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Abstract

This Master thesis work has been carried out at CERN in the framework of the LHC
(Large Hadron Collider) Injector upgrade program (LIU). Longitudinal coupled-bunch
(CB) oscillations are an important limitation for the high-brightness beam accelerated
in the CERN Proton Synchrotron. Up to present intensities they are suppressed by
a dedicated feedback system limited to the first two dominant oscillation modes. In
view of the proposed installation of a new wide-band FB system in the framework
of the LIU program, measurements have been performed on the old system with
the aim of dimensioning the new one. A new simulation program, called LCBC (
Longitudinal Coupled Bunch Simulation), has been used to study the behaviour of
the CB FB. By means of this code I have started an extensive simulation campaign
to benchmark the code with the theory of coupled bunch and to confirm that the
10 MHz cavity system is the main cause of the coupled bunch instabilities in the
CERN PS.
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Introduction

The LHC [1] it’s the world’s largest and most powerful particle accelerator. It
mainly consists of a 27-kilometres ring of superconducting magnets with a number
of accelerating structures to boost the energy of the particles along the way.

In the accelerator two beams of particles travel close to the speed of light with
very high energies before colliding. The beams travel in opposite directions in
separate beam pipes – two tubes kept at ultrahigh vacuum and are guided around
the accelerator ring by a strong magnetic field, achieved using superconducting
electromagnets. These are built from coils of special electric cables that operate in
a superconducting state, efficiently conducting electricity without resistance. This
requires chilling the magnets to about 1.9◦K, a temperature colder than outer space.
For this reason, much of the accelerator is connected to a distribution system of
liquid helium, which cools the magnets.

CERN accelerator complex
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The path of a proton accelerated through the accelerator complex at CERN is as
follows: hydrogen atoms are stored in form of a gas and then protons are obtained
by stripping orbiting electrons from them. Protons are injected into the PS Booster
(PSB) [2] at an energy of 50 MeV from the Linac2 [3]. The Booster accelerates
them to 1.4 GeV; the beam is fed to the Proton Synchrotron (PS) [4] where it is
accelerated to 25 GeV. Protons are then sent to the Super Proton Synchrotron (SPS)
[5] where they are accelerated to 450 GeV. They are finally transferred to the LHC .

At CERN high energies are achieved by accelerating particles in circular machine,
so called synchrotrons. Modern synchrotrons require very high quality particle beams
with high intensity, low transverse emittances, and low energy spread to achieve high
brightness. This requirement of a high quality particle beam presents a number of
challenges, including stabilizing beam orbits, and suppression of beam instabilities.
The beam intensity is limited by single-particle effects as well as collective effects.
Single-particle effects are mostly determined by the guiding magnetic elements
of the accelerator, which are the most fundamental and important devices in the
design of a circular accelerator. Collective effects are caused by the interactions
between charged particles and their surroundings. They become more significant,
and therefore more disrupting, at a high beam intensity. Space charge effect are
caused by Coulomb interaction within a beam of many charged particles. This effect
is important at low energy, especially in a low energy proton accelerator. However,
it is negligible for ultra-relativistic particle beams in storage rings. In these storage
rings, the electromagnetic field produced by the interaction between protons and
their surroundings, such as vacuum chamber, the so-called wakefield, is the main
source of beam instabilities. Wakefield effects can lead to longitudinal and transverse
instabilities (coherent effects), which limit the ultimate achievable beam current
because typically produces beam losses. Among these instabilities, the coupled
bunch instabilities (CBIs) are very important in accelerators operated with multiple
bunches at a high beam current. The wake effect can be minimized using various
techniques and methods, such as increasing Landau damping (increase frequency
spread of the beam), minimizing vacuum chamber transition and resistance, using
single-mode RF cavities, and using active feedback systems. Among these measures,
for an existing accelerator, one effective method to combat beam instabilities is the
use of active feedback systems. The feedback system is a universal solution to beam
instabilities regardless of the sources of wakefields [6].

The work of this thesis is dedicated to the study of longitudinal coupled bunch
instabilities in the CERN PS. In view of the installation of a new feedback system
to control longitudinal multi-bunch instabilities, within the framework of the LHC
Injectors Upgrade project (LIU) [7], measurements have been performed with the
existing damping system with the aim of dimensioning the new one. The goal is to
compare measurement results and simulations, carried out with the Longitudinal
Coupled Bunch simulation Code (LCBC) developed in ref.[8].

This code has been used to investigate the effect of a bunch-by-bunch feedback
system for the longitudinal coupled bunch instabilities in DAΦNE [9]. The code
tracks the longitudinal dipole motion of all the bunches and it includes the effects of
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the HOMs, the synchrotron radiation and the fast RF feedback. A frequency domain
longitudinal feedback, instead of the bunch-by-bunch one has been implemented in
LCBC according with the PS future installation. While tracking the bunches, the
code carries out a mode analysis to obtain amplitude, frequency and phase of the
modes into which the phase oscillation of all the bunches can be decomposed. For
each selected mode to be damped, the code applies a kick proportional to the FB
gain and mode amplitude with a proper phase.

Simulations have been performed in different configurations by using an impedance
model for the 10 MHz RF system, which is supposed to be the most probable
impedance source of the coupled bunch instability in the PS. It appears that a good
agreement between simulations and measurements can be obtained with and without
the feedback system.
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Chapter 1

Basic concepts of Beam
Dynamics

The development of the first particle accelerators in the 1920s led to revolutionary
possibilities for the understanding of the constitution of matter. At today’s high
energy frontier, physicists benefit from the Large Hadron Collider (LHC) at CERN
with a design beam energy of 7 TeV, an increase of energy of six orders of magnitude
compared to the first machines. The following introduction to accelerator physics is
based on [10],[11],[1], where more detailed explanations can be found.

1.1 Guiding particles in an accelerator

Particle accelerators are machine that accelerate charged particles to high energies
by appliying electromagnetic fields. The processes of acceleration and guiding are
exclusively based on the Lorentz force:

�F = q
(

�E + �v × �B
)

(1.1)

This is the non-relativistic formula where �F is the force excited by an electric
field and a magnetic one on a particle of charge q and velocity v.

Particle energy increase is the main goal of an accelerator. The accelerator
provides kinetic energy to charged particles, hence increasing their momentum. In
order to do so, it is necessary to have an electric field along the direction of the
initial momentum:

dp

dt
= eE (1.2)

Bending is generated by a magnetic field perpendicular to the plane of the particle
trajectory. Focusing is a second way of using a magnetic field, in which the bending
effect is used to bring the particles trajectory closer to the axis.

As we eyelight, at CERN high level of energies are achieved using synchrotron
machines. A synchrotron is a circular accelerator where the nominal particle trajec-
tory is kept at a constant physical radius by means of a magnetic field variation, as
well as RF variation, to follow the energy increase.
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1.2 Transverse beam dynamics

In any kind of accelerator there is exactly one curve - the design orbit- on which
ideally all particles should move. If this design orbit is curved, which may be required
for many reasons, bending forces are needed. In reality most particles of the beam
will deviate slightly from the design orbit. In order to keep this deviations small, on
the whole way, focusing forces are required. In order to obtain that, Lorentz force is
applied as a:

• Bending Force (using dipoles) to guide particles along an ideal path, the ’design
orbit’, on which, ideally, all particles should move;

• Focusing Force (using quadrupoles) to confine the particles in the vicinity of
the ideal path.

Bending and focusing magnets are interspace in the ring in a pattern called the
lattice.

A dipole magnet is an electromagnet used in particle accelerators to create a
homogeneous magnetic field over some distance. Particle motion in that field will
be circular in a plane perpendicular to the field and collinear to the direction of
particle motion and free in the direction orthogonal to it. Thus, a particle injected
into a dipole magnet will travel on a circular or helical trajectory. A quadrupole is a
magnetic element generating a force that focuses the particle in the vicinity of the
ideal path as will be explained in section 1.3.

The new accelerators and storage ring are equipped with a "separeted-function"
magnets: dipoles for deflection and quadrupole for focusing.

The basis for a concept called ‘Lattice design’ was laid out in 1952 when Courant,
Livingston, and Snyder developed the theory of strong focusing accelerators (or
alternating-gradient machines) [12]. Lattice design is the design and optimization of
the principal elements –– the lattice cells –– of a (circular) accelerator, and it includes
the dedicated variation of lattice elements (for example, position and strength of
the magnets in the machine) to get well-defined and predictable parameters of the
stored particle beam.

Neglecting the electric field and considering a constant transverse magnetic field
we divide by the velocity and get a relation between the magnetic field and the
momentum p of the particle from which we obtain the expressiono of beam rigidity:

B ∗ ρ = p/e (1.3)

p is the momentum vector and connects the magnetic dipole field needed for a
circular orbit of radius ρ to the particles momentum and charge. (Note that here we
often refer to protons or electrons and the charge is just the elementary charge e).
As general rule:
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1
ρ

� 0.3
B [T ]

p [GeV/c]
(1.4)

which defines the bending strenght of the dipole. With an ideal circular orbit,
for each segment of the path ds we get the relation :

αc =
ds

ρ
→

∫
Bds = 2π ∗ p

q
(1.5)

α is called momentum compaction. As in any circular accelerator the angle swept
in one turn for the design particle is 2π. Eq. (1.5) tells us that the integral of all
bending magnets in the ring has to be 2π times the momentum of the beam once
every quantities is expressed in the right unit. If the path lenght inside the dipole
magnet does not differ much from the lenght of the magnet itself, the integral of
eq. (1.5) can be approximated by

∫
Bdl, where dl refers to the magnet lenght. For

lattice designer, the integrated B field along the particles design orbit, is the most
important parameter, as it is the value that enters eq. (1.5) and defines the field
strenght and how many of these magnets are needed for a full circle. In general for
a high-energy storage ring or synchrotron, a large number of bending magnets with
very high magnetic field are needed to determine the design orbit.

If we look at fig. 1.1 we define:

nI =
∮

H · ds =
∫ R

0
H(r)ds +

∫ 2

1
HEds

∫ 0

2
Hds (1.6)

Figure 1.1. Path of integration used to compute the quadrupole gradient as a function of
the current

On the first path H(r) = gr/μ0. The second integral is very small for μr >> 1.
The third integral vanishes identically since H ⊥ ds. So we get in good approxima-
tion:

nI =
1
μ0

∫ R

0
grdr (1.7)

In analogy with the bending strenght (eq. (1.4)) of a dipole magnet, it is conve-
nient to relate the field gradient of the quadrupole magnet to its optical effect:
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g =
2μ0nI

R2
(1.8)

The field gradient is normalised to the momentum of the particles, thus defining
the quadrupole strenght:

k =
eg

p
k

[
m2

]
� 0.3

g [T/m]
p [GeV/c]

(1.9)

A magnet structure consisting of focusing and defocusing quadrupole lenses in
alternating order with basically nothing in between, is called a FODO lattice, and
the elementary cell a FODO cell [12]. ‘Basically nothing’ in that context means
any element with negligible effect on the focusing properties, as, for example, drift
spaces, RF-structures or, under certain circumstances, even bending magnets. A
FODO cell is shown in fig. 1.2

Figure 1.2. Schematic drawing of a symmetric FODO-cell [12]

In linear beam-optics the transfer matrix of a number of optical elements is given
by the product of the matrices of the single elements.

1.3 Equation of motion and betatron oscillations

At any instant, particles may be displaced horizontally by x and vertically by z from
the ideal position and may also have divergence angles horizontally and vertically
with respect to the central orbit :

x
′
=

dx

ds
(1.10)

z
′
=

dz

ds
(1.11)

The coordinate system is shown in fig. 1.3.
In eq. (1.10) and eq. (1.11) the variation of x

′ and y
′ are due to the angular kick:

Δx
′
= xkl (1.12)

and

Δy
′
= −ykl (1.13)

These kicks depend on the current particle position (x, y), the normalized
quadrupole gradient k and the magnet lenght l.
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Figure 1.3. Coordinate system

According to eq. (1.12) and eq. (1.13), it is impossible to apply focusing forces in
both transverse planes at the same time. A focusing quadrupole is therefore defined
to have a focusing effect in the horizontal and a defocusing effect in the vertical
plane. Rotating such an element by 90◦ about its longitudinal axis, or inverting its
excitation currents, leads to a defocusing quadrupole, which is vertically focusing
(see fig. 1.4 and fig. 1.5).

Figure 1.4. Schematic view of a dipole magnet, showing the path of integration to compute
the field in the gap [13]

The resulting distribution of focusing forces around a machine can be described
by a the equation for the horizontal motion, that can be written as:

x
′′
+ K(s)x =

1
ρ

· Δp

p0
(1.14)

where:

K(s) = −k(s) +
1

ρ2(s)
(1.15)

We can introduce the dispersion function D(s) as the dispersion created by
the momentum dependency of the bending radius in dipole magnets and appears
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Figure 1.5. Cross-section of a quadrupole magnet [13]

therefore only in the plane of bending (generally the horizontal plane) and it is define
as the ratio between the inhomogeneous solution of eq. (4.14) and the momentum
deviation of the particle Δp

p0
.

D(s) =
x

Δp/p0
(1.16)

D(s) is the dispersion trajectory.

We assume that the circular accelerator has a median plane, taken to be the
horizontal plane z=0, and that the magnetic guide and fosusing fields are perpendic-
ular to this plane. We assume even that there is a closed curve in this plane, called
equilibrium orbit, on which a particle with reference momentum p0 can move for an
arbitrary number of revolutions. The differential equation for x(s) and z(s) in linear
approximation can be written as [14]:

x
′′ −

(
k − 1

ρ2

)
x =

1
p

Δp

p0
z

′′
+ kz = 0 (1.17)

(s) and ρ(s) are periodic functions of s because the orbit is a closed curve. In
the following we consider only particles of momentum p = p0 and Δp = 0. Moreover
from now on we will write the equation of motion like:

x
′′
+ Kx = 0 (1.18)

with K = 1/ρ2 − k in the horizontal plane and K = k in the vertical one.
Eq. (1.18) is called the Hill’s equation and it is a reminescent of simple harmonic
motion but has a restoring force which varies around the accelerator. The general
solution of Hill’s equation is a pseudo-harmonic oscillation, with varying amplitude
and frequency, called betatron oscillations:

x(s) =
√

ε
√

β(s) · cos(Ψ(s) + Φ) (1.19)

ε,Φ are integration constant determined by initial conditions and β(s) is a
periodic function given by focusing properties of the lattice (quadrupoles). Inserting
the solution x(s) into the equation of motion we obtain:
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Ψ(s) =
∫ s

0

ds̃

β ˜(s)
(1.20)

which is the phase advanced of oscillation between point 0 and s in the lattice.
Another important parameter in accelerator physics is the number of transverse

oscillations a particle carries out each turn. This value is obviously closely correlated
to the phase advance per turn and defined as the betatron tune:

Q =
1
2π

∮
ds

β(s)
(1.21)

For two different values of Q the resulting oscillations are shown in fig. 1.6.

Figure 1.6. Transverse oscillations inside a synchrotron of circumference sc

Normally accelerators are operated so that Q (Qx, Qy) are far from certain values
called resonances, mainly due to magnetic errors. If Q is an integer the solution of
the equation of motion is periodic and so any imperfection in the magnetic field act
as a perturbation which are synchronous with the oscillation frequency. This will
excite resonances causing an increasing amplitude and instable motion. One has to
avoid to have:

kQx + lQy = m (1.22)

where k, l, m are integers. This equation describes a set of lines in the Qx − Qy

plane which should be avoided. Tunes are normally chosen far from the lowest order
resonances. This position in the plane is called working point.

In the eq. (1.19), the constant ε can be expressed through x(s) and its derivative:

x
′
=

β
′

2

√
ε

β
cos(φ) − √

εβφ
′
sin(φ) (1.23)

We obtain [14]:

ε = γ(s)x2(s) + 2α(s)x(s)x
′
(s) + β(s)x

′2(s) (1.24)

which is called Courant-Snyder invariant [15] . α, β, γ are the Twiss parameters
and offer a complete and compact description of the beam dynamics [16] and they
are defined as:
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α(s) = −β
′(s)
2

(1.25)

γ(s) =
1 + α2(s)

β(s)
(1.26)

Both equations eq. (1.19) and eq. (1.23) lead to a parametric representation of
an ellipse in the transverse phase space (x, x

′), as the phase advance φ(s) goes from
0 to 2π. While a particle moves around an accelerator in real space it follows an
ellipse in the phase space.

In fig. 1.7 we can see how the various features of the ellipse are related to the
Twiss Parameters [17].

Figure 1.7. The parameters of a phase-space ellipse containing an emittance at a point in
the lattice between quadrupoles. Points on the ellipse represent different turns of the
particle

The orientation and the shape of the ellipse is determined by the lattice, i.e.
the arrangement of magnets within an accelerator, and varies depending on the
longitudinal position. The ellipse is furthermore characterized by its area πε, which,
according to Liouville’s theorem [18], is a constant of motion as long as only con-
servative forces are present and the energy of the particle remain constant. The
term ε is referred to as emittance with mm · mrad being its unit. Neglecting higher
order magnetic fields and other coupling mechanisms, the horizontal, vertical and
longitudinal phase space can be treated independently and, therefore, one can define
an emittance in each plane.

When the particles are accelerated, the emittance decreases inversely proportional
to the momentum. This can be understood intuitively from the observation that only
the longitudinal component of the momentum vector is increased in the accelerating
cavities whereas the transverse components remain invariant, so that the beam
divergence shrinks. This phenomenon is often called adiabatic damping which is
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somewhat misleading since no dissipative effect is involved. The energy dependence
of the emittance can be derived in a rigorous way within the Hamiltonian formalism.
The key point is that the canonically conjugate momenta of the position variables
x and z are not the slopes but rather the transverse momenta. The phase-space
trajectory in the plane, corresponding to the emittance ellipse, is of course also
an ellipse since εN = ( p0

m0c)ε. The area is πεn · (m0c) . Here we have defined the
normalized emittance by

εN = (
p0

m0c
)ε (1.27)

1.4 Longitudinal beam dynamics

From the expression of the Lorentz force (eq. (1.1)), now we take into consideration
the term of electric field:

�F = q( �E + �v × �B) → �F =
d�p

dt
= e �E (1.28)

The bending radius ρ should remain constant in a synchrotron as acceleration
proceeds. To achive this, particle momentum must be incremented on each turn by
a precise voltage:

V = V0sinΦs (1.29)

The amplitude V0 is pre-programmed and controlled by automatic voltage control
while the synchronous phase Φs is controlled by another system which compare the
phase of the RF voltage with the passage of the bunch.

1.5 RF cavities

In order to accelerate the beam particles we need a longitudinal electric field. Mag-
netic field cause deflection to the particle trajectory but they do not change the
particle momentum. So we must generate a longitudinal voltage, which is applied
across isolated gap in the vacuum chamber. We need an oscillating voltage so that
the particles see an accelerating voltage in the gap and the voltage than cancel
out as the particle goes around the rest of the machine. To do this we uese RF cavities.

A radio frequency (RF) cavity is a special type of resonator, consisting of a closed
metal structure that confines electromagnetic fields. The structure is either hollow
or filled with dielectric material. This cavity acts similarly to a resonant circuit with
extremely low loss at its frequency of operation. In addition to their use in electrical
networks, RF cavities can manipulate charged particles passing through them by
application of acceleration voltage and are thus used in particle accelerators.

Most resonant cavities are made from closed or short-circuited sections of waveg-
uide or high-permittivity dielectric material. Electric and magnetic energy is stored
in the cavity and the only losses are due to finite conductivity of cavity walls and
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dielectric losses of material filling the cavity. Every cavity has numerous reso-
nant frequencies that correspond to electromagnetic field modes satisfying necessary
boundary conditions on the walls of the cavity. Because of these boundary conditions
that must be satisfied at resonance (tangential electric fields must be zero at cavity
walls), it follows that cavity length must be an integer multiple of half-wavelength
at resonance. Hence, a resonant cavity can be thought of as a waveguide equivalent
of short circuited half-wavelength transmission line resonator.

The electromagnetic fields in the cavity are excited via external coupling. An
external power source is usually coupled to the cavity by a small aperture, a small
wire probe or a loop. Considering RF acceleration, it is obvious that when particles
get high velocities the drift spaces get longer and one loses on the efficiency. The
solution consists of using a higher operating frequency. The power lost by radiation,
due to circulating currents on the electrodes, is proportional to the RF frequency.
The solution consists of enclosing the system in a cavity which resonant frequency
matches the RF generator frequency. Each such cavity can be independently powered
from the RF generator. The electromagnetic power is now constrained in the resonant
volume.

With the alternating electric field the cavity becomes a resonating structure and
resonates at a specific design frequency and any noise or other frequency will not
resonate in the cavity. The beam sees only the desired frequency.

RF cavities can be used to:

• accelerate;

• RF deflection and RF gymnastic.

Usually in a pillbox [19], TM (transverse magnetic) mode are the ones used
for acceleration but one can even accelerate using TE (transverse electric) modes
that have less magnetic field on the inner surface of the cavity. In this case one
need to bend the electric field onto the axis. TE and TM mode cavity are ideal for
frequencies in the sevaeral 100 MHz range. For lower frquencies the cavity dimension
becomes too large. One can use TEM cavities where the fRF isn’t related to the
transverse dimension of the cavity but to its lenght.

One example are the synchrotron cavities where part of the volume can be filled
with a dielectric or magnetic material in order to shorten the cavity at the expenses
of higher losses. By filling it with ferrites, one can change the frequency by changing
the permeability of the ferrite with external fields. Of course lossy materials reduce
the Q and make it possible to rapidly change the frequency.

1.6 Bunch, Buckets and Phase Stability

We alway must make sure that a particle in an accelerator sees an accelerating
voltage at the gap, so the RF frequency fRF must always be an integer multiple (h)
of the revolution frequency frev.
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fRF = hfrev (1.30)

where h is known as the harmonic number.

A synchronous particle will circulate forever on the design orbit,and it is syn-
chronous with fRF . All the other protons in the accelerator will oscillate in energy
and in s around the synchronous particles under the influence of the RF system.
This means that instead of being spread uniformly around the circumference of the
accelerator the particles get "clumped" around the synchronous particle in a bunch.

For small energy deviations the particle follow a circular path and for larger
energy deviations these circles get flattered into an ellipse.

To qualitatively explain the oscillations the particles perform in energy and time,
we consider two particles: particle A, which is synchronous with the RF voltage
and a second one, particle B, whose momentum is slightly higher than A’s. In
Fig. 1.8, particle A always passes through the cavity when there is no RF voltage
(neither accelerating nor decelerating), assuming to neglect the radiation damping
effect. Particle B, instead, arrives at the same time as A but with a higher energy,
therefore on the second turn it arrives later than A and sees a decelerating RF
voltage, which reduces its energy to exactly that of A. On the third turn it still
arrives later than A as is has exactly the same energy/frequency, B is decelerated
still more and now has a lower energy than A. On the fourth turn B now arrives at
the same time as A, as its energy is lower and its revolution frequency is higher, so
B sees no acceleration or deceleration and is still at a lower energy than A. On the
forth turn B now arrives before A and sees an accelerating voltage, which means it
now has the same energy and revolution frequency as A again. In the sixth turn B
still arrives before A and is accelerated again. Now B has a higher energy and a
lower revolution frequency than A. At the last turn B arrives at the same time as A
but with a higher energy. This is just the situation that we had at the beginning.
These oscillations are called synchrotron oscillations.Fig. 1.9 shows the motion of
the two particles in the longitudinal phase space. Stable phase space region is called
a bucket while the boundary is the separatrix (see fig. 1.10) which separates stable
and unstable oscillations. If a particle is injected at a point outside the separatrix it
is lost. Bunches of particles occupy buckets; but not all buckets need be occupied.
Batches (or bunch trains) are groupings of bunches formed in specific patterns, often
from upstream accelerators.

Figure 1.8. Energy variation of two circulating particles passing by the RF cavity [20].
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Figure 1.9. Relative motion of A an B in the longitudinal phase space [20]

The RF cavities are normally kept active also after the nominal energy is reached
in order to provide a focussing in energy, since an ensemble of particles always
has a momentum spread. Particles with an energy smaller than the nominal one
(p < p0) are accelerated by the cavities, while particles with a higher energy (p > p0)
are decelerated. Moreover, a circulating particle loses energy continuously through
synchrotron radiation when it bends. The RF cavities serve then to replenish this
energy loss on every turn which is negligible for protons at low energy. The RF
system uses with good approximation a sinusoidal voltage V (t) = V sin(ϕ(t)) and,
for a particle with charge q, the energy gained at each passage across the cavity to
compensate the energy loss turn by turn is:

ΔE = qV sin(ϕ(t)) (1.31)

with V maximum amplitude of the RF accelerating potential and ϕ(t) relative
phase between the particle and the RF phase as function of time. The momentum
offset is related to the energy deviation by:

δ =
Δp

p
=

1
β2

ΔE

E
(1.32)

where β = v/c is the relativistic beta. Similarly, the length of the orbit followed
by the particle will also be modified according to:

ΔL

L
= αcδ (1.33)

where αc is the momentum compaction factor, which is a fixed property of the
lattice depending only on the bending radius of the particle orbit and the dispersion.
It represents the difference in path length travelled by a particle at a given relative
momentum deviation within one revolution of the reference particle. The phase
focusing principle determines the longitudinal stability of the bunch by:

ΔT

T
= (αc − 1

γ2
)δ (1.34)

with T revolution period of the proton in the ring and E = mc2 is the relativistic
gamma. According to the value of (αc − 1

γ2 ), ΔT
T can be either positive and negative,
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depending on the particle energy. The energy at which it changes sign is the
transition energy:

γtr =

√
1
αc

(1.35)

The synchronous RF phase at which the synchronous particles passes the RF
cavities on every turn, must be chosen depending on the particle relativistic γ,
being below or above the transition. Two different regimes can, hence, be identified:
γ < γtr and γ > γtr.

In case γ < γtr , 0 < ϕs < π
2 ensures the bunch stability, that corresponds to

the particle which is on the positive slop of Eq. (1.31). More energetic protons will
reach the RF earlier than the reference particle, they will lose energy and in the
next turn they will get closer to the synchronous proton when they will pass by the
cavities again. Less energetic particles, instead, will arrive late in the RF, receiving
a larger kick by the system that allows them to approach the reference proton in the
following turn. Similarly, above transition γ > γtr a particle with a higher energy
has a longer revolution time and arrives later, meaning that the decelerating voltage
should be later in time. Hence, the stable motion occurs on the negative slope of
Eq. (1.31), or for π

2 < ϕs < π. Particles with small longitudinal amplitude, which
occurs as long as they are close to the center of the bucket and not at the edges, even
if the motion is still stable, perform synchrotron oscillations around the nominal
particle (see Fig. 1.10).

Figure 1.10. Motion of particle inside and outside the bucket limit [20]

Particle trajectories in phase space can be distinguished in two different types:
closed orbits inside the RF-bucket in which particles perform stable motion and
unstable motion outside for those particles having an energy large enough to go
beyond the bucket limit. The specific trajectories in phase space which separate the
stable region from the region where the motion is unstable leading the particle away
from the synchronous phase and from the ideal momentum are called separatrices. If
a proton injected in a storage ring has an energy corresponding to a point outside the
separatrix, it will perform unbounded motion. The energy deviation that matches
the separatrix determines the energy aperture of the ring. Now we take a particle
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starting outside of the energy aperture, considering also the radiation damping
effect (that means the particle is losing energy through emission of synchrotron
radiation): its motion starts outside the stable region and it will stay outside for-
ever. Moreover, the energy loss moves the particle further away from the nominal
energy and, then, from the synchronous particle. When the accumulated energy de-
viation is large enough, the particle could hit the aperture of the machine and be lost.

In eq. (4.14), there was a term that in first approximation we didn’t consider;
now let’s see what happens for particles with Δp �= 0. These particles are focused
differently in the quadrupoles and this lead to a shift of the Q value:

ΔQ = − 1
4π

∮
β (s)K (s) ds

Δp

p0
= ξ

Δp

p0
(1.36)

ξ = − 1
4π

∮
β (s)K (s) ds (1.37)

ξ is called chromaticity of the machine. For a linear magnet lattice it is always
negative. The main contribution to the chromaticity comes from quadrupoles which
are strongly excited and where the β function is large. In big accelerators the
chromaticity arising from the linear lattice is a large quantity, Then, the "tune"
spresd due to finite momentum band becomes so large that some part of the beam
unavoidably hits dangerous resonance lines. For this reason, and in order to avoid
the so-called "head-tail" instability [21], one has to compensate the chromaticity.
This can be achieved with sextupoles [22]. The sextupoles magnets have to be placed
at locations where the closed dispersion orbit D(s) is nonzero.

1.7 Collective effects and Beam Instabilities

In order to control a beam of particle we apply external fields that focus the beam
trasversly and accelerate it and focus it longitudinally. In addition to this externally
applied fields, a particle within the beam feels a field due to the charge and the
current of all the other particle of the beam. By collective effects we mean all those
modifications to the beam behaviour which are due to this beam-induced force.
In a very general sense, we can break collective effects down into three catagories:
Beam-self, beam-beam, and beam-environment, as we can see in fig. 1.11

Figure 1.11. a) beam interacts with itself, b) beam interacts with localized electron cloud,
c) beam interacts with machine
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In picture a) we can see the case in which the beam interacts with itself: this
is the case of space charge [23] and beam-beam effects [24]; in picture b) the beam
interacts with localized eletron cloud (e-p instability) and in picture c) it interacts
with the machine, for example the vacuum chamber, in this case we will have so
called impedances-related instabilities (as described in chapter 3). Collective effects
and instabilities caused by collective effects is an entire topic of its own. Here we
only briefly review some of the more common effects as an example.

Space charge is the simplest and most foundamental of collective effects whose
impact generally is proportional to the beam intensity. The charge and current of
the beam create self-fields and image fields which alter its dynamic behaviour and
influence the single particle motion as well as coherent oscillations of the beam as a
whole. If we consider a beam of cylindrical cross section as the one in fig. 1.12, a
proton located at (r,Φ) experiences only the electrostatic fields from its neighbours:

Figure 1.12. Cylindrical cross section of a beam

Er =
ρ

2ε0
r (1.38)

where ρ is the radius of the accelerator and ε0 is the electric permeability. Due
to simmetry, the electric field has just a radial component while the magnetic field
lines are just circles around the cylinder:

BΦ =
ρ

2ε0

v

c2
r (1.39)

We can define the defocusing term acting all around the circumference:

k = − rN

β2γ3RS
(1.40)

where N is the number of circulating protons, R is the radius of the machine
and S is the beam cross-section, γ is the charge density [Cb/m3] and v = βc the
velocity. The direct space charge leads to defosusing in either planes, and therefore
one would expect that particles in a high-intensity beam will experience a lowering
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of their betatron tunes Q by ΔQ. If we consider an unbunched beam, circular cross
section everywhere in the accelerator and constant charge density, the Hill’s equation
x

′′ + k(s)x = 0 to a synchrotron lattice will yield to an unperturbed horizontal Qx0
while the expresion x

′′ + x( 1
ρ2(s) − k(s))x = 0 introduces a space-charge defocusing

ΔQx. In general we have for the direct space-charge tune shift:

ΔQx,y = − r0N

2πEx,yβ2γ3
(1.41)

where Ex,y is the transverse emittance in either plane containing all of the
particles, β is a periodic function given by focusing properties of the lattice and γ is
the relativistic one.

An “electron-Proton” instability can be generated when the proton beam interacts
with ambient electrons in the vacuum chamber (fig. 1.13).

Figure 1.13. Proton beam moving in a beam pipe

Consider that an electron enters in the pipe and it is accelerated through beam
potential, it strikes the wall on the opposite side and ejects more electrons. These
electrons are accelerated through the beam and strike the opposite side wall, ejecting
more electrons. If electrons live until the beam returns on the next pass, the “electron
cloud” grows until it causes an instability in the proton beam.

Then we have the impedances-related instabilities. Since particles travel in the
accelerator environment, with beam pipes and magnets, etc, they induce fields in the
accelerator structures. These fields can act back on a trailing particle. Wakefields
are generated in a smooth pipe of constant radius if it has finite resistance: the
resistive wall impedance. Wakefields are also generated in a conducting pipe near
the intersection of a geometry change. This kind of instability will be treated in
detail in chapter 3 since is the main object of this thesis work.
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Chapter 2

The CERN Proton Synchrotron

The Proton Synchrotron (PS) is a key component in CERN’s accelerator complex,
where it usually accelerates either protons delivered by the PS Booster or heavy
ions from the Low Energy Ion Ring (LEIR [25]). In the course of its history it has
juggled many different kinds of particles, feeding them directly to experiments or
to more powerful accelerators and the first strong focusingsynchrotron to be put in
operation.

The PS first accelerated protons on 24 November 1959, becoming for a brief
period the world’s highest energy particle accelerator. It was initially CERN’s
flagship accelerator, but when the laboratory built new accelerators in the 1970s,
the PS’s principal role became to supply particles to the new machines. Over the
years, it has undergone many modifications and the intensity of its proton beam has
increased a thousandfold.

With a circumference of 628 metres, the PS has 277 conventional (room-
temperature) electromagnets, including 100 dipoles to bend the beams round the
ring. The accelerator operates at energy up to 25 GeV. In addition to protons, it
has accelerated alpha particles (helium nuclei), oxygen and sulphur nuclei, electrons,
positrons and antiprotons [26].

Today the PS complex (fig. 2.1) can accelerate all stable and electrically charged
particles (electrons, protons), their antiparticles (antiprotons), and different kind
of heavy ions (oxygen, lead). Proton beams from the PS complex are also used
for physics experiments (ISOLDE, East Hall) or for the production of antiprotons
(Antiproton Decelerator). The final design of the CERN PS was adopted in 1954; the
first beam accelerated up to 24 GeV happened in 1959 [28]. At that time, the linear
acccelerator LINAC1 was the injector of PS with 50 MeV proton beams until the
LINAC2 and the PSBooster took over in 1978. Today the PS accelerator complex is
composed by the LINAC2 and LINAC3, PSBooster, LEIR (Low Energy Ions Ring),
the Antiproton Decelerator (AD) and the PS.

The PS main magnet system consists of a ring-shaped structure 200 m in
diameter [29]. This structure comprises 100 combined-function magnet units (MU)
each composed of a focusing (F) half-unit and a defocusing (D) half-unit. A reference
unit (MU 101) is located outside the tunnel in a dedicated air-conditioned room.
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Electrically in series with the other 100 units in the tunnel it serves to produce
reference signals for timing, beam control, and field monitoring purposes. Each
half-unit is composed of five adjacent magnet blocks, each 417 mm long. The magnet
blocks are installed on a steel girder which rests on a reinforced concrete beam
by means of a jack system. The blocks are precisely positioned horizontally and
vertically by means of adjusting screws. The ten blocks of each unit are excited by
the same coil.

Between two subsequent magnet units, there is an interval called ‘straight section’,
which is field-free so that the recurrent lattice is ‘FOFDOD’. The straight sections,
numbered from 01 to 99, are used for placing accelerating cavities, beam diagnostic
devices, injection and extraction elements, and magnetic lenses. Up to 1981, internal
targets were also installed in straight sections 01, 06, and 08. A block is a straight
C-shaped structure of open or closed type as in fig. 2.2. Employing two different
types of block produces the alternation of the gradient.

Figure 2.1. Proton Synchrotron complex layout

Table I summaries some important PS parameters.

Table I. General parameters of the CERN Proton Synchrotron

Circumference [m] 2π100
Number of straight sections 100

Vacuum chamber type [standard] elliptical
Standard vacuum chamber aperture [mm] 140 × 70

Maximum dB/dt [Gauss/ms] 21
Bare Tunes Qx,y 6.25/6.28

Bare chromaticities ξx,y ∼ −0.8/ − 1
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Figure 2.2. Open and closed single block of the main magnet units

2.1 Beams in the CERN PS

A typical magnetic cycle duration of the PS is a multiple of 1.2 s, defined as a basic
period. During this time, the beam is injected, accelerated, extracted and the time
left is dedicated to the magnetic field decreasing. Since the end of the 90’s, the
injection kinetic energy of the PS is 1.4 GeV for the proton beams. Fig. 2.3 shows a
typical cycle where the protons are kept at constant magnetic field at least 30 ms on
a flat bottom plateau in such a way the beam reaches an equilibrium state before
acceleration in the transverse and longitudinal planes, in case of injection errors.
Indeed the beam can experiment a trajectory transient if injected at the wrong
position in the phase space (x, x

′) and (y, y
′), resulting in transverse emittance blow

up. The beam is then accelerated with a magnetic field rate dB/dt of 21 Gauss/ms
or a momentum rate of 46 GeV/c/s. Finally the beam is extracted toward the SPS
or a PS experiment. In fig. 2.3 the extraction momentum is 20 GeV/c and the beam
is sent to a neutron production target (nTOF).

The Proton Synchrotron is used to accelerate different types of particle over
its more than 50 years of operation: proton, electron/positrons, ions, antiprotons
and even deutons and α− in the 80’s. Currently only protons and ions are used in
operation for the LHC and other experiments such as:

• nToF (Neutron Time of Flight) is a PS dedicated experiment [30];

• AD is a ring decelerating antiprotons which are produced by 26 GeV/c protons
hitting a target [31] ;

• the experiments in the East Area of the PS such as an irradiation zone;

• beams are provided to the SPS for fixed target experiments, like CNGS in the
past which aimed to produce neutrinos observed in the OPERA detector in
Italy [32].

Table II shows the beam parameters for the nominal LHC beam. The next
paragraph will focus on the PS as LHC injector and how the LHC beams are
produced [33].
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Figure 2.3. Example of magnetic field cycle for the ToF beam [34]

Figure 2.4. Example of magnetic field cycle for the nominal LHC 25 ns beam [34]
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Table II. Beam parameters of the LHC 25ns, TOF and AD beams

Beam TOF AD LHC 25ns
Total Intensity [1010] p 850 1600 940

Bunches 1 4 12 to 72
Transverse emittance (ε∗

x,y(1σ)) 12.5-10.4 11.5-6.4 3 \ 3
Longitudinal emittance (εl(2σ)) 2.3 1.8 0.35 (4σ) at extraction

Bunch length at PS extraction [ns] 50 25 ∼ 4

2.2 The PS as LHC Injector

This section provides a short description of the production of LHC multi-bunch
beams in the PS, meant for LHC physics experiments. According to the production
scheme, the LHC-type beams transverse emittances should be defined in the PS-
Booster, whereas the longitudinal structure should be the result of a complicated
series of RF gymnastics done in the PS. The beam should be cleaned by eventual
tails in the SPS and eventually, the longitudinal and/or the transverse emittances
might be increased by controlled blow-ups [28].

Four different LHC multi-bunch beams with the parameters of Table III are
prepared in the PS. The differences come from the bunch spacing and the intensity
per bunch at the extraction of the PS meant for different purposes.

Table III. Parameters of the LHC beams produced in the PS at extraction

N◦ of bunches Long. emittance [eVs] Intensity per bunch
LHC25 12 to 72 0.35 up to 1.3e11 ppb
LHC50 12 to 36 0.35 up to 1.9e11 ppb
LHC75 8 to 24 0.35 up to 1.3e11 ppb
LHC150 4 to 12 0.35 up to 1.3e11 ppb

All LHC beams are produced using harmonic one in the PSB. Nevertheless, up
to 4 bunches can be sent per batch to the Proton Synchrotron (PS) as the PSB
consists of 4 superimposed rings. Until now, the 25, 50 and 75 ns LHC physics beams
were produced in a double-batch transfer from PSB to PS using 4 + 2 rings. To
prepare the LHC filling, it is also possible to request only 1 PSB ring for these beams
resulting in 12, 6 or 4 bunches, respectively. All the other beams use single-batch
transfer to the PS with one PSB ring only (except for the individual physics beam
with 1 or 4 PSB rings) [35].

The 25 ns LHC physics beam is referred to as ‘nominal’ LHC beam. It is
made of 6 PSB bunches injected in two consecutive cycles into the PS, where it
undergoes a triple and then, after acceleration to 26 GeV/c, two double splittings
for the resulting 72 bunches injected into the SPS. Combinations of up to four PS
batches can fill the SPS and later the LHC for the baseline 25 ns bunch filling
scheme. To achieve the nominal LHC intensity while respecting the LHC nor-
malised transverse rms emittance limit of 3.5 μm, bunches of 16.2 × 1011 protons
with normalised transverse rms emittances of 2.5 μm have to be produced in the PSB.
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Figure 2.5. Production of the LHC 25 ns beam in the PS with the double batch injection
on the 1.2 s long flat bottom plateau. The blue curve is the magnetic field as a function
of time, the red is the beam intensity in number of protons and as a function of the
harmonic number changed by the successive RF gymnastics.

The 50 ns LHC physics beam emerged as the first LHC beams to be required.
The increased bunch spacing allows tailoring the luminosities to the needs of the four
main experiments. The 75 ns beam variant was proposed for early LHC operation
to leave out 2 bunches by tripling the bunch separation at PS extraction from 25 to
75 ns. Two double splittings in the PS led to 24 bunches at PS extraction.

In the next section we will see in details how the RF gymnastics are performed
to produce the required bunch spacing.

2.3 Alternative schemes for 25/50 ns beam production

Beside the classical production scheme of the LHC-type beam, based on triple
splitting at injection energy plus two double splitting on the extraction flat top and
described in [28], another one was proposed to increase the brightness. It is the
BCMS (Batch Compression Merging and Splittings),and consists in the injection
of eight bunches on the 9th harmonic, batch compression from h=9,10....14, bunch
merging between h = 7 and h = 14 (from 8 to 4 bunches) followed by a triple splitting
(see figure 2.6 ) all done at low energy. These evolved RF gymnastics are performed
at an intermediate kinetic energy (Ek = 2.5 GeV ) to avoid transverse emittance blow
up due to space charge and to relax the requirements on the longitudinal emittance
at injection. The resulting 12 bunches are accelerated to the extraction flat top where
two bunch splittings occur to obtain the final 25 ns bunch spacing. The advantage
with respect to the traditional scheme results from the smaller splitting factor of the
PSB bunches (6 instead of 12). This scheme will be used for the production of the
LHC physics beam during the 2015 run.
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Figure 2.6. RF gymnastic for the production of the BCMS scheme at intermediate energy.
The batch compression is followed by a bunch merging and a triple splitting [27]

2.4 The LHC Injectors Upgrade project

Luminosity (L) is one of the most important parameters of a collider like the LHC.
It’s a measurement of the number of collisions that can be produced in a detector
per cm2 and per second. The bigger is the value of L, the bigger is the number of
collisions. To calculate the number of collision we need also to consider the cross
section ; for a given physics process, like unelastic or elastic proton-proton collision.
The instantaneous luminosity in the LHC (LLHC) can be expressed as:

LLHC =
(

γ

4π

1
β∗ frevF

)
·
(

nb
N2

b

εn

)
(2.1)

where γ is the usual relativistic factor, β∗ the betatron function at the inter-
action point, frev the beam revolution frequency, F a form factor depending upon
the geometry of the bunch crossing, nb the number of bunches per ring, Np the
number of protons per bunch and εn the normalised transverse emittance of the beam.

Eq. (2.1) shows that, independently of the modifications in the LHC, the in-
stantaneous luminosity directly depends upon the characteristics of the injected
beam. Maximizing the integrated luminosity requires the highest possible circulating
current in the collider (proportional to Nbnb) and hence from the injectors, with
beam brightness.
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2.4.1 Main principles of the upgrade

The parameters demanded by the HL-LHC will not be reached without a major
upgrade of the LHC injector chain. The injectors can account for an increase
of luminosity by producing more intense beams within constant or even smaller
transverse emittances and hence increasing the beam brightness proportional to
Nb/εn.

One topic the LIU project investigates is an increase of the PS injection energy
from 1.4 GeV to 2 GeV, decreasing the tune spread induced by space charge. This
fact, together with a well chosen working point, enables to conserve transverse beam
parameters along the injection flat bottom of 1.2 s long for the production of the 25
ns beam.

In all synchrotrons, the RF systems represent another obvious limitation be-
cause of their power capability (in the case of PSB and SPS), because of their
impedance for the beam (PS and SPS) and for reliability reasons (PSB, PS and
SPS). All RF systems will therefore be subject to major changes or extensions, some
being even planned for replacement (PSB). Longitudinal beam stability is planned to
be obtained with the combined effect of reduced impedances and a new feedback [36].

The maximum intensity Nb for bright bunches in the PS is limited by coupled-
bunch (CB) instabilities after transition crossing. The CB stability limit versus Nb

and εn is illustrated in fig. 2.7. The mode spectrum shows that the CB instabilities
are most likely excited by the main 10 MHz accelerating cavities. Three different
upgrade paths are thus under investigation: improved direct and 1-turn FBs around
the cavities, a new global CB-FB, potentially with a dedicated kicker, and the
possibility of delivering naturally more stable bunches to the SPS.

Figure 2.7. Longitudinal stability limits according to observations from 2009 to 2011 [37]

This thesis work will focus its attention on this kind of instability, trying to
study and control the longitudinal coupled-bunch oscillations which constitute an
important limitation for the CERN PS high intensity beams.
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Chapter 3

Wakefield and Longitudinal
Beam Instabilities

Modern accelerators have to provide charged particle beams with a high current to
achieve high brightness [38], fact that presents a variety of challenges in the develop-
ment of these accelerators. In storage ring or in low rep. rate pulsed machines, one
of the most important factors limiting the maximum attainable beam current are
beam instabilities, as presented in Chapter 2.

Charged particles in a synchrotrons are accelerated, guided and confined by
external e.m. fields and the motion of a single charge is governed by the Lorentz
force (eq. (1.1)). Acceleration is usually provided by the electric field of RF cavities
and magnetic fields are produced in:

• the bending magnets for guiding the charges on the reference trajectrory (orbit)

• the quadrupoles for transverse confinememnt

• the sextupoles for chromaticity correction.

However there is another source of e.m. fields, the beam itself, circulating inside
the pipe. These fields depend on the total current, the geometry of the beam pipe
and the sourrounding materials and they are responsible of the so called ’beam
instabilities’.

3.1 Basic mechanism driving an instability

Assume a bunched beam circulating in a synchrotron. The bunch, corresponding
to a beam current IB, will induce electromagnetic fields in the beam pipe and give
rise to image or wall currents −IW of the same magnitude but opposite sign to the
beam current [39], since the beam pipe itself is very often a conductor [40]. In turn,
these currents generate an electromagnetic field that acts back on the beam.

The vacuum chamber has a finite conductivity and, moreover, changes its shape,
cross-section, etc. along the beam path, and therefore presents an impedance to
this wall current. The impedance Z = ZR + iZi can be resistive (real), capacitive or
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Figure 3.1. Image or wall current induced by a circulating bunch

inductive (imaginary). Thus the wall current induces a voltage V ∼ IW Z which gives
rise to a longitudinal electric field, which may act back (accelerating or decelerating)
on the bunch. While Z depends on the geometry and material of the vacuum
enclosure and on the exciting frequency, V is proportional to the wall current and
thus the beam current: instabilities are intensity dependent, and in general stronger
at higher beam currents.
Instabilities are investigated with the following scheme:

• start with a nominal, unperturbed particle distribution (i.e. longitudinal
position, energy, density, etc.);

• apply a small perturbation which has a simple form – called ‘mode’ – and
determine forces acting back on the beam;

• calculate how the pattern would change under the forces. If it disappears, the
beam is stable; if it is self-sustaining or even increases, the beam is unstable.

3.2 Wakefield and potentials

As shown in Chapter 1, by collective effects we mean all those modifications to the
beam behaviour which are due to beam-induced forces. We illustred before the case
of the beam interacting with itself (space charge and beam-beam effect) and the
case of the beam interacting with a localized electron cloud (e-p instability). Now
we are going in detail of the third kind of interaction, the one between the beam
and the machine: the wake fields.

Wake fields depend on the particular charge distribution of the beam. It is
therefore desirable to know what is the effect of a single charge (i.e. find the Green
function) in order to reconstruct the fields produced by any charge distribution.

The electromagnetic fields created by a point charge act back on the charge
itself and on any other charge of the beam. We therefore focus our attention on
the source charge q0, and on a test-charge, assuming that both are moving with the
same constant velocity ν = βc on trajectories parallel to the axis.

Let �E and �B be the fields generated by q0 inside a structure, s0 = νt, r0 be the
position of the source charge, and s = s0 + z, r be the position of the test charge q
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[41].
Since the velocity of both charges is along z, the Lorentz force has the following

components:

F = q [Ez ẑ + (Ex − νBy) x̂ + (Ey + νBx) ŷ] ≡ F‖ + F⊥ (3.1)

Thus, there can be two effects on the test charge: a longitudinal force which
changes its energy, and a transverse force which deflects its trajectory. If we consider
a device of length L, the energy gain is:

U =
∫ L

0
Fzds (3.2)

and the transverse deflecting kick is :

M =
∫ L

0
F⊥ds (3.3)

Note that the integration is performed over a given path of the trajectory. These
quantities, normalized to the charges, are called wake potentials (Volt/Coulomb)
and are both functions of the distance z:

Longitudinal wake potential [V/C] : w‖ = − U

q0q
(3.4)

Transverse wake potential [V/Cm] : w⊥ =
1
r0

M

q0q
(3.5)

The minus sign in the longitudinal wake-potential means that the test charge
loses energy when the wake is positive. Positive transverse wake means that the
transverse force is defocusing.

3.3 Coupling Impedance

The wake fields are generally useful to study the beam dynamics in the time domain
(generally instabilities in a LINAC). If we consider the equation of motion in the
frequency domain ( generally done to study instabilities in circular accelerators), we
need the Fourier transforms of the wake fields. Since these quantities have Ohms
units they are called coupling impedances. The longitudinal coupling impedances is
defined as:

Z‖(ω; r, rq) =
1
v

∫ +∞

−∞
W‖(s; r, rq)e−iω s

v ds (3.6)

Similarly, the transverse coupling impedance can be defined as:

Z⊥(ω; r, rq) =
−i

v

∫ +∞

−∞
W⊥(s; r, rq)e−iω s

v ds (3.7)

The coupling impedances and wake functions are the description of the same
physical phenomenon, the wake effect of a single charge (or a beam with zero dura-
tion) and they are used to convey the complementary information in the frequency
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domain and time domain, respectively. Sources of coupling impedance can be any
discontinuity of vacuum chamber walls and finite conductivity of the vacuum chamber
(the resistive wall impedance) in the accelerators. Vacuum chamber discontinuities
are necessary for example to accommodate a variety of accelerator components.
Different vacuum chamber sections can contribute to wakefields of different ranges
in space and time.

According to the effective range of a wakefield, there are two types of coupling
impedance: broadband impedance and narrow-band impedance. For example, a
typical coupling impedance of an RF cavity with adjacent beam pipes is shown in
fig. 3.2. The impedance spectra of this system contain a number of peaks. The
sharp peaks of the impedance spectra below the cut-off frequency of the beam pipe
represent the fundamental mode and HOMs of the RF cavity [42].

Figure 3.2. The real part of a longitudinal coupling impedance for an RF cavity with
adjacent beam pipes [6]

A broadband impedance corresponds to a wakefield with a short decay time,
therefore a short effective range (shorter than a few RF bucket lengths). Typically
this type of wakefield can only be seen by particles in the same bunch and does
not effect particles in the trailing bunches. Therefore, the broadband wakefield can
excite instabilities in a single bunch.

In contrast to the broadband impedance, a narrow-band impedance corresponds
to a long range wake effect, which impacts bunches behind the source bunch. The
narrow-band wakefield induces coupled-bunch motions between electron bunches
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circulating. This type of wakefield is usually excited inside an RF cavity and is
dominated by high-Q resonant modes of the cavity itself, which appears as narrow
peaks in fig. 3.2.

3.4 Longitudinal wake field of a resonant mode

The machine impedance is a function of the angular frequency ω, and typicallyit is
maximal at the resonance frequencies of cavity-like objects, which thus represent the
most critical machine components, prone to drive instabilities. Therefore a closer
look at these objects is justified. The characteristic features of such objects are quite
similar to a parallel RLC circuit (fig. 3.3) where we call I the beam current, R the
shunt impedance, ωr the resonance angular frequency, Q the quality factor (eq. (3.8)
and (3.9)).

Figure 3.3. Parallel RLC circuit

ωr =
1√
LC

(3.8)

Q = R

√
C

L
=

R

ωrL
(3.9)

where ωr is the revolution frequency. The differential equation of the circuit is:

V̈ +
ωr

Q
V̇ + ω2rV = ωr

R

Q
İ (3.10)

with solution:

V (t) = V0e
−αtcos

[
ωr

√
1 − 1/4Q2t + φ

]
(3.11)

This represents a damped oscillation with the damping rate α = 1/τ = ωr/2Q.

One interesting case is the longitudinal wake-potential of a resonant higher order
mode (HOM) in an RF cavity [19]. When a charge crosses a resonant structure, it
excites the fundamental and higher order modes. Each mode can be treated as an
electric RLC circuit loaded by an impulsive current, as shown in Fig. 3.4

Just after the charge passage, the capacitor is charged with a voltage V0 = Cq0.
The passage of the impulsive current charges only the capacitor, which changes its
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Figure 3.4. RF cavity and the equivalent RLC parallel circuit model driven by a current
generator

potential by an amount Vc(0). This potential will oscillate and decay producing
a current flow in the resistor and inductance. For t> 0 the potential satisfies the
following equation:

V̈ +
1

RC
V̇ +

1
LC

V =
1
C

İ (3.12)

Applying the boundary conditions (V
(
t = 0+

) ≡ V0 and V̇ (t = 0+) = V0
RC ) we

are able to obtain the solution V(t), and, more important, the expression of the
wake potential:

w‖ (z) =
−V (z)

q0
= w0e

−Γz/c
[
cos(ω̄z/c) − Γ

ω̄
sin (ω̄z/c)

]
(3.13)

where ω̄2 = ω2r − Γ2 and Γ = 1/2RC.

Eq. (3.13) is the expression of the wakefield of a resonant HOM in a RF cavity.
In order to evaluate the impedance Z(ω) of the resonator, we exciting the circuit

with the current,(I = I0ejωt(−∞ < ω < ∞)) and look for solutions of the form
V = V0ejωt. Note that the range of ω includes negative frequencies simply because it
allows doing all calculations with the ejωt rather than the complicated trigonometric
functions. By eq. (3.11), and considering that Z (ω) = V0/I0 one then gets:

Z (ω) = Zr(ω) + iZi(ω) = R
1 − iQω2−ω2

r
ωωr

1 +
(
Qω2−ω2

r
ωωr

)2 (3.14)

Z (ω) is complex because in general V0 is not in phase with excitation I0. The
real and imaginary parts of the impedance of a resonator are shown in fig. 3.5.

The expression for the impedance of a narrow-band resonator (high Q cavity)
can be simplified near the resonance frequency to:

Z (ω) ≈ R
1 − i2QΔω

ωr

1 +
(
2QΔω

ωr

)2 (3.15)

A narrow-band impedance like this one features a high quality factor Q and thus
a low damping rate: once the beam has induced a signal into this object, it will
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Figure 3.5. Real and imaginary parts of impedance Z of a resonator

oscillate during many machine turns, memorizing the fields induced during many
passages of all bunches (multi-bunch effects). The converse is true for a broad-band
cavity: Q is low, the damping rate is large, the induced fields collapse rapidly and
are not memorized long enough to have repercussions on subsequent bunches, but
only on the bunch itself (single-bunch effects).

3.5 Coupling impedances of a resonant mode

In this section we just want to give some remarks on the longitudinal impedance of
a resonant mode that will be useful in future. The expression of the longitudinal
impedance is:

Z‖ (ω) =
Rs

1 + iQ( ω
ωr

− ωr
ω )

(3.16)

The parameters Rs,ωr and Q, that can be evaluated by computer codes, can
be related to the parameters RLC of the parallel circuit as explained before. The
transverse impedance is:

Z⊥ (ω) =
c

ω

Rs⊥
1 + iQr( ω

ωr
− ωr

ω )
(3.17)

This impedance can be also used as a simplified impedance model of a whole
machine for the short range wake fields assuming Qr ∼ 1 (it is called Broad Band
Impedance Model).

3.6 Instabilities in circular accelerators

To study of collective effects, it is convenient to distinguish between short range
and long range wakefield, the former influencing essentially the single bunch (poten-
tial well distortion and deformation of the longitudinal distribution, longitudinal
emittance growth, microwave instability) and the latter the multibunch dynamics
(Robinson and coupled bunch instability) [43]. We just introduced the concepts of
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longitudinal and trasverse wake field and the related coupling impedances necessary
to deal with collective phenomena and now we are going to investigate the effect of
wake field focusing on the longitudianl plane.

A bunch in a storage ring going through a cavity induces electromagnetic fields
which oscillate and slowly decay away. In the next turn the same bunch might find
some remnant field and will get influenced by it. The phase of the field seen in the
next turn can be such that a small initial synchrotron oscillation of the bunch is
increased. In each turn the oscillation gets amplified resulting to an exponentially
growing instability. In many cases the fields created by the beam are small compared
to the guide fields and their effects can be treated as a perturbation. In particular
we are interested in the case of a charged particle passing into a cavity (fig. 3.6) that
loses some of its energy in the form of electromagnetic field, which remain trapped
reflecting back and forth at given frequencies, thus producing resonant modes. This
fields are called long range wake fields and they influence the multi-bunch dynamics.

Figure 3.6. Charged particle passing into a cavity

3.7 Longitudinal coupled-bunch instabilities:qualitative
analysis

A combination of many bunches and narrow-band resonant impedance enables the
latter to memorize the fields for many bunch passages: the induced field due to the
first bunch drives the motion of the second bunch, which in turns excites the third
bunch, and so on until the first bunch appears back at the cavity for a second time,
eventually leading to coupled-bunch instabilities.

Taking as an example a machine with nb = 4 bunches performing synchrotron
oscillations, all four bunches may oscillate in phase. However in addition to this
in-phase oscillation mode (mode μ = 0), three other ’modes’ of coupling are possible
with synchrotron oscillation phase shift between consecutive bunches of π

2 , π, 32π(μ =
1, 2, 3). These four modes are depicted in fig. 3.7 which shows the motion of the four
bunches in the longitudinal phase plane. For a machine with nb bunches, there are
nb modes, with bunch-to-bunch phase shift of 2πμ

nb
. All this modes are possible, but
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may grow unstable only in the presence of a high impedance at the mode’s frequency
[52].

Now we are going to see under what conditions do the bunches become unstable.

Figure 3.7. Motion of the four bunches in the longitudinal phase plane

Figure 3.8 shows the voltage induced into the resonator by each of the four
bunches during one machine revolution time, and the motion of each bunch in the
longitudinal phase plane: there is no motion in this case as there are no coherent
synchrotron oscillations. The voltage induced by bunch 2 cancels with the one
induced by bunch 4, and likewise the voltages generated by bunches 1 and 3 cancel.
Hence there is no net induced voltage: the beam is stable.

Figure 3.8. Voltages induced by each of four bunches in a cavity tuned at the revolution
frequency. Bunches do not perform synchrotron oscillations in this case

In fig. 3.9 instead the four bunches do perform synchrotron oscillation with a
bunch-to-bunch phase shift of π/2 (mode μ= 1). While the voltage of bunches 2
and 4 cancel as in Fig. 3.8, bunches 1 and 3 induce a voltage. This voltage in turn
affects bunch 2 which gets accelerated while bunch 4 is decelerated, thus increasing
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their synchrotron oscillation amplitude, and the bunches are unstable. It is easy to
figure out that one-quarter of a synchrotron oscillation later (usually many machine
turns), bunches 2 and 4 will drive 1 and 3 unstable.

Figure 3.9. Voltages induced by two out of four bunches performing coupled synchrotron
oscillations with a bunch-to-bunch phase shift of π/2

3.8 Basic principle of Longitudinal Multi-bunch Insta-
bilities

To study the PS case, we analyze the effect of one bunch on the others ignoring the
internal structure of the bunch, which is then considered as a rigid macroparticle with
charge enb and it can only oscillate of dipole motion. We start from the equation of
motion of the bunch centre of mass, and by indicating with zn and εn the variables
referring to the nth bunch (n = 0, 1, ........, nb − 1) and introducing the notation
ż = dz/dt, we can write:

żn = −cαcεn (3.18)

ε̇n =
eVRF (zn − U0)

T0E0
− eV n

w

T0E0
− D

T0
εn (3.19)

where z is the longitudinal displacement of a particle with respect to the syn-
chronous one, ε is the variation energy with respect to the nominal particle’s energy,
c is the speed of light, T0 the revolution period of a synchronous particle, E0 the
nominal energy, αc the momentum compaction, D = 2U0

T0
is the damping coefficient

and V n
w is the voltage seen by the nth bunch and induced by the long range wake

field. It is important to observe that, due to the macroparticle model, the wake
function is that of a point charge, and we do not consider any distribution function.

If we suppose to have nb bunches, having an equilibrium distance L0/nb one from
another, combining eq. (3.18) and eq. (3.19) they give a second order differential
equation [44]:
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z̈n +
D

T0
żn + ω2snzn =

cαce

T0E0

nb−1∑
h=0

∞∑
q=−∞

Qh(dw/dz) |(q− h
nb
+ n

nb
)L0

zh(t − qT0 +
h

nb
T0 − n

nb
T0)

(3.20)

Since usually 2πhz << L0, then we can linearly expand VRF (z) around z
obtaining:

VRF (z) = V̂ cos(φs) +
2πhV̂ sin(φs)

L0
z + ...... (3.21)

The synchrotron frequency ωs, depending on the bunch n under consideration is:

ω2sn =
c2αce

L0E0

⎡
⎣2πhV̂ sin(φsn)

L0
+

nb−1∑
h=0

∞∑
q=−∞

Qh
dw

dz
|(q− h

nb
+ n

nb
)L0

⎤
⎦ (3.22)

and the synchronous phase Φsn has been chosen in order to have:

eV̂ cos(Φsn) = U0 + e
nb−1∑
h=0

∞∑
q=−∞

Qhw‖[(q − h

nb
+

n

nb
)L0] (3.23)

The equation (3.20) represents the dipole oscillation of the nth bunch under
the forcing effect of the long range wake field induced in previous turns by the particle.

We want to obtain under which conditions the motion is stable or unstable.
Similarly to the perturbation theory of the Fokker-Planck equation, starting from
the linearized Vlasov equation [45] and working in the frequency domain, we end
up with the following eigenvalue system (for theoretical description see [45]) from
eq (5.1):

(Ω − mωs)σm (qω0 − Ω) = −i
2πmce2Nbnb

T 20

∞∑
l=−∞

i(m−l)
∞∑

p=−∞

Z‖[(nbp − μ)ω0 − Ω]
(nbp − μ)ω0 − Ω

σl[(nbp − μ)ω0 − Ω]Fm[(nbp − μ)ω0 − Ω, qω0 − Ω]
(3.24)

where Ω is the coherent frequency of the azimuthal oscillation mode, m is the
azimuthal mode of the perturbation of the stationary distribution Ψ1 function, and
μ the oscillation mode:

Ψ1(ẑ, φ; t) = eiΩt
∞∑

m=−∞
Rm(ẑ)e−imφ (3.25)

where Rm is the radial function of the azimuthal mode, and

σm(ω) =
∫ ∞

0
Rm(ẑ)Jm(

ω

c
ẑ)ẑdẑ (3.26)
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Fm(ω, ω
′
) =

∫ ∞

0
Jm(

ω

c
ẑ)Jm(

ω
′

c
ẑ)

δΨ0(ẑ)
δẑ

dẑ (3.27)

whit Jm the Bessel function of first kind and mth order and Rm the corresponding
radial function. The eigenvalue system is valid for equally spaced bunches (but
theory can be developed also for uneven fills [46]). The corresponding eigenvectors
can be demostrated to be of the kind:

a(μ)n = a
(μ)
0 exp[i

2π

nb
nμ] (3.28)

the physical meaning of which is that every oscillation mode has a phase shift
from one bunch to another equal to:

ΔΦ =
2πμ

nb
(3.29)

As an example, for the mode μ = 0, all the bunches oscillate in phase (zero
mode), while for μ = nb

2 there is a phase shift of π (pi mode).

To solve the problem we suppose there is no coupling between different azimuthal
modes, only l=m remains and each azimuthal mode can be studies independently
from the others. Of particular interest is the case in which there is a single high
quality resonator as source of impedance close to the frequency (nbp1− μ1)ω0 (where
p is an integer number, −∞ < p < +∞ and ω0 is the revolution frequency) eq. (3.24)
becomes :

Ω(μ1) = mωs − i
2πmce2Nbnb

T 20

Z‖[(nbp1 − μ1)ω0 − mωs]
(nbp1 − μ1)ω0 − mωs

Fm[(nbp1 − μ1)ω0 − mωs, (nbp1 − μ1)ω0 − mωs]
(3.30)

The imaginary part of Ω gives the growth or damping rate depending on the
sign:

−Im[Ω] = α =
1
τ
= −mcηe2Nbnb

2L0E0T0ωs
[(nbp1 − μ1)ω0 − mωs]

Re[Z‖(nbp1ω0 − μ1ω0 − mωs)]Gm(x)
(3.31)

with:

Gm(x) =
2
x2

e−x2
Im(x2) (3.32)

the form factor which accounts the bunch lenght σz and:

x =
[(nbp1 − μ1)ω0 − mωs]σz

c
(3.33)

Above transition (p1 < 0) for ωr > hω0 we have instability (see Table IV). This
effect is generally known as Robinson instability.
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Table IV. Robinson Instability

ωr > hω0 ωr < hω0
Above transition (η > 0 and p1 < 0) unstable stable
Below transition (η < 0 and p1 < 0) stable unstable

These results will be used in next chapters to study the particula case of CERN
PS with the pourpose to benchmark the new simulation code introduced to study and
analyze coupled-bunch instabilities with theory and even to check the consistence of
measurements from past years on this machine.
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Chapter 4

Simulation Code and
Benchmarking

In the previous chapter, it was pointed out that the CERN PS is a very versatile
machine. During the last years it became a key-accelerator with a central position
in the LHC accelerator chain and with the largest number of beam destinations in
the CERN complex, even if a significant part of its working time is dedicated to
providing beams to LHC and particular attention is given to high intensity beams.
As the intensity per bunch has increased over the years, limitations directly related
to high intensity beams were discovered and constrained the number of particles
that can be accelerated. Therefore, an effort has to be done to understand these
limitations and several studies are under way to improve the beams required for
the different experiments. Currently the main limitation in the PS are due to beam
losses caused by aperture restrictions and large transverse emittances, space charge,
and beam instabilities driven by wakefields [33].

The analytical study of the longitudinal dynamics of a beam interacting with
resonants modes of an RF cavity is generally performed only in the case of small
oscillations of equally spaced bunches around their synchronous phase. A complete
analytical treatment of the dynamics in the presence of a bunch-by-bunch feedback
system to control longitudinal coupled bunch instabilities has also been developed.
The purpose of this chapter is to describe the main features of the LCBC (Longi-
tudinal Coupled Bunch Simulation Code) a simulation code that executes a track
of the longitudinal oscillations of the bunches. My study consists of an extensive
campaign of simulations not only to fully benchmark the code with theory but even
to find out if the 10 MHz cavity system used to accelerate the bunches in the PS, is
really the most probable impedance source for this kind of instability [47].

4.1 Longitudinal Coupled Bunch simulation Code (LCBC)

The first version of the program was developed to track longitudinal oscillations
of bunches for DAΦNE [48] (the e+e− Storage Ring at the Laboratory Nazionali
di Frascati of Instituto Nazionale di Fisica Nucleare (LNF-INFN)) with the aim
of including the main phenomena affecting the longitudinal beam dynamics: the
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feedback, the effect of the HOMs and the synchrotronoscillations. The code has been
modified to study the longitudinal dynamic in the CERN PS introducing a feedback
system in frequency domain instead of the bunch-by-bunch one used for DAΦNE.

The code models each bunch as a single particle of given charge. Under this
condition it is possible to simulate only the "rigid" oscillations that are the most
dangerous for the beam stability.

In fig. 4.1 is shown a simplified flow chart of the code [9]. The input data have
been divided into three files: one for machine and cavity parameters, another for all
the bunches, and the last one for the feedback system. The synchrotron motion of
all bunches is tracked first along the ring and the feedback system, and then through
the cavity. This choice reduces the computation time. As output data, the code
produces the phase oscillations of each bunch and the mode amplitude in radians of
each oscillation mode (used in the evaluation of the instability growth rates).

Figure 4.1. Flow chart of the code developed for DAΦNE with the previous FB system
in time domain [9]

The core of the algorithm used for the PS case can be divided into three main
parts:

• propagation around the ring: for each macroparticle n we use in place of the
variable position zn the phase Δϕn so the equations of motion are like:

(Δϕn)0 = (Δϕn)i +
2πhη

E0
(εn)i (4.1)
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(εn)0 = (εn)i − U0 (4.2)

where:

Δϕn = ϕsn − 2πh
zn

L0
(4.3)

where L0 is the circumfrence lenght covered by the synchronous particle; E0 is
the nominal energy of the synchronous particle at the output of RF cavity; ε is
the energy deviation; αc is the momentum compaction, U0 is average value of
the energy radiated during a revolution of the synchronous particle and with
the index i an o idicating input and output from the vacuum chamber;

• feedback effect: the FB system will be described in detail later: its interaction
with particles consist in an exchange of energy ΔEfb while the phase stay
constant;

• beam-cavity interaction: between the effects of the RF cavity, the ones which
produce the multibunch instabilities are included, that is the one produced
by long range wakefields. As explained in Chapter 2 each HOM is simulated
as a parallel RLC circuits. When a charge q crosses the cavity, it perturbs
the total voltage. The induced voltage of each mode depends on the shunt
resistance Rs and the quality factor Q of that mode. We assume that the
cavity-beam energy exchange occurs at a single point in the ring. In the RLC
parallel circuit it is possible to follow the evolution of tension v(t) with time.
When a charge q goes through the cavity, it produces on each resonant mode
an additional voltage ΔV :

ΔV = −ωrRs

Q
q (4.4)

where ωr is the resonance angular frequency. In order to take into account
the bunch length, assuming a Gaussian distribution, the shunt resistance is
corrected by a factor [49]:

exp(−ωrσm/c)2 (4.5)

where σm the RMS bunch duration.

For a detailed description of the code see [9].

4.2 Benchmarks

For comparing the growth rates given by the simulation code with theanalytical
ones, I have simulated the instability exciting only one mode of oscillation.

To do that, I have considered a single HOM with a resonant angular frequency
equal to:
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ωr = qω0 + ωs (4.6)

with q = nbp ± μ (see par. 3.8), ω0 = 2πc
L0

(c is the speed of light and L is
the lenght of the machine) and ωs given by (3.22). With all the bunches at the
equilibrium phase, a small perturbation excites the selected mode of oscillation.
I have then evaluated the growth rate with an exponential fit over the invariant
amplitude of the motion. For semplicity, in this benchmark’s simulation, the lenght
of the beam (eq. (4.5)) is not taken into account.

I consider nb equally spaced bunches performing coupled oscillations. They
oscillate longitudinally within the RF-buckets and only the dipole-mode m = 1 is
takeninto account in eq. (3.8). In table V we can see the parameters used in this
simulations.

Table V. Parameters used for benchmark simulations of the LCBC code.

Parameters Value
Q 105

Rs(Ω) 102
Beam energy (GeV) 13
Harmonic number 21
Number of bunches 21
RF voltage (kV) 165

Total beam intensity (ppp) 38 · 1011
Synchrotron frequency [kHz] 2.49218875

This is the same case explained in Chapter 3 in which there is a single high quality
resonator as source of impedance. Due to Robinson instability, above transition
energy, positive sidebands of the beam spectrum, evaluated at multiples of ω0 + ωs

are unstable, while the negative sidebands, evaluated at multiple of ω0−ωs are stable.
So a mode in correspondence of the line q = nbp + μ is unstable mode (fig. 4.2).

Figure 4.2. Real part of the shunt impedance with indication of the lines of stable and
unstable modes
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After selecting the unstable mode the rise time of instability has been evaluated
by using eq. (3.31) and compared with the growth rate of the code’s output.

Fig. 4.3 shows the result obtained with nb = 21: starting from a situation of
perfect equilibrium, μ = 19 coherent mode of oscillation is excited.

Figure 4.3. Growth rate mode μ = 19 in function of the number of turns in the machine

The green line in fig. 4.3 is the exponential fit used to evaluate the growth rate
and it is of the kind:

f(x) = A · exp(x · α) (4.7)

Figure 4.4. Fit

where the growth rate is obtained as:

α = [log

(Δ1
2

)
−

(Δ2
2

)
]/n◦turns = 7.67917 (4.8)

wit Δ1,2 = B − C at turn 0 and 60000.
With the parameters of table V the growth rate is:
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α =
1
τ
= −mcηe2Nbnb

2L0E0T0ωs
ωrRe[Z (ωr)] = 7.86674 (4.9)

The sum of the squared differences or ’residuals’ (SSR) between the input data
points and the function values, evaluated at the same places, is 1.01542 · 10−5

In table VI the rise time of instability obtained with eq. (3.31)is compared with
the esponential fit of eq. (4.8): the comparison results satisfactory.

Table VI. Theorical and simulated rise time of instability for mode μ = 19 in
harmonic number 21 with 21 bunches

Theoretical τ [ms] 126
Simulated τ [ms] 130

As a crosscheck we can verify that the selected mode is the right one by detect-
ing from the output of the simulation code the phase displacement between two
consecutive bunches, and using eq. (3.29):

ΔΦ = ωsΔnT0 = 2π
μ

nb
(4.10)

where Δn is the distance (in number of turns) between the bunches. From this
formula we can easily extrapolate the mode number:

μ =
ωsΔnT0nb

2π
= 19 (4.11)

which corresponds to the one excited in the simulations by the HOM.

In the next section I will focus the work on the new feedback system implemented
in the code. Some simulations will be presented to have a complete understanding
of it.

4.3 Review of Feedback System Theory

Coupled-bunch instabilities excited by the interaction of the particle beam with its
surroundings can seriously limit the performance of circular particle accelerators.
These instabilities can be cured by the use of active feedback systems based on
sensors capable of detecting the unwanted beam motion and actuators that apply
the feedback correction to the beam. They can even be controlled by reducing
the magnitude and number of high-order modes, carefully controlling the resonant
frequencies of the resonators to avoid coupling to the beam or by adding damping
to the motion of each bunch. External feedback system does the latter.

A feedback system consists mainly of three parts (fig. 4.5): a detection system to
measure beam oscillations and to provide the system with an error signal; a signal
processing unit to derive a correction signal and a beam deflector to act with a kick
on the beam. The signal processing unit can be accomplished in either the frequency
(mode-by-mode feedback) or in the time domain (bunch-by-bunch feedback). The
bandwidth required by the feedback system is determined by the minimum bunch
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Figure 4.5. Diagram of a feedback system

spacing.

In a mode-by-mode feedback (frequency domain) each mode is identified with the
help of a special narrow band filter centred around one of the revolution harmonics.
Each mode is then processed individually leading to a feedback that consists of
many narrow band systems running in parallel. A mode by mode feedback is the
appropriate choice if only a few coupled bunch modes have to be damped. For
example such a system has been in operation in the PS Booster for more then 20 years.

In a bunch-by-bunch feedback (time domain) each bunch is treated individually.
Moreover, the feedback implementation can be analog or digital, depending on
whether the signal is handled in the analogic domain or sampled and processed
digitally. Despite the fact that most of the more recent feedbacks are digital bunch-
by-bunch systems, analogic or mode-by-mode implementations are still in use in a
number of accelerators [50].
A bunch-by-bunch feedback individually steers each bunch by applying small elec-
tromagnetics kick every time the bunch passes through the kicker. The result is a
damped oscillation lasting several turns. There are as many processing channels as
the number of bunches. Since the bunch oscillation is sinusoidal, the turn-by-turn
position of the one bunch measured at a given location is a sampled sinusoid. In
order to introduce damping, the force applied by the feedback must be proportional
to the derivate of the bunch oscillation. Consequently, the kick signal applied by the
actuator to each bunch can be generated by shifting by π/2 the signal of the positin
of the same bunch when it passes through the kicker.

4.3.1 Frequency domain FB: the PS choice

With a mode-by-mode feedback each coupled-bunch oscillation mode is detected
separately with a pass-band tracking filter centred around the revolution harmonic
corresponding to the mode number. Additionally, the spectral component at the
revolution frequency is removed by a narrow-band notch, keeping only the syn-
chrotron frequency side-bands. The filtered synchrotron frequency side-band signals
are then de-phased, amplified and fed back to the beam via a longitudinal kicker.
Coupled-bunch feedbacks in lepton machines normally detect all modes simultane-
ously by measuring the phase oscillations of each bunch in the time domain. In the
PS the revolution frequency of the protons changes during acceleration, which makes
the generation of correctly phased bunch-synchronous trigger difficult. Damping
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mode-by-mode rather than bunch-by-bunch has the additional advantage that the
modes are decoupled for equidistant identical bunches, which remains mostly valid
even for unequal filling patterns. This type of feedback makes it easy to measure
the interaction of each individual mode with the longitudinal coupling impedance
and with the feedback system itself. The basic components of the FB system are a
bank of parallel filters producing the correction kick signals, phase shifted by π

2 , a
broad-band power amplifier and a longitudinal broad-band kicker which operate at
different synchrotron frequency side-bands than the detection. The maximum kick
strength is determined by the energy gain needed to achieve the required damping
rate and the maximum tolerable synchrotron phase error. The design of the kicker
structure must be optimized in terms of shunt impedance and bandwidth in order to
reduce the power requirement on the final stage, because broadband power is very
expensive.

4.4 Overview of the feedback system in the LCBC code

The existing bunch-by-bunch FB system used for DAΦNE has been replaced in
the code with a frequency domain one similar to the final implementation of the
machine.

The feedback system in the LCBC code consists of three parts: a phase error
detection subsystem, a signal processing subsystem and an energy correction part.
We suppose to know the synchrotron frequency for each bunch b which oscillate as:

φb = Absin(ωst + σb) + φs,b (4.12)

and the phase σb at each oscillation. By doing a sinusoidal fit with three
parametrs, we obtain Ab, σb, φs,b, and so we get:

φb − φs,b = Absin(ωst + σb) (4.13)

which must be equal to the sum of all the oscillation modes:

Absin(ωst + σb) =
nb−1∑
μ=0

Aμsin

(
ωst +

2π

nb
μb + σμ

)
(4.14)

If we now write the equation of all the bunches it is possible, from eq. (4.14) to
obtain unknown quantities Aμ and σμ. If we supposeto damp only one mode of the
kind:

Aμsin

(
ωst +

2π

nb
μb + σμ

)
(4.15)

the phase of the kick ΔVfb must be:

ΔVfb =
g

ωs

dφb

dt
=

g

ωs
Aμcos

(
ωst +

2π

nb
μb + σμ

)
(4.16)

where g is the feedback’s gain in [ V
rad ].

Then the same kick, in amplitude, but with a difference phase, is applied to all
the bunches.
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To evaluate the damping time we start from the longitudinal equation of motion:

φ̇b = ωrf ηε (4.17)

ε̇ =
eVrf (φb)

T0E0
− eΔVfb

T0E0
(4.18)

Considering that:

Vrf (φb) = V̂ cos

(
π

2
+ φb

)
= −V̂ sinφb = −V̂ φb (4.19)

we can write the longitudinal dipole equation of motion of a bunch in presence
of the feedback as:

φ̈b +
ωs

V̂
gφ̇b + ω2sφb = 0 (4.20)

from which we get a feedback damping rate of:

αfb =
1
τ
=

1
2

ωs

V̂
g =

1
2

ωrf η

ωsT0 (E0/e)
g (4.21)

Note that even if the bunches are not equally spaced, for a given mode, the phase
difference between two consecutive bunches remains 2πμ/nb.

4.4.1 Application of the feedback system to damp an unstable
mode

When several HOMs are present in the cavity, it is difficult to calculate analytically
the rise time of all the possible modes of oscillation. There could be compensation
between different HOMs, or, at the opposite, their effects could sum up.

In this section I will show some simulation results based upon the PS system
using the LCBC code to validate the implementation of the feedback in the code in
presence of several HOMs.

I first excite mode μ = 19 in harmonic number h = 21 with a full machine (21
bunches) and evaluate the rise time. In tableVII one can see the parameters used
for the simulation.

Table VII. Parameters used to benchmark the FB system in the code (for beam
parameters see table V)

Parameters Value
Initial phase amplitude 0.005

Oscillation phase shift between bunches 5.68478
Shunt impedance 100
Quality factor 5 × 105

This simulations has been performed with a full machine, with equally-spaced
bunches and it is possible to use the theory of Chapter 1. Let’s look at the instability
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of the first bunch.

In fig. 4.6 are reported both the mode amplitude and the longitudinal position
of the bunch as a function of the number of turns.

I then proceed by evaluating the rise time of instability which will be used in
eq. (4.21) to obtain the correct value of the gain of the FB. In this case I obtain
from the exponential fit on the phase a value of 151 ms for the rise time.

The second step consists in checking if the evaluated gain is correct, so I switch
on the feedback but do not excite the mode. If the gain g is correct, one should see
that the same value of the rise time, with the opposite sign, will correspond to the
damping rate.

Figure 4.6. Longitudinal position (on the right) and amplitude (on the left) of one bunch
with FB off and with excitation

In fig. 4.7 one can see that if I do not excite any instability, the feedback with
the gain evaluated before works correctly and I get a damping rate equal to the
growth rate in module.

Finally I switch on the FB and observe that there is quite an equilibrium between
the instability and the damping effect (fig. 4.8). In fact we can see, in fig. 4.8 that
the regime amplitude values 1.56 and 1.576 correspond to the starting ones in fig. 4.7
as eyelight in pictures.

The LCBC code has then been proved to be able to correctly simulate thefre-
quency domain FB system.

In the next chapter we will go through the validation of the code by comparing
simulations results with measurements and the analysis of the 10 MHz cavities
impedance system which is considered to be the main cause of instability in CERN
PS.
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Figure 4.7. Longitudinal position (on the right) and amplitude (on the left) of one bunch
with FB on and without excitation of an HOM

Figure 4.8. Longitudinal position (on the right) and amplitude (on the left) of one bunch
with FB on and the mode excited



52

Chapter 5

Coupled bunch studies for the
CERN Proton Synchrotron

Longitudinal coupled-bunch instabilities are observed in the CERN PS during accel-
eration and on the flat-top. Up to present intensities oscillation modes are damped
using a feedback system limited to the first two dominant oscillation modes, but
it will become insufficient for the beam parameters planned within the upgrade.
During the first long shutdown (LS1) in 2013-2014, a new feedback will be installed,
covering all modes [51].

In the beam spectrum measured with a wall-current monitor, coupled-bunch oscil-
lations manifest themselves as synchrotron frequency sidebands fs, of the revolution
frequency harmonics frev. For LHC-type beams in the PS with bunch spacings below
100 ns, only dipole modes are important. Each mode occurs twice in the spectrum,
as upper and lower sidebands. As examplet an energy of about 14GeV (during
acceleration) and an RF voltage of VRF

∼= 165 kV, the sidebands are separated by
only 400 Hz from the revolution frequency harmonics [52].

To study experimentally CB oscillations, the low-level part of the existing FB
has been connected to a spare 10 MHz accelerating cavity. As powerful longitudinal
kicker (up to 20 kV), it is tunable from 2.8 MHz to 10 MHz, covering h = [6...21]
[52]. To excite CB oscillations using the FB, a perturbation was injected to generate
a sideband at nf0 ± fs ( with f0 the revolution frequency). Following the excitation
of well-defined oscillation mode, damping time and corresponding longitudinal kick
strengths is analysed. The simulation program LCBC has been used to study the
beam behaviour of the CB (coupled bunch) FB (feedback). Using this program I have
started an extensive simulation program to benchmark the code with measurements
and to predict the FB requirements for the increased intensities of LIU using the
parameters of the upgrade.

5.1 External Excitation

If we look at the coupled-bunch oscillations in time domain, as showed in Chapter 3,
bunches have with different phase and amplitude. If we look in frequency domain,
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as illustrated in fig. 5.1, for equally spaced bunches, each oscillation mode can be
identified by the lines that occur in the bunch spectrum, namely:

ωp = (pnb ± μ)ω0 ± ωs (5.1)

where ωs is the synchrotron frequency, μ the mode number, ω0 the revolution
frequency, nb the number of bunches and p is an integer number, −∞ < p < +∞. So
each mode μ is observable as an upper side-band or as a lower sideband depending
on the sign of equation (5.1).

Figure 5.1. Synchrotron frequency sidebands of the frev harmonics [55]

In the case of the LHC-type beams in the PS (h = 21) we have the situation
shown in fig. 5.2.

Figure 5.2. Synchrotron frequency sidebands for LHC-type beams

Figure 5.3 shows as an example the mode spectrum following the excitation
of the upper SB (sidebands) at 19f0 for 21 bunches in h = 21 (full machine). As
expected, the μ = 19 mode is excited most strongly. Also visible are the CB mode
excited by imperfect suppression of the unwanted SB at h − μ and a third mode at
2μ − h.

So if we excite each mode individually and measure the mode spectrum for an
equally spaced pattern, we have a clean observation of all possible modes.
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Figure 5.3. Example mode spectrum of 21 bunches in h = 21, excited at the upper SB of
19f0

From this analysis becomes clear that the CB modes are only weakly coupled to
each other and that a feedback in the frequency domain can treat them successfully
one by one.

The measured mode pattern becomes more complicated with the operational
filling pattern for LHC-type beams in the PS, where only a maximum of 18 bunches
on h = 21 are accelerated before final splitting to obtain a final bunch spacing of 25
ns or 50 ns, leaving a gap for extraction purposes. With only 18 bunches the CB
mode number becomes nbatch and no longer corresponds directly to an harmonic of
f0: each mode nbatch generates a spectrum of fs SBs due to the convolution with
the filling pattern.

The validation of the simulations was done by implementing an external excitation
to be used as alternative to an HOM to excite the beam. It is a simple sinusoidal
forcing that is given in energy to each bunch at every turn, by setting the amplitude,
the frequency (19f0) and the initial phase.

By using LHC-type beams, 18 bunches are accelerated in h = 21 with input
parameters indicated in table VIII. The energy of 13 GeV was choosen as a test case
being sufficiently far away from transition and with the instabilities already well
established.

The damping rates have been measured, but since there are no equally spaced
bunches a mode spectrum is excited due to this filling pattern:

nbatch =
18
21

μ ∼= 16 (5.2)

In fig. 5.4 we can see the measurements and the results of simulations performed
in the same conditions (see table VIII), the good agrement between the two is
apparent..

The code has been validated with the PS data obtained with external excitation
in the specific case of LHC-type beams, with 18 bunches are accelerated in h = 21.
From fig. 5.4 one can see that in both cases mode μ = 16 is excited due to the
unequal pattern in the ring. As explained before, the CB mode excited by imperfect
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Figure 5.4. Example mode spectrum of 18 bunches in h = 21, excited at the upper SB of
19f0 [53]

Table VIII. Parameters used for benchmark simulations of the LCBC code.

Parameters Value
Beam energy (GeV) 13
Harmonic number 21
Number of bunch 18
RF voltage (kV) 165

Total beam intensity (ppp) 38 · 1011
Amplitude of excitation (V) 200
Synchrotron frequency [MHz] 2.49218875

suppression of the unwanted SB are visible at h − μ = 21 − 19 = 2 and at 2μ − h =
2 · 19 − 21 = 17.

5.2 10 MHz RF cavity system

The CERN PS is equipped with ten 2.8-10 MHz tunable ferrite-loaded cavities for
acceleration, as well as 20, 40, 80 and 200 MHz cavities for RF manipulations and
longitudinal emittance blow-up. To simplify the mode identification, seven bunches
(full ring) have been injected and accelerated at h = 7 (3.33 MHz). Then we have
the triple splitting for acceleration at h = 21 as described in Chapter 2. The 20, 40
and 80 MHz RF systems were switched off with their gaps short circuited. The CB
instabilities start shortly after transition crossing and develop during acceleration.
Firstly, growth rates were measured by analyzing the beam signal around a specific
harmonic of the revolution frequency and secondly, the spectrum of the CB modes
has been extracted from mountain range measurements.

In this section I will describe the 10 MHz system and showing results of simula-
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tions compared to measurements of past years.

The main sources of longitudinal coupled bunch instabilities in the PS are thought
to be the 10 MHz RF cavities (fig. 5.5). The coupling impedance of the cavities
is not a simple resonator due to the presence of a feedback loop and the power
amplifier. A simplified model of the system is presented in fig. 5.6: it includes a
ferrite loaded cavity and power amplifier with a tuned grid resonator and the fast
feedback around the amplifier [56].

Figure 5.5. On of the CERN PS 10 MHz cavity

The input voltage Vref controls the current generator composed of the driver
amplifier and the grid resonator and produces Ip that is gp time bigger then the
input voltage. The voltage VG controls the final amplifier (Ip · ZG = VG), which
sends current to the parallel of RG and Z.

I define Z (ω) as the cavity impedance:

Z (ω) =
RS

1 + iQ
(

ω
ωS

− ωS
ω

) (5.3)

and ZG(ω) is the impedance of the grid resonator:

ZG (ω) =
RGS

1 + iQG

(
ω

ωGS
− ωGS

ω

) (5.4)

and gP and gG are the effective transconductances of the driver and final amplifier
defined as:

gp =
1

RGS
(5.5)
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Figure 5.6. Simplified model of the 10 MHz RF system, including ferrite loaded cavities
and power amplifier with a tuned grid resonator and the fast feedback around the
amplifier [47]

gg =
1

RG
(5.6)

The open loop gain is:

Ga = ZN
F ZGgpgg (5.7)

where:

ZN
F (ω) =

RG · Z

RG + Z
(5.8)

while the closed loop one is :

GCL =
Ga

F
(5.9)

where F is the desensibilization factor due to the attenuation and delay of the
feedback loop. According to this model, the impedance seen by the beam can be
written as:

Zc (ω) =
dV

dIb
=

1
ZG (ω) gpgGβ + (RG + Z)/(RGZ)

(5.10)

The parameters of the previous circuital model have been choosen in order to
reconstruct the measurements of open and closed loop transfer functions of 6 of
the 10 cavities. The result for Zc (ω) is shown in fig. 5.7 [47]. As we can see the
impedance is centered around the line k = ω/ω0 = 7. So we have:

7 · 2π

T0
= 2πfRF (5.11)

with T0 � 2 · 10−6 s the frequency is: fRF = 3.3 MHz.
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Figure 5.7. Real part of the total impedance of the 10 MHz cavities [47]

As the impedance Zc covers several revolution harmonics around hω0, the narrow-
band approximation is not applicable for the estimation of the growth rates of the
CB oscillations. For dipole modes, the growth rates 1/τ are given by the eigenvalues
system (eq. (3.24)). Solving the system results in the growth rate shown in table
IX (for further details see ref.[47]).

Table IX. CB growth rates from eigenvalues system

Mode number μ = 1 μ = 2 μ = 3
Growth rate 1/τ 2.5 s−1 3.0 s−1 1.0 s−1

These results predict a μ = 2 mode being stronger than μ = 1.

In order to use the obtained impedance in simulations I performed a fit of the
impedance of fig. 5.7 to find a set of parameters (Q, Rs, ω) which allows to reconstruct
Re[Z(ω)] in the most precise way. In fig. 5.8 we can see that the best fit has been
found by using a sum of 4 resonant modes:

Re[Z(ω)] =
4∑

i=1

RSi

Q2i

(
ω

ωri
− ωri

ω

)2
+ 1

(5.12)

In the fig. 5.8 the red curve is the same as fig. 5.7 (I just took the positive
frequency part) and the green one is the result of the fit.

In table X are shown the values obtained from the fit and that will be used in
the next section for simulations.

5.3 Simulations at 3.3 MHz for h = 7
Using the previously obtained parameters, I evaluated the growth rates of instabil-
ity for the same modes of table IX to crosscheck the code with the results of the
eigenvalue system.
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Figure 5.8. Real part of the total impedance of the 10 MHz cavities and best fit obtained
and used in simulations for h = 7

Figure 5.9. Mode pattern for h = 7 using 7 bunches
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Table X. Parameters resulting from the fit on the real part of the 10 MHz system
impedance indicating the HOMs used in simulations to excite the
coherent oscillation modes for h = 7

Frequency ω/ω0 Quality factor Shunt Impdance [Ω]
8.5009 5.9696 747.343
6.79973 4.0167 821.522
7.76648 4.76129 728.578
5.94224 3.77121 733.168

I studied separatly each mode (μ = 1, 2, 3) by choosing the corresponding
oscillation phase shift between bunches and I evaluate the rise times of instability
and compared them with the ones in table IX. For example, for mode μ = 3 and
using eq. (3.29), I have:

ΔΦ =
2π · 3
7

� 2.7 (5.13)

For this value, the simulation shows that the coherent oscillation mode μ = 3 is
the one which shows itself before the others. Using an average energy of 13 GeV and
a total beam intensity of 9 · 1012 as indicated in table XI, I obtain the mode pattern
shown in fig. 5.9. As we can see, mode 3 grows before the others due to the fact that
we forced an oscillation phase shift between bunches relative to this mode. The clear
presence of mode μ = 0 is due only to initial conditions on the synchronous phase.

Table XI. Parameters used for simulations for h = 7.

Parameters Value
Beam energy (GeV) 13
Harmonic number 7
Number of bunch 7
RF voltage (kV) 165

Total beam intensity (ppp) 9 · 1012

Now, using an exponential fit of the kind of eq. (4.7), I evaluate the growth rates
for the 3 modes of interest. In table XII, I compared the results with values from
the eigenvalues system: the agreement is very good.

Table XII. Comparison between CB growth rates for h = 7 and for 7 bunches
as simulations by LCBC code and values from the theoretical
eigenvalues system.

Mode Number 1 2 3
CB Growth Rate from tab. IX 400 ms 333 ms 1 s

CB Growth Rate from simulations 544 ms 467 ms 1.91 s
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5.4 Simulations at 10 MHz for h = 21
Until now, the LCBC code was validated for the case h = 7. Now I will show h = 21,
during acceleration the working at frequency becomes the case for:

21 · ω0 = 2πf → f � 10MHz (5.14)

As previously done with h = 7, I have developed a model for the impedance at
10 MHz by using the results of measurements done in 2009 of the open and closed
loop transfer functions of the RF system (see the simplified model of fig. 5.6 and
fig. 5.10).

Figure 5.10. Open and closed loop transfer function of one of the cavities at 3.3 MHz
(right) and 10 MHz (left)

If I shift the closed loop transfer function at 3.3 MHz to 10 MHz, as in fig. 5.11,
it overlaps quite well the measured one at 10 MHz. I therefore conclude that it
is simply possible to the study by shifting the impedance given by eq. (5.12) (see
fig. 5.12 ).

Figure 5.11. Closed loop transfer function at 3.3 Mhz (shifted) and at 10 MHz
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Figure 5.12. Machine model impedance at 3.3 and 10 MHz

By performing a fit on the new impedance using the same eq. (5.12), the resulting
parameters are indicated in table XIII and the resulting impedance is in fig. 5.13.

Table XIII. Parameters resulting from the fit on the real part of the 10 MHz
system impedance indicating the HOMs used in simulations to
excite the coherent oscillation modes for h = 21

Frequency ω/ω0 Quality factor Shunt Impdance [Ω]
21.8008 12.4459 750.35
20.8558 13.5905 824.954
19.9068 16.3653 732.464
22.5028 13.0183 735.866

Again, using the impedance model just shown, I checked which is the pattern
of the oscillation modes at this frequency. Measurements done in 2013 show the
evolution of the mode spectra for LHC50ns beam during acceleration in the two
cases of a full machine (21 bunches) and with 18 bunches (see fig. 5.14 and fig. 5.15).

To reproduce this results, I used a bunch lenght of 6.5 ns and an average energy
of 13 GeV as indicated in table XIV.

Table XIV. Input parameters for LHC50ns beams during acceleration

Parameters Value
Beam energy (GeV) 13
RF voltage (kV) 165
Total beam Intensity 9.8 · 1012
Bunch lenght σ [ns] 6.5

LCBC shows that with the HOMs of table XIII, all the coherent oscillation
modes are excited. In both measurements and simulation there isn’t an exponential
trend so it is no possible to perform a fit on each oscillation mode curve to evaluate
the rise time, but the amplitude ratio of each mode is compatible in simulations and
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Figure 5.13. Real part of the total impedance of the 10 MHz cavities and best fit obtained
and used in simulations for h = 21

Figure 5.14. LHC50ns: Development of the CB mode spectrum during acceleration for
h = 21 with 21 bunches[54]



5.5 Suppression of one mode at 10 MHz for h = 21 64

Figure 5.15. LHC50ns: CB mode spectrum during acceleration for h = 21 with 18
bunches[54]

measurements and the mode trend is the same. Comparing fig. 5.14 and fig. 5.17
and fig. 5.15 andfig. 5.16 we can see that in both cases simulations show that mode
1, in case of 18 bunches, and mode 2, in case of a full machine, are the ones which
appear before the others.

The code proved to be a valid instrument to study longitudinal CB instability,
simulation results have been compared both with the theory of the CB through
the benchmark with the results of the eigenvalues system either with the outcome
of previous measurements in different conditions (not only in the simple case of
a full machine with equally sapced bunches but even with 18 not equally spaced
bunches). The results obtained are fully consistent. Now let’s see if, with these
machine parameters, the FB in frequency domain introduced in the code works
correctly.

5.5 Suppression of one mode at 10 MHz for h = 21
As previously shown in chapter 4.4.1, I preceded to demonstrate that the LCBC
code is able to dump one of the CB mdes of the 10 MHz cavity system.

I used parameters of table XIV in case of 21 bunches in h = 21, and using the
impedance model at 10 MHz I chosed to study the oscillation mode μ = 2 by using
an oscillation phase shift of:

ΔΦ =
2πμ

nb
∼ 0.6 (5.15)
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Figure 5.16. Simulation of the LHC50ns CB mode spectrum during acceleration for h = 21
with 18 bunches

Figure 5.17. Simulation of the LHC50ns CB mode spectrum during acceleration for h = 21
with 21 bunches
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First, I evaluated the rise time of instability using eq. (4.7). In fig. 5.18 is shown
on the left the pattern of all the modes excited by the HOM while on the fig. 5.19
is presented only the trend of the oscillation mode 2 with the fit. I obtained a
rise time of instability α = 1/τ = 3.5433. Now, using eq. (4.21) and considering
ωs = 2.49218875 MHz and VRF = 165 kV, I got that the feedback gain is equal to
472.44.

The second step consists in checking if the evaluated gain is correct. I switched
on the feedback but without the excitation of the HOMs. Looking at fig. 5.20 one
can conclude that the gain g is correct: without the effect of the HOMs the FB is
able, with the choosen gain, to produce the same value of the rise time, with the
opposite sign (the damping rate).

Figure 5.18. Mode amplitude of all oscillation modes excited, the blu line is referred to
μ = 2

Finally I switched on the FB (feedback): as expected there is equilibrium between
the instability and the damping effect (fig. 5.21): the regime amplitude value 0.05
corresponds to the starting one in fig. 5.18.

As eyelighted before, and as demonstrated by measurements, the oscillation mode
μ = 2 is the one which grows faster than the others in h = 21. Dumping this mode
implicates, as one can see comparing the scale amplitude in fig. 5.18 and fig. 5.21,
that all the others are dumped too and their amplitude is reduced. If we try now to
dump another mode, for example mode 1 (the one rapresented by a green line in
fig. 5.18) all others modes continue to behave as before, and only the amplitude of
mode 1 is reduced.
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Figure 5.19. Mode amplitude of oscillation mode μ = 2, the green line is referred to the
mode and the red one is the fit

Figure 5.20. Exponential fit on the oscillation mode μ = 2 when the FB is switched on
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Figure 5.21. Mode pattern of all the oscillation modes once that the FB and the HOMs
are on. The blu line is reffered to the dumped mode μ = 2
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Chapter 6

Preliminary results

6.1 40 and 80 MHz cavities

Figure 6.1. Mode amplitude of 10 and 40 MHz cavities (up) and 10 and 80 MHz cavities
(down)
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The 10 MHz cavity system is considered the principle cause of coupled bunch
instablity in the PS. During this thesis work I demonstrated the effect of the 10
MHz system, but as explained in the second chapter, the PS has a total of 24 RF
cavities: 11 for 2.8-10 MHz; two 20 MHz; two 40 MHz; three at 80 MHz and six
at 200 MHz. So I proceded with further simulations to be sure that the 40 and 80
MHz system cannot be considered as an additional source of instability. For the 20
MHz cavity haven’t been done simulations.

Figure 6.2. Mode amplitude of all cavities

Simulations have been performed in h = 21 with 21 bunches and using parameters
of table XIV. In table XV are shown the characteristic parameters of the HOM
used to simulate the effects of one 40 and two 80 MHz cavities as used in normal
operation for the production of the 25 and 50 ns beams.

Table XV. Characteristic parameters of 40 and 80 MHz cavities

Frequency MHz HOM’s quality factor HOM’s R/Q
f = 40 70 33
f = 80 100 56

In fig. 6.1 is shown the mode pattern excited by the HOMs: the up picture shows
the effects of the 10 and one 40 MHz cavity, while the other takes into account the 10
and 80 MHz ones. In both cases the oscillatione mode μ = 2 remain the one which
grows faster than the others, which is in agreement with measurements (fig. 5.14).
In fig. 6.2 the mode pattern excited is due to all cavities together: the pattern and
the mode amplitude doesn’t change much with respect to fig. 5.17. From these
preliminary simulations I can conlude that it is correct to consider the 10 MHz
cavity system as the major cause of CB instability in the PS.
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6.2 Finemet© cavity

The longitudinal damper cavity for the new coupled-bunch feedback of the PS
machine has to provide a correcting RF voltage to the circulating bunches to sup-
press the excitation of bunch oscillations. To improve longitudinal beam stability,
a first dedicated coupled-bunch feedback has been installed in 2005: two 10 MHz
accelerating cavities driven by the signal from the feedback low level electronics are
used as longitudinal kickers.

Figure 6.3. One cell CST model of the Finemet cavity [58]

In the framework of the LIU project it has been decided to install a dedicated,
wideband kicker based on the wideband frequency characteristics of Finemet mag-
netic alloy and driven by solid-state amplifiers. However, installing a wideband cavity
in the PS ring also introduces longitudinal impedance covering many revolution
frequency harmonics.

Figure 6.4. Longitudinal impedance of the one cell Finemet cavity [58]

Ferrite has been used extensively in RF cavities for particle accelerators that
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require tuning. Some ferrites used can operate up to more than 100 MHz but
the saturation magnetic flux intensity is often limited to 100-200 G. Recently a
met-glass-like material called Finemet© was developed in Japan that can hold up to
2 kG of magnetic flux intensity. Ferrite is ceramic in nature and is manufactured
by baking in an oven. Therefore, large ferrite cores are difficult to produce. On the
other hand, Finemet© is in the form of a tape which can be wound into a core over 1
m in diameter, making very high magnetic flux possible. For this reason, Finemet©
may open up a new way to the construction of high gradient acceleration cavities [57].

Figure 6.5. Fit of the impedance of Finemet© cavity and study of the excited modes. The
real part of impedance is expressed in Ω.

To detect longitudinal CB oscillations in the frequency domain, the feedback
system picks up synchrotron frequency sidebands of the beam signal at harmonics
of the revolution frequency. Demodulation and filtering are applied to remove the
strong component of the beam signal at exactly the revolution frequency harmonic.
The filtered synchrotron sidebands alone are then amplified and remodulated with
the correct phase to a multiple of the revolution frequency. The resulting signal, con-
taining multiple carriers, is sent to the longitudinal kicker. According to the theory
of CB oscillations, each mode, identified by its phase advance, appears as an upper
synchrotron frequency sideband as well as lower synchrotron frequency sideband
as described in Chapter 3 ; due to the symmetry of sidebands, the kicker cavity
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should cover the frequency range from 0.4 to 5.5 MHz or from the 4.5 to 10 MHz [58].

The Finemet© cavity model used in these simulations is based on the one cell
model shown in fig. 6.3.

I performed a fit on the real part of impedance of fig. 6.4 to obtain parameters
useful for simulations as shown in fig. 6.5. I obtained:

• Q = 0.6;

• f = 6 MHz ;

• Rs = 323 Ω

Fig. 6.5 presents the results of the study of the oscillation modes excited by the
cavity. The real part of longitudinal impedance shows that the oscillation mode
μ = 17 should be the one which grows unstable faster than the others and it has
been confirmed by simulations, as shown in fig. 6.6.

Figure 6.6. Mode amplitude of Finemet cavity

As last step was useful to check that the Finemet©, which will be used as a kicker
cavity to suppress excitation of bunch oscillation, is not itself source of instability.
Even in this case, preliminary simulations (fig. 6.7) show that the Finemet© cavity
doesn’t produce any significant effect on the modes of the 10 MHz system. This
happens because its longitudinal impedance is quite broadband so that stable and
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unstable frequencies generally compensate each other, and they don’t excite coupled
bunch oscillation modes. However a more detailed analysis and its impact on the
beam dynamics will be done in the future.

Figure 6.7. Mode amplitude of Finemet© cavity and 10 MHz cavity
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Chapter 7

Conclusion

The role of the PS in the production of the beams for the LHC is to preserve at
maximum the transverse emittances defined by its injector, the PS Booster (PSB),
and to manipulate the longitudinal phase-space to define the bunch spacing re-
quired by the collider. In the framework of the the High-Luminosity LHC project,
all the injectors should be able increase the intensity per bunch of the LHC-type
beams while keeping or reducing the transverse emittances. The goal is to achive
a peak luminosity of 1034 cm−2 s−1 during 2015 and 40 fb−1 for the integrated
luminosity [59]. The luminosity formula (eq. (2.1)) shows that, independently of
the modifications of LHC, the luminosity depends from the characteristics of the
injected beam. It is proportional to the product of beam current in the collider
(∼ nbNb) and in injectors with the beam brightness (∼ Nb/εn). The beam intensity
is limited by single-particle effects as well as collective effects. Collective effects are
caused by the interactions between charged particles and their surroundings and
become more dangerous at a high beam intensity. In the PS, the wakefield, which
is the electromagnetic field produced by the interaction between protons and their
surroundings, is the main source of beam instabilities. Wakefield effects can lead to
longitudinal and transverse instabilities, which limit the ultimate achievable beam
current because typically produces beam losses.

In the PS the maximum intensity Nb for bright bunches is limited by coupled-
bunch (CB) instabilities after transition crossing, which are most likely excited by
the main 10 MHz accelerating cavities. In the frame of LIU project a new wide-band
FB kicker cavity will be installed to suppress these instabilities to replace the old
one which is limited to the two dominant oscillation modes.

To carry on these studies it has been used a new simulation code, the LCBC,
which has been proved to be an useful instrument to reproduce the behaviour of the
CB FB in the PS. In Chapter 4 I preceded by doing a benchmark of this code using
PS paramenters, in order to verify that simulation’s result are in agreement with
the theory of coupled-bunch which has been illustrated in Chapter 3. Moreover a
new FB system in frequency domain (mode-by-mode) has been implemented in the
code to emulate the real one that will be installed in the PS during LS1. The code
is able to excite a single CB oscillation and from it I evaluated the damping time.
The coupling between different modes is visible and I proved that the code FB can
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attack each mode individually.

In chapter 5 I used the code to reproduce results of measurements done back in
2013 in the PS. I developed a model for the 10 MHz system impedance and used it
for simulations at 3.3 MHz (h = 7) at injection with a full machine and compared
the growth rates of oscillation modes with the ones from the eigenvalues system.
Then I moved at 10 MHz (h = 21) to see what happens during acceleration. If I shift
the closed loop transfer function at 3.3 MHz to 10 MHz they overlaps quite well. I
therefore concluded that it was simply possible to shift the impedance model devel-
oped at h = 7 to 10 MHz and use it for simulations. I checked which is the pattern of
the oscillation modes at this frequency to compare it with results from measurements
done in 2013 which show the evolution of the mode spectra for LHC50ns beam, and
they both appear to be very similar. As last step in Chapter 6 I started doing some
preliminary simulations on the 40 and 80 MHz cavities to prove that they don’t add
some instability to the one produced by the 10 MHz and on the Finemet cavity which
will be used as a damper in the new FB system, in order to verify that the cavity
which should damp unstable modes doesn’t introduce itself any kind of instability.
From these preliminary simulations these cavities doesn’t seem to cause any problem.
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