
SLAC-PUB-517
CGTM 55
OCTOBER 1968
(MIX)

AN ALGORl’i’T-JAI FOR FINDING BRIDGES - AND ITS EXTENSION*

Ira Pohl

Stanford Linear Accelerator Center
Stanford IJniversity, Stanford, California

ABSTRACT

In graph models, the problem of partitioning arises naturally in

many areas. This requires fi.nding a set of edges which disconnects

the graph. In this note we give an efficient computational method for

finding these edges. Especially of interest is the case when only one

edge is needed.

(Submitted to the Journal of the ACM)

I___----
x
‘\:‘c!rk ~:up~~orlcd bv the U. S. Atomic Energy Commission.

.

I ’

,
INTRODUCTION

131 comm~unication networks [4], [5], segmented programs [3], and other

struclural models [6], [l], and important problem is decomposing the rcpresen-

tation and identifyin g especially crucial linkages. When these problems are

described as gr*aphs, a set of edges that upon removal disconnects the graph is

a cut--set. If we are interested in finding a natural point in a program for seg-

mentaiion, a place of interest would be where a minimum number of disconnections

would be necessary. Obviously if the flow is through a single link, this link

would be ideal. The problem of finding minimum cut-sets is therefore of interest

in a large variety of problems. Especially interesting is the case of a single edge,

called a bridge, which disconnects the graph (see Fig: 1). The approach is

simiJzn- to that of other computer scientists [7], [8], in emphasizing computational

ease and simplicity in describin g an efficient method for finding bridges and other

cut-sets.

TERMINOLOGY

We will be concerned with undirected graphs*. A graph G = (X, E) is a collec-

tion of nodes X, and edges E, where the edges are unordered pairs of elements

fro3n x. For notational convenience, the node set is mapped one-one onto the

integers 1, 2, . . . , n where n =]G] is the cardinaaof the graph. The edges may

now be written as pairs (i, j). A path from node i to node k in G is some

secpcnce of nodes, p = (i, j, 1;) such that any consecutive pair of nodes in p

is an edge in E. A connected graph is a graph which has a path between a.11 pairs --._-

of ni;dcs in X. A circuit is a path from a node to itself which use,s no edge more

tllnil Q;lc’e.

To be called graphs throllghout the remainder of this paper.

-2-

A tree is a graph which is connected and has no circuits; this implies that

its node set has one more node than its edge set cardinality.

The degree of a node is the number of edges incident to it, i. e. , the number

of edges that contain it as an endpoint. A rooted tree is a tree with one node

designated the root, which has no predecessors. A spanning tree of a graph G,

is a tree T, which is a subgraph of G, with all nodes of G contained in T,

X(T) = X(G).

written

A cut-set of a graph is a set of edges which, when removed from the graph,

leaves the graph unconnected. A proper cut-set is a cut-set which has no proper

subset which in turn is a cut-set. A bridge is a cut-set of one edge, and is -

therefore identically a proper cut-set. A graph is called h edge-connected*,

when h is the cardina1it.y of its smallest (proper) cut-set.

PROBLEM AND SOLUTION

Find all the ‘bridges in a graph. One can do this simply by removing each

edge i.n turn and checking the remaining graph for connectedness. There are up

to n(n-1)/2 edges in a loop-free undirected graph and this approach is obviously

too tedious.

At this point let us note a simple theorem [4, p. 181.

“Every spanning tree has at least one edge in common with

every cut-set of a graph. I’

In particular, we note that any spanning tree must contain all bridges of the

graph). Generating a spanning tree is a simple computation, and is on the average

only twice the work of generating a path. Now in a dense graph there are many

*
Berge [2] calls this h-coherent, but we will from now on refer to graphs as

h-connected, meaning edge-connected.
.

-3-

I ’

spanning trees possible, and by suitably generating successive spanning trees and

intersecting their edge sets, one should be left with only a smaller number of edges

(< n) to check as bridges. This then is the method we outline below in detail.

SPANNING TREE ALGORITHM

1. Mark all nodes as unreached and unused.

2. Choose some node ieX as the root node and mark it reached.

3. Select any node n that is reached but unused and mark it used.

4. Mark all nodes nk, which are connected by an edge to n and not

previously reached as reached. Include the edges (n, nk) in the

spanning tree.

5. If all the nodes in X are reached then halt, else go to step 3.

By selecting different root nodes and by suitably varying the order in which

nodes are csamined in step 3, a reasonably different sampling of spanning trees

will be constructed, if possible. One simple possibility is to use reached nodes

in ascending value and varying this by next choosing them in descending value.

Also this algorithm is a test for connectedness, for if no reached but unused nodes

exist at some stage before the computation halts, the graph must be unconnected.

BRIDGE FINDING ALGORITHM

,

1. Compute two spanning trees in different (as possible) ways.

2. Find the set of edges in the intersection of these two trees - set I.

3. If I is empty halt.

4. Take the first edge in I and delete it from the graph and from I.

r 3. Generate a new spanning tree (again try to make i.t different from

the previous ones).

-4-

I -

6. If the tree does not have all the nodes of the graph, then list

the removed edge as a bridge. Otherwise, intersect the new

tree with I to obtain the new I. Return to step 3.

Remark: At most n-l spanning trees will be constructed, where this limit is

attainable.

Pf. A spanning tree of a graph of size n has n-l edges. Therefore set I can

have at most n-l edges initially. If the graph is just a simple circuit:

x = {1,3,3, . ..) nt

E = {tI,3), (3,3), (n, st 9

then the maximum number of intersections will be achieved.

If the graph of interest is dense, then there will be many possible different

spanning trees. The intersection of two of these will leave but few candidate

edges. Outside of an iteration required for each bridge found, the algorithm will

normally need only a few intersections before all extraneous edges are discarded.

In implementing the algorithm, the number of intersections stayed between three

and five over a wide range of graph sizes and densities.

GENERALIZATION

The more general problem of finding the minimum proper cut-sets of a graph

is a great deal more difficult. Methods based on the repeated use of the Ford-

Fulkerson network flow algorithm [5J with edge capacities identically one, can be

used. The fundamental result is that the maximum flow is equal to the minimum

cut capacity and the Ford-Fulkerson algorithm may be programmed to find the

cut-set. In the case of bridges, obviously the tree intersection algorithm requires

substantial1.y less work. While the Ford-Fulkerson algorithm is efficient, it is

more complex than the simple tree spanming algorithm, and each iteration of it is

about the same work as a complete spanning tree computation.
.

-5-

I -

,
It is possible to generalize our method to cut-sets of higher order. Consider

a cut-set of cardinality 2; name it C2. By our theorem, each spanning tree must

include one or the other edge of C2. Therefore if 1; spanning trees are generated,

some member of C2 will appear more than k/2 times. If edges are investigated in

order of number of occurrences (given that they appear 1 k/2 times) the case of

finding the other edge in C2 is reduced to finding a bridge. This scheme seems

more reasonable, especially in very dense graphs, than the more complex flow’

algorithm. The method, of course, is iteratively applicable to Cn with a criterion

of k/n appearances. Rowever, it is most reasonable for n small.

The author wishes to thank C. Zahn of the Stanford Linear Accelerator Center,

Z. Manr,a and W. F. Miller of Stanford University for their thoughtful reading and

encouragement of this work.

-6-

1.

2.

3.

4.

5.

6.

7.

8.

,
REFERENCES

Amarel, S., “On hIachine Representations of Problems of Reasoning About

Actions - The Missionaries and Cannibals Problem, If Carnegie Institute

of Technology, (June 1966).

Berge, C . , The Theory of Graphs and Its Applications, (Methuen and Co.,

Ltd., London, 1962).

Berztiss, A., “A Note on Segmentation of Computer Programs, ” Information

and Control, Vol. 12, (January 1968) pp. 21-22.

Busacker, R. and T. Saaty, Finite Graphs and Networks: An Introduction

with Applications, (McGraw-Hill Co. ? New York, 1965).

Ford, L. and D. Fulkerson, Flows in Networks, (Princeton University Press,

Princeton, 1962).

Harary, F., R. Normal, and D. Cart-wright, Structural Models: An Introduction

to the Theory of Directed Graph, (John Wiley and Sons, Inc., New York, 1965).

Ramamoorthy, C. , ‘rAnalysis of Graphs by Connectivity Considerations, ”

Journal of the ACM, Vol. 13, No. 2, (April 1966) pp. 211-222.

Warshall, S., “A Theorem on Boolean Matrices,” Journal of the ACM, Vol. 9,

No. 1, (January 1962) pp. 11-12.

.

,

. .

Fig. 1

Edge (c , d) i s a bridge.

I164AI

.

