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Abstract—The integrals of motion of classical two-dimensional superintegrable systems, with polynomial
integrals of motion, close in a restrained polynomial Poisson algebra; the general form of the quadratic
case is investigated. The polynomial Poisson algebra of the classical system is deformed into a quantum
associative algebra of the corresponding quantum system, and the finite-dimensional representations of
this algebra are calculated by using a deformed parafermion oscillator technique. The finite-dimensional
representations of the algebra are determined by the energy eigenvalues of the superintegrable system.
The calculation of energy eigenvalues is reduced to the roots of algebraic equations in the quadratic case.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In classical mechanics, an integrable system is a
system possessing a number of constants of motion
equal to the dimensionality of the space. A compre-
hensive review of two-dimensional integrable classi-
cal systems is given by Hietarinta [1], who assumed
the space to be a flat real one. The case of a nonflat
space is under current investigation [2–7]. An inter-
esting subset of the totality of integrable systems is
the set of systems that possess a maximum number
of integrals; these systems are referred to as superin-
tegrable ones.

The Hamiltonian of a classical system is a quadra-
tic function of momenta. All “nondegenerate” su-
perintegrable systems with quadratic integrals of
motion in a complex flat space were classified by
Kalnins, Miller, and Pogosyan [8]. In that paper,
the term “nondegenerate” means that the potential
depends on four independent parameters. These
potentials are simultaneously separable in more
than two orthogonal coordinate systems [9]. The
notions of the multiseparability and superintegrability
do not coincide. The most illustrative example is
that of an anisotropic harmonic oscillator with a
rational ratio of frequencies. The integrals of mo-
tion of a two-dimensional superintegrable system
in flat space close in a restrained classical Pois-
son algebra [4, 8, 10–12]. The general form of
the Poisson algebra was studied in [8, 12]. In the
case of potentials with two quadratic integrals of
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motion, the Poisson algebra is a quadratic Pois-
son algebra. In [8], these quadratic Poisson alge-
bras are listed for all superintegrable systems in a
complex flat space. In [7], the quadratic algebras
for systems superintegrable on a sphere are given
for all classified cases. The general form of this
algebra is given in [12]. The deformation of the
classical Poisson algebra to a polynomial associative
algebra with three generators implies a deforma-
tion of the parameters of the quadratic algebra [8,
12]. In [13], a three-generator polynomial algebra
can be realized by nonlinear combinations of the
generators of the sl(3, R) algebra. In [10–19], it
was conjectured that the energy eigenvalues corre-
spond to finite-dimensional representations of latent
quadratic algebras. Granovskii et al. [14] studied
the representations of the quadratic Askey–Wilson
algebras QAW(3). Using the ladder representation
proposed there, they calculated finite-dimensional
representations. This method was applied to several
superintegrable systems in [15, 17, 19]. Another
method [10–12] for calculating finite-dimensional
representations consists in the use of the deformed
oscillator algebra and their finite-dimensional ver-
sion, which are referred to as “generalized deformed
parafermionic algebras” [20]. The main task of this
paper is to reduce the calculations of eigenvalues
to a system of two algebraic equations with two
parameters to be determined. These equations are
universal equations, which are valid for all super-
integrable systems, with quadratic integrals of the
motion.

2. QUADRATIC POISSON ALGEBRA
Let us consider a two-dimensional superinte-

grable system. The general form of the Hamiltonian
2002 MAIK “Nauka/Interperiodica”



POLYNOMIAL ASSOCIATIVE ALGEBRAS 1009
is

H = a(q1, q2)p2
1 + 2b(q1, q2)p1p2 (1)

+ c(q1, q2)p2
2 + V (q1, q2);

this Hamiltonian is a quadratic form of momenta. The
system is superintegrable; therefore, there are two
additional integrals of the motion, A and B. In this
section, we assume that these integrals of motion are
quadratic functions of momenta; i.e., they are given
by

A = A(q1, q2, p1, p2)

= c(q1, q2)p2
1 + 2d(q1, q2)p1p2

+ e(q1, q2)p2
2 +Q(q1, q2).

The integral B of the motion is indeed assumed to be
a quadratic form that is analogous to the above one:

B = B(q1, q2, p1, p2)

= h(q1, q2)p2
1 + 2k(q1, q2)p1p2

+ l(q1, q2)p2
2 + S(q1, q2).

By definition, the following relations are satisfied:

{H,A}P = {H,B}P = 0, (2)

where { . , . }P is the usual Poisson bracket.
From the integrals A and B of the motion, we can

construct the integral of motion

C = {A,B}P . (3)

The integral C of motion is not a new independent
integral of motion that is a cubic function of the
momenta. As will be shown later, the integral C
is not independent of the integrals H , A, and B.
Starting from the integral of motion C, we can con-
struct the (nonindependent) integrals {A,C}P and
{B,C}P. These integrals are quartic functions of mo-
menta, i.e., functions of fourth order. Therefore, these
integrals could be expressed as quadratic combina-
tions of the integrals H , A, and B. After translations
and rotations, the integrals A, B, and C satisfy the
quadratic Poisson algebra:

{A,B}P = C, (4)

{A,C}P = αA2 + 2γAB + δA + εB + ζ,

{B,C}P = aA2 − γB2 − 2αAB + dA− δB + z,

where α, γ, and a are constants and

δ = δ(H) = δ0 + δ1H,

ε = ε(H) = ε0 + ε1H,

ζ = ζ(H) = ζ0 + ζ1H + ζ2H
2,

d = d(H) = d0 + d1H,

z = z(H) = z0 + z1H + z2H
2,
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with δi, εi, ζi, di, and zi being constants. The asso-
ciative algebra whose generators satisfy Eqs. (4) is
a general form of the closed Poisson algebra of the
integrals of superintegrable systems with integrals
quadratic in momenta.

The quadratic Poisson algebra (4) possesses a
Casimir operator that is a function of momenta of
degree six and which is given by

K = C2 − 2αA2B − 2γAB2 − 2δAB (5)

− εB2 − 2ζB +
2
3
aA3 + dA2 + 2zA

= k0 + k1H + k2H
2 + k3H

3.

Obviously, we have

{K,A}P = {K,B}P = {K,C}P = 0.

Therefore, the integrals of motion of a superintegrable
two-dimensional system, with quadratic integrals of
motion, close a constrained classical quadratic Pois-
son algebra (4), corresponding to a Casimir operator
equal at most to a cubic function of the Hamiltonian
in (5).

In the general case of a superintegrable system,
the integrals are not necessarily quadratic functions
of the momenta, but they are rather polynomial func-
tions of the momenta. The case of systems with a
quadratic and cubic integral of motion were studied
by Tsiganov [21]. The general form of the Poisson
algebra of the generatorsA,B, andC is characterized
by a polynomial function h(A,B):

{A,B}P = C, {A,C}P = ∂h/∂B, (6)

{C,B}P = ∂h/∂A.

The above general forms of the Poisson algebra were
introduced by Kalnins, Miller, and Pogosyan [8]. The
Casimir operator of the algebra is given by

K = K(H) = C2 − 2h(A,B), (7)

{K,A}P = {K,B}P = 0,

where h(A,B) is a polynomial function of the inte-
gralsA andB of the motion. These relations were also
discussed in [8] in a slightly different context.

In the general case of a two-dimensional super-
integrable system with a quadratic Hamiltonian, one
integral A of order m in momenta, and one integral
B of order n (n ≥ m), the function h(A,B), in most
cases, can be represented as

h(A,B) = h0(A) + h1(A)B + h2(A)B2,

where hi(A) are polynomials of the integralsA andH .
2
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3. QUADRATIC ASSOCIATIVE ALGEBRA
The quantum counterparts of classical systems

that have been studied in Section 2 are quantum su-
perintegrable systems. The quadratic classical Pois-
son algebra (4) possesses a quantum counterpart that
is a quadratic associative algebra of operators. The
form of the quadratic algebra is similar to that of the
classical Poisson algebra, the constants involved are
generally functions of �, and they should coincide with
the classical constants in the case of � → 0:

[A,B] = C, (8)

[A,C] = αA2 + γ {A,B} + δA+ εB + ζ, (9)

[B,C] = aA2 − γB2 − α {A,B} (10)

+ dA− δB + z.

The Casimir operator of this algebra is given by

K = C2 − α
{
A2, B

}
− γ

{
A,B2

}
(11)

+ (αγ − δ) {A,B} + (γ2 − ε)B2 + (γδ − 2ζ)B

+
2a
3
A3 +

(
d+

aγ

3
+ α2

)
A2 +

(aε
3

+ αδ + 2z
)
A.

This quadratic algebra has many similarities to
the Racah algebra QR(3), which is a special case
of the Askey–Wilson algebra QAW(3). The algebra
specified by Eqs. (8)–(10) does not coincide with
the Racah algebra QR(3) if a �= 0 in relation (10).
A representation theory can be constructed by fol-
lowing the same procedures as those described by
Granovskii, Lutzenko, and Zhedanov in [14, 15].
In this paper, we shall give another realization of
this algebra using the deformed-oscillator tech-
niques [22]. The finite-dimensional representations
of the algebra given by (8)–(10) will be constructed
by constructing a realization of the algebra with
the generalized parafermionic algebra introduced by
Quesne [20].

Let us now consider a realization of the algebra
given by (8)–(10) by using the deformed-oscillator
technique, i.e., by using a deformed-oscillator alge-
bra [22]

{
b†, b,N

}
, which satisfies[

N , b†
]

= b†, [N , b] = −b, b†b = Φ (N ) , (12)

bb† = Φ (N + 1) ,

where the function Φ(x) is a “well-behaved” real
function that satisfies the boundary condition

Φ(0) = 0 and Φ(x) > 0 for x > 0. (13)

As is well known [22], this constraint entails the exis-
tence of a Fock-type representation of the deformed-
oscillator algebra; i.e., there is a Fock basis |n〉, n =
0, 1, . . ., such that

N|n〉 = n|n〉, (14)
P

b†|n〉 =
√

Φ (n+ 1)|n+ 1〉, n = 0, 1, . . . ,
b|0〉 = 0,

b|n〉 =
√

Φ (n)|n− 1〉, n = 1, 2, . . . .

In the case of nilpotent deformed-oscillator alge-
bras, there is a positive integer p such that

b p+1 = 0, (b†)p+1 = 0.

The above equations imply that

Φ(p+ 1) = 0. (15)

In that case, the deformed oscillator (12) has a finite-
dimensional representation of dimension equal to
p+ 1. This kind of oscillator is called a deformed
parafermion oscillator of order p. The structure func-
tion Φ(N ) has the general form [20]

Φ(N ) = N (p + 1 −N )(a0 + a1N
+ a2N 2 + · · · + ap−1N p−1).

A systematic study and applications of the parafer-
mionic oscillator are given in [20, 23–25].

We shall show that there is a realization of the
quadratic algebra such that

A = A (N ) , (16)

B = b (N ) + b†ρ (N ) + ρ (N ) b, (17)

where A(x), b(x), and ρ(x) are functions that will be
determined. In this case, (8) implies that

C = [A,B] ⇒ C = b†∆A (N ) ρ (N ) (18)

− ρ (N )∆A (N ) b,

where

∆A (N ) = A (N + 1) −A (N ) .

Using Eqs. (16), (17), and (9) we find

(∆A (N ))2 = γ (A (N + 1) +A (N )) + ε, (19)

αA (N )2 + 2γA (N ) b (N ) (20)

+ δA (N ) + εb (N ) + ζ = 0,

while the function ρ (N ) can be arbitrarily deter-
mined. In fact, this function can be fixed in order
to have a polynomial structure function Φ(x) for
the deformed-oscillator algebra (12). Solutions to
Eqs. (19) depend on the value of the parameter γ,
while the function b(N ) is uniquely determined by
Eq. (20) (provided that at most one of the parameters
γ or ε is not zero). At this stage, the cases of γ �= 0 or
γ = 0 should be treated separately.

Case 1: γ �= 0. In this case, solutions to Eqs. (19)
and (20) are given by

A (N ) =
γ

2

(
(N + u)2 − 1/4 − ε

γ2

)
, (21)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 6 2002



POLYNOMIAL ASSOCIATIVE ALGEBRAS 1011
b (N ) = −
α
(
(N +u)2−1/4

)
4

+
α ε−δ γ

2 γ2
(22)

− α ε2 − 2 δ ε γ + 4 γ2 ζ

4 γ4

1
((N + u)2 − 1/4)

.

Case 2: γ = 0, ε �= 0. Solutions to Eqs. (19) and
(20) are given by

A(N ) =
√
ε (N + u) , (23)

b(N ) = −α (N + u)2 − δ√
ε

(N + u) − ζ

ε
. (24)

The constant u will be determined later.
Using the above definitions ofA(N ) and b(N ), we

find that the left-hand side and the right-hand side of
Eq. (10) give the equation

2Φ(N + 1)
(
∆A (N ) +

γ

2

)
ρ(N ) (25)

− 2Φ(N )
(
∆A (N − 1) − γ

2

)
ρ(N − 1)

= aA2 (N ) − γb2(N ) − 2αA (N ) b(N )
+ dA (N ) − δb(N ) + z.

Equation (11) gives the relation

K = Φ(N + 1)
(
γ2 − ε− 2γA (N ) (26)

− ∆A2 (N )
)
ρ(N ) + Φ(N )

(
γ2 − ε

− 2γA (N ) − ∆A2 (N − 1)
)
ρ(N − 1)

− 2αA2 (N ) b(N ) +
(
γ2 − ε− 2γA (N )

)
b2(N )

+ 2 (αγ − δ)A (N ) b(N ) + (γδ − 2ζ) b(N )

+
2
3
aA3 (N ) +

(
d+

1
3
aγ + α2

)
A2 (N )

+
(

1
3
aε+ αδ + 2z

)
A (N ) .

Equations (25) and (26) are linear functions of the
expressions Φ(N ) and Φ(N + 1). Then, the func-
tion Φ (N ) can be determined if the function ρ(N )
is given. A solution of this system, i.e., the function
Φ (N ), depends on two parameters, u and K, and is
given by the following formulas:

Case 1: γ �= 0.

ρ(N )=
1

3 · 212 · γ8(N+u)(1+N +u)(1+2(N +u))2

and

Φ(N ) = −3072γ6K(−1 + 2(N +u))2 (27)

− 48γ6(α2ε−αδγ + aεγ − dγ2)

× (−3 + 2(N + u))(−1 + 2(N + u))4

×(1 + 2(N + u))
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+ γ8(3α2+4aγ)(−3+2(N +u))2(−1+2(N +u))4

× (1+2(N +u))2 + 768(αε2−2δεγ+4γ2ζ)2

+ 32γ4(−1+2(N +u))2(−1−12(N +u)

+ 12(N +u)2)(3α2ε2−6αδεγ+2aε2γ+2δ2γ2

− 4dεγ2+8γ3z+4αγ2ζ)−256γ2(−1+2(N +u))2

×(3α2ε3−9αδε2γ+aε3γ+6δ2εγ2−3dε2γ2+2δ2γ4

+ 2dεγ4+12εγ3z−4γ5z

+ 12αεγ2ζ−12δγ3ζ+4αγ4ζ).

Case 2: γ = 0, ε �= 0.

ρ(N ) = 1,

Φ(N ) =
1
4

(
−K

ε
− z√

ε
− δ√

ε

ζ

ε
+
ζ2

ε2

)
(28)

− 1
12

(
3d− a

√
ε− 3α

δ√
ε

+ 3
(

δ√
ε

)2

− 6
z√
ε

+ 6α
ζ

ε
− 6

δ√
ε

ζ

ε

)
(N + u)

+
1
4

(
α2 + d− a

√
ε− 3α

δ√
ε

+
(

δ√
ε

)2

+ 2α
ζ

ε

)

× (N + u)2 − 1
6

(
3α2 − a

√
ε− 3α

δ√
ε

)

× (N + u)3 +
1
4
α2(N + u)4.

The above formula is valid for ε > 0.
Let us consider a representation of the quadratic

algebra that is diagonal in the generator A and the
Casimir operator K. Using the parafermionic real-
ization defined by Eqs. (16) and (17), we see that
this is a representation diagonal in the parafermionic
number operator N and the Casimir operator K. The
basis of this representation corresponds to the Fock
basis of the parafermionic oscillator; i.e., the vectors
|k, n〉, n = 0, 1, . . ., of the carrier Fock space satisfy
the equations

N|k, n〉 = n|k, n〉, K|k, n〉 = k|k, n〉.
The structure function (27) [or, respectively, (28)]
depends on the eigenvalues of the parafermionic
number operator N and the Casimir operator K. If
the deformed oscillator corresponds to a deformed
parafermionic oscillator of order p, then the two
parameters of the calculation, k and u, should satisfy
the constraints (13) and (15) of the system:

Φ(0, u, k) = 0 and Φ(p+ 1, u, k) = 0. (29)

Then, the parameter u = u(k, p) is a solution to the
set of Eqs. (29). Generally, there are many solutions
2
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to the above set of equations, but a unitary represen-
tation of the deformed parafermionic oscillator entails
the additional restriction

Φ(x) > 0 for x = 1, 2, . . . , p.

We must indicate that the set of Eqs. (29) cor-
responds to a representation of dimension equal to
p+ 1. The proposed method for calculating the rep-
resentation of the quadratic algebra is an alternative
to the method given by Granovskii et al. [14, 15] and
reduces the search for the representations to solving
the set of polynomial Eqs. (29). Also, it is applied to
an algebra not included in the cases of the algebras
that are treated in the above references.

4. QUADRATIC ALGEBRAS
FOR QUANTUM SUPERINTEGRABLE

SYSTEMS

In this section, we shall give two examples of the
calculation of eigenvalues for a superintegrable two-
dimensional system using the methods of the preced-
ing section. The calculation by an empirical method
was performed in [11], and solving the same problem
by a separation of variables was studied in [4]. In order
to show the effects of the quantization procedure, we
do not use here units in which � = 1.

4.1. Potential (i)

H =
1
2

(
p2

x + p2
y +

k

r
+

1
r

(
µ1

r + x
+

µ2

r − x

))
.

In [4], the parabolic coordinates were used:

x =
1
2
(
ξ2 − η2

)
, y = ξη,

[ξ, pξ] = i�, [η, pη ] = i�,

H =
1

ξ2 + η2

(
1
2
(
p2

ξ + p2
η

)
+ k +

µ1

ξ2
+
µ2

η2

)
.

This potential has the following independent integrals
of motion:

A =
1
2

(
1
2

(ηpξ − ξpη)
2 +

(
ξ2 + η2

)(µ1

ξ2
+
µ2

η2

))
,

B =
1

ξ2 + η2

(
1
2
(
ξ2p2

η − η2p2
ξ

)

+ µ2
ξ2

η2
− µ1

η2

ξ2
+
k

2
ξ2 − η2

ξ2 + η2

)
.

The constants of the corresponding quadratic algebra
(8)–(10) are given by

α = 0, γ = 2�
2, δ = 0, ε = −�

4,
PH
ζ = −�
2k(µ1 − µ2), a = 0, d = 8�

2H,

z = −�
2
(
4(µ1 + µ2)H − k2/2

)
+ �

4H.

The Casimir operator (11) has the form

K = −�
2
(
2(µ1 − µ2)2H − k2(µ1 + µ2)

)
− 2�

4

(
(µ1 + µ2)H − k2

4

)
+ �

6H.

For the sake of simplicity, we introduce the positive
parameters k1 and k1:

µ1 =
�

2

2

(
k2
1 − 1

4

)
, µ2 =

�
2

2

(
k2
2 − 1

4

)
.

The structure function (27) of the deformed parafer-
mionic algebra can be given by the simple form

Φ(x) = 3 · 214
�

16 (2x− 1 + k1 + k2)
× (2x− 1 + k1 − k2) (2x− 1 − k1 + k2)

× (2x−1−k1−k2)
(
8�

2Hx2−8�
2Hx+2�

2H+k2
)
.

where E is the eigenvalue of the energy. The values
of the parameters u and E are determined by the
restrictions in (29). There are four acceptable solu-
tions, which correspond to the following values of the
parameters u and E:

u =
1
2

(2 + ε1k1 + ε2k2) ,

E = − k2

2�2 (2(p + 1) + ε1k1 + ε2k2)
2 ,

where εi = ±1. The positive sign of the structure
function for x = 1, 2, . . . , p is obtained when

ε1k1 > −1, ε2k2 > −1, and ε1k1 + ε2k2 > −1.

4.2. Potential (ii)

H =
1
2

(
p2

x + p2
y +

k

r
+ µ1

√
r + x

r
+ µ2

√
r − x

r

)

=
1

ξ2 + η2

(
1
2
(
p2

ξ + p2
η

)
+ k + µ1ξ + µ2η

)
.

This potential has the following independent integrals
of motion:

A =
1

2 (ξ2 + η2)
(
η2p2

ξ − ξ2p2
η

+ k
(
η2 − ξ2

)
+ 2ξη (µ1η − µ2ξ)

)
,

B = − 1
2 (ξ2 + η2)

(
ξη
(
p2

ξ + p2
η

)
−
(
ξ2 + η2

)
pξpη

+ 2kξη + (µ2ξ − µ1η)
(
η2 − ξ2

))
.

YSICS OF ATOMIC NUCLEI Vol. 65 No. 6 2002



POLYNOMIAL ASSOCIATIVE ALGEBRAS 1013
The constants of the corresponding quadratic algebra
(8)–(10) are given by

α = 0, γ = 0, δ = 0, ε = −2�
2H,

ζ = �
2µ1µ2/2,

a = 0, d = 2�
2H,

z = −�
2(µ2

1 − µ2
2)/4.

The Casimir operator (11) has the form

K = �
2k2H/2 + �

2k(µ2
1 + µ2

2)/4 + �
4H2.

For the sake of simplicity, we introduce the parame-
ters

ε =
√
−2E/�, λ = k/�2,

ν1 = µ1/�
2, ν2 = µ2/�

2, ν2 = ν2
1 + ν2

2 .

The structure function (28) of the deformed para-
fermionic algebra can be given by the form

Φ(x) =
�

4

16ε4

(
ν2
1 − λε2 + 2

(
x+ u− 1

2

)
ε3
)

×
(
ν2
2 − λε2 − 2

(
x+ u− 1

2

)
ε3
)
,

where the parameter ε is related to the eigenvalue E
of the energy. The values of the parameters u and ε are
determined by the restrictions in (29), which become

Φ(0) = 0, Φ(p+ 1) = 0.

The first condition can be used to determine the ac-
ceptable values of the parameter u. Two possible so-
lutions are found to be

u = u1 =
ν2
2 − λε2 + ε3

2ε3
, (30)

u = u2 = −ν2
1 − λε2 − ε3

2ε3
. (31)

Using these solutions and the condition Φ(p+ 1) =
0, we find that ε must satisfy two possible cubic
equations:

u1 −→ 2(p + 1)ε3 − 2λε2 + ν2 = 0, (32)

u2 −→ 2(p + 1)ε3 + 2λε2 − ν2 = 0. (33)

If ε is a solution to Eq. (32), then −ε is a solution
to Eq. (33); therefore, there is at least one positive
solution. This solution leads to the structure function

Φ(x) =
ε2

4
x (p+ 1 − x)

which is positive for x = 1, 2, . . . , p.
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5. DISCUSSION

The energy eigenvalues corroborate the results
of [4, 13]. The calculation of the energy eigenvalues
in [4] was performed by solving the corresponding
Schrödinger differential equations, while, in this
paper and in [13], the energy eigenvalues are ob-
tained by algebraic methods. The advantage of the
proposed method is that the energy eigenvalues are
reduced to simple algebraic calculations of the roots
of polynomial equations whose form is universally
determined by the structure functions (27) and the set
of Eqs. (29). These equations are valid for any two-
dimensional superintegrable system with integrals
of motion that are quadratic functions of momenta.
The same equations should be valid in the case of
two-dimensional superintegrable systems in a curved
space [26]. Superintegrable systems bring up the
open problem of the quantization of a Poisson algebra
in a well-determined context, because these systems
and their quantum counterparts are explicitly known.
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