v a lu es  (27) o f  the S and G ' s un
changed. The value o f  the s y m m e tr y -e n e rg y  c o e ffic ie n t  a T is  g iven  fo r  
th ree  d iffe re n t in teraction s, in  T ab le  II. F o r c e  B la  c o r r e s p o n d s  to  the 
va lu es (25) o f  the p a ra m e te rs  and is  id en tica l to  B I .  The fo r c e  B Iß  g ives  
the b est resu lt  f o r  the sep a ra tion  en ergy  d iffe re n ce  Д = |eih i i / 2pH e li 12/Sn I 
in  a s e l f -c o n s is te n t  ca lcu la tio n  o f  208P b . F o r c e  B I 7 r e p ro d u c e s  the e x p e r i
m ental va lu e o f  aT and g iv e s  tbe b est agreem en t w ith  C ou lom b d isp la cem en t 
en erg y  in  208р ь  ( See b e low ).

T A B L E  II. V A L U E  OF TH E SY M M E T R Y  E N E R G Y .C O E F F IC IE N T  a r 
(IN M eV ) AS A FU N CTIO N  OF B 2 = H2 . THE SE PA R A TIO N  EN ERG Y 
D IF F E R E N C E  Д B E TW E E N  NEUTRONS AND PRO TO N S O BTAIN ED 
FR O M  A  SE L F -C O N SIST E N T  C A L C U L A TIO N  O F 208Pb IS GIVEN ON THE 
THIRD LIN E.

Force B la B Iß BI у exp.

; Bj = h , 0 8 .3 26.44

a
r

57.8 49.6 32 28-32

A 3.31 -0 .57 -5 .15 0.66



3 .4 .  The e ffe c t iv e  tw o -b o d y  s p in -o rb it  fo r c e

S ince the p re v io u s  in tera ction s  are  p u re ly  ce n tra l they cannot g ive  r is e  
to  any s p in -o r b it  sp littin g . A  w ay o f  obtain ing such a sp littin g  is  to  add to 
the ce n tra l fo r c e  a tw o -b o d y  sp in -o rb it  fo r c e

V  -  VLS(|ri - r2 I ) L  • S (28)

w h ere

L  = r X  p /f t ,  S = I  ( ? i  + a2 )

The con trib u tion  o f  in te ra ctio n  (28) to  the H a r tr e e -F o ck  fie ld  is  a sum  o f 
th ree  t e r m s . The f ir s t  one is  a usu al s p in -o r b it  p oten tia l s w hose
fo rm  fa c to r  is  g iven  by

w  ( ï j )  = f  P (r2) VLS( - ?2|) ( l  - )  d?2 (29)

In addition  to  e x p re s s io n  (29) one gets  tw o oth er  te r m s . T h ese  te r m s  are 
g e n e ra lly  sm a ll and van ish  id e n tica lly  fo r  sp in -sa tu ra ted  sh e lls  ( i . e .  i f  
both  j = I  + 1 / 2  and j = 1 - 1 /2  a re  fi l le d ) . T h ey  w ill  be om itted  in  the 
fo llo w in g  d is cu s s io n . L et us now su ppose that the range o f  the tw o -b od y  
s p in -o r b it  fo r c e  is  sm a ll as com p a red  to  the n u clea r  s iz e  so  that p ( r 2) can 
be re p la ce d  by

P (?2) = P (? j)  - ( ? !  - r2) ■ V p (r 2)

in  the evalu ation  o f  in te g ra l (29 ). Then  one obtains the fo llow in g  resu lt  (due 
to  B lin -S to y le  [30, 3 1 ])  fo r  the con tribu tion  o f  the tw o -b o d y  sp in -o r b it  fo r c e  
to  the a v era g e  n u c le a r  fie ld :

^ ( r ) = 7 ^ b s  (30)

w h ere  the constant С is  g iven  by

+ oo

C = - y J  VL s ( ? ) ? 4 d ? (31)
0

7 7  8  VAUTHERIN

A  rough  w ay o f  evaluating  th is constant fro m  the tw o -b o d y  sca tte r in g  data is  
to  assu m e that B o r n 's  ap prox im a tion  is  v a lid . In th is ca se  the phase shift
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obtained from  VLS a lone, can  be re la ted  to  the 3P_ phase sh ifts by the 
fo rm u la  [32 ]

T ak ing  the ex p erim en ta l 3P  phase sh ifts , E q .(3 3 ) y ie ld s  an "e x p e r im e n ta l"  
value o f  6 LS. Next a ssu m in g  fo r  VLS(r ) a G au ssian  shape one can determ in e  
the tw o p a ra m e te rs  V0 and ц by  req u ir in g  that E q .(3 2 ) should g ive  the best 
a greem en t w ith the "e x p e r im e n ta l"  value o f  6LS. F ro m  th is p ro ce d u re  one 
gets

The L -S  fo r c e  is  g e n e ra lly  assu m ed  to be a t r ip le t -o d d  in tera ction . In th is 
ca se  the value o f  С com pu ted  fro m  equation  (31) has to  be m u ltip lied  by a 
fa c to r  o f  3 /4  w hich  g ives

T h is value is  som ew hat too  sm a ll to  exp la in  the sp littin g  o f  the lp - l e v e ls  in 
160  s a t is fa c to r ily .  F u rth e rm o re , the d isa g reem en t is  s t il l  in cr e a s e d  when 
the exact fo rm u la  (29) is  used . Indeed, a s e l f -c o n s is te n t  ca lcu la tion  o f 
16О by u sin g  in tera ction  B I and the tw o -b od y  sp in -o r b it  fo r c e  (34) y ie ld s  a 
s p in -o r b it  sp littin g  w hich  is  on ly  h a lf o f  the o b s e rv e d  value (6 .15 M eV ). O f 
c o u r s e , the v a lu es (34) o f  the p a ra m e te rs  have been  obtained  by using 
B o r n 's  ap p rox im a tion , w hich  is  not v e ry  g ood . H ow ever, m o re  e la bora ted  
ca lcu la tion s  by W ong [33] show that the s in g le -p a r t ic le  s p in -o r b it  sp littin gs 
obta in ed  fro m  the L S -fo r c e  alone are  too  sm a ll and that s e c o n d -o r d e r  
d ia gra m s in vo lv in g  the te n so r  fo r c e  a re  p rob a b ly  n e ce s s a r y  to  obtain  a good 
agreem en t w ith ex p erim en ta l v a lu es . F o r  th is rea son , w e have co n s id e re d  
С in  E q .(3 0 )  ra th er  as a p a ra m e te r . Its value has b een  fitted  to the e x p e r i
m en ta l sp littin g  o f  the lp - l e v e ls  in  a s e l f -c o n s is te n t  ca lcu la tion  o f  10O.
The re su lt  is  С = 176 M eV  X fm 5, w hich  has to be com p a red  w ith the value
(35 ). A lthough ap prox im a tion  (30) is  c e rta in ly  le s s  a ccu ra te  fo r  nuclei 
h aving sp in -u n satu ra ted  sh e lls  we have used  the sam e value o f  the constant С 
f o r  heavy n u cle i.

4 . RE SU LTS

4 .1 .  N u clear  ra d ii, d e n s it ie s , e le c tr o n  sca tter in g

The neutron, p roton , m a tter  and ch a rge  ra d ii obtained from  in tera ction
Blj3 a re  show n in  T ab le  III fo r  s e v e r a l s p h e r ica l n u cle i. The r o o t -m e a n -
sq u a re  rad iu s rc o f  the ch a rg e  d istr ibu tion  is  re la ted  to rp by

(33)

v 0 -  - 202 M eV ц = 0 .8  fm (34)

c  = - I  7r3/V  v 0 = 2. 085 ц 4  = 140 M eV X fm 5 (35)

2 2 2Г = Г + Г 
c  p proton

2
proton

Г 0. 64 fm 2



T A B L E  ИГ. E /A  IS THE T O T A L  BINDING EN ERG Y  P E R  P A R T IC L E  (IN M eV ); r M , rp , rn AND rc A R E , 
R E S P E C T IV E L Y , THE MASS, PRO TO N , NEUTRON AND CHARGE R O O T -M E A N -S Q U A R E  RADII (IN fm ). 
RE SU LTS OF O TH ER H A R T R E E -F O C K  CA LCU LA TIO N S AND E X P E R IM E N T A L  VA LU ES O F THE 
R O O T -M E A N -S Q U A R E  CHARGE RADIUS AR E SHOWN IN COLUM NS 6, 7 AND 8..

E/A
rM

r
P

r - 
n

r
с

rc [4!]
rc [11]

rc (exp)

I60 -6 .05 . 2.66 2.67 2 .65 2 .77 2 .39 2.67 2.73

40Ca -6 .43 3.40 . 3 .43 3 .38 3 .52 2 .89 3.30 3.50

48Ga ■ -6 .10 3 .65 3.51 3 .76  - 3.60 2 .79 3.34 3 .49

90 Zr -6 .28 4.31 4 .25 4 .37 4 .32 4 .03 4 .30

208pb -5 .52 5.61 5.44 5.72 5.50 5.14 5.52

780 
V

A
U

T
H

E
R

IN
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T ab le  III a lso  g iv e s  so m e  re su lts  o f  o th er  H a r tr e e -F o c k  ca lcu la tion s  and 
ex p erim en ta l v a lu es  o f  r  . The o v e r a ll  agreem en t is  v e r y  g ood . L et us 
f ir s t  note that th is ag reem en t has b een  obtained w ith  a lo c a l  and d en sity - 
independent e ffe c t iv e  in te ra ctio n . In fa ct, th is agreem en t is  m o re  s a t is 
fa c to r y  than that obtained w ith  m o re  r e a lis t ic  in te ra ctio n s  [1, 11]- fitted  on 
tw o -b o d y  data. B eca u se  BI is  an e ffe c t iv e  in tera ction , ou r  re su lts  cannot 
be co n s id e re d , h ow ev er , as a triu m ph  o f  the H a r tr e e -F o c k  ap prox im a tion . 
T h ey  ra th er  in d icate  that B I is  a quite rea son a b le  p a ra m e tr iza tio n  o f  the 
e ffe c t iv e  in te ra c tio n . L et us a lso  s t r e s s  that such  a good  agreem en t fo r  
the ra d ii is  not an obv iou s  con sequ en ce  o f the fa ct that n u c lea r  m a tter  and 
4He have b een  fitted .

W hen the sy m m e try  en erg y  c o e ffic ie n t  a T is  v a r ie d  the change in  the 
ra d ii is  n eg lig ib le  fo r  160  and 40Ca, and sm a ll f o r  o th er  n u c le i. H ow ever, 
im portan t v a r ia tio n s  o c c u r  in  the s in g le -p a r t ic le  sp e c tra  o f  N f  Z  n u cle i 
(s e e  T a b le s  IV and V II).

T he to ta l d e n s it ie s  o f  160  and 40Ca are  show n in  F ig . 2. The sh apes o f  
th ese  d en s it ies  d if fe r  la rg e ly  fro m  F e r m i d is tr ib u tio n s . The den sity  at the 
cen tre  o f  4DCa is  a lm ost th ree  tim e s  the den sity  at the cen tre  o f  160 .  T h is 
d if fe r e n c e  is  a f ir s t  illu s tra t io n  o f  the im p orta n ce  o f  sh e ll e f fe c t s .  F ig u re  3 
show s the to ta l and p ro to n  d e n s it ie s  o f  40Ca and 48Ca. S ince p ro ton  le v e ls  
a re  d ee p e r  in  48Ca than in  40Ca, the p ro ton  den sity  has le s s  ta il in  48Ca.
T h is  e ffe c t , h ow ev er, is  not su ffic ien t to  obta in  the d e c r e a s e  o f  the m ean- 
s q u a re -c h a r g e  rad iu s o b s e rv e d  fro m  40Ca to 4SCa. The re la t iv e  v a r ia tion  
Д г с / г с = [ r c (48) - r c (40 )] / r c (40) is  found to  be o f  the o r d e r  o f  +2.5%  
w h e re a s  the ex p erim en ta l value is  -0 .3 % . In 90Z r ,  w h ose  neutron  and p ro ton  
d e n s it ie s  have b een  p lotted  in  F ig . 4, one s t il l  obtains ra th er  la rg e  o s c i l 
la tion s, but a n u c lea r  su r fa ce  can  n e v e rth e le ss  be defin ed  ap p rox im a te ly  in 
th is c a s e . F ig u re  5 show s the p roton , neutron  and tota l d e n s it ie s  o f  208P b. 
F o r  th is  nucleu s th ere  is  no m o re  am bigu ity , and one can  d istin gu ish  a 
n u c le a r  su r fa ce  beginning  at around 6 fe r m i. H ow ever, the p ro ton  den sity  
is  n ev er  r e a lly  flat and d e c r e a s e s  continu ou sly  from  the cen tre  tow ard s the 
s u r fa ce .

T A B L E  IV . R O O T -M E A N -S Q U A R E  RADII (IN fm ) AND BINDING 
EN ERGIES PE R  N UCLEON O BTAIN ED  IN 208Pb FR O M  IN TERACTION S 
B i o ,  B Iß  AND Bl-y

Bla BIß Bly

E/A -5 .40 -5 .5 2 -5 .71

ГР
5.43 5.44 5.48

rn
5.75 5.72 5.68

гм
5.62 5.61 5.59

г
с

5.49 5.50 5.54
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T A B L E  V . S IN G L E -P A R T IC L E  EN ERGIES (IN M eV ) OF NEUTRON 
L E V E L S FO R SE V E R A L  LO W - AND M ED IU M -M ASS N U CLEI. ROUGH 
E X P E R IM E N T A L  VALUES A R E INDICATED IN PAREN TH ESES. THE 
T W O -B O D Y  IN TE R A C TIO N  IS BIß

Nucleus ig0 40Ca 48Ca 90Zr

Is 1/2 -48.32 -68.04 -66.68 -80.98

lp  3/2 -23.52 (-21.8) -44.89 -45.72 -61.62

lp  1/2 -17.35 (-15 .7 ) -41.35 -43.93 -59.96

Id  5/2 - 2 .35 (-  4.1) -23.78 (-22.8) -25.94 (-16 .6 ) -43.30

2s 1/2 - 0 .18 (-  3.3) -19.30 (-18 .1 ) -22.63 (-13 .6 ) -40.89

Id  3/2 + 2.83 (+ 0.93) -17.88 (-15.6) -22.36 (-13 .6 ) -40.58

I f  7/2 - 5.17 (- .8 .3 ) - 7.90 (-10) -25.96

2p 3/2 - 0.77 ( -  6.2) -21 .58

I f  5/2 + 1.7 ( -  2.8) -21 .69

2p 1/2 + 0.21 (- 4 .3) -19 .14 '

lg  9/2 + 8.3 - 9.94

T A B L E  VI. S IN G L E -P A R T IC L E  EN ERGIES (IN MeV> OF PRO TO N  
L E V E L S

Nucleus i6Q 40Ca 48Ca 90Zr

Is 1/2 -44.11 (-44) -59.43 (-77) -61.33 -68.96

lp  3/2 -19 .64  (-19) -36.88 -41.42 -51.00

(-32)

lp  1/5 -13.53  (-12 .4) -33.34 -39.05 -49.04

Id  5/2 -16.31 (-14 .5 ) -22.20 (-19 .4 ) -33.68

2s 1/2 -11.67 (-10 .5) -16.86  (-15 .3) -30.17

Id  3/2 -10.46 (-  8.3) -17 .74  (-15 .6 ) . -30.33

I f  7/2 -17.00

2p 3/2 -10.97

I f  5/2 -11.94

2p 1/2 - 8.45
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T A B L E  VII. P R O TO N  AND NEUTRON S IN G L E -P A R T IC L E  EN ERGIES 
(IN M eV ) O BTAIN ED  FR O M  IN TERACTIO N S B la , Bl/3, AND B I7 . 
O CCU PIED  AND UNOCCUPIED ST A TE S A R E S E P A R A T E D  B Y  A 
H O R IZO N T A L LINE (FO R  208Pb)

Force B la B Iß B ly

Protons Neutrons Protons Neutrons Protons Neu trons

Is 1/2 -74.13 -86.83 -72.30 -88.31 -68.83 -91.93

lp  3/2 -61.00 -72 .58 -59.20 -74.35 -56.00 -77.68

lp  1/2 -60.14 -71.68 -58.38 -73.48 -55.26 -76 .89

Id  5/2 -47.78 -58.81' -46.01 -60.48 -43.00 -63.52

2s 1/2 -45.52 -56.78 -43.84 -58.51 -40.80 -61.70

Id  3/2 -46.36 -57.31 -44.71 -59.09 -41.87 -62.32

I f  7/2 -34.47 -45.07 -32.75 -46 .65 -29.87 -49.43

2p 3/2 -30.54 -41.50 -28.92 -43.22 -25.96 -46.23

I f  5/2 -32.26 -42.80 -30.73 -44.57 -28.14 -47 .65

2p 1/2 -29.29 -40.30 -27.74 -42.07 -24.86 -45.18

lg  9/2 -21.21 -31.49 -19.55 -32.99 -16.81 -35.52

2d b/2 -15.44 -26.22 -13.92 -27.88 -11.16 -30.66

lg  7/2 -17.88 -28.14 -16.47 -29.91 -14 .09 -32.64

3s 1/2 -12.23 -23.26 -10.79 -24.93 - 8.09 -27.74

2d Z/2 -13.13 -23.97 -11.68 -25.70 - 9.04 -28.61

1Ы1/2 - 8 .25 -18.30 - 6 .68 -19.73 - 4 .11 -22.02

2 f 7/2 - 1.00 -11.69 >0 -13.19 > 0 -15.62

lh  9/2 - 3 .53 -13.62 - 2.24 -15.34 > 0 -18.07

3p 3Æ - 8.03 - 9.40 -11.71

2 f 5/2 - 8.64 -10.17 -12.67

3p 1/2 - 6.91 - 8.29 -10.53

1Í13/2 - 5.94 - 7 .25 - 9.26

2g 9/S > 0 - 0.86 - 3.37

l i l l / 2 > 0 - 1.56 - 4 .93

The d en s it ies  that one w ould get from  a S axon -W oods p oten tia l are  
s im ila r  to  ou r  d e n sit ie s  ex cep t that they are  sm o o th e r . F o r  in stan ce , the 
den sity  o f  208Pb obtained  from  a S axon -W ood s potentia l a lso  has a m axim um  
at the o r ig in  but th is m axim um  is  m uch le s s  pron ou n ced  [3 4 ].

It has been  su ggested  that the sh apes o f  H a r tr e e -F o c k  d e n s it ie s  are  
too  s in g u la r  to  g ive  a good  fit to  the e le c tr o n  sca tte r in g  data [35] . H ow ever, 
a ca lcu la tio n  o f  the e la s t ic -e le c t r o n -s c a t t e r in g  c r o s s - s e c t i o n  at 250 M eV  by 
40Ca has been  m ade in  c o lla b o ra tio n  w ith J . B . B e llic a r d , u sin g  the p ro ton  
d en sity  p lotted  in  F ig . 3. T h e re su lt  is  re p re se n te d  by the so lid  lin e in 
F ig . 6 . The dotted cu rve  co r r e s p o n d s  to the b est fit obtained fro m  a
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F e r m i d is tr ib u tion  (in  fa ct, m o s t  o f  the ex p erim en ta l poin ts lie  on  th is 
cu rv e ). It can be seen  that the agreem en t is  quite fa ir  up to 0 = 90° (w hich  
co r r e s p o n d s  to a m om entum  tr a n s fe r  o f  tw o in v e rse  fe r m is  a p p rox im a te ly ).

4 .2 .  S in g le -p a rtic le  e n e rg ie s

S in g le -p a rt ic le  e n e rg ie s  and binding e n e rg ie s  p e r  n ucleon  are  g iven  fo r  
s e v e r a l light and in term ed ia te  nuclei in  T a b les  III, V and V I. T h ese  re su lts  
w e re  obtained  from  in te ra ctio n  B Iß . A s m entioned  b e fo r e , the tw o -b od y  
L S -fo r c e  has been  assu m ed  to  generate  a su r fa ce -g ra d ie n t sp in -o rb it  
p oten tia l in  the H a r tr e e -F o c k  fie ld , and its  m agnitude has been  fitted  in 
o r d e r  to  re p ro d u ce  the sp littin g  o f the lp - l e v e ls  in  160 .  W hen availab le  
u n occu p ied  sta tes o f  the H a r tr e e -F o ck  potentia l (bound and unbound) have 
been  g iven . The ca lcu la tion  o í  sca tter in g  sta tes o f  the H a r tr e e -F o c k  fie ld  
w ill be d e s c r ib e d  in  s e c t io n  5.

F IG .2. M atter distributions obtained for 160  and 4-°Ca from  in te rac tion  BIS.

FIG .3 . Proton and mass distributions o f 40Ca and 48C a . The two-body in te rac tion  is BIS.
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F IG .4. Proton and neutron distributions obtained for 90Zr from in te rac tion  BIß.

FIG. 5. Neutron, proton and mass densities o f 208P b . Interaction is Blot.
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0°

FIG . 6. E lastic-e le ctron-sca tte ring  cross-section at 250 M eV  from  40C a . The so lid  lin e  is obtained from  the 

proton H artree-Fock density o f 4(fea corresponding to in te rac tion  Blot. The dotted curve is the best f it  to the 

experim enta l cross-section g iven by a 3-param eter Ferm i m ode l.

T he s in g le -p a r t ic le  e n e rg ie s  o f  160  and 40Ca a re  sa t is fa c to r y , in cluding  
the ld -s p lit t in g  in ca lc iu m . The m ain  d is cre p a n cy  is  that the gap betw een  
o c cu p ie d  and u n occu p ied  states is  too  la rg e . In p a rt icu la r , the 2p 1 /2  and 
I f  5 /2  neutron  le v e ls .o f  40Ca are  w eak ly  unbound in con tra st to  what the 
e x p e rim e n ta l data su g gest. In 48Ca the en erg y  d iffe r e n c e  betw een  the 
I f  7 /2  and Id  3 /2  neutron  le v e ls  (1 4 .5  M eV) d is a g re e s  w ith the o b s e rv e d  
value (3 .6  M eV ).

T he p ro ton  and neutron  s in g le -p a r t ic le  e n e rg ie s  o f  the bound states o f  
208рь (o ccu p ie d  and u n occu p ied ) are  g iven  in  T ab le  VII f o r  the th ree  d ifferen t 
v e r s io n s  o f  in te ra c tio n  B1 m entioned  e a r l ie r .  U nfortunately , the co m p a 
r is o n  w ith ex p erim en t is  on ly  p o s s ib le  ju st below  o r  ju st above the F e r m i 
s u r fa ce , w h ile  the deep est state is  around -9 0  M eV . In any ca se  th is 
c o m p a r is o n  re v e a ls  tw o m a jo r  d is c r e p a n c ie s . T he f ir s t  one is  that the 
neutron  li 1 3 /2  and the p ro ton  lh  11/2 le v e ls  are  too  h igh . The o th er one is  
that the le v e l d en sity  is  too  sm a ll. T h ese  d is c r e p a n c ie s  a re  com m on  to a ll 
s e l f -c o n s is te n t  ca lcu la tion s  [11] in clud ing  B r u e c k n e r -H a r tr e e -F o c k  c a lc u 
la tion s [7, 3 6 ] .  A s a con seq u en ce  o f  th is d is cre p a n cy  one gets to o  sm a ll a 
num ber o f  bound u n occu p ied  sta te s . T h ese  d is c r e p a n c ie s  m ight com e  e ith er  
fr o m  the in te ra ctio n s  that have b een  u sed  up to  date (w hich , h ow ev er, are 
quite d iffe re n t), o r ,  m o re  lik e ly , fr o m  h ig h e r -o r d e r  e ffe c ts  such  as a 
cou p lin g  w ith  c o lle c t iv e  m o d e s . On the o th er  hand, ex p erim en ta l s in g le 
p a r t ic le  e n e rg ie s  in  20SP b have b een  fitted  quite w e ll u sin g  S axon -W oods
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p oten tia ls . L et us note, h o w ev er , that these p h en om en o log ica l S axon -W oods 
w e ll a re  c le a r ly  v e ry  fa r  from  s e l f -c o n s is te n c y  (p re su m a b ly  fo r  any r e a so n 
able tw o -b o d y  in te ra ctio n ).

The sp in -o r b it  sp litt in gs obtained in  208Pb have the c o r r e c t  o r d e r  o f  
m agnitude. H ow ever, one m ust keep in  m ind that the s u r fa ce -g ra d ie n t  
fo rm u la  fo r  the o n e -b o d y  sp in -o r b it  potentia l is  on ly  an ap prox im ate  w ay o f 
in clud ing  a tw o -b o d y  s p in -o r b it  fo r c e  in  H a r tr e e -F o ck  ca lcu la tion s  o f  heavy 
n u cle i. In fact, th ere  a re  two sp in -u n saturated  sh e lls  in  20^Pb, i . e .
( l i  1 3 /2 -n e u tro n  and lh  11 /2  p ro ton ). In th is ca se , the two te rm s  that have 
b een  om itted  in  d eriv in g  B lin -S to y le 's  fo rm u la  (30) are  no m o re  n e g lig ib le . 
N otice  that the shape o f  ou r  d en sity  d oes  not lim it the con trib u tion  o f  the 
T h om as s p in -o r b it  te rm  to the su r fa ce  re g io n . N otice  a lso  that in cre a s in g  
the va lu e o f  the constant С w ould d e c re a s e , at lea st p a rtia lly , the d is c r e 
pancy  co n ce rn in g  the n e u tr o n -li  13 /2  and p ro ton  lh  l l / 2 - l e v e l s .

A lthough in te ra ctio n  BI f its , in  lowes't o r d e r , the binding e n e rg ie s  o f  
4He and n u clea r  m a tter, the re su lts  w hich  w e obtain  fo r  the binding e n e rg ie s  
p e r  n u cleon  are  in  le s s  s a t is fa c to ry  agreem en t w ith ex p erim en t than n u clear  
ra d ii. In 160 ,  f o r  in stan ce , w e get on ly  6 M eV p e r  n u cleon  w h erea s  the 
ex p e rim e n ta l value is  8 M eV . H ow ever, it is  c le a r  that, ow ing to  the 
re la tion ,

a H a r tr e e -F o c k  ca lcu la tion  o f  160  cannot fit at the sam e tim e  the e x p e r i 
m ental v a lu es  o f  the ra d iu s , o f  the to ta l binding en erg y  and o f the s in g le 
p a r t ic le  e n e r g ie s 1. S ince ou r  ca lcu la tion  g ives  a good  fit to  ex p erim en ta l 
va lu es o f  the rad iu s and s in g le -p a r t ic le  e n e rg ie s , the tota l binding en ergy  
cannot be in  such  a good  agreem en t w ith  ex p erim en t.

4 .3 .  L o c a l  equ ivalent p oten tia ls

An exam p le  o f  a lo c a l  equivalent potentia l has a lrea d y  been  g iven  in 
s e c t io n  1 (F ig . 1). O ther ex am p les  are  show n on F ig . 7 w h ere  we have 
p lotted  the lo c a l  equivalent p oten tia ls  o f  the s i /2  p ro ton  le v e ls  in  208Pb.

"These p oten tia ls  have b een  lin e a rly  in terpola ted  in  the neigh bou rhood  o f  th e ir  
p o le s . T h ey  are  in  fa ct the p oten tia ls  V (e ,  r) o f  s e c t io n  II c o rre sp o n d in g  
to  e = 0.75 fe r m i. By com p a rin g  the depths o f  th ese  poten tia ls  one im 
m ed ia te ly  re m a rk s  the im p orta n ce  o f  the n o n -lo ca lity  o f  the H a r tr e e -F o ck  
fie ld . W e have a lso  in d icated  by dotted lin es on this fig u re  the p o s itio n  o f  the 
co rre sp o n d in g  s in g le -p a r t ic le  e n e rg ie s . T he in te r s e c t io n  o f  such  a line 
w ith the co rre sp o n d in g  p oten tia l g ives  a rough  estim a te  o f  the rad iu s o f  the 
w ave fu nction . It can  be seen  that the ra tio  o f  the ra d ii o f  the I s  and 2s 
le v e ls  is  m uch sm a lle r  than it w ould be in  a S axon -W oods p oten tia l. L et us 
a lso  note that th ere  e x is ts  a g rea t s im ila r ity  betw een  the shapes o f  the 
den sity  and o f  the p o ten tia ls . F o r  la rg e  r , w e have a lrea d y  m en tioned  in

1 In B 0 , h a rm on ic-o sc illa to r wave functions approxim ate .quite accu ra te ly  the Hartree-Fock wave 

functions so that "expe rim en ta l" values o f the s ing le -pa rtic le  k in e t ic  energies t¡ can  be extracted from  the 

experim enta l radius. When these values, together w ith  the experim enta l s ing le -pa rtic le  energies, are 

inserted in to  Eq.(36), one gets for the to ta l b ind ing energy Ea va lue  wh ich  disagrees w ith  experim ent.

A

(36)
i  — 1
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F IG .7. Loca l equivalent potentia ls of the sl/2  proton leve ls of 20BP b . The in te rac tion  is B1 a.

s e c tio n  1 that the n u c lea r  part o f  the H a r tr e e -F o ck  potentia l is  e x a c t ly  
p ro p o rt io n a l to the den sity . Inside the n u clear  su r fa ce  the d ir e c t  te rm  o f 
the H a r tr e e -F o ck  fie ld  is  ex actly  g iven  by the convolu tion  prod u ct o f  the 
den sity  by the fo rm  fa c to r  o f  the tw o -b od y  in tera ction . F o r  the exchange 
te rm , th is p ro p o rtio n a lity  re la tion  is  on ly  approx im ate (it  w ould be exact 
fo r  a z e r o -r a n g e  fo r c e ) .

4 .4 .  O verlap s w ith o s c i l la t o r  w ave functions

It is  w e ll-k n ow n  that fo r  light n u cle i, h a r m o n ic -o s c i l la to r  w ave functions 
ap prox im ate  a ccu ra te ly  H a r tr e e -F o ck  w ave functions [ l ] . In T ab le  VIII we 
g ive  the expan sion s o f  s e v e r a l neutron  w ave functions obtained in 208Pb with 
in te ra c tio n  B io ,  fo r  tw o d ifferen t va lu es o f  the o s c i l la t o r  p a ra m e te r  b. The 
valu e b = 2 .7 fe r m is  g ives  a m axim um  o v e rla p  o f the I s  1 /2  w ave function  
with o s c i l la t o r  w ave fu nction s w h ereas  the value b = 2.4 fe r m is  g ives  a 
m axim um  o v e rla p  fo r  the l i  13 /2  neutron  w ave function . S ince o u r  rad iu s is  
a little  la rg e r , th ese  two num bers d iffe r  s ligh tly  fro m  th ose  o f  T arbutton  
and D av ies (2 .6  and 2.28 fm , r e sp e c tiv e ly ) but the g en era l trend  is  the sa m e. 
In p a rt icu la r , one needs la r g e r  b va lu es fo r  lo w -ly in g  states in  sp ite o f  the 
sm a ll value o f the rad iu s o f  the I s  1 /2  w ave function . A s expected , the 
r e su lts  o f  T ab le  VII show that it is  m o re  d ifficu lt to  r e p ro d u ce  le v e ls  at the 
bottom  o f the w e ll by o s c i l la t o r  w ave fu n ction s. Although th ese  o v e r la p s  are  
s t ill  ra th er  la rg e  they are  not as good as fo r  light n u cle i. F o r  in stan ce,
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T A B L E  VIII. O V E R L A P S OF SOME O R B ITA LS W ITH O SC ILLA TO R  
W AV E FUNCTIONS FO R TW O VALU ES OF THE O SCILLATO R 
P A R A M E T E R  b . IN TE R A C TIO N  IS B la

n = 1 n = 2 n - 3 n = 4 n = 5

Is 1/2 0.9854 -0.1690 0.0045 0.0162 -0.0027

b = 2 .4
2s 1/2 0.1722 0.9683 -0 .1635 -0.0642 0.0287

3s 1/2 0.0250 0.1484 0.9844 -0.0517 -0 .0725

l i l 3/2 0.9974 -0.0388 -0.0320 -0.0383 -0.0072

Is 1/2 0.9995 -0.0176 -0.0226 0.0067 0.0010

b = 2.7
2s 1/2 0.0297 0.9893 0.1257 0.0638 -0.0151

3s 1/2 0.0230 -0.1084 0.9314 0.3429 0.0419

1113/2 0.9531 0.2855 0.0454 -0.0650 -0 .0589

one can find o ff-d ia g o n a l e lem en ts  o f  the o r d e r  o f  40 p e r  cent. A s a lrea dy  
n oticed  by T arbu tton  and D av ies it se e m s  d ifficu lt  to  re p ro d u ce  a ll the w ave 
fu nction s w ith on ly  one value o f  the o s c i l la t o r  p a ra m e te r .

4 .5 .  C ou lom b -d isp la cem en t e n e rg ie s

L et us r e c a l l  that the is o b a r ic  analogue state is  obtained by applying 
the is o s p in  lo w e rin g  o p e ra to r  T_ to  the ground state ф o f  a g iven  n u cleu s. 
S ince n u c le a r  fo r c e s  com m u te w ith  T  the en erg y  d iffe re n ce  betw een  the 
analogue state and its paren t is  ju st g iven  by the C ou lom b-d isp la cem en t 
en ergy

(*|T +Vc T_|*)

^  ' (*|v‘

w h ere  Vc den otes the C ou lom b in tera ction . I f neutron  and p ro ton  w ave 
fu n ction s are  assu m ed  to be id en tica l one obtains the fo llow in g  e x p re s s io n  
fo r  Д E„ :

ДЕ„ 4ж
N - Z V  ( r) r  dr (37)

w h ere  V (r ) is  the C ou lom b potentia l due to the p ro ton  d is tr ibu tion

V (r )  = /  p ( f  ) d r '
J P r - r '
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T A B L E  IX . D IR E C T COULOM B D ISPLA C E M E N T ENERGIES ДЕС(Ш  
M eV ). THE CONTRIBUTION OF EACH  (NEUTRON) O R B IT A L  IS GIVEN 
S E P A R A T E L Y . LAST COLUM N CORRESPONDS T O  UNOCCUPIED 
P R O T O N  O RBITA LS

Force B la B Iß B ly
B la

(protons)

2 f 7/2 19.18 19.22 19.38 19.18

lh  9/2 18.80 18.82 18.88 18.73

3p 3/2 18.87 18.98 19.34 -

2 f 5/2 18.88 18.96 19.20 -

3p 1/2 18.55 18.70 19.13 -

1i l 3/2 17.72 17.75 17.85 -

Л Е с 18.53 18.58 18.74 -

A ctu a lly  E q .(3 7 )  c o rre sp o n d s  on ly to  the d ir e c t  te rm . W e have checked 
that the exchange te rm  is  ap p rox im a te ly  -3%  o f the d ire c t  te rm .

T a b le  IX  g iv e s  fo r  208pt> the v a r ia tion s  o f  the ind iv idu al C ou lom b- 
d isp la cem en t e n e rg ie s

+ eo

ЛЕс t1) = f  V (r) и̂ Г) dr
о

as a fu nction  as the neutron  o rb ita ls  i w hich  contribute to  the d iffe re n ce  
p n -  Pp in in te g ra l (37 ). The re su lts  o f  co lu m n  4 co rre sp o n d  to bound un
o c cu p ie d  p ro ton  o r b ita ls .  The d iffe re n ce  w ith the re su lts  o f  co lum n  1 is  
ra th er  sm a ll and ju s t if ie s  the ap prox im a tion  m ade above con cern in g  the 
iden tity  o f  neutron  and p ro ton  w ave fu n ction s. The resu lt  w e obta in  fo r  
the to ta l C o u lo m b -d isp la ce m e n t en ergy  Д ЕС is  som ew hat sm a lle r  than the 
ex p erim en ta l value 18.87 ± 0 .0 2  M eV [37] (one should, fu rth e rm o re , su b 
tra c t  the exch an ge te r m ). W hen one g oes  from  in te ra ctio n  a to  7 a g r e e 
m ent w ith the ex p erim en ta l value im p ro v e s . A tth e  sam e tim e , the d iffe re n ce  
rn -  rp betw een  the neutron  and p ro ton  r . m . s .  ra d ii d e c r e a s e s  fro m  0 .3 2  to
0 .2  0 fm . The p resen t ca lcu la tion  g iv e s  fo r  the d iffe re n ce  r n- rp a sm a lle r  
value than the s h e ll -m o d e l and op tica l an a lysis  [34, 3 8 ] . On the o th er  hand, 
N olen , S ch iffe r  and W illia m s  have rem a rk ed  that a value o f  rn ca n b e  deduced 
w ith a good  r e lia b ility  fro m  the ex p erim en ta l know ledge o f  r c and Д Е С [3 9 ]. 
T h ey  f ir s t  found r n - rp = 0. 07 ± 0. 03 fm  [39] and in  a v e r y  re ce n t an alysis 
rn - r p = 0 .1 6  fm  [4 0 ]. W e b e lie v e  that ou r  re su lts  favou r a lso  a sm a ll 
rn - r p d iffe r e n c e  in  agreem en t w ith the an a lysis  o f  R e f. [39] .
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5. A P P L IC A T IO N S TO  SC ATTE RIN G  PRO BLE M S

5. 1. P oten tia l sca tte r in g  by the H a r tr e e -F o ck  fie ld  [42]

The so lu tion  o f  the in te g ro -d if fe re n t ia l system  (14, 15) d ir e c t ly  y ie ld s  
the angular com pon ents Г5(г , r 1) o f  the average  n u clea r  f ie ld . F ro m  these 
com pon ents one can com pute the bound u noccu p ied  states and the sca tter in g  
sta tes o f  the H a r tr e e -F o c k  fie ld . In the ca se  o f  neutron  sca tte r in g , the 
phase sh ifts  6{;j are  obtained by so lv in g , fo r  each  ex cita tion  en ergy  E , the 
S ch röd in g er  equation

h
2m

.. . ¿ ( ¿ + 1 )  -u "  + — — L u + У  Г{ . (r , r 1 ) u ( r ' ) d r 1 = E u ( r )  (38)

and next by m atch ing  u (r) to  its  a sym p totic  beh av iou r

u (r )  ~  kr c o s  ôf . ^ (k r )  + s in  6cj n ^ k r) |, w h ere  к = V 2m E /ñ

Then the to ta l c r o s s - s e c t i o n  fo r  potentia l sca tter in g  is  g iven  by

CT(E) = k̂  X  ^  +1) Sin4 j 
ij

In the H a r tr e e -F o c k  ap prox im a tion  u noccu p ied  states o f  the H a r tr e e -F o ck  
fie ld  o f  the nucleu s o f  m a ss  num ber A  d e s c r ib e  ex cited  sta tes o f  the A  + l 
n u cleon  sy stem  w h erea s  o ccu p ie d  states d e s c r ib e  the ex cited  states o f  the 
A - 1  n u cleu s. The phase sh ifts 6Cj then co rre sp o n d  to the potentia l sca tter in g  
o f  a neutron  fro m  the c lo s e d -s h e l l  nucleu s o f  m a ss  num ber A .

F o r  bound u n occu p ied  states the so lu tion  o f  the n o n -lo c a l S ch röd in ger  
equation  has been  obtained by the m ethod a lrea d y  d e s c r ib e d  in se c tio n  2.
F o r  continuum  states th ere  is  on ly one boundary con d ition  (u(0) = 0) to 
E q .(3 8 ) .  In th is ca se , the so lu tion  u (r) can  be obtained by the m o re  usual 
ite ra tio n  p ro ce d u re  [43] in  w hich  the in hom ogen eou s d iffe re n t ia l equation  
a sso c ia te d  w ith E q .(3 8 ) is  ite ra ted  a cco rd in g  to

h'
2m Ц(г ) + i J i+ 1 >u(n* 1)(r )  I + Г Г  .(r ,  r ' ) u (n)( r ')  d r ' = E u <n+1)(r) (39)

r 2 J J

Starting fro m  an ap p rox im a tion  u(°) (r )  to the so lu tion  o f  E q .(3 8 ) ( fo r  
in stan ce  a sca tte r in g  state o f  a rea son a b le  S axon -W ood s w ell) E q .(3 9 ) is  
in tegra ted  with the in itia l va lu es

u(1)(0) = 0, u(1)(h) = u(0)(h)
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w h ere  h den otes the in teg ra tion  step . T h is  p ro ce d u re  y ie ld s  a new a p p ro x i
m ation  u i1) to the so lu tion  and so  on. . . .  In p r a c t ic e , the so lu tion  o f  the 
in h om ogen eou s equation  (39) has been  obtained by the m od ified  N u m erov  
m ethod fo r  in h om ogen eou s equations as d e s c r ib e d  in  R e f. [4 4 ].

Som e neutron  s in g le -p a r t ic le  re so n a n ce  e n e rg ie s  have a lready  been  
g iven  in  T ab le  V . The s and d phase sh ifts fo r  160  are  show n in F ig . 8.
The rap id  in c r e a s e  o f  the s phase shift is  due to the fact that the 2 s l  /2  le v e l 
is  on ly v e r y  w eak ly  bound. The d3 /2 ' w ave is  m o re  rew a rd in g . It reson a tes  
at 2 .83 M eV w ith a 1 M eV w idth w hile the e x p erim en ta l d 3 /2  reson a n ce  
o c c u r s  at 0.93 M eV w ith a 94 KeV width. The p and f  phase sh ifts are  m uch 
sm a lle r  than the s and d ones but are  not n e g lig ib le  a fter  7 M eV.

E ( M e V )

FIG. 8. Absolute va lue o f s and d phase shifts for I60 . The d3/2 phase shift is positive, the d5/2 and s l/2  ones 

are negative.

In F ig . 9 w e show the to ta l c r o s s -s e c t io n s  fo r  the e la s t ic  sca tte r in g  o f a 
neutron  fro m  160  and 40Ca. In both c a se s  the beh av iou r o f  the c r o s s -s e c t i o n  
n ear the th resh o ld  should be co n s id e re d  w ith g rea t caution . Indeed, we 
have no ad ju stable  p a ra m e te r  at ou r d is p o sa l to  m atch  the th e o re t ica l 
th resh o ld  w ith the ex p erim en ta l one. In 160  the s -w a v e  c r o s s -s e c t i o n  
n ear z e r o  e n e rg y  is  v e r y  sen sitiv e  to the 2 s l /2  binding en erg y , w h ich  could  
be e a s ily  m oved  up o r  down by a sm a ll change o f  the tw o -b od y  in tera ction . 
T h is  is  a lso  tru e fo r  the p i /2  and f5 /2  re so n a n ce s  found in  40Ca n ear 0 .2  and
1 .7  M eV  re s p e c t iv e ly  (c o rre sp o n d in g  ex p e rim e n ta l sta tes are  bound).
Indeed it is  quite evident that the s im p le  sh e ll m o d e l w ith a sin g le  v a len ce  
n u cleon  ou tside  a double c lo se d  sh e ll is  a v e ry  cru de m od e l fo r  both 170  
and 41Ca. It m ay be u se fu l a lso  to  r e c a l l  that w e have nothing lik e  an



IAEA-SMR6/30 793

E ( M e V )

FIG. 9. T o ta l cross-sections for poten tia l scattering o f a neutron by the H artree-Fock fie lds o f 160  and 4(b a .

im a g in a ry  part to take accoun t o f  p r o c e s s e s  w hich  are  not p u re e la s t ic  poten 
t ia l sca tte r in g . T h ese  co n s id e ra tio n s  m ake the co m p a riso n  w ith e x p e r i 
m ental e la s t ic -s c a t te r in g  data [45, 46] o f  neutrons from  160  and 40Ca 
d ifficu lt . N e v e rth e le ss , the right o r d e r  o f  m agnitude is  obtained fo r  the 
to ta l c r o s s - s e c t i o n  i f  one e x clu d e s  the re g io n  ju st above th resh o ld .

5 .2 .  P a r t ic le -h o le  ca lcu la tion s  in clud ing  continuum  states in  the ' 
H a r tr e e -F o c k  b a s is

By com pu tin g  the sca tte r in g  states w e have ach ieved  the ca lcu la tion  o f  
the com p le te  H a r tr e e -F o c k  b a s is . T h is b a s is  can be c o n s id e re d  as a 
startin g  point fo r  s p e c tr o s c o p y  ca lcu la tio n s , su ch  as p a r t ic le -h o le  c a lc u 
la tion s . The advantage o f  the c o -o rd in a te  rep resen ta tion  is  that it p ro v id e s  
a good sp atia l d e s cr ip tio n  o f  the H a r tr e e -F o c k  potentia l even  around its 
ed ge . T h is  is  a n e ce s s a r y  con d ition  to  have good  s in g le -p a r t ic le  e n e rg ie s  
and w ave fu nction s ju st be low  z e r o  en erg y  ( i . e .  fo r  w eakly  bound u noccu p ied  
state) and above ( i . e .  f o r  continuum  sta tes).

T h ese  s in g le -p a r t ic le  e n e rg ie s  and w ave fu nction s are  the n e ce s sa ry  
in gred ien ts  fo r  the p a r t ic le -h o le  ca lcu la tion  (in clud ing 'con tin u um  states 
w hich  w e sh a ll now d is cu ss  b r ie f ly .  T h is  ca lcu la tion , m ade in  co lla b o ra tio n  
w ith J . R aynal, is  o f  the sam e type as that o f  R e f. [44] . In the ca lcu la tion  
o f  R e f. [44] the unpertu rbed  H am iltonian  is  taken to be a Saxon-W oods p oten 
t ia l w h ose  p a ra m e te rs  depend on the o rb ita l angular m om entum . W e Use,



794 VAUTHERIN

F IG -10. T o ta l (y, n) cross-section obtained for ’ Ъ .

in stead , the H a r tr e e -F o ck  H am iltonian obtained fo r  160  w ith in te ra ctio n  B l ,  
w hich  is  a lso  u sed  as re s id u a l in teraction . O f co u rse , the ch o ice  o f  in te r 
action  B l as p a r t ic le -h o le  res id u a l in te ra ctio n  m ay be d ispu tab le . H ow ever, 
B rink  and B oek er  a lrea d y  o b se rv e d  that in  the SU3 sch em e th is in tera ction  
g iv e s  an ex cita tion  en erg y  o f  27. 7 M eV fo r  the d ip ole  state (J ir = l" )  in  160 .  
The resu lt  f o r  the 160 (7 ; n) c r o s s -s e c t io n  is  show n in F ig . 10. A s expected  
the p o s itio n  o f  the d ip ole  state is  in ra th er  good  agreem en t w ith the e x p e r i
m ental value (24 M eV ). But the o r d e r  o f  m agnitude o f  the c r o s s - s e c t i o n  is  
m uch too  la rg e , as it is  in the ca lcu la tion s  u sin g  p h en om en o log ica l Saxon- 
W oods poten tia ls [44, 47, 4 8 ] .

6 . CONCLUSION

It is  certa in ly  sign ifican t that the H a r tr e e -F o ck  fie ld  ap pears to g ive 
a re a so n a b le  f i r s t - o r d e r  d e s cr ip tio n  o f  s in g le -p a r t ic le  p ro p e r t ie s  obtained 
from  a w ide range o f e x p erim en ts , such as e le c tr o n  sca tter in g , lo w -e n e rg y  
neutron  sca tte r in g , p -2 p  re a ctio n s , tra n s fe r  r e a c tio n s , e tc . A ll o u r  resu lts  

^ h a v ë 'b e e n  obtained w ith a lo c a l, den sity -indepen den t in tera ction  w hich  has 
been  fitted  to  g ive  som e  p ro p e rt ie s  o f  n u clea r  m atter and 4H e. C on trary  to 
o th er  ca lcu la tion s  [1, 4, 7; 11] ,  no attem pt has been  m ade to re la te  the 
p a ra m e te rs  o f  th is e f fe c t iv e  in tera ction  to  tw o -b od y  data. It is ,  h ow ever 
c le a r , that the re su lts  o f  H a r tr e e -F o ck  ca lcu la tion s  w ill not be u n d erstood  
co m p le te ly  b e fo r e  th is re la tio n  it s e lf  is  not com p le te ly  u n derstood .

The author w ish es  to acknow ledge the fru itfu l c o lla b o ra tio n  o f 
M . V en eron i in a ll ph ases o f  th is w ork . The study o f  e le c tr o n  sca tter in g  
fro m  H a r tr e e -F o c k  d en s it ies  has been  m ade in  co lla b o ra tio n  with 
D r. J . B .  B e llica rd , and the ca lcu la tion  o f the 160  (7 , n) c r o s s - s e c t i o n  in 
co lla b o ra tio n  w ith D r. J . R aynal.
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Abstract

HIGH-ENERGY SCATTERING OF COMPOSITE HADRONS.

1. High-energy potential scattering; 2. High-energy, small-angle nuclear scattering; 3. Extension 

of the model of high-energy scattering.

I N T R O D U C T IO N

There is a considerable amount of experimental data available on high- 

energy elastic scattering of a variety of strongly interacting particles from 

different targets, and in the next few years one m ay expect considerably 

m ore data to com e. A  representative selection of more recent experimental 

data which was subject to an analysis of the type discussed in this paper is 

given in Refs [1-11]. This collection of data has recently been interpreted 

theoretically from unified point of view first in the cases of nuclear scattering 

[12-26, 30] and then extended to the scattering of "m ore  elementary" hadrons 

(e .g . proton-proton, pion-proton etc. [27, 28, 29].

To introduce the subject in a reasonably systematic way we are going to 

present the material in three chapters starting with the high-energy potential 

scattering - the best established aspect of the problem. Then we shall go 

over to the high-energy nuclear scattering phenomena and discuss the 

extrapolation of the potential-scattering results to this case. The last 

chapter will mention some further (very speculative).extrapolation of the 

model of high-energy nuclear scattering to very high-energy hadron-hadron 

scattering (e .g . proton-proton scattering).

1. H IG H - E N E R G Y  P O T E N T I A L  S C A T T E R IN G

At the beginning we shall follow rather closely an.article by Schiff [31], 

which we recom m end as a very nice introduction into the theory of high- 

energy potential scattering.

First, let us notice that the first-Born-approximation scattering 

amplitude (k 0, kf are the initial and final momenta and V(r) is the potential)

is not a useful approximation in the case of scattering of strongly interacting 

particles. This is so for the following reason. The condition for the Born 

approximation to be valid is

(1)

z

(2)

797
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throughout the scattering region. This condition is virtually never satisfied 

for hadronic interactions. Equation (2) can always be satisfied if v -» oo, 

which is possible in a non-relativistic approach, in our case, however, 

v - с (velocity of light).

W e  have, therefore, to go beyond the lowest-order approximation.

Let us follow the discussion of Ref. [31 ] and write down the scattering 

amplitude as an infinite Born series:

F (E f ffo) = l / d 3ri---d3 rn e f П U (?n>G ( V ?n-l)U (?n-l>

n = 1

X G (? n - f  ?n-2) U (? n-2) - - -  U(?2) G ( ? 2 - r 1) U ( ? 1) e lk° r‘

(3)

where U (r )  = (2 m /h 2)V (r )  and G (r ) = - (1/4я-г) exp (ikr) is the Green function 

of the operator (V 2 + k 2):

(V 2 + k2) G(r) = - 6(3) (?) (4)

where k= |itf | = | íc01. Equation (3) can be represented graphically as a sum 

of all possible paths which the incident particle can perform inside the region 

of space where V(r) ф О  (see Fig. 1). (For a classical exposition of the path 

technique see Ref. [32]). If we assume that U(?) varies slowly over distances 

k"1 we can show that two classes of graphs give leading contributions to the 

scattering amplitude (3) (in the limit к - oo). These are the graphs shown in 

F i g .2.

To show this, let us observe that the function exp [i(kp-lc-p)] oscillates 

rapidly as p deviates from the direction of ff. The consequence of this 

oscillating character is that

OO

J d 3p g (p )^  exp [i(kp-k.p)] =-^p- y 'dpg(gp) + 0 (k '2) (5)

о

The leading contribution to the integral is due to the neighbour

hood of-the direction of Ï  - vector (from the angular region

1 - cos 0 $. (kp) 1 or 0 ~ (kp) ^), provided gSJp) varies slowly over distances 

k "1. W e  shall understand by the " stationary-phase region" the region of 

space from which comes the leading contribution to the integral.

One can easily introduce such exponentials into our integral expression 

for amplitude (3). W e  can use the identity

-  k f  • =  -  k f - p n - i -  V p n _ 2 - -------------k f  ' P m

+ q • r (6)m 4 '

'  V p2 ‘ к( Д
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FIGЛ . Graph of the 7th-order scattering.

FIG .2. a) 7th-ordergraph dominating large-angle scattering;

b) 7th-order graph dominating small-angle scattering.

where

Pl = r2 ' ri' P2=r3 - V '  Pn-l= r n-rn-l (7)

and q = k0 - kf ; m  can be any of the integers 1, 2 . . .  n. W e  can go over from 

the variables r j , r2 , . . . . rn to plß p2, . . . pn. lt ?m (the Jacobian is unity) and 

obtain

f d \ d \ . . . d 3rn e f " ü ( í ) G ( r - í j . . .  U ^ J G ^ - Î ^ U ^ J e

[ i a , . . l l i i r  е‘ Ч' Гши  (p +p +. . . + ?  ) e
*.4 TT y J p p m n-1 n*2 m

1 n-1

HkfPn-fVVi)

U  (-p - p -. . . -p + r  ) 
'  H3 pm -l m '

( 8 )

w  ifk p  - к *p )
X  ' (Г 1 о ri'

■k„  (ä) (¥)
о О

• • •  U (?m + ÊfPm) ü (?m )U (?m - V m - l ) '"  U (?m Â ( V l + -' ’ + <\))
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where we employed E q .(5 ) in the last step. Notice that, in general, to 

different r^ s correspond different stationary-phase regions in the

Pj.........рп_г space. There are two special cases of great interest which

lead to simple expressions for F ( k ffT0):

a) all stationary phase-regions corresponding to different r^ s are 

different, and

b) all stationary phase regions are identical.

Case a) corresponds to graph a) of Fig. 2, case b) to graph b) of Fig. 2. 

One can see this as follows.

The rapidly oscillating exponentials exp[i(kpf - k-p{)] inside the

integral (8 ) (p. • i + i j) define the direction of propagation from the point

г{ to the point r{ + 1 about which the phase of the exponential is stationary. 

If we choose a certain point on the graph as rm , the propagation up to this 

point,proceeds along the direction k0 and from this point onward in the 

direction k f . So, we obtain the graph a) of Fig. 2. Notice that in this case 

the angle 0 between k 0 and kf has to be large.

The stationary-phase regions in the 3(n-l) space of the p-variables 

corresponding to different rm do not overlap if 0 is large enough. Hence 

one must take the sum of all these contributions, and the amplitude takes 

the form

4 a ) '^ Z X (¿TAv
n = 1 m=l

(kfk„ U r  +kf(p 
\ m P'n-l

0
(9)

U<?m+V -k (p
O'  n Pi)) U ( ?  ) U ( r  -k.p J  . . . U (1 m ' v rn1 v m 0 Km - ly

W hereas in the cases of small scattering angle 0 (graph b)) the stationary- 

phase regions corresponding to different r ¿  s do overlap almost completely, 

and one should not sum over the index m  as in E q .(9 ) (the choice of rm 

must turn out to be irrelevant in this case, and so it does - see below).

In this case, the amplitude is

oo . xn-l <*> _*•_*
-.(b),7* 7* . 1 Y V - i  Л Л , Л ,3 iq-r

( k fko) - ¿ I  (ifO d r

n= 1
(10)

X U  (r + k  Ip + . . . 
' m f\ n-1(Pn-l + > ’ ‘ +Pm )) ‘ ’ -U (^m ■ V Pn-l+ " - +Pl>)

The expressions (9) and (10) can be worked out as follows. Let us first 

consider expression (9). W e  shall separately treat the first m  - 1 integrations 

and then the remaining n-l-m. W e  have

I  d p i . . .d p  U  (r - k p  ) . . . U ( r  -k (p +. . . +p )
1 m-1 m  0 m -1 \ m  0 m 1

CO 00
r\ p

ОС
r>

: /ds /ds . 
J  m-1 J  m-2 ■ 'J dsi U  ( rm

0 Sm-1 S2

w 0  W m - 1
Г г Г' Г"

J d w m - 1  J d W m - 2 - ■■Jdw2 J  dw1

0 0 0 0

1
(m - 1 )!

/d sU (r m -k0s)

(И)
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where

w0 = J d s U ( ? m -k0 s), w{ = J d s  U (r m - k0s), £ = 1 , 2 , . . . m -1

0 s£

Similarly,

OD OO

/dp  . .  . /dp  u ( ?  + k  (p +. . . +p )). . . U (r  + k p )
J  m  J  n -1 \ m  f n-1 m  /  m  f m

00 OO

J dsmJ d s rn+l  ■ • • J d S n - lU ^ n + k f S n - l ) " -  U ( ? m + k f S m ) <1 2 >
0 S _  Sn- 9

Hence

1
(n-m)! d s  u ( r m +  k f s )

iq *r

= - Ä  I  I  / d3rme ’ mU(?J
n= 1 m=l

n-1

1 -

2 k  /  ( m - 1 ) !  ( n - m ) ï

dsTTfr
m  0

m-l_ «  _n-m

d s U (r m + kfs)

0

¿ / d 3r e 1 4 r U (? )e x p { - ^ jd s U (r - k 0s )+  J  d s U (r  + kfs) 

o o

because

(13)

V  Y  x " -1 a " * '1 bn-m = y  _ J _  h  V  1 i

L  L  (m-1 )! (п-m)! L  (£J! L  ( O !

h + %

n = l m-1
(ij)! "  Л  (*,)!

c2 = o

(X)

Equation 13 is the final expression for the scattering amplitude at large 

scattering angles (represented by graph a) of Fig. 2).

Let us now consider the graph b) of Fig. 2. In this, case all the 

different stationary-phase regions overlap. Let us choose the z-axis along 

the vector k0 . As , to a very good approximation

00

/«ds U (r m -k0s) = / dz Ufx y z)

d s U (r m + k fs )=  / dz U (x m , y z)
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we obtain

(b)

1 q z
. z m i , 4
(e «  1 here):

F  (k .k  ) = - —  / —  ) / dx dy dz e
v f  0 ; 47Г Z_i V 2 k /  ,/ Ш Jm m

i(q x +q y ) 
x m  y 'm

n = 1

X U(x , y , z ) '  m ’ J m * m 'm m ’ m'(n-l)! (n-m )¡

(14)
m-1

/dz U(xm ,ym ,z )

(Notice that one cannot perform the exponentiation similarly as before 

because of the lack of summation over index m ). W e  can perform the 

summation as follows (b is the impact parameter):

m-1 «

/dz U(b, z )----— p---- — / dz U(b, z) Гdz U(b, z)
J  m ' m ' (m- 1 )! (п-m)! J  _ J

— (it does not depend on the index m ! ).

where we introduced à new variable x(b) = J dz U(b, z).

-OO

So, finally

F (b) (k.k ) = - Щ  
V f 0 ' 4 7Г - l 2k

Г 2 iq*b 

d b e

/  dz U  (b, z)

n!
n= 1

Ik ..-b

27Г J

iq-b / i +“ \
b e  li-exp /  dz U (b , z)J

(15)

Fro m  the above considerations we can see that the cases a) and b) 

follow naturally from the general formula (3) as the two limiting (k-»oo) 

cases for large-angle a) and small-angle b) scattering. One should 

rem em ber that the scattering angle must be large (substantially larger than

(kR) 2 where R is the range of the potential) in the case a ) . Otherwise one 

cannot introduce the summation over index m  in E q .(9 ) . On  the other hand, 

in case b) the angle 0 must be substantially smaller than (kR ) ' 5 in order 

to secure large overlapping of all the stationary-phase regions.

Form ulas (13) and (15) for large- and small-angle potential scattering 

were obtained alongtime ago [31 ] and after that, many further developments 

in the theory of high-energy potential scattering took place [33-37]. W e  

shall not, however, go into these problems further. For  our purpose of 

constructing a crude but realistic model for high-energy collisions of 

composite strongly interacting particles formulas (13) and (15) (especially
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the second one) will be adequate. This is so, because we do not really know 

to what extent we can apply the potential-scattering description to such 

collisions, hence there is no basis for using some more sophisticated 

versions of potential scattering and believe in higher reliability of such 

results. The other reason is their simplicity. Any m ore sophisticated 

starting-point formulas are usually impossible to handle in practical cases 

of multiple scattering. W e  shall come back to these problems in the next 

chapter.

Let us come back to relations (15) and (13) and define the following 

phase shift

+eo

X(b) = - ¿  / d z  U (b .z )  (16)

-CO

(Notice that x.(b) does not go to zero as k-*oo as E q .(1 6 ) might suggest. 

U  grows linearly with к because it contains the relativistic m ass as a 

factor, compare Eq . (3)). Then Eq . (15) takes the form

(Ъ) - ik

F  (kfk o ) = ^
d2b e (1 - exp [i x (b) ] ) (17)

= ik

CO

J dbb J0(qb)(l - exp [ix(b)] (1 7 ')

In Eq . (17 ' ) we assum e that y(b) depends only on the absolute value of b . 

Equations (17) and ( 1 7 1 ) are a very convenient form of the impact-parameter 

representation, where b is the so-called impact parameter, which is related 

to the angular-momentum quantum number by the following relation (exact 

in the limit k-*oo):

b =
(21  + 1 ) 

2 k
(18)

A s , fo r i  » 1  and 0 « 1 ,

IJ (cos 0) - J0 I  +■ (19)

one can see that, in the limit k—oo, we get E q .(1 7 ) or Eq . (1 7 1)) from the 

standard partial-wave expansion of the amplitude

CO

F (kfko) = 2k Z  (2i + 1 ) ( 1  " exp Р* (cose) (20) 

Í = 0

and Eqs (18) and (19). For more details about the exact relationship 

between the impact-parameter (or Fourier-Bessel) representation and 

partial-wave expansion see Refs [38, 39].
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The amplitude of the large-angle scattering given by E q .(13 ) cannot be 

expressed in terms of x ( b ) .  It was, however, suggested recently [26] 

that if we apply E q .(1 3 ) to some intermediate angles we might be able again 

to use only x ( b )  given by definition (16). W e  shall not go Into the arguments 

given in Ref. [26] and merely quote the result which says that for

—  «  в <к 7Г77— * (21 )
Æ r  R ( k ‘ K) .

where к is the m omentum of the scattered particle within the range of the 

potential (hence h2c2к2 + m 2 c4 = (E- V )2 ),

+ °° -> /  +O0
F ^ ( k fk 0) = - J ' d2b ^ d z  e' 4 b U (b ,z )  exp(^-^ / d z 1 U(b, z ' ) + / d z 1 U(b, z 1 ) ^

k Г г, iq-b . ..  ix(b)
—  Id  b e  x (b) e

(22)

If the angular region defined by the inequality (21) does exist one m ay try to 

fit small-angle and large-angle scattering by using relations (17) and (22) and 

assuming that the relations between the small- and large-angle scattering 

given (through x(b)) by these two formulas are quite general and can be 

applied even if there are no potentials involved in the interactions between 

hadrons.

Unfortunately, we do not yet know how useful formula (22) will turn out 

to be. W e  do not know whether, in the region of its applicability, it will be 

as accurate as formula (17) in the forward direction. However, because of 

its simplicity, it deserves more thorough investigation.

2. H IG H - E N E R G Y , S M A L L - A N G L E  N U C L E A R  S C A T T E R IN G

2 .1 .  Formulation of the model

W e  are now going to discuss the small-angle, high-energy nuclear 

scattering, that is to say, scattering of nucleons or anti-nucleons or mesons 

of any kind from nuclei and we shall also talk about scattering of nuclei from
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nuclei. Hence we shall try to describe, from a unified point of view, high- 

energy scattering of composite, strongly interacting particles. Since our 

aim is so general, it is not surprising that our model of high-energy colli

sions will be very crude. Am ong many other approximations we shall 

neglect, right from the beginning, the spins of colliding particles. W e  shall, 

however, point out some important spin effects without going deeper into 

these problems.

Let us first deal with small-angle nucleon (meson) scattering from a 

nucleus. W e  can picture ourselves such a collision as is shown in Fig. 3.

If we assum e that the total interaction between the incident particle 

(let us call it nucleon) and the nucleus is a sum of individual interactions, 

we obtain from expression (16)

A

X ( b )  = Y  x j (^  "  S j )  ( 2 3 )

. . i=1

where

+00

X .(S - s .) = * ¿  / d z  U. (b - s . , z )  (24)

One can, therefore, entirely eliminate the potentials since the relation 

between the j-th phase shift and the j-th amplitude is

ik Г 2 iS'b iXf(b)

f j ( 6 ) = ¿ 7  J  6 ( 1  "  e  > ( 2 5 )

-, 1 Г  2 -iS - (b - s )

exp [ix .(b - s.)] = 1 - — . J  d 6 e f.(6 ) (25 ')

and express the total amplitude F ^  of E q .(17 ) in terms of the individual 

amplitudes fj by employing relations (23) and (25') in E q .(1 7 ). In doing so, 

we keep the target nucleons in the space positions given by the vectors ŝ  . 

Hence we treat the nucleus as if it were frozen in a certain geometrical 

configuration. Obviously, if we want to apply this approach to some realistic 

cases, we should average out the positions of the target nucleons. W e  shall 

discuss this problem in more detail later. By expanding

exp

in Eq . (17) we can represent the amplitude as a series of the terms usually 

called single- double-, triple-, etc. scattering contributions:

, ( b )
r l  2 +  . . +  FA

( b ) (26)



where A  is the number of nucleons in the target and 

A
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(b) V 1 i q 'si 
Fl (q) = ¿  fj(q) e

J

A

• f «  * - S *  ! / * >  " 4  V W V  * .............♦'
j>i

F (b)
F3

2

(q> = ( ¿ r )  E  / ^ A ^ 0kfJ (ôj)ft ( 6J|)fb(ôk)

j>i >k
(27)

‘V f V V ^ k i  (3) ^  -, -
X e ’ (q-é. -6{ -6k )

F <b)(q) = ( t V t )  У  A 26- • • • d V  f. (6. ) . . . f ,  (6. )n ™  \2wkiJ L  J J, Jn Ji J. V  V

i £ 5. • s.
к J J 

k k (2)

m )X e

V  ^  'k '

Let us note the interesting fact that the result (27) can also be obtained 

without having recourse to any potential-scattering theory, but by assuming 

(which is a very sound assumption) that the nucleon-nucleon amplitude is 

almost purely imaginary which means that the elastic scattering is almost 

purely a shadow of production processes. If we write the nucleon-nucleon 

amplitude in the Fourier-Bessel representation

ik Г 2 iî-ъ 

ñ j db ï(b) (28)

and use the optical theorem

Im f(0) = ■“  (29)

where <j is the total cross-section, we obtain the relation

a - 2 d ^  Re 7 (b) (30)
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But if the amplitude is purely imaginary we obtain from  relation (30)

а = 2 J d2b 7 (b) ' (31)

Fro m  relation (31) it follows that, within such an approximation, one can 

interpret 7 (b) as a probability density (we shall call it "profile", hence

forth): 7 (b) db is the probability that something happens to the particle if the 

collision occurs between b and b + d b . If we want to calculate the total 

profile Г  (b) of the target, it is enough to observe that the probability that 

something happens to the incident particle, and the probability that nothing 

happens add up to unity:

hence

Г (Ь ) + П

j = i

1 - 7 .(b - s.)
J J J

Г  (b) = 1-11 
j = l

1 - 7 . (b - s. )

(32)

(33)

One can immediately generalize this expression to the case of collisions 

of two complex nuclei and obtains the following expression for the total 

profile

Г(Ь)
A В 

1 - П П
j = l k= 1

1 - 7jk(b- s^ + skB (34)

where A  and В are the numbers of nucleons in the colliding nuclei, and the 

indices j and к run from 1 to A  and from 1 to B, respectively.

By expanding expression (33) in powers of 7  and employing formula (28) 

we again obtain series (27). Notice, however, that in such an approach the 

multiplicity of collisions is not given by the number of 7 's involved. For 

instance, physically, the single-collision contributions are the probabilities 

that one nucleon is hit but not the remaining A-l nucleons; hence it is given 

by the terms of the following type

7 1( l - 7 2 ) ( l - 7 3 ) . (35)

which contains all powers of 7 . This is just a problem of interpretation of 

various terms and does not introduce anything new into the technique of 

calculating amplitudes.

In the spirit of Ref. [12], to obtain the transition amplitude we first take 

the two-dimensional Fourier transform of Г (b) and then take its matrix 

element between the initial and final states1 :

✓ i i 4  ✓ r ik Г 2 iq*b i 4
<n IF  |0> = <n| —  J d b e  F  (b) 10> (36)

1 That expression (36) - in the case of inelastic scattering - is an expression consistent with the 

elastic - scattering amplitude follows also from the analysis of the unitarity of our model (compare with Ref.[50]) 

which shows that one of the most important contributions to the elastic amplitude comes from the inelastic 

processes represented by expression(36) where n designates an excited state.
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W e  shall work out the matrix element (36) in the general case of nucieus- 

nucleus scattering (F(b) given by expression (34), which can easily be 

reduced to the nucleon-nucleus case. In all formulas we shall assum e that 

the z-integration - along the direction of the incident-particle momentum - 

has been performed, and,only the "transverse" degrees of freedom are left.

Let us now discuss in greater detail the elastic scattering process. In 

this case, the initial and the final states are, respectively

0> = I

ln> = I

ÍP; TD

exp (i P  -rA) $ A(s A ) e  % ( s B )>

->B ->
1 i P « • г _ ,

exp (iP f т д ) Ф (s ) e ®B(sB );

(37)

Here we have introduced the centre-of-mass vectors of the nuclei A  and B ,

?a = i  I  V  ?в = в I  К  (38>
j

and the relative co-ordinates

a ' -*a  в* ^ b ^

S j = Sj - r A- S k = s k - r B ’ ( 3 9 )

Furthermore, P A , PjB, PfA, PfB are the initial and final m omenta, and 

* a (s a ') and Ф в(вв’) are the internal ground-state wave functions of the 

colliding nuclei. Notice that they depend on A  - 1 and В - 1 co-ordinates 

respectively. From  Eqs (36) and (37), we see that the matrix element 

whose absolute square gives the elastic cross-section is

M  = <Ф а(за’)Ф в( 5 В,)| f ’ |Фд( 5 А)Фв(3 в' ) >  (40)

where f ' is obtained from the transition operator F  (see E q .(36 )) by 

replacing Sj k by ŝ ' к. In practical calculations, however, it is often very 

convenient to use wave functions which do not have the c. m . co-ordinates 

separated out, but which depend rather on the A  co-ordinates sf and the 

В  co-ordinates s B. This is an especially convenient procedure if one 

approximates the ground-state wave function by a product of single-particle 

wave functions. Let us denote by Фд(зА) and ^ ( s 6) the ground-state wave 

functions, which are thus, explicitly, functions of the A  variables s^ and 

the В variables sB, related to the internal ground-state wave functions

$a (s A’ ) and % ( sB') by

V sA> = ^ а (га ) Фа (зА’) 

* B (sB) =  áeB(rB ) $B(sB')

(41)
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F  (q, sA; s B) = F ' ( q ;  sA' ; s*) exp (iq • rA - iq- ?B ) (42)

Then from Eqs (40-42) it follows that one can use the wave functions without 

the centre-of-mass dependence factored out (which procedure simplifies 

calculations considerably), provided an extra correction factor Q is intro

duced as follows

As we shall show below

M = <Ф Ф 
4  A В

F 1
А В

(43)

where

'(q2) d2r г (r ) 
а' а' '

iq ■ гл
? ( г  ) 
в в'

(44)

In the case of nucleon-nucleus collision this correction factor reduces to

0A(q d Га 1 « А(Га )1 eXP ( ' ^ ‘ ?А
(45)

In general, a factorization,such as that given in expression (48) cannot 

be obtained exactly. There is, however, the very important case of the 

harmonic-oscillator well potential [40], for which the completely anti

sym metrized shell-model wave function of any non-spurious state can be 

written in the form (41) with

gt (r) = (A|jt3R6) 1/4 exp (- A r 2 |2R2) (46)

where R is the parameter in the Gaussian factor exp (-r2/2 R 2) which appears 

in the oscillator wave functions. Hence, provided that the ground-state wave 

functions of the colliding particles can be approximated adequately by the 

oscillator-potential wave functions, we have

V O  = ^ a I  ^ A(r)l exP (-iq - ?A) I = exp(q2R ^ /4 A )

eB(q2) d  rB e x p  ( i q  ‘ ? B )

(47)

exp (q2Rß2 /4B )

One should perhaps emphasize at this point that any modification of the 

oscillator-potential wave functions which introduces factors depending on 

the relative nucleon-nucleon co-ordinates does not change the correction 

factors (47). Hence the introduction of correlations, e .g . of the Jastrow
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type [41, 15], m ay be m ade without any modification of our discussion of the 

centre-of-mass motion corrections, and Eqs (47) are still correct.

To  prove Eq . (42) we use the form (27) of the amplitude operator:

F  (q; s A sB) ( d 2b e ‘q'b| l- n  П
j  к

1 - — rr  / d V  
27rki J  jk

-  -► _A.»B
- i ê  ' ( b  -  s . +S  )

j k  J к  .  . .
X  e  jk( jk'

1
-, -»A _>B

V-1 n  io.. »(s. - s, )

= > / d V 2, (q-?.Je Jk J k f (6.J- „Z_| J Jk Jk jk jk '  2 7 T k l  J J к j к

jk j k j k  1 1 2 2
i 12 г

У  /гd2ó. d26

(2) -»
X Ьк (q-6 . , -5. , ) e 

'  ]  к  j  к  '
i l  гг

1 6  j  к  ‘  ( * j A  - * k  > + ¡ ^ j  к  (V  " A B )J1 1  J1 K1 2 2 2 z
f (à )f (Ô ) 

J‘ lk l J'lk l í2 k 2 >2 k 2

27rki/
j  k  j k  j  к  

1 1 2 2 3 3

2 2 2 (2)/̂ > 

d 6 j k  d { j k  d ó j k 6  vq ‘ 6 J k '  ó i k ' 6 j k1 1  2 2 J3 3 V J1 1 J2 2 3 :

(48)

X e

r* A  -+B. r* A B. . 7*A  ~*B.

l 6 j k ' ( s j  - sk )  + l 6 j k ' ( -̂ - sk )  +  l 6 j  k ' (sj  ' V
1 1 1  1 2 2 2 2 J3 3 3 3

X f. , Ô. , f. , ó. . f. . 6 . .
J к  V j к  J  ] к  V j k J  J к V j к

1 1 4  1 1У 2 2 4  2 2 '  3 3 4  3 î

Introducing now the internal co-ordinates

-+A* - »A -*B' -»в -►
s . = s . - r . , s, = s, - rD j j A * к k B (49)

we see that the centre-of-mass co-ordinates appear in the exponents in 

E q .(4 8 ) as

j.k
+  6 . , 

jA + 6 i к
+ .,

In view of the delta functions in E q .(48 ), these expressions become, upon 

integration, i ^ -q and ~^B ’ 4« from which expression (42) follows.
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Before discussing any specific case in detail, let us briefly review 

the experimental material available. First, we should realize that if we 

want to test the model described above we should, in principle, limit our

selves to the very forward scattering cross-sections. Such data are given in 

the C E R N  experiment with 19 .3  G eV  incident protons [9]. Unfortunately, 

the energy resolution of this experiment is rather poor (50 M e V  in both the 

incident and outgoing beam s) and the m easured scattering cross-sections 

contain a lot of contributions from excitations of nuclear states, and al

though the sam e transition-amplitude operators as defined above can be 

used, one should rather calculate the sum rules than the purely elastic- 

scattering cross-sections [15, 16, 22]. The Brookhaven experiment [1] 

satisfies the demands for good energy resolution (the energy resolution is 

~ 3  M eV ), the angles, however, are not very small. If we calculate the 

angle 0c =(kR)~^ (which, in the potential scattering, determines the angles 

where the eikonal approximation is valid: в <  0C) taking for R the rms 

radii of 4He, 12C, 160  nuclei used as targets in Ref. [l] at the incident 

laboratory m omentum kLAB = 1 .7  G e V /с, we get the numbers shown in 

Table I.

One should keep in mind, however, that if we introduce into formula 

(15) the nucleon-nucleus interaction in the form of a sum of nucleon-nucleon 

interactions

2 . 2 .  Applications

which results in E q .(23 ), the relevant radius determining the stationary- 

phase regions in formula (3) is the nucleon radius r0 , not the nuclear radius 

(hence our considerations from chapter 1 are valid under the assumption that 

the nucleon-nucleon potential does not change appreciably over distances 

k “1). It would, therefore, seem  more appropriate to consider the region 

of validity of E q .(15 ) in nucleon-nucleus collision to be 0C’«  (kr0 )_i (given 

also in Table I) rather than calculated from radii of the target nuclei. To 

support this point of view let us consider possible limitations imposed on 

scattering angles by the method of calculating absorption probabilities 

(Eqs (31) -(.34)). There the following critérium of validity could be used: 

as long as the geometry of screening is not changed we can use the model. 

That means that 0 «  arctan (r0 /R ), since rQ is the radius of the nucleon 

profile and R is of the order of magnitude of an average nucleon-nucleon 

distance. In the case of 4He target r0/R  « 2 /3 ,  hence the angle is very 

large. Fro m  this point of view it follows that the tighter the nucleus the 

better should the model work.

All these qualitative arguments strongly suggest that, if the target is 

composed of well defined subunits, the high-energy scattering model is 

probably valid at larger angles than is suggested by the standard critérium 

в «  вс «  (k R ) '! where R is the radius of the target with the corresponding 

numbers shown in Table I.

In any case, whichever point of view is applied, the 160  target seem s to 

be the best possibility of applying the eikonal approximation, and we shall 

start by discussing this case as a representative one.

A



T A B L E  I. C A L C U L A T IO N  O F  6C F O R  4He, 12C, 160  U S E D  A S  T A R G E T S

Target

rms radius 

(from electron 

scattering)

0 c

(deg)

ec corresponding 

to the nucleon 

radius r0 = 0.8 fm

(deg)

Position of the first 

minimum on the measured 

elastic-scattering 

cross-section 

(in laboratory system)

4 He 1.6 fm - 15° -22° ' ~16e

“ C 2.29 fm - . - 13° ..-22° - 13e

B o 2.60 fm - 12° ~22° г о

812 
C

Z
Y

Z
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To calculate the p - ^ O  elastic cross-section from

and from expressions (36) and (33), we have to specify the nucleon 

"profiles" 7j , and the ground-state wave function of 160 .  The profile can 

be obtained from the nucleon-nucleon scattering amplitude using the inverse 

transformation of transformation (28). For  small momentum  transfer we can 

re-construct the nucleon-nucleon amplitude from the data (assuming no 

spin dependence). The amplitude f, and hence the profile y , can always be 

thought of as proportional to the total cross-section a :

where a  (6) is the ratio of the real to the imaginary part of the amplitude 

and m ay depend on the m omentum transfer 6, and e ( 6 ) is a function of the 

momentum transfer which, for 6 = 0, becomes unity (to satisfy the optical 

theorem). In the case of nucleon-nucleon scattering, one can, for small 

m omentum transfers, to a very good accuracy, assume e ( 6) = exp ( -| a 62), 
where a is the slope of the nucleon-nucleon elastic cross-section. In all 

our consideration we shall assum e a 2 (6 ) «  1 for all 6 and virtually in

dependent of 6 (although one' can put various б-dependences into the calcu

lations). So, finally we shall parametrize the small-momentum-transfer 

nucleon-nucleon-scattering amplitude as follows:

(i+a)kff , , ,2,
f (6) = ¡ 7 --exp (- |aô  )

Figure 4 shows the experimental data from Ref. [1 ] against the following 

three variants of approximate evaluation of the ground-state expectation 

value :

a) Single-particle-density model:

<0 I 0> * П p (?  )
j = l J

where

? (? .)  = p W ^ l + ß ^ ' e x p ^ l z )

p (0) = 4 a V 3/V 3, ß = j ( j -  2 )  

where R is the sam e radius as in E q .(46 ).
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FIG.4 . Proton- мО  elastic-scattering differential cross-section for laboratory kinetic energy 

1 GeV (p « 1 . 7  GeV/c). The three curves correspond to the three models of the ground state described in the 

text. The experimental points are taken from Ref.[l] .

b) Product wave function:

|o> = I П Ф. (?. ) > 
j=l J 1

where the <Pj(?j) are the single-particle states of the oscillator-well shell 

model:

- 1/4  - 3 tl f  v \
Ф0 (г)=2тг R exp ~ ^j  Y 00 for s-shell 

Ф im(r) = S -  23/2 tt'1/!1r ' 5/2 r exp (- ^  Yjm forp-shell
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c) Anti-symmetrized wave function:

|0> = |(A ! ) " 1/2 И ф. (?.) ||>

where || ф.(г. ) || denotes the Slater determinant of A  single particle 

functions фj .

Before drawing any conclusions from these results, let us stress the 

fact that the elastic p - 160  cross-section is one of the reasonably clean 

cases to be analysed with formulas (33) and (36): the eikonal approximation 

is probably reasonably good, the spin of the target is zero, hence, at small 

angles, the spin-flip part of the p - 160  amplitude is negligible (it goes to zero 

a s s in (e /2)), and we have then only one amplitude contributing (non-spin-flip): 

the shape of 1®0 is quite well known from the electron elastic scattering, 

hence the parameters in Eqs (47) - (49) are reasonably well established, and 

finally the 160  nucleus is, most probably, spherical in its ground state; 

this fact saves us many complications.

Keeping all this in mind we can draw the following conclusions from 

the results shown in Fig. 4:

1. The agreement of our model of high-energy scattering with the experi

mental data is very good. It should be considered as a very strong 

support of the model.

2. The only important input concerning the structure of the target is the 

single-particle density p(r) (E q .(47 )). The anti-symmetrization of the 

ground-state wave function and the correlations resulting from it are 

unimportant.

3. If we accept that in the elastic electron scattering from spin-zero 

nuclei we m easure the Fourier transform of the single-particle density 

p(r) (the form factor), this form factor also determines the elastic 

cross-section for hadron-nucleus scattering. It is a very interesting 

question as to how general is the relation between the form factors and 

hadronic cross-sections. With some reservations, it has already been 

argued [27] that such a relation between, e .g . the nucleon form factors 

and the nucleon-nucleon cross-sections does indeed exist.

Let us go over to the 4He target [1 ]. The results of the calculations 

which are similar to those in the case of 160  are shown in Figs 5 and 6 .

4He is also spinless and presumably spherical in its ground state but it is 

smaller than 160 , hence the diffractive structure lies at larger angles than 

previously. The interpretation of the elastic p- 4He cross-section measured 

in Brookhaven experiment [l] at the beginning caused many troubles [1, 42] 

which were resolved by application to p -4He elastic scattering the model 

presented in these lectures [15].

In Fig. 5 the experimental data of Ref. [1] are plotted against the 

cross-sections computed from the Gaussian densities: p=pQexp (-r2/ R 2) 

assum ed for the ground state of 4H e . The parameters a  (the ratio of the 

real to the imaginary part of the nucleon-nucleon scattering amplitude) 

and a (the slope of the nucleon-nucleon elastic cross-section) were varied to 

show the sensitivity of the results to the parameters of the nucleon-nucleon 

elastic-scattering amplitude. W e  can see that the filling of m inim a depends



FIG. 5. Proton-4He elastic-scattering differential cross-section for laboratory kinetic energy 

1 GeV(p ~ 1.7 GeV/с). The ground state density of 4He was taken in a Gaussian form (see the text). The 

experimental points are taken from Ref.[l] .

critically on the value of a (the cross-section curve has a zero there if 

a= 0). It is possible that in future one will be able to employ this fact to 

m easure a. W e  shall come to this point later.

Figure 6 supports again the point of view expressed before that the 

density of the nuclear matter as given by the charge form factor determines 

the hadronic cross-section. The charge form factor of 4He m easured 

experimentally [43] was used to obtain the p-4He cross-section. W e  can 

see from Fig. 6 that the agreement is excellent. One should, however, be 

not overoptimistic about such an agreement. • First of all, the redundancy 

of the centre-of-mass co-ordinate was removed by using the sam e 0 (q2) 

function as before (compare E q .(47 )) . W e  do not know whether this is 

consistent with the density measured in Ref. [43] (Equation (47) is correct 

only for harmonic-oscillator potential densities). Secondly, many other 

effects such as, e .g . spin dependence of the nucleon-nucleon amplitude 

were neglected (for such corrections compare Refs [44, 45]). One may 

only say that the results of Fig. 6 and Refs [44, 45] do not indicate any dis

agreement with the statement that the density of nuclear matter determines 

the p-nucleus cross-section to a very good accuracy.

Figure 7 shows the experimental results and the calculations for p - 12C 

scattering. This nucleus is probably deformed in the ground state, and 

this fact considerably complicates the calculations. Such calculations are 

being done by Lesniak and W olek  [46]; they indicate that the deformation 

introduces corrections in.the right direction. In calculating the curves of 

Fig. 7 the 12C nucleus was assumed to be spherical.
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FIG.6. Proton-4 He elastic-scattering differential cross-section for laboratory kinetic energy 

1 GeV (p « 1 .7  GeV/с ). The curve marked— — —  was computed directly from the 4He charge form factor 

found in experiment. For more details see Ref. [15].

Let us say a few words about scattering of protons and pions from 

deuterons. There are very m any papers on this subject, both experimental 

and theoretical (some of the representative references are [4,-7, 13, 14,

19, 30, 44, 45, 47-49). W e  shall not go into all details of the problem, but 

want to stress only a few characteristic points. First of all, the p-d profile 

constructed as shown in E q .(40 ) works very well if we use the complete 

ground-state wave functions of deuteron known to be a superposition of the S- 

and D-waves. Recently, some calculations were performed of p-d and 

7 r - d  elastic scattering which include the deformation of the ground state of the 

deuteron (the existence of the D-state) and some spin effects (the most 

important spin effect is the role of spin 1 of the deuteron ground state 

[47-49]). Figure 8 illustrates the relative importance of the S- and D-wave 

contributions [30]. Fro m  the results of Refs [47-49] we can see that there 

is a complete agreement between theory and experiment in the case of 

elastic scattering of hadrons from deuterons. Let us finally discuss one 

amusing aspect of the deuteron case. The scattering amplitude is obtained 

trivially from our general formulas (33) and (36) after separating out the
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FIG. 7. Proton-12 С elastic-scattering differential cross-section for laboratory kinetic energy 

1 GeV (p « 1 . 7  GeV/c). The curve labelled with (A) has been computed the same way as the curve 

— of Fig.4. The remaining two curves are computed in the "optical limit” see text and Ref.[20] . The 

data are taken from Ref.[l] .

centre-of-mass motion (which, in the two-body system, can always be done 

exactly):

M  = M (1) + M (2)

= Fd ( K k ß )  + F d ( - H  fp(q) + ¿ / d 2̂ d (^)fn( | q - l ) ^ q - I

(50)

where Fd (q) is the deuteron-ground-state form factor and fp>n are the 

scattering amplitudes from the proton and the neutron. The last term (the 

so-called double-scattering term : M ^ )  gives a large momentum-transfer 

cross-section since the first two decrease with q much faster than the last one. 

Since F(j is a much m ore strongly peaked function than fp>n (the deuteron 

radius is much larger than the nucleon radius) we obtain

(51)

If f.has the form of the Gaussian given in E q .(46 ) we obtain a /2 , for the 

slope of the double scattering term (in the cross-section). Note that, once 

we assum e E q .(46 ) to be valid, we obtain the slope a /2  irrespective of the 

functional form of Fd (X). This is so because the X and q dependences in
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FIG. 8. Elastic scattering of pions or protons from deuterons.. This figure illustrates how the existence of 

the D-state combined with spin 1 of the deuteron ground state fill the minimum predicted by the S-state,

„hence spherically symmetric density.- The curves are taken from Ref.[l] .

Eq . (50). then factorize. The existing data and the theoretical analysis 

indicate (see, e.g. Refs [14, 47-49] ) that this term has been clearly seen 

in the recent experiments. But this is essentially a collision of three 

nucleons (if the incident particle is a nucleon), or one m eson and two 

nucleons (if the incident particle is a meson). This process (or rather its. 

momentum-transfer dependence, as E q .(51 ) indicates) virtually does not 

depend on the.ground state of the deuteron and, to a good approximation, 

can-be treated as a collision of three free particles. For  example, in 

: nucleon-nucleus collisions one can have multi-particle collisions of the 

sam e nature, where many nucleons are pumped into a small region of space 

and again the momentum-transfer dependence of such processes is such 

that, virtually, it does not dépend on the fact that the nucleons are bound in 

the nuclei [2 0 ].

3. E X T E N S IO N S  O F  T H E  M O D E L  O F  H IG H - E N E R G Y  S C A T T E R IN G '

In this chapter we shall discuss some limiting and special cases Of the 

formulas presented in the previous chapter; First, we saw from the 

example of p- 160  scattering that the' single-particle densities determine the 

elastic cross-section to a very good accuracy. W e  shall, therefore, use 

only single-particle densities in the following discussion.

Let us now quote and discuss some limiting cases of our multiple- 

scattering formulas (33), (34) and (36) and their possible applications (for 

m ore details of this approach see Ref. [20]); Let us consider two composite 

particles with A  and В sub-units, respectively (we m ay think of them as
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being two nuclei). The limit of our formulas (33), (34), and (36) for very 

large A  and В  is of particular interest to us. In Ref. [20] it was shown that 

if both A  and В  become arbitrarily large then the amplitude M  given by

M  = 0 ( q 2) g d2b ei4'b 1- I П d 2sA p (s*) П d2sB p (s 6 ) 
I £ = 1 f A ,  r  t '  m _ j  m r B, i rf  m '

A В
X П П

j = l  k = l  L

(52)

goes over to the optical-limit amplitude:

K/d!sdVpA(s)y (S -Î+? (?’
т\/г°Р' - 2>ik A 2 u iq'b j ,M  - 0 (q )-^ d b e  1 - e (53)

where к is, in general, a complex constant. In the case of pure absorption 

к is real. If we use formula (46) for the sub-unit A-subunit В  (hence nucleon- 

nucleon in the case of nuclear scattering) scattering amplitude, we have the 

relation:

к = — (1 -ia) A B  a (54)

If 7  is a very sharply peaked function compared to pA and pB, we obtain

ibr Г ■-*? C -“ /d V(î-s) P (s) -ч

M °pt = 0(q2) g / d 2b e l4 -b { 1 - e A }  (55)

On  the other hand, if we want to consider, e. g. nucleon (meson)-nucleus 

collision in this limit we should put one of the densities equal to a 6-function 

and instead of E q .(55 ) we have

opt n Г „  Г - K /d 2spA(? )r (ÏÏ-i)2 ik Г 2 iq-ï Г

(q ~2 ir J  l 1 '
M  = « ( q ) r  d b e 4 " 1 - е '  У (56)

Figures 7, 9, 10 show that this limit is obtained very quickly, indeed, as 

A  increases.

The results presented in Figs 7, 9, 10 suggest very strongly that the 

hadronic cross-sections are determined by the hadronic densities of the 

colliding particles and the complex parameter к which can be connected 

with the total cross-section. For instance, if we have purely absorptive 

processes, hence к is purely real, it can be determined from the total 

cross-section as follows:

)] }  (57)

0

= 4n j dbb.-j 1 - He exp [- к /d  s PA(s)pß (b-s
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FIG. 9. Proton-16 О elastic-scattering differential cross-section for laboratory kinetic energy 

1 GeV (p «  1 .7  GeV/c). The curve (A) has been computed the same way as the curve — ——  of Fig. 4,. The 

remaining two curves have been computed in the "optical limit”, see text and Ref.[20]. The data are taken 

from Ref.[l].

FIG.10. Proton-4 He elastic-scattering differential cross-section for laboratory kinetic energy 

1 GeV ( « 1 . 7  GeV/с ). The curve (A) has been computed from a Gaussian ground-state density. The 

remaining two curves have been computed in the "optical limit", see text and Ref. [20]. The data are 

taken from Ref. [1] .
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Since one m ay hope to determine pA and pB from some other experiments the 

"pure absorption" (к real) case might have no free parameters.

Form ulas (55) - (57) do not depend on any details of the internal struc

ture of colliding hadrons. It is very tempting, therefore, to use them to 

calculate elastic scattering of "m ore elementary" hadrons than nuclei, for 

instance: nucleon-nucleon or meson-nucleon. Such calculations have 

already been done (see, e .g . Refs [27-29]) and the results look very 

encouraging.

All the results presented in Figs 4-10 were obtained with the small- 

angle scattering formula (17) where the total phase shift was assum ed to be 

the sum of individual phase shifts. . This enabled us to introduce the indivi

dual amplitudes. In principle, a similar procedure can be applied to the 

large-angle scattering formula (2 2 ) although one obtains rather complex 

final expressions. ■ -

The outcome of the analysis presented in these lectures is that at 

small scattering angles the "gross features" of the colliding particles 

determine the elastic cross-sections. The seemingly rich pattern of the 

differential cross-section does not drastically depend on the details of the 

target structure. It might, however, be that some information (as, e .g . the 

ratio of the real to the imaginary) on nucleon-nucleon or meson-nucleon 

amplitudes can be extracted from the data provided the target nuclei are 

spherical and spinless.

The most interesting aspect of this analysis is, perhaps, its generality. 

Hence, it looks as if we really made some progress recently in understanding 

the phenomena of the elastic scattering of hadrons at high energies.
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PHOTO- AND ELECTRO-DISINTEGRATION 
OF NUCLEI AND EXCHANGE CURRENTS*

B. BOSCO
Istituto di Física dell' Università,
Cagliari, Sardegna, Italy

Abstract

PHOTO- A N D  ELECTRO-DISINTEGRATION OF NUCLEI A ND  EXCHANGE CURRENTS.

1. Introduction; 2 .. Connection between magnetic dipole photo- and electro-disintegration;

3. The nuclear tensors in the presence of exchange cyrrents; 4. Effect of exchange currents on the relation 

between photo- and electro-disintegration; 5. Discussion and conclusions.

1. IN T R O D U C T IO N

In this paper, we shall try to sum m arize the results that our group* 

has obtained in the last few years.

The main point of our arguments is the connection between photo- 

and electro-disintegration of nuclei which has been established some 

years ago for each multipole [1]. W e  shall, therefore, review this 

connection with particular emphasis on the magnetic dipole. The reason 

is fairly obvious since the Siegert theorem states that exchange-current 

effects do not contribute to the electric-multipole operators; we must, 

therefore, look for the magnetic ones.

In fact, what we shall see is that there is a simple proportionality 

between the cross-sections for the magnetic-dipole disintegration induced 

by photons and by electrons, the proportionality factor being a definite 

function of the electron kinematical variables in the absence of exchange 

currents. W hen exchange effects are present this proportionality function 

is multiplied by a factor (1 + e) where e is determined by the coefficients 

of the Foldy-Osborn invariants-[ 2 ]. W e  shall, therefore, subdivide our 

discussion into the following three problems:

(a) connection between magnetic dipole photon and electron disinte

gration,

(b) exchange currents, and

(c) experimental determination of the effects of exchange currents.

2. C O N N E C T I O N  B E T W E E N  M A G N E T IC - D IP O L E  P H O T O -  A N D

E L E C T R O - D IS IN T E G R A T IO N

2 .1 . The general treatment of the correlation between photo- and 

electro-disintegration is given elsewhere [3]. Here we shall recall the 

explicit relation for the magnetic dipole only for the benefit of those

*  Work supported in part by C . N. R. and N A T O  Grant No. 280
*

1 The research workers who have contributed directly or indirectly to this work are P. Delsanto, 

F. Erdas, P. Quarati and A. Piazza.
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who are not familiar, with the problem. The matrix element for an electro

magnetic transition is given by

H

where <(a ¡ J (j I« 1 )> is the matrix element of the nuclear current between 

the states and |o*)> representing the initial and final states of the 

nuclear system. Working in the m omentum  space — if the transition is 

induced by electrons — Ац is given by

A ,  = S (P--g ^ U(E) (2)

p being the four-momentum of the initial electron, ke the four-momentum 

transfer u and the usual spinor and Dirac matrices, respectively. 

Because of the conservation laws of the nuclear and electron charges 

we have «

k * < Q - | j M | a '  > =  0

K£ A u = 0 (3)

One can therefore rewrite Eq. (1) in the form

H  = <o Ij|e* > A ' (4)

with

; a « =  à  -  k e  ( 5 )

Ko

with k§ the fourth component of the m omentum  transfer.

The differential cross-section for electro-disintegration is therefore

d2 qei _ 2тг_ 

df2e df^N ve
J i  i '  N i  i» p e ( 6 )

In this formula ve is the velocity of the incoming electrons, pe and pN are 

the densities of the final state for electrons and nucleons, respectively, 

and

jit, = s < a |ji  i«» > * о к -  к  > (7)

N u . = S A ' f  Aji (8 )

In Eqs (7) and (8 ) S m eans summation over the final spin states and averaging 

over the initial ones.
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The explicit expression for Njj. is

Nii' = 2 m 2 (kff -к**)'2 {2 pi Pi' + 2 (k6 '  k° } éii'

+ (k f  k f. -  Pi к?.. -  Pi- к ? )  (1 -  - Т Г +  2 P-ke\
k5*-K0

(9)

k M

К
2 (p • ke)2 - 2 ke (p- k) + i  (ke !) k e

The photo-disintegration cross-section is given in terms of the tensor Jii- 

by the formula

4 ^ -  = —  У  p M e .  ( 1 0 )
diiN с L  N 1 1 11 

pol

where e is the photon polarization vector and m eans sum  over the
pol

photon polarization. There is one rem ark which one must make at this 

point: the expression of the nuclear current tensor which through 

Eq . (6) and (10) determines both the electron and the photo-disintegration 

should be computed for the same relative energy of the outgoing particles. 

Therefore, the m omentum  of the photon к and the three-momentum transfer 

of the electron ke will in general be different.

2. 2. Now we must construct the tensor . It can be shown that, 

as a consequence of the Schrödinger equation, in the absence of exchange 

terms and gauge invariance,, the expression for the nucleon current for 

two-nucleon systems must be written as [4]

f  (Ï, r) = | X  (mx a (1) + ju2a (2)) ( И )

where ßi and Ц2 are the magnetic moments of nucleons 1 and 2 , respectively, 

a (1) and a (2) are the Pauli spin operators for the corresponding particles.2
To construct the tensor Jü- we must first compute the matrix element 

^alj^k , r)!®1.^  of the current (1 1 ) between the state|o-)> and |o' X

For the sake of simplicity, we shall from now on refer to a deuteron 

as an s-wave bound state only.3
Then our bound state is a 3Sj state and of the two possible continuum 

states 1S ánd 3S induced by current (11) only the first transition will 

really occur. 4
Using the identity

¿¿1?  (1 ) +  ц2 a (2) = I  ( ^ i  + /u2) (a (l )  + a (2) +  j  (цх - ju2) (о (1) - a (2))  (1 2 )

2 On the left-hand side of Eq. (11) we have indicated also the dependence on the variable"r, the

relative distance of the two particles. This notation will be useful later on.

3 The correction due to the presence of the wave will be discussed in section 5.

4 The reason is, as is well known, that the continuum triplet is orthogonal to the bound triplet.
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< e |î(S ,?)|e ' > = S (q2) ш г  S x < i | ? ( l )  - ? (2 )|f>  (13)

where |i>and |f> are the initial and final spin states, respectively, c} 

the relative m om entum  of the outgoing particles and

S  (Ç?) = < o ' | e '  >

Definition (7) now gives the nuclear tensor Jjj.

Jii'= |S(q2)|2 ( M l ¡  <4aB ei<*Mk a k ./

X Í X < f l [?(1) - ^  i2) J U >  < i| t? (1) - ? (2 )] | f>  (14)

if

= g (q2) [k2 6iV - kj k f ]

with

g  (q 2) = | s ( < f ) | 2 (M j  -

Fro m  Eqs (6) and (14) we have

= Í  P 5“ ' - к?к*]в tf - <15>

F ro m  Eqs (10 and (14) we get instead

= . (16)

Equations (15) and (16) give us the requested relation between the photo- 

and the electro-disintegration cross-sections

we obtain

d? .g e* = _Ç_ J ,  N 
d n e dSÎN 2 ve k* 1Nü’ кеЧП --В Д ]-!% Ч  <” >

This equation which can be shown to be valid for the spin part transition 

of each multipole [ 5 ] is the main relation on which our investigation is based.

2. 3. To proceed in our discussion let us sum m arize the main hypo

thesis on which Eq. (17) rests

(a) Born approximation in the electromagnetic coupling constant,

(b) Schrödinger equation, and

(c) nucleon current contribution only.

W e  shall discuss points (a) and (b) later on, while now we wish to devote 

ourselves to point (c).
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By nucleon current contribution only, we m ean that there are no ex

change terms in the Schrödinger equation, or which is equivalent in the 

spirit of first quantization, no exchange currents.

If we now wish to introduce an exchange current we have two different 

approaches which we m ay follow:

(1 ) utilization of meson-theory results, and

(2) reliance on the phenomenological work initiated by Sachs [6 ] and 

extended by Foldy and Osborn [7 ] .

W e  shall prefer the second path.

Since, however, we are only interested in the magnetic-dipole tran

sition we do not need to go through to all the labour of the afore-mentioned 

works. All we shall need is to recall the underlying principles. In the 

spirit of first quantization any interaction Hamiltonian should be expressible 

in terms of nucleon spin, isospin and position co-ordinates.

W e  shall directly construct the interaction Hamiltonian responsible 

for the magnetic-dipole transition.

Our two-body problem will still be further simplified by the fact that, 

as far as the nucleon part is concerned, we have only the following three 

variables: a (1 ) and ct (2), the spin operators of the two nucleons, and r, 

the relative distance of the two nucleons.

As far as the electromagnetic part is concerned, we begin to observe 

that we have only two vectors: U, which must be identified with e in the 

case of photo-di'sintegration and with Ä ' in case of electro-disintegration, 

and It. Furthermore, if the interaction we are constructing has to be a 

magnetic dipole, u and E must form an antisymmetric tensor

uxlc (18)

For the nuclear part we must therefore construct all the possible axial 

vectors with the three vectors r, a (1), 5  (2). This problem has been solved 

by Foldy and Osborn [8 ]. There are at m axim um  seven possible terms

(a) 3 (1 ) -ct (2 )

(b) ct (1) X a (2)

(c) [5(1) X 5(2 )-  r ]r

(d) [(ct(1)-5(2))-  r]r

(e) 5 (1 )  + 5 (2 )

(f) [ (CT (1) + CT (2)) • r]r

(g) [ct (1) X ? ]  [3(2)> ?] + [5 (2 ) X ? ]  [ct (1) • r

Let us note that the combinations are chosen such that they have definite 

parity under the operation

a (1 )-* 5 (2) 5  (2 )-» 3 (1 )  ? — -Ï (2 0 )

In fact, expressions (19a), (19b), (19c) and (19d) are changing sign under 

operation (20) while the remaining ones do not. Therefore, multiplying
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the listed expressions by arbitrary functions of r and k, even or odd in f , it 

is easy to construct the requested expressions symmetric or antisymmetric 

under operation (20).

To complete the treatment we still have to take care of the behaviour 

under time reversal. In this respect we should observe that expressions 

(19a), (19d), (19e) and (19f) change sign under time reversal while the re

maining ones do not. Furthermore, when they are multiplied by scalar 

functions of H and Ÿ one must also take into account the effect of time 

reversal on these functions. In doing this it is important.to keep in mind 

that a scalar function of two vectors £ and r which is even or odd in one 

vector is also even or odd in the other one. This follows from the fact 

that a scalar function of two vectors к and r is a function of the three in

variants which one can build with the given two vectors k2, r2 and к • r.

With these observations in mind it is an easy task to write down the proper

combinations which are symmetric or antisymmetric under the operation (2 0) 

and which have a definite parity under time inversion (some factor i should 

be introduced in some term in order to satisfy this last requirement). Then 

the combination which is symmetric under the operation (20) and invariant 

(after multiplication by u x £ )  under time reversal must be combined with 

the isotopic operator

т х ( 1 )  t x (2 )  +  тУ (1 ) тУ ( 2 )  ( 2 1 )

to give the current called jt> by Osborn and Foldy. The other combination 

which is antisymmetric under operation (2 0 ) and changes sign under time 

reversal must be multiplied by the isotopic operator

т х (1) тУ (2) - тУ (1) тУ (2) (22)

to give the current jt.

Since, however, we are only concerned with the space structure of 

the matrix element we shall not deal with the isosp,in space any more. This 

m eans that in the actual calculations some factor should be added to our 

expression in order to account for the isotopic-spin matrix element.

In a phenomenological approach like that which we are following these 

constants can always be incorporated in the parameters of the theory.

3. T H E  N U C L E A R  T E N S O R S  IN T H E  P R E S E N C E  O F  E X C H A N G E  

C U R R E N T S

W e are now in a position to write down the interaction Hamiltonian 

due to the exchange currents:

H int°h = ™  ' T eXCh'= u x S  (a (Î, r) [ a  (1) - a  (2) 'I

+ b (S, г) ст (1 ) X a (2) + с (к, r) [ er (1 ) X ст (2) • г ] г

+ d (к, г) [ (ст (1 ) - ст (2 ) • г ] г + е (к, г) (ст (1 ) + ст (2) )

+ f (к, г) [ (ст (1 ) + ст (2) ) • г] г

+ g (к, г) [(ст(1) X ? )  (ст(2) - г) + (ст (2) X Î )  (5(1) - г)]} (23)
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Fro m  this expression we can now write down the nuclear tensor according 

to the defining Eq. (7).

The only relevant terms are the interference of Eq. (23) with the nucleon 

current defined by Eq. (11)

I  Ц ,  - Mn) k x  (Î (1 ) - CT (2) )

W e  shall designate by jf[í’b) etc. that part of the nuclear tensor

which comes from the interference of the nucleon current with the term a), 

(b) etc. of Eq. (23). To complete these terms let us first recall the 

following formulas:

(a) S < i I [ст (1 ) - ? (2 )]q |f> < f|[3 (l) - ? ( 2 ) ] J i >  = f ô qm

(bj S < i | [ ? ( l )  - 5 (2 )]q |f><f|a0t(l)c% ( 2 ) | i > = | i e qae (24)

(c) S < i [ a ( l )  - CT(2)]q |f> <f|[ff (1) + a (2 )] | i>  = 0

where |i]> is the initial triplet state, j f is the final singlet state. S m eans 

average over initial spin state and sum  over the final spin state.

These formulas are almost obvious. They are derived in the Appendix 

of the paper by Bosco and P iazza  [9].

With the help of Eq. (24) it is easy to see that only the tensor .!(??•a), 

can be different from zero. Furthermore, the 

only technical difficulty which still remains is to extract the s-wave part 

from terms like (c) and (g) which also give rise to higher waves. W e  shall 

not discuss this point here but rather give the results;

(a) = f  Oip - ̂ )  Re lS * (q 2) A  (£, q] [ k 2 6H, - kjk,. ]

(b) J^ ,'b) = - j  (Alp - ßn) Im  [S* (q2) B  (le, q)] [k?ói¡t - ^ к ;. ]

(c) J^,’c) = - I  (ßp - цп) Im  [S'* (q2) Cd) (k, q)] [k26u . - k¡ k¡. ] (25)

(d) J $ d> = f  (jup - Im (S * (q 2) D « ( k , 5 ) ]  [ k2 6U. - k¡ k t. Г 

( g )  Jff ’ g) = o

In these equations the symbols have the following meanings:

S (q2) = ( a  I a 1

А  (Й, q) = ( a  I а (к, г) | а' У

В (Й, q) = а I b (к, г) | а' У
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As far as (Й, q) and (k, q) are concerned some m ore details are 

necessary.

W hen  we in fact wish to compute the matrix elements between 

and I o-’ > of the operator appearing in terms like с and d we are faced 

with the problem of evaluating terms of the structure

TmS (k, q) = 0 11 (k, 7) rm rs |o< > (26)

Rem em bering that |o> depends only on ?  and |or' У on r and q, the most 

general structure of T ms is from translational invariance considerations, 

of the form

T ms (£,q) = T « ( k ,q )  6ms + T<2>(k,q) icmqs

+  T ® (b ,q )  ks qm + T « ( k ,q )  k s km + T ^ ( k ,q )  qsqm

Fro m  this it is clear that only the isotropic parts of the tensor C ms~ 

and Dms give rise to s-waves. This has been indicated by C W  (£, q) and 

D(D (E,q), respectively.

4. E F F E C T  O F  E X C H A N G E  C U R R E N T S  O N  T H E  R E L A T I O N  B E T W E E N  

PH O TO -  A N D  E L E C T R O - D IS IN T E G R A T IO N

Having written down the nuclear tensors we can now re-derive step 

by step the relation between the photo-disintegration and the electro- 

disintegrâtion cross-section of nuclei which has been obtained in Sec. 2. 2 

in the absence of exchange currents.

In this case we obtain

i -'Í.2q.ef__ = (* + g) M Í ke2 6• - ke ke ] tígPh n 127 \
d n ed n N 2 ve к2 ki kl, J df2N Pe (¿7)

Clearly e is zero if for a given 3 , i- e, for a given relative kinetic energy 

of the outgoing particles we have Й = Йе. This is not the case. The other 

possibility for e = 0 is that the functions A, B , C W  and D W  have a trivial 

dependence upon k, or are independent of it, at all.

5. D ISC U SSIO N  A N D  C O N C L U S IO N S

Let us first rem ark that in practice Eq . (27) is valid only if there are 

no d-waves present in the deuteron. Since the effect of these waves is 

comparable to the effect we are looking for, we should take this fact into
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account. This is easily done. In fact, the transition from d-waves will 

lead to an isotropic angular distribution in the nuclear particles for which 

a relation can also be established between photo- and electro-disintegration 

cross-sections. This relation reads [10]

d ë f ë  = N«- [ke4 i '  - « i  (29)

Of course, the angular distribution on the left-hand side of Eq. (29) must 

be considered with respect to ke axis. So once this interference effect 

between s and d-waves is removed by m eans of Eq. (29), if we choose a 

kinematical situation in which only magnetic-dipole transitions are allowed 

in the electro-disintegration, Eq. (27) will determine e through experiment; 

thus the importance of the exchange currents.

This kinematical situation can be realized by utilizing the technique of 

180° electron scattering as introduced by Barber and Peterson [11 ]. In 

this case the ratio of the magnetic to the electric cross-section is of 

the order of

( Pn + P V  

VP0 - P /

where p0 and p are the absolute values of the initial and final electron

momenta, and therefore it m ay be increased at will.

Furthermore, there are two m ore points which we would like to 

mention. The first point is the dependence of the function A , B , CÍ1) and 

D W  on k. It can be shown that if this dependence is trivial also the—> —+ —> —> _ _ ■ *
dependence of the quantities a (k, r), b (k, r) etc. 112 J on r which appear

in Eq. (23) is trivial.

The other point is that the treatment discussed here is based on the 

Born approximation in the electromagnetic coupling constant. Independently 

of any theoretical consideration we should like to point out that the validity 

of this approximation can be checked directly on each particular nucleus 

by measuring the ratio of electron to positron cross-section with the nucleus. 

Experiments of this kind have already been performed by Herring et al. [13].
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Abstract

NUCLEON-NUCLEON POTENTIAL W ITH  A SOFT CORE FOR THE ISOTOPIC TRIPLET STATE.

A soft-core two-nucleon potential is computed as a superposition of Yukawa potentials. It contains the 

central, spin, spin-orbit, quadratic spin-orbit, and tensor terms and depends on the total angular momentum J. 

The parameters of the individual terms are given for the isotopic triplet state of the two-nucleon system.

The data of the unique phase-shift analysis of n-p and p-p elastic 

scattering in the 0. 17 - 310 M e V  energy region [1] have been used for the 

calculation of the soft-core potential for the isotopic triplet state, i .e . 

for singlet even and triplet odd states.

It is obvious that the non-relativistic nucleon-nucleon potential can 

be split uniquely into two non-mixing terms (the isotopic singlet and the 

isotopic triplet term). In this paper, only the latter term is studied. 

Moreover, it is possible to consider independently the singlet even and the 

triplet odd state if a suitable representation of the potential is chosen. For 

the singlet even state of the two-nucleon system, we have taken the soft

core potential from our earlier paper [2], while the triplet odd state was 

considered in this calculation.

The equation of the two-nucleon relative motion is written in the form

d«

dx^
+ k

■i (.1 + 1 ) - 2a
v  2 u = 0 (1)

where

X  =  ¡J.T
2 mNE lab 

’ ' 2 M2

ц = 0 .707  • 1013 cm ' 1

m N = 937 M e V  = 4. 7 5 X 1013 cm ' 1

The quantity Е 1аь is the energy of the incident particle, j is the total- 

angular-momentum quantum num ber. Furthermore, we have

v = v (x, j) = m N ^ 2  V (r)

837
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where V(r) is the potential energy. For the potential v the following re

presentation [3] has been taken:

v (XJ )  = v 0 (x , j) + v 1 (x, j )  a + v 2 (x, j )  b + v 3 (x, j )  с + v 4 (x, j )  a2 (2)

-► -» Ч2 
a = (S-L) + %-

= v (? S )2 _ â i  _ 1
b= z 4

2 '  3 V 12 2

S2

Here, L  is the orbital momentum, 3  the spin of the system, and S12 the 

symbol of the tensor force.

If p-p scattering is considered, the term

m\i e‘
v = — --

c nx 137

should then be added to the potential (2).

For  the singlet state

a = b = с = 0 , j = £ 

for the non-mixing triplet state

a = 0, b = c = l,

for the state 3p Q

a = b = -1 , с = 1 

and for the coupled triplet state

(3a)

(3b) 

(3c)

(3d)

Each of the independent terms v* (x, j) is taken as the following superposition:

3

j 0 v - 1 1 , 2n/j(j+lj 1 0
0,- j - 1 2j + l 2Vj(j+n- l

> c 0 1

V¡(x, j) + j(j + l)b®  ] (4)

n=0

where the expression

[a<l) +j (j + l ) b ^  ] z11 =fj(z, j) (5)
n = 0

represents the correction function to the simple Yukawa potential.
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Potential term an bn

central a0 = - 2.06 b0= 0.183

v o a* = 31.8 bj = -4.9

a2 = -179.6 bz = 29.9

a3 = 212.2 b3 = -41, 9

3.181 - 0.768

spin -59.97 14.35

v 3 288.5 -71.03

- 359.0 97.80

0.581 -0.0461

spin orbit -21.62 1.180

152.5 -3.932

-334.4 8.006

0.0855 0.0250

quadratic

spin-orbit
5.418 -0.476

V4
-51.62

120.0

1.093 

- 1.280

-0,665 0.615

tensor 33.88 -9.835

v z -153.6 45.68

277.8 -69.39

T A B L E  II. an A N D  b n C O E F F IC IE N T S  F O R  p-p IS O T O P IC  T R I P L E T  

S T A T E S  -

Potential term an ^n

-2.30 0.160

central 40.0 -4.1

' v o -213.1 23.1

245.9 -30.3

3.421 -0.745

spin -68.17 13.55

v 3 322 .Ó - 64.23

-392,7 86.20
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The unknown parameters a® and b „  of the two-nucleon potential have 

been computed by the methods described in Ref. [3] to fit the scattering data.

Before doing it, we note that in the singlet state the potential (2) re

duces to v 0 (x, j) whereas in the triplet state the term v0 (x, j) occurs always 

in the sum  v0 (x, j )+ v 3 (x, j ). That is why the parameters for singlet and 

triplet states can be computed independently.

Since the phase-shift analysis does not distinguish between p-p and 

n-p scattering in the triplet states, the Coulomb field (the term vc ) has 

not been used.

In Table I the coefficients a®  and b ®  are given for n-p isotopic triplet 

states. Table II presents the parameters a® and b®  for p-p isotopic 

triplet states in the case in which they differ from the values in Table I.

Note that the coefficients a®  and are dimensionless. W hen  using 

Eq . (1) we obtain the potential energy V(r) in M e V

V(r) =v(x , j) • 20. 76 M e V

In Figs 1-5 the correction functions f¡(z, j) are given for z€ <(l,0)>, n-p. 

Their value at z = 1

f ¡ ( l ,  j)  = l i m  X V  ( x ,  j )

X - * 0

defines the strength of the potential while the value f¡ (0, j) characterizes 

the behaviour of the potential at large distances.

0.5 f 1f 5t

FIG. 1 . C orrection  function f 0 (z , j ) .
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FIG.2. Correction function fx (z).

F IG .3. Correction  function f2 ( z ) . FIG .4 . Correction  function f3 (z ).
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FIG.5. Correction function f4 (z).

FIG. 6. Comparison of computed 

phase-shifts with experimental ones.
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FIG. 7. Comparison of computed phase-shifts with experimental ones.

j  (rad)

FIG .8. Comparison of computed phase-shifts with experimental ones.



T A B L E  III. S T R E N G T H S  A N D  C O R R E S P O N D IN G  x 0 V A L U E S

Potential
0 1 2 3 4

term
f xo f x0 f x0 f xo f xo

central (0) 62.34 0.45 28.91 0.33 -37.96 - -138.3 1.02 -272.0 0.82

spin (3) -127.3 0.66 -46.58 0.5 114.8 2 .3 357.0 0.97 679.8 0.91

spin orbit(1) -202.9 3.2 -192.5 3 .2 -171.6 1.3 -140.4 0.99 -98.74 0.83

quadratic 

spin orbit (4)
73.92 - 72.64 1.4 70.8 1 .2 66.24 0.96 61.12

tensor (2) 157.4 3.7 91.53 - -40.20 0.45 -237.8 0.88 -501.2 1 .04

8
4
4
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Í  (rad)

0.06 n

0.05 -

0.03 -

0.02 -

0.01 -

FIG .9. Comparison of computed 

phase-shifts with experimental ones.

0

-0.01 J

In Figs 6-9 the computed triplet phase shifts are plotted and compared 

with all experimental points used from Ref. [1]. The accuracy of the fit 

satisfies fully the X2-criterion.

Conclusions:

It has been shown that the experimental scattering data can be repro

duced by a soft-core-type potential. The potential represented by 

expressions (2), (4), Table I and Table II is a superposition of the Yukawa 

potentials, i .e . each term, e .g . the spin-orbit term, is composed of four 

Yukawa potentials. All terms have repulsive and attractive parts but not 

each of them has a soft core.

The strength f¡ (1, j) of the potential term v¡ indicates whether the 

potential is repulsive or attractive near the origin. In Table III the strengths 

are presented together with the corresponding number x 0 . This number 

is the value of x for which the potential term has its first zero. It shows 

in which cases one can speak of a soft core. A  typical soft-core potential 

has x Q < 0. 707, the others are merely repulsive or attractive near the 

origin (see also Figs 1- 5).

The computations were performed on the Elliott-4130 Computer in 

Prague. The authors are indebted to Z . Janout for valuable discussions on 

phase-shift analysis.

[1] KAZARINOV, Y u .M . .  et a l ., Preprint JINR P 2241, Dubna (1965); 

ARNDT, R .A . ,  MacGREGOR, M .M . ,  UCRL 12252 (1965);

NOYES, H .P .,  Proc. Karlsruhe Conf. (1965);

BILENKAYA, S .I .,  et a l ., Preprint IINR E 2609, Dubna (1966); 

KAZARINOV, Yu. etal., Preprint JINR E-l-2953, Dubna (1966); 

BILENKAYA, S .J ., etal., Preprint JINR E-l-3899, Dubna (1968); 

JANOUT, Z . ,  etal., Preprint JINR E-l-3707, Dubna (1968);

Nucleons and Pions, JINR P-l-3971, Dubna ( 19ö8) 48-49.

[2] ULEHLA, I . ,  etal., Proc. Int. Nucl. Phys. Conf. Gatlinburg, (1966).

[3] ULEHLA, I . ,  Czech. J. Phys. 1969 (to be published).

R E F E R E N C E S





IAEA-SMR 6 /1 3

THOMAS-FERMI THEORY OF ATOMIC NUCLEI

J. NEMETH
Institute for Theoretical Physics, 
Rola nd-EStvös -U niversity, 
Budapest, Hungary

Abstract

THOMAS-FERMI THEORY OF  A TOM IC  NUCLEI.

A deduction of an integral equation for the density of nuclear matter is given. Its solution gives the 

energy and the density of nuclei as a function of their mass number.

Let us assum e that we know a sufficiently weak effective scalar two- 

body interaction; we can then determine the energy of the system by the 

first-order perturbation theory. The Hamiltonian of a finite nucleus can 

be written as

where Vj is the one-particle potential, which determines in zeroth order 

the single-particle wave functions, and

is small enough. In this case the unperturbed Schrödinger equation has 

the form

and Ф can be written as the antisymmetric product of one-particle wave 

functions, which are determined by the equations

(1)

(2)

Ti<Pi +V; <pi -Ej^i (3)

The energy of the system in first-order perturbation theory can then 

be obtained as

I !
<p* V 2(p.d3 r + ) <?*(r2) v°(r) ^i( r 1)<pj(r2 ) d 3 r1 d 3 r2

ij

+ 1 u <P* (r1 )<p*(r2 )v x (r) (p1(r2 )ipj (r: )d3 r1 d3 r2 (4)

847
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where

v D M  = v even <r ) + v odd ^even

(5)
^  (Г ) = v even (r ) _ v odd(r )

In a simple Hartree-Fock theory we m inimize this simple energy 

expression as a function of the density and in this way, we obtain equations 

determining the ground-state single-particle wave-functions

Determining <p¡(r) from Eq . (6) instead of Eq . (3) is a better approximation, 

but, of course, requires a much more complicate calculation since a 

system of non-linear integral equations has to be solved self-consistently. 

The harmonic-oscillator wave functions can be used as starting functions, 

but even in this case further approximations are necessary to solve E q .( 6). 

With the Thom as- Ferm i method one does not want to get the single

particle wave-functions and single-particle energies, but only the density 

distribution and the total energy of nuclei with a given m ass number. If 

we are content with learning only these very overall properties of nuclei, 

we m ay try a much simpler approximation than the H F  approximation, i .e . 

we express the total energy of a nucleus as the function of the density, and 

minimize it as the function of p. In this way we obtain an integral equation 

for the density to be solved if we get the energy and the density of nuclei 

as a function of their m ass number.

The direct energy term can be expressed very easily as the function

of the density. Since y |<p. j2 = p, it can be written as

To express the kinetic and the exchange terms as a function of p, we 

have to use some kind of approximation. For the kinetic energy we use 

the so-called Thom as- Ferm i approximation. For an infinite system the 

density can be expressed in terms of the Ferm i momentum  and the kinetic 

energy in terms of the density. In the following we assum e that these 

relations are also valid for finite nuclei:

<pf(r2 )vp (r)’<pj(r2 )d 3 r2 J <p1(r1)

(6)

(7)
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The above relations are valid in the first order. W eizsäcker [1] has shown, 

that we can write W kin in a better approximation as

W kin = ^ * 2 k F(r)2 p(r) +K ^  (1 0 )

where к is a constant, depending on the model potential. Weizsäcker used 

к = 1, but Berg and Wilets [2] have shown, that к changes between 0 .1  up 

to 1, according to the model we use. Bethe [3] has given a detailed justifi

cation for expression (9) and he shows that it is valid for not too low 

densities, i .e . if

p > 0 .1 5  pc

The difficulty with the correction term is that we have to m ake our 

calculation in a local potential which is probably not good enough. Luckily, 

however, detailed calculations have shown [4] that the Weizsäcker correc

tion term coming from the kinetic energy is negligible compared to the 

potential terms proportional to (Vp )2 and Ap, so we can accept ex

pression (9) in our calculations.

The determination of the exchange term as a function of the density 

needs some further approximations.

The exchange term can be written as

Ti f Y  (Г1 (r2 ^ i ( rl^ d3 rl d 3 r 2 (n )

i j

Let us expand the (p-s around R, where

^ l = R  + f "  r 2 = R - |  (1 2 )

The expansion is justified by the fact that vx (r) is essentially short ranged,

being a linear combination of Yukawa potentials

<p*(rx ) <p.(r2) = (R) <p. (R) + i  r (<p.(R) A<p*(R) - <p*(R) Д <p. (R))

+ ¿rmrn[<Pi(R)Amn<PÍ(R)+<p1(R)Amn ^i(R )- 2V mVi(R)Vn <p*(R)] (13)

If we average over the angle, we obtain v(r) being a central potential,

<P* (r1) v i (r2 ) = I <p¡(R)|2- y  tj(R) (14)

where

t,(R) =

is connected with the kinetic energy

‘ft + <ffA fi ~ 2V Vi (15)

W Mn t i ( R )  (16)
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With the help of E q . (15), the exchange term can be written as

IsPîl2 - i r 2ti{R) I 12- e r 2tj(R) v(r) d3r d3R

J  p (R)2V1 - | V 2 p (R)  ^  t j (R ) d 3R (17)

where

V, r 2v(r) d 3r (18)

In contrast to the direct term, the exchange term in this approximation 

is momentum-dependent and local. If we use again the Thom as-Ferm i 

approximation (9), we m ay express E q .(17 ) as a function of p:

p (R )2 d 3R - V 2 i / k 2 (R )p (R )2d 3R (19)

If we do not want to use the approximation (18), we m ay use again an 

infinite-nuclear-matter analogy. In fininite nuclear matter [3, 4]

, _ V  *, V , , _ e  sinkp r - kp r cos kpr ,„ nx
^ -- ---- 3-----  <2°)

i
and we m ay evaluate kF at the point k F(R). The result is again a local 

term . Num erical calculations of Lin [3] and Moszkowski [5] with exactly 

soluble simple models have shown that the exchange term is a momentum- 

dependent local term in good approximation. The total energy of the 

system, using expressions (7), (9), and (19) can be written as

W =  f  F  [p(R)] d3 R + |  J  vD (r) [p (r.a) p (r2 ) - р (Г1)2 ] d3 r id3 r2 (21)

where J^F(p) is the energy of the system with constant density, so it is just

the infinite-nuclear-matter energy at different densities. W e  can 

m inimize E q .(21 ) as a function of the density, with the subsidiary condition

J p  d T = A  (22)

ô ( w - 1 £ f J  p d t| = 0 (23)

E  F - d-:(;i^<ri-)) + jT [ p (r 2)- p (r 1 )]vD (r )d 3 r2 (24)

If p = const., we have E  F = dF /dp  ; this is just the Ferm i energy of a

particle. The value of dF /dp  = wnm can be obtained from density-dependent

nuclear-matter calculations and knowing vD(r) we can solve the density 

equations as the function of the m ass number.
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Transforming the Thom as-Ferm i calculations into Hartree-Fock 

equations, we m ay check the validity of our basic approximations. The 

Hartree-Fock equations (6) can be written as

J p (r2) v (r) d 3r2

-  J  p (r 1 r2 )v(r)<p. (r2 )d 3 r2 = E i(pi(r 1) (25)

Solving the non-linear integral-equation system (25) for tpy and having used 

the Thom as- Ferm i values for p(r) and p ^ r g ) ,  we can calculate a Hartree- 

Fock p from the

equation. W e  can do this iteration until we obtain a good p value. With 

this good ip¡ and p values we can check the validity of the Thomas-Ferm i 

approximations for the kinetic and the exchange energy and see how good 

are the results concerning the density and the energy of the system.

In the last few years, the Thom as-Ferm i method was developed 

further by many people, who used the Brueckner theory of finite nuclei [6]

instead of effective two-body forces. Recently, Bethe [3] outlined a

Thom as- Ferm i theory, which made m axim um  use of nuclear-matter 

theory. The chief aim  was to start from the Brueckner theory of.finite 

nuclei and again transform the energy into a function of density. To do 

this, the local-density approximation was used, with some modification.

Let us consider a system of an equal number of protons and neutrons, 

and we shall again neglect the Coulomb interaction. The energy of such a 

nucleus can be written in the first-order Brueckner approximation as

W= I  < U TUm>+^ < * m<UGlMn> <26'
m < kp m ,n

where the G-matrix satisfies the usual equation

■\Ф ,Ф . Ig U  ф У = <(ф ,ф ,lv| ф ф у
N m n 1 1 m Y n x N Y m n [ 1 vm Y n y

. ^  v l ‘¿’a E (a) +E(b)^- E(m )- E(n) < ^ b  lG l W i )  (27>
ab

Here Q  is the Pauli operator, E(a), E(b) are the particle energies, E (m ), 

E(n) the hole energies, and | фт  ÿ , | </>„)> are the finite single-particle 

wave functions. Let us separate the two-body forces into a short and long- 

range part .

The G-matrix can be also separated into two parts

v = v i +  v s (28)

G = v { + G ' (29)
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where

is essentially a short-range operator. W e  know anyhow that the effect of 

the G-matrix is

G  ф = vi// (ф -X)

where X is the defect wave function, which is large around the repulsive 

core and falls off to zero very rapidly, and then is negative and of small ab

solute value: it is well known that the wave function in nuclear matter 

heals rapidly. Since the largest contributions to G ' come from the inside 

and the surface of the repulsive core, we m ay assum e that it does not 

depend too much on the long-range behaviour of the wave functions, so we 

can use a local-density approximation for G 1.

Let us consider the interior and the surface of the nucleus. In the 

interior the density changes slowly, so in Eq . (27) we m ay use instead of 

фт  фп , the plane-wave approximation for G ' . At the surface p changes 

rapidly, but here, around the classical turning point,the second derivative 

of the wave functions is very small such that the substitution

^m(r i ^ n ( r 2^= lm (R)>|n(R)>
can be m ade, namely we expand r^, r '2 about R, and approximate the 

product with plane waves having the sam e value at R .

There are, however, two corrections which we have to consider when 

substituting local density values into the G'-matrix elements. One of the 

corrections concerns the long-range tensor forces. If we want to use a 

local density approximation for G 1, the long-range tensor forces have to be 

contained in v{ . However, now we want to use for v ( a first-order Born 

approximation, which is not good enough for a tensor force. Kuo and 

Brown have shown that into the second-order Born-approximation term 

for the tensor force we can quite well substitute a first-order Born term 

of an effective, density-dependent central force. So v£ contains the effec

tive p-dependent tensor force, too.

The other correction arises in connection with the energy denominator. 

F ro m  infinite-nuclear-matter calculations we know that the particle 

energies can be treated as kinetic energies only if the potential energy of 

the particles is zero in good approximation. The energy denominator (27) 

contains, however, the whole single-particle energies of finite nuclei 

instead of those of nuclear matter. It is true,then, that for the G-matrix 

element of the right-hand side of Eq . (27) we can use plane-wave wave 

functions, but the difference of finite and infinite single-particle energies 

has to be taken into account.

Let us define a Thom as- Ferm i G-matrix where in the energy denomina

tor we use infinite-nuclear-matter single-particle energies, and a finite one



where

Де = e F - e TF (32)

The matrix elements of G f can then be written as

(Mn \ъг\фтфп) = (фтпфл\ с т?\фтфп) + (х™ |де|х̂ п)

~ (mn |g xf I m n )+  (X^n| Де I X^Fn) (33)

where ■

Xmn = I m n  >- ^ mn = ^  G  I m n>

is the defect wave function/ and Де, is, in good approximation, just twice 

the potential energy difference of holes in nuclear matter and finite nuclei. 

Де is approximately independent of the momenta:

Де ' 2Auhole (34)

Separating G F into a short- and a long-range part as we did in Eq . (29), 

we obtain the matrix elements

(.ФтФ n I Gr p I фт  фп У ~  КФщФп К  | Ф г п ^ п ^

+ <m n I G'tf I m n > - 2Д и< Х™  |xjfn > (35)

The total energy of the nucleus with the Thom as- Ferm i approximation 

for kinetic energy can be written as

W  = W  (p)NM + i . J  v j ( r p ) [ p ( r 1 )p (r 2 )- p (r 1 ) 2ld3 r 1d3 r2

+  5  I P (r i r 2> Ip'“  | P ( r l r 2 ^ N M  d 3 r l d 3 r 2

- J  A u ( R ) r ( R ) d 3R  (36)

where

f

T(R )=  Z  / l Xnml2d3r ~ 0 .1 4 p  = K p (37)
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from nuclear-matter calculations, and the exchange term is zero for the 

local approximation. Minimizing E q . (36) as a function of p we obtain

E F = w { p )+ J  vï>(rp )[p (r 2 )- p (r 1 )]d 3 r 2 + |  J  [ p ( r 2) P ( r l ) - P ( r l )2] d3r2

- к р - к Д и  (38)
Э p •
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Ep is the F erm i energy of a finite nucleon, w(p) its energy in nuclear 

matter, so if Ли is roughly independent of the m om entum , Ep -w (p) = Ди. 

Solving Eq . (38) approximately we obtain

Ep - w(p) = Ди = Y T 2¿ {  J  v °(Pr' [P (r2) “ P (ri )] d 3r2

+  1  J  dVQpPr'1 I p i r ^ p i r ^ - p i r ^ ]  d3r2}  (39)

Solving Eq . (39), we get the density of the nuclei. Substituting this p into 

the energy

W = W NM + 2 (i +2k)  f  v iD(P r1 t P ( r i ) P ( r 2 ) - p ( i ' i ) 2 ] d 3r i d3 r 2

- 2” Г + 2 К) f  - Эр^  ^  (r2)P ( r i )2 - P (r i)3] d 3r xd 3r2 .

we obtain the energy of nuclei for a given A . Fro m  Eq . (40) it is easy to 

see that the effective forces obtained from this simple Thom as-Ferm i 

approximation are

v eff (p r )= G (p )6  (r) + Y~^-  vi(pr) [1 - 0p(rl)p(r¡¡) ]

~ D* Эу t Г1 , .
2 (1 +2к) P Эр [ 6р(г!)р(гг) ]

where G  (p) is just the nuclear-matter effective force, i .e .  the G-matrix 

coming from nuclear-matter calculations as a function of density. The 

concrete mathematical form of the effective forces (41) using as a starting 

point the Reid soft-core potentials [7] and the nuclear-matter calculations ' 

of Sprung [8] and Siemens [9], can be found in Ref. [10].

The integral equation (39) has been solved by Bethe and Németh [11]. 

The total surface energy of the nuclei, as the function of the m ass number, 

can be written as

W surf = 1 9 .6 A 2/3 + 9A1/3

which is in good agreement with the experimental values [19 + 1 M eV ] of 

different semi-empirical m ass formulas. The surface thickness defined 

by Bethe

6 = -- (2 - 2 . 2) fm

^max

changes very slightly with the m ass number and is in good agreement 

with the electron-scattering experiments. The central density of nuclei 

increases slightly as a function of the m ass number.

The calculations can be applied for different proton and neutron 

numbers including also the Coulomb forces. In this case, instead of E q .(39 ),
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we obtain two non-linear coupled integral equations, which can be solved 

by iteration. Such calculations are being done (Ref. [12]).
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OCTUPOLE STATES OF DEFORMED NUCLEI
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Abstract

OCTUPOLE STATES OF DEFORMED NUCLEI.

1. Introduction; 2. Standard calculations; 3. Results of calculations; 4. The nuclear potential 

energy as a function of the octupole deformation parameters; 5. Coriolis interaction. '

1. IN T R O D U C T IO N

In almost all even-even nuclei one can observe a number of low- 

lying states strongly excited in electric inelastic processes of the low 

multipole order. A  typical spectrum of a spherical nucleus is shown in 

F ig .l .

two-phonon___________4*
triplet - —

quadrupofe
phonon

B1E2)

-3"octupole phonon

B(E3)

— - 0* ground state

FIG. I . A typical spectrum of a spherical nucleus.

The low-lying states are called vibrations or phonons. They are 

characterized by angular-momentum (and sometimes also by spin or 

isospin) quantum num bers. The m easured quantities are the energy 

and the В  (EX) transition probability.

For  a deformed nucleus, the angular m omentum  is no longer a good 

quantum number. However, the states m ay be characterized by a number 

К  - the projection on the sym m etry axis. States with +K  and -K give 

rise to a single intrinsic state only. Thus, from the octupole 3 ” state in 

the spherical nucleus one obtains a quadruplet K 17 = 0~, 1*, 2 " ,  3 ” in the 

deformed nucleus.

Even  though the total angular m om entum  of the vibration is not a 

constant of motion, one m ay often characterize the vibrations by a para

meter X, which, in the spherical limit, would correspond to the multipole 

order. X also determines the parity of the phonon n = (-l)x . The 

numerical value of the deformation param ete^ is small compared to 

unity; however, it substantially modifies the wave functions and energies 

of the nucleons outside filled shells. And since low-energy vibrations are 

largely associated with such nucleons, the modes with the sam e X but 

different К  m ay  have rather different properties.

*  On leave at Niels Bohr Institute, Copenhagen, Denmark.
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The ex p erim en ta l ev id en ce  of the octu p o le  sta tes w as ra th er  p o o r  
until r e ce n tly . O nly Kïï = O ' states around A = 225 w ere  known (from  
а -d e c a y ) .  N ow adays, -  thanks, p r im a r ily , to the sy ste m a tic  m e a su re 
m ent o f  the (d, d 1 ) re a ctio n s  in the grou p  o f P r o fe s s o r  E lbek  in Copenhagen 
ou r  know ledge is  m o re  co m p le te . In a lm o st each  o f the e v e n -e v e n  r a r e -  
earth  n u c le i s e v e r a l octu p o le  states a re  known. U nfortunately, the K - 
n um bers a re  se ld o m  known with certa in ty .

2. STAN D ARD  CALCU LATIO N S

W e sh a ll not go  into the deta ils  o f the m a th em atica l m ethod used  in 
the usu al ca lcu la tion . It is  the q u a s i-p a rt ic le  RPA  and we sh a ll use 
P r o fe s s o r  P a l 's  con tribu tion  to these P ro ce e d in g s  as a r e fe r e n c e . What 
one n eeds fo r  the actu al ca lcu la tion  is  the p a r t ic le -h o le  sp ectru m  (o r  the 
tw o -q u a s i-p a r t ic le  sp ectru m ) and the fo r m  and p a ra m e te rs  o f  the r e 
s idu a l in tera ction .

T o  bu ild  a 3 ” state one needs a p a rt ic le  and a hole (o r  two q u a s i
p a r t ic le s )  with oppos ite  p a r it ie s . It is  w e ll known that one can d iv ide 
the p o s s ib le  3~ p a r t ic le -h o le  states into th ree  grou ps:

with en erg y  ' 2 A
Tiu q

- " -  3 î iû 0

In the 150 s A s 190 re g io n  th ere a re  tw o stron g  " in s id e -s h e ll "  t r a n s i
t io n s , fo r  p roton s  the d 5/ 2 -  h 1:1/2 one and fo r  neutrons the f 7/ 2 - Í 13/2 one. 
When the sh e ll is  f ille d  the contribution  fr o m  the AN  = 3 and AN  = 1 
sta tes is  v a r ie d  sm ooth ly , w hile the con tribu tion s fr o m  2Д states can 
jum p fro m  one n ucleu s to  another. F o r  the lo w -ly in g  v ibra tion s  the 
" in s id e -s h e l l "  sta tes a re  the m ost im portan t even  i f  they c a r r y  a rath er 
sm a ll p art o f the fu ll tra n sition  strength .

When the n ucleu s is  d e fo rm e d , e v e ry  s u b -s h e ll  is  sp lit into states 
w ith d iffe re n t K . T h us, the en erg y  and stren gth  o f the tw o -q u a s i-p a r t ic le  
state w ill depend on K , to o , the K=0 state being  low est as a ru le . T h is 
can be u n derstood  fro m  c la s s ic a l  argu m en ts, i .e .  the v ib ra tion s  with 
К = 0 a re  along  the p o la r  ax is -  with the low est freq u en cy  -  w hile th ose 
with K = 3 a re  p e rp e n d icu la r  to  it -  with the h ighest frequ en cy .

T he d iv is io n  o f  the ava ilab le  states into the th ree grou ps m entioned 
w ill  not be so  sh arp  in the de form ed  n u cleu s. And the d im en sion a lity  of 
the p ro b le m  w ill  g row  v e ry  m uch. T h us, we have not m uch ch o ice  in the 
r e s id u a l in te ra ctio n  p ro b le m . The on ly  fo r c e  w hich  one can handle is  a 
s ch e m a tic  fo r c e  with sep a ra b le  m a trix  e lem en ts . Then a d iagon a lization  
is  not n e c e s s a r y . T h ere  a re  se v e r a l p o s s ib le  s ch e m a tic  fo r c e s ;  let m e ■ 
m en tion

o c tu p o le -o c tu p o le  fo r c e  - к  J§ ( г х) J 3(j ( ? 2)

SDI (su r fa ce  delta  in teraction ) -F 6  (r^ -  r2 ) 6 (r j  -  R)

" in s id e  sh e ll"  
AN  = 1 
A N  = 3
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X
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160̂
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1821a 190_
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F IG .2 . S p littin g  o f the I 71" = 3 ” quadruplet in  several rare-earth nu c le i (X experim enta l, theory).

3. RESU LTS OF CA LCU LA TIO N S

S e v e ra l C alculations o f  o c tu p o le -s ta te  p r o p e rt ie s  w e re  p e r fo rm e d  
du ring  the la st few  y e a rs  with d iffe re n t le v e l sch e m e s  and re s id u a l 
in te ra c tio n s . We want to  m en tion  stud ies m ade by P r o fe s s o r  S o lo v ie v 1 s 
g rou p  in Dubna w ith the o c tu p o le -o c tu p o le  fo r c e  and th ose  by P r o fe s s o r  
F a e s s le r  et a l. with the SDI. A ll the ca lcu la tion s  gave e ss e n tia lly  
equ ivalent re su lts .

The th e o ry  m ust exp la in  tw o m ain  fe a tu re s : the sp littin g  o f  the 
octu p o le  quadruplet and the b eh av iou r  o f the fu ll B (E 3) stren gth . The 
f ir s t  quantity is  illu s tra te d  in F ig .2. F o r  sm a ll d e fo rm a tio n , one ex p ects

“ К = ш spherica l + с Х < 3 2 К 0 | З К >

It s e e m s  that X  changes s ign , when p a ss in g  fr o m  the Sm to  O s. In 
F ig .3  w e see  a ra th er  good  ag reem en t betw een  th eory  and ex p erim en t 
in  the ЕВ (E3) va lu e . T he d e c r e a s e  o f  the ЕВ (E3) as w e ll  as the b e 
h a v iou r  o f  X  cou ld  be con n ected  w ith the fillin g  o f  the h 13у2 proton  and
i 13/2 neutron  s u b -s h e l ls .  One can g ive  the fo llow in g  s im p le  argum ents: 
W hen the a tom ic  n u m ber A in c r e a s e s  fr o m  A = 150 to  A = 190 th ere  a re  
sta tes  ( fro m  the m en tioned  su b sh e lls ) with la r g e r  and la r g e r  p ro je c t io n s  
К n ea r  the F e r m i su r fa c e . T h e re fo r e , th ere  is  le s s  and le s s  p o s s ib ility  
o f  bu ild in g  up the octu p o le  state (d e c re a s e  o f  ЕВ (E3)) and the h igh er К 
quantum n u m bers w ill  be m o re  and m o re  p r e fe r r e d  (change o f sp littin g ).
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F IG .3 . T he  £B(E3) for the lowest octupole  states ( ----- experim ental, ------- theory).

S im ila r  re su lts  can be obtained a n a ly tica lly  i f  quadrupole d e form ation  is  
taken in  the pertu rb ation  ap proa ch . M ore  d eta iled  co m p a r is o n  o f  the 
th e o ry  with ex p erim en t is  show n in F ig s  4 -  7. N ote the d is cre p a n cy  in 
the B (E 3 ) va lu es fo r  K " = 2" states in the Dy and E r  is o to p e s .

W e have not yet m entioned  the o th er c h a ra c te r is t ic  fea tu re  o f  the 
octu p o le  sta te s . T h e ir  rotation a l bands a re  often  stro n g ly  d is to r te d . 
S o m e tim e s , they do not fo llow  the 1 (1+ 1) ru le  and i f  the m om ent o f in ertia  
can be e x tra cted  fr o m  the ex p erim en ta l e n e rg ie s  it is m uch la rg e r  than 
the J fo r  the g rou n d -s ta te  band.

So th ere  a re  tw o open  (c lo s e ly  re la ted ) p ro b le m s :
1. The d iv is io n  o f the fu ll o s c i l la t o r  stren gth  betw een  states with 

d iffe re n t K.
2. The p ro p e r t ie s  o f the rotation a l bands.

One can attack  the p ro b le m s  fro m  tw o s id e s . The f ir s t  p o s s ib ility  
is  to c o n s id e r  the p o ss ib le , dev iation s fr o m  the p ic tu re  o f  the independent 
h a rm o n ic  phonons. Such an assu m ption  is  im p lic it ly  m ade by  u sin g  the 
R P A -ty p e  o f ca lcu la tio n s . T h is ap proach  is  d is cu ss e d  in the next 
p aragrap h .

4 . THE N U C L E A R  P O T E N T IA L  EN E R G Y  AS A  FUN CTION OF THE 
O C T U PO L E  D E FO R M A TIO N  P A R A M E T E R

T o  a p p roa ch  the p r o b le m , the ß 2- and ß 3-d ep en d en ce  o f the 
p o te n t ia l-e n e rg y  part o f  the c o lle c t iv e  H am ilton ian  w as ca lcu la ted .
N u cle i with 218 s A S 232, i .e .  in the beginning  o f the d e fo rm e d  actin ide 
r e g io n , w e re  se le c te d  b eca u se  h ere  m a x im a l d ev iation s fr o m  the s im p le  
h a rm o n ic  qu ad ratic  d epen den ce cou ld  be ex p ected .
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E (MeV)
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F IG .4. C a lcu la ted  and experim enta l energies and B(E3) values for K ir 

in  B(E3) -----  eef f  = 0 . 1 5 , ----- eef f  = 0

in  E
0.44

A “/3 (  1 -  -  О  t w o
0.3T 

: А4/з

The e n e rg y  is  o f  the fo rm

< H 0 + H p l i r > = # ( ß 2 , ß 3) = 2 ^ e s (ß2 , ß 3) v s2 - Д 2/С
S

w here e s (ß 2, ß 3) a re  the e igen va lu es o f  H 0 (ß 2, Эз)- In an a logy  to  the 
N ilsso n  p oten tia l the n u cleon s are  fo r ce d  to  m ove in  a com m on  potentia l

V = j M i i j  r 2 ( 1 + —  (ß22 + ß 2)

1 - 2ß2Y20 -  2ß 3Y 30 + 18 \/3^^ ß 2ß3 У 10

Such a potentia l c o n s e rv e s  the vo lu m e and the c e n t r e -o f -m a s s  p os ition . 
In F ig .8 the m aps o f the p o te n t ia l-e n e rg y  s u r fa c e s  fo r  s e v e r a l  n u cle i 
a re  show n. We se e  that the m in im um  is  alw ays at ß3 = 0 ; th is m eans 
that no n u c le i with stab le  octu pole  d e fo rm a tio n  e x is t  in th is (m ost 
fa v ou ra b le ) r e g io n . On the oth er hand, the cu rv e s  in the fig u re s  d iffe r
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FIG. 5. C a lcu la ted  and experim enta l energies and B(E3) values for K ir  = 1 . 

-----  ee ff = 0 . 1 5 , ----- ee ff  = 0

0.46
(i

3 0.40 _

1 £>*“V  JW  = K

fr o m  the p re d ic t io n s  o f  the h a rm on ic  a p p rox im a tion , i .e .  fr o m  a sy stem  
o f  e l l ip s e s  w ith  the a x es  in the ß2 -  and ß 3 -d ir e c t io n s .

The "v a l le y "  in  the ß3 -d ir e c t io n  is  not p a ra lle l  to  the ß 3 -a x is ; 
th is m eans that th ere  is  an in tera ction  betw een  quadrupole and octu pole  
ph onon s. The cu rva tu re  o f  <g (ß 3) d e c r e a s e s  as ß 2 in c r e a s e s ,  i .e .  the 
r e s to r in g  fo r c e  d e c r e a s e s  fo r  la rg e r  d e fo rm a tio n s . A ll th ese  fea tu res  
a re  m o s t  s tro n g ly  pron ou n ced  fo r  the tra n s ition  n u c le i. In both s p h e r ica l 
and s tro n g ly  d e fo rm e d  n u cle i the d ev iation s fr o m  h a rm o n ic ity  a re  s m a lle r . 
So th ese  ca lcu la tion s  fo r m  so m e  b a s is  fo r  ou r d is cu ss io n  today ; they 
show  that in the s tro n g ly  d e fo rm e d  n u c le i the independent octu pole  
phonons a re  a good  " z e r o "  ap prox im a tion .

5. CO RIO LIS IN TE R A C TIO N

The o th er  p o s s ib le  r e a so n  fo r  the d is c r e p a n c ie s  m en tioned  m ay 
lie  in the C o r io l is  in te ra ctio n . Such an in tera ction  a r is e s  in ev itab ly  when 
a d e fo rm a tio n  is  p re se n t. It w ill cau se m ix in g  betw een  d iffe re n t bands 
and d is to r t io n  o f the ro ta tion a l se q u e n ce s . The C o r io lis  in te ra ctio n  is  o f 
the w e ll-k n ow n  fo rm
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F IG .6. Ca lcu la ted  and experim enta l energies and B(E3) values for Ктг = 2 “ .

e ff = 0.15, -----
e ff

0 .45  ,  .

K = A*/*  °

T h us, to  find its in flu en ce , one has to  know the m a tr ix  e lem en t o f  the 
fo rm

M  = <  Q  K+i I j  + I Q  к  >

T o  obtain  the c o rre sp o n d in g  fo rm u la , the con trib u tion  fr o m  a ll 
p r o c e s s e s  with phonon К  in the in itia l and phonon K + l  in the fin a l state 
and the " f ie ld "  j+ a ctin g  in betw een  m ust be su m m ed.

The m ost im portan t p r o c e s s e s  a re  show n in F ig .9. T h ere  e x is t  
fo u r  m o re  o f  the sa m e o r d e r , but p ro b a b ly  le s s  im portan t. The c o r 
resp on d in g  fo rm u la  fo r  the two m en tioned  graphs is

м. £ .<i
1 ,2 ,3

К  K + l
<P *P 

13 23

w h ere  ф (pfs a re  the com pon en ts o f  the phonon К fo r  q u a s i-p a r t ic le s  
1, 3 ((p com in g  fr o m  the backw ard  d ire c te d  g ra ph s).

The in flu en ce  o f  the C o r io l is  in te ra ctio n  w ill be im portan t i f  the 
d im en s io n le s s  quantity

M
K  + l

is  not too  sm a ll (co m p a re d  to unity), i .e .  M m ust be la r g e r  than unity.
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0. 59 ,  * 0 .4 4  f l  + £) .
K = XÏ7Ï ^  = А-/»

T h e re  is  no v e r y  tran sp aren t re a so n  fo r  any co h e re n ce  e ffe c ts  in 
a sum  lik e  M . H ow ever , one can g ive  so m e  argum ents in favou r o f  it. 
In the s p h e r ica l n ucleu s the Q ^ K o p e ra to r  is  a sp h e r ic a l te n so r  (X, K ), 
th e r e fo r e , in  th is l im it , the m a trix  e lem en t M is  g iven  by

M = J  (X -  K) (X + К + 1.)

T h is is  a ra th er  la rg e  n u m ber. H ow ever , f o r  a d e form ed  state ,
Q xk I 0 /  has no defin ite  angular m om entum , and the M can  be d ifferen t 
fr o m  the lim itin g  c a s e . In the lim it when both К  and K + 1 sta tes are  
c lo s e  to  the tw o -q u a s i-p a r t ic le  on es , the resu ltin g  M has nothing to  do 
w ith the s p h e r ic a l va lu e . T h ey  can be la rg e , on ly  i f  the tw o states have 
a co m m o n  q u a s i-p a r t ic le  and the m a trix  e lem ent fo r  the o th er sta tes is 
not h in d ered .

H ow ever , when the sta tes a re  r e a lly  c o l le c t iv e ,  i .e .  when they have 
a la rg e  В (EX) va lu e , the p ro p e rt ie s  o f  M m ay be c lo s e r  to  the sp h e r ica l 
te n so r  and one ex p ects  that M w ill a lso  be c lo s e r  to  the sp h e r ic a l lim it.

With the phonon w ave functions a lre a d y  known we have ca lcu la ted  
the M fo r  s e v e r a l  n u c le i. U nfortunately , the p ro g ra m  is  te ch n ica lly  not 
v e r y  s im p le , and each  run n eeds a co n s id e ra b le  am ount o f  com pu ter 
t im e . T h e re fo r e  the re su lts  a re  accum ula ted  ra th er  s lo w ly  and on ly  a 
sm a ll part o f  p re lim in a ry  data is  ava ilab le  now.

H o w e v e r , the f ir s t  re su lts  show that

a) m a tr ix  e lem en ts  betw een  two c o lle c t iv e  states a re  r e a lly  la rg e , though 
s m a lle r  than the s p h e r ic a l lim it;
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FIG. 8. T he  "m aps" o f the p o ten t ia l energy in  the ß2, ßs plane.
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• FIG. 9. The  most im portant processes.

5” -----

3' ----  -----
5‘ ----  Г -----

Exp. Coriolis Unperturbed Exp. Coriolis Unperturbed
band band

FIG. 10. E ffect o f the first-order C o rio lis  in te raction  on the bands w ith  K ïï = 0 “ in  152Sm and 156Gd.

b) m a tr ix  e lem en ts  betw een  a c o lle c t iv e  and n o n -c o lle c t iv e  state are  
about ten  tim es s m a lle r .  T h e r e fo r e , fo r  the an a lys is  o f  the c o lle c t iv e  
s ta te s , on ly  the c o lle c t iv e  p a rtn ers  a re  im portan t. The tw o -q u a s i
p a r t ic le  on es m ay cau se  a slight re n o rm a liza tio n  o f  the m om ent o f 
in ertia ; and

c) the in flu en ce  o f the C o r io l is  in tera ction  is  the right d ir e c t io n  (F ig .1 0 ), 
but not g rea t enough. The m ixin g  o f the 3 " sta tes is  about 15% in 
152Sm and 30% in 156Gd.

The rem ain in g  d is c r e p a n c y  can p ro b a b ly  be attributed to  h ig h e r -o r d e r  
e ffe c ts  o r  to  n eg lected  graphs (w hich , h o w ev er , g ive  z e r o  in the sp h e r ica l 
l im it ) .  But it is  c le a r  a lre a d y  that the C o r io l is  in tera ction  is  ra th er 
im portan t fo r  understanding the rem ain in g  p ro b le m s .
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Abstract

A M O D EL FOR T H E  28S i SPECTRUM .

The  author presents a m ode l w h ich  expla ins a l l the leve ls  o f  the 28Si spectrum be low  8 M e V . !

T h ere  se e m s  to be co n s id e ra b le  d ifficu lty  in understanding the . 
sp ectru m  o f 28Si. Though the n u cle i at the beginning o f the s -d  sh e ll exhibit 
c h a ra c te r is t ic  ro ta tion a l sp e ctra  [1] w hich  a re  quite e a s ily  d e s c r ib e d  as a 
p r o je c t io n  [2] fr o m  a d e fo rm e d  in tr in s ic  H a r tr e e -F o ck  (H .F .)  state (as 
d is cu ss e d  in m y p a p ers ), th is agreem en t b reak s down tow ard  the m idd le  
o f the sh e ll . In F ig . 1 the ex p erim en ta l sp ectru m  [1] o f 28Si is  shown 
along with som e  th e o re tica l ca lcu la tion s  w hich w ill be d is cu ss e d  h e re .
In p a rticu la r , note the p o o r  ag reem en t with the p ro je c te d  H .F . sp e ctru m .

The lo w e st le v e ls , 0+ , 2+, 4+ look  som ew hat lik e  the beginning o f  a 
ro ta tion a l band, Ej = A J (J  + 1), but

E (4+) - E  (2+) = 4 .6 1 - 1 . 7 8  =
E ( 2 +) .-E (0 + )  1 .7 8

w h e re a s .thé J (J + 1) law w ould g ive  7 /3  = 2. 33. The o th er fea tu re  o f  the 
2sSi sp ectru m  is  the lo w -ly in g  0+ state and the ra th er  co m p lica te d  s t r u c 
ture at around 7 - 8  M eV . I w ill p r o p o se  h ere  a m od el w hich  attem pts to 
exp la in  e sse n t ia lly  a ll the le v e ls  below  8 M eV . But f ir s t  let m e d is cu ss  
som e o f the past w ork .

Ripka [2] has p e r fo rm e d  H .F .  ca lcu la tion s  on 2SSi taking 160  as an 
in ert c o r e  and using two d iffe ren t e ffe c t iv e  f o r c e s :  a S e rb e r  and a : 
R osen fe ld  fo r c e .  Then, using the P e ie r ls -Y o c c o z  [3] p r o je c t io n  technique, 
he ca lcu la te s  the sp ectru m  o f rotation a l le v e ls , a c co rd in g  to 1 :

7Г '■
J  sinj3d/3 dJkk( /3 )< * k |e-lßJy H | * k>

----------------------------------------- :---------------------- (D
У  sin/3 d|3 d*k (0) <Фк |e-i8Jy | * k > 
ó

w here Ф], is  the H .F . w ave-fu n ction  o f the (oblate) d e form ed  in tr in s ic  state. 
He finds that the two fo r c e s  g ive  essen tia lly  the sam e sp ectru m , even 
though the s in g le -p a r t ic le  sp e ctra  in the two ca se s  a re  quite d ifferen t.
In p a rt icu la r , the gap betw een  the occu p ied  and unoccu pied  orb ita ls  in the 
ca se  o f  the S e rb e r  fo r c e  is  le s s  than 1 /2  that obtained fo r  the R osen fe ld  
fo r c e .  But in both ca se s , the p ro je c te d  sp ectra  a re  co m p re ss e d  by

1 See the other contribution o f  Svenne to these Proceedings, and R e f.[2 ] .

867
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(RIPKA) 8- H A R V E Y

FIG . 1 . C o m p a r iso n  o f  th e  e x p e r im e n ta l sp ectru m  o f  28S i w ith  th e o r e t ic a l ca lc u la t io n s .

about a fa c to r  o f  2 re la t iv e  to  the ex p erim en ta l ones (s e e  F i g . l ) .  The 
sam e d isa g reem en t is  seen  i f  the p r o je c t io n  is  done on the p ro la te  d e form ed  
so lu t io n .2 R ipka su g g ests  that the H .F . so lu tion s obtained fo r  2SSi a re  too  
d e fo rm e d . I w ould lik e  to  su ggest h ere  that beca u se  o f  the n ear d eg en era cy  
o f  the p ro la te  and ob la te  so lu tion s, the tru e d e form a tion  o f  28Si is  in n eith er 
one o f  th ese  two H .F . m in im a, but som ew h ere  in betw een , and, in fact, 
that the lo w -e n e r g y  sp e ctru m  o f  28Si is  dom inated by an in tera ction  o f th ese 
two m in im a.

2 P r o je c t io n  fr o m  b o th  p r o la te  and o b la t e  so lu tion s has a lso  b e e n  d o n e  in  a re ce n t w ork  o f  T e w a r i and 
G u il lo t  [P h y s . R e v . 177 (1 9 6 9 ) 1 7 1 7 ] .  bu t th ey  a lso  fin d  a  sp e ctru m  w h ic h  is  t o o  co m p re ss e d .
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A re co g n it io n  o f  the need to take into accoun t both the ob la te  and 
p ro la te  s tru c tu re s  in d is cu ss in g  the lo w -e n e r g y  sp ectru m  o f 28Si is  the w ork 
o f D as Gupta and H arvey  [3 ]. They expla in  the 28Si sp ectru m  as an in te r 
lea v in g  o f le v e ls  ba sed  on the ob late  and p ro la te  m in im a, obtained both by 
p r o je c t io n  fr o m  the d e fo rm e d  H. F . m in im a, and by p a r t ic le -h o le ,  T a m m - 
D an coff ca lcu la tion s  on each  m in im u m . T hey obtain  m any m o re  o f the 
o b s e rv e d  le v e ls , but m ust m u ltip ly , a rb itr a r ily , th e ir  ca lcu la ted  sp ectru m  
by a fa c t o r 'o f  tw o in O rder to  obtain  rea so n a b le  a g reem en t in the p os ition s  
o f  the le v e ls .  They cannot sa t is fa c to r ily  explain  th is fa c to r  o f  tw o. P erhaps 
p art o f  the flaw  is  that they co n s id e re d  the tw o sy ste m s o f le v e ls  as e s 
sen tia lly  independent, w h ereas  it w ould be rea son a b le  to  ex p ect them  to 
in te ra c t ra th er  s tro n g ly . T h is is  perhaps inherent in  th e ir  su ggestion  
tow ards the end o f the p aper that 28Si cou ld  be exp ected  to be " s o f t "  
tow ard  ß -v ib ra t io n s  about the ob late  m in im um .

In fa c t, v ib ra tion s  should be p o s s ib le  about e ith er  m in im um . F o llo w 
ing th is ap p roa ch , C a ste l and the author [4] have co n s id e re d  a m od e l in 
v o lv in g  v ib ra tio n s  about the two m in im a, coupled  through th e ir  quadrupole 
f ie ld . T h is is  m e r e ly  a s im p le  m od e l and not a se r io u s  attem pt to explain  
the sp e ctru m  fr o m  a m ic r o s c o p ic  point o f  v ie w . F r e e  p a ra m e te rs  rem ain  
w hich  a re  ch osen  to  fit the sp e ctru m . H ow ever, it is  a su g gestion  o f  a 
p o s s ib le  d ir e c t io n  w hich  a deta iled  ca lcu la tion  m ight take, and m ay a lso  
be a s im p le  m od e l by w hich  ex p erim en ta l sp e ctra  in o th er , s im ila r  ca se s  
m ight be d e s c r ib e d .

In an H .F .  ca lcu la tion  on 28Si, with a b a s is  con s is t in g  o f the I s ,  lp , 
2 s - ld  and 1 f 7/2 sh e lls  (no in ert c o r e ) ,  and using the K uo [5] e ffe c t iv e  m a trix  
e lem en ts , w e find an ob la te  low est m in im um  and a lo c a l  p ro la te  m inim um  
ly in g  3 M eV h igh er in en e rg y . T h ese  a re  both, in fact, tru e m in im a, stab le  
tow ard  7 -d e fo r m a t io n s , as w e have v e r if ie d  by actu al ca lcu la tio n s . The 
sp h e r ica l so lu tion  is  a lso  a s e l f -c o n s is te n t  one, but is  actu a lly  a m axim um  
and lie s  m uch h igh er  in  en erg y .

W e su g gest h ere  that the nucleu s can  v ib ra te  about e ith er  m inim um , 
and that th ese  v ib ra tio n s  can  cou p le  through th e ir  qu ad ru pole  m om en ts .
The 0+ ground state is  a sso c ia te d  with the ob late  m in im um  and the fir s t  
2 + state , a s  a on e -ph on on  state  bu ilt on it . The secon d  0+ state  at 4 .9 7  M eV 
is  a s so c ia te d  with the p ro la te  m in im u m . Its sep ara tion  fr o m  the ground 
state is  m o re  than the d iffe r e n c e  in the H .F . m in im a, s in ce  we would 
exp ect them  to m ix  and th e r e fo re  be pushed a p art. The on e-ph on on  state 
built on the p ro la te  "grou n d  sta te "  has no independent e x is te n ce  but is  
brok en  down into a m u ltip let o f  le v e ls ,  cen tred  around 7 M eV , b eca u se  o f 
its  stro n g  cou p lin g  with the phonon belon g in g  to  the ob late  state .

W e w rite  the H am iltonian  fo r  th is m od el as

H = h Ul^  b ^ b m+fiu>2 ^  c mc m + E0 + H int (2)
m  m

H ere bm is  a b o s o n -c r e a t io n  o p e ra to r  c rea tin g  a v ib ra tion  o f  en erg y  fiwi 
at the low est m in im um  and c j ,  a s im ila r  o p e ra to r  fo r  the v ib ra tion  o f  en ergy  
fii02 at the o th er  m in im u m . E 0 is  the en erg y  d iffe re n ce  betw een  the two 
m in im a, and the in tera ction  is  w ritten  as3

3 T h e  s im p le t  c h o i c e ,  H int = К  !jl ( - ) m bJn c m  + H . c .  is not in terestin g  s in c e ,  b y  a  ch a n g e  o f  v a r ia b le s , 

it  breaks d ow n  in to  tw o  u n c o u p le d  v ib ra tio n s .
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Hint = к £  H MQ bMQ c.M (3)
M

H ere  the quadrupole o p e ra to r  is

z (4)
гл. m,

with a s im ila r  defin ition  fo r  the С-o p e r a to r s ; К is  an in tera ction  strength . 
To ca lcu la te  the e n e rg ie s  of the coupled  phonon sta tes, we evaluate the 
m a tr ix  elerrjents o f  H jnt in states o f one ph on on 'o f type b and one o f  type c, 
noting that b and с phonons a re  not, in g en era l, orth ogon al s ta te s . If we 
le t (1 -  a 2 )5 denote the ov erla p  betw een b and с phonons, we obtain  the fo l 
low ing  e x p re s s io n  fo r  the en e rg ie s  o f  the multiplet- o f  le v e ls  resu ltin g  in 
th is w ay:

C le a r ly , th ere  a re  5 le v e ls  in the m u ltip let, J" = 0 +, 1+ , 2 + , 3 + , and 4 + . 
F u rth e rm o re , the o v e rla p  betw een  the p ro la te  and ob late  states is  sm a ll,
i . e .  : 1, so  that the dom inant term  in the e x p re s s io n  is  the o ^ -te r m .
T h e re fo r e , the re la tiv e  sp acin g  o f the le v e ls  is  fixed  by the 6 - j  sy m b o l.
Only the absolu te  sp ácin g  is  ad justed  by a c h o ice  o f  K . The sm a ll deviation  
o f  a  fr o m  unity enables sm a ll sh ifts o f  the odd le v e ls  re la tiv e  to the even 
o n e s .

W e find a v e r y  s a t is fa c to ry  agreem en t to the 28Si sp ectru m  by ch oosin g  
a 1 -  0. 94, К = - 0 . 5  M eV and E +fiu2 = 7'. 2 M eV (see  F ig . 1). Som e le v e ls  
a re  ou tside o f  th is s im p le  m o d e l. F ir s t ,  le v e ls  below  the p ro la te  "ground 
sta te "  (the 0+ at 4 .9 7 ) should belong  e n tire ly  to the ob late  s tru ctu re . The 
3 '  le v e l at 6. 88 M eV is  p rob a b ly  an octu p ole  v ibra tion  w hich  cannot be 
given  by the s im p le  m od el H am iltonian o f E q . (2 ). F in a lly , the 3+ at 6. 27 
is  so  low  that it p rob a b ly  be lon gs e sse n t ia lly  to the ob late  stru ctu re  -  th ere 
is  in d ica tion  [3 ], both ex p erim en ta l and th e o re tica l, that it is  la rg e ly  o f  a 
s in g le -p a r t ic le  nature, a p a r t ic le -h o le  state built on the ob late  ground state

Though the e x ce lle n t fit obtained h ere , as opp osed  to the e a r l ie r  w ork , 
is  la rg e ly  fu rth ered  by the ad ju stable  p a ra m e te rs  o f the m od el, I must 
em p h a size  again  that the re la t iv e  sp acin g  of the m ultip let is  fixed , 
independent o f ou r ad ju stable  p a ra m e te rs . A lso , we explain  a ll the p os itiv e  
p a rity  le v e ls  in the in term ed ia te  en ergy  reg ion  6 . 5 - 8  M eV w h ereas the 
o th er w ork  cou ld  only, hope to fit a few  o f them , and we have a hope o f 
including  the o th ers  in the sam e g en era l fra m ew ork .

In addition , o b se rv e d  tran sition  ra tes  a re  con sisten t with th is m od el.
In p a rticu la r , tran sition s ' betw een  states be long in g  to the sa m e stru ctu re  
(p ro la te  o r  ob late) should be p r e fe r r e d  to  c r o s s - o v e r  tra n s it io n s . Indeed,

+ e2( l - a 2) 2 ( l + ( - ) J ) ( 2  2 j ]  
[  2 2 2 J + 2 + ( - l ) J (5)
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the sta tes at 6 .6 4  M eV (0+) and 7 .8 0  M eV (3 + ) o f  the m u ltip let p rod u ced  
by the sp littin g  o f the p ro la te  phonon a re  known [6] to  have inhibited  tr a n s i
tion s to  the predom in antly  ob late  J = 2+ state at 1. 77 M eV .

I have em p h a sized  that th is is  a m od e l ca lcu la tion  and should be fo l 
low ed  by  a m o re  deta iled  in vestigation , in p a rt icu la r , a ca lcu la tion  o f the 
p a ra m e te rs  K , a  fr o m  m ic r o s c o p ic  c o n s id e ra tio n s . A p o s s ib le  w ay o f 
in clud ing  the cou p lin g  betw een  the two s tru ctu re s  fr o m  the start, in a s e l f -  
con s is ten t m anner, is  to take as a tr ia l function  a sum  o f  tw o (o r  m o re ) 
determ in an ts (ra th er  than one as in the usual H .F .  m ethod ):

* = а 1Ф1 + а 2Ф2

w h ere  is  an ob late  and Ф2 is  a p ro la te  in tr in s ic  fu n ction . Such m u lti
con fig u ra tion  H a r tr e e -F o c k  ca lcu la tion s  have been  done in a to m ic  p h ys ics  
and p erh aps it is  not too  e a r ly  to  attem pt such a step  in n u c lea r  s tru ctu re  
ca lcu la tion s  [7 ].
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Abstract

C O U PLE D -C H A N N E L  C A L C U L A T IO N  O F T H E  IN TER A C T IO N  O F NUCLEONS W ITH  T H E  C O LLE C T IV E  MODES 

O F  NUCLE I.

1. Introduction; 2. T he  form alism ; 3. T he  extrem e surface coup ling  m odel; 4 . T he  co lle c t iv e  

doorway states.

1. IN TROD U CTION

T h is p ap er d ea ls  with the cou p led -ch a n n e l ca lcu la tion  o f  the e la s tic  
and in e la s tic  in te ra ctio n  betw een  n u cleon s and " c o l le c t iv e "  n u c le i. The 
p u rp o se s  a re  m ain ly  d id a c tic .

The startin g  point o f  the ap proa ch  is  a m od e l H am ilton ian  fo r  the d e 
sc r ip t io n  o f  the ta rget sp e ctru m . The to ta l w ave fu nction  is  then rep re se n te d  
by th ese  m od e l w ave fu n ction s, by su itab le  tru ncation  o f  the rep resen ta tion  
sp a ce .

The m ethod has b een  w idely  ap p lied  in  the fra m e w o rk  o f the m a c r o 
s c o p ic  p h en om en o log ica l d e s cr ip t io n  o f  the c o lle c t iv e  ta rg et [ 1 - 4 ] ,  w hile 
on ly  re ce n tly  have m ic r o s c o p ic  ca lcu la tion s  been  m ade [ 5 - 6 ] .

A p e cu lia r  fea tu re  o f  a ll th ese  ca lcu la tion s  is  that the sp a ce  truncation  
is  u su a lly  s e v e r e  so  that m anageable  d iffe re n t ia l sy stem s a re  dealt with. 
A fte r  th is the p ro b le m  m ay be so lv e d  ex a ctly , o f  c o u r se  with the aid o f  a 
co m p u te r . In th is con n ection , the m ethod m ay b e -co n s id e re d  to  be a 
g e n e ra liza tio n  o f  the o p t ica l m od e l, in the sen se  that n ear the usual average  
co m p le x  potentia l, the p o s s ib le  ex cita tion  (v irtu a l o r  r e a l) o f  few  in terna l 
d e g re e s  o f  fr e e d o m  o f  the ta rget a re  taken into a ccou n t. It m ust be fin a lly  
poin ted  out that a se r io u s  a p p rox im a tion  is  im p lic it ly  in trodu ced  s in ce  p o s 
s ib le  exch an ges betw een  the in com in g  n u cleon  and the ta rg e t n ucleon s 
a re  n eg lected .

The p r in c ip a l a im  o f  th ese  notes is  to  s t r e s s  the m od el as a g e n e ra to r  
o f r e so n a n ce s  o f  " in te rm e d ia te "  type, w hich  m ay be  a ctu a lly  seen  at low" 
e n e rg ie s  if  the h ypoth esis  o f  p rom in en t stron g  ex cita tion  o f  few  c o lle c t iv e  
ta rg et le v e ls  is  fu lfille d .

2. THE FO RM ALISM

L et us su m m a rize  b r ie f ly  the fo r m a l content o f  the m ethod fo r  easy  
r e f e r e n c e i ,

i  For de ta ils  see, i . e .  Tam ura [4] and G lendenn ing [6].
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The total H am iltonian rea d s :

H (r , 1 ) = T (r) + Ht'( f  ) + v (r , 1) (1)

■where T is  the k in etic  en ergy  o f re la tiv e  m otion , Ht the ta rget H am iltonian 
and v the in tera ction  potentia l. The sy m b o l g stands fo r  the in terna l ta rget 
c o -o rd in a te s  and w ill be b e tter  defined la ter , in the fra m ew ork  o f  a g iven  
m od e l.

L et us ch o o se  a rep resen ta tion  w here the orb ita l angular m om entum  Ï  
is  cou p led  with the p r o je c t i le  sp in  s, and the sum  j is  coup led  with the 
ta rget spin I , to g ive  J, M .

Then, fo r  a g iven  en tran ce channel c  = I (ground state), j, SL, the total 
w ave function  ф is  expanded as fo llo w s :

, JM u ç (r ) I cJM  )> +
I '

c n J M > (2)

w h ere  с п = I (ex cited  state), j, Í  la b e ls  a ll channels w hich  a re  coupled 
with c, through con se rv a t io n  o f  parity  and tota l angular m om entum .

The p r o je c t io n  o f the S ch röd in ger  equation on each  state <^c|, (  c m|
(JM is  om itted  fo r  the sake o f  b rev ity ) lea ds fin a lly  to  the fo llow in g  sy stem  
o f cou p led  equations fo r  the rad ia l w ave function  u (r):

(Tc -  E + <c I v| c>)uc + £  <c|v|cn> uCn =0 (3a)

< c m | v | c > u c + £  [ ( т С т + е С т - Е ) б т п + < с т |у|сп > ] и Сп =-0 (3b)

w here

s f t j / j d j  j j j + m  ( 4 .

C 2M V  d r2 r 2 J  W

and w here the ta rget e igen va lu es e Cjn r e fe r  to the g ro u n d -s ta te  en erg y .
The next step  is  a m u ltipole  expansion  o f the potential V, w hose elem ents 

c a r r y  the te n so r ia l ch a ra cte r  o f  the in teraction , and let the c c 1 coupling  
to be e ffe c t iv e .

In any c a se  the sp e c ifica t io n  o f the ta rget m od el is  n e ce s s a r y  at this 
stage in o r d e r  to m ove fo rw a rd . In the fra m ew ork  o f the m a c r o s c o p ic
p h en om en o log ica l c o l le c t iv e  m o d e ls  (to w hich  we sh a ll r e fe r  fr o m  now on),
a p o s s ib le  p ro ce d u re  is  to w rite

V = -(V 0 + iW 0 ) f ( r - R )  (5)

w h ere  f  m ay be , fo r  exam ple , the usual W ood and Saxon fo rm

2 The  com p lica tions o f  surface absorption, sp in-orb it forces and possible Cou lom b in te raction  are 

disregarded in  th is o ve rs im p lified  exam ple.
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(f (r  -  R) = { 1 + exp [r  -  R) I a ] } _1) and R is  su pp osed  to  be an gu lar-d epen den t 
a c c o rd in g  to  the d e fo rm e d  o r  d e fo rm a b le  potentia l a ssu m e d .

B y m u ltipo le  expan sion  o f R, and p ow er expan sion  o f f in  the coup ling  
con stan ts , one can  w rite  dow n V , sep a ra ted  in d iagon al and n on -d iag on a l 
com p on en ts:

V = V u • , + V . (6)spherical tensor ' 1
A  su itab le  exam p le  is  obtained  by reta in in g  on ly  the qu ad ru pole  te rm  in the 
rad iu s and the lin e a r  te rm  in  the p oten tia l. F o r  an (ax ia lly  sy m m e tr ic )  
d e fo rm e d  n ucleu s we have:

V sPh e r i c a l ^ = - ( V 0 + i W 0 ) f ( r - R 0 ), (7a)

Vtensor^ ^  = <V0 +ÍW0^Ro / f  [ f  ] i  V™ (?) Y™* (I) (7b)

w h ere  we a re  ab le  now to  sp e c ify  the c o -o rd in a te s  f , as the target 
or ien ta tion .

What is  in terestin g  to le a rn  fro m  th is exam ple  is  that
1) the expan sion  in the cou p lin g  constant d e term in es  the ra d ia l 

depen den ce o f  V tensor. In p a rt icu la r , f i r s t - o r d e r  expan sion  m eans su r fa ce  
coup ling ;

2) the m u ltipole  expan sion  fix e s  the te n so r ia l rank o f  the in tera ction ,
and

3) the d eta ils  o f  the ta rget m od e l ap pear on ly  as a fo r m  fa c to r  in the 
ta r g e t -s p a c e  com pon ent o f  the Vtensor red u ced  m a tr ix  e lem en ts  (in the 
g iven  exam ple  <1 || Y2 (I) || I ’ > ).

3. THE E X T R E M E  SU RFAC E CO U PLIN G  M OD EL (ESCM )

A fu rth er  sch em a tiza tion  m ay be in trodu ced  into the m o d e l by  assu m in g  
fo r  the rad ia l depen den ce f (r )  a sq u a re  w e ll [7 -9 ] :

f.(r) = 0 fo r  r > R Q; f (r ) = 1 fo r  r  < R Q (8)

If su r fa c e  coup ling  is  c o n s id e re d  ( ir r e s p e c t iv e  o f  the ta rg e t m od el 
em p loyed ), the te n so r  potentia l conta in s a delta  function , and the sy ste m  
o f equations can  be in tegra ted  e a s ily .

It is  c le a r  that, at th is stage o f  sch em atiza tion , the m o d e l is  no lon ger  
c lo s e ly  re la ted  to  the p h y s ica l p ictu re  fr o m  w hich  we s ta r te d . In sp ite  of 
th is , the ESCM  can  be u se fu lly  em p loyed  e ith er  in  the fra m e w o rk  o f ou r 
p h y s ica l m od el, at le a st, in se a rch in g  f ir s t  ap p rox im a te  data, o r , in a 

•more g e n e ra l context, as an e x a ctly  so lu b le  su r fa ce  in te ra c tio n  m od e l.
The point is  that, in  sp ite  o f  the sch em a tiza tion  in the ra d ia l fo r m , the 
m o d e l re ta in s  e n tire ly  its te n s o r ia l nature, ab le  to gen era te  re so n a n ce s  o f 
in term ed ia te  type .

B y m eans o f E q . (8) the d iffe re n t ia l sy s te m  (3) is  tra n s fo rm e d  into the 
fo llo w in g  a lg e b ra ic  sy s te m  (se e  R e f. [9 ]):
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(9a)
n

I  [ ( Z cro- ^ c J  « mn
+ a = 0 (9b)

n

H ere Z  is  an e ffe c t iv e  in tern a l lo g a r ith m ic  d er iv a tive  w h ere  a ll su r fa ce  
e ffe c ts  o th er  than cou p lin g  a re  included ( i . e .  sp in -o r b it  fo r c e s  w hich  have 
been  om itted  in E q . (5)) S + iP  is  the outgoing w ave lo g a r ith m ic  
d e r iv a tiv e  [10] and ac_. a re  pure g e o m e tr ic a l constants re la ted  to  the 
m a tr ix  e lem en ts3 < c  |Vtensor | c 1 > • The on ly  unknown in E q . (9) is  the open 
channel ex tern a l lo g a r ith m ic  d er iv a tive  z c w hich  is  im m ed ia te ly  d er iv ed  
fr o m  E q .(9 ) ;  n am ely :

with obv iou s m eaning  o f  the determ inants S).  O nce the ex tern a l log a r ith m ic  
d e r iv a tiv e  zc is  known, the ca lcu la tion  o f  e la s t ic  and in e la s tic  c r o s s -  
se c t io n s  is  s tra ig h tforw a rd .

Equation  (10) is  in terestin g  sin ce  it r e a liz e s  in a v e ry  ea sy  way (at 
the p r ic e  o f  an o v e rs im p lif ie d  m od el), the sep ara tion  betw een  the entran ce 
channel с and the cou p led  channels c n. In p a rt icu la r , one can  e a s ily  
r e co g n iz e  at le a s t  in  the e la s t ic  ca se  and in th e -w ea k -cou p lin g  lim it that 
the c r o s s - s e c t i o n  is  co m p o se d  o f s in g le -p a r t ic le  re so n a n ce s  (c o r r e s p o n d 
ing to  the z e r o s  o f  the e la s t ic  channel function  Z c ), tog e th er  with re so n a n ce s  
o f  in term ed ia te  type (in  c o rre sp o n d e n ce  with the z e r o s  o f  the c lo s e d -  
channel determ inant S>c c ). T h ese  re su lts  m ay be u se fu lly  com p a red  with 
the g e n e ra l p ro p e r t ie s  o f  the cou p led -ch a n n e l sy stem , w hich  can  be deduced  
by m eans o f  F e sh b a ch 's  ap proa ch  [11].

4 . THE C O L L E C T IV E  DOO RW AY STATES

T he p h y s ica l idea s w hich u n d erlie  the C ou pled-ch an nel ap proach , can 
be in terp re ted  in te r m s  o f the d o o rw a y -s ta te s  h ypoth esis , as form u lated  
by  F esh b a ch  [12 ]. The c o lle c t iv e  doorw a y  states dealt w ith in ou r  p rob lem  
a re  intended as fo llo w s : the in com in g  n ucleon  e x c ite s  the ta rget to  a c o l 
le c t iv e  le v e l and is  captured  in a bound o rb it  around it, having lo s t  part 
o f  its en erg y ; a fte rw a rd s  the sy stem  m ay d ev e lop  tow ard s m o re  com p lica ted  
s tru c tu re s  [13 ]. In th is con n ection , it s e e m s  p a rt icu la r ly  in terestin g  to 
apply  the m o d e l to c a s e s  o f  light ta rg ets  and lo w -e n e r g y  p r o je c t i le s ,  w here 
it is  re a so n a b ly  a ssu m ed  that the ex cita tion  o f the c o lle c t iv e  d oorw a y  states 
is  the m ost co m p lica te d  thing w hich h appens. If th is w e re  the c a s e , a 
s im p le  cou p led -ch a n n e l ca lcu la tion  w ould be ab le  to  d e s c r ib e  co m p le te ly  
the lo w -e n e r g y  c r o s s - s e c t i o n  beh av iou r. Such ca lcu la tion s  have been

3 In  the particu la r exam p le  o f Eq .i'O  it  is g iven by

(10)

n
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c a r r ie d  out s u c c e s s fu lly  by m any authors [ 1 4 -1 9 ] ,  in  the ca se  o f the 
n u c le o n -12C p r o c e s s .  Why is  ca rb on  b e tter  than oth er light n u c le i?  The 
r e a so n s  a re  the fo llow in g :

1) The 12C is  a s tron g ly  d e fo rm e d  nucleus [20] with a high 2+ e x c ita 
tion  en ergy , so  that a w ide en erg y  in terva l is  a llow ed  to  the in com in g  
n ucleon  below  o r  not m uch above the in e la s tic  th resh o ld .

2) The sep a ra tion  en erg y  o f  a neutron  (proton ) fr o m  13 С ( 13N) is  r e la 
t iv e ly  low , so  that by  m eans o f  the n - 12C ( p - 12C) sca tter in g , one m ay 
e x p lo re  a lo w -ly in g  re g io n  o f the 13C ( 13N) com pound sy ste m .

A part fr o m  s e v e r a l  u n reso lved  d e ta ils , a ll the a n a lyses  c a r r ie d  out 
so  fa r  [ 8 - 1 1 ] ,  c le a r ly  in d icate  that both n - 12C and p - 12C lo w -e n e r g y  c r o s s -  
s e c t io n s  can be s a t is fa c to r ily  explained in te rm s  o f s in g le -p a r t ic le  
re so n a n ce s  and c o lle c t iv e  d o o rw a y -s ta te  re so n a n ce s .

A s to the d eta ils  o f  the a n a ly s is , we r e fe r , in p a rt icu la r , to the recen t 
p a p ers  [18] and [19] devoted  to neutron  and p roton  sca tter in g , r e s p e c t iv e ly 4 . 
A m ong the "still open qu estion s it is  w orthw hile to  m ention  the p ro b le m  o f 
the 0+ -  2+ cou p lin g  strength , in con n ection  with o th er kinds o f  ex p erim en ta l 
in d ica tion s ( i . e .  C ou lom b ex cita tion  ex p erim en ts  and m e a n -life  
m ea su rem en ts  [22 ].

A s a fin a l rem a rk  we want to u n derlin e  the obv iou s fa ct that both s in g le 
p a r t ic le  and in term ed ia te  states and both e la s t ic  and in e la s tic  c r o s s -s e c t io n s  
a re  h e re  ca lcu la ted  at the sa m e tim e , fr o m  the sam e p oten tia l. T h is is  
an im portan t fea tu re  o f  the th eory , but lea d s to understandab le  fitting 
d iff icu lt ie s , e s p e c ia lly  when m any p a rtia lly  in te r fe r in g  re so n a n ce s  a re  
dealt with [23 ]. In th is con n ection , the p ra c t ic a l in te re s t  o f  an ex a ctly  
so lv a b le  sch e m a tic  m o d e l (lik e  the ESCM ) should be r e co g n iz e d  on ce  m o r e .
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Abstract

O P T IC A L  M O D EL AN D  D IR EC T  REACTIONS.

The  presentation o f the o p t ica l m ode l chosen in  this paper perm its a study o f  the re lationsh ip between 

gross structure and fine  structure o f nuclear cross-sections by starting from any approxim ate solution o f the 

nuclear m any-body problem . In particu lar, new insights in to the theory o f d ire ct nuclear reactions are 

provided.

1. A co m p a riso n  o f the data on n u c le o n -n u cle u s  sca tter in g  with the 
ex p ecta tion s  o f  a m o d e l in volvin g  on ly the o b s e rv a b le s  needed  to  d e s c r ib e  
the n u c le o n -n u cle u s  re la tiv e  m otion  w as tr ie d  quite e a r ly  in the s to ry  o f 
n u c le a r  p h y s ic s  [1 ]  .

But the d is c o v e r y  o f n a rro w , c lo s e ly  sp aced  re so n a n ce s  in the lo w - 
en erg y  n eu tron -n u cleu s  c r o s s - s e c t i o n s  [2 ]  ru led  out the p r im itiv e  potentia l 
w e ll m o d e l and su ggested  co n s id e ra tio n  o f  n u c le o n -n u cle u s  sca tte r in g  as a 
m a n y -p a r tic le  p r o c e s s .  T h is v iew  w as c le a r ly  stated  by  N. B oh r in h is 
fam ou s a d d ress  [3 ]  to the Copenhagen A cadem y  in 1936. The fa ct that the 
o b s e rv e d  c r o s s - s e c t i o n  turned  out to be m a in ly  cap tu re , at r e so n a n ce , 
le d  B oh r to  the assu m ption  that the incident neutron , im pin gin g  on the ta rget 
n u c leu s , qu ick ly  sh a res  its en erg y  with m any oth er n u cleon s through its 
stron g  in teraction  with them : th is fo rm a tion  o f  e x cite d  com pou nd states 
should  be , th e r e fo re , an in term ed ia te  e sse n t ia l step  in any n eu tron -n u cleu s  
re a c tio n . The long  l i fe -t im e  o f e x cite d  sta tes , as shown by the width o f the 
re so n a n ce s , w hich  a re  s e v e r a l o r d e r s  o f  m agnitude s m a lle r  than p re d ic te d  
by  the p oten tia l w e ll m o d e l, w as taken as an in d ication  that the n u cleon  
m otion s  in the com pou nd sy s te m  w ere  e x tre m e ly  u n likely  to  p rod u ce  again 
a con cen tra tion  o f  the en erg y  on one p a rt ic le , a llow ing  it to  e s ca p e , and 
the sy ste m  to d ecay  into som e  o f  the open chann els . The c lo s e  sp acin g  
o f  the re so n a n ce s  w as in terp re ted  by assu m ing  that m any (o r  p o s s ib iy  a ll) 
ta rg e t n u cleon s take part in the p r o c e s s  o f com p ou n d -n u cleu s  fo rm a tion : 
le v e l  d is ta n ces  o f  a f ew  eV  in sy s te m s  o f  n u c lea r  s iz e  can o c c u r  i f  a la rg e  
n u m ber o f p a r t ic le s  are  in volved  in the excita tion .

The change fr o m  the p o te n t ia l-w e ll to  the com p ou n d -n u cleu s  m od e l 
ev iden tly  in v o lv es  a d ra s tic  change in the v iew s  about the m ech a n ism  o f 
n eu tron -n u cleu s  re a c tio n s : in the f ir s t  c a s e , the m ean  fr e e  path o f a neutron  
in the n ucleu s is  in fin ite w hile in the se co n d  c a se  it is  e sse n tia lly  z e ro .
T h is  d ra s tic  change a lso  b r in g s  with it the n e ce s s ity  o f  co n s id e r in g  any 
n eu tron -n u cleu s  re a ctio n  as a m a n y -p a r tic le  p ro b le m , w hich  at the tim e 
o f  B o h r1 s a d d re ss  w as a c c e s s ib le  to  som e  kind o f  s ta t is t ica l treatm en t, 
at m ost.

C on sid erin g  an iso la te d  n arrow  r e so n a n ce , it se e m e d  natural to think 
o f it in te rm s  o f an a lm ost sta tion a ry  state, w hose  d eca y , o f c o u r s e , d oes  
not depend on its fo rm a tion : the qu an tu m -m ech an ica l treatm en t o f  r e s o 
nan ce phenom ena w as in itiated  by  B re it  and W ign er [4 ]  at about the sam e
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tim e  as B ohr p ro p o se d  the com p ou n d -n u cleu s  m o d e l o f  n u c lea r  re a c tio n s , 
and the fo rm  w hich  they determ in ed  fo r  the "re so n a t in g "  tran sition  a m p li
tude soon  b e ca m e  a standard ingredient in the p a ra m etr iza tion  and d is cu ss io n  
o f  ex p erim en ta l data.

In the ca se  o f  c lo s e ly  sp aced  re so n a n ce s  one has to  take into accoun t, 
at any g iven  en erg y , the con trib u tion s o f  m any overla p p in g  B re it -W ig n e r  
am plitud es: fo r  the tran sition  fr o m  any in itia l state | i ' t o  any final 
state |f')> the p rob a b ility  am plitude should then read

E „ = R e E B - iTvf¿.  The sum  o v e r  the index v is  o v e r  the com pound 
n ucleu s re so n a n ce s  w hose p os ition  and width a re , o f  c o u r s e , re la ted  to 
R eE y  and Гу, r e sp e c t iv e ly . The a ^ f 1, ! '  ) a re  p ro p o rt io n a l to  the p r o b a b i
lity  am plitude o f  the p r o c e s s  in volvin g  the fo rm a tion  o f  the state |i' У o f 
the com pou nd state |i>У and then its decay  into the state | f 1 У .

T o com pute the a¡/(f', i 1 ) o f Eq. (1), one should be able to  s o lv e , at 
le a st ap p rox im a te ly , the n u c lea r  m a n y -bod y  p rob lem .

T h ere  w ere  attem pts [5 ]  m ade to  c ircu m v en t th is d ifficu lt cond ition  
by  assu m ing  that the a ^ f 1 , i 1 ) should have p r o p e rt ie s  such as to lead  to an 
ap prox im ation  fo r  the c r o s s - s e c t i o n s  con s isten t with B o h r 's  qualitative 
m o d e l o f  n u c lea r  r e a c tio n s , in p a rt icu la r , with the assum ption  o f in d e
pen den ce betw een  fo rm a tion  and d eca y  o f  the com pound n u cleu s, and 
a c c e s s ib le  to som e kind o f s ta t is t ica l evaluation , on ly "e n se m b le  p r o p e r 
t i e s "  o f the a „(f' i 1 ) being  re leva n t in that ca se .

It has been  found that assu m in g  a random  d istribu tion  o f the a„(f' i 1 ) 
a llow s  us to obtain  independence o f fo rm a tion  and decay  on the a v erag e , 
the a v erag e  being  c a r r ie d  out o v e r  en erg y  in terva ls  contain ing a su itably  
la rg e  n um ber o f le v e ls  o f  g iven  spin and p a rity  [ 5 ] .

The random  d istribu tion  o f the ay (f ' i ' ) can be in terp reted  by saying 
that the coup ling  to the | i 'X  |f')> states d oes  not s e le c t  any " s p e c ia l"  o r  
"p r e fe r r e d "  d ire c t io n  in the sp a ce  o f  com p ou n d -n u cleu s  sta tes [ 6 ] .

Now, i f  the com p ou n d -n u cleu s  m o d e l o f  n u c lea r  re a ctio n s  is  va lid , 
th is im p lie s , as em p h a sized  above, that the m ean fr e e  path o f n ucleon s 
in n u cle i is  m uch le s s  than the n u clear  d im en sion s.

If th is is  tru e the n u cleon -n u cleu s  in tera ction  should a ffect the 
r e la t iv e -m o tio n  w ave function , e .g .  o f  the n eu tron -n u cleu s  state as an 
a lm ost p u re ly  im ag in ary  potentia l [ 7 ] ,  and the m o r e  so  at e n e rg ie s  w here 
m any ov erla p p in g  re so n a n ce s  a re  in volved .

A lthough a potentia l o f  th is kind g iv e s  r is e  to  e la s t ic  sca tter in g  through 
shadow  d iffra c tio n , it turns out that the d iffe ren tia l c r o s s -s e c t i o n  fo r  such  
a sca tter in g  show s no d iffra c tio n  m a xim a , and the tota l c r o s s -s e c t io n  
v a r ie s  sm ooth ly  with en ergy .

A cco rd in g  to  what w as stated p re v io u s ly , th is w as ex p ected  to  be 
v e r if ie d  ex p e rim e n ta lly , at le a s t , fo r  the a v erag e  c r o s s -s e c t io n s .  In c o n 
tra s t  to th ese  ex p ecta tion s , by doing m ea su rem en ts  o f  tota l neutron  c r o s s -  
se c t io n s  in con d ition s  o f  p o o r  en erg y  re so lu tio n  B a rsh a ll and c o w o r k e rs  [8 ]  
found an o s c i l la to r y  en erg y  depen den ce, show ing a kind o f  " r e s o n a n c e s "  
with w idths o f  the o r d e r  o f  one o r  tw o M eV . They w ere  nam ed "giant

(1)

V

with T ^ j. vary in g  on ly s low ly  with the en erg y  E = E¡< = Ef> and with
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r e s o n a n c e s "  b e ca u se  th e ir  w idths are  se v e r a l o r d e r s  o f  m agnitude la r g e r  
than th ose  o f the com pou nd n u cleu s re so n a n ce s : F esh b ach , P o r te r  and 
W e issk o p f [9 ]  show ed that such  "g iant r e s o n a n c e s "  a re  rea son a b ly  w e ll 
r e p ro d u ce d  by  a m o d e l w here the sca tter in g  o f  the neutron  is  evaluated  by 
so lv in g  a o n e -b o d y  S ch röd in g er  equation  with a co m p le x  sq u a re -w e ll  
potentia l.

T h ere  is  no n atural explanation  fo r  such giant r e so n a n ce s  in the 
com p ou n d -n u cleu s  p ic tu re .

So we are  con fron ted  with the p ro b le m  o f understanding n u c le a r  re a ctio n s  
such as to explain  both the n a rro w , c lo s e ly  sp aced  r e so n a n ce s  o b se rv e d  
with su ffic ien tly  good  en erg y  re so lu tio n  and the giant r e so n a n ce s  appearing 
in p o o r  re so lu tio n  ex p e rim e n ts . T h is p ro b le m  o f the re la tion sh ip  betw een  
fin e  s tru ctu re  and g r o s s  s tru ctu re  o f  n u c lea r  c r o s s - s e c t i o n s  has been  
ca r e fu lly  studied, by startin g  fr o m  the in itia l su g gestion s  o f L ane, T h om as 
and W ign er [1 0 ]  and, fu rth er  on, by try in g  to d is c o v e r  w hich  p r o p e rt ie s  
o f  the n u c le a r  m a n y -b od y  sy ste m s a re  re leva n t fo r  a d eterm in ation  o f this 
re la tion sh ip  [1 1 ,1 2 ]  as re v e a le d  by the ex p erim en ts . R oughly speaking, 
what m a n ifests  it s e l f  h e re  is  the s in g le -p a r t ic le  s tru ctu re  o f n u c lea r  sta tes, 
o r ,  in o th er  w o rd s , the e x is te n ce  o f  p r e fe r r e d  d ire c t io n s  in the sp ace  o f 
the com p ou n d -n u cleu s  sta tes e sp e c ia lly  th ose  what a re  cou p led  to  the in itia l 
a n d /o r  fin a l n u c le o n -n u cle u s  sta tes , and so  g iv ing  r is e  to  d ev iation s fro m  
ra n d om n ess  o f  the a „(f' i 1 ) c o e ffic ie n ts  o f  Eq. (1) such  as to  p rod u ce  [1 2 ] 
the g ia n t-re so n a n ce  beh av iou r  in the tra n sition  am plitude, averaged  o v e r  
a su itab ly  ch osen  en erg y  in terva l.

The p resen ta tion  o f  the o p t ica l m o d e l w hich  we sh a ll g ive  h e re  has 
been  co n ce iv e d  such  as to  a llow  a study o f the re la tion sh ip  betw een  g r o s s  
s tru ctu re  and fine stru ctu re  o f  the n u clea r  c r o s s - s e c t i o n s  by startin g  fr o m  
any ap p rox im a te  so lu tion  o f the n u c le a r  m a n y -b od y  p ro b le m .

In p a rt icu la r , it w ill a lso  p ro v id e  us with new in sigh ts into the th eory  
o f  d ire c t  n u c lea r  re a ctio n s .

As p re v io u s ly  m entioned,, the giant r e so n a n ce s  have b een  d is co v e r e d  
as a p ro p e rty  o f n eu tron -n u cleu s  sca tter in g  c r o s s - s e c t i o n s  when they w ere  
m e a su re d  by bea m s with a ra th er  substantia l sp rea d  in neutron  e n e rg ie s .

Now, fro m  the w e ll known [ 13 ] equation

(2 )

usu ally  ca lle d  the "o p t ic a l th e o r e m " , and lin e a r ly  re la tin g  the to ta l c r o s s -  
se c tio n  CT̂ot to  the fo r w a rd -s ca tte r in g  am plitude T £ £  , we obtain  by a v e r 
aging o v e r  an en erg y  in terva l I around Ek = E

c M  = -Í ~  Im T?k L I к к, к

The p r e c is e  w ay in w hich  w e c a r r y  out the averag in g  should not be o f  
any sp e c ia l re le v a n ce  in the fo llow in g  co n s id e ra tio n s , so  we ch o o s e  the 
defin ition

СТ̂ } : =/ dEk M E ’ Ek K ot (3)
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with the n o rm a liz e d  w eighting function

tt (E-Ek)2 + I2 (4)

If in the en erg y  in terva l I the v a r ia tion  o f  к is  n e g lig ib ly  sm a ll, we are 
a llow ed  to  w rite

7 г { ,п1ТИ л (5)

W e read  in Eq. (5) that the m ean  tota l c r o s s -s e c t io n  is  d ir e c t ly  d eterm in ed  
b y  the m ean sca tter in g  am plitude. F o r  the en erg y  average  o f the d iffe ren tia l 
e la s t ic  sca tter in g  c r o s s -s e c t i o n  we have

daJUs. L-
d^T TT('Д к ' , к  I (6)

show ing that it is  determ in ed  by  the m ean  sca tter in g  am plitude on ly  when 
the fluctuation  te r m  within the square b ra ck e ts  on the righ t-h an d  side above 
is  n eg lig ib le .

The p h y s ica l m eaning o f  the two te rm s  contributin g  to the e la s tic  
c r o s s - s e c t i o n  can be c la r if ie d  by a tim e-d ep en d en t treatm en t [1 4 ] :  the 
m ean  am plitude d e s c r ib e s  the sca tter in g  o f a w ave pack et o f  width I
around E¡( = E , as d eterm in ed  by se le ct in g  out, in the detection  o f the 
sca tte re d  p a r t ic le s , on ly  th ose  p a ss  o v e r  the ta rget in a tim e o f the o r d e r  
o f  1 / I 1. O f c o u r s e , i f  I is  su bstantia lly  la r g e r  than a ty p ica l com p ou n d - 
n u cleu s reson a n ce  width, such  p a r t ic le s  cannot c o rr e sp o n d  to  p r o c e s s e s  
in volv in g  com p ou n d -n u cleu s  fo rm a tion . The sca tter in g  d e s cr ib e d  by {Т£\tfjj 
is  co m m o n ly  te rm e d  " s h a p e -e la s t ic " .  On the other hand, the sca tter in g  
d e s c r ib e d  by the fluctuation  am plitude

TI?M? -  (T p .r f i (?)

in the p r e s e n ce  o f  com p ou n d -n u cleu s  p r o c e s s e s  ap p rec ia b ly  v a r ie s  o v er  
en erg y  in terva ls  o f the o r d e r  o f  the width o f  the com p ou n d -n u clea r  reson a n ce  
(~1 eV  at low  e n e rg ie s ). H ence the p a r t ic le s , w hose sca tter in g  is  d e s cr ib e d  
by T¡?, ■£, stay in the n u cleu s, by o r d e r  o f  m agnitude, a m illio n  t im e s  lon ger  
than tliose  o f  the sh a p e -e la s t ic  sca tter in g  co rre sp o n d in g  to  a w ave packet 
o f  a width o f  the o r d e r  o f  1 M eV . Of c o u r s e , i f  com p ou n d -n u cleu s  p r o c e s s e s  
con tribu te  to  the e la s tic  sca tter in g  the in form ation  about them  is  c a r r ie d
byTf-.ïT- When

I TS\T<I

then the com pound e la s t ic -s c a tte r in g  p r o c e s s e s  con tribu te  to  the average  
e la s t ic  c r o s s - s e c t i o n ,  Eq. (6).

1 ft = с  = 1 units a re  used throughout.
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Owing to Eq. (5) it fo llo w s  that the average sca tter in g  am plitude {TJ;l(}i 
w ill be a ffe cted  by the e x is te n ce  o f  such com pound e la s tic  p r o c e s s e s ,  which 
is  m a n ifested  by its n on -u n itarity .

T h is fa ct am ounts to saying  that i f  a m od e l H am iltonian can be found 
d e s cr ib in g  the n u c le o n -n u cle u s  average  sca tter in g  and so  d eterm in ing  a 
sca tter in g  am plitude to  be co m p a re d  with {T^jÖl« th is H am iltonian  m ust 
take into accoun t the com pound p r o c e s s e s  as p rodu cin g  a p a rt ic le  lo s s  
fr o m  the e la s t ic  channel. C on sequen tly , such a m od e l H am iltonian cannot 
be a se lf -a d jo in t  op e ra to r . In fa ct, i f  |<//t̂ > is  the tim e-d ep en d en t w ave 
pack et o f  n u c le o n -n u cle u s  states and HM is  the m o d e l H am iltonian , we 
m ust have

1 I t  к  > = н м к  >

The ad joint equation is

l =<^t lHL

with H^i being  the ad joint o p e ra to r  to Нм.
It fo llo w s

i F t  H2 = i Ä ^ ' i't l^ t> =< ^ t l (HM -HM )k t >

If th en (9 /9 t) {j ipt II 2< 0 is  re q u ire d , to  d e s c r ib e  a lo s s  o f p a r t ic le s , we obtain

< ^ | lm H M ^ t > < 0  (8)

S ince the la st equation  m ust hold  tru e  fo r  any ch o ice  o f  the w ave pack et, it 
fo llo w s  that Im H M= (1 / 2i) (HM- H^) m ust be a n eg a tiv e -d e fin ite  op e ra to r .

2. We want now to d eterm in e  the m od e l o p e ra to r  HM such as to d isp lay  
its  re la tion sh ip  with the or ig in a l p h y s ica l H am iltonian H o f the n u clea r  
m a n y -b od y  sy ste m s as w e ll as w ith the se le ct io n  o f p r o c e s s e s  w hich it 
m ust d e s c r ib e .

T o  find a p ro p e r  startin g  point let us f ir s t  co n s id e r  the fo r m a l e x 
p r e s s io n  [1 5 ]  o f  the outgoing w a v e -sca tte r in g  e ig en sta tes  o f  the
S ch röd in g er  equation  fo r  the m a n y -b od y  n u clea r  sy stem .

w h ere , i f  ej* is  the c re a tio n  o p e ra to r  o f  a neutron  in the p la n e-w av e  state 
w ith m om entum  It, ф0 У is  the ground state o f  a s p in -z e r o  ta rget and c^ У 
a s in g le -n u c le o n  state

*oï> = >> E0k = Eo + “V uk = M + ¿M

(E0 - H ) ï „ > =  0; (uk - H ) 4 > = 0

VJ k >  -  ( H ‘ E ok) 4 * o >  = < [ H ’ 4  ] -  “ k 4 > V  г Vf i 4 >
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T o  s im p lify  m a tte rs , let us n e g le c t the r e c o i l  o f  the ta rg et, and c o n 
s id e r  the asym p totic  beh av iou r  o f  <( Y0c being  p ro p o rt io n a l to  the
p ro b a b ility  am plitude o f  finding the n e u tro n -p lu s -ta rg e t  sy ste m  in the state 
c t  f? )¥ 0^ when it is  in the state :

l im  <  Y(i с  (?) y (o+i >  = H m
r  -*00 j-1—*00 <Y0 с ( r ) c f  У0 >

*  ' ¿ S i * 4 ,  i G

2ir
/2 -ik-r e

Ok Ok' 

i k i

“ E - * vf 5 # T i ) V" î >Ok

(2 » fM < V 0~|>¡&>

1 1
ck z - H  z - H - u ^ *  +

(10)

w h ere  к 1 = к r / r ,  and use has been  m ade o f  the fo llow in g  equations:

l i m  Г  -» pik'-r „ pikr 7

, J  d 3 k >  1 "  F ( k ' ) ~ - ( 2 7 r f M ^ -  F ( k ^ )r  -»■ 00 тр(+) _ ТГOk b 0k’

<^0 ^  * o>  I = < W  4 V U
k=k* K_k

<+>,

F ro m  Eq. (10) it fo llo w s  that

Ttf.T? = - ( 2 ^ M < V 0 Ï .|?;'5>  (11)

Now le t us take the en ergy  average  o f both s id es  o f  Eq. (10); th is g iv e s

( ¿ Л е‘ г г '

•*? -*■ p*kr i k - r . H.__

(1 2 )

1 \3/2 
2tt т г .к ' , к

show ing that {T^i j ^ i s  the tra n sition  am plitude fo r  the sca tter in g  p r o 
c e s s e s  d e s c r ib e d  by  the state )>}¡. L et us re m a rk  that two states 
? № > ,  w ill g iv e  r is e  to the sam e w henever

(13)
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w hich  is  o f  c o u r s e  sa tis fie d  if, fo r  a ll r

< V ( ? )  *£?> <14>

h olds tru e , i. e. i f  the states У'о$У have the sam e p r o je c t io n  on the
su bsp ace  spanned by a ll c t  (г) У0 > sta tes. The p a ra m e te rs  sy m b o lize d  by 
r can  be substituted by any co m p le te  set o f  s in g le -p a r t ic le  quantum n u m bers: 
the su bspace  o f  a ll ct (г)¥ 0> s ta te s  is  the sam e as that o f  a ll c£  Y0 > states.
It is  the su bspace  o f  a ll n e u tro n -p lu s -n u c le u s  ct YQ> states w here the nucleu s 
is  in its ground state ¥0)>.

L et us denote by P 10 the p r o je c t io n  o p e ra to r  on th is su bsp ace  o f  the 
sp a ce  o f  the sta tes; Eq. (14) h olds tru e fo r  a ll r  i f  and on ly if

p i o ï i l >  = p i o ^ >  <15>

In p a rt icu la r , by defin ition

p 10c t ( r ) * 0 >= ст (? )$ 0 > (16)

and con sequ en tly , f o r  a ll r ,

<*o c <? ) {^ i> \  - < V  (*> (17>

S ince P 10 is  independent o f  E q^, it fo llo w s

г “ оо<*0 С (?) = ï ? e <4> C <18)

allow ing  us to  state that [Tg». j*}j is  a lso  the tra n sition  am plitude o f  the 
sca tter in g  p r o c e s s e s  d e s c r ib e d  by the state [Pio'i'o'f^V L et us s t r e s s  the 
point that the la tter  cannot g ive  r is e  to outgoing sp h e r ica l w aves in any 
in e la s tic  channel, s in ce  Pio p r o je c ts  out a sym p totica lly  any state not in 
clud ing  the ta rg et ground state: on ly  the s in g le -p a r t ic le  quantum n u m bers , 
e . g. k, are  a llow ed  to  change and so  on ly e la s tic  sca tter in g  is  p o s s ib le .
But i f  com pound e la s tic  and in e la stic  p r o c e s s e s  are  p re se n t in then 
th ere  w ill be  a lo s s  o f  p a r t ic le s  fr o m  the in itia l channel, that is fr o m  the 
su bsp ace  spanned by a ll su p erp os ition s  o f  {c^f 'FqMj sta tes.

Owing to E qs (12) and (18) it is  just th is lo s s  o f  p a r t ic le s  w hich  p ro d u ce s  
the n on -u n itarity  o f {T jJ .^ j.

L eav in g  u n d erstood  the depen den ce on the ta rg et quantum n u m bers , the 
function

4 +) 3 <*oc ?> {*$> }; = <*о с (19)

is  a p o s s ib le  defin ition  o f a. " s in g le -p a r t ic le "  w ave function  d e scr ib in g  the 
m ean  e la s t ic  sca tter in g  in the c o n s id e re d  n eu tron -n u cleu s  channel. Let 
us re m a rk  that Eq. (19) m akes p r e c is e  the p h y s ica l m eaning o f  Ф^(г)  fo r  a ll 
v a lu es  o f  ? ,  w h ereas  the usual o p t ica l-m o d e l w ave fu n ction s, gen erated
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fr o m  a co m p le x  potentia l w ell, are on ly known to  assign  a sym p totica lly  
the c o r r e c t  am plitude {Tj^ -jfljto the outgoing sp h e r ica l w aves.

Now if Eq. (19) d efin es the " o p t ic a l-m o d e l"  w ave function , what can 
w e say about its  c o rre sp o n d in g  "o p t ic a l-m o d e l"  H am iltonian?

T o get the answ er let us co n s id e r  the equation obtained fro m  Eq. (9) 
a fter  ap p lication  o f P10< by the averaging  p ro ce d u re

Ы Н  -  {рл > } , + K i b v»v>l-J0k"
(20)

3 + Pio E o k - H +  i i  V0k >

w here the varia tion  o f ancl Volt^ = (H -E Qk) ck^,o )> ^as been  rega rd ed  
as n eg lig ib le  in the in terva l I around E = E o k and use has been  m ade of

l E $ - H í  = E 0 k -H + iI  

L et us now define the p ro je c t io n  o p e ra to r  Q 10 such that

Pl0 + Qio = 1

and re m e m b e r  the a lg e b ra ic  iden tities

1 - Q i n = Pm T T U  Pin H Q ,  1io z  - H io lo Z - H  l o ^ ^ i o z - Q  H Q^10 ^10

-  1  . p  =  _______________P u l

io z - H  io z - p io h p i o - w io(z ) 

with 2

(21 )

(22 )

W !0 ( z > = Р ю Н %  7 7 q - h q - 4 oH P M  ( 2 3 )¿10 ^10

U sing the"se id en tities  we obtain

Ë ~ h T Ï Ï  Vô >  = P10 Ë ^ H T i t  P 10’ [ ( H - E 0 k ) ^ >0k и л

+ WiotEô  iT) Y0Ï?>

If the in terva l I can be ch osen  such that

we a re  a llow ed  to  w rite

-Im W10(E0k + i I ) > I  (24)
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{ p. .  < 5  >}, *  ! 'or> + e w . j í w  < < ”  -  4 » )  V k  > <26>
 ̂ ^ok к

with ■

H k Pt)=Pi o H Pic + w i o ( Eok + iI) = H M <27>

F r o m  E q. (26) w e find that is  the outgoing  w ave so lu tion  o f

(Eo k - H i°Pt) ) fPi o ^ > } f  0

determ in ed  by the " in it ia l s ta te "  ~  ( Ч о He nc e  the "o p t ic a l-  
m o d e l"  H am iltonian H^P^ determ in in g  (r ), Eq. (19), is  g iven  by Eq. (26). 
Quite c le a r ly  it is  a o n e -b o d y  o p e ra to r

t r ( ° P t )  _  p  T f j ( ° P 4  p
к io к 10

defin ed  in the sp ace  o f  c t ^ ) »  sta tes and produ cin g  th ere  on ly ch an ges in 
the s in g le -p a r t ic le  quantum n u m bers la b e llin g  c t .

F ro m  the defin ition  it is ,  ra th er  ob v iou s ly , a n o n - lo c a l  e n e rg y - 
dependent op e ra to r .

Its im ag in a ry  part can be w ritten

and finally

2i
H (°pt) _H(°Pt)t) = Im H[°P0 = Im  W (E . + ii)

Im f  Pln h | < * ' E '  > --------- Ц ------ - < a ' E '  IH P in
J  10 1 Eok- E 1 +  i i  1 10

a’ E* (28)

-  I Г P10 H |a' E ' >
a* E*

E 0k- E '  + il
< a ' E ' I H P10

ItoW 10(E 0+k n

w h ere  /  in d ica tes  sum m ation  o v e r  the d is c r e te  and in tegra tion  o v e r  the 
' a* E*

continuous sp ectru m  o f the co m p le te  set o f  a* E ' quantum n um bers la be llin g  
the e ig en sta tes  | o-1 E ' )> o f  QjqH Q jo.

Equation (28) c le a r ly  show s that Im H^P1) is  a n e g a tiv e -d e fin ite  o p e ra to r , 
as w e ex p ected  on p h y s ica l grou nds.

A lso  it can be r e a liz e d  e a s ily  that, i f  Yq can be ap prox im ated  with 
a sing le  S later determ inant У as in the c a s e  o f  a c lo s e d  sh e ll n u cleu s, 
then P10H P j0 can  be re p re se n te d  by the H a r tr e e -F o c k  H am iltonian d e te r 
m in in g  y¡fs)y  as its  low est e igen sta te . F ro m  Eq. (23) the determ in ation  o f  
W10.b e c o m e s  then a w e ll defin ed  p ro b le m . It c le a r ly  ap pears that W10
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vanishes with P10H Q 10: if H only in volves, at m ost, tw o-body nucleon- 
nucleon interactions, then P10 H Q10 can only have m atrix  elem ents connecting  
the space of the c t )> states to ct c tc  states such that P 10 c tc t  с¥0 )> = 0 .

The two p a rtic le -o n e  hole states satisfying this condition span a sub
space of the space of the states whose elem ents can be ex p ressed  as su p er
positions of (1 -  P10) ct c tc Y 0)> states: let us denote by P21 the projection  
operator over this space of two p a rtic le -o n e  hole s ta te s . •

If only tw o-body interactions are present in H, then

P10HQlO- P10 **Р21
If, fu rth erm ore, >== > we a lso  have

P H P  ~  p (s)HpCO 10 21 10 21
showing the relevance of the so -c a lle d  core-p o la riza tio n  term s in the 
resid u a l nucleon-nucleon interaction to get a rea listic  evaluation of W10. 
O bviously, any such evaluation w ill involve an approxim ation to 
Q lo /(z  -  Q jH Q lc)j let us just mention here that sev eral such approxim ations 
have already been suggested and studied in the literature [ 1 6 ] .

If the sh e ll-m o d e l approxim ation for cannot be regarded as good,
a calculation of W jo m ight be carried  out by m ethods sim ila r  to those in tro
duced [16  ] to study the m atrix  elem ents of the resolvent operator in the 
n u clea r-m an y  problem : a carefu l treatm ent of this problem  in the case of 
finite "s p h e r ic a l"  nuclei, with a proper substitution of the rotation in
varian ce to the translation invariance exploited in "in fin ite "-n u c le a r -  
m atter studies is not yet available.

If the sh e ll-m o d e l approxim ation is not only good for >but a lso  for, 
at le a st , a selection  of bound states of the neighbouring nuclei with one 
p a rtic le  or one hole added to |y0 )>, then the core -p o la riza tio n  term s in the 
nucleon-nucleon interaction give negligibly sm a ll m atrix  elem ents and the 
o p tica l-m o d e l scattering "e s s e n t ia l ly "  reduces to H a rtre e -F o c k  scattering, 
i. e. to the scattering due to PaoHP10 H P # ) .

Let us rem ark  that if  denotes the outgoing wave solution of

(E 0 k -P10H P 10)X(;¿ >  = 0 (29)

Ф  = ? o t >  +  и , , , (P l° H P l ° '  E * >

we can w rite Tjj. Д so as to put in evidence the scattering amplitude 
determ ined by Pi0 H P 10. We have, in fact

n í  > ■ + Ï Ç T 7 Î  v.’i >

- $ >  <H - p . . H p . . > « >  <30>Ok
l  ^  „ т .  (+!

w here use has been m ade of Eq. (29), im plying = 0>
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F ro m  Eq. (30) we rea d ily  obtain , fo r  E ok= E ok.= E ,

<voTfÆ> = <voí-lxó?> + <Voï'l ЁШТн Q!oH $ >

“ ^  v oí ( 'I"XalcУ +  ^ I  \ j e (+)-  p 10 h P10 P l ° ^ ^ i o +  Q io  ' j Ë F T h

=< Vok-l* o î>  + Qio Q 10H * S >

and th e r e fo re , with

т д  = - (2 ^ м < у 01Гь (0? > | к, =к
the d ecom p os ition

T Tc’ ,lt = Т Й  -  (2 - ) 2 м < а д Н %  Ё ^ Г н  Q io H X o 1 > lk- =k <3 1 >

The secon d  te rm  on the righ t-h an d  side  o f  Eq. (31) b e c o m e s  n eg lig ib ly  
sm a ll when the " o p t ic a l-m o d e l"  sca tter in g  re d u ce s  to  the H a r tr e e -F o ck  
sca tter in g  and ¥0 У

It is  th is te rm  w hich  conta in s the en ergy  dependence o f the e la s t ic -  
sca tter in g  am plitude cau sed  by the com p ou n d -n u cleu s  re so n a n ce s . We 
s t r e s s  the point that the con tribu tion  o f th is te rm  to the m ean sca tter in g  
am plitude, d eterm in ed  as it is  by m a tr ix  e lem en ts o f  P21 [ l / ( E ok-  H +  il) ] 1  ̂
is  as a c c e s s ib le  to  an ap prox im ate  evaluation  as the r e a l and im agin ary  
p a rts  o f  the "o p t ica l p o te n tia l" , determ in ed  through W10(E 0k+ ii) by m a tr ix  
e lem en ts  o f  P 21 [ l / ( E ok-  Q 10H Q 10+ i i ) ] P21 .

I am  in clin ed  to think that instead o f com puting (T j^ J jjby  f ir s t  c o n 
stru ctin g  the o p t ica l-m o d e l potentia l and then so lv in g  the on e -b o d y  
S ch röd in g er  equation , it is  perh aps a lrea dy  p o s s ib le  to  m ake use; o f  a p p ro x i
m ate so lu tion s  o f  the n u c le a r  m a n y -bod y  p ro b le m  to  d eterm in e  d ire c t ly

Ti ' ° ^  (2T)2M < ^ ' H % i - 7 1 T T i r Q ioH ^ >  <32>Ok

The in te re st o f  the la tter  ap p roach  can  be illu s tra ted  by co n s id e r in g , 
fo r  exam ple , the n eu tron -n u cleu s  to ta l c r o s s -s e c t i o n  in the lim it o f 
van ish ing  k: on ly Í  = 0 w aves then con trib u te , and u se  o f  Eq. (2) g iv e s  (for  
sp in le ss  n u cleon s)

+ Im (ttM F )  (1 -2тг1М к <V0k0|x« 0»
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with

F = < C H Q i o i ¿ T Ü
O k  xí

L et a0 be the sca tter in g  length  fro m  P10 H P 10:

We have then

and hence

l im  J  tot

4 tr a'

lim  tot 2
k—0 °k 30

2 lim  4 tt

1 + R e F 
a0

o r r j j  ~ 4 * а 0 -^Re Fj* -  ^  (2tt)2M j l m F ^  (33)

The ex p e rim e n ta l va lu es o f  R defined  as

2ttMR 1 +
a o M ,

a re  known to  v a ry  w ith  the ta rg e t m a ss  n u m ber A, around the v a lu es  r0 A1̂ 3 
ex p e cte d  a cco rd in g  to  the m o d e l o f  the p e r fe c t ly  absorb in g  ta rg e t, with a 
beh av iou r  in rough  qualitative agreem en t with the p o te n t ia l-w e ll p re d ic t io n s . 
T h e ex p erim en ta l poin ts show a kind o f fine s tru ctu re  su p er im p osed  o v e r  
th is  average  beh av iou r  [ 8 , 9 ,1 2 ] :  it should be quite in terestin g  to try  and 
se e  how w ell th is beh av iou r o f  R can be explained  by com puting the va lu es 
o f  a0 and (R eF jj f r o m  any ap p rox im ate  solu tion  o f  the n u clear  m a n y -bod y  
p ro b le m .

The ex p erim en ta l va lu es o f  the s o - c a l le d  s -w a v e  stren gth  function  
(Ÿ /D ), defined  at v e ry  low  neutron  en erg y  by

D
k2 ■ ^tot

2 7Г к

have been  found [8, 9 ,1 2 ]  to  exhib it a m ean beh av iou r in rough  qualitative 
agreem en t w ith  the c o m p le x -p o te n t ia l-w e ll  ca lcu la tio n s . A lso  h e re  a kind 
o f  fine s tru ctu re  has been  found su p e r im p o se d  o v e r  the m ean, w hose 
e x is te n ce  has been  su ggested  [1 7 ]  to  depend on the den sity  o f  the "d oorw a y  
s ta te s " ,  in trod u ced  to  explain  som e a sp e cts  o f  the s o -c a l le d  "in te rm e d ia te "  
r e so n a n ce  s tru ctu re  o f  n u c le a r  re a c tio n s .

A ssu m in g  on ly tw o -b o d y  r iu cleon -n u cleon  in tera ction s  we get fr o m  E q .(33) 
to  lo w e st  o r d e r  in k,

( - * )  *  2* к м {< 4 ;> 0Н P21 ô (E0k-  H) P21 H x ^ (34)
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It is  apparent that (Ÿ /D ) depends both  on the sca tter in g  due to  P 10H P 10 
through and on the s p e ctra l den sity  o f  H in the en erg y  in te rv a l I
around E ok, red u ced  in the su bsp ace  o f  the Q10 ct c t c  ¥0 > tw o -p a r t ic le -o n e -  
hole  sta tes , through  the coup ling  o f such states to  the

Equation (34) c le a r ly  show s that i f  the m ean beh av iou r  o f  the s -w a v e  
stren gth  function  is  w e ll ap prox im ated  by  a s h e ll -m o d e l ca lcu la tion  then 
its  fine stru ctu re  w ill e ss e n t ia lly  depend on the cou p lin g  o f  the s h e ll -m o d e l 
sca tter in g  states to the tw o -p a r t ic le -o n e -h o le  e x c ita t io n s , and fro m  the 
m ean den sity  o f  the la tter  in the en erg y  in terva l I around E 0i(.

T h is c o n fir m s  the v a lid ity  o f  a p re v io u s  su ggestion  m ade by 
F esh b ach  [ 1 7 ] ,  and m ak es it a c c e s s ib le  to  a m o re  p r e c is e  v e r if ica t io n  
through  evaluation  o f  (7 /D ) u sin g  Eq. (34) and ap prox im a te  so lu tion  o f  the 
n u c le a r  m a n y -b od y  p ro b le m , in the sp a ce  o f  the ctY 0)> and o f the c t c t c  
sta tes  [ 18 ].

Let us again em p h a size  the fe a s ib ility  o f  such  ca lcu la tio n s  and th e ir  
ra th er  obv iou s p h y s ica l in te re st , a r is in g  fr o m  the s im p le  re la tion sh ip  
betw een  n u clea r  stru ctu re  and o b se rv a b le  c r o s s - s e c t i o n s .

3. We have p resen ted  the o p t ica l m o d e l, b a s ica lly , as a th eory  o f 
the a v erag e  e la s t ic -s c a t te r in g  am plitud es, the av era g e  being  o v e r  an 
en erg y  in terva l o f  su itab ly  ch osen  ex ten sion : and we have m en tioned  that 
the m ean  sca tter in g  am plitude d e s c r ib e s  th ose  p r o c e s s e s  w hich  do not 
in vo lve  com p ou n d -n u cleu s  fo rm a tio n , beca u se  a w ave packet extending 
o v e r  an en erg y  in terva l I cannot g iv e  in form ation  about p r o c e s s e s  la stin g  
lo n g e r  than l / I .  The sam e argum ents w hich  are  em p loy ed  in d is cu ss in g  
the e la s tic  sca tter in g  allow  u s to  in terp re t the a v erag e  o f  the g e n e ra l 
tra n sition  m a tr ix  e lem ent

as d e s cr ib in g  d ire c t  p r o c e s s e s ,  i. e. not in volv in g  com p ou n d -n u cleu s  
fo rm a tion  and the fluctuation  around the average

T f4 . = Tf ... -  [ T ^ . j j

as d e s cr ib in g  com p ou n d -n u cleu s  p r o c e s s e s .
It is  w e ll known that in the study o f d ir e c t  r e a c tio n s  the s o -c a l le d  

d is to r te d  w ave B orn  ap prox im a tion  (DW BA) is  u su a lly  e m p loyed , w hich  
am ounts to  assu m e

< Vf  K ?  > Idirect *  < I v  K ?  > (35>

with the states "̂ | d e s cr ib in g  the o p t ica l-m o d e l e la s tic  sca tter in g
in the in itia l and final ch an n els , and V be in g , in g e n e ra l, an e ffe ct iv e  
in tera ction  o p e ra to r , d e term in ed  as a ru le , on the b a s is  o f  h e u r is t ic , 
se m i-p h e n o m e n o lo g ica l argum ents.

It has been  shown [18] that, i f  P¡ and P f are  the p r o je c t io n  o p e ra to rs  
on the in itia l and final ch a n n els , i . e .  on the su b sp a ces  spanned by a ll |i'^>and 
|f' У  sta tes , r e s p e c t iv e ly , then w hen ever

(36)
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the equation

(37)

h olds tru e , with the defin itions (E = E ¡. = E p  )

l < } > = |i’
i ’

(38)

(QiHPj -W j)

W; = Wj (E + i i )  = P¡ H Q¡■‘ E + i l -Q .H Q . Q i H P i

T h is resu lt has som e im p lica tion s  w hich  we want to  em p h asize .
F ir s t : it g iv e s  a p r e c is e  in dication  about the w ave functions and the 

e ffe c t iv e  in tera ction  to be em p loyed  in the D W B A  form u la  w hen ever one 
re q u ire s  that it m ust d e s c r ib e  just the sam e p r o c e s s e s  as the m ean  tra n 
sition  am plitude. Let us s t r e s s  the point that the defin ition  o f the o p t ica l-  
m o d e l sca tter in g  states p re v io u s ly  con stru cted  startin g  fr o m  the m any- 
body  sca tter in g  p ro b le m , a llow s us to r e a liz e  th is ra th er  im portant in te r 
depen den ce o f e la s tic  d is to r tio n s  and e ffe c t iv e  coupling  o f channels in 
d ir e c t  in e la stic  p r o c e s s e s .

Second: i f  the sh e ll m od e l is  a good  approx im ation  fo r  the in itia l and 
the final channel states then the D W BA g iv e s  a good  ap prox im ation  to

T o show th is , let us c o n s id e r  in e la stic  sca tter in g  o f  neutron s o f a 
c lo s e d -s h e l l  n u cleu s . If ~  then P j = . L et us assu m e that
the ex cited  state o f  the res id u a l nucleu s is  a su p erp osition  o f p a r t ic le -  
h ole  ex cita tion s  so  that = 1 ^ ) .

Of c o u r s e  it is  then P¡ Pf à  = 0.
But i f  the sh e ll m od e l is  a good  ap p rox im ation  to both the in itia l and 

the fin a l states th is m eans that con figu ra tion  m ixing  is  n eg lig ib le  and, c o n 
sequently , the Wj<¿>, W2̂  te rm s  in the op tica l p oten tia ls  as w e ll as the 
secon d  term  in the defin ition  o'f V̂ fi), being o f analogous stru ctu re , a ll are  
n e g lig ib le .

T h e re fo r e , we obtain

i. e. the e ffe ct iv e  in teraction  on ly in vo lves  the s o -c a l le d  c o r e -p o la r iz a t io n  
te r m s  in the res id u a l n u c leon -n u cleon  in tera ction , and with th is V the 
DW BA is  va lid .

(39)
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Let us re m a rk  that the c o r e -p o la r iz a t io n  te rm s  in the res id u a l 
n u c le o n -n u cie o n  in teraction  a lso  d eterm in e  the d ir e c t  tran sition  am plitude 
o f  a (d, p) o r  (d, n) re a c tio n  fr o m  a s in g le -h o le  n u cleu s to the ground state 
o f  a c lo s e d -s h e l l  n u cleu s. F ro m  w e ll known p ro p e r t ie s  o f  stripp in g  and 
p ick -u p  r e a c tio n s  it fo llo w s  that in such  a c a se  w e can  e x p lo re  e sse n t ia lly  
the " lo n g -r a n g e "  te r m s  in the in tera ction , w h ile , fo r  ex a m p le , study o f  
(n ,p ) d ire c t  re a ctio n s  on c lo s e d -s h e l l  n u c le i, leavin g  a p a r t ic le -h o le  
e x cita tion  in the re s id u a l n u cleu s , can  g ive  in form ation  on the "s h o r t -  
r a n g e "  te r m s  in the sam e e ffe c t iv e  in tera ction . R e m e m b e r  that this 
" c o r e -p o la r iz a t io n "  part o f  the re s id u a l in teraction  a lso  d e te rm in e s  the 
" o p t ic a l -m o d e l"  c o r r e c t io n s  to the H a r tr e e -F o ck  sca tter in g  and, in p a r t i
cu la r , the beh av iou r o f  the z e r o -e n e r g y  s -w a v e  neutron  stren gth  function .

As a fin a l re m a rk  let m e add that in the g e n e ra l c a s e ,  i. e. when c o n 
fig u ra tion  m ixin g  is  to  be taken into accou n t, the p ro b le m  o f d eterm in in g  
V(fi) a cco rd in g  to  Eq. (38) d o e s  not appear m o re  d ifficu lt  than the p ro p e r  
com pu tation  o f  the o p t ic a l-m o d e l poten tia l. A lso  in th is c a se  w e a re  c o n 
fron ted  with the fact that the w ork  needed  to  com pu te  V(fi) is  as d ifficu lt 
and t im e -r e q u ir in g  as the w ork  needed  to  d ir e c t ly  evaluate the m ean tra n 
s ition  am plitude fr o m

{ < V f . = < ^ (.Р )| ^ К +)> + H Q — jj- Q H * {? {+)>

(40)

w h ere  th is tim e  P  is  the p r o je c t io n  o p e ra to r  on the com bin ed  sp a ce  o f  a ll
I i 1 ^ and |f* sta tes (be they orth ogon al o r  n o t !) ,  Q = 1 -  P , and |y(p)(± )^  are  
the e ig en sta tes  o f  PH P. The a n a lys is  o f  d ire c t  n u c le a r  r e a c tio n s  on the 
b a s is  o f  the quantum th eory  o f m a n y -n u cleon  sy s te m s  m ight start fr o m  h e re .
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Abstract

H A RTREE -FO C K -BO G O LYU BO V  C A LC U LA T IO N S .

The author discusses in  w h ich  way and to what extent pa iring  corre lations affect the nuclear wave function . 

He finds that for many n u c le i in  the p f-she ll the Hartree-Fock approxim ation is not v a lid .

1. INTRODUCTION

T he H a r tr e e -F o ck -B o g o ly u b o v  (H FB) ap proach  to  n u clea r  stru ctu re  is  
a u n ifica tion  o f tw o o f  the m ost im portan t m ic r o s c o p ic  th e o r ie s , the H F - 
and the B C S -a p p rox im a tion s .. A s in HF, it attem pts to  com pu te  the p a ra 
m e te rs  o f  a s in g le -p a r t ic le  m o d e l fr o m  f ir s t  p r in c ip le s , and as in  BCS it 
takes in to  accoun t the p a irin g  c o r r e la t io n , but both  o f th is is  done s e l f -  
con s isten tly .

In th is con trib u tion  we f ir s t  want to  re v ie w  the H F B -th e o ry  b r ie f ly  and 
d is cu ss  the p o s s ib ility  o f  p ro to n -n e u tro n  c o r r e la t io n s . Then we p resen t 
r e su lts  o f  such  ca lcu la tion s  in  p f -s h e l l  n u c le i. T h ese  ca lcu la tion s  seem  
to  in d ica te  that in su ch  n u cle i p a ir in g  o ften  g ives  s ign ifica n t im p rov em en ts  
o v e r  the H F -w a v e -fu n ctio n .

2. REVIEW  OF H F B -T H E O R Y

T he der iv a tion  o f the H F B -eq u a tion  has been  p resen ted  by  v a r iou s  
authors [ 1, 2]. In it one dea ls  with a lin e a r  tra n s fo rm a tio n  o f  a p a rt ic le  
b a s is  c* to  q u a s i-p a r t ic le s  a*

aa =^ A k a c k + BkaCk (1)
к

T he ground state is  ap p rox im ated  as the vacuum  o f th ese  q u a s i-p a r t ic le s

a a| HFB >= 0 (2)

and the c o e ffic ie n ts  A  and B are- d e term in ed  by  a v a r ia tio n a l p r in c ip le

6 < H FB I H' I H F B )  = 0

H '  = H  -  XpÑp -  X NÑ N (3)

w here H is  the tru e m a n y -b o d y  H am iltonian , and NP and Nn a re  the o p e ra to rs  
fo r  the p a r t ic le  n u m bers o f  the p ro ton s  and n eutron s, r e s p e c t iv e ly . The 
L agran ge m u lt ip lie rs  Xp and X N are  ad ju sted  to  c o n s e rv e  the m ean  p a rt ic le  
n u m bers.
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The H F B -equ ation s then have the fo llow in g  fo rm

/ W  Д Л / А ’Л  „ / ' A '
- w У  V b ’V  E \BS‘ /  4̂ )

A  and В are  the colum n  v e c to r s  o f the tra n sfo rm a tio n  c o e ffic ie n ts  (1).
W and Д are  m a tr ic e s  with the fo llow in g  m eaning:

Wkt = Tk[ - Ak6kt + Гк, (5)

w h ere  T  is  the k in etic  en erg y  and

Гк( = ^  <km | v |  i n > p nm (6)
mn

is  the H artree  poten tia l, w hich  is  the sa m e as in H F -th eory .

Pkt = <\c î c k У  CO
a

is  the den sity  m a tr ix . The pa irin g  te n so r

KkIi ~ ^ c kc i У  ~ ^ ^ k a ® P a  (®)

is  u sed  to  defin e the p a irin g  potential

^ k t  = <  k '*  I V | m n  >  K nm ( 9 )

mn

T he m a tr ic e s  к and A a re  id en tica lly  z e r o  in  the H F -c a s e .
T he H F B -eq u a tion s are  n o n -lin e a r  and so lv e d  by ite ra tio n s . M o re o v e r , 

the L agran ge p a ra m e te rs  have to  be ad justed during the ite ra tion , to g ive 
the p a rt ic le  n um bers c o r r e c t ly .

The H F B -th e o ry  c o n s id e r s  what can  be ca lle d  " s ta t ic "  c o rr e la t io n s  as 
o p p osed  to  the th eory  o f p a irin g  v ibra tion s  [3 ] .  It conta in s p a irin g  co rre la t io n s  
a lrea d y  in  the ground state o f  the n u cleu s, w hile in  p a irin g  v ib ra tion s  one 
bu ild s p a ir in g  c o r r e la t io n s  on the ground state to  obtain  an ex cited  state.

T he H F B -w a v e -fu n ctio n  re p re se n ts  an in tr in s ic  state b e ca u se  the p os ition  
and the or ien ta tion  o f  the potentia l w e ll are  fix e d  in  sp a ce . The g en era lity  
o f  the in tr in s ic  state is  u su a lly  r e s tr ic te d  by a tru ncation  o f  the b a s is  and 
by  sy m m e try  r e s tr ic t io n s  o f  the tra n sform a tion  (1) b eca u se  one has to red u ce  
the com pu tation a l la b ou r  and to  assu m e so m e  p ro p e rt ie s  o f  the in tr in s ic  
sta te . In the ca lcu la tion  re p o rte d , the fo llow in g  sy m m e tr ie s  are  assu m ed: 
ax ia l sy m m e try , tim e  r e v e r s a l ,  and p a rity . A lso  p a irin g  is  r e s tr ic te d  to 
p a ir in g  e ith er  betw een  p roton s  and p roton s  o r  betw een  n eutrons and neutron s.

T he la tte r  is  a ch ieved  by  sum m ing on ly  o v e r  p roton s o r  on ly  o v e r  n eutrons 
in  tra n s fo rm a tio n  (1). With P P  o r  NN one can  on ly m ake T  = 1 p a ir s . If 
one w anted to  m ix  P  and N in the q u a s i-p a rt ic le  tra n sform a tion , one cou ld  
get P N  c o r r e la t io n  with T  = 0 and T  = 1 pa irin g . P N -p a ir in g , e sp e c ia lly  
T  = 0, m ay be  m o r e  im portan t than P P -  and N N -p airin g  fo r  light n u cle i, 
w h ere  p ro ton s  and neutrons a re  in  the sam e sh e ll. T h is is  su ggested  by the 
e x p e rim e n ta l fa c t that the ground states o f m ost ligh t n u cle i have T  = 0 and 
a lso  by m o d e l ca lcu la tio n s  w ith P N -p a ir in g  [4 ] .
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L et us study what P N -p a ir in g  m eans fo r  the H F B -eq u a tion s. A  m a trix
e lem en t o f  the p a irin g  potentia l (9) betw een  a P -  and an N -s ta te , sep arated
into T  = 0 and T  = 1 p a rts , is

A k P , fN  = < k i | V  I m n > T = ° ( KnN ,m P  - к п Р ,ш м )  + < k í|  V I m n > T=1
mn

X  ( K nN .m P + K nP, mN ) (10)

L et u s, f o r  a m om ent, assu m e that ch a rge  con jugation  is  a sy m m etry  o f  the 
sy ste m , i . e .  N = Z  and no C oulom b fo r c e .  Then one finds fro m  e x p re s s io n  (1)

K nN ,m P ~ ^nP, mN ( Ü )

T h e re fo r e , i f  к is  r e a l (A  and В in e x p re s s io n  (1) r e a l) , then one on ly  gets 
T  = 1 P N -p a ir in g . If к is  im ag in a ry  (e . g. A  re a l, В im a g in a ry ), one only 
has T  = 0 pa irin g . Only in  the ca se  o f n o n -tr iv ia lly  co m p le x  к one has 
both kinds o f  p a irin g . T h is m ak es the n u m erica l treatm en t m o re  d ifficu lt, 
but r e ce n tly  a m ethod w as p ro p o se d , to  re d u ce  the g en era l co m p le x  H F B - 
p rob lem  to  the handling o f r e a l m a tr ic e s  [5 ] .  In the fo llow in g  re su lts  with 
P P -  and N N -p a irin g  on ly , the c o e ffic ie n ts  w ere  taken to  be re a l.

3. EVIDENCE OF PAIRING CO RRELATIO N S

The ca lcu la tio n s , fr o m  w hich  the fo llow in g  re su lts  are  taken, have been  
p e r fo rm e d  tog eth er  with A . F a e s s le r ,  P .U . Sauer and M .M . S t in g l [6 -9 ] .
F o r  the n u c leon -n u cleon  in tera ction  we u se  s o f t - c o r e  s e m i-r e a l is t i c  potentia ls 
lik e  the B rin k  fo r c e  [ 10]. We a lso  in clude the C oulom b in tera ction  and su b 
tr a c t  the k in etic  en erg y  o f the c e n t r e -o f -m a s s  m otion . The b a s is  co n s is ts  
o f  a ll o s c i l la to r  le v e ls  up to  the N = 4 m ain  sh e ll. The fo r c e s  do not have 
a s p in -o r b it  in tera ction , w hich  m akes deta iled  co m p a riso n  with exp erim en t 
d ifficu lt  fo r  h ea v ier  e lem en ts .

H ere we are  m ain ly  co n ce rn e d  with the e ffe ct  o f  p a irin g  c o r r e la t io n s .
What e ffe c ts  are  we look in g  fo r ?  One im portant con seq u en ce  o f p a irin g  is  
the en erg y  gap in the s in g le -p a r t ic le  sp ectru m  o f e v e n -e v e n  n u cle i, w hich 
is  the p a irin g  en erg y . But one has to  d istinguish  betw een  tw o kinds o f gaps, 
the H F - and the p a ir in g  g a p .'

In a H F -ca lcu la tio n , the o ccu p ie d  o rb ita ls  are  sep ara ted  fro m  the em pty 
on es by a gap, w hich  o r ig in a te s , as can  be  seen  in m od e l ca lcu la tion s  [11 ], 
fr o m  the m on op ole  part o f the fo r c e .  The s iz e  o f  th is gap d e term in es  the 
s ta b ility  Of the H F -so lu tio n  against the re s id u a l in tera ction , e sp e c ia lly  the 
p a irin g  co r r e la t io n .

On the o th er hand, the p a ir in g  gap is  determ in ed  fro m  the strength  of 
the p a ir in g  fo r c e .  In a usu al B C S -ca lcu la tio n , th is is  a fr e e  p a ra m e te r , but 
in a m ic r o s c o p ic  th e o ry  the p a irin g  stren gth  is  d e term in ed  fro m  the n u cleon - 
n u cleon  in te ra ctio n . If we u se  a H F -b a s is , the e ff ic ie n cy  o f  p a irin g  is  d e te r 
m ined  by  the s iz e  o f  the H F -gap .

In a H F B -ca lcu la t io n  both  the average  f ie ld  and the p a irin g  co r r e la t io n  
a re  trea ted  sim u lta n eou sly , s o  w e cannot se e  w here the H F B -gap  co m e s  
fr o m . But we can  co m p a re  with a co rre sp o n d in g  H F -ca lcu la tio n . Then, i f
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F1G .1. S ing le -pa rtic le  le ve l spectrum o f the ob la te  so lution o f 44C a  for protons and neutrons in the sd- and 

p f-she lls. The results o f a H F- and a H FB -ca lcu la tion  are com pared. F ind icates the Ferm i surface. The 

leve ls are labe lled  on the right by the projection  o f the angular momentum on the symmetry axis Л, which 

is sharp, and on the le ft by the m ain component o f the sph e rica l-ha rm on ic-osc illa to r states.

the H F -g ap  is  a lrea d y  la rg e , we ex p ect lit t le  change in  the w ave fu nction  
by  p a irin g .

It is  known that the H F -g ap  is  v e ry  la rg e  in light n u c le i. In H F -c a lc u la 
tion  it is  found to  be  about 8 M eV  in the p and s d -s h e ll  [ 12] and even  la rg e r  
with the B rin k  fo r c e .  F o r  such  n u cle i no p a ir in g  co rr e la t io n s  are  expected . 
H F B -re su lts  re d u ce  to  HF on es. S ince w e are  in te re ste d  h e re  in  the e ffe c t  
o f  p a irin g , w e w ill not d is cu ss  such  r e su lts . T hey are  g e n e ra lly  o f the sam e 
quality  co m p a re d  to  ex p erim en t as o th er H F -ca lcu la tio n s .

The situ ation  changes i f  w e c o n s id e r  n u cle i in  the p f -s h e ll  with neutron  
e x c e s s .  T h ere  the H F -g a p s b e co m e  co n s id e ra b ly  sm a lle r , and p a irin g  
b e c o m e s  ev ident. As an ex am p le , the s in g le -p a r t ic le  le v e ls  o f  the ob la te  
so lu tion  o f MCa are  co m p a re d  in  F ig . 1 f o r  the H F - and the H F B -ca lcu la tio n . 
The H F -n e u tro n -e n e rg y  gap is  on ly  about 1. 8 M eV . In the H F B -ca lcu la tion , 
the p a ir in g  en erg y  in c r e a s e s  the gap to  a b ou t '3. 3 M eV . T h is w idening o f the 
gap is  the d ir e c t  con seq u en ce  o f pa irin g .

But a lso  a ll the o th er  s in g le -p a r t ic le  le v e ls  change th e ir  p o s itio n , even  
fa r  b e low  the F e r m i s u r fa ce . T h is is  an in d ire ct  con seq u en ce  o f  p a irin g . 
P a ir in g  m akes a n ucleu s m o re  sp h e r ica l, b eca u se  it is  a sh o r t-ra n g e  e ffe c t . 
In th is c a se  the ch a rg e  quadrupole  m om ent d e c r e a s e s  fro m  75 fm 2 to  39 fm ?.
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FIG . 2. S ing le -pa rtic le  le ve l spectrum for the pro late so lution o f 72Ge. Here the HF, the two-step HF-BCS 

and the H FB -ca lcu la tions are com pared. The  HFB-solution becomes spherica l. Labe llin g  o f the leve ls is 

s im ila r to that o f  F ig . 1.

C onsequently , a ll the s in g le -p a r t ic le  le v e ls  o f  one sh e ll b e co m e  m o re  d e 
g en era te . T hus, p a ir in g  changes the s tru ctu re  o f  the s e l f -c o n s is te n t  f ie ld  
c o n s id e ra b ly . In th ese  c a s e s  it is  im p ortan t to u se  H FB.

T h is  n ucleu s is  a c a s e  o f  ra th er  s tron g  p a ir in g  c o r r e la t io n s , as judged 
fro m  the e ffe c t  on the w a v e -fu n ction . But even  h e re , o th er p ro p e r t ie s  o f 
the n ucleu s a re  v e ry  in se n s it iv e . The to ta l binding en erg y  o f  about 300 M eV 
changes on ly  by  about 1 M eV, and the rad iu s is  p r a c t ic a lly  unchanged. Th is 
is  to  be  ex p ected , b e ca u se  th ese  a re  vo lu m e e ffe c ts  w hich  w ill not be  a ffe cted  
b y  a sm a ll sm e a r in g -o u t o f  the F e r m i su r fa ce .

An even  m o re  in terestin g  n ucleu s is  72G e. We get tw o H F -so lu t io n s , a 
p ro la te  and an ob late  one. Both are  w e ll d e fo rm e d  with a quadrupole  m om ent 
o f  129 and -3 0  fm 2, r e s p e c t iv e ly . In the H F B -ca lcu la t io n , both  so lu tion s 
b e c o m e  s p h e r ica l and actu a lly  id en tica l. T h is is  show n fo r  the p ro la te  c a se  
in  F ig . 2. T h e re  is  p r a c t ic a lly  no H F -g a p  fo r  the p ro ton s  at the F e r m i s u r 
fa c e , but one o f  about 5 M eV  in  the H F B -ca lcu la t io n . A ll le v e ls  o f  each
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sh e ll b e co m e  d eg en era te . The p ictu re  fo r  the ob late  so lu tion  look s  quite 
s im ila r .

’ In F ig . 2 w e a lso  re p re se n te d  the re su lts  o f an in term ed ia te  m ethod 
betw een  HF and H FB, ca lle d  H F -B C S . T h is is  a B C S -ca lcu la tio n  with the 
sa m e n u cleon -n u cleon  in te ra ctio n  on the H F -so lu tion . An in fin ite  su c ce s s io n  
o f H F -B C S  ca lcu la tion s  w ould be id en tica l to  a H F B -ca lcu la tio n  up to  a 
un itary  tra n sform a tion . U sually  the f ir s t  tw o step s , i . e .  H F -B C S , a lready  
g ive  a v e ry  good  approx im ation  to H FB. But th is is  not so  in 72G e. H F -B C S 
d e c r e a s e s  the d e form ation  but both so lu tion s are  s t ill  d ifferen t and d e fo rm e d . 
Only by sim u ltaneou s v a r ia tion  o f both d e g re e s  o f fre e d o m  is  the sp h e r ica l 
so lu tion  with the lo w e r  en erg y  obtained. Thus, th is is  an exam ple  w here it 
is  e sse n t ia l to  u se  the H F B -a p p roach .

T o  se e  m o re  c le a r ly  the trend o f H F B -ca lcu la tio n s , the re su lts  fo r  som e 
se le c te d  n u cle i have been  c o lle c te d  in T ab le  I. The e ffe c t  o f p a irin g  on the 
en erg y , the ch a rg e -q u a d ru p o le  m om ent and the gaps is  shown. F o r -n u c le i 
be low  40Ca the gaps a re  so  la rg e  that no p a irin g  o c c u r s . But a lso  fo r  
h e a v ie r  n u cle i the p ic tu re  is  not unique. T h ere  a re  som e  w here p a irin g  is  
v e r y  im portan t, as in  72Ge o r  the ob late  Ca is o to p e s , but a lso  o th er n u cle i 
w here p a irin g  is  un im portant, as in  the p ro la te  Ca iso to p e s  o r  56F e . The 
e ffe c ts  depend v e ry  se n s it iv e ly  on the s iz e  o f  the H F -gap , and we do get 
ra th er  sm a ll H F -g a p s fo r  som e  n u cle i in the p f -s h e ll .

It is  even  p o s s ib le  to  g ive a quantitative estim ate  in the c a se  o f the 
B rink  fo r c e .  If the H F -gap  is  be low  3 M eV , p a irin g  w ill be  im portan t and 
in c r e a s e s  the gap to  about 3 M eV  o r  la r g e r . The fo r c e  is  not v e ry  r e a lis t ic  
fo r  the d e s cr ip t io n  o f  p f -s h e l l  n u cle i, b eca u se  o f the. la ck  o f  sp in -o r b it  fo r c e .  
So the re su lts  fo r  s p e c ia l n u cle i w ill ce rta in ly  change, but w e think that the 
g en era l p ic tu re  w ill be  the sa m e. It is  to  be exp ected  that, w ith sp in -o rb it  
fo r c e ,  p a ir in g  w ill even  b e co m e  la rg e r  b eca u se  the s p in -o r b it  fo r c e  tends 
to  d e c re a s e  the gaps [1 2 ].

T A B L E  I. E F F E C T  OF PAIRING CO RR ELATIO N S ON THE BINDING 
EN ERG Y (B ), CH ARGE Q U AD RU POLE M OM ENT (Q) AND TH E P R O TO N  
AND NEUTRON E N E R G Y -G A P  P A R A M E T E R S (Д Р, Дм) F O R  SOME 
N UCLEI IN TH E sd AND p f SHELLS

Nucleus В (M eV )

HF HFB

Q (fm i)

HF HFB

A p (M eV ) 

HF HFB

A N (M eV ) 

HF HFB

160  sph. 92.90 92.90 0 0 10.7 10.7 10.8 10.8

20Ne prol. 110.1 110.1 54.0 54.0' 6 .7 6.7 6.6 6 .6

40C a  sph. 289.82 289.82 0 0 17.4 17.4 15.8 15.8

адС а  ob i. 301.72 302.93 -16,0 -7 .9 12.3 15.4 1.8 3 .3

56Fe prol. 329.13 329.42 162.5 162.7 5 .4 5 .5 2.1 3 .2

72Ge prol. 434.63 438.70 129.4 0 0 .9 4 .7 7.3 11.0

72Ge ob i. 437.17 438.70 -30.1 0 1.9 4 .7 9 .4 11.0

78Se prol. 465.88 466.53 51.0 47.6 2 .5 2 .8 1.7 3 .0

78Se ob i. t 468.10 468.13 -114,4 -112.4 4 .4 4 .5 2.7 2 .9
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A  study has b een  m ade o f how and to  what extent p a ir in g  c o r r e la t io n s  
a ffe ct the n u c lea r  w a v e -fu n ction . It is  found that fo r  m any n u c le i in  the 
p f -s h e ll ,  but not f o r  a ll, the H F -a p p rox im a tion  is  not v a lid . The H F -so lu t io n  
is  unstab le  against p a ir in g  c o r r e la t io n s . A  H F B -ca lcu la t io n  d oes  not change 
the e n e rg y  v e r y  m uch , but it changes the s in g le -p a r t ic le  sp ectru m  and the 
d e form a tion  s ig n ifica n tly . Q uantitative co m p a r is o n  o f p a ir in g  e ffe c ts  with 
ex p erim en t is  not s o  d e c is iv e  at th is stag e , b e ca u se  o f  the f o r c e  d e f ic ie n c ie s . 
But it is  con clu d ed  that the g e n e ra l p ic tu re  o f  the im p orta n ce  o f  p a ir in g  
co r r e la t io n s  w il l .p e r s is t .

4. SUMMARY
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SEPARATION AND PAIRING ENERGIES 
IN SPHERICAL NUCLEI

M . BEIN ER
Institut de Physique N ucléaire,
Division de Physique Théorique,
Orsay, France

Abstract

SEPARATION  AN D  PAIRING ENERGIES IN SPHERICAL N U CLE I.

Separation energies o f nucleons as w e ll as pa iring  properties are ca lcu la ted  for spherica l nu c le i 

and system atica lly  com pared w ith  experim enta l data. T he  spherica l o d d -n u c le i(Z  or N »1 5 ) are 

represented by 31 "m ean odd-Z  n u c le i" , (Z, N (Z )), and by 46 "m ean odd-N  n u c le i" , (Z (N ) , N), 

N (Z ) and Z (N ) be ing  rea l mean values (in  general non-integer) associated w ith  any odd number Z and 

N, respective ly . Using a lo c a l average potentia l (depend ing on few constants) in order to obtain sets 

o f s ing le -pa rtic le  states and in troducing  computed rea lis t ic  pa iring  m atrices in  the gap equations we 

obta in theo re tica l predictions in  good agreement w ith  the corresponding em p ir ica l data.

1. IN TRODUCTION

The m ain  a im  o f th ese  notes is  to p re se n t and com m en t on som e 
re ce n t and im p ro v e d  re su lts  obtained in the fra m e w o rk  o f the s im p lifie d  
p a ir in g  sch em e  w hich  w as in trodu ced  and tested  in tw o p re v io u s  pa pers [1].

Ju stifica tion  o f su ch  an intu itive n u c le a r  p a ir in g  m o d e l and d is cu ss io n  
o f  its  re la tio n s  w ith the exact H a r tre e -B o g o ly u b o v  th eory  lie  ou tside the 
s c o p e  o f  the p resen t r e p o r t . E ven  the qu estion  w hether th is m od e l r e p r e 
sen ts so m e  a p p rox im a tion  to  the f i r s t - o r d e r  H -B  trea tm en t o f the n -b o d y  
sy ste m  (i .e .  by  n e g le c tin g  the H4 te rm s ) cannot r e a lly  be an sw ered  yet.
The v e r y  la s t re su lts  ava ilab le  fr o m  n u m e rica l so lu tion s o f the H -F  
equations in c o -o rd in a te  sp a ce  [2] f o r  208Pb w here p a irin g  e ffe c ts  are  
b e lie v e d  not to be o f  c r u c ia l  im p orta n ce  se e m  to  in dicate  that our pa irin g  
m o d e l is  p ro b a b ly  no ap p rox im a tion  o f the f i r s t - o r d e r  H -B  sch em e  b e 
cau se  the m ean sp acin g  o f the s in g le -p a r t ic le  le v e ls  around the F e r m i 
lim its  is  v e r y  d iffe re n t in  the tw o a p p ro a ch e s . Not so  s ign ifican t a re  the 
"b a d " e igen va lu es o f  ou r  lo w -ly in g  su b sh e lls  w hich  a re  sy s te m a tica lly  
to o  h igh (e .g . - 41 M eV fo r  the 15 neutron  state  in 208P b). In fa c t  they
do not s e n s it iv e ly  in flu en ce  the fin a l re su lts  (ch e m ica l potentia ls as w e ll 
as q u a s i-p a r t ic le  e x c ita t io n s ).

We m u st em p h a size  that ou r p a irin g  m o d e l n e g le c ts , in p r in c ip le , 
any re o rg a n iza tio n  e n e rg ie s  ( i .e .  the m ean  sep a ra tion  e n e rg ie s  (se e  I) a re  
a re  d ir e c t ly  g iven  by  the ch e m ica l p o ten tia ls , Xp and Xn, w hich  a re  s o m e 
what r e g u la r ize d  F e r m i lim its ) and fa ils  to p re d ic t  the tota l en erg y  o f  a 
g iven  n ucleu s in  the u su a l w ay. In fa c t, we a re  not in terested  in the tota l 
e n e rg y  w hich , h o w e v e r , m ay be a c c u r a te ly  com puted  (up to an additive 
constant) by  in tegra tin g  the ch e m ica l p o ten tia ls . The n e c e s s a r y  in te g ra b ili-  
ty  con d ition  3 z X n = 9n Ap is  a ctu a lly  fa ir ly  w e ll sa tis fie d  in ou r  m od e l (as 
a d ir e c t  con seq u en ce  o f the assu m ption  (2 .4 )).

1 These two papers are designated by I and II throughout this paper.
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F o r  the sake o f co m p le te n e ss  w e b r ie f ly  m ention  the p r in c ip le s  d e 
fin ing ou r sch e m e :
a) In troduction  o f a ph en om en o log ica l lo c a l  average  n u clear  potentia l 
co n stru cte d  fr o m  s p e c i f i c  n u c lea r  p ro p e r t ie s  and p rov id in g  us with sets  of 
s in g le -p a r t ic le  states (se c t io n  2).
b) U se o f su itab le  fo r c e s  in o r d e r  to com pute r e a lis t ic  gap m a tr ice s  
(s e c t io n  3).
c) In terp retation  o f the n u m erica l re su lts  in the ap p rox im a tion  o f  fr e e  
q u a s i-n u c le o n s  (se c t io n  4).

2. THE A V E R A G E  N U C LEA R P O T E N T IA L

The s in g le -p a r t ic le  states are  defin ed  by  a lo c a l  p h en om en olog ica l 
a v era g e  potentia l with s p h e r ica l sy m m etry .

A c r it ic a l  an a lys is  o f the resu lts  g iven  in I and II as w e ll as new 
n u m e rica l s e a rc h e s  and co m p a riso n s  with e x p erim en ta l data have su ggested  
tw o m ain  m o d ifica tio n s  o f  ou r o r ig in a l assu m p tion s (se e  I). The f ir s t  
one co n ce rn s  the ra d ia l dependence o f the potentia l and the secon d  the 
fo rm  o f  the Í  • s te rm .

A) G e n e ra lize d  W ood s-S a xon  rad ia l depen den ces

The f ir s t  m o d ifica tio n  co n s is ts  in in trodu cin g  a som ew hat m o re  
fle x ib le  p oten tia l ra d ia l depen den ce w hich  m ay  be ca lled  a g en era lized  
W ood s-S a xon  fo rm :

f ( r )  = ( l  + e x p ^ )  *  (2.1)
\ a 5 /

(the a  j a re  n u m e rica l constan ts and the usual W ood s-S a xon  fo rm  is  o b 
tained by taking a 6 = 1).
H ere  R is  d e term in ed  b y  the condition

f(R ) = 1 /2  (2 .2)

with

1/3R = a 3A ± 6 R (+ sign  fo r  p ro to n s , -  sign  fo r  n e u tro n s )(2 .2 ' )

6R  is  a sm a ll c o r r e c t io n  g iven  by

Ó R = t ¡  (C " -  C P> (2,3)

w h ere  С n and Cp a re  the ra d ii c o rre sp o n d in g  to  the m axim um  valu es o f 
" Pn (r ) (o r  " Pp (r )) in the sk in  reg ion  o f  the den sity  d is tr ib u tion s , « j  and 
a 2 a re  con stan ts m aking the potentia l depth a s im p le  lin ea r  function  of 
(N - Z ) /A  (se e  b e low ). The two oth er constan ts a 5 and a s a re  a llow ed  to 
be d iffe re n t fo r  p ro ton s  and n eutron s. C on sequen tly , we sh a ll d istin gu ish  
the two p ro b a b ly  d iffe re n t ra d ia l functions by f+ (r) and f  . ( r ) .
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£
The m ain  te r m s  o f the av era g e  p o ten tia ls , W ±(r ) a re  then obtained 

w ith the help o f  the ra d ia l functions f ± (r ) as fo llo w s :

u , c ,  , - , , N -Z  + sign  fo r  p roton sW. (r ) = - (a  , ± a о —-—  ) f  (r) . (2 .4)± ' 1 ¿ A ' ± -  s ign  fo r  neutrons

It should  be noted that a  ̂ and a 2 as w e ll as o 3 a re  a ssu m ed  to  be the sam e 
fo r  p roton s and n eu tron s.

B) P h e n o m e n o lo g ica l St • s te rm s

O ur se co n d  m o d ifica tio n  co n ce rn s  the use o f  SL • s te r m s  d ir e c t ly  
d e r iv e d  fr o m  the above  ra d ia l fu nction s f ± (r ) ( i .e .  w ithout (N -Z ) 
depen den ce , se e  I):

W*ts(r) = - f'± (r) (2.5)

We have a ls o  tr ie d  to in trod u ce  in the e x p re s s io n  (2 .5) the s im p le  tw o - 
p a ra m e te r  e m p ir ic a l ch a rg e  d is tr ib u tion  o f Hahn, R aven h all and 
H ofstad ter  [3]

/  r  - 1 OQ A1/ 3 \"1
PHof.(r) E Po ( l +  exp £— (2.6)

in stead  o f f± (r ). T h is attem pt w as m is le a d in g . W e d e fin it iv e ly  obtained 
le s s  s a t is fa c to r y  re su lts  (se e  se c t io n  4 ). (W e rem in d  that a re
n u m e r ica l con stan ts , i .e .  independent o f  Z  and N.) ^ ^

F u rth e rm o re  w e have a lso  in vestiga ted  fo r  s e le c te d  n u cle i SL • s 
te r m s  o f the fo llow in g  stru ctu re :

W±CS(r) = p'± (r ) f f j  £  (r ) (2.7)

w h ere  p+ = p p and p . = p n a re  th e o r e t ic a l d is tr ib u tion s  o f  p roton s and 
n eu tron s, r e s p e c t iv e ly . The resu ltin g  i s  sp littin gs depends s tro n g ly  on 
the p r in c ip a l quantum n u m bers o f ths su b sh e lls  as w e ll as on Z  and N. 
F o r  exam ple  th ere  is  no m o re  sp littin g  o f the h ig h -ly in g  3p neutron  
le v e l  fo r  N around 85. It is  v e r y  d ifficu lt  to  ch eck  w hether su ch  so p h is t i
ca ted  te rm s  (needing ite ra tion  p r o c e s s )  w ould re p re s e n t  a g e n e ra l im 
p rov em en t with r e s p e c t  to  the s im p le  e x p re s s io n  (2 .5 ).

C) S tru ctu re o f  the a v e ra g e  potential

F o r  the p ro ton s  w e add the C ou lom b p oten tia l, W cl1(r), w hich  is 
ca lcu la ted  in cluding  exch an ge con trib u tion s [4] fr o m  the e m p ir ic a l  ch arge  
d is tr ib u tion s  (2.6) o r ,  i f  m o re  c o n s is te n c y  is  d e s ire d , fr o m  the com puted  
pro ton  d is tr ib u tio n s . We ch o se  th is la st option  fo r  the th e o r e t ic a l d e te r 
m ination  o f the ch a rge  d is tr ibu tion  d if fe r e n c e s  fo r  s e le c te d  p a irs  o f i s o 
top es (se e  s e c t io n  2 -D ), w h ereas  the f ir s t  and s im p le r  one w as used  fo r



the n u m e rica l ad justm ent of the constan ts . A. s im ila r  situation  o c cu rs  
fo r  the te rm  6R  (se e  e x p re s s io n  2 .2 ' ) and (2 .3 )): in p r in c ip le , it should 
be com pu ted  by  u sin g  an ite ra tion  p r o c e s s ,  h o w ev er , fo r  n u cle i c lo s e  to 
the s ta b ility  lin e  its e f fe c ts  can be sim u lated  by taking a value o f a3 1.6% 
la r g e r  fo r  p ro ton s  than fo r  n eutron s, and it is  p r e c is e ly  what we have 
done in o r d e r  to  ad ju st the constan ts a ¡ .

L et us now w rite  down e x p lic it ly  the e x p re s s io n s  g iv in g  the com p lete  
set o f s p h e r ic a l p oten tia ls  as functions o f  the n ucleon  n u m bers:

Wp (r ) -  ( a ,  + « a ^  + « I  Ц *  ¿ )  ( l  + exp “ 6 + W CV )
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( fo r  p roton s)

Wn (r ) = - { a l ~ a 2 + “ 4 T ^ J  i 1 + e x p  ^

( 2 . 8 )

N -Z  , .  i ' - s  d \ Д  r - R "  V “ 6
5

( fo r  n eutrons)

w here the E* a re  d e term in ed  by  the con d ition s

( l  + exp g 3A..1/3 ±(д,2/ ^ 1) ( С п - С р) - К ^  = ^ (2.9)

The n u m e rica l v a lu es  o f  our nine constan ts a w ere  ad ju sted  by 
fitting  in the in d ep en den t-n u cleon  ap p rox im a tion  (see  R ef. [4 ]):
a) the e m p ir ica l n u c le a r  ra d ii,
b) the m ean sep a ra tion  e n e rg ie s  of p roton s  and neutrons as functions o f 

Z  and N, and
c) the e m p ir ic a l  seq u en ce  o f s in g le -p a r t ic le  le v e ls  in  se le c te d  s p h e r ica l 

odd n u cle i.
T h ey  a re  g iven  by:

a x = 51.6 M eV , a 2 = 31.1 M eV , » 3 = 1.26 fm  

a 4 = 36.5 M eV . fm 2 , a\ = 0.59 fm  , = 0 .4 2  (2.10)

a i  = 34.5 M e V - fm 2 , org = 0.54 fm  , a\  = 0 .5 3

W e sh a ll c a ll  W e the a v era g e  p oten tia l W fo r  w hich  Wcb is  ca lcu la ted  
fr o m  the e m p ir ica l ch a rg e  d istr ibu tion s and the 6R  te rm  re p la ce d  by 
taking d iffe re n t va lu es o f  a 3 f o r  p roton s and fo r  n eutron s.

D) D istrib u tion s  o f  n u cleon s

F ig u re s  1, 2 and 3 g ive  the ca lcu la ted  d is tr ib u tion s  o f  n u cleon s fo r  
s ix  s e le c te d  n u c le i. The 40 C a, 4SCa and 2<>8pb d is tr ib u tion s  a re  obtained 
d ir e c t ly  fr o m  the above se t o f  a v erag e  potentia ls b eca u se  in such  double 
m a g ic  s tru c tu re s  on ly  t r iv ia l so lu tion s (Д j = 0 fo r  a ll j)  o f  the gap equ a
tion s o c c u r  (se e  s e c t io n  3 -C ). The good  fit to  the e m p ir ica l r .m .s .  
rad iu s o f the n u c lea r  ch a rg e  den sity  w ill be show n in s e c t io n  4.

F o r  co m p a r is o n  p u rp o se s  we have a lso  p lotted  in F ig s  1 -3  the e m 
p ir ic a l  ch a rg e  d is tr ib u tion s  (2 .6 ).
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F I G . l .  "Se lf-consistent" d istributions o f nucleons in  4CC a  and 48Ca , com puted from the lo c a l average 

potentia l W given by Eqs (2 .8), (2 .9 ) and (2 .10), section 2 -C . T he  mean Stanford two-param eter 

charge distributions, E q .(2 .6 ), are also p lotted (dotted curves). 

p
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FIG . 2 . T h eo re t ica l d istributions o f nucleons in  gJSr, “ JSn, ca lcu la ted  in  the BCS fram ework (d iffuse 

Fe rm i lim its) using (a) the lo c a l average potentia l W° (see Sect. 2-C ) w ith  a 3(protons) = 1 ,29  fm  and 

a  3(neutrons) = 1 .27  fm  ( tr ia l v a lu e d ) and (b) the two-body Bonn in te rac tion  (see Sect. 3 -A ) . The  mean 

Stanford two-param eter e m p ir ica l charge distributions, Eq. (2 .6), are also plotted (dotted curves).
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F IG .3 . T h eo re t ica l d istributions o f nucleons in  ^ A u , 2¡¡fPb, ca lcu la ted  in  the BCS fram ework (d iffuse 

Ferm i lim its) using (a) the lo c a l average potentia l W° (see Sect. 2 -C ) w ith  a 3 (protons) = 1 .29  fm  and 

a 3(neutrons) = 1 .27  fm  ( tr ia l values!) and (b) the two-body Bonn in te rac tion  (see Sect. 3 -A ) . The 

m ean Stanford tw o-param eter e m p ir ica l charge distributions, Eq. (2 .6 ), are also p lotted (dotted curves).
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F IG .4 . T h eo re t ica l and experim enta l proton-density differences for the ( 40C a  - 48Ca) and ( 48C a  - 48T i) 

pairs.

M ore s ign ifica n t fo r  the adequacy  o f the average  potentia l s tru ctu re  
a re  the re su lts  p lotted  in  F ig .4 . We th ere  com p a re  the e m p ir ica l d if 
fe r e n c e s  in  ch a rg e  d is tr ib u tion s  o f the (4(fca -  48Ca) and (48Ca -  48T i) 
p a irs  r e ce n tly  d e term in ed  at Stanford [5] with ou r p re d ic t io n s . The 
p lotted  quantities a re  the ch a rge  d istr ibu tion  d iffe r e n c e s  m u ltip lied  by 
4я-r  2/ e .  The a g reem en t is  su rp r is in g ly  good  i f  one c o n s id e r s  that these 
com pu tation s constitu te  an independent te s t  fo r  the beh av iou r o f the 
av era g e  potentia l as a function  o f Z  and N ( i .e .  the stru ctu re  o f the 
a v e ra g e  potentia l as w e ll as the n u m e rica l constan ts a ¡ w ere  not adapted 
to th ese  la st e m p ir ica l data). It should a lso  be noted that the 6R term  
g iven  by  e x p re s s io n  (2 .3 ) w as ex a ctly  w ork ed  out in  the com putation  of 
th ese  d if fe r e n c e s , a fa ct w hich  was c r u c ia l  f o r  the good fit . F in a lly , it 
m ay  be w orth  w hile noting that the agreem en t is  c o m p le te ly  d istu rbed  
fo r  the o th er m ea su red  p a irs  ((40Ca -  42Ca) and (40Ca - 44C a), see  
R ef. [5 ]) fo r  w hich  the th e o r e t ic a l p re d ic t io n s  (as con seq u en ces  o f  the 
assu m ed  exact s p h e r ic a l sy m m etry ) a re  o f  the type obtained fo r  the 
( 40Ca -  48Ca) s p h e r ic a l p a ir , i .e .  a lso  w ith two n odes.

E ) S in g le -p a r t ic le  e n e rg ie s

The com pu tation s w hich  w e have done co n ce rn  e ith er
a) s e le c te d  n u c le i, o r
b) the two c la s s e s  o f  s p h e r ic a l o d d -Z  o r  odd -N  n u cle i (Z , N ê 15).

T o  red u ce  the extent o f  the e x p lic it  com putations in  th is la st ca se  
w e d e fin e  (in the (Z ,N )-p la n e )  a m iddle  lin e  of the flow  o f stab le  n u cle i.



IAEA-SMR 6 /5 0  9 1 1

F IG .5. M a in  even-sing let ( 1S0 and 'D 2) and odd-tr ip le t ( 3P0 , 3P j , 3P2 and e ¡) phase shifts obtained 

w ith  the Bonn in te rac tion  com pared to the results o f  the sing le-energy phase-shift analyses o f A rndt- 

M acG regor-W righ t ).

T h is lin e  con n ects  the fo llow in g  iso to p e s  by stra igh t seg m en ts :

(Z ,N )  = (0 ,0 ) ,  (10 , 11), (2 0 ,2 3 ) , (3 0 ,3 7 ) , (40, 52), (50 , 68), (60, 85)
(70, 102), (80 , 120), (90, 138), (100, 156). ( ' ’

W e c a l l  "m e a n  o d d -Z  n u c le i"  the poin ts (Z , N (Z )) on th is line w ith (in teger) 
odd Z  v a lu es  (N (Z ) be in g  in g e n e ra l n on -in teger) and "m ea n  odd -N  n u c le i"  
the poin ts (Z (N ),N ) on th is lin e w ith (in teger) odd N v a lu e s . T h is  notation  
w ill  be u sed  throughout th is p a p e r . W hen dea lin g  w ith su ch  m ean odd - 
n u c le i w e sh a ll, in g e n e ra l, om it the redundant a rg u m e n ts . F o r  ex am p le , 
€jp (Z ) ,  X p(Z) and G jpjp (Z ) w ill  design ate  the s in g le -p r o to n  e n e rg ie s , the 
p ro ton  c h e m ica l poten tia l and the p r o to n -g a p -m a tr ix  e le m e n ts , in m ean 
o d d -Z  n u c le i, r e s p e c t iv e ly . T h e o re t ica l p r o p e rt ie s  can  be com puted 
d ir e c t ly  fo r  su ch  " id e a l"  n u c le i w h erea s  the co rre sp o n d in g  ex p erim en ta l 
data w ill  be obtained b y  ap p rop r ia te  in terp o la tion s  (se e  footn ote  to 
s e c t io n  4 -B ) .

S ingle p roton  e n e rg ie s  o f the m ean  o d d -Z  n u c le i and s in g le  neutron  
e n e rg ie s  o f  the m ean  od d -N  n u cle i a re  re p re se n te d  by  the tw o se ts  o f  
cu rved  thin lin e s  in the m idd le  p art o f  F ig .8. The c o rre sp o n d in g  F e r m i 
lim its  a re  in d icated  b y  dotted lin es  (z ig z a g - l in e s ) .  One se e s  that th ese  
dotted lin es  a re  a lre a d y  a f ir s t  ap p rox im a tion  to  the ex p e rim e n ta l m ean
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F IG .6. Best adjusted o sc illa to r constants Иш0 for proton states ( fu ll c irc les) and for neutron states 

(open c irc les) in  m ean odd-Z  and odd-N  n u c le i as defined in  section 2 -E .

sep a ra tion  e n e rg ie s  (d efin ed -in  F ig .7) re p re se n te d  by  the two lin es  o f 
con n ected  fu ll c i r c l e s .  T h is ad justm ent o f  the F e r m i lim its  to  the e x 
p e r im e n ta l m ean  sep a ra tion  e n e rg ie s  is  the m ain  con d ition  fix in g  both 
qu a lita tiv e ly  and quantita tively  the a v era g e  poten tia l. The ch e m ica l p o 
ten tia ls , Xp(Z ) and X n(N ), (se e  se c t io n  3 -C ) a re  nothing but som ew hat 
re g u la r ize d  F e r m i l im its . T h ey  a re  re p re se n te d  in F ig .8 by  the th ick  
lin es  con n ectin g  open  c i r c le s .
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В̂ (г.ы) - В(гы)-еи(2,ы) г¥ы
ВГп(2 ,Н )  "  1/2[B (Z .N t1 ) -B (2 ,  N -1 ) ]  г .ы  (s c .  mean separation en erg y )  

В * (2. ы ) т ß^Z.A/J -  B Í2 .N -1 )  I
^ r î  even t N odd ( g en erA h ied  separation energ ies  )

8 * (Z . fJ )  я  B (2 .M * 1 ) -B (Z .h l )  j

Ú „„IZ .N )  ■  V2 [  B& ( Z .N -1 ) -B i f , ( 2 , n * l ) ]  2?u  , slope o f  fbe ‘su rfa ce , В ц (г .н }

FIG . 7. D e fin ition s  o f the em p ir ica l data in  w h ich  we are interested and basis o f their theo re tica l 

interpretation.

3. R E A LISTIC  G A P  M ATRIC ES

Although the a v era g e  n u clea r  p oten tia l has been  in trod u ced  ph eno- 
m e n o lo g ica lly  in ou r  sch e m e  we do not ca lcu la te  the gap m a tr ic e s  . G jj. 
w ith so m e  re s id u a l in tera ction  but with the fu ll tw o -n u c le o n  in teraction  
as su ggested  by  the H -B  fo r m a lis m . The gap m a tr ic e s  fo r  s p h e r ica l 
n u c le i a re  defined  by (se e  I, E q . (4 .8 )):

Gi¡' (2j+ 1) (2J1 + 1) I (- 1} < jm , j -  m  I -V  I j 1 m ' , j ! -  m 1 >

(3.1)



F IG .8. General com parison ot pa iring  and m ean separation energies (see section 4-B) in  mean odd-Z  

n u c le i (upper h a lf o f the figure) and in  mean odd-N  n u c le i (lower h a lf  o f the figure). The  two sets o f 

curved thin lines in  the m idd le  part o f the draw ing represent the sing le  proton and neutron energies, 

e j (Z) and e j n (N), in  the neighbourhood o f the Fe rm i lim its  in d ica ted  by the two dotted lines 

(z ig zag -lin e s).
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w h ere  j is  an ab breva tion  fo r  the p r in c ip a l, o rb ita l and to ta l angular 
m om entum  quantum n u m bers n, Л, j .  The | jm /a r e  e ith er  the s in g le 
p ro ton  sta tes o r  the s in g le -n e u tro n  states o f ou r a v erag e  n u c lea r  poten tia l, 
and V is  the com p le te  tw o -n u c le o n  in tera ction .

We sh a ll not d is cu ss  h e re  the fundam ental p ro b le m  o f the ch o ice  o f 
a su itab le  N -N  in tera ction . T h is p rob lem  has been  p a rtly  trea ted  in 
R efs  [ 1] and [2 ]. A s a ru le , we have u sed  the in tera ction  (with new, 
adapted p a ra m e te rs ) con stru cted  som e  y e a rs  ago in Bonn [ 1 ,6 ]  becau se  
we s t i l l  b e lie v e  that it is  w e ll adapted to  our s ch e m e . H ow ever , som e  
p a irin g  p ro p e r t ie s  p resen ted  in th is p a p er  have a lso  been  com puted  with 
the tw o -b o d y  in tera ction s  o f  B r in k -B o e k e r  [7] and o f  P ir e s -d e  T o u r r e il  [8].

S ince w e c o n s id e r  n eu tron -n eu tron  and p r o to n -p ro to n  p a irin g  we do 
not need the tw o T = 0 p r o je c t io n s  o f  the in teraction . F o r  th is re a so n  we 
ju st g ive  h e re  the even  sin g le t and o d d -tr ip le t  p r o je c t io n s  o f  the Bonn 
and P ir e s -d e  T o u r r e il  in tera ction s  w hich  a re  both e x p lic it ly  con stru cted  
w ithin  the fou r  in variant su b sp a ce s  o f  the tw o -n u cle o n  p ro b le m .

A) T = 1 p r o je c t io n s  o f  the Bonn in teraction

L et us f ir s t  note that the Bonn in teraction  on ly  contains re co n stru cte d  
lo n g -ra n g e  ta ils  o f  the H am ada-Joh nston  potentia l [9] with e n e rg y - 
independent c u t -o f f  ra d ii . It fits  the N -N  sca tter in g  data fa ir ly  w e ll up 
to about 150 M eV (se e  F ig .5).

a) e v e n -s in g le t  potentia l

Vc  and VLL a re  ra d ia l fu nction s van ish ing  fo r  0 fm  s r  s 1.25 fm  and 
g iven  fo r  r  > 1.25 fm  by

(the te n so r  and L - s  o p e ra to rs  
vanish  in the e v e n -s in g le t  su b s p a ce 1.)

(3.2)

w here L 12 is  the H am ada-Joh nston  qu adratic o p e ra to r  defin ed  by

L i2  = (<*i . a 2) L 2 -  i- [ (ax • L) (a 2 • L) - (a2 . L) (ctx • L )] (3 .3)

Vc  = -  11.15 Y (1 + 25 Y) (M eV) 

VLL = -  1.62 Z X '2 (1 - 2  Y) (M eV)
(3.4)

w h ere

Y = X " 1 e ‘ x , X  = ß r ,  ß = 0 .7067 fm "1 

Z  = (1 + 3 X "1 + 3 X ‘ 2)
(3.5)

b) o d d -tr ip le t  potentia l

V -  Vc  + V T S 12 + V LS L - s  (the V LL potential is taken equal to 0)

(3.6)
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w h ere  S 12 is  the usual te n so r  op era tor:

S u  = 3 r ' 2 (ctx . ? )  (¿g . ? )  - (? х . a 2) (3.7)

The Vc  , VT and VLS ra d ia l functions vanish  fo r  0 fm  s  r  s 0.94 fm  and 
a re  g iven  fo r  r  > 0.94 fm  by

We have plotted  in F ig .5 the m ain e v e n -s in g le t  ( 1S0 and XD 2) and 
o d d -tr ip le t  ( 3P0 , 3P i , 3P2 and e2) phase sh ifts g iven  by the Bonn in te r 
a ction  tog eth er  with the re su lts  o f the s in g le -e n e rg y  p h a s e -sh ift  an a lyses 
o f  A r n d t-M a cG re g o r -W r ig h t [10]. T h is figu re  show s that we obtain a 

.s a t is fa c to ry  fit to the ex p erim en ta l data up to  about 150 M èV . The c o m 
p lete  in tera ction  (see  I fo r  the T  = 0 p r o je c t io n s ) g iv es  in f ir s t  o r d e r  
6.4 M eV binding en erg y  p e r  a r t ic le  in n u c lea r  m atter at an equ ilib r iu m  
d en sity  co rre sp o n d in g  to  a F e r m i m om entum  o f k p = 1.55 f m 'l  [11 ].

В) T  = 1 p r o je c t io n s  o f  the P ir e s -d e  T o u r r e il  in teraction

T his in tera ction  is  a lso  based  upon the H am ada-Johnston  o p e ra to r  
b a s is .  H ow ever , the hard c o r e  is su p p ressed  and the Y ukaw a-type 
ra d ia l fu nction s a re  re p la ce d  by G au ssian s. This in teraction  g ives  
8 M eV binding e n e rg y  p e r  p a rt ic le  in n u c lea r  m atter at k F = 1.48 fm “1 
(tog eth er  with s m a ll s e c o n d -o r d e r  con trib u tion s) and a sa t is fa c to r y  fit 
to the N -N  sca tte r in g  data up to  330 M eV .

a) e v e n -s in g le t  potentia l

It has the s tru ctu re  g iven  by  the fo re g o in g  fo rm u la s  (3 .2 ) and (3 .3 ). 
The V c  and VLL ra d ia l functions are  now sum s o f  two G au ssian s and read  
(with r  m ea su red  in  fm ):

Vc  = 3.35 Y  (1 - 0.5 Y X  + 10 Y2 X _1) (M eV)

VT = 3.35 Z  (1 - 0.7 Y X ”2 + 0.7 Y 2X ) (M eV)

V ^  = 34.8 Y 2 (1 - Y (4 X ‘ 2 + 3 X '1)) (M eV)

(3.8)

Vc  = 500 e ‘ (r/0-61)2 - 190 e ‘ (r/1-10)2 (M eV)

V LL = -2 0  e ‘ (r/0-79>2 + 0.02 e ‘ (r/4-85>2 (M eV)
(3.9)

b) o d d -tr ip le t  potentia l

(3.10)

w ith

Vc  = 75 e " (r/1-05)2 

VT = 20 e " C'71-44) 2 

VLS = -110  e ' ( r/0-92>2 

VLL = -10  e ’ (r/0-80>2

- 5 5 e - " / u o >2

- 10 e - (r/0-80>2

+ 0.06 e ‘  (r/3.0)2

(3.11)
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С) N u m e r ica l so lu tion  o f the gap equations

L et us r e c a l l  the s tru ctu re  o f  the gap equations (se e  II, s e c t io n  4) 
w hich  w e,w ant to  s o lv e  n u m e rica lly  fo r  ou r  tw o seq u en ces  o f  m ean  od d - 
n u c le i (se e  2 -E ):

A j. = 1 /2  Y'  <JT+ V 2) Д ; (ЗЛ 2)
j

with

Ej = + \ [ ( ë j  -  X)2 + Д 2 (3.13)

and
p  - E  Ü  +  1 / 2 )  ( 1  -  e j / E j )

X = -------------------------------------------------  (P  = z o r  N, odd) (3.14)
S J + l / Z J / E j
j

The sum m ations extend o v e r  a ll proton  su bsh e lls  ( fo r  the com putation  o f 
(proton) p ro p e rt ie s  o f m ean o d d -Z  n uclei) o r  o v e r  a ll neutron  su b sh e lls . 
The gap m atrix  e lem en ts G jj- and the s in g le -p a r t ic le  e n e rg ie s  ej a re  the 
input data w hile the p h y s ica lly  in terestin g  unknowns a re  the ch e m ica l 
potential X and the q u a s i-p a rt ic le , ex cita tion s  E j (Aj has no d ire c t  p h y s ica l 
m eaning). We have, th e r e fo re , to  in se r t  in the above equations the 
fo llow in g  valu es (see  2 -E ) , e ith er:

G j j '  =  G  j p i p  ( Z b  e j =  e j p  < Z )  P  =  Z

or :

G jj' = G . (N), e = e (N) P  = N
JJ J n J n  J Jn

Our f ir s t  task is ,  thus, the n u m erica l determ in ation  o f the g a p -m a tr ix  
e lem en ts G j p j-p (Z ) and G j n j'n (N) defined  by e x p re s s io n  (3 .1).

This m ay be done, to a good ap prox im ation , in the fo llow in g  r e la 
t iv e ly  s im p le  w ay. F o r  any given  m ean o d d -Z  o r  odd -N  n u cle i we expand 
the rad ia l part o f  the s in g le -p ro to n  o r  neutron  states | jm / o f the average  
p otentia l W ° (see  2 -C ) with re sp e c t  to the o r th o -n o rm a l sy stem  o f o s 
c il la to r  wave functions and we determ in e  an o s c i l la t o r  constant tiu0 w hich 
m a x im ize s  the fo llow in g  w eighted sum  (a ll the a j a re  p os itiv e  n um bers s 1)

S = ^ a j / E ° j  (3.15)

h '
w here the aj a re  the m ain  expan sion  co e ffic ie n ts  o f the sta tes | jm ), and 
E^1 a re  q u a s i-p a rt ic le  ex cita tion s  com puted  with som e  approx im ate  gap 
m a tr ix . The sum m ation  extends o v e r  a grea t n um ber o f s iibsh ells  
around thé F e r m i lim it  (see  T ab le  I). It turns out that the so  com puted 
hug d oes not s ign ifica n tly  depend on the E ° valu es and on the n um ber Of 
expanded su bsh e lls  and that the m ean value ä o f  the m ain  expan sion  c o 
e ffic ie n ts  aj is  c lo s e  to  unity (see  T ab le  I). It is  then allow ed  to rep la ce



918 BEIN ER

T A B L E  I. BE ST AD JU STED O SC IL LA TO R  CONSTANTS fiu0 F O R  THE 
TW O SEQUENCES OF M EAN O D D -N  N U CLEI AND M EAN O D D -Z  NUCLEI 
(See Section  3.C  and E q . (2 .11))

N
R

(fm)

ficd0 

■ (M eV)
a n i n 2 Z

R

(fm)

ü w 0

(M eV )
ä ni П2

15 3.81 11.38 0.981 8 0 15 4 .04 10.40 0.975 9 0

17 3,97 11.09 0.973 9 0 17 4 .22 10.28 0.984 9 0

19 4 .12 11.01 0.982 9 0 19 4 .38 10.15 0.988 9 0

21 4.25 10.72 0.986 10 0 21 4/54 9.89 0.991 10 0

23 . 4 .38 10.63 0.991 10 0 23 4 .69 9.78 0.994 10 0

25 4 .49 10.48 0.992 11 0 25 4 .84 9.64 0.995 10 0

27 4.60 10.31 0.994 11 0 27 4 .97 9.47 0.996 11 0

29 4.70 0.89 0.987 12 0 29 5.10 9.12 0.996 11 0

31 4 .80 9.67 0.976 13 0 31 5.23 8.97 0.994 12 0

33 4.90 9.62 0.981 13 0 33 5.35 8.79 0.990 13 0

35 4 .99 9.48 0.975 14 0 35 5.47 8.67 0.990 13 0

37 5.08 9.39 0.981 14 0 37 5.58 8.52 0.992 13 0

39 5.16 9.29 0.984 14 0 39 5.69 8.38 0.992 13 0

41 5.24 9.22 0.987 15 0 41 5.80 8 .27 0.992 14 0

43 5.32 9.12 0.988 15 0 43 5.90 8.14 0.991 14 0

45 5.39 9.06 0.990 15 1 45 6.00 8.08 0.991 15 1

47 . 5,47 8.97 0.991 15 1 47 6.10 7.96 0.990 15 1

49 5.54 8.87 0.991 15 1 49 6.20 7.84 0.989 15 1

51 5.61 8.61 0.992 15 1 51 6.29 7.70 0.989 15 1

55 5.74 8.40 0.975 15 3 53 6.38 7.60 0.988 15 1

59 5.87 8.25 0.963 15 4 55 6.47-' 7 .50 0.986 15 1

63 5.99 8.13 0.973 15 4 57 6.56 7.39 0.986 15 1

67 6.10 8.01 0.978 15 4 59 6.64 7.27 0.985 15 1

71 6.21 7.93 0.980 15 7 61 6.72 7.16 0.984 15 1

75 6.32 7.84 0.982 15 7 63 6.80 7.06 0.983 15 1

79 6.42 7.73 0.984 15 7

81 6.47 7.68 0.985 15 7

83 6.52 7.57 0.986 15 7 77 7.33 6.45 0.975 15 4

89 6.66 7.47 0.987 15 7 79 7.40 6.35 0.974 15 4

81 7.47 6.24 0.972 15 4

83 7.54 6.41 0.968 15 4

115 7.21 6.93 0.972 15 13 85 7.61 6.35 0.968 15 4

119 7.29 . 6.86 0.974 15 14 87 7.67 6 .29 0.974 15 6

123 7..37 6.78 0.977 15 14

125 7.40 . 6.74 0.979 15 14 R : average nuclear poten tia l radius

127 7 .44 6.75 0.979 15 14 a : mean va lue  o f the m ain  expansion coe ffic ien ts

129 7.48 6.73 0.981 15 14 n l : number o f expanded subshells

133 7.55 6 .69  ‘ 0.982 15 ‘14 n z : number o f not expanded lo w - ly in g  subshells

in e x p re s s io n  (3 .1) the | jm / wave fu nction s by  th ose o f  the b es t ad justed 
o s c i l la t o r s  and the extent o f  the n u m erica l com pu tation s is  on ce m o re  
co n s id e r a b ly  red u ced . F ig u re  6 show s the two sets  o f  o s c i l la t o r  constants 
fo r  the m ean  o d d -Z  and od d -N  n u cle i.

U sin g  the M osh in sk y  tra n sform a tion  the e x p lic it  com pu tation  o f the 
gap m a tr ic e s  is  now c a r r ie d  out, and one fin ds that the gap m a tr ix  is  a 
su m .o f  tw o m a tr ic e s ,  Ge* and Got , the f ir s t  one giving the con tr ib u 
tion  o f the e v e n -s in g le t  p r o je c t io n  o f  the in tera ction  and the secon d  one
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that o f  the o d d -tr ip le t  p r o je c t io n  (see  II, fo rm u la s  (3 .3 ')  and (3.5 to 3 .9 )). 
F in a lly  the sy ste m  o f cou p led  gap equations (3 .12) and (3.14) is  so lved  
n u m e rica lly  by ite ra tio n s .

D) P a irin g  con tribu tion s o f lo w - and h igh -ly in g  su bsh e lls

The f ir s t  p ro b le m  w hich  a r is e s  i f  one co n s id e rs  the su m m ations in 
E qs (3 .12) and (3.14) is  o b v io u s ly  the pa irin g  con tribu tion s o f  the lo w - 
and h igh -ly in g  su b sh e lls . We have in vestigated  this question  and sh all 
b r ie f ly  rev iew  the re su lts . T o  test the con tribu tion s o f the lo w -ly in g  
su b sh e lls  in a re p re se n ta t iv e  ca se  we have se le cte d  a heavy  m ean od d -N  
n ucleu s p resen tin g  la rg e  pa irin g  e ffe c ts .  We ch ose  N = 115 (see  F ig .8).
U sing the Bonn in tera ction  (see  se c t io n  3 -A ) and the s in g le -n e u tro n  states 
o f the a v erag e  potentia l (2 .8) we have s u c c e s s iv e ly  om itted  fr o m  the tota l 
p a irin g  con tribu tion  o f 29 bounded su b sh e lls  the con tribu tion s o f the 1, 2,
3,  . 11 f ir s t  su b sh e lls  o f the fo llow in g  "ca n o n ica l"  neutron  su bsh e ll
seq u en ce :

l s l / 2  - lp 3 / 2 -  l p l / 2  - ld 5 /2  - 2 s l / 2  - ld 3 /2  - 1 f 7/ 2 - 2 p 3 /2  -
2 p l / 2  - 1 f 5/ 2 - lg 9 / 2 - 2 d 5 /2  - 3 s l / 2  - 2 d 3 /2  - lg 7 /2  -  l h l l / 2  -  . ..

(3.16)

i .e .  the con tribu tion s fr o m  the 2, 6, 8, 14, 16, 20, 28, 32, 34, 40 and 
50 m o re  bounded n eu tron s .

We obtained the fo llow in g  co rre sp o n d in g  d e c re a s e s  (g iven  in %) o f  
E 1]̂ 11 (in th is ca se  E 13/ 2+ and o f the m ean qu ad ratic d ev iation  AN o f the 
neutron  num ber N (see  II, se c tio n  4):

0 , 5 ,  0 .7 , 1.5 , 3 .0 , 3 .7 , 4 .4 , 6 .7 , 8 .1 , 8 .9 , 11 .9, 14.8%, 
and 0 .1 , 0 .4 , 0 .5 , 0 .9 , 1 .1 , 1 .4 , 2 .1 , 2 .5 , 2 .7 , 3 .3 , 4.37»

We se e  that th ese  con trib u tion s are  sm a ll, but not v e ry  sm a ll. In fa ct, 
they a re  p rob a b ly  o v e re s tim a tio n s  o f the actual con tribu tion s beca u se  
(as a lre a d y  stated) our lo w -ly in g  su b sh e lls  (as th ose  of any lo c a l  a v erag e  
potentia l n orm a lized  to  g ive  a fa ir  accoun t o f the F e r m i’ lim its  assu m ing  
sm a ll reorg a n iza tion  e n e rg ie s ) a re  e n e rg e tica lly  too  h igh. Anyw ay it is 
s im p le r  and w e ll ju s t ifie d  to  avoid  an a r b itr a r y  c u t -o ff  startin g  in a ll c a se s  
the su m m ations with the Is su b sh e ll. A som ew hat m o re  am biguous 
situ ation  h olds fo r  the u pper sum  lim it. It is ce rta in ly  ju st ifie d  to e x 
tend the su m m ation  o v e r  a ll h ig h -ly in g  bounded su b sh e lls  (ej < 0 ). H ow 
e v e r , no n eg lig ib le  con tribu tion s m ust be ex p ected  fro m  qu asi-boun ded  
su b sh e lls  (ejê 0,  but s m a lle r  than the sum  o f  the cen tr ifu g a l and C oulom b 
w a lls ) and even  fro m  the continuum .

We have not tr ied  to  so lv e  a c cu ra te ly  th is in terestin g  p rob lem  w hich  
w ill p rob a b ly  lead to ted ious com p u tation s. W e sh a ll on ly  g ive  h e re  the resu lts  
o f  a f ir s t  check  con cern in g  th is qu estion . We ch o o s e  a light m ean odd -N  
n ucleu s (N = 19, fiu0 =11 M eV) with en erg y  cen tred  in the fourth  bounded 
sh e ll ( I f  + 2p) with - 3 M eV . We add the th ree  next o s c i l la t o r  sh e lls  
( lg  + 2d + 3S), (lh- + 2f + 3p) and ( l i  + 2g + 3d + 4s) at 8, 19 and 30 M eV , 
r e s p e c t iv e ly , n eg lectin g  the H - s  sp littin g . Taking s u c c e s s iv e ly  0, 1, -2
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and 3 shells more into the summation, we obtain for E  j ln (in this case 

E 3/2+) and A N  the following values:

E  3/2+ = 1.54, 1.70, 1.742 and 1.754 M eV

A N  = 1.50, 1.56, 1.580 and 1.584

In these model estimations, the contribution of the first added shell 

at 8 M e V  is not negligible, but the convergence is fast. Taking now into 

account all bounded and quasi-bounded subshells, i.e. adding to the 

10 bounded subshells the unique quasi-bounded lg9 /2  subshells at 4 M eV , 

we obtain:

E  3/2+ = 1.64 M eV  and N  = 1.53

To use a realistic and simple prescription we have decided to extend 

systematically the summations in Eqs (3.12) and (3.14) over all bounded 

and quasi-bounded subshells.

E) Pairing effects of the different parts of the two-body force

Before presenting systematical results obtained with the complete

T =  1 Bonn interaction (including the Coulomb force), let us finally dis

cuss the relative importance of the different parts of this interaction.

Although additivity holds in setting up the gap matrix (see II, 

section 3) but is lost in the pairing effects (see the structure of the gap 

equations), it is more convenient to use a characteristic pairing pro

perty (as, for example, 2 E  ™ п which is the theoretical value corresponding 

to the usual empirical pairing energy (see F ig .7)) in order to determine 

the relative importance of the different parts of the interaction. C o m 

paring, thus, pairing energies calculated with the complete and the trun

cated Bonn interaction (see section 3-A) we can state that

a) the even-singlet central term is the unique part of the interaction 

giving constructive pairing effects,

b) the L 12 term has negligible pairing effects (less than 1%),

c) the complete nuclear odd-triplet interaction reduces, on the average, 

by 8 .2%  and by 7 .3%  the neutron and proton pairing energies, 

respectively, and

d) the Coulomb interaction reduces on the average, by 20% the proton- 

pairing energies.

4. R E S U L T S  A N D  C O M M E N T S

W e  are now ready to present and comment on our general results.

A) Nuclear radii and Coulomb displacement energies

Table II shows a sum m ary  of the experimental r .m .s . charge radius [12] 

together with the computed characteristics of the distributions of protons 

and neutrons, pp(r) and p n (r), respectively.
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T A B L E  II. M A IN  C H A R A C T E R IS T IC S  O F  T H E O R E T I C A L  D IS T R IB U T IO N S  

O F  N U C L E O N S  p (r) A N D  pn (r)*

Computed characteristics (fm)

Nucleus
r.m .s.

charge radius

(fm)

Protons Neutrons

^  1/2 C ”
P

С
P

C +
P

<r2> 1 / 2
C P G n

С̂ n

8 leO 2 .71  - 2.75 2.74 1.59 2.32 3.31 2.58 .1.60 2.28 3.20

8 180 2.77 2.67 1.62 2.33 3.30 2.90 1.75 2.50 3.49

12 24Mg 2 .91  - 2.98 3.13 1.99 2.80 3.87 2.94 2.03 2.78 3.74

13 21A1 2 .91  - 2 .98 3.15 2.13 2.93 3.97 3.04 2.21 2.96 3.92

14 28Si 3.04 3.22 2 .21 3.02 4.07 3.05 2.22 2.98 3.93

15 31 P. 3.07 3.26 2.26 3.13 4 .19 3.16 2.32 3.16 4 .13

16 32S 3.12 - 3.33 3.34 2.26 3.22 4.30 3.15 2.34 3.17 4 .13

b 2 0 40Ca 3.50 3 .47 ' 2.65 3.47 4.51 3.29 2.68 3.44 4 .38

b 20 42Ca 3.53 3.45 2.69 3.50 4.53 3.41 2.80 3.56 4.52

b 20 ®Ca 3.53 3.44 2.74 3.54 4 .55 3.51 2.91 3.67 4.63

b 20 48Ca 3.49 3.44 2.81 3.60 4.59 3.67 3.11 3.85 4 .82

22 46Ti 3.57 3.58 2.86 3.67 4 .70 3.50 2.93 3 .69 4.64

b 22 48Ti 3.60 3.57 2.89 3.69 4 .71 3.59 3.04 3.79 4.75

22 50Ti 3.57 3.56 2.92 3.71 4.72 3.66 3.15 3.89 4.85

23 51V 3.57 - 3.59 3.62 2.89 3.77 4 .79 3.66 3.16 3.90 4.85

24 52Cr 3.66 3.68 3.04 3.84 4 .86 3.65 3.17 3.90 4 .85

26 54Fe 3.72 3.78 3.16 3.95 4.98 3.65 3.19 3.92 4 .87

26 56Fe 3.74  - 3.85 3.77 3.18 3.97 4.98 3.75 3.20 4.02 5.00

27 59Co 3.76 - 4 .01 3.80 3.26 4.04 5.05 3.82 3.25 4.12 5.12

2 8 58Ni 3 .79  - 3.93 3.85 3.30 4.07 5.09 3.74 3.23 4 .04 5.01

2 8 60Ni 3.82 - 3.84 3.84 3.31 4 .08 5.09 3.82 3.27 4.13 5.13

3 8 88Sr 4 .06  - 4 .14 4.22 3.82 4.67 5.71 4.32 4 .09 4 .85 5.82

49 1,5 In 4 .49  - 4 .50 4 .60 4 .43 5.22 6.23 4 .70 4 .50 5.37 6.38

50 116Sn 4 .50  - 4 .55 4.63 4 .46 5.25 6.25 4 .70 4.50 5.37 6.38"

50 lz0Sn 4 .57  - 4 .64 4.64 4 .49 5.28 6.28 4 .79 4.62 5.48 6.50

50 124Sn 4 .60  - 4 .67 4.65 4 .53 5.32 6.31 4 .87 4.73 5.58 6.60

51 ‘»Sb 4.63  - 4 .67 4.67 4.52 5.32 6.32 4.81 4.66 5.52 6.53

79 157 Au 5.28 - 5.32 5.47 5.59 6.41 7.41 5.61 5.77 6.61 7.63

82 208Pb 5.39  - 5.55 5.52 5.71 6.52 7.53 5.71 5.93 6.78 7,80

00 CO ra 5.17 - 5.54 5.56 5.74 6.55 7.56 5.71 5.94 6.79 7.80

С ’  < С  < C + are those radii for which -  p ' (C) = max and p ' (С " )  = p ’ (С * )  = £ p' (C). For the 

calculations resumed in this table the Coulomb potential was calculated from the empirical charge 

distribution ( 2 .6 )  and the ÓR term ( 2 .3 )  was replaced by two different values for c t4 (cc4 = 1 .2 7  
for protons, and a 4 = 1 .2 5  for neutrons).

For these five isotopes exact calculations were performed (i. e. the Coulomb potential was 

calculated from the theoretical proton distributions and the 6R term was rigorously computed 

by using an iteration process).

Cp and C n are defined by (see 2 -A)

-pp (Cp) = m axim um  and _ p'n (C n) = m axim um (4.1)

while C "  and C + , for example, are those radii (С < С < С * )  for which 
p p 4 p p P ’

Pp(Cp) = p ' (C t )  = r  Pp( C . ) (4.2)
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The good fit to the experimental r .m .s . charge radius (in particular, the 

truely reproduced (N-Z) dependences) confirms once more the adequacy 

of the relatively simple structure of the average potential (see section2-C).

F or  (Z = N) nuclei the r .m .s . proton radius is greater than the r .m .s . 

neutron radius whereas for nuclei close to the stability line the reverse 

situation holds. However, the difference between the two r .m .s . radii 

is always small and does not exceed 0.23 fm ( lsO , 48Ca and 124Sn).

In the case of a two-parameter (c, z) Ferm i distribution

p(r) = p° (1 + exp Г z 9 ) 1 (4.3)

one has

С = с ,  C + - С = С - C " and C + - С = 3.52 z = 0.80 t.

Taking the m ean  t value, t = (2.4 ± 0.3) fm , one obtains 

C + - С ’ >exP- = (1.92 ± 0.24) fm  whereas our theoretical values are 

< Cp - Cp>  = 1.82 fm  and < C *  - C ^ )  = i .77 fm.

Much m ore significant is the asym metry of p' (r) around r = C.

W e  obtain:

< С p - C ” > = 1.02 fm , < C p - Cp > = 0.80 fm;

< C *  - c ;>  = 0.98 fm , < C n - C " >  = 0.79 fm

with a very small dispersion of the individual values (see Table II).

In this connection we believe that a three-parameter distribution of the 

type we have called a generalized Woods-Saxon form

p(r) =  p° ( 1 +  exp r ~ g l  J (4.4)
\ 02 /

which well describes such an asymmetry without relating it to the be

haviour of the central density (as does the usual three-parameter Ferm i 

distribution), would be better.

Finally, we obtain for the Coulomb displacement energy in 208Pb 

estimated to be

ЛЕс = ï i k  / [pn(r) ' pp(r)] wCb(i) r2dr (4-5)
0

exp.

the following value: Д Е С = 18.25 M eV  ( Д Е  c = 18.98 ± 0.02 M eV )

(see Ref. [2], section 4).

B) Separation and pairing energies

These energies represent our main results. Let B (N .Z ) and e “ (Z ,N )  

be the ground-state total binding energy or excitation energy of the state 

\a /  in the nucleus (Z ,N ) .  They determine completely the experimental 

data in which we are interested: the m ean separation energy, the gene

ralized separation energies, the slope of the mean-separation-energy 

surface, and the pairing energy, which we have all defined in the upper
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P r o t o n  N u m b e r --------------> -

FIG. 9. Experimental and theoretical slopes of the Bjp (Z , N) and (Z , N) surfaces (see Fig.7 as well

as Eqs (4.6) and (4.7)).

and lower parts of F ig .7 for the neutron case. Symmetrical formulas 

have to be used for the proton case. Systematic surveys of some of these 

experimental data are given in Refs [1, 4, 13 - 15]. In the middle part (a) 

of F ig .7 we define and illustrate (also for the neutron case) the corres

pondence between these data and the theoretical values: A (chemical 

potential) and Ej (quasi-particle-excitation energies). Let us note that 

we assum e pure proton-proton and neutron-neutron pairing, i.e. that the 

ground state of an even-even nucleus is approximated by the product of 

two B C S  wave functions, one for. the protons and the other for the neutrons. 

The m ean odd-Z and odd-N nuclei will thus be described as one quasi

proton or one quasi-neutron systems, the expectation values of the 

nucleon operators being taken equal to (Z , N (Z )) and (Z (Ñ ), N ), respec

tively. E HB(Z ,N )  is the total Hartree-Bogolyubov energy of the nucleus 

( Z ,N ) .  Dropping all the arguments we put together the formula which 

we shall use for the theoretical interpretation of the empirical data :

•pth.
B Sp = - A , B A  = 

P P i d ZX p - (>■„'+ E j  rort ) ,  Д Ш - 
v p Jpl“ ) "  pp

= 9 ,  A Z p

and
_  th. 

pp

min 
= 2 E  :

JP

"R
2n

= - A , B “ th- =
n n i  д ы К '  <X n +  E j „(«)>'

and'

д th’
nn

p ‘h-

= 3 N X n

= 2 Е Г
Jn

Figures 8 and 9 show for the two complete sequences of m ean odd-nuclei 

the comparison between experimental and theoretical values of

a) the pairing and m ean separation energies (F ig .8), and

b) the slopes of the Bgj (Z ,N )  and B ^  (Z ,N )  surfaces (F ig .9).
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FIG .10. Generalized Separation energies in 2°’pb, 2̂ Pb, TI and Bi (see Fig.7 as well as Eqs (4.6) 

and (4.7)).

Experimental and theoretical generalized separation energies of four 

heavy nuclei (207Pb, 209Pb , 207 'j'i ancj 209g^ are pitted in F ig .10.

Finally, Tables III and IV give the numerical values of the experi

mental and theoretical "functions" plotted in F ig .8, their differences as- 

well as some additional information concerning the assignments of the 

low-lying states of odd nuclei.

Although the numerical parameters or ¡ are independent of Z  and N  the 

good agreement extends over the whole domain of spherical nuclei 

(15 S Z  S 87 and 15 s N  S 131) and is thus really quite impressive.

Let <( у be, for example, the m ean experimental proton pairing 

energy for the complete sequence of m ean odd-Z nuclei. W e  obtain for 

the m ean difference between experimental and theoretical values:

= 0.02 M e V  )

) (adjustment of о-j and a 2 '.)

= 0.06 M e V  )

> = 0.50 M eV  or 18.5%  of < Pp > .

a) < B 2"p + X P>

b) < B 2-n +  * n >

c) < P  ■N P

min
• 2E i 

JP

d) < P  ■4 n

min

• 2 E i J n

with the following corresponding mean deviations of the individual 

differences:
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TABLE III. PROPERTIES OF 
SPHERICAL ODD-Z NUCLEI

z N

Experimental data Theoretical predictions

B2p
(MeV) (MeV) Í i> n _XP

(MeV)

6X

(MeV)

r min
ip

(MeV)

ÓE

(MeV) iw

15 17.0 9.10 1.37 l /2 + <=f (1) 9.96 -0.86 1.29 0.08 1/2* 3 /2 + S/2*

17 19.4 8.73 1.57 3/2+ b 1 9.24 -0 .51 1.21 0.36 3/2+ l /2 + 7/2*

19 21.8 8.88 1.62 3/2+ = 3 9.53 -0.65 1.29 0.33

21 24.4 8.46 2.09 7/2 ‘ * (3) 7.72 Ô.74 1.11 0. 98 7/2" 3 /2 “ 3/2*

23 27.2 8.84 1.80 7 /2" = (3) 8.44 0.40 1.06 0.74

25 30.0 9.13 1.55 5/2" 9.06 0.07 1.04 0.51 1 /2 '

27 32.8 8.95 1.53 7 /2 - - (2) 9.51 -0.56 1.07 0.46

29 35.6 7.90 1.17 3 /2" 5 7.94 -0.04 1.00 0.17 3 /2 ' 1 /2 - 5 /2 '

31 38,5 7.*85 1.32 3 /2 - 1 7.88 -0.03 1.22 0.10 5/2" 1 /2 -

33 41.5 7.97 1.68 3 /2" 1 8.03 -0.06 1.36 0.32 5 /2 ' 3 /2 " 1 /2 -

35 44.5 7.94 1.64 3 /2 - 1 8.30 -0.36 1.31 0.33 1 /2 ' 3 /2 "

37 47.5 8.07 1.45 5/2" = 1 8.47 -0 .40 1.34 0.11 1 /2 - 5 /2 " "

39 50.5 7.93 1.11 1 /2 - 2 8.34 -0.41 1.07 0.04 9/2+

41 53.6 7.86 1.52 9/2+ (=) (2) 7.93 -0.07 1.08 0.44 9/2+ 1 /2 - 3 /2 "

43 57.6 8.20 1.66 9/2+ <=> (1) 8.14 -0.06 1.03 0.63 ,.n

45 60.0 8.20 1.50 7/2+ 8.36 -0.16 0.99 0.51

47 63.2 8.17 1.52 1 /2 - (2) 8.55 -0.38 0.97 0.55 "

49 66.4 8.20 1.56 9/2+ 2 8.68 -0 ,48 0.99 0.57

51 69.7 6.74 1.31 (5 /2+) (4) 5.95 0.79 0.94 0.37 5/2+ 7/2* 1/2+

53 73.1 6.94 1.21 5/2+ = 2 6.14 0.80 1.07 0.14

55 76.5 6.73 1.11 5/2+ 7/2+ .0 6.33 0.40 1.16 -0.05

57 79.9 6.56 1.20 (5/2+) 7/2+ 0 6.51 0.05 1.28 -0.08 "

59 83.3 6.66 1.34 5/3+ 7/2+ 0 6.61 0.05 1.29 0.05

61 86.7 6.69 1.40 7/2+ = 2 6.63 0.06 1.31 0.09 - 1 1 /2 '

63 90.1 6.77 1.48 5/2+ (=) (1) 6.58 0.19 1.40 0.08 11/2" 7 /2 +

77 114.6 6.24 1.00 3/2+ 2 6.60 -0.36 1.14 -0.14 3/2+ 1/2* 1 1 /2 '

79 118.2 6.54' 0.89 3/2+ (2) 6.50 0.04 0.98 -0.09 l /2 + 3/2*

81 121.8 6.12 0.66 1/2+ 3 6.29 -0 .17 0.73 >0.07 -

83 125.4 4.31 . 0.87 9/2" = 1 4.28 0.03 0.87 0.0 9 /2 “ 7/2' 13/2+

85 129.0 4.56 0.98 (9 /2 “) (=) (1) 4.29 0.27 0.87 0.11

87 132.6 (5.05) 1.00 •? ? 4.29 (0.76) 0.90 0.10

a ( ) indicates that an experimental value is only a probable one. 
k = indicates the (horizontal) repetition of the last tabulated value.
Note: N is a mean neutron number associated with every odd-Z thus defining a mean odd-Z nuclei (Z, N(Z)) on our middle line 

(see section 2. E, in particular expression (2.11)). (Z, N(Z)) is the linear interpolation between the two proton
mean separation energies Bj= (Z, N“) and B ^  (Z, N*) see Fig.7), N" and N+ being the two even integers immediate neigh
bours of N(Z). Pp is a weighted average value of the proton pairing energies Pp(Z, N) (see Fig.7) over all even N iso
topes (Z, N). j< and j j  represent the assignments of the ground states of the two odd-Z nuclei (Z, N“) and (Z, N*), 
respectively, while n gives the length of the common sequence o f ground and excited states in (Z, N“) and (Z, N*).
-X_ is the theoretical value o f Bgp, 6X being the difference (Bgp “ ( “ *p)) an<l Ej11*11 is the theoretical value of
1 /z  Pp, 6E being the difference (1 /2  Pp -  Ei°in ) (see expression (4 .6)). Finally, jff gives the assignments of the ground
and two first excited states in mean odd-Z nJclei.
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TAB LE  IV. PROPERTIES OF SPHERICAL ODD-N NUCLEI (SEE CAPTION 
OF TABLE III AND REVERSE THE ROLES OF PROTONS AND NEUTRONS)

N Z

Expertmental data Theoretical predictions

B2p
(MeV)

* ?n
(MeV)

î n _ \i

(MeV)

ÓX

(MeV)

P min
Jn

(MeV)

6E

(MeV)
f

15 13.38 8.87 1.65 l /2 + = b (2>a 10.08 -1.21 1.58 0.07 l /2 + 3/2+ 5/2+
17 15.00 9.02 1.90 3/2+ = 2 9.75 -0.73 1.68 0.22 3 /2 + l /2 + 7 /2 "
19 16.67 9.14 2.00 3/2+ = 1 10.21 -1.07 1.63 0.37 "
21 18.33 8.45 1.76 7 /2 - = 3 8.73 -0 .28 1.39 0.37 7 /2" 3 /2 - 3 /2 +
23 20.00 9.53 1.75 7 /2 ' 9.45 0.08 1.29 0.46 "
25 21.43 9.92 1.61 7/2" S/2" , 0 9.94 -0 .02 1.30 0.31 1 /2 -
27 22.86 10.13 1.57 7 /2 ” = (3) 10.21 -0 .08 1.51 0.06 "
29 24.29 9.06 1.23 3 /2 " = (5) 0.03 0.03 1.30 •0.07 3 /2 " 1 /2" 7/2*
31 25.71 8.57 1.44 3/2~ 1 /2 ” 0 8.78 -0.21 1.49 -0.05 " 5 /2"
33 27.14 8.50 1.54 3 /2 - = 1 8.74 -0 .24 1.75 -0.21 5 /2 " -3 /2 "
35 28.57 8.65 1.67 1 /2 - 5 /2" 0 8.96 -0.31 1.61 0.06 "
37 30.00 8.63 1.72 5 /2 - 9.19 -0.56 1.63 0.09 1 /2 ' 5 /2 ' "
39 31.33 8.66 1.70 1 /2 - = 1 9.18 -0.52 1.57 0.13 **
41 32.67 8.88 1.71 9/2+ 5/2+ 0 8.81 0.07 1.35 0.36 9/2+ 1 /2 - 5 /2 “
43 34.00 8.95 1.66 1/2 8.98 -0.03 1.27 0.39 "
45 35.33 9.14 1.62 7/2+ = 2 9.19 -0.05 1.20 0.42 5/2+
47 36.67 9.35 1.54 9/2+ (=) (3) 9.42 -0 .07 1.19 0.35 "
49 38.00 9.77 1.43 9/2+ = (3) 9,58 0.19 1.20 0.23 5/2+ 1 /2 -
51 39.33 7.56 0.82 5/2+ • = 2 7.42 0.14 0.92 -0.10 5 /2 + l /2 + 7/2+
53 40.63 7.71 0.90 5/2+ = (2) 7.42 0.29 1.02 -0.12
55 41.88 7.68 1.01 5/2+ = 1 7.41 0.27 1.28 -0 .27 "
57 43.63 7,61 1.29 l /2 + 5/2+ 0 7.46 0.15 1.58 -0 .29 5/2+ 7/2+ l /2 +
59 44.37 7.70 1.33 l /2 + 5/2+ 0 7.57 0.13 1.55 -0.22 7/2+ 1/2+ 5/2+
61 45.62 7.75 1.37 5/2+ = 2 7.72 0.03 1.56 -0 .19
63 46.88 7.74 1.36 5/2+ 1/2+ 0 7.86 -0.12 1.74 -0 .38 l /2 + 7/2+ 3/2+
65 48.12 7.83 1.30 1/2+ = 1 7.94 -0 .11 1.76 -0 .46 3 /2 + 1/2*
67 49.37 7.87 1.35 1/2+ = 1 8.03 >0.16 1.76 -0.41 3/2+ 11/2" 1/2+
69 50.59 7.99 1.45 l /2 + = (3) 8.11 -0.12 1.55 -0.10 11/2" 3 /2 + "
71 51.77 8.12 1.35 3/2+ l /2 + 0 8,21 -0 .09 1.42 -0,07
73 52.94 8.12 1.33 1/2+ = (2) 8.32 -0 .20 1.33 0.0
75 54.12 8.11 1.25 1/2+ (=) (1) 8.44 -0.33 1.28 -0.03
77 55.30 8.18 1.20 3/2+ (1/2) (0) 8.55 -0 .37 1.26 -0.06 "
79 56.48 8.32 1.1Ä 3/2+ ( s) (1 ) 8.65 -0,33 1.25 -0 .13 " "
61 57.65 8.17 0.85 3/2  + = ' 3 8.71 -0 .54 1.28 -0.43 11/2" 3 /2 + l /2 +
83 58.82 6.58 0.92 7/2” = 2 6.07 0.51 0.79 0.13 7 /2 " 3 /2 " 9 /2"
85 60.00 6.65 0.94 7 /2 ’ 6.10 0.55 0.85 0.09 9 /2" 3 /2 "
87 61.18 6.64 1.13 5 /2 " 7/2" 0 6.15 0.49 0.96 0.17 "

115 77.22 7.04 1.05 (9 /2 -) d /2 " ) 0 7.34 -0 .34 1.29 -0.24 13/2+ 5 /2 " 3 /2 "
117 78.34 7.13 0.98 l / 2 ‘ 1 7.44 -0.31 1.25 -0.27 5 /2" 13/2+ "
119 79.45 7.15 0.83 (3 /2 -) 1/2* 0 7.47 -0.32 1.15 -0.32 1 /2 - "
121 80.56 7.19 0.78 3 /2 “ (5 /2 ") 0 7.48 -0 .29 1.06 -0 .28 1 /2 - 5 /2 - "
123 81.67 7 .3 1 0.79 5/2" = 1 7.46 -0.15 0.85 -0.06 "
125 82.78 7.14 0.46 1 /2 - = 1 7.39 -0 .25 0.63 -0 .17 "
127 83.89 5.24 0.79 9/2+ И 1 5.08 0.14 0.67 0.12 9/2+ l l / 2 + 15/2-
129 85.00 5.46 0.77 (9/2+) ? (1) 5.14 0.32 0.71 0.06 "
1Э1 86.11 5.62 0.91 > i 5.21 0.41 0.76 0.15

* ( ) indicates that an experimental value is only a probable one.
= indicates the (horizontal) repetition o f the last tabulated value.

° f  < B 2- p >  

of < B 2-n> 

of < P  >

of < Pn >

a) 0.27 (0.42, 0.57) MeV or 3.6%

b) 0.24 (0.41, 0.30) MeV or 3.0%

c) 0.56 MeV or 20.5%

d) 0.40 MeV or 15.8%
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The values 0.42 and 0.41 are obtained using pHof (r ) instead of f ±(r) in the 
jf • s’ term  with new adjusted a| (see 2 -B ). They dem onstrate the inade
quacy of deriving the phenom enological 1  • s term  from  sm ooth radial 
functions having the range of the em pirica l charge distributions. Of 
cou rse  this conclusion  does not prejudice  the use of computed nucleon 
densities in Í • s term s (see expression  (2.7)). H ow ever, it becom es very  
d ifficu lt to justify  such a m ore sophisticated treatment experim entally.
The mean deviations 0.57 and 0.30 MeV ch aracterize  results based upon 
the average potential. The re latively  large one originates from  unsuitable 
radial dependence of the proton potential (too short potential tails) and 
from  wrong (N -Z ) dependence-of the Ê •s splitting intensity.

W hereas the mean d ifferen ces ^ B 2p + Xp)> and <( B jv  + Xn/  have no 
particu lar meaning (adjustment o f a± and a 2 (see expression  (2.4)) those 
of < Pp - 2Ej*m >̂ and <( Pn - 2Е™ П> are very  significant. They depend 
sensitively  on the leve l density as w ell as on the tw o-body interaction , 
and it is rea lly  interesting to obtain the above results without any arb itrary  
renorm alizations. H ow ever, one notices a definitively le ss  sa tisfactory  
fit to Pp (Z) than to Pn (N), owing to the Coulomb interaction which notably 
reduces the theoretica l proton pairing energies (see section  3 -E ). We 
have not yet found any com pensations to this effect which does not seem  
to occu r actually.

The mean deviations obtained are fa irly  sm all (in particu lar, those 
o f the mean separation energies) and indicate that we a lso  w ell reproduce 
som e typical variations with Z or N of the em pirica l data (see F ig .8).
The largest d iscrepan cies  occu r for the pairing energies in the regions 
o f th eoretica lly  isolated subshells with high j values (21 s Z ,N  s 27 and 
4 1 S Z .N S  49).

The results shown in F ig .9 n ice ly  con form  that our sim ple m odel 
w orks. In fact, they are not tr iv ia l, the im portant Coulomb asym m etry 
as w ell as som e sensitive subshell e ffects being fa ir ly  w ell reproduced. 
Furtherm ore the relation:

9 n X p = a z X n (nothing but a*z E HB(Z ,N ) = 92znE HB(Z ,N ),
(4.8)

see F ig .7)

is  autom atically satisfied  in our m odel as a d irect consequence o f the 
sym m etry  of the expression  (2.4).

F inally, let us b rie fly  com m ent on the results sh ow n in F ig .10. The 
mean d iscrepan cy  between theoretica l and em p irica l generalized  separa 
tion energies (absolute values) amounts to 0.21 MeV in 207Pb (13 leve ls ),
0.19 MeV in 209Pb (7 lev e ls ), 0.66 MeV in 207T1 (5 levels) and 0.17 MeV 
in 209Bi (5 levels) (com pare with R ost1 s results [16]). Thus, a lo ca l, 
suitably norm alized  average potential rea lly  seem s to yield reasonable 
subshell density in the neighbourhood of the F erm i lim its, which still 
rem ains the m ost disturbing w ell-know n fact (see Introduction and Ref. [2]). 
Anyway the good fit to the levels  of w ell-m easu red  heavy nuclei strongly 
suggests to investigate super heavy sph erica l structures using the same 
set of num erical constants Qr¿ (see expressions (2.10)) which su ccessfu lly  
determ ine average potentials fo r  the com plete range of spherica l nuclei 
known so far. We have not yet achieved results of computations along 
these lines and thus we just give a prelim inary result: the only possib le



candidate to be found for a spherica l double-m agic structure is 298X 
with 114 184

e, (2Í7/2) = -4.30 MeV; e. (2Í5/2) = -2 .47 MeV 
JP Jp

e¡ (3d3/2) = -5.96 MeV; (2hl 1 /2) = -3 .68  MeV
n n

B efore drawing any conclusions, let us say a few words about the pairing 
properties of other N-N interactions.

C) P airing effects of different interactions

Since the good sim ultaneous fit to the experim ental separation and 
pairing energies is probably not of accidental nature, it may be interesting 
to test the pairing effects of other N-N interactions just using the "best" 
sets o f s in g le -p artic le  energies as w ell as oscilla tor  constants which we 
have constructed. This procedure is obviously not se lf-con sisten t. How
ev er , it is actually the best way . of doing something in this field without 
entering into tedious calculations. It is now very  convenient (see s e c 
tion 3-C ) to use once again the E™in values in order to com pare the p a ir
ing effects of different tw o-body fo r ce s , and we put together the main 
results o f these last investigations;
a) F o r  4 groups of od d -Z  isotones (N =28, Z = 2 1 -2 7 ;N  = 50, Z = 37-43;

N = 82, Z = 55-63; N = 126, Z = 81-87) and for  3 groups of odd-N 
isotopes (Z  = 28, N = 29-37; Z = 50, N = 63-75; Z = 82, N = 119-129) 
the Bonn and B rink-B oeker B I, C l, L4, B4, C4 and LI (see Ref. [7]) 
interactions su ccess iv e ly  give the following results:

928 BEINER

K, Ejp = 1.05; 1.91, 2.28, 1.21, 1.66, 2.20, and 1.60 MeV, respectively

<\E¡ "z = 1.26; 18.0, 2.27, 0.87, 1.21, 1.87, and 0.96 MeV, respective ly
■» n

w hereas the corresponding experim ental values are

< |  Pp > = 1.24 MeV and < | P„ > = 1.17 MeV

The d ispersion  of the results obtained with the different kinds o f the 
B rin k -B oeker effective interaction should be noted, C l giving the largest 
pairing effects in the proton as w ell as in the neutron case,
b) F o r  the two com plete sequences o f mean odd -Z  and mean odd-N

nuclei we obtain, by using su ccess ive ly  P ir e s -de T ou rre il [8 ], Bonn 
and B rink-B oeker C l interactions:

^min ч(  2Ej > /<  PD > = 0.50, 0.82, and 1.74, respective ly  
P

2E™n//(  Pn )> = 0.65, 1.00, and 1.88, respectively

The P ir e s -de T ou rre il interaction thus c learly  gives sm all pairing 
e ffects because the leve l density which we are using probably represents 
an upper lim it of the actual density.

F inally, it may be worth while a lso  com paring the corresponding 
chem ical potentials in regions where they notably depend on the pairing
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F IG . 1 1 . P a irin g  p rop erties  o f  m e a n  o d d - Z  n u c le i  in  th e  le a d  re g io n , c a lc u la t e d  w ith  d if fe re n t  N -N  
in te r a c t io n s .

intensity, i.e . in the im m ediate neighbourhood of m agic num bers.
F igure 11 illustrates the results for  mean odd -Z  nuclei in the lead r e 
gion (77 á Z S 87). The three cases (designated by 1, 2 and 3) just c o r 
respond to the above three interactions while the 11 subshell calculations 
neglect the contributions of the 11 low -lying proton subshells l s l / 2  to 
lg 9 /2  as w ell as those of the 7 high-lying proton subshells 2g9/2 - 1 j 1 5 /2 - 
l i l l / 2  - 3d5/2 - 2g7/2 - 3d3/2 a n d 4 s l /2 .  Thus, using the single-proton  
energies of our average potential we find that (see F ig .11):
a) In the first case (P ire s -d e  T ou rre il interaction  fitting the N-N sca t
tering data up to 330 MeV):

No fit can be obtained, neither to Bfp nor to Pp .
b) In the second case (Bonn interaction containing long-range tails and 
fitting the N-N scattering data only up to 150 MeV):

A sim ultaneous fit to B^p and to Pp is d irectly  obtained.
c) In the third case (B rink-B oeker C l effective interaction fitting in 
f ir s t -o r d e r  nuclear m atter and binding energy as w ell as density of |He):

A sim ultaneous fit to B¿^ and to Pp is only obtained if  the interaction 
is renorm alized  suitably (dropping of low - and high-lying subshells).

5. CONCLUSION

Our sim ple pairing m odel n icely  reproduces a re latively  wide range 
of experim ental data. In particu lar, in the neighbourhood of the F erm i 
lim its our average potentials give rea listic  sets of s in g le-proton  and
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neutron states needed in nuclear sh e ll-m od el calcu lations. H owever, 
from  a m ore fundamental point of view , the situation is not sa tisfactory  
since we actually do not know whether this m odel represents som e ap
proxim ation to the fir s t -o rd e r  H artree-B ogolyubov treatment of the 
N -body problem .
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Abstract

M ICR O SC O PIC  D ERIVATIO N  OF THE O P T IC A L  PO TE N T IA L.
T h is  paper is an a ttem p t to  d e te rm in e  an o p t i c a l  p o te n t ia l fr o m  th e  m ic r o s c o p ic  m a n y -b o d y  th eory  

tak ing  in to  a cco u n t  a ll th e  e ffe c t s  o f  a n tisy m m e tr iza tio n .
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From  the shell m odel, we know that the interaction o f a particle with 
the rem aining particles in the nucleus can be w ell represented by a single
particle  potential. Then, one can suppose that this assumption holds for 
the scattering o f a nucleon by a nucleus. This interaction o f the incident 
particle  with thç nucleus can be represented by m eans o f a s in g le -p artic le  
potential which is ca lled  the optical potential and must be com plex to take 
into account all inelastic p rocesses  [1]. The optical m odel has been 
extensively used in a phenom enological way. A ssum ing the. validity o f the 
m odel, one postulates a given form  (local o r  non-loca l) for  the optical 
potential [2], depending on param eters which are adjusted to reproduce 
the experim ental data.

Then from  a theoretical point o f view , an interesting problem  has to 
be solved: how can this optical potential be derived from  marty-body 
theory? Several attempts [3] have been made but they do not take properly  
into account the identity o f the (A + l)  nucleons o f the total system  com posed 
o f the incident nucleon and the target nucleus o f m ass num ber A . F urther
m ore , either the F erm i gas m odel o r  the shell m odel are used to describe 
the target nucleus.

In the work reported  here, we have tried to determ ine an optical 
potential from  the m icro sco p ic  m any-body theory taking into account all 
the effects o f the antisym m etrization. F or such a program  the G reen 's  
functions are a very  powerful tool. A firs t  attempt has been made in 
collaboration  with N.V. Giai and G. Sawicki [4 ] ,but we did not get far enough 
through the h ierarchy o f G reen 's  functions and finally perform ed  our 
calculation o f the F ou rier  transform  o f optical potential with an "anti
sym m etrized " Feshbach's form ula. In the sam e approxim ation, with 
M .Bruneau [5], we have looked at the properties o f such an optical 
potential fo r  14-M eV nucleons scattered by calcium  40. But we shall 
see later on that this treatm ent o f antisym m etrization is  not justified .

Let us consider a system  o f (A + l)  interacting particles represented
by

A + l A + l

H  = Y T i +  I  V ( Í j )
i = l  i < j = 1

931
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and look fo r  the eigenstates |cr)> of H:

Н|се> = E I a >

We m ust find an equivalent system  o f one particle  in a s in g le -particle  
potential У  such that a ll the observables calculated fo r  this equivalent 
system  would be identical with those o f the initial problem .

Let us ca ll |o^ the true ground state o f the A system  and Ф^(г) the 
field  operator in Schrödinger representation, which creates a particle 
in r . The op tica l-m od el wave function for e lastic  scattering is by 
definition

<p(r) = <0|i//(r) |о-> • .

cp(r) sa tisfies an integral equation [ 6] which can be written as

(p(r) = <p0 (r) + y y ^ d V 'dr "G ^^r, r ’ ; E) ^ ( r 1 , r "  ; E)(p(r" ) (1)

where <pQ(r) is  the fre e -p a rt ic le  wave function and G j(r , r 1 ; E) is the F ourier 
transform  o f  the on e-p a rtic le  G reen 1 s function:

G x(r, r l ; t - t l ) = - i < 0 |T[l//(r ,t)(//t (tt , t 1)] 10> (2)

Ĝ 0)(r , r ' ; E) is  the F ou rier  transform  of the fre e -p a rt ic le  G reen 1 s 
function and E (r ' , r "  ; E) is  the m ass operator defined by the integral 
equation o f Gi :

G xí?, ?o ! t - t 0) = d °\ r , r 0; t - t0) - f f f f  d r ' dr" dt' dt" (3)

G(° ’(?< ; t -  t ' ) ^  (r 1 , r "  ; t‘ - t" )G -[.(r" , r 0 ; t" - t 0)

E q .(l) is  the Lippm an-Schwinger equation o f motion fo r  a particle in 
a n on -loca l potential which is by definition the optical potential 9^(i\ r ' ; E):

9^(7, ; E) = - )  (r, ? ' ; E)

Г  i E ( t - 1'  ) V- '
-  / e ) (r , r ' ; t - t ' ) d ( t - t ' )  (4)

E being the energy o f  the (A + 1) system .



IAEA-SMR 6 /5 1 933

This optical potential defined through the m ass operator is n on -loca l, 
depends on energy and is  related  to the m ass op era tor o f the on e-p artic le  
G re e n 's  function for  the A -system ,

To derive E, two equivalent methods can be em ployed. E can be 
d irectly  expanded in perturbative theory and in term s o f Feynman diagram s; 
considering all the possib le  graphs to each o rd er, one has to se lect som e 
o f them which can be resum ed and calculated. N evertheless, this is a 
very  delicate w ork, although perhaps shorter and m ore elegant [7] , and 
we have p re ferred  to use dynam ical equations for  G reen 1 s functions as 
far as we could.

F o r  the n -p a rtic le  G reen 1 s function, the generalization o f definition (2)
is:

Gn (xx .. .x n; x 'r ..x ' ) = (-i)n<0 I T fofx j ) ..ф (xn) / ( x 'n) ..ф T(x>_)] | 0 > (5)

F rom  the equations o f fie ld  operator i//(x) and ф ^(x), the dynamical 
equations o f G n can be derived [8]:

2 n
( i ^ T + f e r A i) G n(x i — xn; x '1 . . .x 'n ) = Y  e4 ( x i - x 'i ) ( - i )1" 1

i- 1

Gn-l(x2-xnixl—x'i-lx,i+l -1/ d4xn+lU(xl'xn+l) (6)

Gn + l(xl-xn+Hxi -xn+l)
where x\ + 1 = (rn + 1 , t + 0) and U(Xl - x„+1) = - rn +1)6 (tx - 1̂  + 1) . (0)

F o r  n = 1, the integral form  o f E q .(l) g ives us G j in term s o f Gi 
and G 2. Com paring Eqs (6) and (3), we obtain the follow ing expression  
fo r  E:

£ ( X .  x . ) = i /  d4x x, d4x 2U(x - X1)G2 (x, xx; XgX^G'^XgX1 ) (7)

assum ing the existence o f the inverse o f Gĵ  :

■■J'd4x 1G1 (x ;x ];)G~1--(xl ; x ' ) = 64(x~x ')- (8)

F rom  now on, a ll integrations will- be im plicitly  understood each 
tim e where we have repeated variab les .

In E q.(7), the dynam ical E q .(6) may be used fo r  G2, and involves 
now G j and G3'. .

Here we stop the h ierarchy o f  G re e n 's  functions by assum ing that 
G3 is  a sum o f products That is  equivalent to saying that we take
into account the corre la tion s between a pair o f  p artic les , neglecting the
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corre la tion s between this pair and the third particle . Taking care o f 
double counting o f graphs, this y ields the follow ing expansion o f G3 [9]:

G3 (x3 , x r  x4 ; x 2, x [ ,  x ¡)  = G1 (x 1; x t1)G2(x3, x ^ x j )  

-G i (x 1; x 2)G 2(x3, x4 ; x 1( x ¡)  - G1 (x1 ;x 4 )G2 (x3 , x 4; x ^ )  

+G 1(x3 ;x 2 )G £(x1> x 4;x ]\  xJ )-G 1 (x3 ; x^G^ (X lx4 ; x 2x ¡)  (9)

+G1(x3;x4)G2(XiX4;x2XT1) + Gi(x4;x4t )G¿(x3xi ;x 2xT1) 

+ G i(x 4; x 2)G l2 (x3 , x 1; x 1tx4) - G 1 (x4; x 1)G ^ x 3x 1; x 2x 4)

where

G'2=G 2 (x 3, x x; x 2x 4) - (G1 (x3 ; x 2)G1 (x1; x4) - G^Xgj x 4)G 1(x1; x 2))

Inserting expressions (9) and (6) for  n = 2 into expression  (7) and using
relation (8), we obtain £ in pa ir-corre la tion  approxim ation:

^ ( x ,  x ' )  = iU (x , x 1)G 1(x 1; x j)  - iU (x , x ^ G ^ x ; x' )

+ U(x, x ^ G ^ x ; х ^ Щ х ' , x 2)G ’2 ( x x | x 2) + U(x, x ^ G ^ x , x 2)

U(x* , x 2)G ' 2 (x 2xx; x jx ' ) + U(x, x-^G ^x, x 3)U (x3, x 4) [ -G 1 (x 1; x4)

G 2(x 3 , x4; x 2Xl) -  G 1(x3 ; x 1)GI2(x 1x4; x 2x ')  + G 1(x ^  x4)

G ^ X j, x 4; x 2x^) + G 1(x4; X4 )G'2(X3X1; x 2x^) - (x4; x ^

G 2(x 3x i<- x2x4)] G j1 (x2; x ' ) (10)

The firs t  two term s o f expansion (10) correspond to the well-known 
H a rtree-F ock  potential, the two next term s are easily  interpreted since 
they contain h ole-particle , and on e-particle  G reen 1 s functions. F or the 
rem aining term s, we shall make a further approxim ation: in each term  
there appears a tw o-particle  G reen 's  function containing two equal-tim e 
arguments associated  with two annihilation operators o r  with one creation 
and one annihilation opera tor. We assum e that in our expansion o f E, 
we allow  only ladder graphs and rep lace these G2 by the partic le -p artic le  
propagator o r  by the p a rtic le -h o le  propagator designated by Gu .

In the ladder approxim ation, G2 and Gn obey the follow ing sim ple 
integral equations [ 10 ]:
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t 2< t '1, tf2 o r  t j ,  t jM 'j ,  t'2:

(И )

. If t p  t '2< t2 , o r  t 1; t'2> t2, :

/  4  4Gii (Xp x 2;x ' i ,  x '2) = G1(x1;x '1)G 1(x2;x '2) + i / d x 3d X4

where V is the antisym m etrized  operator. Equations (11) and (12) are 
given in the general ca se  o f a n on -loca l potential.

Using Eqs (11) and (12) in form ula (10), we get E where now the 
G2 and GH propagators m ust be calculated in the ladder approxim ation:

F rom  expression  (13) it is  easy to draw the corresponding dia
gram m atic expansion o f E (F ig .l ) .  :

In fact, the calculated expression  o f E involves m ore  term s than 
given in form ula (13) — one o f them is represented  in. F ig .2 — but they 
are already contained in the previous expansion if  the single propagators 
are approxim ated by H artree -F ock  propagators.

F rom  this expansion o f  the optical potential, som e interesting features 
can be concluded:

1) since, from  each graph including the R .P .A . states, the c o r r e s 
ponding unperturbed graph must be subtracted, only co llective  states 
w ill contribute to cf  ;

2) the w eak-coupling approxim ation to nucleon -scattering  on nuclei 
would correspon d  to graphs a) and b) without subtraction. A ll other term s 
are a consequence of our com pletely  antisym m etrized derivation ofO "̂;

^  (x, x 1 ) = i U(x, x-iJG! (xx; x [ ) - i U ( x ,  x 1 )G x(x; x 1 )

+ U(x, х ^ Щ х 1, x 2)[G 1(x; x 1 )G iii(x 1x 2; x^ x2)

- Gx (x ^ x 1 )G 'n (x x 2; x : x 2) - G: (x2x 1)G 2(x x 1; x ' x 2) (13)
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---- О О)

b )

d)

F I G . l .  D ia g ra m m a tic  e x p a n sion  o f  £  in  th e  la d d er  a p p ro x im a tio n . A rrow s in  th e  sa m e  d ire c t io n  represen t 
th e  la d d e r  ex p a n s io n  o f  th e  p a r t i c le -p a r t i c le  g e n e ra to r , arrows in  o p p o s ite  d ire c t io n s  that o f  th e  h o le -p a r t i c le  
g e n e ra to r .

~ o
F IG .2 . O n e  ty p e  o f  graph  in  Z  a lrea d y  co n ta in e d  in  F ig . l b .

3) the optical potential, calculated in R efs (4) and (5) corresponds to 
graphs a), b ), c), d), and e) but without subtraction o f the unperturbed 
graphs. F urtherm ore the graph f) was om itted.

F o r  the calculation o f Уг, we must define the follow ing am plitudes:

X? B<MA)laIajk0 (A)>

С = < ^ А + 2 ) К а « к ( А »
(14)

(M)
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where i, j are p artic le -h o le  o r  h o le -p a rtic le  states, ki are both either 
particle states, o r  h o le -sta tes . In the ladder approxim ation, the x 1 s 
are eigenstates o f the RPA equations, the X  and x 1 s are eigenstates of 
an equivalent system  o f equations obtained directly  from  E q .( l l )  [11], i .e .:

( e k+ e £ - E N) x (k> ¿ ^ < k í | v | m n > X ^ + |  £  < w | v | m -n - > X ^ .=  0 
m n  m ' n '

(15)

(e .1+ e ¡, , - E N' ) ¿ N). , - i y  < к 'Я  |v|mn> X ^  - i  У < к 'Я  | V | т '  n' > X (N) ,= 0
у  к £ N /  к  1 '  '  1 1  '  т п  ^ '  1 1  m  n

in expression  (15) к, Л are unoccupied states in the H artree-F ock  ground 
state o f the A nucleus and k 'j?1 are occupied  states, and

^  = E n ( A + 2 ) -E 0(A)

The x obey the sam e equations where E N is rep laced  by -E M= E0(A) 
" Е м (A - 2)-

In term s o f  the amplitudes (14), the optical potential ^ ( r ,  r 1 ; E) may 
be calculated as the F ou rier  transform  o f E(x, x 1 ) given by expression  (13):

^  r  ^  > >  v i " )

Г ( г ,  ? ' ; E )  = VH F( ? , ? ' ) + ^  Q [ 4
i j k i  V i c c  ^

n. (1 -n .)6 6.„
j '  i '  lk  j i

E - e X+ E n - i r 1 E ‘ e X+ e i  - e j - i r l

I  (1

J *  Y(n> 
i j  * k i n i ( l - n i ) á i k á j «

E - e , - E n+irj Е - е х- е) + е ; + 1п d3r i^ '‘ (? i )V (? , ? г)[1 -Р ]

<PK& <P¿?i) J d 3r 2<px( ? ') ^ ‘x(r2 ) [ l ' - P ) V ( r ' , r 2 )<p£(r2 )+  ^
\ ) c c  N (A + 2 ) ,  ijkC

x K í í í ' M W  Г  3 »  . -  ~  -» Г- ' ■* -  -
~ E + e -E  -Hiri-----J d ri ^ ( r l ) V (r ’ r l)<Pj (r l )J  d г2 <р-(г2) У ( г ' , г 2 ) ^ ( г 2 )

(M ) (M ) *  -  -

-  x k £ x ij  < М Г ' К ( Г )

\ in o c c .  
M (A  - 2 )  
ijkfi

Е+e^+ÈM-ir)1--- J d3?l^j(?l)n(^i)v(?' ?i)jd3r2̂ x(?2)^í(r2)v(?'1. í:2)

(16)
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where Гп̂  = 1 if  j is  an occupied  state

1 = 0 i f  j is  an unoccupied state

P and P are operators exchanging two p articles  and acting, respective ly , 
on the le ft -  o r  the right-hand side.

A ll the energies are re fe rred  to the energy o f the ground state o f 
the А -nucleus; then E is  just the energy o f the incident particle .

F or  sim p licity , we have used a form alism  that is  independent o f spin 
and isospin  but the generalization o f expression  (16) is  straightforw ard.

Our У  has been obtained in a com pletely antisym m etrized theory and 
in the ladder approxim ation. F or a given А -nucleus, f  m ust be calculated 
in the follow ing coherent way:

1) a rea lis tic  nucleon-nucleon potential, V, m ust be used a ll through 
the calculation;

2) the H artree -F ock  single particle states have to be calculated;
3) from  these H a rtree-F ock  states, the RPA states o f the A -system  

and the states o f  the (A + 2) -  and (A -2 )  - system s have to be derived;
4) expression  (16) d irectly  yields the corresponding optica l potential.
Although this program  is  w ell defined and, in princip le , straightforw ard,

the prim ary steps 2) and 3) need quite a long tim e. We thought it to be 
interesting to p roceed  firs t  to a rougher calculation by using given in ter
m ediate n, N and M states. This w ill give us a firs t  idea o f  what can be 
learnt from  such a derivation o f the optical potential. The follow ing 
sim plifications could be considered:

1) the rea l part o f the optical potential is  certainly dominated by the 
H artree -F ock  potential when the energy o f the incident particle  is  not too 
high, and we con sider only the im aginary part o f  the optica l potential;

2) when Im У  is  concerned, expression  (16) is  much sim plified  since 
only a lim ited  num ber o f  interm ediate states w ill contribute, i .e .:

a) the RPA states with E n< E  fo r  which we use the states quoted in 
the literature;

b) the low est states o f the (A + 2 )- system . This last property allows 
us to approxim ate the graph (1 .f) by its low est term , using the harm on ic- 
o sc illa to r  states fo r  single p articles .

c) none o f the states o f the ( A - 2 ) -  system  since EM is  always positive;
3) in form ula (16), V w ill be rep laced  by a zero -ra n g e  interaction.

H ere we lose  the coh eren ce  o f our derivation o f 0^-but to m inim ize this 
inconvenient feature, a 6 - fo r c e  can be used with the exchange m ixture 
used in the determ ination o f  the RPA states.

4) fo r  positive-en ergy  states o f single partic les , plane waves w ill 
be  used.

This prelim inary program  has been ca rr ied  out fo r  the scattering o f 
8, 10, 12 and 14 M eV -n ucleons on calcium  40. The detailed resu lts w ill 
be  published elsew h ere . F orm ula (16) has been transform ed to express 
У  as a function o f p = | r  -  r 1 |, R = r  + r '  and 6 the angle between p and R.
The part o f Im V.which, is  independent o f  0 would correspon d  to the non
lo ca l op tica l potential used  by P erey  and Buck. The calcu lated Im <У- 
reprodu ces the g ross  features o f this phenom enological potential in the 
sense that, as a function o f R, Im 9  ̂behaves as a mi&ture o f volum e and 
surface absorption.
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This firs t  test o f  a derivation o f 9  ̂ is  encouraging and could be con 
sidered  as a test o f  the phenom enological optica l potentials. N evertheless, 
b e fo re  going to a m ore  re a lis tic  calculation, we intend to go on with our 
sim plifying approxim ations and look at the validity o f the usual assum ption 
about the 0 - independen ce o f ‘У'—or at the energy dependence o f the 
im aginary potèntial.

We are very  grateful to P ro fe sso rs  C . B loch  and G .E. Brown for 
stimulating d iscu ssions and encouragem ents.
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J. NEMETH
Roland -Eötvös-U niversity, 
Budapest, Hungary

Abstract

THE SY M M E T R Y  ENERGY O F NUCLEI A N D  IT S  A ST R O P H YSIC A L  A P P LIC A T IO N S .
N u c le a r -m a tte r  c o n c e p ts  and c a lc u la t io n s  a re  used to  e x p la in  th e  structure and th e  e v o lu t io n  o f  neutron

stars.

The sem i-em p ir ica l m ass form ula of atom ic nuclei is a function of 
the neutron and of the proton number

where C;l , C2 , C3 , c 4, c 5 and c 6 are constants, and the firs t  term  is the 
volum e term , the second term  the surface energy, the third term  the 
sym m etry energy, the fourth term  the su rface -sym m etry  energy, the fifth 
term  the Coulom b energy, and thé last term  the pairing energy. M inim iz
ing В as a function of Z with a given A, we can determ ine the m ost 
favourable proton-neutron number concentration relation . The Pauli prin
cip le favours nuclei with equal proton and neutron num bers, and the effect 
of the Coulomb energy m odifies this relation by reducing the number of 
p roton s.

If we want to determ ine the sym m etry energy of very  large o r  infinite 
system s, we have to use n uclear-m atter ca lcu lations.

N uclear-m atter calculations consider a system  with an equal number 
of neutrons and protons, neglecting the Coulom b energy and every  kind of 
surface e ffe cts . In this way, we obtain the volum e energy term  in the 
sem i-em p ir ica l m ass form ula. F or determ ining the sym m etry energy, we 
have to consider an infinite system  of neutrons and protons, neglect the 
Coulom b interaction between protons and calculate the energy as a function 
of the neutron and the proton num ber. If we assum e that x = (N - Z )/A  is a 
sm all quantity, and expand the energy as a function of x, the term  p ro 
portional to x2 is the sym m etry energy. If we want to determ ine the energy 
o f a neutron star, we have to make thè opposite approxim ation, namely 
that y  = Z /A  is sm all.

The Hamiltonian of the system  can be written as

If H;l is a sm all quantity, we can use perturbation theory to determ ine the 
energy. The unperturbed wave function is just the antisym m etrized product

(2)
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of plane-w ave sin g le -p a rtic le  wave functions. In the fir s t -o r d e r  Born 
approxim ation, the energy of the system  is

w = ^ < i| T | i> + i  Y К ч М ч > _ < ч М з 1 > ] (3)
i ij

The I ij У tw o-p article  wave functions have a sp a ce -, sp in - and isosp in - 
dependent part. The Pauli princip le requ ires that fo r  T = 0, S = 1 o r  T = 1,
S = 0 the space part be sym m etric, and fo r  T = 0, S = 0 o r  T = 1, S = 1 the 
space part be antisym m etric. If N = Z, the probability of these states 
is 3 /16 , 3 /16 , 1 /16  and 9 /16, respectively , so that the energy is given by

Wpot=* X  1 6 l<kikj |v|k1kj > - K k ikJ|v|kj ki )î (4)
kikj

where k¡ is the wave number o f the plane-w ave wave functions. Thus, we 
obtain a mom entum -dependent effective interaction

w pot= i  Y f  16v(r) Ч - ï  e" 2ik' r ]d3r i d3r 2 V(M (4a)
kjkj kjkj

where k¡ -k j  = 2Î?.
If the num bers o f neutrons and protons are not equal, we have to split 

up expression  (4) into a neutron-neutron, neutron-proton and proton-proton  
interaction  part

кдо кэд kp kp kN kp

w Pot = * X I  Vnn ( k ) 1 1 Vpp ( k ) +L E VNp(k) (5) 
0 0 0 0 0 0

where y-,
V NN^k  ̂ = ¿  V <s m s' T  = 1 ' % = 1 - k ) (6 a )

sms

VNp ( k ) = * £  [V (s m s, T = l ,  Tz = 0 ,k )+ V (s m 5, T = 0, Tz = 0, k)] (6b)
sms

Let us exam ine a very  sim ple case, when V (k) is a secon d -ord er  
polynom ial of

2 b-2

(7)
V NN = _ a + b  k f '  V PP = _ a + b k l

V = }
NP 2

- ( a  + or) + (0+b)

The total potential energy o f the nucleus is then

W p o t  = c
a „ 2  , , 2X , b „ 8 , , 84 a + 0 , 3 , 3 ,  /3 +b ,, 2 2 3 3—  (kN +kp) + (kN +kp) -  - j j -  k N kp + (kN + kP)kNk P

F F
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It is  easy to see from  R ef. [10] that the effects o f 1S and 3S fo rces  
add up in the firs t  term  and are subtracted in the sym m etry-energy  term  
so that the potential-energy contribution to the sym m etry energy is less 
than to the f ir s t -o rd e r  term , and its sign is positive . The kinetic energy 
adds a positive term  to both ord ers , so  that in the f ir s t -o rd e r  term  it has 
the opposite sign to the potential energy and, the sam e sign, in the 
sym m etry energy term .

In the case of a pure neutron gas the potential energy of the system  
w ill be

kc . 6 , be
( W p o t b  = i 8 k N + 6 0 k f k N

2a 2 2/3b 
9 15 kp (9)

If the even singlet and trip let fo rce s  are equal (a = За, ß = 3b) we obtain 
the last result, while fo r  nuclear m atter

(Wpot^NM c k F
3a 6 
9 10 (10)

which in itse lf is already a -larger negative value than expression  (9). 
Taking into account that a »  a, and that the kinetic energy is higher for
a pure neutron gas than for nuclear m atter, it is easy to understand why
the neutron gas is  not bounded.

The above calculations are only valid if  the tw o-body potentials are 
sm all and then they can be treated perturbatively . Since we know that for 
rea listic  nuclear fo rce s  these conditions are not fu lfilled , we have to 
introduce the m any-body scattering m atrix called G

G = v - v  ^  G (11)

where Q is the Pauli operator and e is the d ifference of particle  and hole 
s in g le -p artic le  en erg ies . In the B rueckner approxim ation, the energy of 
a nucleus in first ord er can be written as

kN kN kp kP

W Po t  <k m k n l G N N | k m k n ) + è ^  ( k m k n |G p p  | k m k n )

0 0 0 0
k P kN

. + ) ) (к к IG I к к ) (12)
0 0

where GNN is the neutron-neutron, GPP the proton -proton  and GNP the 
neutron-proton interaction contribution to the G m atrix . We can again 
express the G m atrix elem ents as a function o f the relative mom entum . 
N uclear-m atter calculations give the G elem ents fo r  k^ =kP, and it is also 
easy to determ ine GNN fo r  Z = 0 ( i .e .  fo r  a pure neutron gas). Com paring 
the m atrix elem ents fo r  these two extrem e cases [1, 2] it is  easy to see 
that the approxim ation o f B rueckner and D gbrow ski [3], i . e .

G N N ( k Nk P k )  ~ G NN <k N k N k >
(13)



944 NÊMETH

is  justified  in the region  o f nuclear-m atter densities. A s im ilar approxi
mation is , o f course, valid fo r  the proton-proton  interaction . The unlike-
particle -in teraction  treatment is somewhat le ss  justified, but it seem s 
reasonable to assum e that the Brueckner approxim ation is also valid in 
this case :

GNp(kNkpk) ~ G Np(kAkAk) (14)

where

2 k ! = k N + k P ( 1 5 )

In view of expression  (11) it is c lear  that this approxim ation is  rather 
good in the case o f the energy denominator; the Pauli operator would, 
however, give somewhat m ore com plex resu lts .

With the approxim ations (1 3 )-  (14) we may expand the G m atrix element 
around its average density value:

S N < V > =GNN<k Fk> + l ^ kM=kp (kN kF) +
1 d2Gни
2 dk2 (kN к p) + .

(16)

and a s im ilar approxim ation is valid fo r  GNp, G pp . Knowing the G m atrix 
elem ents as a function of the density, we can determ ine GNN(kNk) from  
expression  (16) and in this way the total energy of the nucleus can be 
written as

= e o (T  = 1) + e0 (T = 0) +x2 [e 2 (T = l)  + e2R (T = 1)

+ e2 (T = 0 )+ e 2R (T = 0)] + 0 ( x 4) (17)

where eR always means the rearrangem ent contribution arising  from  the 
fact that the effective potentials, i . e .  the G m atrix elem ents, depend on 
the density. The T = 1 and T = 0 term s have the same signs in the zeroth 
ord er  and opposite signs in the second ord er. e2 (T = 1) and e2B (T = 1) have 
opposite signs and the relative im portance of e 2R (T = 1) in creases rapidly 
with the density; at nuclear-m atter density they are alm ost the sam e.
The leading term  in the sym m etry energy is the e2 (T = 0) term , and the 
rearrangem ent contributions are an order of magnitude sm aller altogether, 
because they are sm all and e2R (T = 1) and e2R (T =0) have different signs, 
so they partly cancel each other.

Detailed calculations o f Bethe and Németh [4] based on the n u clear- 
m atter calculation of Sprung [1] give a sym m etry energy

E sym = 18 + 13 MeV = 31 MeV (18)

where the firs t  term  com es from  the potential and the second from  the
kinetic energy. Relation (18) is in very  good agreem ent with the results 
of the sem i-em p ir ica l m ass form ula E Sym~ 3 0  M e V ± l M eV. The r e 
arrangem ent contribution to the potential energy is less  than 1 MeV, which
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shows that it is rea lly  alm ost negligible. B rueckner and D§.browski got 
a la rger contribution for the rearrangem ent energy, because they used 
a G am m el-T haler potential in their calculations, which overestim ates the 
T = 1 fo rce s , so that the cancellation of the rearrangem ent term s is not 
so fa r-reach in g .

The coefficien t of the x 4 term  is very  sm all, this shows that the se m i- 
em p irica l m ass form ula is a very  good approxim ation even fo r  extrem ely 
neutron-abundant nuclei.

If we m inim ize ß as a function of the relative proton number, it is 
easy to see that the neutron excess  is not too large, even in the case of 
the heaviest nuclei, x ~ 0 .2 5  fo r  A ~  250. Nuclei with la rger relative 
neutron number are not stable against ß -decay , and a pure neutron gas 
turns out to be unbounded.

In spite o f these stability considerations which are valid for  the 
elem ents of our surroundings, astrophysicists firm ly  believe that there 
are som e ste llar ob jects which consist m ostly of neutrons. This belief 
is s tr ictly  based on theoretica l considerations, and, up to now, is not 
supported by entirely  conclusive experim ental evidence. In the last few 
years, every  now and then, research  w orkers found ste llar ob jects which 
seem ed to be neutron stars.

The reason  why we believe in the existence o f neutron stars can be 
understood if we con sider the main stages o f ste llar evolution.

A star is considered to be a gas sphere in hydrodynam ical equilibrium . 
An equilibrium  stage can only be reached if the fo rces  acting on any part 
of the system  are balanced, and if the radiative energy loss  is compensated 
fo r  som ehow . P ressu re  and gravitational attraction have to balance one • 
another, as a result of the first requirem ent. In idea l-gas approxim ation, 
this means that, since the pressu re  is proportional to the tem perature, 
gravitational contraction of the system  in creases its tem perature. The 
second requirem ent means that when the heated gas radiates, this radiative 
energy loss  has to be com pensated fo r  somehow if th,ere is  no other sou rce  of 
energy gain than gravitational contraction.

The largest part of the universe consists even now of hydrogen, so 
that, at birth, the galaxies w ere probably consisting of very  rare  proton 
and electron  gas clouds. By gravitational attraction these large bulks 
w ere heated up slow ly. Angular-m om entum  conservation required gravita
tional contraction to produce pancake shapes, later on, the big bulk broke 
up into sm aller parts. The stars are born in this way.

When the core  tem perature o f the star reaches 107 degrees, building- 
up of heavier nuclei starts. The first step is the 4H ^H e p ro ce ss , where 
four protons go over into a He state. During the hydrogen-burning period, 
the radiative energy loss  of the star is covered by the nuclear-energy  
sou rces so the tem perature does not in crease further. However, when 
the c o r e 's  hydrogen supply is exhausted, further gravitational contraction 
w ill occu r  until the tem perature is high enough fo r  heavier elem ents to 
burn. The beginning o f a new nuclear reaction p rocess  stops gravitational 
contraction  fo r  a while.

There are two possib le  ways in which this p rocess  of evolution can 
be ended. In stars with m ass less  than 1. 5 so la r  m asses the term inating 
m echanism  is due to the e lectron s . As the density in crea ses , the electron  
gas becom es degenerate because o f the Pauli p rincip le . Above a cr it ica l 
density the p ressu re  can be expressed  as
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р ~ К р 5 /Э

so it is no longer sensitive to tem perature. The tem perature loses  its 
controlling ro le , and the system  will coo l down when it radiates, without 
com pensating contraction. These very  dense, slow ly, cooling objects 
are called white dw arfs.

If the m ass of the star is large enough, it does not becom e degenerate 
so easily  and owing to the higher tem perature -  needed to balance the 
la rger weight -  every  kind of nuclear reaction  can take p lace. These 
stars finish up with a core  consisting mainly of iron nuclei. The very 
high radiative energy loss can then be com pensated for only by gravita
tional contraction. The outer layers and the core  itse lf w ill contract very 
fast, increasing the tem perature of the co re . In a very  short time the 
iron  elem ents transform  by d issociation  o r  fusion into all the elem ents 
of the period ica l system . This means that the energy loss  of the star has 
already two sou rces . The energy loss  can be com pensated fo r  only by 
gravitational contraction, and, at this stage, the equilibrium  state of the 
star will be overturned. • The enorm ous energy output of the core  reaches 
the outer la y ers , either by neutrino p rocesses , o r  by shock waves o r  any 
other kind of m echanism , and somehow explodes the star. The final 
result o f a supernova explosion  is always a very  dense sm all star, with 
a density approxim ately equal to that of nuclear m atter; its m ass is about 
a tenth o f its original m ass.

If an e lectron  gas is dense enough, an electron -proton  pair transform s 
into a neutron. Increasing the density o f the system  the protons of the 
nuclei transform  m ore and m ore into neutrons and, finally, the neutron- 
abundant nuclei d isso lve  into neutrons. If the m ass of the residual system  
is not higher than once or tw ice the so lar  m ass, the pressure of the 
neutron gas com pensates the gravitational pressure and the star reaches 
an equilibrium  state again. If the original m ass o f the star was la rger 
than ten tim es the so lar  m ass, such an equilibrium  state cannot occu r 
and accord in g  to our present knowledge, the only possib ility  fo r  the star 
is further gravitational contraction.

As this short survey of stellar evolution has shown, neutron stars 
are the final states of stars with 2 -1 0  tim es of so lar m ass. The question 
which a rises  naturally is : how can we observe these neutron stars? Their 
energy can be stored up initially in therm al, vibrational, rotational or 
m agnetic form . It turns out that the therm al energy content dim inishes 
rapidly, the vibrational energy is probably a lso  dissipated quite fast. The 
calculations d iffer accord ing  to different nuclear theories, but even the 
m ost extrem e results yield  a very  short tim e. So it seem s that direct 
observation  of hot neutron stars is rather hopeless.

In 1962 a new possib ility  of observation was opened fo r  astrophysics 
when, fo r  the firs t  tim e, astronom ical observations w ere perform ed from  
rock ets . The rockets went above the atm osphere and so  w ere able to 
observe  X -ra y  radiation. In the last few years, they could identify som e 
o f the X -ra y  sou rces  with optical ob jects . The two m ost important objects 
are the S coX R  1 and the Crab Nebula. The Crab Nebula is  the remnant 
o f a supernova explosion  in our galaxy which took place in 1054. It is a 
very  strange cloud, which radiates alm ost equally in the radio, visib le 
and X -ra y  dom ains; a ll these radiations are polarized . This can only be 
explained if we assum e that the radiation is som e kind of synchrotron
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radiation. The electrons emitting X -ra y  radiation have to have 104 eV 
en erg ies . The life-tim e of electrons against synchrotron X -ra y  radiation 
is very  short, le ss  than a year, so that there has to be a pumping mechanism 
in the system  which supplies these very  h igh-energy electrons continuously.
It was a very  natural assum ption that the electrons gain their energy in 
som e fashion from  the neutron star, invisibly hidden som ew here in the 
m iddle o f the Nebula, which was created in the supernova explosion.

M elrose and Cam eron considered the possib ility  [5] o f Shklovsky's 
m odel [6] being valid in the case of the Crab Nebula, i . e .  the neutron star 
in creases its m ass at the expense of a binary com panion. It attracts mass 
at its surface by its very  strong gravitational field , and a high-energy 
surface brem sstrahlung is created, which is absorbed by the photosphere 
and re-em itted  in the X -ra y  domain. There is an upper lim it to the rate 
at which m aterial falls on the s ta r 's  surface because of radiation stress , 
and so there is a lso  an upper lim it for the resulting lum inosity of radiation.
If there is an extra blob of m atter falling toward the star, lum inosity will 
in crease , at the sam e tim e also the radiative s tress  w ill in crease, which 
w ill slow down the rate of m aterial falling on the surface until the equi
librium  state is reached^again. In this way we can get wisps in lum inosity. 
The equilibrium  maximum lum inosity corresponds to 1038 e r g /s e c , which 
is the sam e value of energy as that required for synchrotron radiation of 
X -ra y s . W isps w ere a lso  observed in the radiation of the Crab Nebula,
3 - 4  tim es a year. The radiation of the Crab Nebula might be one o f the 
indirect ways how a neutron star can becom e v isib le . Long ago it d iss i
pated its energy, but its enorm ous gravitational field makes it possib le  to 
produce som e kind of radiation.

An other interesting phenomenon which can be caused by neutron 
stars was observed  last year. A strophysicists observed pulsating radio
sou rces, which em it e lectrom agnetic radiation over a wide frequency 
range (between 40 and 2700 MHz) with a pulse duration of ~  50 ms and with 
a period 0 .2 5 -  1 .34 s . The surprising features are this very  short period, 
the very system atic repetition o f the period tim e, and the very irregu lar 
behaviour o f the pulse am plitudes. The fact that the sign is so short means 
that it has to com e from  a very  m assive but sm all object, because radia
tion starting from  different parts of the object has to reach the observer 
within pulse duration. The only’ known sm all stellar ob jects are ne.utron 
stars and white dw arfs. There w ere different theories concerning the 
reason  o f this radiation such as two neutron stars rotating about one another, 
vibrating white dw arfs, rotating neutron stars with m agnetic field , etc. 
H owever, it seem s that the period of a vibrating white dwarf cannot be 
shorter than 1 sec , so, at this moment, the m ost probable explanation is 
the rotating-neutron-star m odel.

A possib le  m odel for  pulsar radiation based on a rotating neutron star 
was suggested by Gold [7]. The basic idea is that the em ission  derives its 
energy from  the rotational energy of the star, and is the result o f re la - 
tiv istic  e ffects in a co-rotatin g  m agnetosphere. In the vicinity of a rotating 
star, with a magnetic field , there exists a co -rota tin g  m agnetosphere.
This co -rota tion  ceases at a certain  distance at which external influences 
begin to dom inate. In the case o f a fast-rotating neutron star, where the 
surface field is strong, the distance at which this co -rota tion  ceases 
may be close  to that at which co -rota tion  would happen alm ost with velocity  
of light. F rom  the surface o f the star m aterial this rela tiv istica lly  moving
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plasm a em its radiation which is flung out into this m agnetosphere; it 
reaches high ve locities  and is strong enough to overcom e the magnetic 
fo r c e s . The period of the pulsation is equal to the rotation period o f the 
star. The pulse length within this period  is connected with the geom etry 
of the radiation region . A sym m etries in the radiation could a rise  because 
the field  or the charged plasm a cloud is not axially sym m etric .

G old 's theory was supported by som e experim ental facts d iscovered  
in the last half year. If the*above picture is  co rrect, one may find a slight 
but steady slow ing down of the repetition frequencies. The shortest period 
tim es have to belong to the youngest neutron stars . The shortest period 
tim e known up to now is that o f the Crab pulsar, which is very  likely the 
youngest of any o f the pu lsars. A strophysicists w ere able to observe a 
slow ing down of the pulse rate too. The rate of slow -dow n is one part in 
2400 per year. These facts furthered the development o f the rotating- 
neutron-star m odel [8]. The agreem ent between theory and experim ental 
facts is surprisingly good.

A ll the above conclusions concerning the possib ility  of observing 
neutron stars, as the cooling-dow n rate of the star, the inertial momenta 
o f a rotating star, the surface radiation of a star with strong gravitational 
field  in creasing  its energy, etc., depend strongly on the structure and 
consistency  o f the star. The coolingydown of a star o ccu rs  mainly through 
v evaporation, e .g .  e" +p-* n + v, n-> p + e" +v.  These are the so -ca lled  
URCA p rocesses  and their probability depends on the structure o f the 
star. The m ost important thing is the proportion of the protons in a 
neutron star. Other interesting questions are the clustering of neutrons 
and protons, the neutron abundance of nuclei in a star, the superfluidity 
of the system , etc.

As we have mentioned; if the density of a star in creases, also the 
kinetic energy of the electrons in crea ses . If the energy o f an electron  at 
the F erm i surface is e f, then at a density where the relationship

9  (e>\ 9  2Mec +Cf + M ZA с í M 2. M c (19)

holds, the nucleus may capture an electron , and a proton and an electron  
transform  into a neutron. In this way the relative neutron number in the 
nuclei in crea ses . A further in crease of the density d isso lves these nuclei; 
we then get a neutron gas around the nuclei. These neutrons can be 
absorbed by heavier nuclei in this way creating heavier elem ents than iron . 
Increasing the density even m ore, all the heavier nuclei d isso lve  and we 
are confronted with a neutron gas, with a sm all proton and e lectron  gas 
adm ixture. That is probably the stage in which the remnant o f a supernova 
explosion  rem ains and which is  called a neutron star.

The exact structure of a neutron star is hard to determ ine. At the 
surface, where the density is sm all, there are neutron-abundant nuclei, 
but we do not know which on es . In the m iddle of the star this clustering 
o f nucleons ceases and their density is approxim atively constant. The 
density estim ates where this clustering stops are only speculative, it is 
probably around the 0 .5 - 0 .7 5  nuclear-m atter density. Better n u clear- 
physical calculations are needed to determ ine it m ore exactly .

It is re latively  easy to determ ine the proton density in the case of a 
neutron star without clustering. In a first approxim ation we may neglect 
a ll gravitational and electrom agnetic e ffects, and we can determ ine the
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energy of the system  as the sum o f nuclear energy and the energy o f the 
re la tiv istic electron  gas, and m inim ize it as a function o f relative proton 
num ber.

The energy of the rela tiv istic  e lectron  gas can be written as

[6x3 s/x2 + l+ 3 x \ /x 2 + l -  a rc  s h x ]  (20)e 247r¿hó

where

*  = ' 3 ' ^ > ‘ / S ^ ' |3' 2 '>I / S ^ ( !  T  1211

and we used the fact that the e lectron  density pe is equal to the proton 
density. If the density o f the e lectron  gas is high enough, we have

We ~ | a  (37Г2p)1/ 3 Q 0 4/3h c ~ 4 X l O - n  PV3( f ) 1/3Z (22)

The energy of the nucleon system  at low densities is just the rest m ass
of the nucleons and their kinetic energy

5 /3  5 /3

Wn =M nc2A + (M p - M n) c2 Z + 10~24p2/3 ( ~ 'A2/ 3N------ - (23)

and the last term  is negligibly sm all. M inim izing the total energy

W = Wn +We (24)

as a function o f the proton number we get

^  = - 1 .  2 j  + 4 X 1 0 '11 p1/3 (j^ j -  1. 2 + 5. 3X10-11 P1/3( j 0  =0 (25)

The e lectron -proton  system  goes over into a neutron state only when 
Z<  A /2 , namely when p> (2 -  3) X 1031 cm*3 . The relative proton number 
reaches its minimum around 10"3 tim es nuclear-m atter density, so around 
10 35 c m '3 . In this case Z /A ~  10‘ 4 . At higher densities the above ex
pression  for Wn is not valid any m ore and the number o f protons in creases 
again because of nuclear interaction .

There w ere many calculations perform ed concerning the determ ination 
o f the energy o f a nucleon system  where the number o f neutrons is much 
la rg er  than the number of protons. The sim plest calculations used the 
sem i-em p ir ica l m ass form ula, which is , o f course, not reliab le  enough. 
M ore p rec ise  calculations took into account som e effective interactions 
among nuclei and the best calculations use the nuclear m any-body ap
proxim ations just as in the case of nucle'ar-m atter calcu lations. F rom  
relation (12) we can determ ine the total energy o f a system  where N »  Z,
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assum ing now that y = Z /A  is sm all instead of x . The result can be written 
as [2]:

where a0, a j , a5/ 3, a2 are given functions of p depending on the m odels 
used in the calculation. The calculations are meaningful from  0.01 pnm 
up to 2pnm because at higher densities the effect o f repulsive core  
becom es too important and the nuclear m any-body technique is not 
applicable any m ore . At nuclear-m atter densities a0 is about 9 - 1 3  MeV, 
which means that a pure neutron gas is not bounded.. The m inim izing 
proton density is fo r  10"2 pnm about 0.4% , for  nuclear-m atter density 
about 5-6%, and at twofold nuclear-m atter density about 7%; this shows 
that the effect o f nuclear fo rces  and the Pauli principle favouring equal 
numbers of protons and neutrons partly com pensates fo r  the effect of 
e lectron  g a s .

The determ ination of the relative proton number in case of clustering 
is a much m ore difficult problem  and needs detailed nuclear-physica l 
calculations. F irst, the m ost favoured clustered nuclei have to be deter
mined, and then we have to calculate their energy in a surrounding neutron 
gas. Unfortunately, the su rface-sym m etry  energy plays a very  important 
ro le  in this case, so we have to deal with different neutron and proton 
densities and density distributions inside these nuclei.

Another interesting question is the superfluidity of the neutron and 
proton system  inside the star since this phenomenon influences the coo lin g- 
down rate. It may be also important for  the determ ination of the moments 
o f inertia of the whole star. The neutron gas is probably not superfluid 
since its density is about nuclear-m atter density, but the question has not 
yet been answered definitely for the proton gas. Another interesting 
question is the muon and hyperon creation  probability in these stars.
Some calculations have been made, but static equilibrium  calculations are 
not enough as the dynam ics of the p rocesses  has to be examined, too. Rough 
calculations show that muon creation  becom es important at about nuclear- 
m atter density and hyperon creation at about ten tim es nuclear-m atter 
d en sities .

[1 ]  SPRUNG, D . W .L . ,  to  b e  pu b lish e d .
[2 ]  N É M E T H , J . ,  SPRUNG, D . W .L . ,  Phys. R ev . (t o  b e  p u b lish e d ).
[3 ]  BRUECKNER, K . A . ,  D ^B RO W SK I, J . ,  Phys. R ev . 134B (1 9 64 ) 7 7 2 .
[4 ]  BETHE, H . A . ,  N E M ETH , I . ,  to  b e  pu b lish e d .
[5 ]  MELROSE, D .B . ,  CAM ERO N , A . G . W . ,  C a n . J. o fP h y s ic s  46  (1 9 68 ) 4 7 2 .
[ 6 ]  SH K LO W SK Y , I . S . ,  A stroph ys. J. 148  (1 9 67 ) 1 1 .
[7 ]  G O L D , T . ,  N ature  2 18  (1 9 6 8 ) 7 3 1 .
[ 8]  G O LD , T . ,  N ature 221 (1 9 6 9 ) 2 5 .
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R o m e , Ita ly

JINR, D ubna 
M o s c o w , USSR

N orw ay

C hina

F inland

I ta ly

Y u g o s la v ia

USSR

C hina

C z e c h o s lo v a k ia

P oland

USSR

Ita ly

Y u g o s la v ia  

' Ita ly  

India

Ita ly

Italy

USSR
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G . M o s ch in i 

M .  M otta

J. N ê m e th -D ô r n y e i (M r s .)*  

P .R . O liv a

V . Paar

D . Pal (M r s .)

V .R .  P andharipan de

A .  P a sco lin i

G . P au li 

M .  P a v e le scu  

T .  Persi 

Z .  Pluhar

G . P oia n i 

M .  P otokar

F . P rem uda 

P . Q u en tin  

V . R ado

J. R a larosy

Istitu to  d i F isica  
Padua, Ita ly

C o m ita to  N a z io n a le  p e r  Г  E nergía N u c le a re  
B o lo g n a , I ta ly

R oland E ötvös U n iversity  
Budapest, H ungary

L a b o ra to rio  FNA 
CSN C a s a c c ia  
R o m e , Ita ly

In stitu te  "R u d jer  B o sk o v ic"
Z a g r e b , Y u g o s la v ia

Saha In stitu te  o f  N u c le a r  P hysics 
C a lc u t ta , India

T a ta  Institu te o f  F u n da m en ta l R esearch  
B o m b a y , India

Istitu to  d i F isica  
P adua, Ita ly

Istitu to  d i F isica  
T r ie s te , I ta ly

Institu te fo r  A t o m ic  Physics 
B ucharest, R om an ia

P e o p le ’ s U n iversity  
P u la , Y u g o s la v ia

D e p a rtm e n t o f  T h e o r e t i c a l  Physics 
F a cu lty  o f  T e c h n ic a l  &  N u cle a r  Physics 
P rague, C z e c h o s lo v a k ia

Istituto d i F isica  
T r ie s te , I ta ly

N u cle a r  Institu te  "J . S te fa n "
L ju b lja n a , Y u g o s la v ia

C e n tro  d i C a lc o lo  d e l  CNEN 
B o lo g n a , I ta ly

C o m m issa r ia t  à  1*E n ergie  A to m iq u e  
S a c la y ,  F rance

L a b o ra to rio  FNA 
CSN C a s a c c ia  
R o m e , I ta ly

N u cle a r  R esearch  C en tre  
Strasbourg , F rance

Ita ly

Ita ly

H ungary

Ita ly

Y u g o s la v ia

India

India

Ita ly

Ita ly

R om an ia

Y u g o s la v ia

C z e c h o s lo v a k ia

Ita ly

Y u g o s la v ia

Ita ly

F rance

Ita ly

F rance

Also lectured .
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G . R e ffo

G . R em y 

J. R ichert 

T .M . H .  Rihan

A . R im in i 

M .  Rosina

V . K .  S a m aran a y ak e

A .  S ca lia

D . S ch ü tte

G . Sena

W . Senghaphan

H . S en  G upta 

M . A . H .  S h a ra f

L . Sips

B. S la v o v

A . S o e n o to  

M .  S te fa n on

C en tro  d i C a lc o lo  d e l  CNEN 
B o lo g n a , Ita ly

N u cle a r  R esearch  C en tre  
Strasbourg , F rance

N u cle a r  R esearch  C en tre  
S trasbourg , F rance

P hysics D epa rtm en t 
A t o m ic  E nergy  E stablishm ent 
C a ir o , UAR

Istituto d i F isica  
T r ie s te , I ta ly

N u cle a r  Institu te "J . S te fa n "
L ju b lja n a , Y u g o s la v ia

D epa rtm en t o f  M a th e m a tics  
U n iversity  o f  C e y lo n  
C o lo m b o ,  C e y lo n

Istitu to d i F isica  
C a ta n ia , Ita ly

Institut für T h e o re t is ch e  K ernphysik  
B onn, F ed era l R e p u b lic  o f  G erm a n y

L a b o ra to rio  FNA 
CSN  C a s a cc ia  
R o m e , I ta ly

D epa rtm en t o f  Physics 
C h u la lo n g k o rn  U n iversity  
Bangkok , T h a ila n d

P hysics D epa rtm en t 
D a c c a  U n iversity  
Pakistan

F acu lty  o f  S c ie n c e  
C a ir o  U n iversity  
G iz a ,  UAR

Institu te "R u d jer BosTtovife”
Z a g r e b , Y u g o s la v ia

F a cu lty  o f  Physics 
S o fia  U n iversity  
Bulgaria

Istitu to  d i F isica  T e ó r ic a  
N a p les , I ta ly

C o m ita to  N a z io n a le  p e r  l 'E n e r g ia  N u c le a re  
B o lo g n a , I ta ly

Ita ly

F rance

F rance

U n ited  A rab  
R e p u b lic

I ta ly

Y u g o s la v ia

C e y lo n

Ita ly

F ederal R e p u b lic  
o f  G erm a n y

Ita ly

T h a ila n d

Pakistan

U n ited  A rab  
R e p u b lic

Y u g o s la v ia

Bulgaria

Indonesia

Italy

A lso lectured .
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B. S tep a n £ i6

W . S te p ie n -R u d zk a  (M rs .)

J. T h e o b a ld

G . T o rn ie ll i  

T .  T ro m b e tti 

W -C .  T u n g  (M rs .)

I .  Ú le h la *

J. V u ja k lija  

T .  W eb er 

C - Y . W on g

C .  Y a lc in

C . T .  Y a p

D . Y e b o a h -A m a n k w a h  

A . Z e p e d a  D o m in g u e z

J. Z o fk a  

L . Z u f f i ( M r s . )

Institu te "B oris K id r ic  " Y u g o s la v ia
B e lgra d e , Y u g o s la v ia

Institu te for T h e o r e t ic a l  P hysics P oland
U n iversity  o f  W arsaw  
P oland .

C e n tra l Bureau fo r  N u c le a r  F ed era l R e p u b lic
M ea su rem en ts (E U R A T O M ) o f  G erm a n y
G e e l ,  B e lg iu m

Istitu to  d i F isica  Ita ly

P adua, I ta ly

C e n tro  d i C a lc o lo  d e l  CNEN Ita ly
B o lo g n a , I ta ly

Institu te o f  N u c le a r  Energy R esearch  C h ina
A t o m ic  E nergy  C o u n c il  
L u n g -T a n , T a iw a n  
R e p u b lic  o f  C h ina

D ep a rtm en t o f  T h e o r e t ic a l  Physics C z e c h o s lo v a k ia
F acu lty  o f  M a th e m a tics  and Physics 
P ra gu e, C z e c h o s lo v a k ia

Institu te "B oris K id r ic "  Y u g o s la v ia
B e lgra d e , Y u g o s la v ia

Istitu to  d i F isica  Ita ly
T r ie ste , Ita ly

N ie ls  Bohr Institu te C h ina
C o p e n h a g e n , D en m ark

M id d le  East T e c h n ic a l  U n iv ersity  T u rk ey
A n k ara , T u rk ey

D epa rtm en t o f  P hysics S in ga p ore
U n iv ersity  o f  S in ga p ore
S in ga p ore

P hysics D ep a rtm en t G hana
U n iv ersity  o f  G hana 
A c c r a ,  G hana

D ep a rtm en t o f  P hysics M e x ic o
C en tro  d e  In v e s t ig a c ió n  y  de  
Estudios A v a n za d os  
M e x i c o  D F, M e x ic o

N u cle a r  R esearch  Institu te C z e c h o s lo v a k ia
R e z , P rague, C z e c h o s lo v a k ia

C en tro  d i C a lc o lo  d e l  CNEN Ita ly
B o lo g n a , I ta ly

Also lectured .





IA E A  SALES AG EN TS AND B O O K SELLER S

O rd ers  fo r  A g e n c y  p u b l ic a t i o n s  c a n  b e  p l a c e d  w ith  y o u r  b o o k s e l le r  o r  a n y  o f  t h e  a d d re sse s  l i s t e d  

b e lo w :

A R G E N T IN A

C o m is ió n  N a c i o n a l  d e  

E n e rg fa  A t ó m i c a  

A v e n id a  d e l  L ib e r ta d o r  8 2 5 0  

B uenos A ir e s

A U S T R A L I A

H u n ter  P u b l ic a t io n s  
2 3  M c K i l lo p  S tre e t  

M e lb o u r n e ,  С .  1

A U S T R I A

P u b lis h in g  S e c t io n

In te r n a t io n a l A t o m i c  E n ergy  A g e n c y  
K ä rn tn e r  R in g  11  

P .O .  B ox  5 9 0  
A - 1 0 1 1  V ie n n a

B E L G I U M

O f f i c e  I n t e r n a t io n a l 

d e  L ib r a ir ie  

3 0 ,  A v e n u e  M a rn ix  

Brussels 5

C A N A D A
Q u e e n 's  P rin ter  fo r  C a n a d a  

In te r n a t io n a l P u b l ic a t io n s  

O tta w a , O n ta r io

C . S . S . R .

S . N . T . L .

S p o le n a  5 1  

N o v é  M e s to  

P ra g u e  1

D E N M A R K

E jnar M u n k sg a a rd  L td .

6 N o r r e g a d e
D K -1 1 6 5  C o p e n h a g e n  К

F R A N C E

O f f i c e  I n t e r n a t io n a l d e  

D o c u m e n t a t io n  e t  L ib r a ir ie  

4 8 ,  R ue G a y -L u s s a c  

F -7 5  P aris 5 e

H U N G A R Y

K u ltu ra

H u n g a r ia n  T r a d in g  C o m p a n y  

fo r  B ook s a n d  N e w s p a p e rs  

P . O .  B ox  1 49  

B u d ap est 62

I N D I A

O x fo r d  B o o k  &  S ta t io n e r y  C o m p .  
1 7 ,  Park  S tre e t  

C a lc u t t a  16

I S R A E L

H e i l i g e r  &  C o .

3 ,  N a th a n  S trauss S tr.

J e ru sa le m

I T A L Y

A g e n z i a  E d it o r ia le  C o m m is s io n a r ia  
A . E . I . O . U .

V ia  M e r a v ig l i  16 

1 -2 0 1 2 3  M i la n

J A P A N
M a r u z e n  C o m p a n y ,  L td .

P . O .  B o x  5 0 5 0 ,
1 0 0 - 3 1  T o k y o  I n t e r n a t io n a l

M E X I C O

L ib r e r ía  I n t e r n a c io n a l ,  S . A .

A v .  S o n o r a  2 0 6  
M é x i c o  1 1 ,  D . F .

N E T H E R L A N D S
M a rtin u s  N i j h o f f  N . V .

L a n g e  V o o r h o u t  9 
P .O .  B ox  2 6 9  

T h e  H a g u e

P A K I S T A N

M ir z a  B o o k  A g e n c y  

6 5 ,  S h a h ra h  Q u a i d - E - A z a m  

P .O .  B ox  7 29  

L a h o r e  -  3



P O L A N D  

A rs  P o lo n a
C é n t r a la  H a n d lu  Z a g r a n i c z n e g o  

K r a k o w s k ie  P r z e d m ie s c ie  7 

W a rsa w

U .  S .  S . R .
M e z h d u n a r o d n a y a  K n ig a  

S m o le n s k a y a -S e n n a y a  3 2 - 3 4  

M o s c o w  G -2 0 0

U . K .
R O M A N I A

C a r t im e x

3 - 5  13  D e c e m b r i e  S tre e t  

P .O .  B ox  1 3 4 -1 3 5  

B u carest

H e r M a je s t y 's  S t a t io n e r y  O f f i c e  
P .O .  B ox  5 6 9  

L o n d o n  S .E .  1

S P A I N
L ib re r ía  B osch  

R o n d a  U n iv e r s id a d  11  

B a r c e lo n a  -  7

U . S . A .

U N IPU B, I n c .
P . O .  B o x  4 3 3

N e w  Y o r k , N . Y .  1 0 0 1 6

S W E D E N

C .  E. F r itz e s  K u n g l.  H o v b o W ia n d e l 

F re d sg a ta n  2 

S t o c k h o lm  16

Y U G O S L A V I A

J u g o s lo v e n sk a  K n jig a  

T e r a z i j e  2 7  

B e lg r a d e

S W I T Z E R L A N D  

L ib r a ir ie  P a y o t  

R ue G re n u s 6 

C H -1 2 1 1  G e n e v a  11

IA E A  P u b l ic a t io n s  c a n  a ls o  b e  p u r c h a s e d  r e t a i l  a t t h e  U n it e d  N a t io n s  B o o k s h o p  at U n it e d  N a t io n s  

H e a d q u a r te rs , N e w  Y o r k ,  f r o m  t h e  n e w s -s t a n d  at t h e  A g e n c y 's  H e a d q u a r te rs , V ie n n a ,  a n d  at m o s t  

c o n f e r e n c e s ,  s y m p o s ia  a n d  s e m in a r s  o r g a n iz e d  b y  th e  A g e n c y .

In o r d e r  t o  f a c i l i t a t e  t h e  d is t r ib u t io n  o f  its  p u b l ic a t i o n s ,  th e  A g e n c y  is  p r e p a r e d  to  a c c e p t  p a y m e n t  

in  U N E S C O  c o u p o n s  o r  in  l o c a l  c u r r e n c ie s .

O rd e rs  a n d  in q u ir ie s  fr o m  c o u n tr ie s  n o t  l i s t e d  a b o v e  m a y  b e  se n t t o i

P u b lis h in g  S e c t io n

In te r n a t io n a l A t o m i c  E n ergy  A g e n c y
K ärn tn er  R in g  11
P .O .  B ox  5 90

A - 1 0 1 1  V ie n n a ,  A u s tr ia
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