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Abstract

Recently, SU(3) chains in the symmetric and self-conjugate representations have been studied using field 
theory techniques. For certain representations, namely rank-p symmetric ones with p not a multiple of 3, it 
was argued that the ground state exhibits gapless excitations. For the remaining representations considered, 
a finite energy gap exists above the ground state. In this paper, we extend these results to SU(n) chains 
in the symmetric representation. For a rank-p symmetric representation with n and p coprime, we predict 
gapless excitations above the ground state. If p is a multiple of n, we predict a unique ground state with a 
finite energy gap. Finally, if p and n have a greatest common divisor 1 < q < n, we predict a ground state 
degeneracy of n/q, with a finite energy gap. To arrive at these results, we derive a non-Lorentz invariant 
flag manifold sigma model description of the SU(n) chains, and use the renormalization group to show that 
Lorentz invariance is restored at low energies. We then make use of recently developed anomaly matching 
conditions for these Lorentz-invariant models. We also review the Lieb-Schultz-Mattis-Affleck theorem, 
and extend it to SU(n) models with longer range interactions.
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1. Introduction

In 1983, Haldane showed that in the limit of large spin, the antiferromagnetic spin chain maps 
to a relativistic field theory with topological term proportional to 2πs [1,2]. He then argued that 
integer spin chains are gapped and have exponentially decaying correlation functions, while half-
integer spin chains are gapless, with power-law correlations. This became known as “Haldane’s 
conjecture”. While these arguments followed from a large spin limit, this conjecture has been 
verified experimentally for quasi-one dimensional s = 1 chains [3,4], and numerically for spins 
up to s = 4 [5–11]. For a recent historical review, see [12].

Shortly after the formulation of this conjecture, research began on extending Haldane’s work 
to SU(n) generalizations of spin chains [13–15]. At this time, these were hypothetical models 
with no experimental realization, and their study was in part motivated by a proposed relation 
between nonlinear sigma models and the quantum Hall effect [14,16,17]. While this is still a 
reason to study such models, recent proposals from the cold atom community suggest that SU(n) 
chains may be experimentally realizable in the near future, offering a much more physical moti-
vation [18–28]. These proposals have led to a renewed theoretical interest in the field of SU(n) 
spin chains [29–34].

In 2017, a generalization of Haldane’s conjecture to SU(3) chains was formulated [12]. It 
was shown that for chains with a rank-p symmetric representation at each site of the chain (see 
Fig. 1, left), a Haldane gap above the ground state is present only when p is a multiple of 3; 
otherwise, the chain exhibits gapless excitations. In [35], the conjecture was further extended to 
self-conjugate SU(3) chains, with a (p, p) representation on each site (Fig. 1, right). In this case, 
a gapped phase is always found, with spontaneously broken parity symmetry occurring only for 
p odd.

In this article, we generalize Haldane’s conjecture to SU(n) chains in the rank-p symmet-
ric representations (Fig. 1, left), following the methodology presented in [12]. Our main result 
is the prediction of gapless excitations above the ground state when p and n have no common 
divisor greater than 1. In Section 2, we introduce the SU(n) Hamiltonian, which involves local 
interactions up to (n − 1)-nearest neighbors. As we will show, these longer range interactions 
are necessary to stabilize the classical ground state of the chain. In Section 3, we review exact 
results pertaining to these SU(n) chains that support our conjecture, namely the Lieb-Schultz-
Mattis-Affleck theorem [36,37] and explicit AKLT-type constructions [29,38]. In Section 4, we 
carry out a flavor wave analysis, which amounts to introducing Holstein-Primakoff bosons, and 
performing a large-p expansion. In Section 5, we derive a low energy quantum field theory de-
scription of the chain, and obtain the same flavor wave velocities in a perturbative expansion. In 
Section 6, we use the renormalization group to argue that at low enough energies, these (distinct) 
flavor wave velocities may flow to a common value, so that Lorentz invariance emerges, and 
the field theory becomes a Lorentz-invariant flag manifold sigma model (FMSM). This FMSM 
description of SU(n) chains was first derived by Bykov [39,40], who then fine-tuned the interac-
tions of the SU(n) chain to achieve a unique flavor wave velocity at the bare level. These FMSMs 
were also studied systematically in [41] and [42]. In Section 7, we relate the ’t Hooft anomaly 
matching arguments of [41] and [42] to our SU(n) spin chain, and formulate our conjecture. 
In Section 8, we present a strong coupling analysis of the FMSM, which further supports our 
claims. Section 9 contains our conclusions.
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Fig. 1. Young tableau for irreps of SU(n). Left: the rank-p symmetric irrep considered in this paper, and also in [12] for 
SU(3). Right: the (p, p) self-conjugate irrep, considered in [35] for SU(3).

2. Hamiltonian

The familiar antiferromagnetic spin chain is characterized by a single integer, 2s, which spec-
ifies the irreducible representation (irrep) of SU(2) that appears on each site. In SU(n), the most 
generic irrep is defined by n − 1 integers, which give the number of columns of a given length in 
their Young tableaux. In this paper, we focus on the rank-p symmetric irreps, which have Young 
tableaux shown in Fig. 1 (left). It is natural to first consider these irreps, since they correspond to 
the entire set of irreps in the case n = 2. The simplest Hamiltonian one is tempted to write down 
is 1

H = J
∑
j

tr[S(j)S(j + 1)] (2.1)

where S(j) is an n ×n Hermitian matrix with tr[S] = p, 2 whose entries correspond to the n2 −1
generators of SU(n) and satisfy3

[Sα
β ,Sμ

ν ] = δα
ν S

μ
β − δ

μ
β Sα

ν . (2.2)

Indeed, in SU(2), Sα
β = �S · �σα

β + p
2 I, and the Hamiltonian appearing in (2.1) equals the Heisenberg 

model with spin s = p
2 (up to a constant). However, for n > 2, the Hamiltonian (2.1) possesses 

local zero mode excitations that destabilize the classical ground state and inhibit a low energy 
field theory description. To remedy this, we introduce an additional n − 2 interaction terms, 
arriving at

H =
∑
j

n−1∑
r=1

Jr tr[S(j)S(j + r)] (2.3)

where J1 couples nearest-neighbors, J2 couples next-nearest neighbors, and so on. See Fig. 2
for a pictorial representation of these interactions. Instead of adding longer-range bilinear terms, 
we might have hoped to stabilize the ground state by adding higher order operators, such as the 
SU(n) generalization of the biquadratic term, (�Si · �Si+1)

2. Ultimately, the specific form of the 
Hamiltonian is not crucial – as long as it has the same classical ground state, with a spectrum 
free of local zero modes, the corresponding field theory we derive will be the generic theory 
of quantum fluctuations about the ground state. However, it is important to note that while the 
low energy descriptions of different Hamiltonians can be described by the same field theory, it is 
not guaranteed that the field theory will always be in the same phase. We return to this point in 
Section 7.

1 Note that on-site interactions that preserve the SU(n) symmetry, such as tr[S(j)S(j)], correspond to Casimir opera-
tors, and would only lead to a constant shift of the Hamiltonian.

2 S(j) should be traceless; we have shifted it by a constant to simplify our calculations.
3 Throughout, we use upper indices for the rows of a matrix, and lower indices for the columns of a matrix. This 

ordering is switched for complex conjugated entries.
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Fig. 2. Pictorial representation of the nearest (blue), next-nearest (red), and next-next-nearest (green) neighbor interac-
tions occurring in (2.3), for the case n = 4. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Classical ground state

In the large-p limit, the commutator (2.2) is subleading in p, allowing us to replace S by 
a matrix of classical numbers. To this order in p, the Casimir constraints of SU(n) completely 
determine the eigenvalues of S. We have

Sα
β = pφ∗,αφβ (2.4)

for φ ∈ Cn with |φ| = 1. The interaction terms appearing in (2.1) reduce to

tr[S(j)S(j + r)] = p2|φ(j)∗ · φ(j + r)|2. (2.5)

Since φ lives in Cn, a classical ground state will posses local zero modes unless the Hamiltonian 
gives rise to n − 1 constraints. This is the justification for our study of the modified Hamiltonian 
(2.3), above, which removes any local zero modes by including longer range interactions. These 
interactions result in an n-site ordered classical ground state, which gives rise to a Zn symmetry 
in their low energy field theory description. This Zn symmetry is also present in the p = 1 Bethe 
ansatz-solvable models [43–45]. In fact, it is expected that quantum fluctuations may produce 
an n-site unit cell through an “order-by-disorder” mechanism that generates effective additional 
couplings of order p−1 that lift the local zero modes [12,46].

Since the classical ground state minimizing (2.3) has an n-site order, it is characterized by n
normalized vectors that mutually minimize (2.5). That is, the classical ground state gives rise to 
an orthonormal basis of Cn. Due to this n-fold structure, we rewrite the Hamiltonian (2.3) as a 
sum over unit cells (indexed by j ):

H =
∑
j

n∑
α=1

n−1∑
r=1

Jr tr[S(jα)S(jα + r)] jα := nj + (α − 1) (2.6)

In the following sections we will expand about this classical ground state to characterize the 
low energy physics of (2.3). But before this, we review some exact results that apply to SU(n) 
Hamiltonians.

3. Exact results

3.1. LSMA theorem

The Lieb-Schultz-Mattis-Affleck Theorem (LSMA) is a rigorous statement about ground 
states in translationally invariant SU(n) Hamiltonians with only bilinear interaction terms [36,
37]. Applied to the symmetric irreps considered here, this theorem proves that if p is not a multi-
ple of n, then either the ground state is unique with gapless excitations, or there is a ground state 
degeneracy. Recently, it was claimed in [29] that the LSMA theorem is not applicable to models 
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with longer range interactions than nearest-neighbor. Here, we dispute this claim by extending 
the original proof in [37] to models with further range interactions. Explicitly, we consider the 
following Hamiltonian on a ring of L sites:

H =
R∑

r=1

Hr Hr :=
L∑

j=1

Jr tr[S(j)S(j + r)] (3.1)

where S is defined as above. We assume that |ψ〉 is the unique ground state of H , and is transla-
tionally invariant: T |ψ〉 = |ψ〉. We then define a twist operator

U = eA A := 2πi

nL

L∑
j=1

jQj (3.2)

with

Q =
n−1∑
α=1

Sα
α − (n − 1)Sn

n = trS − nSn
n = p − nSn

n. (3.3)

Using the commutation relations (2.2), it is easy to verify that[
tr[S(j)S(j + r)],Qj + Qj+r

]
= 0 (3.4)

which then implies

U†tr[S(j)S(j + r)]U = e− rπi
nL

(Qj+r−Qj )tr[S(j)S(j + r)]e rπi
nL

(Qj+r−Qj ). (3.5)

Using this, one can show that

U†HU − U = [H,A] − H +O(L−1) (3.6)

so that U |ψ〉 has energy O(L−1). Now, using the translational invariance of |ψ〉, we find

〈ψ |U |ψ〉 = 〈ψ |T −1UT |ψ〉 = 〈ψ |Ue
2πi
n

Q1e
− 2πi

nL

∑L
j=1 Qj |ψ〉. (3.7)

Since |ψ〉 is a ground state of H , it is a SU(n) singlet, and so must be left unchanged by the 

global SU(n) transformation e− 2πi
nL

∑L
j=1 Qj . Moreover, using (3.3), we have

〈ψ |U |ψ〉 = e
2πip

n 〈ψ |Ue−2πiSn
n |ψ〉. (3.8)

As we will show below, the matrices S can be represented in terms of Schwinger bosons; the 
diagonal elements are then number operators for these bosons. Thus, Sn

n acting on |ψ〉 will always 
return an integer, and e2πiSn

n can be dropped. Thus, we find that so long as p is not a multiple of 
n,

〈ψ |U |ψ〉 = 0 (3.9)

implying that U |ψ〉 is a distinct, low-lying state above |ψ〉. This completes the proof. Finally, 
we may also comment on the ground state degeneracy in the event that a gap exists above the 
ground state. Through the repeated application of (3.8), we have

〈ψ |Uk|ψ〉 = e
2πipk

n 〈ψ |U |ψ〉. (3.10)

So long as k < r := n/ gcd(n, p), the family {Uk|ψ〉} is an orthogonal set of low lying states. 
If an energy gap is present, this suggests that the ground state is at least r-fold degenerate. 
See Figs. 3 and 4 for a valence bond solid picture of these degeneracies in SU(4) and SU(6), 
respectively.



6 K. Wamer et al. / Nuclear Physics B 952 (2020) 114932
Fig. 3. A valence bond construction for the predicted two-fold degenerate ground state of SU(4) with p = 2. Each node 
represents a fundamental p = 1 irrep of SU(4). Each link represents an antisymmetrization between two nodes, and the 
antisymmetrization of four neighboring nodes results in a singlet.

Fig. 4. Valence bond constructions for SU(6). The left subfigure corresponds to p = 3, and has a 2-fold degenerate ground 
state. The right subfigure corresponds to p = 2, and has a 3-fold degenerate ground state. Singlets are constructed out of 
6 nodes, each of which represents a fundamental irrep in SU(6).

Fig. 5. AKLT constructions in SU(3). Left: When p �= n, multiple valence bond solids can be formed. The ground state 
is not translationally invariant and degenerate. Right: When p = n, a unique, translationally invariant ground state can 
be constructed, by projecting on to the symmetric-p representation at each site.

3.2. AKLT constructions

One of the first results that bolstered Haldane’s conjecture was the discovery of the so-called 
AKLT model of a spin-1 chain, which exhibits a unique, translationally invariant ground state 
with a finite excitation gap [36,37]. In this case, the number of boxes in the Young tableau is 2, 
and so the SU(2) version of the LSMA theorem does not apply. Recently, the AKLT construction 
has been generalized by various groups to SU(n) chains [29,31,34,47–49]. Relevant to us are the 
symmetric representation AKLT Hamiltonians introduced in [29]. In particular, for p a multiple 
of n, Hamiltonians are constructed that exhibit a unique, translationally invariant ground state. 
See Fig. 5 for the case n = p = 3. Additionally, for p not a multiple of n, with r := n/ gcd(n, p), 
Hamiltonians are constructed with r-fold degenerate ground states that are invariant under trans-
lations by r sites (see Figs. 3, 4). All of these models have short range correlations, and are 
expected to have gapped ground states, based on arguments of spinon confinement. The fact that 
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the construction of a gapped, nondegenerate ground state is only possible when p is a multiple 
of n is consistent with the LSMA theorem presented above.4

4. Flavor wave theory

According to the Mermin-Wagner-Coleman theorem [50,51], we do not expect spontaneous 
symmetry breaking of the SU(n) symmetry in the exact ground state of our Hamiltonian. 
Nonetheless, we may still expand about the classical (symmetry broken) ground state to pre-
dict the Goldstone mode velocities. If the theory is asymptotically free, then at sufficiently high 
energies the excitations may propagate with these velocities. In the familiar antiferromagnet, this 
procedure is known as spin wave theory; in SU(n), it is called flavor wave theory.

To begin, we introduce n2 bosons in each unit cell to reproduce the commutation relations of 
the S matrices:

Sα
β (jγ ) = b†,α(jγ )bβ(jγ ). (4.1)

The counting is n flavors of bosons for each of the n sites of a unit cell. The condition tr[S] = p

implies there are p bosons at each site. The classical ground state involves only ‘diagonal’ bosons 
of the type bγ (jγ ) and b†,γ (jγ ). The ‘off-diagonal’ bosons are Holstein-Primakoff bosons. Fla-
vor wave theory allows for a small number of Holstein-Primakoff bosons at each site, captured 
by

ν(jγ ) =
∑
α �=γ

b†,α(jγ )bα(jγ ),

and writes the Hamiltonian (2.3) in terms of these n(n − 1) bosons. In the large p � ν(jγ ) limit, 
we expand

Sγ
γ = p − ν(jγ ),

Sα
γ (jγ ) ≈ √

pb†,α(jγ ),

Sγ
γ (jγ ) ≈ √

pbα(jγ ),

to find

tr[S(jγ )S(jη)] (4.2)

= p
[
b†,γ (jη)bγ (jη) + b†,γ (jη)bη(jγ ) + b†,η(jγ )b†,γ (jη) + bη(jγ )bγ (jη)

]
+O(p0).

In terms of these degrees of freedom, the Hamiltonian (2.3) decomposes into a sum

H =
∑
γ<η

Hγη, (4.3)

where Hγη is a Hamiltonian involving only the two boson flavors bγ (jη) and bη(jγ ). In momen-
tum space, this gives n(n−1)

2 different 2 × 2 matrices, each of which can be diagonalized by a 
Bogoliubov transformation:

4 Technically, these AKLT Hamiltonians contain higher order interaction terms, and so the LSMA theorem cannot be 
applied directly. However, the gapped AKLT phase should exist over some finite region in parameter space, and so it is 
still worth noting the consistency with the LSMA theorem.
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Hγ,γ+t = const. +
∑

k

ωt (k)

2∑
i=1

(
d†,i,t (k)di,t (k) + 1

2

)
(4.4)

where

ωt(k) = 2p
√

JtJn−t

∣∣∣∣sin
nka

2

∣∣∣∣ . (4.5)

Therefore, the corresponding flavor wave velocities are

vt = np
√

JtJn−t t = 1,2, · · · , n − 1 (4.6)

When n is odd, there are n modes with each flavor wave velocity. When n is even, this is true 
except for the velocity vn

2
, which has only n

2 modes. In each case, the number of modes adds 
up to n(n − 1). We note that for n > 3, there is no longer a unique velocity, and the emergence 
of Lorentz invariance is absent. Only for a specific fine tuning of the couplings can Lorentz 
invariance be restored. These tuned models were the ones considered by Bykov in [39] and [40].

5. Derivation of field theory

In SU(2), it is well known that spin wave theory fails to capture much of the low energy 
physics of the spin chain. In particular, it is oblivious to the presence of a topological theta 
term, with angle θ = 2πs. Likewise, while flavor wave theory accurately predicts the absence of 
Lorentz invariance, it is incomplete, and must be supplemented with a field theoretic description. 
In the following section, we follow the procedure outlined in [12] for deriving such a theory from 
an SU(n) chain. Details of this derivation can be found in Appendix A.

Since the classical ground state has n-site sublattice order, with unit vectors ϕ ∈ Cn defined 
on each site, we may defined a unitary matrix, U , by

Uα
β = ϕα

β . (5.1)

Throughout, a superscript index labels the vector, and a subscript index labels the component of 
the vector (opposite for the complex conjugate vectors). To describe fluctuations about the ϕβ , 
we write a new unit vector φβ in terms of the original orthonormal basis:

φβ =
∑
α

1

p
Lβ

αϕα +√1 − μ(β)ϕβ. (5.2)

Here Lα
α = 0 (no sum) and

p2μ(β) :=
∑
α

|Lα
β |2. (5.3)

These complex coefficients Lα
β describe general fluctuations about the ϕβ . By redefining the 

unitary matrix U , we may take L to be Hermitian. 5 Now, by letting U and L vary uniformly 
from site to site, and using the large p expression of Sα

β (jγ ) in (2.4), we show in Appendix A.1
that

S(jγ ) = pU†�γ U + U†{L,�γ }U + p−1U†
(
L�γ L�γ − p2μ(γ )�γ

)
U (5.4)

5 The skew components of L generate unitary transformations, and can be recombined with the matrix U .
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where �γ is zero except at entry (γ, γ ), where it equals 1. Using this, we now evaluate the trace 
terms appearing in (2.3). Since the matrices U and L are evaluated at different sites, we Taylor 
expand which introduces spatial derivatives. For example

U(jγ ) = U(nj + (γ − 1)) = U(jη) + (η − γ )∂xU(jη) + 1

2
(η − γ )2∂2

xU(jη) + · · · (5.5)

where we’ve assumed the derivative is uniform: ∂xU(jη) = ∂xU(j ′
λ). Expanding in powers of L

and p−1, we find

tr[S(jγ )S(jη)] = p2(η − γ )2trU∂xU
†�γ ∂xUU†�η (5.6)

+ 2(η − γ )p
(
Lη

γ [∂xUU†]γη + Lγ
η [U∂xU

†]ηγ
)

+ 4|Lη
γ |2 + const.

For the complete derivation, refer to Appendix A.1.

5.1. Coherent state path integral

Having rewritten the Hamiltonian in terms of U and L, we now derive the Lagrangian by 
using a coherent state path integral approach [52,53]. As a complete set of states, we introduce

|φ〉 = φα1φα2 · · ·φαp |α1, α2, · · · , αp〉. (5.7)

These states correspond to an element of the rank-p symmetric irrep of SU(n), [φ]p , acting 
on a highest-weight state in the Hilbert space:

|φ〉 = [φ]p|highest weight〉. (5.8)

The resolution of the identity is then the integration over all of SU(n) of the projection |φ〉〈φ|:

1 =
∫

Dφ|φ〉〈φ|.

Inserting this between each time slice τi of the partition function, we obtain terms of the form

〈φ(τi)|e−Hδτ |φ(τi+1)〉 = 〈φ(τ )|φτ+δτ 〉e−Hδτ .

Exponentiating these terms, we find the following contribution to the action:∏
i

〈φ(τi)|φ(τi+1)〉 ∝ (1 + φ(τi)
∗ · ∂τφ(τi))

p

= expp log
∑

i

(1 + φ(τi)
∗ · ∂τφ(τi)) ≈ expp

∫
dτφ∗ · ∂τφ, (5.9)

where we’ve used 〈φ|φ′〉 = (φ∗ · φ′)p . Inserting (5.4), we show in Appendix A.2 that the action 
receives the following ‘Berry’ contribution:

SB = −
∫

dτ
(
ptr[�α∂τUU†] + tr[{�α,L}∂τUU†]

)
+ O(p−1). (5.10)
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5.2. Complete field theory

Since our approximated action is only quadratic in the L matrix elements, we may integrate 
out these modes to obtain an action in terms of the U matrices only. This is done in Appendix A.3. 
In the end, we obtain the following field theory describing the SU(n) chain in the rank-p sym-
metric irep:

S =
∑
α<β

∫
dxdτ

1

g|α−β|
(5.11)

×
(

v|α−β|tr[�αU∂xU
†�β∂xUU†] + 1

v|α−β|
tr[�αU∂τU

†�β∂τUU†]
)

− εμν

∑
α<β

λ|α−β|
∫

dxdτ tr[∂μUU†�α∂νUU†�β ] + Stop,

where vt = np
√

JtJn−t is the flavor wave velocity associated with the pair of couplings Jt and 
Jn−t , and Stop is a topological θ -term (discussed below). The coupling constants are

gt = n

vt

(Jt + Jn−t ) (5.12)

and

nλt

p
= (n − t)Jn−t − tJt

Jt + Jn−t

. (5.13)

Since the coupling constants and velocities satisfy gt = gn−t and vt = vn−t , we conclude that 
there are 
n� velocities and coupling constants, where


n� =
{

n
2 n even
n−1

2 n odd
(5.14)

The topological term is

Stop := 2πip

n

n∑
α=2

(α − 1)Qα (5.15)

where

Qα := 1

2πi
εμν

∫
dxdτ tr[∂μU∂νU

†�α] (5.16)

is a quantized topological charge [42]. Since

n∑
α=1

Qα = 1

2πi
εμν

∫
dxdτ tr[∂μU∂νU

†] = 1

2πi
εμν

∫
dxdτ∂μtr[U∂νU

†] = 0 (5.17)

we see that there are n − 1 independent topological charges. We note that the λ-terms appearing 
in (5.11) are not quantized, despite the fact that they are pure imaginary in imaginary time. We 
give an interpretation of these terms below. In [40], these λ-terms were absent as a result of 

the same fine-tuning that ensured a unique velocity. Indeed, the choice Jt =
√

n−t
t

ensures that 
vt ≡ 1 for all t , and moreover that λt = 0 for all t .
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5.3. Gauge invariance

The theory (5.11) is invariant under the gauge transformations

U(x, τ) → eiD(x,τ)U(x, τ ), (5.18)

where D(x, τ) is a local, diagonal matrix. Since matrices of the form eiD are generated by the 
n − 1 diagonal SU(n) generators, this corresponds to a [U(1)]n−1 gauge symmetry. In fact, we 
may view U as a map from (compact) spacetime S2 to the flag manifold SU(n)/[U(1)]n−1. For 
this reason, the above Lagrangian is known as a SU(n)/[U(1)]n−1 flag manifold sigma model 
(FMSM). Since

π2(SU(n)/[U(1)]n−1) =Zn−1, (5.19)

this model is characterized by n − 1 topological charges, which is consistent with Stop in (5.11). 
The coupling constants {gt } and {λt } correspond to the metric and torsion on this manifold, 
respectively [42]. However, a unique metric cannot be defined, since the theory (5.11) lacks the 
Lorentz invariance that is often assumed for sigma models. Thus, we have a non-Lorentz invariant 
flag manifold sigma model, just as was the case in [35] where self-conjugate SU(3) chains were 
considered. In the following section, we will use the renormalization group to show that at low 
enough energies, it is possible for the distinct velocities occurring in our model to flow to a single 
value, so that Lorentz invariance emerges.

6. Velocity renormalization

Recently, the Lorentz invariant versions of the above flag manifold sigma model were studied 
in great detail in [42]. In particular, the renormalization group flow of both the {gt} and {λt } were 
determined for general n. Moreover, field theoretic versions of the LSMA theorem were formu-
lated, using the methods of ’t Hooft anomaly matching (which we review below, in Section 7). In 
this paper, we would like to apply these results to our SU(n) chains which lack Lorentz invariance 
in general. To do so, we consider the differences of velocities occurring in (5.11), namely

�tt ′ := vt − vt ′, (6.1)

and ask how they behave at low energies. More precisely, we calculate the one-loop beta func-
tions of these �tt ′ , to O(gt ) and O(λt ). We will find that each of the �tt ′ flows to zero under 
renormalization; moreover, we will show that this implies Lorentz invariance at our order of 
approximation. This is consistent with the fundamental SU(n) models with p = 1, where it is 
known by Bethe ansatz that Lorentz invariance is present [43–45]. Our calculations were mo-
tivated by a similar phenomenon in 2+1 dimensional systems, where an interacting theory of 
bosons and Weyl fermions renormalizes to a Lorentz invariant model [54,55].

6.1. Goldstone mode expansion

In the following, it will be useful to introduce dimensionless velocities, ut , defined according 
to

ut := vt

v̄
v̄ = 1


n�

 n

2 �∑
vt , (6.2)
2 t=1
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and introduce new spacetime coordinates which both have units of (length · time)1/2:

x → x√
v̄

τ → √
v̄τ. (6.3)

In these units, �tt ′ = ut − ut ′ . The coefficients {gt } appearing in (5.11) are dimensionless, and 
are all proportional to 1

p
. Since we’ve taken a large p limit, we will expand all quantities in 

powers of the {gt }. As we will see below, the coefficients {λt} in (5.11) do not enter into our 
one-loop calculations, and so we will neglect them throughout.

Since we are interested in the low energy dynamics of these quantum field theories, we make 
the simplifying assumption that the matrices U are close to the identity matrix, and expand 
them in terms of the SU(n) generators. If we use Greek letters to index the diagonal generators, 
and lower case Latin letters to index the off-diagonal generators, then it turns out that we may 
factorize any SU(n) matrix U according to

U = DV

{
D = eiφγ Tγ

V = eiφaTa
. (6.4)

This is proven in Appendix C. Since D is diagonal, we see that it drops out from the traces:

tr[U∂μU†�α∂μUU†�β ] = tr[V ∂μV †�α∂μV V †�β ] (6.5)

Therefore, when deriving the Lagrangian of the {θ}, we may write U in terms of the off-diagonal 
generators only:

U = eiθaTa = 1 + iθaTa − 1

2
θaθbTaTb +O(θ3). (6.6)

Throughout, repeated indices will be summed over. We choose a convenient normalization in 
which the off-diagonal generators have entries 1 or ±i, and satisfy

[Ta,Tb] = 2ifabCTC. (6.7)

Here and throughout, upper case Latin letters are used to index the complete set of SU(n) gener-
ators (including the diagonal ones). These generators are n × n matrices that have a very specific 
structure. There are n − 1 diagonal ones, and n(n − 1) off-diagonal ones, that come in pairs. 
For each pair of integers {α, β} with α, β = 1, · · · , n and α �= β , there are exactly two genera-
tors with nonzero (α, β) entries. We define Iαβ to be the set of two indices corresponding to the 
SU(n) generators with nonzero (α, β) entries. For example, in SU(3), the off-diagonal genera-
tors (in Gell-Mann’s notation) are T1, T2 with nonzero entries in the (1, 2) positions; T4, T5 with 
nonzero entries in the (1, 3) positions; and T6, T7 with nonzero entries in the (2, 3) positions. 
Then,

I12 = {1,2} I13 = {4,5} I23 = {6,7}. (6.8)

With this notation, we show in Appendix D that, to O(θ4),

−tr[∂μUU†�α∂μUU†�β ] (6.9)

=
∑

a∈Iαβ

[
(∂μθ2

a )+2fbca∂μθa∂μθbθc + 4

3
fbcEfEda∂μθa∂μθbθcθd +∂μθeθb∂μθcθdfebafcda

]
.

To obtain the full Lagrangian, we must now sum over the possible combinations of α and β . 
Since
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n∑
α<β

∑
a∈Iαβ

:=
n∑

β=2

β−1∑
α=1

∑
a∈Iαβ

=
∑
a

, (6.10)

where 
∑

a again denotes a sum over all the off-diagonal generators of SU(n), the non-interacting 
Lagrangian has the form

L0 = 1

ga

[
1

ua

(∂τ θa)
2 + ua(∂xθa)

2
]

, (6.11)

where

ga := g|α−β|
∣∣∣
Iαβ�a

ua := u|α−β|
∣∣∣
Iαβ�a

. (6.12)

and again, all repeated indices are summed over. We rescale the fields according to

θa �→
√

ga

2
θa (6.13)

to yield

L = 1

2

[
1

ua

(∂τ θa)
2 + ua(∂xθa)

2
]

+
√

gagbgc√
2

ha(μ)

ga

fbca∂μθa∂μθbθc (6.14)

√
gbgcgd

4

ha(μ)

ga

[√
ge∂μθe∂μθbθcθdfecafbda + 4

3
fbcEfEda

√
ga∂μθa∂μθbθcθd

]
+O(θ5),

where

ha(μ) =
{

1
ua

μ = τ

ua μ = x
. (6.15)

6.2. Renormalization group equations

In order to derive the renormalization group equations for the model (6.14), we introduce a 
set of renormalization coefficients, {Zμ

a } and {Ze
μabcd}, as follows. Since (6.14) has divergences 

at one-loop order, we rewrite the theory in terms of renormalized parameters, as

L = 1

2

[
Zτ

a

1

ur
a

(∂τ θa)
2 + ur

aZ
x
a (∂xθa)

2
]

+ Z
(1)
μabc

√
gr

ag
r
bg

r
c√

2

hr
a(μ)

gr
a

fbca∂μθa∂μθbθc (6.16)

+
√

gr
bg

r
cg

r
d

4

hr
a(μ)

gr
a

[
Z

(2),e
μabcd

√
gr

e∂μθe∂μθbθcθdfecafbda

+ Z
(3)
μabcd

4

3
fbcEfEda

√
gr

a∂μθa∂μθbθcθd

]
+O(θ5).

The superscripts ‘r’ emphasize that the coupling constants and velocities appearing in (6.16)
are different from those appearing in (6.14) (and are not indices to be summed over). Each of 
the renormalization coefficients has the form Z = 1 + δZ, where δZ is a one-loop counterterm 
regularizing any UV divergence. In Appendix E, we use dimensional regularization to calculate 
the {δZ} at a fixed energy scale M . Then, by rescaling

θa →
(

1
x τ

)1/4

(6.17)

ZaZa
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in (6.16), and comparing (∂xθa)
2 terms in (6.14) and (6.16), we obtain the following equation 

for ur
a :

ua = ur
a

√
Zx

a

Zτ
a

. (6.18)

The derivative of ur
a with respect to logM ,

βua := dur
a

d logM
, (6.19)

is the so-called ‘beta function’ of ua , and describes the flow of ua as the energy scale, M , is 
changed. It is important to note that since this equation only depends on Zτ

a and Zx
a , we are only 

tasked with calculating divergences of two-point functions in our lowest order regularization 
scheme. In Appendix E, we show that for a ∈ Iαβ , with t = |α − β|, that

Zτ
a = 1 + Mεgaua

2πε

( n−1∑
i=1
i �=t

1

uigi

g|t−i| − 1

3gaua

[
ga + 1

2

∑
c

gc

])
(6.20)

and

Zx
a = 1 + Mεga

2πuaε

( n−1∑
i=1
i �=t

ui

gi

g|t−i| − ua

3ga

[
ga + 1

2

∑
c

gc

])
. (6.21)

(no sum over a). Inserting these into (6.19), and using (6.18), we find that for t = 1, 2, · · · , q :=

n

2 �,

βut = utgt

4π

n−1∑
i=1
i �=t

g|t−i|
gi

[
ut

ui

− ui

ut

]
. (6.22)

6.3. Renormalization of velocity differences

We want to study the renormalization group flow of the velocity differences, �tt ′ defined in 
(6.1). As mentioned above, the identity ut = un−t reduces the number of independent velocities 
to q = 
n

2 �, and the relation

�tt ′ = �t1 + �1t ′ = �1t ′ − �1t (6.23)

shows that the number of independent velocity differences to q − 1. To study their flow collec-
tively, we introduce a q − 1-component vector, �, with components

�i := �1,i+1 i = 1,2, · · · , q − 1. (6.24)

If we assume that the velocities {ut} are initially close together, so that the SU(n) chain is ap-
proximately Lorentz invariant, the vector � will obey an equation of the form

d
� = R� (6.25)
d logM
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for a (q − 1) × (q − 1) matrix R. The spectrum of R will reveal the low energy behavior of 
the �tt ′ : if the spectrum is strictly positive, we may conclude that all velocity differences flow 
to zero in the IR. In Appendix F, we provide the formulae for R up to O(�). These equations 
are quite formidable, and we cannot treat them analytically in general. We consider some special 
cases, including the highly symmetric point when all of the coupling constants {gt} are equal. In 
this case, we find

R = g�t

2π
(n − 1)Iq−1 (6.26)

showing that the spectrum of R is strictly positive. Moreover, for n = 4, 5, 6, we verify explic-
itly that the spectrum of R is strictly positive. Also in Appendix F, we discuss our (simplistic) 
numerical checks that suggest the spectrum of R is strictly positive for n ≤ 50. Based on these 
results, we conjecture that the spectrum of R is strictly positive for all n, so that at low enough 
energies, all of the flavor wave velocities flow to a common value if they are initially close to the 
same value.

So far, we have verified that the velocity differences �tt ′ in our FMSMs flow to zero at low 
energies. However, we now claim that this is sufficient to conclude that the entire theory (5.11) is 
Lorentz invariant at low energies. We note that we are not required to restore the pure-imaginary 
λ-terms occurring in (5.11), since they are proportional to εμν∂μφ∂νφ, a Lorentz scalar. Indeed, 
since the interaction vertex receives no O(g) correction, the only spacetime-dependence enters 
through the renormalization of {ht(μ)} and through the renormalization of the fields {θa} them-
selves. Since the latter are independent of μ (see (6.20) and (6.21)), the Lorentz non-invariance 
of the interactions is entirely captured by the {ht(μ)}. Since ut −u′

t → 0 implies u−1
t −u−1

t ′ → 0
at O(g), we may use the results of the previous subsection to conclude that the {ht(μ)} all flow 
to a common value {h(μ)}, and thus Lorentz invariance of the entire model (5.11) is possible if 
the velocities are initially close to each other.

7. Flag manifold sigma models and ’t Hooft anomaly matching

Based on the renormalization group analysis in the previous section, we now argue that at 
low enough energies, the SU(n) chains in the symmetric-p irreps (without fine-tuning), may be 
described by a Lorentz invariant flag manifold sigma model

L =
∑
α<β

1

g|α−β|
tr[�αU∂μU†�β∂μUU†] − εμν

∑
α<β

λ|α−β|tr[∂μUU†�α∂νUU†�β ] (7.1)

with topological theta-term

Stop = iθ

n−1∑
α=1

αQα θ := 2πp

n
. (7.2)

These sigma models have been studied recently [39,40,42]. In [42], the renormalization group 
flow of the {λ} and the {g} were determined, and given a geometric interpretation. It was found 
that for n > 4, the {g} flow to a common value in the IR, and that for n > 6, the {λ} flow to zero 
in the IR. Thus we may expect an Sn (permutation group) symmetry to emerge at low enough 
energies, and for n > 6. It is known that in these Sn-symmetric models, the unique coupling 
constant g obeys [42]
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dg

d logM
= n + 2

4π
g. (7.3)

and the theory is asymptotically free.

7.1. ’t Hooft anomaly matching

Using the notion of ’t Hooft anomaly matching, both [42] and [41] were able to formulate a 
field-theoretic version of the LSMA theorem for the flag manifold sigma model in (7.1). In short, 
the presence of an ’t Hooft anomaly signifies nontrivial low energy physics; in one-dimension, 
this necessitates a gapless phase so long as the symmetries of the SU(n) chain are not sponta-
neously broken. It was shown that in these models, an ’t Hooft anomaly is present so long as 
p is not a multiple of n. Explicitly, it is a mixed anomaly between the PSU(n) := SU(n)/Zn

spin symmetry and the Zn translation symmetry of the n-site-ordered classical ground state. It 
is a PSU(n) symmetry, and not a SU(n) symmetry, because of a Zn subgroup of SU(n) that 
acts trivially on each term in the field theory. When this anomaly is present, the gapped phase 
must have spontaneously broken translation or PSU(n) symmetry; the latter is ruled out by the 
Mermin-Wagner-Coleman theorem at any finite temperature. In the gapped phase, the ground 
state degeneracy is predicted to be n

gcd(n,p)
, which is consistent with the LSMA theorem pre-

sented above [56]. It is interesting to note that when the classical ground state has a different 
structure, as in the ground state of the two-site-ordered self-conjugate SU(3) chains, [35] no 
anomaly occurs. This is consistent with the fact that the proof of the LSMA theorem also fails 
for such representations.

The authors of [42] then argued that while an anomaly is present whenever p mod n �= 0, 
an RG flow to an IR stable WZW fixed point is possible only when p and n have no nontrivial 
common divisor. In this case, the flow is to SU(n)1, and can be understood as being driven by the 
trace of the adjoint operator with a particular sign of coupling constant [57,58]. Otherwise, the 
candidate IR fixed point is SU(n)q , where q = gcd(n, p), which is unstable and requires fine-
tuning in order for the flag manifold sigma model to flow there. Also, there is no possible flow 
from this unstable theory to SU(n)1, since this would violate the anomaly matching conditions 
derived in [56] for generic SU(n) WZW models.

Based on these anomaly arguments, we see that the rank-p symmetric SU(n) chains may flow 
to a SU(n)1 WZW model if p and n do not have a common divisor. In this case, we expect 
gapless excitations to appear in the spectrum. This gapless phase will occur so long as the field 
theory describing the chain remains in its weak coupling regime (see Fig. 6). This should be 
the case for the family of Hamiltonians that we’ve considered, since it is true for the exactly 
solvable p = 1 case, and the coupling constants gt (see (5.12) are decreasing functions of p. 
For Hamiltonians whose field theories are in the strong coupling regime, translation symmetry 
is spontaneously broken and the ground state is n-fold degenerate. This prediction is a natural 
extension of the phase diagrams occurring in [57] and [12].

When p and n have a nontrivial common divisor, but p is not a multiple of n, the above 
anomaly arguments imply that translation symmetry is always spontaneously broken. Finally, 
when p is a multiple of n, there is no ’t Hooft anomaly, which is consistent with the fact that 
AKLT-like models can be constructed in this case.

We note that when p and n have a common divisor, at least one of the topological angles 
occurring in (7.2) is necessarily trivial. In the instanton gas picture of Haldane’s conjecture, each 
type of topological excitation must have a nontrivial topological angle in order to ensure total 



K. Wamer et al. / Nuclear Physics B 952 (2020) 114932 17
Fig. 6. A simplified phase diagram of the SU(n) chains we consider, as a function of coupling constant g when p and n
are coprime. A more accurate diagram would include 
 n

2 � different coupling constants – in this case, we predict a critical 
point described by SU(n)1 occurring somewhere in this multidimensional space.

destructive interference in half odd integer spin chains [59]. This might lead one to speculate that 
a similar mechanism is at play here in SU(n) chains.

8. Strong coupling analysis

As it was discussed in [12], and also in [60], in the strong coupling limit of (7.1), only the 
λ-terms and topological terms survive. We will neglect the λ-terms – for n > 6, this is justified 
by the fact that the λ parameters flows to zero under renormalization; for n ≤ 6, this is an added 
assumption that is made to simplify our analysis. In this case, with only the topological terms 
remaining, the path integral over the fields U can be rewritten as an integral over the topological 
charge densities, with the extra constraints that the total topological charges take integer values, 
and that the topological charge densities on each plaquette of the lattice sum to zero.

Z(θ1,θ2, . . . , θn)

=
∏
�r

⎡
⎢⎣

1/2∫
−1/2

. . .

1/2∫
−1/2

dq1(�r)dq2(�r) . . . dqn(�r)δ(q1(�r) + q2(�r) + · · · + qn(�r))
⎤
⎥⎦

× ei
∑

�r
(
θ1q1(�r)+θ2q2(�r)+···+θnqn(�r))

∑
Q2

δ

(∑
�r

q2(�r) − Q2

)∑
Q3

δ

(∑
�r

q3(�r) − Q3

)
· · ·
∑
Qn

δ

(∑
�r

qn(�r) − Qn

)
.

(8.1)

Note that we don’t have a Dirac term for 
∑

�r q1(�r), because by fixing all the other topological 
charges to Q2, Q3 . . . , Qn, the Q1 is uniquely determined due to the fact the topological charges 
densities sum up to 0. Using the Fourier transform of the Dirac comb∑

Q∈Z
δ(x − Q) =

∑
m∈Z

exp(i2πmx), (8.2)

we get

Z(θ1, θ2, . . . , θn) =
∑

{m2,...mn}
z(θ1, θ2 + 2πm2, . . . , θn + 2πmn)

V , (8.3)

where V is the spacetime volume and

z(θ1, θ2, . . . , θn) (8.4)

=
1/2∫

. . .

1/2∫
dq1dq2 . . . dqnδ(q1 + q2 + · · · + qn) exp

[
i
(
θ1q1 + θ2q2 + · · · + θnqn

)]
.

−1/2 −1/2
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Using the Fourier transform of the Dirac-δ function, and switching the order of integration, 
we have

z(θ1, θ2, · · · , θn) =
∞∫

−∞

dk

2π

n∏
α=1

2 sin
( 1

2 (k − θα)
)

(k − θα)
. (8.5)

We assume that the topological angles are ordered and all different: θ1 < θ2 < · · · < θn. In Ap-
pendix G, we use the method of contour integration to evaluate (8.5), which depends on the parity 
of n.

Case 1: n odd

z(θ1, θ2, · · · , θn) =
n∑

β=1

∑
{s1,··· ,sβ−1,sβ+1,··· ,sn}∑

α �=β sα=0

cos
(

1
2

∑
α �=β sαθα

)
∏n

α �=β(θβ − θα)
, (8.6)

where the second sum is over all sets {s1, · · · , sβ−1, sβ+1, · · · , sn} with si ∈ {−1, +1}, that satisfy ∑n
α �=β sα = 0.

Case 2: n even

z(θ1, θ2, · · · , θn) =
∑

{s1,s2,··· ,sn}∑
α sα=0

sin

(
1

2

∑
α

sαθα

)⎡⎢⎢⎣∑
β:

sβ=1

1∏n
α �=β(θβ − θα)

⎤
⎥⎥⎦ . (8.7)

where the first sum is over all sets {s1, s2, · · · , sn} with si ∈ {−1, +1} that satisfy 
∑

α sα = 0.

8.1. Phase transitions and degeneracies

In the following we will use both symmetry arguments and numerical calculations based on 
the actual form of the partition function to explore the phase diagram in the strong coupling limit. 
According to Eq. (8.3) the partition function in the strong coupling limit reads as

Z(θ1, θ2, . . . , θn) =
∑

{m2,m3,...,mn}
z(θ1, θ2 + 2πm2, . . . , θn + 2πmn)

V ,

where the term(s) with the largest value dominate the sum, and therefore the free energy density 
reads as

f (θ1, θ2, . . . , θn) = − log
(

max{m2,m3,...,mn} z(θ1, θ2 + 2πm2, . . . , θn + 2πmn)
)
. (8.8)

Using the notation

z{m2,m3,...,mn}(θ1, θ2, . . . , θn) ≡ z(θ1, θ2 + 2πm2, . . . , θn + 2πmn), (8.9)

for the versions of z(θ1, θ2, . . . , θn), the partition function reads as

Z(θ1, θ2, . . . , θn) =
∑

z{m2,m3,...,mn}(θ1, θ2, . . . , θn)
V . (8.10)
{m2,m3,...,mn}
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The region where the z{m2,...mn} term dominates the sum will be called the R{m2,m3,...,mn} sector.
It is easy to see that the global maximum of z(θ1, . . . , θn) is at θ1 = θ2 = . . . θn = 0 since at 

this point the integrand in Eq. (8.4) is identically 1. So at (θ1, θ2, . . . θn) = (0, 0, . . . , 0) z{0,0,...0}
dominates partition function. We will call this the center of the R(0, 0, . . . , 0) sector. Similarly, 
the center of R{m2,m3,...,mn} will be at θ1 = 0, θ2 = −2πm2, . . . , θn = −2πmn. At the boundary 
between different sectors there are multiple equally large terms in the sum in the partition func-
tion. When we cross the boundary, the dominant term will change and therefore the derivative of 
the free energy will have a cusp, indicating a first order phase transition. The number of sectors 
meeting at a given point will give the degeneracy at the transition. In the following we will use 
symmetry arguments to locate possible phase transitions, and then we will compare our findings 
to actual numerical results.

Shifting all angles by the same value � will leave z unchanged, as will any permutation of 
the topological angles. Therefore we have

z(θ1, θ2, . . . , θn) = z(θP1 + �,θP2 + �, . . . , θPn
+ �) (8.11)

for any permutation P ∈ Sn. We further note that changing the sign of all angles simultaneously 
is also a symmetry, so

z(θ1, θ2, . . . , θn) = z(−θP1 + �,−θP2 + �, . . . ,−θPn
+ �). (8.12)

is also true for any permutation P. Based on these we can formulate a condition for two terms 
z{m2,m3,...,mn} and z{n2,n3,...,nn} to be degenerate at a given (θ1, θ2, . . . , θn) point. By definition 
they are equal if

z(θ1, θ2 + 2π m2, . . . , θn + 2π mn) = z(θ1, θ2 + 2π n2, . . . , θn + 2π nn), (8.13)

which can happen if the angles on the right hand side are a permutation of the ones on the left 
(up to a constant shift), i.e.

(θP1 + 2π mP1 , θP2 + 2π mP2 , . . . , θPn
+ 2π mPn

)

= (θ1 + 2π l1, θ2 + 2π l2 . . . , θn + 2π ln) + �,
(8.14)

or if

(θP1 + 2π mP1 , θP2 + 2π mP2 , . . . , θPn
,+2π mPn

)

= −(θ1 + 2π l1, θ2 + 2π l2 . . . , θn + 2π ln) + �,
(8.15)

where on the left hand side m1 = 0.
In the following we will focus on the case when θα = θ(α − 1), and in particular on the 

specific points with θ = 2πp/n that correspond to translational invariant chains of spins in the 
fully symmetric p-box irrep. For these points the cyclic permutations P (k)

α = α + k (mod n), with 
k = 1, 2, . . . , n − 1 always give a solution of Eq. (8.14), for any given {m2, m3, . . . , mn},
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2kπp
n

+ 2πmk+1
2(k+1)πp

n
+ 2πmk+2

2(k+2)πp
n

+ 2πmk+3
...

2(n−1)πp
n

+ 2πmn

0
2πp
n

+ 2πm2
...

2(k−1)πp
n

+ 2πmk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2πp
n

+ 2πl2
4πp
n

+ 2πl3
...

2(n−k−1)πp
n

+ 2πln−k
2(n−k)πp

n
+ 2πln−k+1

2(n−k+1)πp
n

+ 2πln−k+2
...

2(n−1)πp
n

+ 2πln

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ �(k), (8.16)

which gives

�(k) = 2πpk

n
+ 2πmk+1,

l2 = mk+2 − mk+1,

l3 = mk+3 − mk+1,

...

ln−k = mn − mk+1,

ln−k+1 = m1 − mk+1 − p,

ln−k+2 = m2 − mk+2 − p,

...

ln = mk − mk+1 − p.

(8.17)

where we included m1 = 0 to better show the pattern. If n and p are coprime, each P(k) will give 
a different {l2, l3, . . . , ln} solution. By summing the n equations, we can verify that two different 
cyclic permutations P(k) and P(k′) can only give the same solution for the lαs if �(k′) = �(k). 
This cannot happen if n and p are coprime because �(k′) − �(k) �= 0(mod 2π) no matter what 
are the values of mk, mk′ . For the same reason each {l2, l3, . . . , ln} solution is different from 
{m2, m3, . . . , mn} as well. So for any given z{m2,m3,...,mn}, we always find n − 1 other degenerate 
terms in the partition function, resulting in a degeneracy that has to be a multiple of n, as long 
as gcd(n, p) = 1. For the actual form of the partition function for small n we always find a 
degeneracy n when gcd(n, p) = 1. This argument is analogous to the argument of [42] and [41], 
using the anomaly due to the Zn symmetry present at the θα = 2πp(α − 1)/n points.

If gcd(n, p) = q > 1 not all P(k) give a necessarily different solution for a given {m2, m3,

. . . , mn}. A P(k) can give a trivial solution of Eq. (8.14) (i.e. where mα = lα) if �(k) = 0, which 
is only possible if k is a multiple of r = n/q . In this case we can still use the previous arguments 
to show that P (1), P(2), . . .P(r−1) give different solutions for any {m2, m3, . . . , mn}. But, for 
example, if a term {m2, m3, . . . , mn} satisfies

2απp

n
+ 2πmα+1 = 2(α + r)πp

n
+ 2πmα+r+1, (8.18)

for all α, then the P(r) cyclic permutation gives the trivial solution mα = lα , and the permutation 
P(r+k) will also give the same solutions as the P(k), so we will only get r distinct sectors, giving 
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an r-fold degeneracy. For the actual form of the partition function for small n this is indeed the 
case, and we typically find a degeneracy of r = n/ gcd(n, p).

8.2. The case of θ < 2π/n

As we mentioned before, for θ = 0 the z{0,0,...,0} term dominates the partition function, and 
here we show that the symmetry arguments predicts it to remain non-degenerate for all θ < 2π/n. 
This can be easily seen by looking at Eqs. (8.14) and (8.15) for a general permutation P and 
{m2, m3, . . . , mn} = {0, 0, . . . , 0}:(

(P1 − 1) · θ, (P2 − 1) · θ, . . . , (Pn − 1) · θ)
= (0, θ + 2πl2,2θ + 2πl3, . . . , (n − 1)θ + 2πln

)+ �(
(P1 − 1) · θ, (P2 − 1) · θ, . . . , (Pn − 1) · θ)
= −(0, θ + 2πl2,2θ + 2πl3, . . . , (n − 1)θ + 2πln

)+ �

(8.19)

Taking the difference of the (α + 1)st and αth terms on both sides we get

±(Pα+1 −Pα)θ = θ + 2π(lα+1 − lα) (8.20)

The right hand side is between −(n − 1)θ and (n − 1)θ , so if θ < 2π/n this only has a 
trivial solution lα = 0. Since at θ = 0 the z{0,0,...,0} is the unique dominant term in the par-
tition function, there is no symmetry required degeneracy until θ = 2π/n. Note that there 
could be accidental degeneracies, i.e. degeneracies that are not due to any symmetry of the 
z(θ1, θ2, . . . , θn). However, considering the actual form of z(θ1, θ2, . . . , θn) for finite n, we find 
that indeed z{0,0,...,0} is the unique dominant term until θ = 2π/n. At θ = 2π/n, consider-
ing {m2, m3, . . . , mn} = {0, 0, . . . , 0} Eq. (8.17) gives the nontrivial solutions {l2, l3, . . . , ln} =
{0, 0, . . . , 0, −1}, {0, 0, . . . , 0, −1, −1},. . . ,{−1, . . . , −1}, corresponding to an n-fold degener-
acy.

Similar arguments can be made for the 2(n − 1)π/n < θ < 2π interval, where the 
z{−1,−2,...,−(n−1)} term dominates the partition function. At θ = 2(n − 1)π/n, this becomes 
degenerate with the z{−1,−2,...,−(n−2),−(n−2)}, z{−1,−2,...,−(n−3),−(n−3),−(n−2)}, . . . ,
z{−0,−1,...,−(n−2)} terms, giving the n-fold degeneracy.

8.3. Examples

Here we show results of the free energy density for SU(3)to SU(6), along the θα = θ(α − 1)

line which connects the points corresponding to various p-box fully symmetric irreps. The results 
fully agree with the prediction of the LSMA theorem and the symmetry arguments above.

8.3.1. SU(3)

Results for SU(3) were already presented in [12], here we give a short overview, and dis-
cuss the transitions from the point of view of the symmetry arguments. Note that here we use 
a different convention and set θ1 = 0, while in [12], θ2 was set to 0. The different R{m2,m3}
sectors are shown on Fig. 7a, while the free energy is depicted along the θα = θ(α − 1) line 
on Fig. 7b. As discussed before, starting from θ = 0, the first phase transition takes place at 
θ = 2π/3, where sectors R{0,0}, R{0,−1}, R{−1,−1} meet, resulting in a threefold degeneracy. 
For 2π/3 < θ < 4π/3, the degenerate z{0,−1}, z{−1,−1} sectors dominate the partition function. 
These two terms are degenerate for any θ along the θα = θ(α − 1) line, which can be seen from 



22 K. Wamer et al. / Nuclear Physics B 952 (2020) 114932
Fig. 7. (a) Phase diagram of the SU(3) model, with θ1 = 0 fixed, highlighting the different sectors and the special 
θα = θ(α − 1) line. (b) The free energy density along the θα = θ(α − 1) line, showing the degeneracies in the different 
regions.

Eq. (8.15) using the permutation that exchanges θ1 and θ3, but they are dominant only in the 
2π/3 < θ < 4π/3 interval. Note however that not all terms in the partition function have de-
generate pairs along this line – for example the z{0,0} is not degenerate with any other terms 
for general θ– so it is possible that for some exotic form of z, there would be no degeneracy 
for 2π/3 < θ < 4π/3. A similar argument was also made on the basis of anomaly and global 
inconsistency matching in [41] (see also [61] for further evidence in support of the SU(3) phase 
diagram, which comes from considering the sigma model on R × S1 with twisted boundary 
conditions). Note that the threefold degeneracy at θ = 2π/3 and θ = 4π/3 is always present 
independently of the form of z or of the dominant terms.

8.3.2. SU(4)

By fixing θ1 = 0, we can still plot the phase diagram of the SU(4) case. In Fig. 8a, we 
depict the R{0,0,0} sector, which has corners that are the permutations of the (θ1, θ2, θ3, θ4) =
(0, π/2, π, 3π/2) point. In Fig. 8b we show a neighboring sector, which also contains the 
(θ1, θ2, θ3, θ4) = (0, π, 2π, 3π), clearly showing that at that point only two sectors meet. In 
Fig. 8c we show the free energy density along the θα = θ(α − 1) line together with the de-
generacies. Once again the degeneracies at the θ = 2πp/4 points are the same as predicted by 
the symmetry arguments. Between π/2 < θ < π the z{0,−1,−1} term dominates the free energy, 
while between π/2 < θ < π it is the z{−1,−1,−2}. At θ = π these two terms give the 2-fold 
degeneracy.

8.3.3. SU(5)

In the case of SU(5) all θ = 2πp/5 points are fivefold degenerate as expected, while in the 
intervals in between, the system is twofold degenerate. Similarly to the SU(3) case this degen-
eracy is due to the actual form of z, and could be removed if a different sector is dominant in 
this interval. In Fig. 9a, we show the free energy density together with the degeneracies along 
the θα = θ(α − 1) line. At the θ = 2πp/5 points we find fivefold degenerate transition points. 
In the intervals 0 < θ < 2π/5 and 8π/5 < θ < 2π the system is trivial, while in the other in-
tervals 2πp/5 < θ < 2π(p + 1)/5 the phases are twofold degenerate. For any prime n, the free 
energy should have a similar form, with n-fold degenerate transition points at θ = 2πp/n and 
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Fig. 8. (a) The R{0,0,0} sector for SU(4) case, highlighting the θα = θ(α − 1) line and the θ = 2π/4 point in particular. 
(b) The R{0,0,0} and R{0,−1,−1} sectors with the θα = θ(α − 1) line and the θ = π/2 and θ = π/ points. (c) The free 
energy density along the θα = θ(α − 1) line, showing the degeneracies in the different regions.

Fig. 9. Free energy density along the θα = θ(α − 1) line for SU(5) (a) and SU(6) case (b). We highlight the degeneracies 
in the different regions and at the transition points. In the case of SU(6), we also highlight the unexpected transitions at 
the θ ≈ 2.45629 and at θ = 3.82689.

2-fold degeneracy in between, except for θ < 2π/n and θ > 2π(n − 1)/n, where the system is 
trivial. More generally, the number of n-fold degenerate points in the free energy is φ(n) − 1, 
where φ(n) is the Euler totient function, which counts he number of integers 1 ≤ k ≤ n with 
gcd(k, n) = 1.

8.3.4. SU(6)

In the SU(6) case, the free energy density presented in Fig. 9b shows some unexpected 
features. For the θ = 2πp/6 points we find phase transitions with the expected degeneracies: 
for p = 1, 5 the system is sixfold degenerate, while for p = 2, 4 and p = 3 it is three- and 
twofold degenerate, respectively. However, we find two other transition points at θ ≈ 2.45629
and θ = 3.82689, where three sectors meet, and a transition takes place from a twofold degener-
ate phase to a trivial phase. Interestingly, the location of this transition point is not fixed by any 
symmetry. Take for example the θ ≈ 2.45629 point. For θ < 2.45629 the twofold degeneracy is 
the result of the meeting of the R{−1,−1,−1,−2,−2} and the R{0,−1,−1,−1,−2} sectors, their degener-
acy is explained by Eq. (8.15), taking the permutation P that reverses the order of the topological 
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angles, (θ1, θ2, . . . , θ6) → (θ6, θ5, . . . , θ1). For θ > 2.45629, however, it is the z{0,−1,−1,−2,−2}
term that alone dominates the partition function. The location of the transition between these 
two phases is neither fixed by Eq. (8.14) nor by Eq. (8.15); it is an accidental degeneracy. By 
symmetry a similar transition takes place at θ ≈ 3.82689. Note that while these symmetries are 
not predicted by the symmetry considerations, they can by expected by the degeneracies. For 
θ � 2π/3 the system is twofold degenerate, if there were no additional transition between 2π/3
and π (nor between π and 4π/3), then at θ = π we would have 2+2 sectors meeting resulting 
in a fourfold degeneracy at least. As a result, small perturbations that preserve the symmetries 
can tune the location of these unexpected transitions, but they cannot be removed unless they are 
merged either with the transition at θ = π or with the ones at θ = 2π/3 and θ = 4π/3.

9. Conclusions

In this paper, a low energy field theory was derived for SU(n) chains in the rank-p symmetric 
irrep, in the limit of large p. Using the renormalization group, it was shown that this field theory 
may flow to a Lorentz invariant flag manifold sigma model at low energies, a model that was 
recently studied in great detail by Ohmori et. al. in [42]. Based on the ’t Hooft anomaly matching 
conditions in [42] and [56], as well as the LSMA theorem, generalized AKLT constructions and 
a strong coupling analysis, we proposed the following generalization of Haldane’s conjecture to 
SU(n) chains: When p is an integer multiple of n, the corresponding chain is in a gapped phase 
with a unique ground state. When p is not a multiple of n but gcd(p, n) > 1, a gapped phase is 
also present, but the ground state is degenerate, with degeneracy n/ gcd(p, n). Finally, when p
and n have no common divisor, and the system’s field theory description is in the weak coupling 
regime, there are gapless excitations above the ground state, with a critical point described by 
an SU(n)1 WZW model. The SU(n) generalization of the Heisenberg model, containing bilinear 
operators only, lies in this regime. For systems whose field theories are at strong coupling, spon-
taneously broken Zn symmetry is predicted, with an n-fold degenerate ground state. Numerical 
verification of this conjecture remains a major open challenge.
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Appendix A. Details of field theory derivation

A.1. Hamiltonian

In this appendix, we provide a detailed derivation of the field theory appearing in Section 5. 
Our starting point is (5.2), which is reproduced here for convenience:
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φα =
∑
β

1

p
Lα

βϕβ +√1 − μ(α)ϕα. (A.1)

The matrix L is off-diagonal and Hermitian, and μ(α) is defined in (5.3). Note that both ϕ and 
L are allowed to vary from site to site, which is a slightly different approach than the one used in 
[12]. Since φ∗

α is labeled by a lower index, our notation leads to (Lα
β)∗ = Lα

β and (Uα
β )∗ = [U†]αβ . 

Using (A.1), we write

Sα
β (jγ ) = pφ∗,α

γ (jγ )φ
γ
β (jγ ) = p

∑
δ,σ

L̃δ
γ (jγ )U

†,α
δ (jγ )L̃γ

σ (jγ )Uσ
β (jγ ) (A.2)

where we’ve defined L̃α
β = 1

p
Lα

β when α �= β , and L̃α
α = √

1 − μ(α). This can be rewritten as

Sα
β (jγ ) = pL̃γ

γ (jγ )
∑
δ �=γ

(
L̃δ

γ (jγ )U
†,α
δ (jγ )U

γ
β (jγ ) + U†,α

γ (jγ )L̃
γ
δ (jγ )Uδ

β(jγ )
)

(A.3)

+ p
[
L̃γ

γ (jγ )
]2

U†,α
γ (jγ )U

γ
β (jγ ) + p

∑
δ,σ �=γ

L̃δ
γ (jγ )U

†,α
δ (jγ )L̃γ

σ (jγ )Uσ
β (jγ ).

Using

L̃γ
γ L̃δ

γ = L̃δ
γ +O(p−2) (A.4)

we have

Sα
β (jγ ) =

∑
δ �=γ

(
Lδ

γ (jγ )U
†,α
δ (jγ )U

γ
β (jγ ) + U†,α

γ (jγ )L
γ
δ (jγ )Uδ

β(jγ )
)

(A.5)

+ p(1 − μ(γ ))U†,α
γ (jγ )U

γ
β (jγ ) + p−1

∑
δ,σ �=γ

Lδ
γ (jγ )U

†,α
δ (jγ )Lγ

σ (jγ )Uσ
β (jγ ).

In matrix form, this is

Sα
β (jγ ) = pU†�γ U + U†{L,�γ }U + p−1U†Lγ U, (A.6)

where

Lα
β(jγ ) = Lα

γ (jγ )L
γ
β (jγ ) − p2μ(γ )[�γ ]αβ. (A.7)

This proves (5.4). With this, we proceed to calculate

tr[S(jγ )S(jη)] =
2∑

i=1

Xi(γ, η) +
4∑

i=3

(Xi(γ, η) + Xi(η, γ )) +O(p−2), (A.8)

with

X1(γ, η) := p2tr[U†(jγ )�γ U(jγ )U†(jη)�ηU(jη)] (A.9)

X2(γ, η) := tr[U†(jγ ){L(jγ ),�γ }U(jγ )U†(jη){L(jη),�η}U(jη)] (A.10)

X3(γ, η) := ptr[U†(jγ ){L(jγ ),�γ }U(jγ )U†(jη)�ηU(jη)] (A.11)

X4(γ, η) := tr[U†(jγ )L(jγ )U(jγ )U†(jη)�ηU(jη)] (A.12)

Since the matrices U, L, L are evaluated at different sites, we Taylor expand. For example,
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U(jγ ) = U(nj + (γ − 1)) = U(jη) + (η − γ )∂xU(jη) + 1

2
(η − γ )2∂2

xU(jη) + · · · (A.13)

We assume the derivate is uniform ( ∂xU(jη) = ∂xU(j ′
λ)), and consider each of the above terms 

separately. Since L characterizes a fluctuation, we treat it as the same order as ∂U . Finally, we 
suppress the argument jγ of each matrix throughout. Then:

• Term 1:

X1(γ, η) ≈ p2tr[�γ �η +(η−γ )2(U∂xU
†�γ ∂xUU†�η −�γ �η∂xU∂xU

†)]. (A.14)

Since �γ �η = 0 for γ �= η, this simplifies to

X1(γ, η) ≈ p2(η − γ )2tr[U∂xU
†�γ ∂xUU†�η]. (A.15)

• Term 3:

X3(γ, η) ≈ ptr[{L,�η}�γ ] + (η − γ )ptr[{L,�η}U∂xU
†�γ ] (A.16)

+ (η − γ )tr[{L,�η}�γ ∂xUU†]
Since the first term is a product of a diagonal and an off-diagonal matrix, its trace vanishes. 
What remains is a commutator:

X3(γ, η) = (η − γ )ptr
[
[{L,�η},�γ ]∂xUU†

]
, (A.17)

which simplifies to

X3(γ, η) = (η − γ )p
(
Lγ

η [U∂xU
†]ηγ + Lη

γ [∂xUU†]γη
)

. (A.18)

Note that X3(γ, η) = X3(η, γ ).
• Term 4: Since L contains two powers of L, we only have to expand U to zeroth order. We 

find

X4(γ, η) = |Lγ
η |2 = X4(η, γ ). (A.19)

• Term 2: A similar calculation shows that

X2(γ, η) = 2|Lγ
η |2 = X2(η, γ ). (A.20)

Finally, combining the results of these five calculations, we find

tr[S(jγ )S(jη)] = p2(η − γ )2trU∂xU
†�γ ∂xUU†�η (A.21)

+ 2(η − γ )p
(
Lη

γ [∂xUU†]γη + Lγ
η [U∂xU

†]ηγ
)

+ 4|Lη
γ |2 + const.

which is (5.6).

A.2. Berry phase term

Using (A.1), we have

∂τφ
α
β =
∑

∂τ L̃
α
γ U

γ
β + L̃α

γ ∂τU
γ
β , (A.22)
γ
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where L̃ is defined below (A.2). We neglect time derivatives of L̃, which are already small 
fluctuations. Then we have

φ∗
α · ∂τφ

α =
∑
δ,γ,β

L̃δ
αU

†,β
δ L̃α

γ ∂τU
γ
β (A.23)

=
∑
δ �=α

∑
β

[
Lδ

αU
†,β
δ ∂τU

α
β + U†,β

α L̃α
δ ∂τU

δ
β + (1 − μ(α))U†,β

α ∂τU
α
β

]
+O(p−2)

= tr[�α∂τUU†] + p−1tr[{�α,L}∂τUU†] +O(p−2). (A.24)

A.3. Integrating out L

The Lagrangian terms involving a given matrix element Lα
β are:

4(Jt + Jn−t )|Lα
β |2 − 2Lα

β

(
[∂τUU†]βα + p((n − t)Jn−t − tJt )[∂xUU†]βα

)
(A.25)

−2Lβ
α

(
[∂τUU†]αβ − p((n − t)Jn−t − tJt )[∂xUU†]αβ

)
where t := |α − β|. The ∂τ -dependent terms have come from the Berry term (5.10), and the 
∂x -dependent terms have come from

Jt tr[S(jα)S(jβ)] + Jn−t tr[S(jβ)S(jn+α)] (A.26)

in the Hamiltonian. Integrating over Lα
β , and using the identity∫

dzdz∗e−z∗ωz+uz+vz∗ = π

ω
euv/ω (A.27)

we are left with a real term,

Lreal
αβ = 1

n(Jt + Jn−t )
tr[�αU∂τU

†�β∂τUU†] (A.28)

− p2 [(n − t)Jn−t − tJt ]2

n(Jt + Jn−t )
tr[�αU∂xU

†�β∂xUU†]

as well as an imaginary term

Limag
αβ = p

((n − t)Jn−t − tJt )

n(Jt + Jn−t )

(
[∂xUU†]αβ [∂τUU†]βα − [∂τUU†]βα[∂xUU†]αβ

)
. (A.29)

The factor of n in the denominator comes from converting the sum over lattice sites with n-site 
unit cell, to an integral. To these terms, we must add the L-independent terms appearing in 
(Appendix A.21) and (Appendix A.24). They modify (A.28) to

Lreal
αβ → 1

n(Jt + Jn−t )
tr[�αU∂τU

†�β∂τUU†] + p2 Jn−t Jtn

(Jt + Jn−t )
tr[�αU∂xU

†�β∂xUU†].
(A.30)

Comparing the ratios of the pre-factors of the spatial and imaginary temporal terms, we identify 
the velocities of the theory as

v2 = n2p2Jn−t Jt , (A.31)
t
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where t = |α−β|. This agrees with the flavor wave velocities found in Section 4. Meanwhile, the 
terms in (Appendix A.24) modify (A.29) to produce the following purely-imaginary contribution 
to the Lagrangian:

Limag = −εμν

∑
α<β

λ|α−β|tr[∂μUU†�α∂νUU†�β ] − S (A.32)

where

S := p

n

∑
α

tr[�α∂τUU†] (A.33)

and

nλt

p
:= (n − t)Jn−t − tJt

Jt + Jn−t

(A.34)

Using the identity tr[∂UU†] = 0, which is proven in Appendix B, the integral of S can be shown 
to be a total derivative:

iS = 2πp

n

n∑
α=2

(α − 1)Qα (A.35)

where

Qα := 1

2πi
εμν

∫
dxdτ tr[∂μU∂νU

†�α]. (A.36)

Relabeling S = −Stop, and combining (A.32) with (A.30), we arrive at (5.11).

Appendix B. Proof of tr[∂τUU†] = 0

Let εα1α2···αn be the antisymmetric n-tensor, vanishing unless all indices are different in which 
case it equals ±1 depending on the sign of the permutation. We can write an arbitrary unitary 
matrix U as

U =

⎛
⎜⎜⎝

φ1
φ2
. . .

φn

⎞
⎟⎟⎠ (B.1)

where the φα are orthonormal complex vectors,

φα∗ · φβ = δα
β . (B.2)

We can write φn in terms of φ1, φ2, . . .φn−1:

φn∗
αn

= εα1,α2...αnφ
α1
1 φ

α2
2 . . . φ

αn−1
n−1 . (B.3)

This follows because

φn∗ · φ1 = εα1,α2...αnφ
α1
1 φ

α2
2 . . . φ

αn−1
n−1 φ

αn

1 (B.4)

and

εα α ...αnφ
α1φ

αn = 0. (B.5)
1 2 1 1
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Similarly

φn∗ · φα = 0 (B.6)

for α = 1, 2, 3, . . . n − 1. We use the identity

εα1α2,...αnεβ1β2...βn−1αn =
∑

{a1,a2,...an−1}
sgn{a1, a2, . . . aan−1}δα1

βa1
δ
α2
βa2

. . . δ
αn−1
βan−1

. (B.7)

Here the sum is over all permutations of a1, a2, . . . an−1. Eq. (B.2) and (B.7) imply

|φn|2 = 1, (B.8)

φn · ∂φn∗ = εα1α2...αnφ1∗
α1

φ2∗
α2

. . . φn−1,∗
αn−1

εβ1β2...βn−1αn [(∂φ
β1
1 )φ

β2
2 . . . φ

βn−1
n−1 + . . .]. (B.9)

Here the . . . is a sum over derivatives of each factor. Now we use

εα1α2...αnφ1∗
α1

φ2∗
α2

. . . φn−1,∗
αn−1

εβ1β2...βn−1αn(∂φ
β1
1 )φ2β2 . . . φ

βn−1
n−1 = φ1∗ · ∂φ1, (B.10)

which follows from Eqs. (B.2) and (B.7). So

φn · ∂φn∗ = φ1∗ · ∂φ1 + φ2∗ · ∂φ2 + . . . + φn−1,∗ · ∂φn−1. (B.11)

Thus

φn∗ · ∂φn = −φ1∗ · ∂φ1 − φ2∗ · ∂φ2 − . . . − φn−1,∗ · ∂φn−1, (B.12)

so
n∑

α=1

∂φα · φα∗ = tr[∂UU†] = 0. (B.13)

Appendix C. Factorization of SU(n) matrices

In this appendix, we prove a factorization identity for SU(n) matrices (6.4). Let Greek letters 
index the diagonal generators of SU(n), lower case roman letters index the off-diagonal genera-
tors of SU(n), and upper case roman letters index the full set of generators. That is,∑

A

TA =
∑
a

Ta +
∑
γ

Tγ . (C.1)

Then, given U = eiθATA ∈ SU(n), we may factorize it as follows:

U = eiφγ Tγ eiφaTa . (C.2)

We will prove this identity to third order in the φ and θ , but mention how the proof extends to 
every order in perturbation theory.

Proof. Using the Baker-Campbell-Hausdorff formula,

log(eXeY ) = X + Y + 1

2
[X,Y ] + 1

12
([X, [X,Y ]] − [Y, [X,Y ]]) + · · · (C.3)

we have
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log eiφγ Tγ eiφaTa = iφATA − 1

2
φγ φa[Tγ ,Ta] (C.4)

− i

12

(
φγ φβφa[Tγ , [Tβ,Ta]] − φγ φaφb[Ta, [Tγ ,Tb]

)+O(φ4)

which equals

= i
[
φA − φγ φbfγbA + 1

3

(
φγ φβφbfβbCfγCA − φγ φdφbfγbCfdCA

) ]
TA +O(φ4). (C.5)

The formula for the higher order terms occurring (C.3) and (C.4) are quite complicated, but 
always involve nested commutators. This important fact allows us to reduce every term in the 
expansion to one that is linear in the generators, TA. A term that is ∼ φn will involve n −1 nested 
commutators, leading to a contribution that is proportional to a product of n − 1 structure factors 
fabc , multiplied by a single SU(n) generator TA. Therefore, order-by-order, we may construct a 
mapping between the θA and the φA:

θA = φA − φγ φbfγbA + 1

3

(
φγ φβφbfβbCfγCA − φγ φdφbfγbCfdCA

)+O(φ4). (C.6)

To prove the factorization identity, we must be able to invert this formula. This is done by a 
repeated application of

φA = θA + φγ φbfγbA − 1

3

(
φγ φβφbfβbCfγCA − φγ φdφbfγbCfdCA

)+O(φ4). (C.7)

into each of the terms on the RHS. We find:

φA = θA + θγ θbfγbA + 2

3
θγ θβθbfβbefγ eA + 1

3
θγ θdθbfγ bCfdCA +O(θ4) (C.8)

Thus, for any SU(n) matrix U = eiθATA , we may perform this transformation to obtain the fac-
torized form occurring above. �
Appendix D. Goldstone mode expansion of the action

In this appendix, we derive (6.9). We use lower case roman letters to index the off-diagonal 
generators, and upper case Latin letters to index the complete set of generators. We start with

∂μUU† = i∂μθaTa +
[
∂μθaθb − 1

2
∂μ(θaθb)

]
TaTb (D.1)

− i

2

[
∂μθaθbθc − ∂μ(θaθb)θc + 1

3
∂μ(θaθbθc)

]
TaTbTc +O(θ4).

Since

∂μθaθb − 1

2
∂μ(θaθb) = 1

2

[
∂μθaθb − θa∂μθb

]
, (D.2)

we have[
∂μθaθb − 1

2
∂μ(θaθb)

]
TaTb = 1

2
∂μθaθb[Ta,Tb] = i∂μθaθbfabCTC. (D.3)

Since

∂μθaθbθc − ∂μ(θaθb)θc + 1

3
∂μ(θaθbθc) (D.4)

= 1
(∂μθaθbθc − θa∂μθbθc) + 1

(θaθb∂μθc − θa∂μθbθc),

3 3
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we have[
∂μθaθbθc − ∂μ(θaθb)θc + 1

3
∂μ(θaθbθc)

]
TaTbTc (D.5)

= −1

3
θa∂μθbθc ([Ta,Tb]Tc + Ta[Tb,Tc]) = −2i

3
θa∂μθbθcfabD[TD,Tc]

= 4

3
θa∂μθbθcfabDfDcETE.

Therefore, we have

∂μUU† = i∂μθaTa + i∂μθaθbfabCTC − 2i

3
fabDfDcEθa∂μθbθcTE +O(θ4). (D.6)

This yields

−tr[∂μUU†�α∂μUU†�β ] = ∂μθa∂μθbtr[Ta�αTb�β ] (D.7)

+
[
fbcE + 2

3
fbcDfDgEθg

]
∂μθa∂μθbθc

(
tr[Ta�αTE�β ] + tr[TE�βTa�α])

+ ∂μθaθb∂μθcθdfabEfcdGtr�αTE�βTG.

Now we want to simplify this by understanding

tr[Ta�αTb�β ] = [Ta]βα[Tb]αβ (D.8)

Since α �= β , tr[Ta�αTb�β ] vanishes if either of a or b is a diagonal generator. All of the 
off-diagonal generators have the same structure in SU(n) (discussed in the main text). Using the 
notation introduced above, we have

tr[Ta�αTb�β ] + tr[Tb�αTa�β ] =
{

2δab a, b ∈ Iαβ

0 else
. (D.9)

Returning to our calculation, we now have

−tr[∂μUU†�α∂μUU†�β ] (D.10)

=
∑

a∈Iαβ

[
(∂μθ2

a )+2fbca∂μθa∂μθbθc + 4

3
fbcEfEda∂μθa∂μθbθcθd +∂μθeθb∂μθcθdfebafcda

]

where all repeated indices are summed over.

Appendix E. Renormalization group calculations

We use dimensional regularization to evaluate one-loop diagrams in d = 2 − ε dimensions in 
(6.16). We drop all ‘r’ superscripts, and introduce the following compact notation:

g
(1)
abcd(μ) := Mε

4
√

gagbgcgdhe(μ)
facefbde

ge

(E.1)

g
(2)
abcd(μ) := Mεha(μ)

3

√
gagbgcgd

ga

fbcEfEda (E.2)

Again, all indices refer to off-diagonal SU(n) generators, except for the upper case letters, which 
refer to the complete set. We’ve introduced a renormalization scale M so that the coupling 
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Fig. E.10. The diagram �ab(k), drawn using [62].

constants remain dimensionless. Since we are only tasked with calculating the {Zμ
a }, the only 

diverging diagrams we must consider are those that correct the boson self energy. This immedi-
ately implies that the cubic interaction term occurring in (6.16) plays no effect at this order. The 
only contributing diagram �ab(k), shown in Fig. E.10, equals

�ab(k) = −2
∫

ddq

(2π)d
〈θc(q)θc(−q)〉 [gabcc(μ)kμkμ + gccab(μ)qμqμ

]
(E.3)

where

gabcd = g
(1)
abcd + g

(2)
abcd . (E.4)

In addition to UV divergences, there are also IR divergences occurring at zero momenta. To 
remove these, we introduce a small mass m to the boson fields θ , and take the limit m → 0 once 
we’ve extracted the UV divergence. A convenient mass term with the appropriate dimensions is 
m2v̄3uaθ

2. Then, the free propagator is

〈θc(q)θc(−q)〉 = uc

ω2 + u2
c �q2 + m2u2

c v̄
3 q = (ω, �q) (E.5)

and we have two integrals to consider:

E.0.1. Two integrals:
• Integral 1:∫

ddq

(2π)d
〈θc(q)θc(−q)〉 = 1

2

∫
dd−1q

(2π)d−1

1√�q2 + m2v̄3
= 1

2πε
+O(ε0) (E.6)

• Integral 2:∫
ddq

(2π)d
〈θc(q)θc(−q)〉qxqx = 1

2

∫
dd−1q

(2π)d−1

�q2√�q2 + m2v̄3
= 1

2πε
m2v̄3 +O(ε0)

(E.7)

where we’ve taken μ = x without loss of generality. It appears that such integrals will renor-
malize the boson masses; however, since these contributions are proportional to the IR cutoff 
m, when we restore m → 0, these poles will drop out of our calculations. See equation 13.82 
of [63] for a similar argument in the O(3) nonlinear sigma model.

Returning to the process (E.3), we find that

�ab(k) = − 1
kμk µgabcc(μ) (E.8)
πε
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= −Mε√gagb

πε
kμk µgc

[
1

4
he(μ)

facefbce

ge

− ha(μ)

3ga

fbcEfacE

]
.

This result will contribute to the renormalization constants involving θa and θb. In the following 
subsections, we will use properties of the SU(n) structure factors, fabc, to simplify both of the 
terms occurring in (E.8).

E.1. Lemma 1

Here we prove

gche(μ)

ge

facefbce = δab

n−1∑
i=1
i �=t

hi(μ)

gi

g|t−i| (E.9)

where t := |α − β|
∣∣∣
Iαβ�a

and gx := gx mod n for x > n.

Proof. Since a, c, e all correspond to off-diagonal generators, face will vanish unless

Ia �= Ic �= Ie �= Ia. (E.10)

Moreover, for a and e fixed, there is a unique value of c such that face �= 0. Calling this value c∗, 
we then have

gche(μ)

ge

facefbce = 1

4
δab

gc∗he(μ)

ge

(no sum over e) (E.11)

since fbc∗e = 0 unless a = b, and all purely off-diagonal structure factors in SU(n) have magni-
tude 1

2 . Moreover, one can verify explicitly that for a ∈ Iαβ and e ∈ Iγ δ , with Iαβ ∩ Iγ δ = ∅,

gc∗ = δαγ g|β−δ| + δαδg|β−γ | + δβγ g|α−δ| + δβδg|α−γ |. (E.12)

(Note that if {α, β}∩ = {γ, δ} = ∅, [Ta, Te] = 0.) Therefore, writing 
∑

e =∑γ<δ

∑
e∈Iγ δ

, the 
left hand side of (E.9) is

gche(μ)

ge

facefbce (E.13)

= 1

4
δab

n∑
γ<δ

he(μ)

ge

∑
e∈Iγ δ

e /∈Iαβ

[
δαγ g|β−δ| + δαδg|β−γ | + δβγ g|α−δ| + δβδg|α−γ |

]

= δab

2

n∑
γ<δ

Iγ δ �=Iαβ

h|δ−γ |(μ)

g|δ−γ |
[
δαγ g|β−δ| + δαδg|β−γ | + δβγ g|α−δ| + δβδg|α−γ |

]
.

We simplify each of these four terms. Let t := β − α > 0 (we assume without loss of generality 
that α < β). Then:

•
n∑

γ<δ
Iγ δ �=Iαβ

h|δ−γ |(μ)

g|δ−γ |
δαγ g|β−δ| =

n∑
δ=α+1
δ �=β

h|δ−α|(μ)

g|δ−α|
g|β−δ| =

n−α∑
i=1
i �=t

hi(μ)

gi

g|t−i| (E.14)
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•
n∑

γ<δ
Iγ δ �=Iαβ

h|δ−γ |(μ)

g|δ−γ |
δαδg|β−γ | =

α−1∑
γ=1

h|α−γ |(μ)

g|α−γ |
g|β−γ | =

n−1∑
i=n−α+1

hi(μ)

gi(μ)
g|i−t | (E.15)

•
n∑

γ<δ
Iγ δ �=Iαβ

h|δ−γ |(μ)

g|δ−γ |
δβγ g|α−δ| =

n∑
δ=β+1

h|δ−β|(μ)

g|δ−β|
g|α−δ| =

n−β∑
i=1

hi(μ)

gi

g|t+i| (E.16)

•
n∑

γ<δ
Iγ δ �=Iαβ

h|δ−γ |(μ)

g|δ−γ |
δβδg|α−γ | =

β−1∑
γ=1
γ �=α

h|β−γ |(μ)

g|β−γ |
g|α−γ | =

n−1∑
i=n−β+1

i �=n−t

hi(μ)

gi

g|i+t | (E.17)

where it is understood that gx := gx mod n for x > n. In (E.15) and (E.17), we used the fact that 
gi = gn−i and hi = hn−i in the last equations. Combining these results, we have

gche(μ)

ge

facefbce = 1

2
δab

⎡
⎢⎢⎣

n−1∑
i=1
i �=t

hi(μ)

gi

g|t−i| +
n−1∑
i=1

i �=n−t

hi(μ)

gi

g|t+i|

⎤
⎥⎥⎦ . (E.18)

Finally, replacing i → n − i in the second sum, we see that these two terms are in fact. Therefore, 
we arrive at

gche(μ)

ge

facefbce = δab

n−1∑
i=1
i �=t

hi(μ)

gi

g|t−i|, (E.19)

which completes the proof. �
E.2. Lemma 2

Here we prove

gcfbcEfacE = 1

2
δab

[
ga + 1

2

∑
c

gc

]
(E.20)

Proof. We first write

gcfbcEfacE =
n∑

γ<δ

∑
c∈Iγ δ

gcfbcEfacE. (E.21)

If c ∈ Ia , then fbcEfacE vanishes unless b = a, and in this case equals

δab

∑
E

[faāE]2 = δab, (E.22)

where ā is the unique index satisfying ā ∈ Ia with ā �= a. Indeed, for a, ā ∈ Iαβ , we have

[Ta, T̄a] = ±2i(�α − �β). (E.23)
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Since �α − �β generate the traceless diagonal Hermitian matrices, we may take choose them as 
the diagonal SU(n) generators. In this case, faāE = 0 unless E corresponds to (�α −�β), where 
it equals 1. Now, if c /∈ Ia , then facE will vanish except for a unique value e∗, with e∗ /∈ Ia ∪ Ic. 
The term fbce forces a = b, too. Since |fabc| = 1

2 for purely off-diagonal generators, we have

gcfbcEfacE = δabga + 1

4
δab

∑
c/∈Ia

gc. (E.24)

Finally, noting that

1

2
ga + 1

4

∑
c/∈Ia

gc = 1

4

∑
c

gc (E.25)

completes the proof. �
E.3. Result

Combining the results of both Lemmas, we conclude that (E.8) equals

�ab(k) = −Mεgaδab

2πε
kμkμ

( n−1∑
i=1
i �=t

hi(μ)

2gi

g|t−i| − ha(μ)

3ga

[
ga + 1

2

′∑
c

gc

])
. (E.26)

(no sum over a). Since

∂μθ∂μθ ∼ −θ∂2
μθ ∼ +kμkμθ(k)θ(−k) (E.27)

we may read off from �ab(k) the renormalization group constants:

Zτ
a = 1 + Mεgaua

2πε

( n−1∑
i=1
i �=t

1

uigi

g|t−i| − 2

3gaua

[
ga + 1

2

∑
c

gc

])
(E.28)

Zx
a = 1 + Mεga

2πuaε

( n−1∑
i=1
i �=t

ui

gi

g|t−i| − 2ua

3ga

[
ga + 1

2

∑
c

gc

])
(E.29)

(no sum over a).

Appendix F. Numerical verification

In this appendix, we find the beta functions for the velocity differences, �tt ′ , and consider 
special cases. Assuming the velocities {ut} are initially close together, we rewrite (6.22) to linear 
order in �t as

•

β
n=2q
ut

= gt

2π

[ q−1∑
i=1

�ti

gi

(
gi+t + g|t−i|

)+ g|t−q|
gq

�tq

]
+O(�2) (F.1)

•
β

n=2q+1
ut

= gt

2π

q∑
i=1

�ti

gi

(
gi+t + g|i−t |

)+O(�2) (F.2)
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depending on the parity of n. (We’ve introduced a g0 := 0 for notational convenience). Here we 
have used the fact that only q := 
n

2 � velocities and coupling constants are unique. The beta 
function for a component �i of � (defined in (6.24)) is then

•

β
n=2q

�t = 1

2π

q−1∑
i=1

�i

gi

[
g1
(
gi+1 + g|1−i|

)− gt

(
gi+t + g|t−i|

) ]
(F.3)

+ gt�
t

2π

[ q−1∑
i=1

1

gi

(
gi+t + g|t−i|

)+ g|t−q|
gq

]
+ �q

2πgq

[−gtg|t−q| + g1g|1−q|
]+O(�2)

•
β

n=2q+1
�t = 1

2π

q∑
i=1

�i

gi

[
g1
(
gi+1 + g|i−1|

)− gt

(
gi+t + g|i−t |

) ]
(F.4)

+ gt�
t

2π

q∑
i=1

1

gi

(
gi+t + g|i−t |

)+O(�2),

depending on the parity of n. Clearly, finding the eigenvalues of the R matrix in (6.25) is a 
difficult task. As a first check, we consider the symmetric point where all couplings equal the 
same value, g (except for the artificial g0, which is always zero). In this case, we can clearly read 
off from (6.22) that

β�t = g�t

2π
(n − 1) (F.5)

so that the matrix beta equation is diagonal, with positive eigenvalues. Next, we consider small 
values of n.

• SU(4)
In this case, there is a single velocity difference, β�12 , with

β�12 = �12

2πg2

[
g2

1 + 2g2
2

]
> 0 (F.6)

• SU(5)
In this case, there is again a single velocity difference, with

β�12 = 1

πg2
�12(g

2
1 + g2

2) > 0 (F.7)

• SU(6)
In this case, there are three velocities, three coupling constants, and two unique velocity 
differences, �12 and �13. The eigenvalues of the 2x2 R matrix are{

1

2πg1g2g3

(
g2

1g2
2 + g3

1g3 + g1g
2
2g3 + g2

1g2
3 + g2

2g2
3

)
, (F.8)

1

2πg1g2g3

(
g2

1g2
2 + 2g2

1g2
3 + 2g2

2g2
3

)}
,

both of which are positive.
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Unable to find the eigenvalues of the R matrix explicitly, we resort to a numerical investigation 
of its spectrum. We verify that the spectrum is positive definite by computing the minimal eigen-
value of R for fixed coupling constants. First, we choose the 
n

2� coupling constants randomly 
from the interval (0, 1). In 10 000 trials, we find that the minimal eigenvalue is always strictly 
positive, for SU(n) with n = 3, 4, · · · , 50. Next, we probe points in parameter space where dif-
ferent coupling constants have a common value, by choosing coupling constants from a discrete 
lattice on (0, 1)
 n

2 �. Since the dimension of the lattice increases with n, we choose a coarser 
discretization as n increases, to keep the number of lattice points below 100 000. In this case, 
we find that for n = 3, 4, · · · , 16, the minimal eigenvalue of the R matrix is again strictly posi-
tive. This supports the conjecture that the spectrum of R is always positive, so that each velocity 
difference �tt ′ flows to zero in the IR.

Appendix G. Strong coupling analysis

In this appendix, starting with

z(θ1, θ2, · · · , θn) =
∞∫

−∞

dk

2π

n∏
α=1

2 sin
( 1

2 (k − θα)
)

(k − θα)
, (G.1)

we prove (8.6) and (8.7). We assume that the topological angles are ordered and all different, i.e. 
θ1 < θ2 < · · · < θn. First, we split each sin into parts:

∞∫
−∞

dk

2π

n∏
α=1

2 sin
( 1

2 (k − θα)
)

(k − θα)

=
∞∫

−∞

dk

2π

n∏
α=1

∑
sα∈{−1,+1}

sα exp
(

i
2 sα(k − θα)

)
i(k − θα)

=
∞∫

−∞

dk

2π

1

in
n∏

α=1
(k − θα)

∑
s1∈{−1,1}

· · ·
∑

sn∈{−1,1}

∏
α

(
sα exp

( i
2
sα(k − θα)

))

=
∑

�s∈⊗n{−1,+1}

⎡
⎢⎢⎢⎣exp

(
− i

2

n∑
α=1

sαθα

)(∏
α

sα

) ∞∫
−∞

dk

2π

exp

(
1
2 ik

n∑
α=1

sα

)

in
n∏

α=1
(k − θα)

⎤
⎥⎥⎥⎦ .

(G.2)

In every element of this large sum we now have to evaluate an integral of the form

∞∫
−∞

dk

2π

exp
( 1

2 iC(�s)k)
n∏

α=1
(k − θα)

(G.3)

where C(�s) =∑
α

sα . Each of these terms we can calculated using complex analysis. For instance, 

if C(�s) ≥ 0, we use the contour shown in Fig. G.11 to write
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Fig. G.11. Contour integral for evaluating Eq. (G.3) for C(�s) ≥ 0. The γ1, γ2 . . . segments are semi-circles of radius ε
around θ1, θ2 . . . .

lim
R→∞ lim

ε→0

∫
[−∞,θ1−ε]∪[θ1+ε,θ2−ε]∪...[θn+ε,∞]

dk

2π

exp
( 1

2 iC(�s)k)
in
∏n

α=1(k − θα)
= (G.4)

0 − lim
R→∞ lim

ε→0

⎛
⎜⎝∫

γR

+
∑
β

∫
γβ

⎞
⎟⎠ dk

2π

exp
( 1

2 iC(�s)k)
in
∏n

α=1(k − θα)
.

The integral for the closed contour is 0, since there are no poles inside. Along the γR large 
semi-circle, the integrand is bounded by O(R−n) for all C(�s) ≥ 0 (even for C(�s) = 0), therefore 
the integral on γR vanishes as R → ∞ for any n ≥ 2. Along a γβ semi-circle we can parametrize 
k as k = εeiϕ + θβ , and thus dk = εeiϕidϕ, where ϕ goes from π to 0. As a result we find

lim
ε→0

∫
γβ

dk

2π

exp
( 1

2 iC(�s)k)
iN

n∏
α=1

(k − θα)

= lim
ε→0

0∫
π

1

2π

εeiϕidϕ

εeiϕ

exp
( 1

2 iC(�s)(εeiϕ + θβ)
)

in
n∏

α(�=β)

(εeiϕ + θβ − θα)

= − 1

2in−1

exp( 1
2 iC(�s)θβ)

n∏
α(�=β)

(θβ − θα)

.

(G.5)

After simplifying we find that the integrand goes to a constant finite value as ε → 0, therefore 
the integral becomes trivial. Note that if C(�s) ≤ 0, a similar argument works by considering the 
contour shown in Fig. G.12.

In this case, for the γ ′
βc contour k = εeiϕ + θβ , dk = εeiϕidϕ but ϕ now goes from π to 2π . 

Therefore we have
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Fig. G.12. Contour integral for evaluating Eq. (G.3) for C(�s) ≤ 0. The γ1, γ2 . . . segments are semi-circles of radius ε
around θ1, θ2 . . . .

lim
ε→0

∫
γ ′
β

dk

2π

exp
( 1

2 iC(�s)k)
in

n∏
α=1

(k − θα)

= lim
ε→0

2π∫
π

1

2π

εeiϕidϕ

εeiϕ

exp
( 1

2 iC(�s)(εeiϕ + θβ)
)

in
n∏

α(�=β)

(εeiϕ + θβ − θα)

= + 1

2in−1

exp( 1
2 iC(�s)θβ)

n∏
α(�=β)

(θβ − θα)

.

(G.6)

To verify that we get the same result using either contour for C(�s) = 0, we make use of the 
following identity

∑
β

1∏
α(�=β)(θβ − θα)

≡ 0. (G.7)

An elegant proof of this identity can be found in [64]. Finally, we find

z(θ1, θ2, . . . , θn) =
∑

�s∈⊗n{−1,+1}
exp
(

− i

2

n∑
α=1

sαθα

)(∏
α

sα

)
sgn(C(�s))

× 1

2

∑
β

exp( 1
2 iC(�s)θβ)

iN−1
n∏

α(�=β)

(θβ − θα)

,

(G.8)

where sgn(C(�s)) is the sign of C(�s), with the added convention that sgn(0) = 0. Rearranging the 
sums, this result can be rewritten as
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z(θ1, θ2, . . . , θn) =
∑
β

∑
{s1,...sβ−1,sβ+1...sn}

1

2

exp
(

i
2

∑
α(�=β)

sα(θβ − θα)
)

in−1
n∏

α(�=β)

(θβ − θα)

( ∏
α(�=β)

sα

)

×
∑

sβ∈{−1,+1}
sβ sgn(C(�s)).

(G.9)

For fixed β and fixed {s1, . . . sβ−1, sβ+1 . . . sN }, only sβ sgn
(
C(�s)) depends on sβ . The two terms 

for sβ = ±1 will cancel each other out unless sgn(C(�s)) changes sign when we change sβ . Thus, 
we only consider those configurations in the following. Our final expressions depend on the 
parity of n:

Case 1: n odd

For odd n, C(�s) is also odd. For given {s1, . . . sβ−1, sβ+1 . . . sN }, C(�s) will change sign upon 
changing sβ only if C(�s) = 1 for sβ = 1 and C(�s) = −1 for sβ = −1, or equivalently when ∑

α(�=β) sα = 0. For such terms 
∏

α(�=β)

= (−1)(n−1)/2, and 
∑
sβ

sβ sgn
(
C(�s))= 2, therefore we end 

up with

z(θ1, θ2, . . . , θn) =
∑
β

∑
{s1,...sβ−1,sβ+1...sn}∑

α( �=β)

sα=0

exp
(

− i
2

∑
α(�=β)

sαθα

)
n∏

α(�=β)

(θβ − θα)

. (G.10)

Since z(�θ1, θ2, . . . θn) should be real, we can just take the real part of Eq. (G.10), or equivalently 
we can combine the terms of {s1, . . . sβ−1, sβ+1 . . . sn} and {−s1, · · · − sβ−1, −sβ+1 · · · − sn} to 
arrive at

z(θ1, θ2, . . . , θn) =
∑
β

∑
{s1,...sβ−1,sβ+1...sn}∑

α( �=β)

sα=0

cos
(

1
2

∑
α(�=β)

sαθα

)
n∏

α(�=β)

(θβ − θα)

. (G.11)

This agrees with (8.6).

Case 2: n even

For even n, C(�s) is also even. In this case we only need to consider the terms where C(�s) = 2
for sβ = 1 and becomes C(�s) = 0 for sβ = −1, or similarly when C(�s) = −2 for sβ = −1
and becomes C(�s) = 0 for sβ = 1. The former corresponds to cases when 

∑
α(�=β) sα = 1 and ∏

α(�=β) sα = (−1)n/2−1 , while the latter is when 
∑

α(�=β) sα = −1 and 
∏

α(�=β) sα = (−1)n/2. In 
both cases the 

∑
sβ sgn(C(�s)) term gives 1:
β
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z(θ1, θ2, . . . , θn) =
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(G.12)

For a configuration {s1, . . . sβ−1, sβ+1 . . . sn}, with 
∑

α(�=β)

sα = ±1, we can uniquely determine an 

sβ = ∓1 for which 
∑

α sα = 0:

z(θ1, θ2, . . . , θn) =
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(G.13)

=
∑
{�s}∑

α
sα=0
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⎥⎥⎥⎦ (G.14)

Once again we can argue that z(θ1, . . . θn) has to be real, so we can just take the real part of the 
above. Or we arrive to the same result by combining the �s and −�s terms,

z(θ1, θ2, . . . , θn) =
∑
{�s}∑

α
sα=0

1

2
sin
(1

2

∑
α

sαθα

)

×

⎡
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1
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−
∑
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sβ=−1

1
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⎤
⎥⎥⎥⎦ .

(G.15)

Making use of the identity in Eq. (G.7), we end up with

z(θ1, θ2, . . . , θn) =
∑
{�s}∑

α
sα=0

sin
(1

2

∑
α

sαθα

)
⎡
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∑
β:

sβ=1

1
n∏

α(�=β)

(θβ − θα)

⎤
⎥⎥⎥⎦ , (G.16)

which proves (8.7).
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