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Abstract

We present an overview of the main conceptual issues which arise when computing next-to-next-to-leading
order perturbative corrections to jet cross sections in QCD. In particular we focus on the issue of infrared
singularities that arise in intermediate steps of the calculation and outline the various methods which
have been proposed to treat these divergences. We then give a brief overview of the state of the art of the
field, concentrating on computations which deal strictly with the production of jets without additional
electroweak or Higgs particles.

1 Introduction

The study of the production of hadronic jets in particle collisions played a crucial role in establishing

QCD as the correct theory of strong interactions. Today, jet related studies continue to be important for

improving our understanding of QCD. Indeed, jet rates and event shapes measured in three jet production

in electron-positron annihilation are still among some of the most precise tools used for the extraction

of the main parameter of the theory, the strong coupling αs. Jet production at hadron colliders such

the Tevatron and LHC can provide valuable information on the non-perturbative Parton Distribution

Functions (PDF). Although the quark PDFs are significantly constrained by data from lepton-hadron

Deep Inelastic Scattering (DIS) experiments such as HERA, the electrical neutrality of the gluon means

that in DIS the gluon PDF can only be probed through specific final states (e.g., heavy quarks or jets) or

indirectly through DGLAP evolution. In contrast, jet production at a hadron collider is directly sensitive

to the gluon PDF, with LHC measurements already providing important constraints, in particular in the

large-x region.

In addition to their role in determining Standard Model parameters, jets have also become essential

analysis tools in searches for beyond the Standard Model physics. For example, “bump hunting” in the
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dijet mass spectrum or testing the QCD running coupling at very large momentum transfer constitute

powerful probes of BSM physics.

However, in order to fully exploit the physics potential of the wealth of available data, we must be

able to calculate precise and reliable theoretical predictions for jet observables. Since the computation of

physical quantities measured at particle colliders relies on the use of perturbation theory, one particular

aspect of theoretical precision concerns the evaluation of exact higher-order corrections in perturbative

QCD. As the numerical value of the strong coupling is not particularly small even at LHC energies,

leading order (LO) results in QCD can only give an order of magnitude estimate of production rates

and rough information on the shape of distributions. Furthermore, perturbative predictions depend on

the non-physical renormalisation and factorisation scales and this dependence is usually quite sizeable at

LO. Hence at least next-to-leading order (NLO) corrections must be evaluated. Nevertheless, in several

situations, typically when NLO corrections are large, it is desirable to go even further in the perturbative

expansion and include next-to-next-to-leading order (NNLO) corrections in our predictions.

In this contribution, we describe briefly the main conceptual difficulties in computing radiative

corrections at NNLO accuracy in perturbative QCD as well as some approaches which have been proposed

to overcome them. Then, we give a concise summary of the results available in the literature specifically

for the production of jets at lepton and hadron colliders at NNLO accuracy.

2 Jet cross sections in NNLO QCD

At a hadron collider, the cross section for a given final state can be computed using the factorisation

theorem,

dσ =
∑
a,b

∫
dxa

∫
dxb fa(xa, µ

2
F )fb(xb, µ

2
F )dσ̂ab(xa, xb, Q

2, αs(µ
2
R)) +O((ΛQCD/Q)m) , (1)

i.e., by convoluting the partonic cross section, dσ̂ab with the PDFs fa and fb. (In lepton collisions,

the PDFs are essentially Dirac delta functions, hence the convolution is trivial.) The PDFs are non-

perturbative and must be extracted from data, however the partonic cross section can be evaluated in

perturbation theory and we will focus on this aspect of the computation here. Since the basic issues

that arise when computing the partonic cross section at higher orders are already present for the case of

lepton collisions, we will present formulae appropriate to this simpler case in the following.

When computing QCD corrections to some specific partonic cross section, two conceptually separate

issues must be addressed. The first concerns the evaluation of the matrix elements relevant to the process

under study. At NNLO accuracy, we must consider up to two-loop corrections to the Born matrix element,

one-loop matrix elements with one extra parton emission and tree level matrix elements with up to two

extra parton emissions as compared to the Born process. These days the calculation of tree level matrix

elements is essentially trivial and they can be computed in a completely automated way. Due to enormous

progress in the past several years, by now also the evaluation of one-loop matrix elements has essentially

been automated. While it should be said that the requirements on the numerical stability of one-loop

amplitudes is more stringent in an NNLO calculation than an NLO one, this issue is being addressed

by the newest generation of automated one-loop computations. Finally as regards the two-loop matrix

elements, we recall that these have been available for some time for all 2 → 2 processes at the LHC

(including the production of a vector boson pair, computed more recently) as well as for the production

of three partons from a colourless initial state, relevant for electron-positron colliders. There is also a huge

ongoing effort to move beyond these multiplicities and compute complete two-loop amplitudes relevant
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for the production of three jets at the LHC or four jets at a lepton collider. (See e.g., 1, 2) for some

very recent examples.) While a great deal of progress has been made in this direction, the evaluation of

two-loop amplitudes at high multiplicities currently remains a bottleneck.

Second, even if the relevant matrix elements are available, the computation of physical cross sections

is not straightforward due to the presence of infrared and collinear singularities in intermediate stages of

the calculation. In particular the finite NLO correction to some generic m-jet observable J is the sum of

two terms, the real emission and virtual ones (Jn denotes the value of the observable J evaluated on an

n-parton final state),

σNLO = σR
m+1 + σV

m =

∫
m+1

dσR
m+1Jm+1 +

∫
m

dσV
mJm . (2)

Both terms appearing above are separately divergent in d = 4 spacetime dimensions due to the presence

of explicit ε poles from loop integrals (we use dimensional regularisation in d = 4 − 2ε dimensions) or

phase space singularities associated with the emission of an unresolved parton. At NNLO accuracy we

find that the complete NNLO correction is composed of three terms, the double-real, real-virtual and

double-virtual ones,

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m

dσVV
m Jm . (3)

Again, the three pieces appearing above are all separately divergent in d = 4 dimensions due to the

presence of explicit ε poles and/or phase space singularities which emerge in kinematic limits when one

or two partons become unresolved. Although these divergences cancel for sufficiently inclusive (infrared

and collinear safe) observables in the sum, in order to perform a numerical computation, this cancellation

must be made explicit.

In broad terms, there have been two approaches to dealing with infrared and collinear singularities

at NNLO: phase space slicing and the subtraction method. The slicing method relies on regularising the

real emission phase space singularities with an explicit cut-off. With this cut-off in place, the real emission

contribution is finite and can thus be computed numerically. On the other hand, the combination of the

virtual contribution with the piece of the real contribution which has been discarded by the cut can be

obtained from an appropriate resummation framework. This combination is also finite and can again be

computed numerically. This procedure then regularises both real emission and virtual pieces, however

an explicit cut-off parameter, δ, is introduced into the calculation. Since the rearrangement of terms in

the slicing method is only exact for δ → 0, one must be careful to check that the results are independent

(within numerical uncertainties) of the value of δ chosen. This can be challenging, since using a smaller

value of δ generates a larger numerical cancellation between the regularised real and virtual contributions.

In practice, two types of such slicing methods have been employed to compute physical observables

at NNLO accuracy, qT slicing 3) and N -jettiness slicing 4, 5). These methods use either the transverse

momentum of the produced system, qT, or the N -jettiness variable, τN , to disentangle “pure” NNLO

regions in phase space, which are treated as explained above, while NLO type singularities are handled

with some NLO subtraction method (see below).

On the other hand, the subtraction method makes use of approximate cross sections in order to

perform an exact rearrangement of singular terms between the real and virtual contributions. At NLO

accuracy one such approximate cross section is sufficient

σNLO =

∫
m+1

dσR
m+1Jm+1+

∫
m

dσV
mJm =

∫
m+1

[
dσR

m+1Jm+1−dσ
R,A1
m+1Jm

]
d=4

+

∫
m

[
dσV

mJm+

∫
1

dσ
R,A1
m+1Jm

]
d=4

.

(4)
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The approximate cross section dσ
R,A1
m+1 is constructed such that it has the same kinematic singularity

structure (in d dimensions) as dσR
m+1 itself, hence the difference is free of non-integrable kinematic

singularities and can be computed numerically with standard Monte Carlo methods. The poles of the

virtual contribution, dσV
m, are then exactly cancelled by adding back the approximate cross section

after integrating over the momentum and summing over the quantum numbers (colour, flavour) of the

unresolved particle (these operations are all denoted by
∫
1
). Several explicit constructions are available

in the literature for the approximate cross section dσ
R,A1
m+1

6).

At NNLO accuracy this rearrangement is more involved due to the more elaborate structure of singu-

larities. Since the double-real contribution has both single and double unresolved kinematic singularities,

we write

σNNLO
m+2 =

∫
m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}
d=4

, (5)

where dσ
RR,A2
m+2 regularises double unresolved singularities, while dσ

RR,A1
m+2 serves as a counterterm in

single unresolved limits. The last term, dσ
RR,A12
m+2 , is introduced to remove both the single unresolved

singularities of dσ
RR,A2
m+2 , as well as the double unresolved ones of dσ

RR,A1
m+2 . Then, Eq. (5) is free of

non-integrable singularities and can be computed with standard numerical methods.

The real-virtual contribution has both explicit ε-poles from one-loop amplitudes, as well as kinematic

singularities associated with the emission of one extra parton as compared to the Born process. Thus we

write

σNNLO
m+1 =

∫
m+1

{[
dσRV

m+1 +

∫
1

dσ
RR,A1
m+2

]
Jm +1 −

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)
A1
]
Jm

}
d=4

. (6)

The integrated form of the single unresolved subtraction from the double-real contribution,
∫
1

dσ
RR,A1
m+2 ,

precisely cancels the ε-poles of dσRV
m+1, however both terms are still singular in regions of phase space

where one parton becomes unresolved. The task of the last two terms, dσ
RV,A1
m+1 and

( ∫
1

dσ
RR,A1
m+2

)
A1 is

precisely the regularisation of these kinematic singularities. Hence, Eq. (6) is free of both ε-poles and

non-integrable singularities and may be evaluated numerically.

Finally, the ε-poles of the double-virtual contribution are exactly cancelled by the sum of integrated

counterterms which we have not yet added back,

σNNLO
m =

∫
m

{
dσVV

m +

∫
2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫
1

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)
A1
]}

d=4
Jm , (7)

hence Eq. (7) is finite as guaranteed by the Kinoshita–Lee–Nauenber theorem and one can compute it

numerically.

The construction of the approximate cross sections is not unique and indeed, several approaches

exist in the literature for defining them such as iterated sector decomposition 7), antenna subtraction 8),

sector improved residue subtraction 9), nested soft-collinear subtractions 10), the projection to Born

technique 11) and the CoLoRFulNNLO scheme 12, 13, 14, 15).

3 Jet production at lepton colliders

As mentioned in the Introduction, the analysis of hadronic event shapes and jet rates at lepton colliders

still provides one of the most precise ways to determine the value of the strong coupling αs. Accordingly,

these observables have been extensively measured in the past. In addition, the study of jet production in
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Figure 1: Physical predictions for thrust (τ = 1 − T ) (left) and C-parameter (right) at LO, NLO and
NNLO accuracy. The bands represent scale uncertainty. Data measured by the ALEPH collaboration is

also shown. The lower panels show the ratio of predictions of 19) (SW) and EERAD3 20) (GGGH) to
CoLorFulNNLO.

lepton collisions also serves as an ideal testing ground for developing tools and techniques fo higher-order

calculations in QCD.

Currently, the state of the art includes NLO predictions for the production of up to five jets 16)

(up to seven jets 17) in the leading colour approximation) and NNLO predictions for the production of

three jets 14, 15, 18, 19). In particular, the six standard event shapes measured in three jet production

in electron-positron annihilation (thrust, heavy jet mass, total and wide jet broadening, C-parameter

and the two-to-three jet transition variable y23 in the Durham jet clustering algorithm) have been com-

puted at NNLO accuracy using both the antenna subtraction method 18, 19) and the CoLoRFulNNLO

subtraction scheme 15). By way of illustration, we present in Fig. 1 physical predictions for the distri-

butions of thrust (T ) and C-parameter up to NNLO accuracy at the LEP2 energy of
√
s = 91.2 GeV,

computed in the CoLoRFulNNLO framework. The figures also show the comparison of these results to

the predictions obtained with EERAD3 20) (denoted as GGGH1) as well with those of reference 19) (de-

noted as SW2), both obtained with the antenna subtraction method. We observe a quite good agreement

between the predictions of SW and CoLorFulNNLO and a reasonably good agreement between GGGH

and CoLorFulNNLO. We note also the very good numerical convergence of the CoLorFulNNLO method

at NNLO.

Predictions for jet rates and event shapes computed at NNLO accuracy and supplemented with

resummation, have been used to extract the strong coupling αs from data (see 21) for a review).

4 Jet production at hadron colliders

The computation of jet production at the LHC at NNLO accuracy, also in association with an electroweak

or Higgs boson, is also of significant interest as discussed in the Introduction. Here we limit ourselves

1We are grateful to G. Heinrich for providing the predictions of EERAD3 for us.
2In these comparisons we use updated (with respect to those published in 19)) but unpublished

predictions provided to us by S. Weinzierl. We are grateful to S. Weinzierl for providing these updated
results for us.
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Figure 2: Double-differential inclusive jet cross sections as a function of jet pT in slices of rapidity

form 23) (left) and 24) (right). The central scales are set to the transverse momentum of the leading jet,
pT1

(left) or the individual jet pT (right). The bands represent scale uncertainty.

to discussing only those results which pertain strictly to the production of jets, without additional elec-

troweak or Higgs particles. In this regard, the state of the art computations include NLO predictions for

up to five jets in hadronic collisions 22), as well as the very recent NNLO predictions for single jet inclu-

sive production 23, 24) and dijet production 25). The NNLO computations have so far been obtained in

the leading colour approximation, however they do include all partonic subprocesses. In each case, they

have been computed within the antenna subtraction framework.

As an illustration, we present in Fig. 2 double-differential results for the jet pT in rapidity bins

in single inclusive jet production at the 7 TeV LHC from references 23) and 24), together with data

measured by the ATLAS collaboration. The jets in these computations are defined using the anti-kt

algorithm with a radius of R = 0.4. The left and right panels present predictions with two different

choices of renormalisation and factorisation scales. On the left, the scales are set to the transverse

momentum of the leading jet, pT1
, while on the right, they are set equal to the individual jet pT. The

bands represent the effects of varying µ = µR = µF by factors of 0.5 and 2 around the central value.

We observe that overall the NNLO corrections are moderate and the two different scale choices are

equivalent at large transverse momentum. However, at low transverse momentum, differences between

the predictions emerge that are outside the scale band. Evidently the calculation based on the individual

jet pT provides a better description of data, however the fact that the two predictions deviate in excess

of the scale band implies that further studies of scale setting are required.

We note that the first qualitative comparisons of these NNLO predictions with LHC data have

already appeared in the literature 26).

5 Conclusions

In this contribution we discussed the state of the art with regards to computing QCD radiative corrections

to jet cross sections in lepton and hadron collisions. These days, it is possible to compute these corrections

at NNLO accuracy in QCD perturbation theory for the production of up to three jets in electron-positron

annihilation and up to two jets in hadron collisions. After discussing the main conceptual issues that
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must be addressed when going to NNLO, we gave brief illustrative examples of results obtained for event

shape variables measured at LEP2 as well as for single inclusive jet production at the LHC.
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