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Abstract: In this thesis, we present a universal framework for hydrodynamics starting
from the fundamental considerations of symmetries and the second law of thermodynamics,
while allowing for additional gapless modes in the low-energy spectrum. Examples of
such fluids include superfluids and fluids with surfaces. Typically, additional dynamical
modes in hydrodynamics also need to be supplied with their own equations of motion by
hand, like the Josephson equation for superfluids and the Young-Laplace equation for fluid
surfaces. However, we argue that these equations can be derived within the hydrodynamic
framework by a careful off-shell generalisation of the second law. This potentially provides
a universal framework for a large class of hydrodynamic theories, based on their underlying
symmetries and gapless modes. Motivated by this newly found universality, we present an
all-order analysis of the second law of thermodynamics and propose a classification scheme
for the allowed hydrodynamic transport, including arbitrary gapless modes, independent
spin current, and background torsion.

In the second half of this thesis, we look at the construction of null fluids which are a new
viewpoint of Galilean fluids. These are essentially fluids coupled to spacetime backgrounds
carrying a covariantly constant null isometry, but with additional constraints imposed on
the background gauge field and affine connection to reproduce the correct Galilean degrees
of freedom. We discuss the Galilean version of quantum anomalies and their effect on
hydrodynamics. Finally, we follow our relativistic discussion to allow for arbitrary gapless
modes in Galilean hydrodynamics and present a classification scheme for the second law
abiding hydrodynamic transport at all orders in the derivative expansion.

We apply these abstract ideas to review the theory of ordinary relativistic/Galilean
hydrodynamics and provide novel constructions for relativistic/Galilean (non-Abelian)
superfluid dynamics and surface transport. We also comment on the possible application
to the theory of magnetohydrodynamics.



iv | A universal framework for hydrodynamics



Dedicated to my parents

Smt. Neelam Jain & Sh. Neeraj Jain

for shaping me into who I am

and to my brother

Abhinav

for helping along the way



vi | A universal framework for hydrodynamics



vii

Declaration

The work in this thesis is based on research carried out in the Department of Mathematical
Sciences at Durham University. The results presented here are derived from the following
independent and collaborative works:

• N. Banerjee, S. Dutta and A. Jain, Equilibrium partition function for nonrelativistic
fluids, Phys. Rev. D92 (2015) 081701, [1505.05677].

• N. Banerjee, S. Dutta and A. Jain, Null Fluids - A New Viewpoint of Galilean Fluids,
Phys. Rev. D93 (2016) 105020, [1509.04718].

• A. Jain, Galilean Anomalies and Their Effect on Hydrodynamics, Phys. Rev. D93
(2016) 065007, [1509.05777].

• A. Jain, Theory of non-Abelian superfluid dynamics, Phys. Rev. D95 (2017) 121701,
[1610.05797].

• N. Banerjee, S. Dutta and A. Jain, First Order Galilean Superfluid Dynamics, Phys.
Rev. D96 (2017) 065004, [1612.01550].

• J. Armas, J. Bhattacharya, A. Jain and N. Kundu, On the surface of superfluids,
JHEP 06 (2017) 090, [1612.08088].

While this thesis was being prepared, the following collaborative works were also published
by the author, results from which have not been included in this thesis:

• N. Banerjee, S. Atul Bhatkar and A. Jain, Second order Galilean fluids & Stokes’ law,
Phys. Rev. D97 (2018) 096018, [1711.09076].

• J. Armas, J. Gath, A. Jain and A. V. Pedersen, Dissipative hydrodynamics with
higher-form symmetry, JHEP 05 (2018) 192, [1803.00991].

• P. Burda, R. Gregory and A. Jain, Holographic Reconstruction of Bubbles, 1804.05202.

No part of this thesis has been submitted for a degree or qualification in this or any other
institution.

Copyright © 2018 Akash Jain.

The copyright of this thesis rests with the author. No quotation from it should be published
without the author’s prior written consent and information derived from it should be
acknowledged.



viii | A universal framework for hydrodynamics



ix

Acknowledgements

First and foremost I would like to thank my supervisor, Ruth Gregory, for her guidance and
encouragement throughout my PhD. I have learned as much about the intricacies of the
academic life itself as I have about Physics through her. The three years that I have spent
with Ruth have been, without doubt, one of the most exciting times of my life, academic or
otherwise. I cannot name many colleagues whose supervisors took them to Canada every
year, arranged day trips, accompanied them to restaurants, or invited them over for meals!
Thank you, Ruth, for making my PhD such a memorable experience.

I would especially like to thank my collaborators Nabamita Banerjee and Suvankar
Dutta for their unwavering trust in my potential when my own self-confidence dwindled
at times. During every step of my struggle, they have always looked out for me; perhaps
worried even more than I did at times. This thesis would not exist without their invaluable
contributions. I would like to offer my special thanks to my friends and collaborators
Jyotirmoy Bhattacharya and Jay Armas, for their patience and calm during our long
discussions and for putting up with my disorganised, and often pointless, doubts and ideas.
Many parts of this thesis are a direct product of their hours spent on explaining crucial
concepts to me. I would also like to thank Mukund Rangamani, who supervised me during
the coursework phase of my PhD. I am particularly grateful to Philipp Burda, Felix Haehl,
Nabil Iqbal, Aurora Ireland, Simon Ross, and many other friends and collaborators, who
have helped me get through my PhD.

A huge credit for this thesis goes to my family in Durham—Leo, Mike, Omar, Marisa,
Lara, Marina, and many others for sharing this journey with me. For helping me step out
of my comfort zone and for tirelessly trying to get me into western music. I am leaving
here invariably changed compared to my four years younger self, and for better or worse,
these guys have been behind every bit of it. They have made my PhD experience orders
of magnitude more fun and exciting. A huge shout-out also to my friends from back
home—Deepak, Rahul, Pratik, Aranya, Megha, Sukruti, Sunidhi, and Alka.

I owe a huge debt of gratitude to my family, my father Neeraj Jain, mother Neelam
Jain, and brother Abhinav Jain, who stood by me every step of the way. I remember my
mother who dedicated every bit of her life nourishing her children and who passed away
last September; she would be so proud.

I would like to acknowledge the support and hospitality I received from Durham Univer-
sity, Perimeter Institute, IISER Bhopal, IISER Pune, ICTS Bangalore, NBI Copenhagen,
GGI Florence, ICTP Trieste, University of Oviedo, and DAMTP Cambridge during various
stages of my PhD. This work is financially supported by Durham Doctoral Scholarship
offered by Durham University.



x | A universal framework for hydrodynamics



xi

Contents

Abstract iii

Notation and conventions xiii

1 Introduction 1

1.1 Fundamentals of hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Relativistic hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Galilean hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Hydrodynamics with gapless modes . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Overview and organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Relativistic hydrodynamics 23

2.1 Preparing the background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1 Symmetries, currents, and background sources . . . . . . . . . . . . . 23
2.1.2 Einstein-Cartan geometries . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Noether theorem and Ward identities . . . . . . . . . . . . . . . . . . 27
2.1.4 Anomalous symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 The hydrodynamic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Thermal equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Hydrodynamic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.4 Hydrostatic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Local second law of thermodynamics . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Second law and classification of transport . . . . . . . . . . . . . . . 39
2.3.2 Anomaly induced transport . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 Transcendental anomalies . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.4 Hydrostatic transport . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.5 Non-hydrostatic transport . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.6 Entropy transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Summary and torsionless limit . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Applications: relativistic hydrodynamics 55

3.1 Relativistic fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.1 Ideal fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 One-derivative corrections . . . . . . . . . . . . . . . . . . . . . . . . 56



xii | Contents

3.2 Relativistic superfluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.1 Goldstone modes and Josephson equation . . . . . . . . . . . . . . . 59
3.2.2 Ideal superfluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.3 One-derivative corrections . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.4 Breaking of non-Abelian internal symmetries . . . . . . . . . . . . . 68

3.3 Relativistic fluid surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Galilean hydrodynamics 75

4.1 Galilean field theories and null backgrounds . . . . . . . . . . . . . . . . . . 75
4.1.1 From Poincaré to Galilean algebra . . . . . . . . . . . . . . . . . . . 75
4.1.2 Null backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.3 Ward identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.4 Galilean anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Null reduction to Newton-Cartan backgrounds . . . . . . . . . . . . . . . . . 83
4.2.1 Newton-Cartan backgrounds . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 Noether currents and conservation equations . . . . . . . . . . . . . . 87
4.2.3 Reference frame transformations . . . . . . . . . . . . . . . . . . . . 88
4.2.4 The non-relativistic limit . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Null fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 Hydrodynamics on null backgrounds . . . . . . . . . . . . . . . . . . 91
4.3.2 Null reduction to Galilean hydrodynamics . . . . . . . . . . . . . . . 93
4.3.3 Anomaly induced transport . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.4 Transcendental anomalies . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.5 Classification of hydrodynamic transport . . . . . . . . . . . . . . . . 99

5 Applications: Galilean hydrodynamics 101

5.1 Galilean fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.1 Ideal null fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.2 One-derivative corrections . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Galilean superfluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.1 Goldstone modes and Josephson equation . . . . . . . . . . . . . . . 106
5.2.2 Ideal null superfluids . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.3 One-derivative corrections . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Galilean fluid surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Outlook 117

Bibliography 121



xiii

Notation and conventions

Spacetime and indices

We use mostly positive metric convention throughout this work. Number of physical
spacetime dimensions are denoted by d. The Greek letters (µ, ν, . . .) are used to denote
the d-dimensional spacetime indices, while the Greek letters (α, β, . . .) are used for the
indices on the d-dimensional frame bundle. Similarly, the Roman letters (i, j, . . .) denote the
(d− 1)-dimensional spatial indices, with the corresponding frame bundle indices denoted by
the Roman letters (a, b, . . .). The time coordinate, on the other hand, is denoted by t. We
also introduce (d+ 1)-dimensional null backgrounds as a tool for Galilean hydrodynamics.
Indices on it are denoted by the Roman letters (m,n, . . .), while those on its frame bundle by
(a,b, . . .). In the context of anomaly inflow mechanism, the “bulk” indices will be denoted
by a hat. Einstein summation convention is implied everywhere.

We use the round and square brackets to denote totally symmetric and totally anti-
symmetric combinations of a tensor respectively. For a 2-tensor, Mµν = M (µν) + M [µν].
We often also use the angular brackets to denote traceless symmetric combinations.

Differential forms

We denote differential forms by bold-faced characters. If A and B are m and n-rank
differential forms respectively, Xµ is a vector field, f(x) is a function, and g = det gµν is
the metric determinant, then

A =
1

m!
Aµ1...µmdxµ1 ∧ . . . ,

ε =
√
|g| dx0 ∧ . . . ∧ dxd [Volume form]

A ∧B =
1

(m+ n)!

(
(m+ n)!

m!n!
A[µ1...µmBνm+1...νm+n]

)
dxµ1 ∧ . . . , [Exterior product]

?A =
1

(d−m)!

(
1

m!
Aµ1...µmεµ1...µmν1...νd−m

)
dxν1 ∧ . . . , [Hodge dual]

??A = sgn(g)(−)m(d−m),

ιXA =
1

(m− 1)!

(
XµA[µν1...νm−1]

)
dxν1 ∧ . . . , [Interior product]

dA =
1

(m+ 1)!

(
(m+ 1)∂[µ1

Aµ2...µm+1]

)
dxµ1 ∧ . . . , [Exterior derivative]

£XA = ιXdA+ d (ιXA) , [Lie derivative]∫
f(x)ε =

∫
ddx
√
|g| f(x). [Integration]
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1 | Introduction

Hydrodynamics, or fluid dynamics, is a scientific discipline which concerns itself with the
study of fluids. The word “hydrodynamics” derives from the Greek prefix “hydro-” meaning
“water” and literally translates to “the study of motion of water”. The word “fluid”, on
the other hand, comes from the Latin word “fluere” meaning “to flow”, and is used as an
umbrella term for liquids and gases together. Today, at least within the high energy physics
community, both hydrodynamics and fluid dynamics are used interchangeably to describe
the physics of continuum systems ranging from the infinitesimal quark-gluon plasma to the
infinite universe itself.

Over seventy per cent of Earth’s surface is covered with water, which undoubtedly
contributes the most vital ingredient to our biology, chemistry, as well as our sociology.
Major civilisations in the history of humankind have flourished around water bodies, from
ancient Mesopotamia all the way to present-day London. Understanding the physics of
water, or more generally of fluids, has therefore played a key role in shaping the human
civilisation. The earliest records of scientific enquiry into the statics and dynamics of
fluids date back to Archimedes in his treatise On Floating Bodies, published around 250
BC. However, it is generally accepted that a pragmatic, if not scientific, understanding
of fluids existed even in ancient human civilisations. Over the two millennia following
Archimedes’ principle of buoyancy, the field of hydrodynamics attracted the attention
of many inquisitive minds, slowly taking shape into a scientific discipline in its own
right. Rapid progress was made in the seventeenth and eighteenth centuries alongside the
development of calculus and the laws of thermodynamics, to which we owe much of our
current understanding of hydrodynamics. Major contributors include Torricelli, Newton,
Pascal, Bernoulli, Euler, d’Alembert, Lagrange, Laplace, Poisson, Poiseuille, Hagen, Navier,
Stokes, Prandtl, Reynolds, and Taylor to name a few. In the early twentieth century,
principles of hydrodynamics were reconciled with Einstein’s theory of relativity paving way
to our modern understanding of accelerator physics and cosmology. Exotic phenomena in
hydrodynamics like dissipation, vorticity, turbulence, diffusion, superfluidity, and multifluid
models, and their relation to thermodynamics and statistical mechanics were also developed
in the twentieth century owing to the efforts of Ertel, Lichnerowicz, Kamerlingh-Onnes,
Landau, Onsager, Prigogine, Khalatnikov, Eckart, Carter, Israel, and Stewart among many
others. The state of the art in the field is the standard book by Landau and Lifshitz on
Fluid Mechanics [10] published in 1959. To this day, hydrodynamics continues to be one of
the most active topics of research in many areas of science including engineering, condensed
matter physics, medicine, biophysics, and even high energy physics.

Conventionally, hydrodynamics has been an empirical field of study under the jurisdiction
of material sciences and had little to do with the realm of high energy physics, which
concerns itself with the fundamental machinery of our universe. However, this began to
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change towards the end of the twentieth century, when a series of advancements in string
theory intricately wove hydrodynamics with the physics of black holes. String theory is a
candidate for the quantum theory of gravity, which aims to describe all the four forces of
nature within a grand unified framework. Three of these forces: electromagnetic, strong,
and weak, have already been unified into a quantum field theory called the standard model
of particle physics, with great experimental success at particle accelerator experiments
such as the Large Hadron Collider. On the other hand, our current understanding of
the fourth fundamental force, gravity, comes from a classical field theory known as the
general theory of relativity. It has also been experimentally tested to great lengths, with
its latest confirmation coming from the recent gravitational wave detection by LIGO and
VIRGO collaborations in 2015 [11]. Despite these success stories and decades of research
efforts, quantising gravity and reconciling it with the standard model of particle physics has
proven to be very hard. This is where string theory comes in, with its revolutionary idea
that the fundamental building blocks of our universe are not various species of point-like
particles, as proposed by the standard model, but just a single species of tiny strings. In
string theory, point-like particles are understood as emerging from different oscillatory
modes of the same fundamental string. A quantum theory of strings gives us a natural
framework where gravity and quantum field theories can, in principle, emerge from the same
fundamental principles. Whether or not string theory is the answer to life, the universe and
everything, it has already taught us some valuable lessons about nature. Perhaps the most
important of these lessons is the concept of holography. It is the observation that the physics
of quantum gravity in spacetimes with a certain asymptotic structure can be equivalent
to that of a one-lower dimensional quantum field theory living at its boundary [12, 13];
see [14] for a review. The most popular example of holography comes from the AdS/CFT
correspondence [15–17], which relates quantum gravity on asymptotically Anti-de Sitter
(AdS) spacetimes in the bulk to conformal field theories at the boundary. See [18] for an
introductory review.

Holographic dualities have proven to be invaluable for both quantum gravity as well as
field theory research. On the one hand, they relate quantum field theories in a weak coupling
regime to highly quantum phenomena on the gravity side and can be used to get valuable
insights into the quantum nature of gravity. For example, it is widely felt that spacetime
itself could be seen as emerging from the entanglement structure of the boundary field
theory [9, 19]. More generally, there seems to be an intricate relationship between quantum
gravity in the bulk and quantum information theory at the boundary [20–23], which can
be used to probe hard questions in gravity like the black hole information paradox [24].
On the other hand, holography also relates classical general relativity to strongly coupled
quantum field theories. The strong coupling regime can be very hard to access directly in
quantum field theories due to the breakdown of the conventional perturbative approach
using Feynman diagrams. Interestingly, the theory of strong interactions between quarks
and gluons, called quantum chromodynamics (QCD), is weakly coupled at high energies
but is strongly coupled at our day-to-day energy scales. Due to this feature of QCD, many
strong interaction phenomena remain very hard to describe theoretically. Although novel
techniques are being developed to directly tackle strongly coupled phenomena in quantum
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field theories, like conformal bootstrap [25] and lattice field theories [26], holography is one
of our best analytical techniques to gain insights into these problems. This has led to a
whole new field of research called holographic condensed matter physics, aimed at utilising
holographic techniques to study qualitative features of real-world condensed matter systems.
See for example [27] for an extensive review.

A particular niche of holography, called the fluid/gravity correspondence, dualises
classical perturbations around black hole horizons in the bulk to a strongly-coupled fluid
living at the boundary. The fact that the linearised Einstein equations governing black
hole fluctuations can be remapped to the linearised dynamical equations of hydrodynamics,
had been known since the late 1980s under the name of membrane paradigm [28–30]. But
the full non-linear incarnation of this correspondence was only made explicit for the first
time in 2007 [31]. Due to this correspondence, every solution to hydrodynamic equations
of motion at the boundary gives rise to a dynamical black hole solution in the bulk. This
has been a powerful tool in the literature, for example, to test the stability of black hole
configurations using our intuitive notion of stability in hydrodynamics. In this language,
the well known Gregory-Laflamme instability in black strings [32] can be holographically
understood as the Rayleigh-Plateau instability in hydrodynamics [33, 34], which explains
why a thin stream of fluid tends to break into smaller packets. Reversing the duality, the
fluid/gravity correspondence has also led to some novel insights into hydrodynamics itself,
and its strongly-coupled applications like the quark-gluon plasma [35, 36]. For instance,
it was experimentally discovered that the ratio of shear viscosity to entropy density for
a quark-gluon plasma takes a universal value of ~/4πkB [37], which can be theoretically
explained by holographic models [38, 39]. In fact, actual heavy-ion collisions at particle
accelerator experiments can themselves be modelled holographically using the fluid/gravity
correspondence [40, 41]. On other fronts, one of the most interesting aspects of this
correspondence has been to provide a test-bed for new models of hydrodynamic phenomena,
by providing an analytically manageable tool for otherwise intractable computations. Some
examples involve recent holographic studies into exotic phenomena in hydrodynamics like
vortices, turbulence and chaos [42–45].

These holographic explorations have also fuelled new research into hydrodynamics in
its own right, leading to new insights into its fundamental principles and applications.
Perhaps the most important of these insights have been realising the signatures of quantum
anomalies in hydrodynamics [46, 47], which in turn have found crucial applications in the
physics of neutron stars [48]. We also have a microscopically motivated derivation of a
large sector of hydrodynamics using hydrostatic partition functions [2, 49–51], along with
a classification of entire hydrodynamic transport to all orders in derivative expansion [1,
52]. Other important advancements include new models for superfluid dynamics [1, 53],
magnetohydrodynamics [54], boost non-invariant [55, 56] and translation non-invariant
hydrodynamics [57, 58], formation of surfaces and lumps [6, 59], and hydrodynamics with
higher-form symmetries [8, 60]. Novel applications of hydrodynamics to condensed matter
systems like high-temperature superconductors [61] and graphene [62] have also been
realised recently. However, there are still a lot of fundamental questions that remain
unanswered. For instance, we still do not satisfactorily understand how inherently reversible
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microscopic field theories can lead to irreversible phenomena, such as dissipation and
the second law of thermodynamics, in the macroscopic limit. Also, our understanding
of non-equilibrium processes in finite-temperature field theories is not very robust, with
hydrodynamics practically being the only laboratory where we have some degree of control.
The hope is that if we can understand how hydrodynamics emerges as an effective field
theory from the microscopic degrees of freedom, we will be able to, at least, frame these
questions in the right language. Considerable progress has been made towards a Schwinger-
Keldysh formalism for hydrodynamics and writing down a Wilsonian effective action [63–71],
which sheds light on some of these fundamental issues.

On an independent front, our understanding of Galilean hydrodynamics has also been rev-
olutionised over the past decade. The holographic correspondence for Galilean (Schrödinger)
hydrodynamics was first set up in 2008 [72], shortly after its relativistic counterpart. The
authors employed the standard prescription of null reduction [73–75] (see [76] for a review),
which reduces a (d + 1)-dimensional relativistic fluid to a d-dimensional Galilean fluid,
and prescribed a holographic map between d-dimensional Galilean hydrodynamics and
(d+ 2)-dimensional black holes. Exploiting null reduction, a new framework for Galilean
fluids has been proposed, called null fluids, which reorganises Galilean hydrodynamics into
one-higher dimensional anisotropic relativistic hydrodynamics [2–5, 7]. Other frameworks
of Galilean hydrodynamics, utilising Newton-Cartan geometries [77–80], have also been
proposed recently [81, 82]. Besides Galilean, there have also been other incarnations of
non-relativistic hydrodynamics in the literature with different underlying symmetry groups.
Most notably, Lifshitz hydrodynamics has attracted a lot of attention; see e.g. [55, 83] for
some recent work and [84] for a review of Lifshitz holography.

We should mention that the references provided here are only intended to be indicative
of the ongoing activity in the field of hydrodynamics. Given the sheer magnitude of relevant
papers being published every year, the references mentioned here are in no way exhaustive,
or even representative, of all the interesting research being carried out in hydrodynamics
and related areas. The readers interested in learning more are encouraged to consult the
mentioned references and follow the bibliographies therein.

In this thesis, we review some of the recent advancements mentioned above to which
the author has contributed during the course of his PhD [1–6]. We also discuss some new
results and insights following from these works, which were found during the preparation
of this thesis. We present a universal framework for hydrodynamics starting from the
fundamental considerations such as symmetries and the second law of thermodynamics,
while allowing for arbitrary gapless modes in the low-energy spectrum. The most natural
examples of such systems are (non-Abelian) superfluids, which we discussed in [1], with
gapless Goldstone modes arising due to a spontaneously broken internal symmetry. Such
modes can also arise due to a spontaneous or explicit breaking of spacetime symmetries,
which can cause the formation of surfaces, as we described in [6], and potentially a myriad
of other interesting phenomena like momentum relaxation and boost non-invariance. In fact,
the theory of magnetohydrodynamics can also be understood within the same framework,
with the components of a dynamical U(1) gauge field serving as gapless modes. Typically,
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such additional dynamical modes in hydrodynamics also need to be supplied with their own
equations of motion by hand, like the Josephson equation for superfluids, Young-Laplace
equation for fluid surfaces, and Maxwell’s equations for magnetohydrodynamics. However,
we realised in [1] that these equations can be derived within the hydrodynamic framework
by a careful off-shell generalisation of the second law of thermodynamics. This potentially
provides a universal framework for a large class of hydrodynamic theories, based on their
underlying symmetries and gapless modes. Motivated by this newly found universality, we
extend the classification scheme of hydrodynamic transport, proposed by the authors of [52],
to include arbitrary gapless modes, while also allowing for an independent spin-current and
background torsion. This classification scheme first appeared for (non-Abelian) superfluids
in [1]. We expect this construction to naturally extend to hydrodynamics with higher form
symmetries as well, which we set up in [8], but we do not explore this direction in this thesis.
In the second half of this thesis, we look at the construction of null fluids, based on our work
in [2–5], which are a new viewpoint of Galilean fluids. These are essentially fluids coupled
to spacetime backgrounds carrying a covariantly constant null isometry, but with additional
constraints imposed on the background gauge field and affine connection to reproduce the
correct Galilean degrees of freedom. We discuss the Galilean version of quantum anomalies
and their effect on hydrodynamics, taken from our work in [5]. Finally, we follow our
relativistic discussion to allow for arbitrary gapless modes in Galilean hydrodynamics and
present a classification scheme for the second law abiding hydrodynamic transport at all
orders in the derivative expansion. As far as we are aware, an all-order analysis of Galilean
transport has not appeared in the literature before.

In the remainder of this introductory chapter, we present a quick recap of the fundamen-
tals of hydrodynamics in section 1.1, followed by an introduction to hydrodynamics with
gapless modes in section 1.2. Finally, in section 1.3 we provide a comprehensive overview
of the main results of this thesis.

1.1 | Fundamentals of hydrodynamics

Hydrodynamics is the low-energy effective description of a generic finite temperature
quantum system near its thermodynamic equilibrium. The qualifier “near” essentially means
that we are only ever allowed to leave the global thermodynamic equilibrium perturbatively
so that locally we still have a notion of thermodynamic equilibrium at every spacetime
point. In precise terms, hydrodynamics describes physical systems whose fluctuations are
on the length scales much larger compared to the inherent length scales of the system, like
mean-free path. Even in the absence of a (quasi-)particle description, temperature itself
can set such an inherent length scale, β = c~/kBT , which for a system at room temperature
is roughly 10−6 meters. Within this narrow regime of applicability, hydrodynamics is quite
universal; the fundamental equations governing it can be applied to water at the scale of
a raft, quark-gluon plasma at the scale of particle accelerators, and even cosmology at
the scale of the universe itself. In this section, we build hydrodynamics starting from the
fundamental laws of thermodynamics. We briefly discuss both the relativistic and Galilean
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versions of hydrodynamics and work out the first corrections to the respective constitutive
relations as we leave the thermodynamic equilibrium. This should set the groundwork for
the material presented in this thesis.

1.1.1 Thermodynamics

Let us say that we are given a volume of gas in equilibrium and we want to describe
it using our understanding of thermodynamics. The macroscopic variables we should
choose to describe this system are based on the statistical ensemble we are working in.
For example, if the gas is held in a closed container of fixed volume and is not allowed
to exchange heat or conserved charges (like particles) with its surroundings, it is said to
be in the microcanonical ensemble. The thermodynamic parameters in this ensemble are
the volume V of the container and the total entropy Stot and total charge Qtot of the
gas. Their canonical conjugates, on the other hand, are the thermodynamic observables:
pressure P , temperature T , and chemical potential µ. The macroscopic state of the gas
itself is represented by a thermodynamic potential specified as a function of thermodynamic
parameters, which in the microcanonical ensemble happens to be the internal energy
Etot(V, Stot, Qtot) of the gas. We can read out various macroscopic observables in terms of
the internal energy using the celebrated first law of thermodynamics

δEtot = TδStot + µδQtot − PδV. (1.1)

It states the principle of energy conservation in thermodynamics: the change in the internal
energy of a system is equal to the heat TδStot supplied to the system, plus the energy µδQtot

gained by charge influx, minus the work PδV done by the system. Based on the application
we have in mind, we can also work with any of the other thermodynamic ensembles; they are
all related to each other via a Legendre transform. In this work, we are mainly interested
in the so-called grand canonical ensemble. It describes a given volume of gas which is free
to exchange heat and charge with its surroundings but is held at a fixed temperature and
chemical potential. The thermodynamic potential for this ensemble is called the grand
potential Ω(V, T, µ). It is related to the internal energy of the microcanonical ensemble via
the Legendre transform Ω = E − TStot − µQtot. Using the first law of thermodynamics, we
can work out its variation to be

δΩ = −StotδT −Qtotδµ− PδV. (1.2)

For completeness, we should also mention the third standard statistical ensemble called the
canonical ensemble. The associated thermodynamic potential is given by the Helmholtz
free energy Ftot(V, T,Qtot) defined as Ftot = Etot − TStot. It describes a given volume of
gas that is allowed to exchange heat with its surroundings but not charge.

The topic of interest of this work is fluids. From a thermodynamic perspective, fluids
are homogeneous systems. That is to say that no particular subvolume of a fluid is more
interesting than any generic subvolume of the same fluid. In precise terms, homogeneity
can be defined as a property of a thermodynamic system that under a scaling of all the
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extensive parameters by some arbitrary function λ, the thermodynamic potential also scales
by the same factor. For example, in the microcanonical ensemble we have

Etot(λV, λStot, λQtot) = λEtot(V, Stot, Qtot). (1.3)

In other ensembles, this statement equivalently implies Ω(λV, T, µ) = λΩ(V, T, µ) and
Ftot(λV, T, λQtot) = λFtot(V, T,Qtot). If we differentiate this equation with respect to λ
and set λ = 1, we arrive at the Euler equation for homogeneous fluids

Etot = TStot + µQtot − PV, (1.4)

or equivalently Ω = −PV and Ftot = µQtot − PV . Note that in the grand canonical
ensemble, homogeneity completely fixes the volume dependence of Ω. To see this, note that
the pressure of a fluid in the grand canonical ensemble is given by P = −∂Ω/∂V = −Ω/V

which implies P = P (T, µ) and Ω(V, T, µ) = −P (T, µ)V . The functional dependence of
P on T and µ, i.e. P = P (T, µ), is known as the equation of state of the fluid, which
completely specifies its macroscopic state. It is made manifest by the Gibbs-Duhem equation,
obtained by substituting the Euler equation into the first law of thermodynamics, leading
to

δP = SδT +Qδµ. (1.5)

Here we have defined the entropy density S = Stot/V and charge density Q = Qtot/V of
the fluid, which are more natural quantities for a homogeneous system. In terms of the
densities, the Euler relation itself becomes

E + P = TS + µQ, (1.6)

where E = Etot/V is the internal energy density. Lastly, we can also derive a local version
of the first law of thermodynamics

δE = TδS + µδQ, (1.7)

which is more relevant in fluid dynamics. It states that the change in the internal energy
distribution of a fluid can be attributed to the change in the heat and charge distributions.
Consequently, the equation of state for a fluid in the microcanonical ensemble is E = E(S,Q)

and similarly in the canonical ensemble F = F (T,Q), where F = Ftot/V is the Helmholtz
free energy density.

We should clarify some confusion in the literature regarding the usage of the phrase
“equation of state”. By our definition, specifying the equation of state completely specifies
the macroscopic thermodynamic state of the fluid. This would not be the case if we instead
decided to specify, for example, P (T,Q) rather than P (T, µ). For concreteness, let us look
at ideal gases, which are popularly known to have an “equation of state” PV = QtotkBT .
In this context, Qtot counts the number of gas atoms/molecules in a given volume and kB

is the Boltzmann constant. Dividing by the volume, we get a local version of this equation
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P (T,Q) = QkBT . Realising that Q = ∂P/∂µ, we can integrate this equation to get

P (T, µ) = f(T ) exp

(
µ

kBT

)
. (1.8)

In fact, this would have been the true equation of state of an ideal gas, which, as of yet, is
unspecified due to the appearance of an arbitrary function f(T ). For instance, we could
take this function to be a power law f(T ) = αT cP for some constants α and cP . Using
the Gibbs-Duhem and Euler equations, we can read out the energy, charge, and entropy
densities of an ideal gas to be

S =
P

T

(
cP −

µ

kBT

)
, Q =

P

kBT
, E = (cP − 1)P. (1.9)

These are, obviously, standard results in the thermodynamics of ideal gases. Importantly,
note that the supposed equation of state PV = QtotkBT does not contain any information
about the specific heat cP , which however is contained in P (T, µ).

1.1.2 Relativistic hydrodynamics

Hydrodynamics describes small fluctuations of a homogeneous system around its ther-
modynamic equilibrium. To this end, we introduce a slowly varying fluid velocity field
uµ(t,x) normalised as uµuνηµν = −1, which in equilibrium would have been just δµt . Here
ηµν = diag(−1, 1, 1, . . .) is the pseudo-Riemannian Minkowski metric which is used to
raise/lower the µ, ν, . . . indices. It should be noted that uµ characterises a course-grained
macroscopic velocity of the fluid at any given spacetime point and not the individual
velocities of the microscopic constituents that make up the fluid. The assumption that
we can treat fluids as a continuous media, ignoring their microscopic mechanics, is known
as the continuum assumption of hydrodynamics. Within this premise, we also promote
the thermodynamic parameters T (t,x) and µ(t,x) to slowly varying scalar fields over the
spacetime manifold. Here, by “slowly varying” we mean that the spacetime derivatives of
uµ, T , and µ are much smaller compared to the quantities themselves, allowing us to treat
derivatives as a well-defined perturbative parameter around the thermodynamic equilibrium.
As a corollary, we can always revert back to the thermodynamic regime by setting all the
derivatives to zero.

The dynamical setup we have in mind is as follows: let us say that we are given a fluid
configuration uµ(0,x), T (0,x), and µ(0,x) at some initial time t = 0, along with their first
time derivatives. We would like to be able to solve an initial value problem and determine
the fluid configuration at all later times t > 0. For this purpose, we need a set of equations
of motion for uµ, T , and µ. For the scalars T and µ, we can obtain a first approximation
to such an equation by demanding the entropy and charge densities to be conserved along
the fluid flow, i.e.

∂µ (Suµ) = 0, ∂µ (Quµ) = 0. (1.10a)

Here S and Q are seen as functions of T and µ. The evolution of the fluid velocity, on the
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other hand, is governed by the relativistic Navier-Stokes equation for force balance

(E + P )uµ∂µu
ν = −P νρ∂ρP, (1.10b)

where Pµν = ηµν + uµuν is the projector against the fluid velocity. The fluid acceleration
on the left is balanced on the right by the gradient of pressure. The fluids that can be
described by this simple set of equations are known as ideal fluids.

As the name suggests, the dynamical equations (1.10) are quite idealised. In a generic
fluid flow, the flow of entropy might not necessarily align with the flow of charge. Moreover,
there could be frictional (viscous) forces in the Navier-Stokes equation due to nearby layers
of the fluid dragging along each other. These effects introduce correction terms in eq. (1.10)
appearing at second derivative order or higher, which are not fixed by thermodynamics. To
efficiently organise these derivative corrections, let us define an energy-momentum tensor
and charge current for our fluid as

Tµν = (E + P )uµuν + Pηµν + Tµνder, Jµ = Quµ + Jµder. (1.11)

Here Tµνder and J
µ
der represent the possible derivative corrections. Using thermodynamics,

we can show that the dynamical equations (1.10) can now be represented as the energy-
momentum and charge conservation equations

∂µT
µν = 0, ∂µJ

µ = 0. (1.12)

Thanks to the Noether theorem, these conservation equations are guaranteed to hold even
in the presence of derivative corrections. Consequently, derivative corrections only enter
the dynamical equations via the corrections in Tµν and Jµ. The plan henceforth is to
write down the most generic derivative corrections in the currents Tµν and Jµ allowed by
symmetries, truncated to a finite order in the derivative expansion. These expressions are
known as the fluid constitutive relations.

As such, when we include derivative corrections in Tµν and Jµ, there is no guarantee
that the entropy remains conserved. This is not surprising, as we do not expect entropy to
stay conserved in an arbitrary dynamical process. However, in accordance with the second
law of thermodynamics, we still expect there to be a local notion of an entropy current

JµS = Suµ + JµS,der, (1.13)

which has a non-negative divergence at every spacetime point, i.e.

∂µJ
µ
S ≥ 0. (1.14)

This is, in fact, a very non-trivial condition, which needs to be imposed by hand at every
derivative order and implies some strict constraints on the tensor structures that can enter
the constitutive relations. To glimpse the full potential of this inequality, let us consider
the zero derivative order constitutive relations from a combinatorial viewpoint. They are
still given by eq. (1.11), except that P , E, and Q are now viewed as arbitrary functions
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of T and µ, without the thermodynamics relating them. Similarly, the most generic zero
order entropy current is given by eq. (1.13). Let us compute the divergence of JµS ; we find

∂µJ
µ
S = uµ∂µS + S∂µu

µ =

(
− ∂S
∂E

(E + P )− ∂S

∂Q
Q+ S

)
∂µu

µ +O(∂2). (1.15)

In the second step we have viewed S as a function of E and Q and used the first order
equations of motion

∂µT
µν = 0 =⇒ uµ∂µE = −(E + P )∂µu

µ + uν∂µT
µν
der,

uµ∂µu
ν =

1

E + P

(
P νρ∂ρP − P νρ ∂µT

µρ
der
)
,

∂µJ
µ = 0 =⇒ uµ∂µQ = −Q∂µuµ − ∂µJµder, (1.16)

to eliminate uµ∂µE and uµ∂µQ. We want the right-hand side of eq. (1.15) to be non-negative
for any fluid profile. Even if we start with a positive ∂µuµ, there is no guarantee that it
remains so during the course of the flow, causing a violation of the second law. The only way
of ensuring that the second law is identically upheld is for us to demand the coefficient of
∂µu

µ in eq. (1.15) to vanish. If at the ideal order, we identify the temperature and chemical
potential of the fluid with their thermodynamic values, i.e. ∂S/∂E = 1/T + O(∂) and
∂S/∂Q = −µ/T +O(∂), we can immediately read out this constraint as the Euler scaling
relation. Therefore thermodynamic relations, which are equalities, follow from requiring
the inequality of second law.

Let us briefly return to the fluid variables uµ, T , and µ. At the ideal order, they are
uniquely defined by their respective values in thermodynamic equilibrium. However, as we
leave the equilibrium, they can admit arbitrary derivative redefinitions

T → T + Tder, µ→ µ+ µder, uµ → uµ + uµder. (1.17)

It essentially implies that not all the derivative corrections in Tµνder and J
µ
der are physical;

some of them can be attributed to the inherent ambiguity in the fluid variables. Often, it is
convenient to work in a hydrodynamic frame which uniquely specifies these fluid variables.
For instance, in the Landau frame one chooses Tµνuν = −Euµ and Jµuµ = −Q, which
defines the fluid velocity to be along the flow of energy. There is also the Eckart frame
with Tµνuµuν = E and Jµ = Quµ, which instead aligns the fluid velocity with the flow of
charge. In the bulk of this paper, we work in a third frame called the hydrostatic frame.
However, we do not have enough tools to define it yet.

As an example, let us consider one-derivative corrections to the fluid constitutive
relations. For simplicity, we only include tensor structures that preserve parity. We return
to a more general analysis in section 3.1. To start with, let us write down the most generic
one-derivative corrections in Landau frame

Tµνder = −ζ PµνΘ− η σµν +O(∂2),

Jµder = κPµν∂νT − σ Pµν∂νµ+O(∂2), (1.18)
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where we have defined

Θ = ∂µu
µ, σµν = PµρP νσ

(
∂(µuν) −

1

3
PµνΘ

)
. (1.19)

We have chosen not to include any terms involving uµ∂µT , uµ∂µµ, or uµ∂µuν , as they can
be eliminated using the first order equations of motion (1.16). Here the bulk viscosity ζ,
shear viscosity η, thermal conductivity κ, and electric conductivity σ are arbitrary functions
of T and µ, known as transport coefficients.

To see what constraints are imposed by the second law of thermodynamics, let us start
with the entropy current (1.13) and compute its divergence, but this time paying attention
to the derivative corrections. We find

∂µJ
µ
S = − 1

T
Tµνder∂µuν − J

µ
der∂µ

µ

T
+ ∂µ

(
JµS,der +

µ

T
Jµder

)
=
ζ

T
Θ2 +

η

T
σµνσµν + Tσ Pµν∂µ

µ

T
∂ν
µ

T

−
(
κ− µ

T
σ
)
Pµν∂µT∂ν

µ

T
+ ∂µ

(
JµS,der +

µ

T
Jµder

)
+O(∂3). (1.20)

Here again, we have used the equations of motion to express the entropy current divergence
in the desired form. The last term implies that we can choose the derivative corrections in
the entropy current to be

JµS,der = −µ
T
Jµder = −µ

T
κPµν∂νT +

µ

T
σ Pµν∂νµ+O(∂2). (1.21)

The remaining term in the last line cannot be made positive definite and hence must
vanish. This relates the thermal conductivity to the electric conductivity. On the other
hand, the terms in the first line are manifestly positive semi-definite, which tells us that
their coefficients must be non-negative, leading to the non-negativity of the viscosities and
electric conductivity. Together, we have

κ = σµ/T, ζ ≥ 0, η ≥ 0, σ ≥ 0. (1.22)

In summary, the constitutive relations of a parity-preserving relativistic fluid, corrected
up to one-derivative order, are given as

Tµν = (E + P )uµuν + Pηµν − ζ PµνΘ− η σµν +O(∂2),

Jµ = Quµ − σ T∂µ
µ

T
+O(∂2). (1.23)

They are characterised by an equation of state P = P (T, µ) at the ideal order and three
non-negative transport coefficients η, ζ, and σ at the first order. These are the standard
textbook results and can be found, for example, in [10].
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1.1.3 Galilean hydrodynamics

In our discussion above, we assumed the fluid to be relativistic and described its dynamics
by a set of Lorentz-invariant dynamical equations. However, for most applications in
our day-to-day non-relativistic lives, it is more useful to formulate a Galilean version of
hydrodynamics. In a Galilean setting, we still have T (t,x) and µ(t,x) as fundamental
variables of our fluid, but the Galilean fluid velocity is taken to be ui(t,x) instead, without
any normalisation condition. Furthermore, thermodynamics of Galilean fluids can also
admit an independent mass density R alongside the charge density, which is absent in a
relativistic description. We call the associated chemical potential µm(t,x) with

dP = SdT + µmdR+ µdQ, E + P = TS + µmR+ µQ. (1.24)

To first approximation, the dynamical equations for T , µm, and µ are provided by the
entropy, mass, and charge conservation equations respectively, while that for ui is provided
by the Navier-Stokes equation, i.e.

∂tS + ∂i
(
Sui
)
, ∂tR+ ∂i

(
Rui

)
, ∂tQ+ ∂i

(
Qui

)
,

R
(
∂tu

i + uj∂ju
i
)

= −∂iP. (1.25)

Similar to the relativistic case, the fluids which are governed by this set of equations are
known as ideal Galilean fluids.

To classify the possible derivative corrections that these equations can admit, it is useful
to convert them into the Noether conservation equations. With this in mind, let us define a
set of macroscopic observables for our Galilean fluid

ρ = R+ ρder, ρi = Rui + ρider,

q = Q+ qder, ji = Qui + jider,

ε = E +
1

2
Ru2 + εder, εi =

(
E + P +

1

2
Ru2

)
ui + εider,

pij = Ruiuj + Pδij + pijder. (1.26)

They are the mass density, mass flux, charge density, charge flux, energy density, energy flux,
and stress tensor of the fluid respectively. Note that our definition of the energy density ε
contains contributions from both the internal energy density E as well as the kinetic energy
density 1

2Ru
2, as we would expect for a non-relativistic system. In the expressions above,

ρder, ρider, qder, jider, εder, εider, and p
ij
der represent the possible derivative corrections that

the fluid can admit as we leave the thermodynamic equilibrium. In line with our relativistic
discussion, we could exploit the redefinition freedom in the hydrodynamic fields to set some
of these corrections to zero. One such choice ubiquitous in Galilean hydrodynamics is the
so-called mass frame, which sets ρder = ρider = qder = εder = 0 and aligns the fluid velocity
with the flow of mass. Using the definitions in eq. (1.26), we can convert the ideal order



1.1. Fundamentals of hydrodynamics | 13

equations of motion (1.25) into

∂tρ+ ∂iρ
i = 0, ∂tq + ∂ij

i = 0,

∂tε+ ∂iε
i = 0, ∂tρ

i + ∂jp
ij = 0. (1.27)

These are the Noether conservation equations for a Galilean system, which we take to be
the fundamental equations of motion for Galilean hydrodynamics. Note that we do not
require them to admit any explicit derivative corrections; all the corrections enter implicitly
via the Galilean currents and densities.

To find these corrections up to any given derivative order, we need to first write down
the most generic expressions for various currents and densities allowed by symmetries, called
the Galilean fluid constitutive relations. Listing out the tensor structures that respect
spatial rotations is quite trivial, as these symmetries are manifest in the index structure of
the Galilean observables. However, the Galilean boost symmetry is not manifest; under a
boost xi → xi − ψit, the fluid velocity shifts as ui → ui + ψi, and accordingly the Galilean
observables mix in a non-trivially manner

ρi → ρi − ρψi, ji → ji − qψi, pij → pij − 2ρ(iψj) + ρψiψj ,

ε→ ε+
1

2
ρψ2 − ρiψi, εi → εi − εψi +

1

2
ψ2
(
ρi − ρψi

)
−
(
pij − ψiρj

)
ψj , (1.28)

while leaving the conservation equations invariant. Writing down the tensor structures
that are invariant under this transformation can be quite cumbersome. For a detailed
account, see the discussion in [10]. However, we can make our life considerably simpler if we
introduce an auxiliary coordinate x− and arrange the Galilean observables into one-higher
dimensional Poincaré-invariant structures

Tmn =

× ε εj

ε ρ ρj

εi ρi pij

 , Jm =

×q
ji

 . (1.29)

Here we have chosen the coordinate system (xm) = (x−, t, xi). The coordinates x− and t are
taken to be null with respect to the 5-dimensional spacetime, i.e. ds2 = −2dx−dt+δijdx

idxj .
The notation “×” above represents some arbitrary unphysical quantities introduced to
complete the 5-dimensional tensor structures; they can be safely ignored for our purposes.
Barring these, note that the tensors Tmn and Jm are manifestly x−-independent. To ensure
that they remain so, we only allow for x−-independent Poincaré transformations on the
5-dimensional spacetime. With some elementary algebra, we can convince ourselves that the
residual symmetries are: t and xi translations, xi-rotations, U(1) charge transformations,
x− translations, and x−-xi rotations

x− → x− +
1

2
ψ2t− ψixi, t→ t, xi → xi − ψit. (1.30)

The spacetime translations, spatial rotations, and U(1) transformations map respectively
to their Galilean counterparts, while the x− translations are identified with an emergent
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U(1) symmetry which is responsible for the conservation of mass. The remaining x−-xi

rotations actually map to the non-trivial Galilean boosts, as can be readily verified by
applying them to eq. (1.29). We can also arrange the equations of motion (1.27) into a
natural 5-dimensional form

∂mT
mn = 0, ∂mJ

m = 0. (1.31)

In deriving these, we have noted that the action of ∂− yields zero. These equations are
precisely the conservation laws of relativistic hydrodynamics given in eq. (1.12). We have,
therefore, mapped our Galilean fluids into one-higher dimensional relativistic fluids. Note
however that these relativistic fluids are different from those discussed in section 1.1.2; they
are anisotropic due the presence of a preferred coordinate x−. We call them null fluids.

At this point, we can essentially repeat the entire analysis we did for relativistic fluids,
step-by-step. For starters, the ideal Galilean fluid constitutive relations (1.26) can be
mapped into ideal null fluids as

Tmn = Rumun + 2(E + P )u(mV n) + Pηmn + Tmn
der , Jm = Qum + Jm

der, (1.32)

where we have defined

um =


1
2u

2

1

ui

 , V m =

1

0

0

 , ηmn =

 0 −1 0

−1 0 0

0 0 δij

 . (1.33)

ηmn is just the higher dimensional Minkowski metric written in null coordinates, while
V m is the covariant representation of the null coordinate x−. On the other hand, um is a
doubly normalised (umum = 0, umVm = −1) null fluid velocity, responsible for the name
“null fluids”. The tensors Tmn

der and Jm
der represent the possible derivative corrections these

constitutive relations can admit. The mass frame condition in this language also takes a
natural form: VmT

mn
der = VmJ

m
der = 0.

Once we have written down the derivative corrections in accordance with the symmetries,
we should impose the second law of thermodynamics. It essentially implies the existence of
an entropy density and flux

s = S + sder, si = Sui + sider, Jm
S =

×s
si

 , (1.34)

whose divergence is positive semi-definite at every spacetime point, i.e.

∂ts+ ∂is
i ≥ 0 ⇐⇒ ∂mJ

m
S ≥ 0. (1.35)

Similar to the relativistic fluids, this requirement imposes some strict constraints on the
Galilean fluid constitutive relations as well. We do not repeat the calculational details here,
but following our relativistic steps from eq. (1.15) onward, we can easily infer that the
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one-derivative corrections to the null fluid constitutive relations are given as

Tmn = Rumun + 2(E + P )u(mV n) + Pηmn − η σmn − ζ PmnΘ

− 2V (mP n)r
(
κ

1

T
∂rT + (κQ + κQ)T∂r

µ

T

)
+O(∂2),

Jm = Qum − (κQ − κQ)Pmn 1

T
∂nT − σ TPmn∂n

µ

T
+O(∂2). (1.36)

Here we have chosen to work in the mass frame and focused on the parity-preserving sector.
We have also defined a projector Pmn = ηmn + 2u(mV n) transverse to um and V m, along
with the one-derivative structures

Θ = ∂mu
m, σmn = PmrP ns

(
∂(rus) −

1

3
PrsΘ

)
. (1.37)

5 of the 6 transport coefficients appearing in eq. (1.36) satisfy a set of 4 inequality constraints
among them

ζ ≥ 0, η ≥ 0, σ ≥ 0, κ ≥ κ2
Q/σ, (1.38)

while the remaining transport coefficient κQ is completely arbitrary.

These results can easily be converted to the 4-dimensional language, providing one-
derivative corrections to the Galilean fluid constitutive relations in mass frame

ji = Qui − (κQ − κQ)
1

T
∂iT − σ T∂i µ

T
+O(∂2),

εi =

(
E + P +

1

2
Ru2

)
ui − κ 1

T
∂iT − (κQ + κQ)T∂i

µ

T
− η σijuj − ζ uiΘ +O(∂2),

pij = Ruiuj + Pδij − η σij − ζ δijΘ +O(∂2). (1.39)

Written like this, the coefficients can be identified as the bulk viscosity ζ, shear viscosity η,
thermal conductivity κ, electric conductivity σ, and two thermo-electric conductivities κQ
and κQ. Note that a Galilean fluid admits many more transport coefficients compared to a
relativistic fluid.

This finishes our introductory review of relativistic and Galilean hydrodynamics. We
have been quite sketchy in our approach, not spending too much time on the subtleties of
the hydrodynamic description. We return to these issues in chapters 2 and 4, where we
approach hydrodynamics from a more formal standpoint.

1.2 | Hydrodynamics with gapless modes

A major part of this thesis is concerned with how the presence of arbitrary gapless modes
in the low-energy spectrum modifies the hydrodynamic framework. So that these results
do not get lost in the deluge of technicalities, we outline the basic principles here. For
concreteness, we choose the gapless mode in question to be a Goldstone mode ϕ, arising
due to the spontaneous breaking of a U(1) symmetry. Hydrodynamic systems that admit
such a Goldstone mode are known as superfluids.
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Under a global U(1) transformation, the Goldstone field ϕ transforms as ϕ→ ϕ−Λ, so
it is more helpful to deal with its derivative ξµ = ∂µϕ directly, which is U(1)-invariant. The
vector field ξµ is called the superfluid velocity and is taken to be O(∂0) in the hydrodynamic
derivative expansion. Note that the superfluid velocity is exact, i.e. ∂[µξν] = 0. The
dynamics of ϕ is governed by the Josephson equation

uµξµ = uµ∂µϕ = µ+ µder, (1.40)

where µder represents the possible derivative corrections that this equation can admit.
Although well motivated from a physical standpoint, the Josephson equation is still imposed
by hand in the conventional treatment of superfluid dynamics. From a hydrodynamic
perspective, where all the dynamics is supposed to emerge on the general grounds of
symmetries and thermodynamics, this is quite unnatural. It would be much more natural if
we can somehow derive this equation from within the framework of hydrodynamics. More
generally, such a derivation will be helpful when we might not have a physical intuition
about the low-energy dynamics of a gapless mode. To illustrate how our construction works,
let us forget the Josephson equation for now. We will see it emerge as a corollary of the
second law of thermodynamics.

The equations of motion for uµ, T , and µ, on the other hand, are the Noether conservation
equations (1.12) as before. However, for our purposes, it is helpful to record a version of
these equations which is valid even when ϕ is taken off-shell1

∂µT
µν = Kξν , ∂µJ

µ = −K. (1.41)

Here we have formally denoted K = δS/δϕ with S being an effective action for hydrody-
namics. The equation of motion for ϕ can correspondingly be represented as K = 0. If we
had started with some other gapless modes than ϕ, these equations could be considerably
different based on the symmetry properties of the gapless modes.

Similar to our previous discussion, we require the fluid to satisfy the second law of
thermodynamics. We require the existence of an entropy current JµS whose divergence is
positive semi-definite everywhere. However, this time we impose this even on arbitrary
off-shell configurations of ϕ. This is quite a non-trivial step, and is responsible for why the
second law is able to fix the Josephson equation. To see this, let us work out the ideal
superfluid constitutive relations. Using symmetries, at the ideal order the most generic
expressions for Tµν and Jµ are given as

Tµν = (E + P )uµuν + Pηµν +Rsξ
µξν +O(∂),

Jµ = Quµ +Qsξ
µ +O(∂), (1.42)

where the coefficients are arbitrary functions of T , µ, and µs = −1
2ξ
µξµ. On the other

1The easiest way to derive these equations is to consider a low energy effective action for ϕ in thermo-
dynamic equilibrium, i.e. S[gµν , Aµ, ϕ], in the presence of arbitrary background sources gµν and Aµ to
couple to the currents Tµν and Jµ respectively. Eq. (1.41) follows from here if we require our action to be
invariant under an infinitesimal diffeomorphism: gµν → gµν + £χgµν , Aµ → Aµ + £χAµ, ϕ → ϕ + £χϕ
and a U(1) gauge transformation Aµ → Aµ + ∂µϕ, ϕ→ ϕ− Λ.
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hand, K is just an arbitrary scalar which is unfixed for now. We have not included any
dependence on uµξµ = uµ∂µϕ, as this corresponds to the time derivative of ϕ which can in
principle be eliminated using the ϕ equation of motion. In principle, we could also include
a term 2λu(µξν) in the energy-momentum tensor, but this gets switched off by the second
law of thermodynamics in the end, so we omit it here for the clarity of notation. Using the
constitutive relations (1.42), the scalar components of the conservation equations can be
evaluated to be

∂µT
µν = Kξν =⇒ uµ∂µE +Rsu

µ∂µµs + (E + P )Θ = −uλξλ (K − ∂µ (Rsξ
µ)) ,

ζν ((E + P )uµ∂µuν + ∂νP −Rs∂νµs) = ζ2 (K − ∂µ (Rsξ
µ)) ,

∂µJ
µ = −K =⇒ uµ∂µQ+QΘ + ∂µ (Qsξ

µ) = −K, (1.43)

where ζµ = Pµνξν . We use these to eliminate the one-derivative scalars uµ∂µE, ζνuµ∂µuν ,
and uµ∂µQ respectively. Let us start with an arbitrary zero-derivative entropy current
JµS = Suµ + Ssξ

µ and compute its divergence

∂µJ
µ
S =

∂S

∂E
uµ∂µE +

∂S

∂Q
uµ∂µQ+

∂S

∂µs
uµ∂µµs + SΘ

= −
(
∂S

∂E
uλξλ +

∂S

∂Q

)
(K − ∂µ (Rsξ

µ))(
Ss − (Qs +Rs)

∂S

∂Q

)
∂µξ

µ − ∂S

∂Q
ξµ∂µ(Qs +Rs) + ξµ∂µSs

+

(
∂S

∂µs
−Rs

∂S

∂E

)
uµ∂µµs +

(
S − (E + P )

∂S

∂E
−Q∂S

∂Q

)
Θ. (1.44)

We have taken S to be a function of E, Q, and µs, and used the first order equations of
motion in the second step. Every term in the last two lines of this expression is linearly
independent and cannot be made positive semi-definite. Thus all the respective coefficients
must vanish, leading to

E + P = TS + µQ, Rs = T
∂S

∂µs
, Qs = −Rs, Ss = 0. (1.45)

As before, we have identified the temperature and chemical potential with their thermo-
dynamic values: ∂S/∂E = 1/T + O(∂) and ∂S/∂Q = −µ/T + O(∂). With this, the
first condition above can be read as the thermodynamic Euler equation. The first law of
thermodynamics and the Gibbs-Duhem equations for a superfluid also follow from the
differential expression for S, leading to

dE = TdS + µdQ−Rsdµs, dP = SdT +Qdµ+Rsdµs. (1.46)

Moving on, we still need to take care of the first term in eq. (1.44). It can be made explicitly
positive semi-definite if we choose

K = −α
T

(uµξµ − µ) + ∂µ (Rsξ
µ) +O(∂2), (1.47)

for some non-negative transport coefficient α. Using this, the ϕ equation of motion K = 0



18 | Chapter 1. Introduction

takes the form
uµξµ = µ+

T

α
∂µ (Rsξ

µ) +O(∂). (1.48)

This is precisely the Josephson equation. Note that this equation is still only accurate at
the zero-derivative order. There can be further one-derivative corrections which we have
not analysed here. We return to these in section 3.2.

The framework we have presented here is actually applicable to much more than just
superfluids. For a quick example, consider a neutral fluid with an energy momentum
tensor Tµν . The hydrodynamic fields are uµ and T , and their dynamics is provided by the
energy-momentum conservation equation ∂µTµν = 0. Let us add to this system a dynamical
U(1) gauge field Aµ, with field strength Fµν , and call the respective equations of motion
to be Jµ = 0. Due to the global part of this U(1) gauge symmetry, the system can also
admit a chemical potential µ, whose dynamics is provided by ∂µJµ = 0. In an Aµ-off-shell
configuration, the energy-momentum conservation equation modifies to ∂µTµν = F νρJρ.
This is essentially the setup for relativistic magnetohydrodynamics [54]. To see this, let us
write down the most generic parity-preserving expression for Tµν

Tµν = (E + P )uµuν + Pηµν + αBBB
µBν +O(∂), (1.49)

where Bµ = 1
2ε
µνρσuνFρσ. All the coefficients are taken to be functions of T , µ, and B2.

Similar to the superfluid case, we have chosen not to include any terms involving Eµ = Fµνu
ν ,

as they can be eliminated using the Aµ equations of motion. Performing the same analysis
as before, we can read out the thermodynamic relations for magnetohydrodynamics

E + P = TS + µQ− αBBB
2, dE = TdS + µdQ− 1

2
αBBdB2. (1.50)

On the other hand, the Aµ equations of motion take the form

Jµ = Quµ − σ
(
T∂µ

µ

T
− Eµ

)
− T∂ν (αBBF

νµ) +O(∂2) = 0, (1.51)

for some non-negative transport coefficient σ. These are the finite temperature incarnation
of Maxwell’s equations. They primarily tell us that on-shell Q and Eµ are O(∂1), which is
a characteristic of magnetohydrodynamics. These results can be directly compared to [54].

This is where we close our discussion of gapless modes for now. Later in chapter 2, we
revisit the construction of hydrodynamics with arbitrary gapless modes in a more generalised
setting. We also briefly mention another application of gapless modes to hydrodynamics
with surfaces.

1.3 | Overview and organisation

The material presented in this thesis is quite technical and involved, so we dedicate the
remainder of this introductory chapter to chart the essential points. We also take this
opportunity to segregate the novel results presented in this thesis from the review material



1.3. Overview and organisation | 19

derived from previous works.

The main goal of chapter 2 is to present a universal framework of relativistic hydrody-
namics that includes arbitrary gapless modes in its spectrum. Alongside these novel results,
the chapter also serves as a comprehensive review of the off-shell formalism of relativistic
hydrodynamics, building on the fundamental considerations of symmetries and thermal field
theories. We start section 2.1 with a fundamental discussion of symmetries and conserved
currents in quantum field theories, motivating their coupling to curved torsional background
manifolds. We follow it with a brief review of Einstein-Cartan geometries, giving way to a
general discussion on Ward identities and anomalies. Having set the stage, we introduce
the formal aspects of relativistic hydrodynamics in section 2.2; we review the essentials of
thermal field theory and use it motivate the hydrodynamic fields, their equations of motion,
and hydrodynamic constitutive relations. Importantly, we highlight in this section how
additional gapless dynamical modes can be dealt with in a hydrodynamic framework, which
includes e.g. Goldstone modes of broken internal symmetries for superfluid dynamics and
dynamical gauge fields for magnetohydrodynamics. This aspect of chapter 2 is novel to this
thesis and has not been published separately. We cap off this section with some comments
on the hydrostatic principle and the role of thermal equilibrium in hydrodynamics.

The second law of thermodynamics is at the heart of our modern understanding
of hydrodynamics, therefore it gets its own section 2.3. We discuss the hydrodynamic
incarnation of the law and explore the classification of hydrodynamic transport it implies.
The discussion mainly follows the off-shell formalism of non-Abelian superfluid dynamics
we proposed in [1], extended to include spin currents, torsional backgrounds, and arbitrary
gapless modes. We find that all the hydrodynamic transport can be classified into one of
the following five classes: Class A for anomaly induced transport, Class HS and HV for
hydrostatic transport that governs the behaviour of the fluid in an equilibrium configuration,
Class D for dissipative transport that causes the production of entropy when we leave
equilibrium, and finally Class D for transport that is neither hydrostatic nor dissipative.
There is also a Class S for transport that causes the flow of entropy without any flow
of energy-momentum or charge; we mention it for completeness, but it does not play
any role in our later discussion. Class HS and D are characterised by certain transport
coefficients that are arbitrary functions of the thermodynamic variables: temperature and
chemical potentials. Class D, as well, is characterised by arbitrary transport coefficients,
but specific linear combinations of these are required to be sign-definite by the second law
of thermodynamics. On the other hand, Class A and HV transport is completely fixed up
to some dimensionless constants, called anomaly coefficients and transcendental anomaly
coefficients respectively. For Class A, HV, and HS our construction draws heavily from the
work of [52], but our characterisation of Class D, D, and S is novel.

In chapter 3, we apply the abstract concepts from chapter 2 to some concrete examples.
In section 3.1, we revisit the 4-dimensional relativistic fluids from section 1.1.2, but this
time from the viewpoint of the off-shell formalism, allowing also for the parity-violating
effects. Truncated to one-derivative order, we find a total of 4 constants and 4 transport
coefficients classified as (1A, 1HS , 3HV , 3D, 0D). The Class HS transport coefficient is the
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ideal order pressure P , while the Class D coefficients are the non-negative shear viscosity η,
bulk viscosity ζ, and electric conductivity σ. These results are standard in the literature
and have been taken directly from [52]. Next, in section 3.2, we present a generalisation of
these results to one-derivative order relativistic superfluids, taken from our work in [4]. We
illustrate how the Josephson equation for superfluids naturally emerges from the off-shell
formalism. We find that the spectrum of relativistic superfluids is substantially richer than
the ordinary fluids, characterised by a total of 2 constants and 31 transport coefficients
with classification (1A, 5HS , 1HV , 15D, 11D). The 15 dissipative transport coefficients, which
include viscosities, conductivities, and their numerous generalisations, satisfy 7 non-trivial
inequalities among them. We also find our first non-trivial examples of first-order Class
HS and D transport coefficients. We also illustrate how these results can be extended
to non-Abelian superfluids. In section 3.3, we study the modification of the constitutive
relations of a relativistic fluid near a surface and outline a derivation of the Young-Laplace
equation. We find that at the one-derivative order the surface dynamics of a fluid is
characterised by two additional transport coefficients: an arbitrary Class HS surface tension
γ and a non-negative Class D transport coefficient α. These results are derived from our
work in [6].

In chapter 4, we adapt the off-shell formalism to Galilean hydrodynamics. In a series
of collaborative papers [2–5], we have developed a new language to study Galilean fluids,
called null fluids, based on the technique of null reduction. These are essentially “relativistic”
fluids living on a suitably engineered spacetime manifold, called a null background, with
one higher dimension compared to the Galilean fluid of interest. In section 4.1, we start
from the Galilean symmetry algebra and review the construction of null backgrounds in
detail. Following our work in [5], we discuss the Ward identities for Galilean-invariant
field theories and propose a classification of the plausible ’t Hooft anomalies. We follow
this with a prescription for null reduction in section 4.2, which dimensionally reduces the
(d+1)-dimensional null background formulation of a Galilean field theory to its conventional
d-dimensional formulation. In the d-dimensional picture, we choose to work in the so-
called Newton-Cartan framework, which is a covariant language for Galilean field theories
coupled to curved spacetime backgrounds and manifests almost all the Galilean symmetries.
Alongside, we also include a self-contained review of torsional Newton-Cartan geometries.
Finally, in section 4.3, we discuss hydrodynamics on null backgrounds along with its null
reduction to obtain Galilean hydrodynamics. We provide a classification scheme implied
by the second law of thermodynamics and explore the constraints imposed by it up to all
orders in the derivative expansion. Except for the technical details in Class A and HV, we
find the qualitative results to be exactly the same as for the relativistic case. In particular,
the second law imposes some strict equality constraints at every derivative-order in the
hydrostatic sector, while only requires some inequalities on the one-derivative transport
coefficients in the non-hydrostatic sector and none thereafter.

We apply the technique of null fluids to study some examples of Galilean hydrodynamics
in chapter 5. In section 5.1, we consider the 4-dimensional ordinary Galilean fluids from
section 1.1.3, but in the off-shell formalism. The results have been directly taken from our
work in [3]. Including the ideal order pressure, we find a total of 5 constants and 7 transport
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coefficients classified as (1A, 1HS , 4HV , 5D, 1D). There are the shear viscosity η, bulk viscosity
ζ, electric conductivity σ, thermal conductivity κ, and thermo-electric conductivity κQ in
Class D, while there is another thermo-electric conductivity κQ in Class D. The inequalities
in Class D are η ≥ 0, ζ ≥ 0, σ ≥ 0 and κ ≥ κ2

Q/σ. Generalising to Galilean superfluids in
section 5.2, taken from our work in [4], we find that these numbers skyrocket. We find a
total of 2 constants and 52 transport coefficients, classified as (1A, 7HS , 1HV , 25D, 20D). The
25 transport coefficients in Class D satisfy 9 inequalities among them. The remaining 7
coefficients in Class HS and 20 in Class D are totally unconstrained. In section 5.3, we
briefly comment on the surface dynamics in Galilean fluids taken from our work in [6]. Like
the relativistic case, we find that the surface transport includes an arbitrary surface tension
γ in Class HS and a non-negative transport coefficient α in Class D. We also derive the
Galilean version of the Young-Laplace equation.

Finally, we close in chapter 6 with some commentary on the results of this thesis and a
discussion of possible research directions to be explored in the future.
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2 | Relativistic hydrodynamics

In chapter 1 we gave a basic introduction to the principles of relativistic hydrodynamics.
We focused on a fluid living on a flat spacetime without any external electromagnetic
fields and heuristically derived its constitutive relations up to one-derivative order. In this
chapter we deal with issues more formally, accounting for some technicalities which we had
swept under the rug in our heuristic introduction. In addition to the spacetime Poincaré
symmetry, we permit our fluid to have an internal, possibly non-Abelian, symmetry Lie
group G. In the most familiar example of electromagnetically charged fluids this group is
just U(1), but we can also consider more exotic groups like the SU(3)× SU(2)×U(1) of
the standard model. The hydrodynamics thus constructed has a direct application to the
quark-gluon plasma encountered in accelerator experiments.

A crucial difference compared to most of the existing literature on relativistic hydrody-
namics is that we consider a background spacetime with torsion and work in the vielbein
formalism. This allows us to describe fluids with an independent “spin current”. A sec-
ondary motivation for this is our discussion on Galilean fluids in chapter 4, which appears
to be mathematically more natural in the presence of torsion. We provide a self-contained
introduction to the vielbein formalism and torsion as we go along, but for more details, an
excellent review can be found in [85].

2.1 | Preparing the background

2.1.1 Symmetries, currents, and background sources

Symmetries are sacrosanct in physics. Our understanding of the universe is based on, and
is very often guided by, the principles of symmetries. In this chapter, we are interested
in relativistic quantum field theories which respect spacetime Poincaré symmetries. The
corresponding Lie-algebra is generated by

Spacetime translations: Pα, Lorentz transformations: Jαβ, (2.1a)

with commutation relations

[Pα, Pβ] = 0, [Jαβ, Pγ ] = i (ηαγ Pβ − ηβγ Pα) ,

[Jαβ, Jγδ] = i (ηαγ Jβδ − ηαδ Jβγ − ηβγ Jαδ + ηβδ Jαγ) . (2.1b)

Here ηαβ is the pseudo-Riemannian flat Minkowski metric diag(−1,+1,+1, . . .). The indices
α, β, . . . run over the d spacetime coordinates. It will be helpful to familiarise oneself with
this algebra, as we return to it time and again in this work. The generators Jαβ naturally
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span a Lorentz algebra SO(d−1, 1) which are interpreted as Lorentz-boost and angular
momentum operators. The spacetime translation generators Pα are mutually commuting
SO(d−1, 1) vectors which are seen as spacetime momentum operators. Occasionally, we also
permit our theories of interest to admit a Lie group G of internal symmetries, like U(1) for
fields charged under electromagnetism or SU(3)× SU(2)×U(1) for the full standard model.
We call the associated Lie algebra g, which is endowed with a Lie bracket denoted by [ ◦ , ◦ ]

and a positive semi-definite inner product denoted by ◦ · ◦, where “◦” is a placeholder for
the elements of g.

Let us say that the theory we are seeking to describe is defined over a d-dimensional
spacetime manifold M. We denote the coordinates on M by the Greek letters µ, ν, . . ..
Given the symmetries we are working with, Noether’s theorem postulates that the spectrum
of our theory must contain a set of associated conserved currents

Energy-momentum tensor: Tµα , Spin current: Σµα
β,

Charge current: Jµ. (2.2)

The indices α, β, . . . can now be seen as coordinates on a frame bundle FM. To compute the
quantum expectation values of these currents in a path-integral formalism, it is convenient
to couple the theory to some non-dynamical background sources, one for each current. To
achieve this, we introduce on our spacetime manifoldM a set of fields

Vielbein: eαµ, Spin connection: Cαµβ ,

Gauge connection: Aµ. (2.3)

If Z[eαµ, C
α
µβ , Aµ] is the field theory generating functional for our theory, which we almost

always exchange for W = −i lnZ, then we can compute the quantum expectation values of
various Noether currents via

δW =

∫
M

ddx
√
−g
(
〈Tµα 〉δeαµ + 〈Σµα

β〉δC
β
µα + 〈Jµ〉 · δAµ

)
. (2.4)

The statement of symmetries can also be made precise in this language, by requiring
that the generating functional W [eαµ, C

α
µβ , Aµ] is invariant under an infinitesimal local

diffeomorphism, so(d, 1) rotation, and g transformation (together represented by diff ×
so(d−1, 1)× g) of the background fields, modulo plausible anomalies. In terms of a set of
parameters X = (χµ,ΛΣ

χ
α
β,Λχ), these variations are defined as

δXe
α
µ = £χe

α
µ − ΛΣ

χ
α
β e

β
µ,

δXC
α
µβ = £χC

α
µβ + ∂µΛΣ

χ
α
β + [Cµ,Λ

Σ
χ]αβ,

δXAµ = £χAµ + ∂µΛχ + [Aµ,Λχ], (2.5a)

where £χ denotes a Lie derivative along χµ. These transformations form an algebra:
[δX, δP] = δ[X,P] where [X,P] = δXP = −δPX, provided that we define the action of X on
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another set of symmetry parameters P = (ψµ,ΛΣ
ψ
α
β,Λψ) as

δXψ
µ = £χψ

µ,

δXΛΣ
ψ
α
β = £χΛΣ

ψ
α
β + [ΛΣ

ψ,Λ
Σ
χ]αβ −£ψΛΣ

χ
α
β

δXΛψ = £χΛψ + [Λψ,Λχ]−£ψΛχ. (2.5b)

One might wonder what these transformations have to do with the Poincaré symmetry
algebra we originally started with. The simplest way to see the connection is to split the
operator δX in terms of the Poincaré generators as

δX = −i χµ eαµPα −
i

2

(
ΛΣ
χ
α
β + χµCαµβ

)
Jβα − i (Λχ + χµAµ) ·Q. (2.6)

Explicitly computing the commutator [δX, δP] in terms of eq. (2.5) and equating it to δ[X,P],
we can verify that the generators almost satisfy the Poincaré algebra (2.1), except that
the spacetime translations no longer commute with each other. Instead, their commutator
is sourced by the spacetime torsion, curvature, and field strength associated with the
background fields (see the next subsection for the respective definitions) leading to

[Pα, Pβ] = −i e µ
α e ν

β

(
Tγ

µνPγ +
1

2
R γ
µν δJ

δ
γ + Fµν ·Q

)
. (2.7)

This also matches our intuitive understanding of the “curved” backgrounds. More im-
portantly, when the background fields are reverted to being flat, for example by setting
eαµ = δαµ and Cαµβ = Aµ = 0, we recover the full Poincaré algebra (2.1).

2.1.2 Einstein-Cartan geometries

Although not directly relevant as a model of our universe, we see that spacetime geometries
with torsion naturally appear as a tool when trying to couple Poincaré invariant quantum
field theories with arbitrary background sources. Commonly known as Einstein-Cartan
geometries, these were first introduced by Élie Cartan in 1922. We review here some
elementary aspects of these geometries which we require in the course of this work. For
a more detailed review, please refer to a standard reference like [85]. Let us consider a
d-dimensional spacetime manifoldM with a metric gµν and a generic metric compatible
affine connection Γλµσ given by

Γλµσ =
1

2
gλρ (∂µgρσ + ∂σgρµ − ∂ρgµσ + Tρµσ − Tµσρ − Tσµρ) . (2.8)

The antisymmetric part of the affine connection Tλ
µν = −Tλ

νµ is called the Cartan torsion
tensor. We also define onM a g-valued gauge field Aµ, and take Dµ to be the covariant
derivative operator associated with Γλµσ and Aµ. We can work out the Riemann curvature
tensor and gauge field strength associated with these connections as

Rµν
λ
σ = 2∂[µΓλν]σ + 2Γλ[µρΓ

ρ
ν]σ, Fµν = 2∂[µAν] + [Aµ, Aν ]. (2.9)
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Physical theories living onM are required to respect spacetime diffeomorphisms and in-
ternal G-transformations. Let us denote an infinitesimal such transformation by parameters
X = (χµ,Λχ), where χµ is a vector field and Λχ is a g-valued scalar field. The derivative
operator Dµ acts on these fields as

Dµχ
ν = ∂µχ

ν + Γνµρχ
ρ, DµΛχ = ∂µΛχ + [Aµ,Λχ]. (2.10)

Under the action of X, the background fields transform as

δXgµν = £χgµν = 2D(µχν) − T(µν)σχ
σ,

δXΓλµσ = £χΓλµσ + ∂µ∂σχ
λ = Dµ

(
Dσχ

λ + χνTλ
νσ

)
+ χνRνµ

λ
σ,

δXAµ = £XAµ + DµΛχ = Dµ (Λχ + χνAν) + χνFνµ. (2.11)

To this end, our background geometry is described by a spacetime manifoldM with fields
(gµν ,Γ

λ
µσ, Aµ) modded by local diff× g transformations.

In the case of torsional geometries, however, it is more natural to shift to the viel-
bein formalism, which we describe in the following. The condition of local flatness of
a manifold allows us to define an isomorphism between the tangent bundle TM and a
pseudo-Riemannian frame bundle FM = R(d−1,1), realised in terms of a vielbein eαµ and its
inverse e µ

α . The vielbein is essentially a d2 component matrix, defined by the requirement
that it maps the metric gµν onM to a flat Minkowski metric ηαβ on FM,

gµνe
µ
α e ν

β = ηαβ, gµνeαµe
β
ν = ηαβ. (2.12)

We often use the vielbein to freely switch between the spacetime indices µ, ν, . . . and the
flat indices α, β, . . .. Note that the defining equation (2.12) for a vielbein has 1

2d(d + 1)

components, so it leaves 1
2d(d − 1) of its components undetermined. This redundancy

can be attributed to a SO(d−1, 1) Lorentz symmetry on FM that acts on the vielbein as
eαµ → Oαβe

β
µ where OαγOβδηαβ = ηγδ. It is trivial to check that eq. (2.12) is invariant

under this transformation. We can define a spin-connection for fields transforming in some
non-trivial representation of this symmetry

Cαµβ ≡ eβσ (eαρΓ
ρ
µσ − ∂µeασ) , (2.13)

which has the same amount of information as Γλµσ. One can check that with this connection,
Dµe

a
ν = 0, which is tantamount to the metric compatibility of Γλµσ. Switching momentarily

to differential forms notation we define

eα = eαµdxµ, Cα
β = Cαµβdxµ, A = Aµdxµ, (2.14)
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in terms of which the torsion, curvature, and field strength can be expressed as

T α =
1

2
Tα

µνdxµ ∧ dxν = deα +Cα
β ∧ eβ =

(
∂[µe

α
ν] + Cα[µβe

β
ν]

)
dxµ ∧ dxν

=
1

2
eαλTλ

µνdxµ ∧ dxν ,

Rα
β =

1

2
Rµν

α
βdxµ ∧ dxν = dCα

β +Cα
γ ∧Cγ

β =
(
∂[µC

α
ν]β + Cα[µγC

γ
ν]β

)
dxµ ∧ dxν

=
1

2
eαλeβ

σRµν
λ
σdxµ ∧ dxν ,

F =
1

2
Fµνdxµ ∧ dxν = dA+A ∧A. (2.15)

Under an infinitesimal local diff× so(d−1, 1)× g transformation parametrised by X =

(χµ,ΛΣ
χ
α
β,Λχ) various background fields vary according to

δXe
α
µ = £χe

α
µ − ΛΣ

χ
α
β e

β
µ = eανDµχ

ν + χνTα
νµ −

(
ΛΣ
χ
α
β + χνCανβ

)
eβµ,

δXC
α
µβ = £ξC

α
µβ + DµΛΣ

χ
α
χ = Dµ

(
ΛΣ
χ
α
β + χνCανβ

)
+ χνRνµ

α
β,

δXAµ = £χAµ + DµΛχ = Dµ (Λχ + χνAν) + χνFνµ. (2.16)

These follow trivially from the respective definitions of various quantities and are exactly
the same as advertised in eq. (2.5). In the vielbein formalism, therefore, our background
geometry is a d-dimensional spacetime manifoldM with fields (eαµ, C

α
µβ, Aµ), but this

time modded by diff× so(d−1, 1)× g transformations.

This is the extent of the Einstein-Cartan geometries that we require in this chapter.
There are, however, some interesting identities and relations which might be useful in an
explicit computation. We refer the reader to [85] for a detailed review.

2.1.3 Noether theorem and Ward identities

Now that we have our background and symmetries ready, in this subsection we briefly outline
the characteristic features of the physical theories that are coupled to it. Let the theory
in question be described by some dynamical fields ϕI with respective equations of motion
EI ≈ 0.1 We assume for now that our theory is described by an action S[eαµ, C

α
µβ, Aµ;ϕI ].

Since we are dealing with low energy effective descriptions in this work, we do not require
the theory to be UV complete. This essentially means that ϕI could be some effective
degrees of freedom relevant at our energy scale and S could be a Wilsonian effective action,
with all the heavier modes integrated out.

Under an infinitesimal variation of the background and dynamical fields, we can
parametrise the variation of the action as

δS =

∫
ddx
√
−g
(
Tµα δe

α
µ + Σµα

β δC
β
µα + Jµ · δAµ + EI δϕI

)
. (2.17)

1Throughout this work we denote on-shell equalities by “≈”, whereas we keep “=” reserved for off-shell
statements. Later we also introduce the symbol “'” for “partially on-shell” statements, where only the
hydrodynamic fields have been taken on-shell.



28 | Chapter 2. Relativistic hydrodynamics

Here we have identified the Noether currents as being probed by the background fields.
The variation of the action with respect to ϕI , on the other hand, gives us the equations
of motion EI . Since the theory we seek to describe is invariant under the action of a set
of symmetry parameters X, we must require δXS = 0, modulo plausible anomalies. We
already know how X acts on the background fields, but we cannot say anything about the
dynamical fields ϕI without knowing their explicit transformation properties. Nevertheless,
provided that the symmetries act homogeneously on these fields, using differentiation by
parts we can write down a generic statement

EIδXϕI =
1√
−g
∂µ
(√
−g N I

χ
µEI
)

+

[
χαOIα +

(
ΛΣ
χ
α
β + χνCανβ

)
OIβα + (Λχ + χµAµ) · OI

]
EI . (2.18)

Here OI ’s are some X-independent differential operators, while the operator N I
χ
µ is linear

in X. The explicit form of these operators depends on how X acts on ϕI and can be left
abstract for the purposes of this generic discussion. Plugging the field variations from
eqs. (2.16) and (2.18) into eq. (2.17) and requiring δXS to vanish modulo anomalies, we
can read out a set of identities

DµT
µ
α = eα

ν
(

Tβ
νµT

µ
β +Rνµ

γ
βΣµβ

γ + Fνµ · Jµ
)

+OIαEI ,

DµΣµαβ = T [βα] + Σ⊥αβH +OIαβEI ,

DµJ
µ = J⊥H +OIEI . (2.19)

We have defined the notation Dµ = Dµ + eα
νTα

µν to avoid clutter. The Hall currents Σ⊥αH β

and J⊥H are a manifestation of anomalies, which we discuss in detail in section 2.1.4. For
now it suffices to say that they are completely fixed in terms of R α

µν β and Fµν up to some
constants. On-shell, when EI ≈ 0, the Ward identities (2.19) imply a set of conservation
laws for Tµα , Σµα

β , and J
µ respectively

DµT
µ
α ≈ eαν

(
Tβ

νµT
µ
β +Rνµ

γ
βΣµβ

γ + Fνµ · Jµ
)
,

DµΣµαβ ≈ T [βα] + Σ⊥αβH ,

DµJ
µ ≈ J⊥H. (2.20)

These are the Noether conservation laws corresponding to our symmetries, which along
with the identities eq. (2.19), form the backbone of all our analysis in this work.

When the background fields are switched off, i.e. eαµ = δαµ and Cαµb = Aµ = 0, the
conservation laws reduce to their better known form

∂µT
µ
α ≈ 0, ∂µΣµαβ ≈ T [βα], ∂µJ

µ ≈ 0. (2.21)
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2.1.4 Anomalous symmetries

In our discussion above, we refereed to the so-called Hall currents Σ⊥αβH and J⊥H, which we
claimed were a manifestation of our symmetries being anomalous. Let us take a brief detour
and discuss what these currents actually are and how they arise using the anomaly inflow
mechanism. In relativistic field theories, the anomaly inflow mechanism is an efficient way to
classify flavour and gravitational/Lorentz anomalies [86]. A detailed introductory discussion
can be found in section 2 of [87]. In essence, we consider that our d-dimensional spacetime
manifoldM lives on the boundary of a (d+ 1)-dimensional bulk manifold B. We denote
the bulk coordinates with a hat and near the boundary choose a basis (xµ̂) = (x⊥, xµ),
where x⊥ corresponds to the depth into the bulk. All the field content eα̂µ̂, Cα̂µ̂β̂ and Aµ̂
is extended down into the bulk with the requirement that all the x⊥ components vanish at
the boundary.

We keep our theory of interest onM, whose field theory generating functional WM is
not necessarily invariant under the symmetries of the theory, i.e. is anomalous. In the bulk
we keep some topological theory with generating functional WB, which is invariant under
all the symmetries up to some non-trivial boundary terms. The full theory described by
W = WM +WB is assumed to be invariant under all the symmetries. It is actually this
non-trivial bulk term WB which induces anomaly in the boundary theory, hence the name
anomaly inflow. In the notation of differential forms, WB can be expressed as an integration
of a (d+ 1)-rank form I,

WB =

∫
B
I. (2.22)

The requirement that WB should be symmetry-invariant up to a boundary term can be
recast into the requirement that P = dI should be invariant under all the symmetries. P is
called the anomaly polynomial of the theory, which encodes all the non-trivial information
about anomaly. It is evident that P needs to be closed, symmetry invariant, and should
not be expressible as exterior derivative of a symmetry invariant form. Its explicit form,
however, depends on the background field content of the theory. In the current context,
it is given by the Chern-Simons anomaly polynomial PCS for even dimensional boundary
theories, while no such terms are possible in odd spacetime dimensions. Here PCS is a
“polynomial” made out of the Chern classes of the field strength F and the Pontryagin
classes of the curvature tensor Rα̂

β̂ . In d = 4, for example, the most generic such anomaly
polynomial is given as

PCS = C tr[F ∧ F ∧ F ] + Cg trF ∧Rα̂
β̂ ∧R

β̂
α̂, (2.23)

where the trace is defined over the adjoint representation of the Lie-algebra g. The constants
C and Cg are called the anomaly coefficients. Look at e.g. [87] for more details. In generality,
for d = 4k − 2 or d = 4k, there are k + 1 possible anomaly coefficients.
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Let us parametrise an infinitesimal variation of the bulk generating functional WB as

δWB =

∫
B

dd+1x
√
−gd+1

(
ΣH

µ̂α̂
β̂δC

β̂
µ̂α̂ + Jµ̂H · δAµ̂

)
+

∫
M

ddx
√
−g
(

ΣBZ
µα
βδC

β
µα + JµBZ · δAµ

)
. (2.24)

The currents in the bulk subscripted by “H” are called Hall currents. In terms of the
anomaly polynomial, they can be formally written down as a compact formula2

?(d+1)ΣH
α̂
β̂ =

∂P
∂Rβ̂

α̂

, ?(d+1)JH =
∂P
∂F

. (2.25)

Here the Hodge duality operator ?(d+1) is defined in the bulk. For our d = 4 example in
eq. (2.23), we can explicitly compute the Hall currents to be

ΣH
µ̂α̂
β̂ =

1

2
Cg ε

µ̂ν̂ρ̂σ̂τ̂ trFν̂ρ̂Rσ̂τ̂
α̂
β̂,

Jµ̂H =
3

4
C εµ̂ν̂ρ̂σ̂τ̂Fν̂ρ̂Fσ̂τ̂ +

1

4
Cg ε

µ̂ν̂ρ̂σ̂τ̂Rν̂ρ̂
α̂
β̂Rσ̂τ̂

β̂
α̂. (2.26)

The term coupling to C is called G (flavour) anomaly, because it only affects the G-symmetry
sector, while Cg is called a mixed anomaly as it affects both Lorentz as well as G sectors.

On the other hand, the bulk generating functional induces the so called Bardeen-Zumino
currents subscripted by “BZ” at the boundary. They can be represented as derivatives of I,
i.e.

?ΣBZ
α̂
β̂ =

∂I

∂Rβ̂
α̂

, ?JBZ =
∂I

∂F
. (2.27)

These are, of course, not symmetry-covariant. But since the full partition function W is
symmetry-covariant, if we define the variation of the boundary piece WM as

δWM =

∫
M

ddx
√
−g
(
Tµα δe

α
µ + Σcons

µα
β δC

β
µα + Jµcons · δAµ

)
, (2.28)

the full boundary covariant currents

Tµα , Σµα
β = Σcons

µα
β + ΣBZ

µα
β, Jµ = Jµcons + JµBZ, (2.29)

are symmetry-covariant. Moreover, demanding δXW = 0 under an infinitesimal symmetry
variation X precisely leads to the conservation laws (2.20) for the boundary currents. There
are also a similar set of (non-anomalous) conservation laws in the bulk, but given that there
are no dynamical fields in the bulk, they are trivially satisfied.

As opposed to the covariant boundary currents, the currents obtained from WM, i.e.
(Tµα ,Σcons

µα
β, J

µ
cons), are called the consistent currents. Even though they are non-covariant

under symmetries, they are the physical Noether currents of the boundary theory. They
2We should clarify what we mean by differentiating or dividing with respect to a 2-form. Since P is a

polynomial in 2-forms, which mutually commute, we can intuitively define this differentiation and division
as we would for an ordinary polynomial. Such an operation converts a (d+ 2)-form into a d-form.
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also satisfy a set of conservation laws akin to eq. (2.20),

DµT
µ
α ≈ e ν

α

(
Tβ

νµT
µ
β +Rνµ

γ
βΣcons

µβ
γ + Fνµ · Jµcons

)
+ TH,cons

⊥
α,

DµΣµαβ
cons ≈ T [βα] + Σ⊥αβH,cons,

DµJ
µ
cons ≈ J⊥H,cons, (2.30)

but the “consistent anomaly” is instead given as

TH,cons
⊥
α = e ν

α

(
Rνµ

γ
βΣBZ

µβ
γ + Fνµ · JµBZ

)
,

ΣH,cons
⊥α

β = Σ⊥αH β −DµΣBZ
µα
β, J⊥H,cons = J⊥H −DµJµBZ. (2.31)

In particular, note that written in terms of the consistent currents, the energy-momentum
conservation also gets an anomaly. In most of this work, however, we are working directly
with the covariant currents.

2.2 | The hydrodynamic setup

We are interested in a universal low energy effective description of finite-temperature
near-equilibrium field theories. By itself, it is an absurd thing to seek as it would obviously
depend on the field theory under consideration. But in most physical scenarios when such
an effective description would actually be useful, like describing your mug of coffee as you
add milk to it, we probably would not know anything about the underlying microscopic
field theory, let alone an action principle. Within its narrow regime of applicability,
hydrodynamics aims at providing a universal framework to study low energy fluctuations
of a finite temperature field theory around its thermodynamic equilibrium with unknown
microscopics, guided by the fundamental principles like symmetries and other empirical
physical expectations like the second law of thermodynamics.

2.2.1 Thermal equilibrium

Before considering departures from equilibrium, it will be helpful to revisit some elementary
facts about quantum field theories at thermodynamic equilibrium. The material presented
in this section can be found in any standard text on thermal field theories like [88, 89].
Consider a relativistic background manifoldM constructed in the previous section with
fields (eαµ, C

α
µβ , Aµ). M is said to admit an equilibrium if there exists a set of symmetry

parameters K = (Kµ,ΛΣ
K ,ΛK) with KµK

µ < 0, whose action onM is an isometry

δKe
α
µ = δKC

α
µβ = δKAµ = 0. (2.32)

K can be interpreted as a set of parameters defining a relativistic observer, with respect to
whom the background is time-independent. In K’s reference frame, the time-evolution of
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an observable is generated by a time-independent Hamiltonian operator HK given by

HK =

∫
Σ

dd−1x
√
−g
[
T 0
αK

α +
(
ΛΣ
K
α
β +KµCαµβ

)
Σ0β

α + (ΛK +KµAµ) · J0
]
. (2.33)

Here the integral is performed over some Cauchy slice Σ with transverse timelike coordinate
x0. Using the conservation laws (2.20) and the isometry condition (2.32), we can check that
HK is conserved, i.e. it does not depend on the choice of Σ.3

Let us consider a generic quantum field theory coupled to an equilibrium-admitting
background manifoldM. Turning on a constant global temperature T0 = 1/β0, the classic
result in quantum statistical mechanics states that in thermodynamic equilibrium, a system
can be described by a grand-canonical Gibbs density matrix

ρeqb = exp (−β0HK) . (2.34)

We can also write down the associated thermal partition function

Zeqb = tr exp (−β0HK) . (2.35)

Here the trace is taken over a complete set of basis on the Hilbert space of our theory.
Once we are provided with Zeqb as a functional of the time-independent (K-invariant)
background fields (eαµ, C

α
µβ , Aµ), we know everything about the macroscopic behaviour of

our equilibrium state. The thermal expectation values and correlators of all the macroscopic
thermodynamic observables (i.e. conserved currents) can be obtained by taking functional
derivatives of Zeqb. To wit,

〈Tµα〉β0 =
1√
−g

δW eqb

δeαµ
, 〈Σµα

β〉β0 =
1√
−g

δW eqb

δCβµα
, 〈Jµ〉β0 =

1√
−g

δW eqb

δAµ
, (2.36)

where W eqb = − lnZeqb.

To compute Zeqb for a given quantum field theory, it is most natural to work in the
so-called imaginary-time formalism. Let us consider that the field theory we are interested
in is described at equilibrium by an effective action (see section 2.1.3) given as

S[eαµ, C
α
µβ, Aµ;ϕi] =

∫
M

ddx
√
−gL(eαµ, C

α
µβ, Aµ;ϕi). (2.37)

Here ϕi are some effective dynamical degrees of freedom relevant at our energy scales. We
are only interested in the time-independent configurations of the dynamical fields, therefore
we choose δKϕi = 0. Together with eq. (2.32), it implies that Kµ∂µL = 0. If we choose a
basis (xµ) = (x0, xi) onM such that Kµ = δµ0 , for these configurations we have ∂0L = 0

and consequently

S[eαµ, C
α
µβ, Aµ;ϕi] =

∫
dx0

∫
Σ

dd−1x
√
−gL(eαµ, C

α
µβ, Aµ;ϕi). (2.38)

3Actually, this statement is only correct for non-anomalous field theories. For anomalous field theories,
one has to take into account the bulk piece of the Hamiltonian as well.
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Here again, Σ is a Cauchy slice spanned by xi’s whose choice is irrelevant owing to the
time independence of the integrand. To compute the thermal partition function, we Wick-
rotate the time coordinate x0 → −iτ and compactify τ into a circle with period β0. The
coordinates (τ, xi) span a Euclidean manifoldME, which is an analytic continuation ofM.
This allows us to analytically continue the effective action

S → iSeqb =

∫
ME

(−idτ) dd−1x
(√
−gL

)
x0→iτ = iβ0

∫
Σ

dd−1x
√
−gLeqb. (2.39)

The superscript “eqb” in the Euclidean Lagrangian Leqb = −L signifies that the background
and dynamical fields making up Leqb are manifestly K-invariant. Seqb is generally known
as equilibrium effective action in the literature. It can be used to compute the thermal
partition function Zeqb, defined as the analytic continuation of the field theory generating
functional

Z =

∫
Dϕi exp (iS)→ Zeqb =

∫
Dϕi exp

(
−Seqb) . (2.40)

Once we have Zeqb, we can go ahead and compute all the thermal expectation values
and correlators. Note that the thermodynamic equilibrium is effectively described by a
(d− 1)-dimensional Euclidean quantum field theory with action Seqb.

All of the discussion above was focused on finite temperature states at the thermodynamic
equilibrium. That is to say that the density matrix ρeqb and the thermal partition function
Zeqb are both time-independent, by the virtue of the Hamiltonian operator HK being
foliation independent. Ideally, we would like to extend this story to arbitrary non-equilibrium
states and processes, but it turns out to be quite a non-trivial task to perform. Therefore
for simplicity, let us choose to work with the non-equilibrium states that are still sufficiently
close to equilibrium. Let us consider a subset of states described by a set of symmetry
parameters B = (βµ,ΛΣ

β ,Λβ) that are sufficiently close to the equilibrium parameters K.
Effectively, we are looking at a field theory with dynamical fields ϕI = {B, ϕi}. Similar
to eq. (2.33), one can define a Hamiltonian operator HB, however, given that B is not
an isometry, HB is not conserved and depends on the choice of foliation used to define
it. Consequently, the associated Gibbs density matrix ρ = exp(−β0HB) and the partition
function Z = tr exp(−β0HB) are also time-dependent. We can no longer compute the
time-dependent Z using the neat trick of imaginary-time formalism. Nevertheless, we
are not really interested in the specifics of the microscopic finite-temperature field theory,
but only the universal near-equilibrium behaviour. This can be quite readily captured by
hydrodynamics, as we outline below.

2.2.2 Hydrodynamic fields

In the absence of an effective action describing the finite-temperature low-energy regime,
we take the Noether theorem as our starting point. We require our theory of interest to
respect the spacetime Poincaré transformations and some internal global G-transformations.
This implies the existence of the associated conserved currents Tµα , Σµα

β, and J
µ. After

integrating out all the massive modes from the theory as we approach the deep IR, the
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only relevant degrees of freedom would be some effective massless modes ϕI along with
their associated equations of motion EI ≈ 0. For a generic low-energy theory, therefore,
the conserved currents would be some expressions in terms of ϕI and background fields
(eαµ, C

α
µβ, Aµ), with appropriate transformation properties. Noether’s theorem implies

that these currents satisfy the identities (2.19), where the operators OIα, OIαβ, and OI

encode how the fields ϕI transform under symmetries.

Due to these identities, the conservation laws (2.20) can serve as a placeholder for a
vector, a so(d, 1)-valued scalar, and a g-valued scalar linear combinations of the equations
of motion EI ≈ 0. That is to say that out of the dynamic fields ϕI , eq. (2.20) can serve as
equations of motion for some dynamical degrees of freedom packaged into

B =
(
βµ , ΛΣ

β , Λβ
)
. (2.41)

We denote the remaining dynamical fields which are not captured in B by ϕi. The
choice of this splitting of degrees of freedom near thermodynamic equilibrium is naturally
motivated from our discussion in the previous subsection. In the conventional treatment of
hydrodynamics, it is more convenient to rewrite B in terms of the so called hydrodynamic
fields

Velocity: uµ with uµuµ = −1, Temperature: T,

Spin chemical potential: µΣ ∈ so(d, 1), G chemical potential: µ ∈ g,

defined via the relations

βµ =
1

T
uµ, ΛΣ

β
α
β + βµCαµβ =

1

T
µΣα

β, Λβ + βµAµ =
1

T
µ. (2.42)

These hydrodynamic fields, as the name suggests, form the fundamental dynamical variables
of hydrodynamics. Note that a priori there is no unique definition of these fields. Therefore,
like in any field theory, they are permitted to undergo arbitrary field redefinition involving
themselves and the other fields ϕi and (eαµ, C

α
µβ, Aµ) without changing any physics. Let

us push this to the back our minds for the moment. We return to this issue in section 2.3.

Once we have made this logical split between the degrees of freedom, we can formally
decompose OIEI ’s appearing in eq. (2.18) into

OIαEI = P ext
α +OiαEi, OIαβEI = Sextα

β +OiαβEi, OIEI = Qext +OiEi. (2.43)

Here P ext
α , Sext α

β, and Qext are some linear combinations of our original equations of
motion which provide dynamics for our hydrodynamic fields. Using the identities (2.19),
these can also be expressed as

P ext
α = DµT

µ
α − eαν

(
Tβ

νµT
µ
β +Rνµ

γ
βΣµβ

γ + Fνµ · Jµ
)
−OiαEi,

Sext αβ = DµΣµαβ − T [βα] − Σ⊥αβH −OiαβEi,

Qext = DµJ
µ − J⊥H −OiEi. (2.44)



2.2. The hydrodynamic setup | 35

From here we can interpret P ext
α as “external energy-momentum”, Sextα

β as “external spin”,
and Qext as “external charge” sources, because when they are non-vanishing, possibly due
to some external agents, they would violate the respective conservation equations. When
the system is thermodynamically isolated, however, these sources vanish on-shell and can
be taken to be the equations of motion for our hydrodynamic fields

P ext
α ≈ 0, Sext α

β ≈ 0, Qext ≈ 0. (2.45)

Due to eq. (2.44), these equations are the same as the conservation laws (2.20) as we
originally intended.

A definition: a fluid configuration is said to be thermodynamically isolated if the
hydrodynamic fields B are taken on-shell by setting the external sources P ext

α , Sext α
β , and

Qext to zero, while still keeping the remaining fields ϕi off-shell. Equalities in this “partially
on-shell” configuration are denoted by the symbol “'”,

DµT
µ
α ' eαν

(
Tβ

νµT
µ
β +Rνµ

γ
βΣµβ

γ + Fνµ · Jµ
)

+OiαEi,

DµΣµαβ ' T [βα] + Σ⊥αβH +OiαβEi,

DµJ
µ ' J⊥H +OiEi. (2.46)

To this end, hydrodynamics is characterised by the most generic expressions for a set of
conserved currents (Tµα, Σµα

β , Jµ) and some quantities Ei written in terms of the hydro-
dynamic fields (uµ, T , µΣ, µ) (or equivalently B), other gapless fields ϕi, and background
fields (eαµ, Cαµβ , Aµ). These expressions are called the hydrodynamic constitutive relations.
The fields B and ϕi are the dynamical field content of hydrodynamics. The equations of
motion for B are given by eq. (2.46), while those for ϕi are given by Ei ≈ 0. This makes
the system of equations closed.

2.2.3 Constitutive relations

Before we start writing down the hydrodynamic constitutive relations, we need to get some
technical aspects in order. We do not know anything about the fields ϕi, and even if we did
we could cook up an infinite tower of distinct tensor structures that could potentially enter
the constitutive relations. Let us deal with the latter problem first. Recall that we are
working under the assumption of “low-energy”, which we gladly used to integrate out all the
massive degrees of freedom from our theory. We must, therefore, take care that at all times
we are only probing energies which are well below the energy-scale set by the first massive
excitation. Heuristically, the inverse temperature defines a length scale called the mean-free
path of the system. When a particle interpretation is available, the mean-free path can be
understood as the average length a particle travels between collisions. We require that the
perturbations in hydrodynamics are over the length scales much larger compared to this
mean-free path so that the actual constituents of the theory stay irrelevant. Practically, this
implies that hydrodynamics is only valid in a regime where the derivatives of background
and dynamical fields are small. Within this regime, therefore, we can treat derivatives as a
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perturbative parameter and expand the constitutive relations order by order in derivatives.
This is commonly referred to as the derivative expansion of hydrodynamics. At any given
order in the derivative expansion, the constitutive relations only contain a finite number
of tensor structures, each coming with an arbitrary multiplier function called a transport
coefficient. Truncated to a finite derivative order, therefore, hydrodynamics is completely
characterised by a finite set of transport coefficients entering the constitutive relations.
At this level, these transport coefficients are completely arbitrary, and depending on the
microscopic field theory at play, can be different for different hydrodynamic systems. For a
given system, if the microscopic field theory is known they can be explicitly computed, or
otherwise, they can be measured in an experiment. Admittedly, the number of transport
coefficients grows factorially as we increase the derivative order, so hydrodynamics is only a
useful framework at the first few derivative orders.

When it comes to the fields ϕi, hydrodynamics is generally evasive. It is certainly
true that we need their transformation properties to make any real progress with the
constitutive relations. Moreover, depending on their number and transformation properties,
the spectrum of transport coefficients would be totally different. The easiest case to consider
is when these gapless modes are not present at all and the hydrodynamic fields are the only
relevant low-energy effective degrees of freedom. This is true of theories with a “mass-gap”
where there is a finite energy difference between the ground state and the first excited
state. The hydrodynamics following from here is commonly referred to as the ordinary
fluid dynamics or simply fluid dynamics. Another interesting case to study is when ϕi’s are
Goldstone modes of a spontaneously broken symmetry, in which case we explicitly know
their transformation properties. The breaking of internal symmetries leads to the curiously
termed superfluid dynamics. On the other hand, the breaking of spacetime symmetries
could lead to interesting phenomena in hydrodynamics like the formation of surfaces or
momentum relaxation. Trying something more exotic, we can take ϕi to be a dynamical
U(1) gauge field. This leads to the interesting physics of magnetohydrodynamics. We
briefly touch upon some of the examples of these cases in the course of this work.

With some of these technicalities out of the way, we can conclude that hydrodynamics is
characterised by a finite set of transport coefficients. Their actual number and contribution
to the constitutive relations depend on the derivative order we are working at and what
additional gapless modes we have at hand. We also commented that the explicit functional
form of these transport coefficients depends on the fluid under consideration and could
be obtained either by a carefully designed experiment or a field theoretic computation. If
this feels rather disheartening to someone, we can, in fact, impose some empirical physical
requirements on the constitutive relations and significantly bring down the number of
independent transport coefficients that need to be measured. The most important of these
empirical requirements, and as far as we know universally applicable, is the local second
law of thermodynamics. We describe the statement in the section 2.3.

To avoid any confusion, we should clarify that in our entire discussion above we have
only been interested in the constitutive relations and transport coefficients of a fluid.
They are essentially a set of parameters characterising a fluid, such as the viscosity and
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conductivity, as a function of the thermodynamic variables such as the temperature and
chemical potential. We also discussed how these properties could influence the velocity,
temperature, or chemical potential profiles of the fluid via the conservation laws serving
as equations of motion. We have not, however, discussed the actual solutions of these
equations of motion, known as fluid configurations. There is a lot of interesting physics to
be understood in these configurations, but in this work, we only focus on the fundamental
principles governing fluids and their constitutive relations.

Choosing derivative order for constituent fields: To be able to use the derivative
expansion when writing down the constitutive relations, we need to decide where various
fields in the theory stand with respect to each other. The choice we make depends on
the physical application we have in mind and affects the explicit form of the constitutive
relations. But the framework of hydrodynamics works with any such choice. For reference,
we always choose the temperature T ∼ O(∂0). During most of this work, we are working
with the choice that the fields corresponding to Abelian symmetries are O(∂0), while those
corresponding to non-Abelian symmetries are O(∂1):

• Translations sector: uµ, T, eαµ ∼ O(∂0).

• SO(d−1, 1) sector: µΣα
β, C

α
µβ ∼ O(∂1). Consequently, Tα

µν ∼ O(∂1), Rµναβ ∼
O(∂2).

• G-sector: We split G into Gab ×Gnab where Gab is its largest Abelian subgroup. It
implies a splitting of various fields µ = µab + µnab, Aµ = Aab

µ + Anab
µ and Fµν =

F ab
µν + F nab

µν . We choose µab, Aab
µ ∼ O(∂0) and µnab, Anab

µ ∼ O(∂1). Consequently,
F ab
µν ∼ O(∂1) and F nab

µν ∼ O(∂2).

• The choice for ϕi depends on their symmetry properties.

For the connections Cαµβ and Aµ, this choice ensures that the action of the covariant
derivative operator Dµ on the constituent fields always raises a derivative order and can be
treated perturbatively. We have chosen the derivative orders of the chemical potentials to
match up with their connection counterparts.

We must stress that although this choice is suitable for the systems studied in this
work, the hydrodynamic setup works for any arbitrary choice. For example, when focusing
on hydrodynamics with spin, we typically take the spin chemical potential µΣ ∼ O(∂0);
see e.g. [90]. In particular, the generalities of hydrodynamics discussed in this chapter go
through irrespective of the choice of derivative orders for the constituent fields.

2.2.4 Hydrostatic principle

We started out this section with an introduction to finite temperature field theories at
thermodynamic equilibrium in section 2.2.1. We motivated that in addition to the gapless
dynamical modes ϕi relevant at equilibrium, near equilibrium states are described by the
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so-called hydrodynamic modes B. In the limit that we approach the thermodynamic equi-
librium, the fields B approach a set of background isometry data K. Later in sections 2.2.2
and 2.2.3 we developed a generic formalism of hydrodynamics with dynamical fields B and
ϕi based on symmetries and the low-energy approximation. In this subsection, we would
like to subject our construction to some internal consistency conditions by requiring that
the theory of hydrodynamics admits a consistent thermodynamic equilibrium.

Let us say that we have coupled our theory of hydrodynamics to an equilibrium-admitting
background manifoldM with timelike isometry K. We can define the so-called equilibrium
fluid configurations as solutions of the equations of motion which respect the timelike
isometry, i.e. δKB = δKϕ

i = 0. We require that there must always exist an equilibrium
fluid configuration, called the hydrostatic configuration, for which B = K.4 We dub this
as the weak hydrostatic principle. It is a very non-trivial statement, as for B = K the
hydrodynamic equations of motion (2.46) must be rendered trivial. One can imagine that
this would not hold true for arbitrary hydrodynamic constitutive relations. Therefore,
the weak hydrostatic principle imposes some non-trivial constraints on the form of the
constitutive relations and the independent transport coefficients that can appear in it.

The weak hydrostatic principle stated above is a necessary condition for the existence of
equilibrium but is still not sufficient. To guarantee the existence of a well-defined equilibrium
configuration, we must require that the conserved currents and ϕi-profiles in a hydrostatic
configuration can be generated from a hydrostatic effective action [49, 50].5 We call this
the strong hydrostatic principle. The effective action Shs[eαµ, C

α
µβ, Aµ;ϕi] is given as a

functional of the fields (eαµ, C
α
µβ, Aµ) and ϕi respecting the timelike isometry K, defined

over a spatial hypersurface. Shs is a special case of a generic equilibrium effective action
Seqb discussed in section 2.2.1, wherein the constituent fields vary over length-scales much
larger than the mean free path of the system, and hence can be written down order-by-order
in derivatives. The ϕi-profiles are generated by extremising the effective action with respect
to the variations in ϕi

Ei =
1√
−g

δShs

δϕi
≈ 0. (2.47)

On the other hand, the hydrostatic conserved currents are obtained by varying the action
with respect to the background fields

Tµα
∣∣
B=K

=
1√
−g

δShs

δeαµ
, Σµα

β

∣∣
B=K

=
1√
−g

δShs

δCβµα
, Jµ

∣∣
B=K

=
1√
−g

δShs

δAµ
. (2.48)

We require the hydrostatic effective action to be invariant under K preserving diff ×
so(d−1, 1)× g transformations, up to anomalies. The hydrodynamic equations of motion
(2.46) evaluated at B = K turn out to be the Bianchi identities associated with these
symmetries for arbitrary ϕi-offshell configurations. Therefore the weak hydrostatic principle

4Technically, one only needs B = K +O(∂) to define a hydrostatic configuration. But we can always fix
part of the redefinition freedom in B to exactly set B = K in a hydrostatic configuration. We call the class
of hydrodynamic frames that satisfy this condition to be hydrostatic frames.

5When there are no other dynamical fields ϕi in the hydrodynamic description, the hydrostatic effective
action reduces to a hydrostatic partition function(al). They have also been called equilibrium effective
action and equilibrium partition function in the literature respectively.
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follows as a corollary of the strong hydrostatic principle.

In practice, we can express Shs as an integral of some scalar density Lhs made out
of the K respecting fields (eαµ, C

α
µβ, Aµ) and ϕi, truncated at our desired derivative

order. Lhs can also contain Chern-Simons terms made out of the connections Cαµβ and
Aµ, which are covariant under symmetries up to some boundary terms. It is the terms
like these that are responsible for anomalies. Having done that, we can use eq. (2.48) to
compare the hydrostatic constitutive relations with those generated using Shs and read
out the constraints imposed by the hydrostatic effective action. This procedure has been
successfully implemented for a large number of cases in the literature [2, 49–51, 91]. In this
work, however, we do not pursue this direction any further. As it turns out, all of these
constraints follow from an even more restrictive physical requirement: the second law of
thermodynamics, which we describe in the next section. See section 2.3.4 for the reasoning
how the second law captures the strong hydrostatic principle.

2.3 | Local second law of thermodynamics

2.3.1 Second law and classification of transport

Given a set of hydrodynamic constitutive relations (Tµα ,Σ
µα
β, J

µ, Ei), the local second law
of thermodynamics requires that there must exist an entropy current JµS whose divergence
is non-negative for all thermodynamically isolated fluid configurations, i.e.

DµJ
µ
S ' ∆ ≥ 0. (2.49)

To respect this inequality, we require that ∆ evaluates to a quadratic form with positive
semi-definite eigenvalues. The sacred “global” second law of thermodynamics follows from
here if we define the total entropy as Stot =

∫
ddx
√
−g J0

S . Taking a ∂0 derivative and
dropping the boundary terms,

∂0Stot =

∫
ddx ∂0

(√
−g J0

S
)

=

∫
ddx
√
−g DµJ

µ
S & 0, (2.50)

we can see that the total entropy always increases. To understand why we should expect
a stronger “local” version of the second law to hold, note that in hydrodynamics we are
only ever leaving the equilibrium perturbatively (in derivatives). This implies that locally
the system always stays in thermodynamic equilibrium while the variations away from
it happen at much larger scales. So locally at every point in the spacetime, the entropy
must be produced, leading to the local second law of thermodynamics. At its face value,
the second law (2.49) is an inequality, but it is an inequality that must be satisfied for all
thermodynamically isolated configurations. Consequently, if even a rogue implausible fluid
configuration could potentially lead a transport coefficient to violate the inequality, the
second law forces the said transport coefficient to zero. In this sense, the local second law
of thermodynamics is a very strong statement and can significantly bring down the number
of independent transport coefficients.
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Note that in its original form, the second law is only defined over thermodynamically
isolated fluid configurations. We can bypass this limitation by noting that eq. (2.49) can
be expressed as an off-shell statement by adding to it a linear combination of the external
sources

DµJ
µ
S + βαP ext

α +
(

ΛΣβ
β α + βµCβµα

)
Sext α

β + (Λβ + βµAµ) ·Qext = ∆ ≥ 0. (2.51)

An important comment is in order. Recall that since the hydrodynamic fields B were
arbitrarily defined to be solved for using the conservation laws, they admit an arbitrary
redefinition freedom. In writing eq. (2.51), we have fixed this freedom off-shell by choosing
the hydrodynamic fields to be equal to the multipliers for the external sources, which a
priori could have been arbitrary. Note however that on-shell, this does not completely
fix the redefinition freedom. We can redefine the hydrodynamic fields with arbitrary
combinations of the external sources and on-shell they are still equivalent. Thanks to the
hydrostatic principle, we know that the external sources identically vanish upon setting
B = K and hence can be represented entirely in terms of δBeαµ, δBC

β
µα , δBAµ, δBϕi, and

their derivatives. To fix the residual redefinition freedom, therefore, all we need to do is
choose a set of vector, so(d−1, 1)-valued scalar, and g-valued scalar combinations of these
constituent fields to eliminate from the constitutive relations using the equations of motion.
For definiteness, in this work we choose our constitutive relations to be independent of
uµδBe

α
µ, uµδBCαµβ , and u

µδBAµ.

As it turns out, eq. (2.51) can be expressed in a more useful form if instead of the entropy
current, one works with its Legendre transform free energy current and the associated free
energy Hall current

Nµ = JµS + βαTµα +
(

ΛΣβ
β α + βµCβµα

)
Σµα

β + (Λβ + βµAµ) · Jµ +N i
β
µEi,

N⊥H =
(

ΛΣβ
β α + βµCβµα

)
Σ⊥αH β + (Λβ + βµAµ) · J⊥H, (2.52)

where N i
β
µ has been defined in eq. (2.18). Using the definition of external sources from

eq. (2.44) and performing some differentiation by parts, eq. (2.51) can be expressed as the
so-called adiabaticity equation,

DµN
µ −N⊥H = TµαδBe

α
µ + Σµα

βδBC
β
µα + Jµ · δBAµ + EiδBϕi + ∆, ∆ ≥ 0. (2.53)

Here we have made use of the symmetry variations defined in eqs. (2.16) and (2.18) to
simplify the expressions. This equation is at the heart of entire hydrodynamics and forms
the basis for most of the discussion presented in this work.

We would like to study what constraints does imposing the second law of thermodynamics
imply on the hydrodynamic constitutive relations. In other words, we would like to find
the most generic hydrodynamic constitutive relations (Tµα ,Σ

µα
β, J

µ, Ei) allowed by the
adiabaticity equation (2.53) for some choice of the free energy current Nµ and quadratic
form ∆. Conventionally, one would list the most generic tensor structures that can enter
the constitutive relations and free energy current up to a particular derivative order, append
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them with arbitrary transport coefficients, plug them into eq. (2.53), and read out the
constraints arising from demanding ∆ ≥ 0. This is the approach we took in the example
we studied in chapter 1. However, this path becomes incredibly cumbersome as we go to
higher derivative orders or include non-trivial ϕi fields. Arguably, it is more fruitful to
directly inspect the adiabaticity equation (2.53) and classify all the solutions it can admit.
This allows us to outline a generic algorithm to generate the hydrodynamic constitutive
relations with arbitrary additional gapless modes and at arbitrarily high derivative orders,
without having to rely on the counting of independent tensor structures.

For the clarity of notation in the following discussion, let us define

Φ =


eαµ

Cαµβ
Aµ

ϕi

 , C =


Tµα

Σµα
β

Jµ

Ei

 . (2.54)

C and Φ can be seen as elements of an extended vector space V. In this notation, C denotes
the hydrodynamic constitutive relations which are written in terms of the fields B and Φ.
This allows us to express the adiabaticity equation (2.53) in a compact form

DµN
µ = N⊥H + C · δBΦ + ∆, ∆ ≥ 0. (2.55)

Looking at the form of eq. (2.55), the tensor structures appearing in the hydrodynamic
constitutive relations (Tµα ,Σ

µα
β, J

µ, Ei) can be naturally split into two independent sectors
and 5 independent classes

• Hydrostatic sector: In this sector, constitutive relations and free energy-current
are constructed out of the independent tensor structures that, or any of their linear
combinations, do not vanish in a hydrostatic configuration, i.e. upon setting B = K

where K is a background isometry. See section 2.2.4 for details on this language. We
commonly use the terminology that they or any of their linear combinations cannot
contain an instance of “δB”. Hydrostatic constitutive relations are required to satisfy
a non-dissipative version of the adiabaticity equation

DµN
µ
hs = N⊥H + Chs · δBΦ. (2.56)

The respective solutions can be classified in three classes

1. Class A (anomaly induced transport): These are the constitutive relations
which are induced by anomalies in our symmetries. They are completely fixed
in terms of the anomaly polynomial, which in turn is characterised by a set of
constant anomaly coefficients. See section 2.3.2.

2. Class HV (hydrostatic vector transport): These are the hydrostatic con-
stitutive relations which are characterised by a free energy flow transverse to
the fluid velocity, excluding Class A transport. They, as well, are completely
determined up to a set of constants. See section 2.3.3.
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3. Class HS (hydrostatic scalar transport): These are the hydrostatic con-
stitutive relations which are characterised by a free energy flow which has a
component along the fluid velocity. They can be obtained from a generic hydro-
static scalar N which is only defined up to total derivatives. See section 2.3.4.

• Non-hydrostatic sector: In this sector, constitutive relations and free energy
current are made out of independent tensor structures that vanish in a hydrostatic
configuration. In practise, they involve all the tensor structures that have at least one
instance of δBΦ or their derivatives. Being faithful to our terminology, they contain
at least one instance of “δB”. Non-hydrostatic constitutive relations are required to
satisfy a non-anomalous version of the adiabaticity equation

DµN
µ
nhs = Cnhs · δBΦ + ∆, ∆ ≥ 0. (2.57)

Keep note that due to our choice while fixing the residual hydrodynamic redefinition
freedom, we are not allowed to use the non-hydrostatic tensor structures which depend
on uµδBeαµ, uµδBC

β
µα , or uµδBAµ. The respective solutions can be classified in two

classes

4. Class D (non-dissipative transport): These non-hydrostatic constitutive
relations are characterised by no entropy production. They are completely
determined by Dn|n≥0 ∈ V×V with D

T
n = −(−)nDn. See section 2.3.5.

5. Class D (dissipative transport): These non-hydrostatic constitutive relations
are the only ones that are responsible for the production of entropy. They are
completely determined by Dn|n≥0 ∈ V×V with DT

n = (−)nDn. See section 2.3.5.

Together, the hydrostatic and non-hydrostatic sectors make up the most generic hydrody-
namic constitutive relations that respect the local second law of thermodynamics.

A comment is due on the form of the adiabaticity equation in the respective sectors.
Since a hydrostatic fluid configuration is a state of thermal equilibrium, we know that
there should be no entropy production in the hydrostatic sector. Consequently, ∆ in the
hydrostatic sector is zero. In fact, by the virtue of being a quadratic form, ∆ must at least
be quadratic in “δB”. Coming to the free energy current, Nµ must also be made purely out
of the hydrostatic data. It can obviously not contain multiple instances of δB, as the RHS
of eq. (2.55) only contains one. On the other hand, if Nµ contained one δB, there will be a
term in its gradient which has δB acted upon by a derivative, which cannot be matched with
the RHS either. In essence, therefore, the hydrostatic sector is completely parametrised
by a hydrostatic Nµ

hs that satisfies eq. (2.56). Since anomalies are being taken care of in
the hydrostatic sector, the non-hydrostatic sector is required to satisfy the non-anomalous
adiabaticity equation (2.57).

There is also a sixth class of “hydrodynamic transport”

6. Class S (entropy transport): This class contains solutions to the adiabaticity
equation with vanishing constitutive relations but non-trivial free energy or
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entropy transport. These are completely characterised by an antisymmetric
tensor Xµν and matrices Smn|m,n≥1 with ST

mn = Snm. See section 2.3.6.

However, Class S solutions are not genuine hydrodynamic transport. They merely char-
acterise the multitude of entropy currents that satisfy the second law for the same set of
constitutive relations.

In the following subsections, we cover all of these classes in detail. Most of the
results presented here are directly taken from [52], which discusses the classification of
the hydrodynamic transport for fluids without an independent spin current, background
torsion, or extra gapless modes. The extension thereof to include ϕi fields corresponding to
broken non-Abelian internal symmetries was presented in our work [1]. Work in [1] also
presented a new understanding of the non-hydrostatic sector which we have adopted in
this work.6 The discussion presented here is a direct generalisation of [1] to include a spin
current, background torsion, and arbitrary ϕi fields.

2.3.2 Anomaly induced transport

Before delving into the full analysis of the adiabaticity equation and the constraints it
imposes on the constitutive relations, let us first deal with the affect of anomalies in
hydrodynamics. The anomaly induced constitutive relations, called Class A, lie within
the hydrostatic sector and show up in the hydrostatic adiabaticity equation (2.56) in the
form of the free energy Hall current N⊥H defined in eq. (2.52). We need to find a particular
solution to eq. (2.56) for a generic N⊥H, which we can append to the most generic solutions
of the non-anomalous adiabaticity equation to obtain the most generic hydrodynamic
constitutive relations. The end result of a significant amount of literature written on this
problem [47, 52, 87, 92–94] is that this particular solution can be most naturally obtained
using the so-called transgression machinery. In the following we present a skimmed version
of this construction.

Let us begin by defining the “shadow connections”

Â = A+ µu = (Aµ + µuµ) dxµ, Ĉα
β = Cα

β + µΣα
β u =

(
Cαµβ + µΣα

β uµ
)

dxµ.

(2.58)
These are defined so as to satisfy Λβ + βµÂµ = ΛΣα

β β + βµĈαµβ = 0. Let us denote the
anomaly polynomial of the theory by P , which is made out of A and Cα

β, and can be
used to obtain the Hall currents using eq. (2.25). We can also compute the associated free
energy Hall current defined in eq. (2.52) using the formula

?(d+1)NH =
1

T
?(d+1) (µΣ ·ΣH + µ · JH) . (2.59)

6In [52], the non-hydrostatic and entropy transport is together classified into 5 classes: B, C, D′, HS,
and HV, in contrast to our 3 classes: D, D, and S. Class C is characterised by terms in the entropy/free
energy current which are topologically conserved, and is contained within Class S. Class D′ is equal to
Class D ∪ (S \ C), which contains the solutions of the adiabaticity equation corresponding to the most
generic quadratic form ∆. Finally, the three non-hydrostatic non-dissipative Classes B, HS, and HV are an
alternate (and redundant) parametrisation of Class D.
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The “shadow anomaly polynomial” P̂ can be obtained starting from P by replacing all
instances of A and Cα

β with Â and Ĉα
β respectively. A similar procedure can be used to

define the shadow Hall currents as well. Having done that, let us consider

?ΣP =
u

du
∧ ?(d+1)

(
ΣH − Σ̂H

)
, ?JP =

u

du
∧ ?(d+1)

(
JH − ĴH

)
,

?qP = − u

du ∧ du
∧
(
P − P̂ + Tdu ∧ ?(d+1)N̂H

)
. (2.60)

In terms of these abstract definitions, the Class A constitutive relations are given as

(Tµα)A = qµPu
α + qαPu

µ, (Σµαβ)A = Σµαβ
P , (Jµ)A = JµP . (2.61a)

It can be explicitly checked that they satisfy the hydrostatic adiabaticity equation (2.56)
with the free energy current

(Nµ)A =
1

T

(
−qµP + µΣ · Σµ

P + µ · JµP
)
. (2.61b)

Since the anomaly polynomial does not make any reference to the gapless modes ϕi, it is
natural that the respective equations of motion (Ei)A = 0 in Class A. Curiously, in Class A
there is no entropy transport either

(JµS )A = 0. (2.61c)

To verify the validity of these claims, one can define an effective action describing the
anomalous transport [93]

SA =

∫
B
VP , VP =

u

du
∧
(
P − P̂

)
. (2.62)

The integrand VP is called a transgression form. After some algebraic manipulations, one
can show that the infinitesimal variation of SA is given by

δSA =

∫
B

dd+1x
√
−gd+1

(
ΣH

µ̂α̂
β̂ δC

β̂
µ̂α̂ − Σ̂H

µ̂α̂
β̂ δĈ

β̂
µ̂α̂ + Jµ̂H δAµ̂ − Ĵµ̂H δÂµ̂

)
+

∫
M

ddx
√
−g
(

Σµα
P β δC

β
µα + JµP δAµ + qµP δuµ

)
. (2.63)

The effective action SA is manifestly invariant under all the symmetries of the theory.
Consequently, under the action of an infinitesimal set of symmetry parameters X, the
variation δXSA is trivially zero. In particular, if we choose X = αB, requiring δXSA = 0 for
an arbitrary scalar field α precisely leads to the identity

Dµ(Nµ)A −N⊥H = (Tµα )AδBe
α
µ + (Σµα

β)
A
δBC

β
µα + (Jµ)A · δBAµ, (2.64)

which is nothing but the hydrostatic adiabaticity equation for Class A. Hence we have
verified that Class A constitutive relations do satisfy the adiabaticity equation.
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2.3.3 Transcendental anomalies

While we are on the topic of anomalies, let us consider a particular extension of Class A to
accommodate more generic solutions of the hydrostatic adiabaticity equation. These are
called transcendental anomalies or hydrostatic vectors in the literature, denoted by Class
HV. We justify this nomenclature in the next subsection. The most natural route to these
“anomalies” is using an auxiliary U(1)T symmetry introduced in [52]. We briefly review this
method below.

Let us introduce an auxiliary Abelian global symmetry U(1)T in our theory and an
associated background gauge field AT

µ . We take the corresponding chemical potential to be
µT = T , i.e. ΛT

β + βµAT
µ = 1. The anomaly polynomial for this enlarged theory is denoted

by PT, which is known as the thermal anomaly polynomial. Generically, it is characterised
by more constants compared to the physical anomaly polynomial P due to the presence of
additional terms involving the Chern classes of FT

µν . In the limit that FT
µν is taken to zero,

PT reduces to P . With this in mind, let us decompose

PT = P + PHV = P +
∑
j≥1

(F T)
∧j ∧PHV,j . (2.65)

PHV contains terms which are at least linear in FT
µν , wherein PHV,j are (d+ 2− 2j)-rank

anomaly polynomials made out of F and R. For d = 4k − 2 and d = 4k, the extra piece
PHV involves k(k + 1) and (k + 1)2 constants respectively.

We can use the method prescribed in the previous subsection to find a particular
anomaly induced solution to the extended hydrostatic adiabaticity equation

DµN
µ −N⊥H − J⊥TH = TµαδBe

α
µ + Σµα

β δBC
β
µα + Jµ · δBAµ + EiδBϕi + JµT δBA

T
µ , (2.66)

where δBAT
µ = £βA

T
µ + ∂µΛT

β = βνFT
νµ. The free energy Hall current NH in this extended

theory is again taken to be eq. (2.59), except that ΣH and JH are now being defined
using PT as opposed to P . Similarly, JTH is the Hall current associated with the U(1)T
symmetry, i.e.

?(d+1)JTH =
∂PT

∂F T
=
∑
j≥1

j(F T)
∧(j−1) ∧PHV,j . (2.67)

Consider taking a limit of this extended theory wherein we set FT
µν → 0. Doing this, the

δBA
T
µ term in eq. (2.66) identically vanishes. If we ignore the terms in PT which are linear

in FT
µν for now (i.e. stick to j > 1), the U(1)T Hall current JTH alse vanishes in this limit.

Consequently, the modified adiabaticity equation (2.66) precisely reduces to the original
hydrostatic adiabaticity equation (2.56). Unfortunately, for the terms in PT which are
linear in FT

µν (i.e. j = 1), the associated Hall current ?(d+1)JTH = PHV,1 = dIHV,1 does
not vanish. We can cheat our way out of this situation, however, by noting that we can
shift Nµ → Nµ + (?IHV,1)µ to get rid of the extra piece in the adiabaticity equation. This
leads to a gauge-non-invariant free energy current, which in principle should not be an
issue because the free energy or entropy currents are not physical observables of our theory
and are, therefore, not restricted to be gauge invariant. However, if one insists on having a



46 | Chapter 2. Relativistic hydrodynamics

gauge-invariant entropy current, PHV,1 must be set to zero.

Modulo this technicality, we can conclude that if we are given a set of anomaly induced
constitutive relations in the extended theory which satisfy eq. (2.66), we can take FT

µν → 0

to gain a solution to our original adiabaticity equation (2.53). Interestingly, we find that the
solution thus obtained is not merely Class A. Even though PHV vanishes in this limit, the
hydrodynamic constitutive relations it induces, called Class HV, do survive. They satisfy
the non-anomalous version of the hydrostatic adiabaticity equation (2.56).

To obtain the explicit solution, let us define a shadow U(1)T gauge field ÂT = AT +Tu.
We can follow through the exact same analysis we did in the previous subsection, but
this time with the extra Abelian gauge field, and obtain the extended anomaly induced
constitutive relations. We skip the details and directly write down the solutions in FT

µν → 0

limit. Since the entire construction is linear in the anomaly polynomial, we can treat P and
PHV segments of the thermal anomaly polynomial PT independently. The physical anomaly
polynomial P has no dependence on FT

µν and leads to the familiar Class A constitutive
relations we discussed in the previous subsection. The PHV piece, however, is novel. The
key point to note is that although PHV and the associated Hall currents

?(d+1)(ΣH)HV
=
∂PHV

∂R
, ?(d+1)(JH)HV

=
∂PHV

∂F
, ?(d+1)(JTH)HV

=
∂PHV

∂F T
,

?(d+1)(NH)HV
=

1

T
?(d+1)

(
µΣ · (ΣH)HV

+ µ · (JH)HV

)
, (2.68)

vanish upon setting FT
µν → 0 (except j = 1), the respective shadow quantities do not. These

are precisely responsible for the non-trivial Class HV constitutive relations. We find

(Tµα)HV
= qµPHV

uα + qαPHV
uµ, (Σµαβ)HV

= Σµαβ
PHV

, (Jµ)HV
= JµPHV

,

(Nµ)HV
= JµTPHV

+
1

T

(
−qµPHV

+ µΣ · ΣPHV
+ µ · JµPHV

)
− (?IHV,1)µ, (2.69)

along with (Ei)HV
= 0, where

?ΣPHV
= − u

du
∧ ?(d+1)(Σ̂H)HV

∣∣∣
F T→0

, ?JPHV
= − u

du
∧ ?(d+1)(ĴH)HV

∣∣∣
F T→0

,

?JTPHV
=
u

du
∧ ?(d+1)

(
(JTH)HV

− (ĴTH)HV

) ∣∣∣
F T→0

,

?qPHV
=

u

du ∧ du
∧
(
P̂HV − Tdu ∧ ?(d+1)

(
(N̂H)HV

+ (ĴTH)HV

)) ∣∣∣
F T→0

. (2.70)

The Class HV constitutive relations satisfy the non-anomalous version of the adiabaticity
equation (2.56). Unlike Class A however, these constitutive relations do induce a non-trivial
entropy transport

(JµS )HV
= JµTPHV

. (2.71)

Finally, following our discussion around eq. (2.62), we can also write down an effective
action to generate Class HV constitutive relations

SHV = −
∫
B

u

du
∧ P̂HV

∣∣∣
F T→0

. (2.72)
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Varying this action and invoking its invariance under symmetries, we can verify that the
Class HV constitutive relations indeed satisfy the non-anomalous adiabaticity equation.

2.3.4 Hydrostatic transport

Over the previous two subsections, we have covered two special classes of solutions of the
hydrostatic adiabaticity equation. First, the Class A constitutive relations form a particular
solution to eq. (2.56) which takes care of all the anomaly induced hydrodynamic transport.
Second, the Class HV constitutive relations satisfy the non-anomalous version of eq. (2.56)
and are characterised by a set of undermined constants. We are now in a position to specify
the remaining hydrostatic constitutive relations as well.

We would first like to note that there can be no non-trivial solutions to the hydrostatic
adiabaticity equation (2.56) with Nµ

hs = 0. Consequently, the hydrostatic constitutive
relations are characterised by the most generic hydrostatic free energy current Nµ

hs. We
choose a decomposition

Nµ
hs =

(
Nβµ + Θµ

N
)

+ Nµ, (2.73)

where Nµβµ = 0. N is the most generic scalar made out of the independent hydrostatic
data. Θµ

N is a N -dependent non-hydrostatic vector defined via

Dµ(Nβµ) =
1√
−g
δB
(√
−gN

)
= Φ · CHS −DµΘµ

N , (2.74)

which ensures that Dµ(Nβµ + Θµ
N ) has a bare “δB” to match the RHS of eq. (2.53).

Eq. (2.74) also defines the constitutive relations CHS associated with N , called the Class HS

constitutive relations. The respective free energy current is simply (Nµ)HS
= Nβµ + Θµ

N .

On the other hand, Nµ is the most generic hydrostatic vector transverse to βµ, such
that DµNµ −N⊥H has exactly one bare “δB”, so that it can fit the hydrostatic adiabaticity
equation. We have already seen two classes of free energy currents which meet this criteria
in sections 2.3.2 and 2.3.3,

Nµ = (Nµ)A + (Nµ)HV
. (2.75)

The corresponding constitutive relations CA and CHV are given in eq. (2.61) and eq. (2.69)
respectively. This also justifies the name “hydrostatic vectors” for Class HV in contrast
to the “hydrostatic scalars” for Class HS. As it happens, eq. (2.75) is already the most
generic form of Nµ allowed by the requirements laid out. However, we refrain from giving a
detailed proof here; interested readers can consult [52, 87, 92]. Therefore, Classes A, HV,
and HS make up the complete set of hydrostatic constitutive relations.

By definition, the hydrostatic constitutive relations completely determine the physics
in a hydrostatic fluid configuration (obtained by setting B = K where K is a timelike
background isometry). But as we discussed in section 2.2.4, to maintain consistency with
the thermodynamic equilibrium, constitutive relations in a hydrostatic configuration must
admit a hydrostatic effective action. Luckily for us, this notion is already hardwired in
the second law requirement. Indeed, the Class HS constitutive relations in a hydrostatic
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configuration can be generated from an effective action [51]

Shs
HS

= β0

∫
Σ

dd−1x
√
−g (N )B=K . (2.76)

The hydrostatic effective actions for Classes A and HV, on the other hand, are trivially
obtained by setting B = K in eqs. (2.62) and (2.72) respectively. Furthermore, the
hydrostatic effective action thus obtained is actually the most generic such effective action
we can write down in a hydrostatic configuration. Therefore, within the hydrostatic sector,
the constraints arising form requiring the hydrostatic principle or those following from the
second law are exactly equivalent.

2.3.5 Non-hydrostatic transport

Having figured out the hydrostatic transport, let us now move on to the non-hydrostatic
sector. To remind ourselves, these are the constitutive relations which contain at least one
instance of δBΦ or their derivatives. To this end, let us introduce some new notation. Let
us define a totally symmetric covariant derivative operator

Dn =
(
D(µ1

Dµ2 . . .Dµn)

)
. (2.77)

Dn forms a basis for all the differential operators, as the antisymmetric derivatives can
always be replaced by combinations involving curvatures and field strengths. Given a
differential operator O, we define its conjugate O† via

X1 (OX2) =
(
O†X1

)
X2 + Dµ (· · ·)µ , (2.78)

where X1, X2 are some arbitrary fields. Expressed in terms of the basis operators, we have
(Dn)† = (−)nDn.

With this new derivative operator in place, the most generic non-hydrostatic constitutive
relations can be expressed in a compact form

Cnhs = −
∞∑
n=0

1

2

(
Cn · (DnδBΦ) + Dn(Cn · δBΦ)

)
. (2.79)

Cn ∈ V×V are matrices with additional n symmetric indices to be contracted with Dn.
The last term in eq. (2.79) is taken purely for convenience and can be absorbed into the
first via differentiation by parts. Let us factor Cnhs into a so-called dissipative (Class D)
and a non-dissipative (Class D) class parametrised by

Dn =
1

2

(
Cn + (−)nCT

n

)
, Dn =

1

2

(
Cn − (−)nCT

n

)
, (2.80)

respectively. Beginning with the non-dissipative piece first, as it is simpler, we find that

CD · δBΦ = DµΘµ

D
, (2.81)



2.3. Local second law of thermodynamics | 49

where DµΘµ

D
is a total derivative piece obtained after successive differentiation by parts.

Comparing it to eq. (2.57) we can infer that the Class D constitutive relations identically
satisfy the adiabaticity equation with (Nµ)D = Θµ

D
and ∆D = 0, with no constraints

imposed. Hence the name non-dissipative.

Moving on to the more non-trivial dissipative constitutive relations, we instead find

CD · δBΦ = −
∞∑
n=0

δBΦ ·Dn · (DnδBΦ) + DµΘµ
D,0. (2.82)

To muster it into a form apt for the adiabaticity equation, we need to do a little more work.
We start by noting that the above equation can be massaged into

CD · δBΦ = −δBΦ · η · δBΦ− 2δBΦ · η · (Υ1 · δBΦ) + DµΘµ
D,0

= −
(

(1 + Υ1) · δBΦ
)
· η ·

(
(1 + Υ1) · δBΦ

)
︸ ︷︷ ︸

quadratic form

+ (Υ1 · δBΦ)T · η · (Υ1 · δBΦ)︸ ︷︷ ︸
residue

+ DµΘµ
D,0︸ ︷︷ ︸

total derivative

, (2.83)

where D0(n) denotes the nth derivative piece in D(0) and η = D0(0). On the other hand,
Υ1 is a differential operator

Υ1 =
1

2
η−1

∞∑
n=1

(
D0(n) + DnDn

)
. (2.84)

The quadratic form piece in eq. (2.83) is of most interest to us, as it contributes to ∆. The
total derivative piece on the other hand is a contribution to the free energy current Nµ.
However, we would like to get rid of the residue piece, which has at least 4 derivatives.
Using differentiation by parts, this piece can be rewritten as

(Υ1 · δBΦ) · η · (Υ1 · δBΦ) = δBΦ ·
(

Υ†1 · η ·Υ1 · δBΦ
)

+ DµΘµ
D,1. (2.85)

Putting this back in eq. (2.83) we get

CD · δBΦ = −
(

(1 + Υ1 + Υ2) · δBΦ
)
· η ·

(
(1 + Υ1 + Υ2) · δBΦ

)
︸ ︷︷ ︸

quadratic form

+
(

(2Υ1 + Υ2) · δBΦ
)
· η · (Υ2 · δBΦ)︸ ︷︷ ︸

residue

+ Dµ

(
Θµ

D,0 + Θµ
D,1

)
︸ ︷︷ ︸

total derivative

, (2.86)

where Υ2 is another differential operator

Υ2 = −1

2
η−1 ·Υ†1 · η ·Υ1. (2.87)

Comparing eq. (2.86) to eq. (2.83), hopefully the reader can make out a repeating pattern.
The quadratic form piece now has some additional higher derivative terms, whereas we have
pushed the residue piece to 5th derivative order. We can repeat this procedure iteratively
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to push the residue piece to arbitrarily high derivative orders and obtain

CD · δBΦ = − (Υ · δBΦ) · η · (Υ · δBΦ) + DµΘµ
D, (2.88)

where

Υi+1

∣∣∞
i=1

= −η−1 ·

(
d−1∑
k=1

Υ†k +
1

2
Υ†i

)
(η ·Υi) , Υ = 1 +

∞∑
n=1

Υn, (2.89)

and Θm
D =

∑∞
n=0 Θm

D,n. Finally, comparing eq. (2.88) to eq. (2.57), we can see that Class D
constitutive relations satisfy the adiabaticity equation with

(Nµ)D = Θµ
D, ∆D = (Υ · δBΦ) · η · (Υ · δBΦ) . (2.90)

The second law requirement ∆ ≥ 0 only gives a constraint on the first derivative non-
hydrostatic constitutive relations by forcing all the eigenvalues of η = D0(0) to be non-
negative. Apart from these inequalities, we do not get any constraints from the second
law in the non-hydrostatic sector. In particular, unlike the hydrostatic sector, the second
law does not switch off any transport coefficients. This argument was first presented by
Sayantani Bhattacharyya in [91, 95]. Our presentation above can be seen as a succinct
summary of her seminal work.

2.3.6 Entropy transport

In the previous subsections we have taken up the task of classifying the most generic
hydrodynamic constitutive relations C, which admit a free energy current Nµ and a
quadratic form ∆ such that the adiabaticity equation (2.55) is satisfied. However, the Nµ

and ∆ which achieve this goal for a given C do not have to be unique. In fact, we can shift
Nµ and ∆ with an arbitrary solution of

Dµ(Nµ)S = ∆S, (2.91)

and still satisfy the adiabaticity equation for the same set of constitutive relations C.
The solutions of eq. (2.91) are called Class S “constitutive relations”. They satisfy the
non-anomalous adiabaticity equation (2.55) with vanishing constitutive relations CS = 0.
The associated entropy transport however is non-trivial

(JµS )S = (Nµ)S, (2.92)

hence the name entropy transport. It should be noted however that Class S constitutive
relations are not genuine hydrodynamic transport, they merely parametrise the multitude
of entropy/free energy currents which meet the second law requirement for the same set of
constitutive relations.

Firstly, there are some trivial solutions in Class S. Consider an arbitrary antisymmetric
tensor Xµν . If we take (Nµ)S = DνX

µν + 1
2Tµ

νρX
νρ, the divergence Dµ(Nµ)S is identically

zero and satisfies eq. (2.91) with ∆S = 0. To obtain the remaining non-trivial solutions, let
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us start with the most generic allowed quadratic form

∆S =
∑
m,n≥0

(DmδBΦ) ·Smn · (DnδBΦ), (2.93)

where Smn ∈ V × V satisfy ST
mn = Snm. We know that an arbitrary Smn cannot

correspond to the Class S constitutive relations, as some part of it gives rise to the Class D
transport. As we saw in section 2.3.5, the Class D transport is characterised by a quadratic
form given in terms of a matrix Dn. So to pass as valid Class S transport, we must eliminate
Dn worth of components from Smn. To see this, let us perform successive differentiation
by parts on eq. (2.93) and obtain

∆S = δBΦ ·S00 · δBΦ + 2
∑
n≥1

δBΦ ·S0n · (DnδBΦ) +
∑
m,n≥1

(DmδBΦ) ·Smn · (DnδBΦ)

= δBΦ ·S00 · δBΦ + 2δBΦ ·S01 · (D1δBΦ) +
∑
n≥2

δBΦ ·
(

2S0n + Sn

)
· (DnδBΦ)

+ DµΘµ
S. (2.94)

In the second step, we have isolated a series of differential operators Sn via the relation∑
m,n≥1

(−)mDm
(
Smn · (DnδBΦ)

)
≡
∑
n≥2

Sn · (DnδBΦ). (2.95)

If we choose S00 = S01 = 0 and S0n = −Sn/2 for n ≥ 2, we can satisfy eq. (2.91) with
(Nµ)S = Θµ

S. These are the Dm worth of conditions on Smn we were alluding to. Finally,

(Nµ)S = DνX
µν +

1

2
Tµ

νρX
νρ + Θµ

S, (2.96)

parametrises the most generic Class S constitutive relations.

2.4 | Summary and torsionless limit

This chapter has been quite technical, so let us summarise the important points. Hydro-
dynamics is characterised by its constitutive relations: the most generic expressions of
(Tµα ,Σ

µα
β, J

µ, Ei) in terms of the dynamical fields (uµ, T, µΣ, µ) (or B) and ϕi, and the
background fields (eαµ, C

α
µβ , Aµ), arranged in a derivative expansion. The equations of

motion for the dynamical fields are given by eq. (2.46) and Ei ≈ 0. Up to a given derivative
order, the constitutive relations contain all the possible tensor structures made out of its
constituent fields and their derivatives, multiplied with arbitrary transport coefficients.
The actual number of such transport coefficients, however, depends on the possible ten-
sor structures we can write down, which in turn depends on the derivative order we are
working at and on the number and transformation properties of the gapless modes ϕi. In
general, the explicit functional form of these transport coefficients depends on the system
in question, but we can bring the number down considerably by imposing the second law of
thermodynamics. It requires that there must exist an entropy current JµS , or equivalently
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a free energy current Nµ, such that the adiabaticity equation (2.53) is satisfied for some
quadratic form ∆ ≥ 0. This requirement constrains the hydrodynamic constitutive relations
to be in one of the five classes

C = Chs + Cnhs = (CA + CHV + CHS) +
(
CD + CD

)
. (2.97)

In addition, there is also a Class S worth of redundancies in the entropy or free energy
currents we can choose from, to satisfy the second law for a given set of constitutive
relations.

For most applications of hydrodynamics, it is useful to work with the energy-momentum
tensor and charge current only and no spin current. The spin current does not necessarily
have to be zero. We could just choose not to probe this particular observable by turning
off the background torsion. Without torsion, we can also fall back to the good old metric
formulation with background fields (gµν , Aµ), as opposed to the vielbein formulation that
we have been working with. This is the premise in which most of the work in relativistic
field theories, especially hydrodynamics, is done. In this setting, we can use the second
equation in the relativistic identities (2.19) to eliminate the antisymmetric part of the
energy-momentum tensor from the first equation. Once that is done, we can show that
remaining equations can be rewritten as

DµT
µν
B = F νρ · Jρ + DµΣ⊥νµH +OIαEI ,

DµJ
µ = J⊥H +OIEI , (2.98)

where we have defined the so-called symmetric Belinfante energy-momentum tensor

TµνB = T (µν) + 2 DρΣ
(µν)ρ. (2.99)

This is the quantity that couples to the spacetime metric and appears in the Einstein’s
equations in general relativity. Later in the text, when focusing on these theories without a
spin current, we drop the subscript B in TµνB for clarity. The corresponding conservation
equations on the other hand are given as

DµT
µν
B ≈ F νρ · Jρ + DµΣ⊥νµH ,

DµJ
µ ≈ J⊥H, (2.100)

which are perhaps more familiar to the reader. In the flat space limit, they simply read

∂µT
µν
B ≈ 0, ∂µJ

µ ≈ 0. (2.101)

An interesting thing to note is that what used to be a Lorentz anomaly Σ⊥αβH in the
spin conservation, shows up as a gravitational anomaly DµΣ⊥νµH in the Belinfante energy-
momentum conservation. This is the incarnation in which this anomaly appears in most of
the literature.

Moving on to hydrodynamics, the hydrodynamic fields are taken to be merely (uµ, T, µ)
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or equivalently B = (βµ,Λβ). Formally, we can think that the spin chemical potential µΣ

has been “solved for” using the spin conservation equation in terms of the other fields in
the theory, and has been substituted back into TµνB , Jµ, and E i. The associated analogue
to the adiabaticity equation (2.53) is given by

DµN
µ −N⊥H =

1

2
TµνB δBgµν + Jµ · δBAµ + EiδBϕi + ∆, ∆ ≥ 0. (2.102)

If we define

Φ =


1
2gµν

Aµ

ϕi

 , C =

T
µν

Jµ

Ei

 , (2.103)

we can re-express the adiabaticity equation into

DµN
µ = N⊥H + C · δBΦ + ∆, ∆ ≥ 0, (2.104)

which is essentially the same as our previous version in eq. (2.55). Therefore, all our
discussion on hydrodynamic classification in section 2.3 still holds true.

This concludes our discussion of the principles of relativistic hydrodynamics. In the
next chapter, we consider some explicit applications of these ideas.
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3 | Applications: relativistic hydrodynamics

In chapter 2 we studied the fundamentals of relativistic hydrodynamics in an abstract
language. In this chapter, we take these key ideas and apply them to some explicit examples.
We start with the well-known example of ordinary relativistic fluids and make our way to
the more involved relativistic superfluids. Later, we also briefly talk about relativistic fluids
with surfaces. For concreteness, we stick to d = 4 spacetime dimensions in this chapter.

3.1 | Relativistic fluids

Ordinary relativistic fluids are the simplest hydrodynamic systems we can consider. They
do not contain any additional gapless modes in their description, i.e. hydrodynamic fields B
are the only relevant dynamical degrees of freedom at low energies. They also do not have
an independent spin current and are coupled to spacetime backgrounds without torsion.
We already talked about them in section 1.1.2 using the conventional formalism of hydro-
dynamics. Here we rederive these results using the off-shell formalism of hydrodynamics
proposed in chapter 2. The results we obtain here are standard in the literature; see e.g. [52]
for a modern review.

3.1.1 Ideal fluids

Hydrodynamic systems whose constitutive relations are truncated to the zeroth order in
derivatives are known as ideal fluids. With our choice of derivative counting it is easy
to see that all except Class HS constitutive relations start at the one-derivative order,
so we can safely ignore them for now. At the ideal order, the hydrostatic scalar density
N characterising Class HS is given by an arbitrary scalar P (T, µ) as a function of the
temperature T and chemical potential µ of the fluid. Using the definitions of T and µ in
terms of B given in eq. (2.42), we can derive their δB variations as

δBT =
T

2
uµuνδBgµν , δB

µ

T
=

1

T
uµδBAµ. (3.1)

We can use these expressions to compute the divergence of the ideal order free energy
current Pβµ leading to

Dµ (Pβµ) =
1√
−g
δB
(√
−g P

)
=

1

2
PgµνδBgµν +

∂P

∂T
δBT +

∂P

∂µ
· δBµ

=
(

(E + P )uµuν + P gµν
)1

2
δBgµν +Quµ · δBAµ, (3.2)
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where we have defined

S =
∂P

∂T
, Q =

∂P

∂µ
, E = T

∂P

∂T
+ µ · ∂P

∂µ
− P. (3.3)

Comparing eq. (3.2) with eq. (2.74), we can easily read out the ideal fluid constitutive
relations, free energy, and entropy currents

Tµν = (E + P )uµuν + P gµν +O(∂), Jµ = Quµ +O(∂),

Nµ =
1

T
Puµ +O(∂), JµS = Suµ +O(∂). (3.4)

From here we can identify E as the energy density, P as the isotropic pressure, Q as the
charge density, and S as the entropy density of the fluid. Due to eq. (3.3), these quantities
satisfy the standard thermodynamic relations

Gibbs-Duhem equation: dP = S dT +Q · dµ,

Euler scaling relation: E + P = S T +Q · µ,

First law of thermodynamics: dE = T dS + µ · dQ. (3.5)

We see that the constitutive relations of an ideal fluid are completely characterised by its
equation of state P = P (T, µ).

We can also work out the explicit first order equations of motion

1√
−g
δB
(√
−g T (E + P )uµ

)
+ TQ · δBAµ +O(∂2) = 0,

1√
−g
δB
(√
−g TQ

)
+O(∂2) = 0, (3.6)

which provide dynamics for βµ and Λβ respectively. In this form, it is clear that the
hydrostatic principle is satisfied, i.e. upon promoting B to a background isometry K, the
equations of motion are trivially satisfied. It is also clear that we can use these equations to
eliminate uµδgµν and uµδAµ respectively from our non-hydrostatic constitutive relations.
In a more readable form, these equations imply

Dµ (Suµ) = O(∂2), Dµ (Quµ) = O(∂2),

(E + P )Pµν
(

1

T
∂νT + uρDρuν

)
+QPµν

(
TDν

µ

T
+ uρFρν

)
= O(∂2), (3.7)

where Pµν = gµν+uµuν is the projector against uµ. They can be identified as the ideal order
entropy conservation, charge continuity equation, and the relativistic Navier-Stokes equation
respectively. We see that the ideal fluid indeed satisfies the second law of thermodynamics.

3.1.2 One-derivative corrections

Having discussed the constitutive relations of an ideal fluid, we would now like to explore
the most generic one-derivative corrections they can admit, allowed by the second law of
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PT Tµν Jµ Nµ

C F ∧ F ∧ F 2µ2C u(µ
(
3Bν) + 2µων)

)
3µC (2Bµ + µωµ) µ2

T C (3Bµ + µωµ)

C1 FT ∧ FT ∧ FT 4T 3C1u
(µων) 4T 2C1ω

µ

C2 FT ∧ FT ∧ F 2T 2C2u
(µ
(
Bν) + 2µων)

)
T 2C2ω

µ TC2 (Bµ + 3µωµ)

C0 FT ∧ F ∧ F 4µTC0u
(µ
(
Bν) + µων)

)
2TC0 (Bµ + µωµ)

µC0 (2Bµ + µωµ)
+1

2C0 ε
µνρσAνFρσ

−1
3C0 ε

µνρσAνAρAσ

Table 3.1: One-derivative Class A and Class HV constitutive relations for a (3+1)-dimensional
relativistic fluid. Lie algebra traces are understood in columns PT, Tµν , and Nµ. Note that the C0

term is in the thermal anomaly polynomial is linear in FT, hence the associated free energy current
is not gauge-invariant.

D0 Tµν Jµ

−Tζ
(
PµνP ρσ ·
· ·

)
−ζ PµνΘ

−Tη
(
Pµ〈ρPσ〉ν ·
· ·

)
−η σµν

−Tσ
(· ·
· Pµρ

)
−σPµν

(
TDν

µ
T − Eν

)
Table 3.2: One-derivative Class D constitutive relations for a (3 + 1)-dimensional relativistic fluid.

thermodynamics. First, some standard definitions:

Θ = Dµu
µ, σµν = Pµ〈ρP σ〉νDρuσ = PµρP νσ

(
D(µuν) −

1

3
PµνΘ

)
,

aµ = uνDνu
µ, ωµ = εµνρσuν∂ρuσ, Eµ = Fµνuν , Bµ =

1

2
εµνρσuνFρσ. (3.8)

In words, they are the expansion, shear, acceleration, and vorticity of the fluid, along with
the electric and magnetic fields defined in the rest frame of the fluid. Angular brackets
denote a traceless symmetric combination.

Let us start with the hydrostatic sector. We can check that there are no one-derivative
scalars to make up N , so Class HS is empty. There are however non-trivial Class A and
Class HV constitutive relations at one-derivative order. They are collectively characterised
by a 6-rank thermal anomaly polynomial

PT = C tr[F ∧F ∧F ] +C1 FT ∧FT ∧FT +C2 FT ∧FT ∧ trF +C0 FT ∧ tr[F ∧F ]. (3.9)

C is the standard U(1)3 anomaly coefficient, while C1 and C2 are arbitrary constants.
Following our discussion in sections 2.3.2 and 2.3.3, we can easily read out the respective
constitutive relations. The results have been summarised in table 3.1.

Next, let us move on to the non-hydrostatic constitutive relations. Since the operator
“δB” already contains a derivative in its definition, at one-derivative order the only relevant
non-hydrostatic constitutive relations are parametrised by C0. If we split C0 into D0 and
D0 according to eq. (2.80), we can check that these are its symmetric and anti-symmetric
parts respectively. Given the tensor structures at hand, we can check that there are no
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available terms that we can use to construct an antisymmetric matrix D0. Consequently,
Class D is empty. There are, however, three possible terms that we can write down in D0,
leading to the non-trivial Class D constitutive relations. The results have been summarised
in table 3.2. The associated quadratic form ∆ is given by

T∆ = ζΘ2 + η σµνσµν + σPµν
(
TDµ

µ

T
− Eµ

)(
TDν

µ

T
− Eν

)
. (3.10)

Since each tensor structure on the right hand side is manifestly positive definite, the second
law requirement merely states that the dissipative transport coefficients ζ, η, and σ are
all non-negative. They are identified as the bulk viscosity, shear viscosity, and electric
conductivity of the fluid respectively.

To summarise, the constitutive relations of a relativistic fluid up to the first order in
derivatives are given as

Tµν = (E + P )uµuν + P gµν − ζ PµνΘ− η σµν + 2
(
3µ2C + 2µTC0 + C2T

2
)
u(µBν)

+ 4
(
µ3C + µ2TC0 + T 3C1 + C2µT

2
)
u(µων) +O(∂2),

Jµ = Quµ − σPµν
(
TDν

µ

T
− Eν

)
+ (6µC + 2TC0)Bµ +

(
3µ2C + 2µTC0 + C2T

2
)
ωµ +O(∂2). (3.11)

They satisfy the second law of thermodynamics with the free energy and entropy currents

Nµ =
1

T
Puµ +

1

T

(
3µ2C + 2µTC0 + T 2C2

)
Bµ +

1

T

(
µ3C + µ2TC0 + 4T 3C1 + 3µT 2C2

)
ωµ

+ C0 ε
µνρσ

(
1

2
AνFρσ −

1

3
AνAρAσ

)
+O(∂2),

JµS = Suµ +
µ

T
σPµν

(
TDν

µ

T
− Eν

)
+ 2 (µC0 + TC2)Bµ +

(
µ2C0 + 3T 2C1+2µTC2

)
ωµ

+ C0 ε
µνρσ

(
1

2
AνFρσ −

1

3
AνAρAσ

)
+O(∂2), (3.12)

provided that the zeroth order transport coefficients are derived from a single function
P (T, µ) via the thermodynamic relations (3.5) and the first order transport coefficients η,
ζ, and σ are non-negative.

It should be appreciated that, a priori, the constitutive relations could admit many more
tensor structures: 3 at the ideal order and 7 at the one-derivative order after modding out
field redefinition and on-shell equivalence, each coming with their own transport coefficients.
However, the second law of thermodynamics fixed these 10 coefficients in terms of just
1 arbitrary function, 3 arbitrary non-negative functions, and 4 constants. For example,
there could be independent terms in the charge current: κPµν∂νT and σEµ, interpreted as
thermal and electric conductivities respectively. Instead, the second law fixes the thermal
conductivity to be κ = µσ/T .

Before moving on to the next example, we should note that we have derived the fluid
constitutive relations (3.11) in a very specific hydrodynamic frame, fixed by requiring the
off-shell second law to hold. We can always transform to our preferred frame of choice by
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performing a field redefinition uµ → uµ + δuµ, T → T + δT , µ→ µ+ δµ where uµδuµ = 0.
For example, one quite ubiquitous frame in relativistic hydrodynamics is the so called
Landau frame defined as TµνLandauuν = −Euµ and JµLandauuµ = Quµ. This corresponds to
the field redefinition uµ → uµ − 1

E+P P
µ
ρ T ρσuσ in eq. (3.11), leading to

TµνLandau = (E + P )uµuν + P gµν − ζ PµνΘ− η σµν +O(∂2),

JµLandau = Quµ − σPµν
(
TDν

µ

T
− Eν

)
+ ξBB

µ + ξωω
µ +O(∂2), (3.13)

where we have defined the parity-odd conductivities

ξB = (6µC + 2TC0)− Q

E + P

(
3µ2C + 2µTC0 + C2T

2
)

ξω =
(
3µ2C + 2µTC0 + C2T

2
)
− 2Q

E + P

(
µ3C + µ2TC0 + T 3C1 + C2µT

2
)
. (3.14)

This is perhaps the better known form of the one-derivative order relativistic fluid constitu-
tive relations, which were first derived in full generality in [50].

3.2 | Relativistic superfluids

For our next example, we study relativistic superfluids. They describe the hydrodynamic
regime of a quantum field theory with a spontaneously broken internal symmetry. The
corresponding Goldstone modes act as gapless degrees of freedom in the hydrodynamic
description, besides uµ, T , and µ, providing us with an example of non-trivial ϕi fields.
In general, we could break an arbitrary Lie group G of internal symmetries to any Lie
subgroup H, but for now we content ourselves with breaking G = U(1) to H = {1}. This
leads to Abelian superfluids, which we briefly covered in section 1.2. We return to the
non-Abelian superfluids in section 3.2.4. Constitutive relations for an Abelian superfluid
have already been obtained in the literature [51, 53, 96] using the conventional “on-shell”
formalism. Here we employ the off-shell formalism of hydrodynamics discussed in chapter 2
to rederive these results. One important distinction between the two formalisms is that in
the conventional formalism, one typically imposes an equation of motion for the Goldstone
mode, known as the Josephson equation, by hand. However, in the off-shell formalism, this
equation automatically pops out of the second law. The results presented here appeared in
our works [1, 4].

3.2.1 Goldstone modes and Josephson equation

Consider a microscopic theory which is charged under a global U(1) symmetry. We are
seeking to describe low energy fluctuations in this theory in a phase where the U(1) symmetry
is spontaneously broken, perhaps due to condensation of a charged scalar operator. The
U(1) phase ϕ of this operator becomes an additional field in the fluid description, upon
which the respective constitutive relations can depend. Under an infinitesimal symmetry
transformation parametrised by X = (χµ,Λχ), the field ϕ transforms as δXϕ = χµ∂µϕ−Λχ.
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We can write down a covariant derivative of ϕ as

ξµ = ∂µϕ+Aµ, (3.15)

commonly known as the superfluid velocity. It satisfies 2∂[µξν] = Fµν . In superfluid
dynamics, it is customary to choose the derivative order of ϕ to be O(∂−1), which would
imply that ξµ is O(∂0). The phase field ϕ provides us with our first example of an additional
gapless mode “ϕi” discussed in section 2.2.3. For the corresponding equation of motion
“Ei ≈ 0”, we take

K ≈ 0. (3.16)

Just like Tµν and Jµ, the placeholder K is also provided with constitutive relations. Its
form is fixed by requiring the second law of thermodynamics to hold.

Following eq. (2.53), we can directly write down the adiabaticity equation for superfluids,
leading to

DµN
µ −N⊥H =

1

2
TµνδBgµν + JµδBAµ +KδBϕ+ ∆, ∆ ≥ 0, (3.17)

where
δBϕ = βµ∂µϕ− Λβ =

1

T
(uµξµ − µ) . (3.18)

Let us start by considering the adiabaticity equation at the zeroth order in derivatives.
Ignoring all the derivatives, eq. (3.17) simply becomes: −KδBϕ + O(∂) = ∆ ≥ 0. The
placeholderK, at this order, is just a function of all the ideal order scalars T , µ, µs = −1

2ξ
µξµ,

and δBϕ, such that −KδBϕ is a positive semi-definite quadratic form. It follows that K
must take the form

K = −αδBϕ+O(∂), ∆ = α(δBϕ)2 +O(∂), (3.19)

for some transport coefficient α ≥ 0. Using the ϕ equation of motion K ≈ 0, it follows that

K = −αδBϕ = −α
T

(uµξµ − µ) ≈ O(∂) =⇒ uµξµ ≈ µ+O(∂). (3.20)

This is known as the Josephson equation. Due to this relation, uµξµ is not independent
on-shell and hence is not used as an independent scalar while writing down the superfluid
constitutive relations.

3.2.2 Ideal superfluids

Similar to the ordinary ideal fluids, Class HS is the only non-empty class for ideal superfluids
as well. However, the hydrostatic scalar density N characterising Class HS is given by a
three-variable function P (T, µ, µs) this time, where T is the temperature, µ is the chemical
potential, while µs = −1

2ξ
µξµ is the superfluid potential. We have omitted the only other

possible ideal order scalar uµξµ in the functional dependence, because it is not independent
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on-shell. The δB variations of T and µ are given in eq. (3.1), while for µs we find

δBµs =
1

2
ξµξνδBgµν − ξµδBAµ − ξµDµδBϕ. (3.21)

We can use it to compute the divergence

Dµ (βµP ) =
1√
−g
δB
(√
−gP

)
=

1

2
PgµνδBgµν +

∂P

∂T
δBT +

∂P

∂µ
δBµ+

∂P

∂µs
δBµs,

=
(

(E + P )uµuν + Pgµν +Rsξ
µξν
)1

2
δBgµν + (Quµ −Rsξµ) δBAµ

+ Dµ (Rsξ
µ) δBϕ−Dµ (Rsξ

µδBϕ) , (3.22)

where we have defined

S =
∂P

∂T
, Q =

∂P

∂µ
, Rs =

∂P

∂µs
, E = T

∂P

∂T
+ µ

∂P

∂µ
− P. (3.23)

Comparing eq. (3.22) with eq. (2.74), we can read out the ideal superfluid constitutive
relations, free energy, and entropy currents

Tµν = (E + P )uµuν + Pgµν +Rsξ
µξν +O(∂),

Jµ = Quµ −Rsξµ +O(∂),

K = −αδBϕ+ Dµ(Rsξ
µ) +O(∂),

Nµ =
1

T
Puµ + δBϕRsξ

µ +O(∂),

JµS = Nµ − 1

T
(Tµνuν + µJµ) = Suµ +O(∂). (3.24)

Like before, P can be identified as the isotropic pressure, while E, Q, and S can be identified
as the energy, charge, and entropy densities of the superfluid respectively. The quantity Rs
on the other hand is known as the superfluid density. They follow a set of thermodynamic
relations

Gibbs-Duhem equation: dP = SdT +Qdµ+Rsdµs,

Euler scaling relation: E + P = ST +Qµ,

First law of thermodynamics: dE = TdS + µdQ−Rsdµs, (3.25)

which are directly implied by eq. (3.23). We see that an ideal superfluid is also completely
characterised by its equation of state P = P (T, µ, µs). Note that we have included some
one-derivative terms in K and Nµ which can be ignored when working at ideal order, but
are required for the internal consistency with the second law.
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Let us work out the first order equations of motion. By a direct computation we get

1√
−g
δB
(√
−g T (E + P )uµ

)
+QTδBAµ + ξνDµ(Rsξ

µ) +O(∂2) = 0,

1√
−g
δB
(√
−g QT

)
−Dµ(Rsξ

µ) +O(∂2) = 0,

αδBϕ−Dµ(Rsξ
µ) +O(∂) = 0. (3.26)

They provide dynamics to βµ, Λβ, and ϕ respectively. In a hydrostatic configuration,
all these equations boil down to a scalar equation Dµ(Rsξ

µ) = 0, which determines the
equilibrium profile of the phase field ϕ. Substituting the respective expressions for δB
variations, these equations imply

Dµ (Suµ) = O(∂2),

Dµ (Quµ) = Dµ(Rsξ
µ) +O(∂2),

(E + P )ζµ
(

1

T
∂µT + uρDρuµ

)
+Qζµ

(
T∂µ

µ

T
+ uρFρµ

)
+ ζ2Dν(Rsξ

ν) = O(∂2),

(E + P )Pµνζ

(
1

T
∂νT + uρDρuν

)
+QPµνζ

(
T∂ν

µ

T
+ uρFρν

)
= O(∂2),

uµξµ = µ+
T

α
Dµ(Rsξ

µ) +O(∂), (3.27)

where we have defined Pµν = gµν + uµuν , ζµ = Pµνξν , and P
µν
ζ = gµν + uµuν − 1

ζ2 ζ
µζν .

Note that ζ2 = µ2 − 2µs +O(∂). The first equation is the ideal order entropy conservation.
The second equation serves as the charge continuity equation, balancing the flow of charges
along uµ and ξµ. The third and forth equations are components of the relativistic Navier-
Stokes equation along and transverse to ζµ. Finally, the fifth equation is an improvement of
the Josephson equation. Note, however, that this equation can admit further one derivative
corrections due to the first order constitutive relations discussed in the next subsection; the
correction mentioned here is only how the ideal superfluid transport affects the Josephson
equation.

3.2.3 One-derivative corrections

We now improve our superfluid constitutive relations with one-derivative corrections. In
table 3.3 we have listed various one-derivative tensor structures that we require in our
discussion below.

Let us start with the hydrostatic sector. Class HS, unlike ordinary fluids, is non-empty
for superfluids. Ignoring the total derivative terms, the corresponding hydrostatic scalar
density N at the first order in derivatives is now given as

N = P + f1 S1 + f2 S2 + g1 S̃e,1 + g2 S̃e,2. (3.28)

We have chosen not to include the first order hydrostatic scalars: Dµξ
µ and ξµ∂µµs, as the

former is a total derivative and the latter can be exchanged for Dµ(Rsξ
µ), which is not
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Non-hydrostatic — on-shell independent

S1
T
2 P

µν
ζ δBgµν PµνDµuν

S2
T
2 ζ

µζνδBgµν ζµζνDµuν
S3 TζµδBAµ ζµ

(
T∂µ

µ
T − Eµ

)
S4 TδBϕ uµξµ − µ = T

αDµ(Rsξ
µ) +O(∂)

V µ
1 TPµνζ ζρδBgνρ 2Pµνζ ζρD(νuρ)

V µ
2 TPµνζ δBAµ Pµνζ

(
T∂ν

µ
T + Eν

)
σµνζ

T
2 P

ρ〈µ
ζ P

ν〉σ
ζ δBgρσ Pµρζ P νσζ

(
D(ρuσ) − 1

2P
ζ
ρσS1

)
Ṽ µ

1 εµνρσuνζρV1,σ

Ṽ µ
2 εµνρσuνζρV2,σ

σ̃µνζ P
λ(µ
ζ εν)ρστuρζσσ

ζ
τλ

Non-hydrostatic — on-shell dependent

S5
T
2 u

µuνδBgµν
1
T u

µ∂µT
S6 TuµδBAµ Tuµ∂µ

µ
T

S7 TζµuνδBgµν ζν
(

1
T ∂νT + aν

)
V µ

3 TPµνζ uρδBgνρ Pµνζ
(

1
T ∂νT + aν

)
Ṽ µ

3 εµνρσuνζρV3,σ

Hydrostatic

Se,1
1
T ζ

µ∂µT
Se,2 Tζµ∂µ

µ
T

V µ
e,1

1
T P

µν
ζ ∂νT

V µ
e,2 TPµνζ ∂νν

S̃e,1 Tεµνρσζµuν∂ρuσ
S̃e,2

1
2Tε

µνρσζµuνFρσ

Ṽ µ
e,1 TPζ

µ
τ ετνρσuν∂ρuσ

Ṽ µ
e,2

1
2TPζ

µ
τ ετνρσuνFρσ

Ṽ µ
e,3 TPζ

µ
τ ετνρσξν∂ρuσ

Ṽ µ
e,4

1
2TPζ

µ
τ ετνρσξνFρσ

...
...

Table 3.3: Independent first order data for (3 + 1)-dimensional relativistic superfluids. We have
not enlisted, neither would we need, all the independent data surviving at equilibrium.
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N Tµν Jµ

f1 Se,1

(
αE,1u

µuν + αRs,1(ζµζν − 2µu(µζν)) + f1P
µν
ζ

)
Se,1

−2f1ξ
(µV

ν)
e,1 + 2f1u

(µζν)S5 −uµuν 1
T Dσ (Tf1ζ

σ)

(αQ,1u
µ − αRs,1ζµ)Se,1
+f1V

µ
e,1

f2 Se,2

(
αE,2u

µuν + αRs,2(ζµζν − 2µu(µζν)) + f2P
µν
ζ

)
Se,2

−2f2ξ
(µV

ν)
e,2 + 2u(µζν)f2S6

(αQ,2u
µ − αRs,2ζµ)Se,2
+f2V

µ
e,2

−uµ 1
T Dν(Tf2ζ

ν)

g1 S̃e,1

(
α̃E,1u

µuν + α̃Rs,1(ζµζν − 2µu(µζν))
)
S̃e,1

+
(
g1u

µuν + g1

ζ2 ζ
µζν
)
S̃e,1

−2g1u
(µṼ

ν)
e,3 − 2u(µεν)ρστDσ (Tg1uτζρ)

(α̃Q,1u
µ − α̃Rs,1ζµ) S̃e,1
+g1Ṽ

µ
e,1

g2 S̃e,2

(
α̃E,2u

µuν + α̃Rs,2(ζµζν − 2µu(µζν))
)
S̃e,2

+ g1

ζ2 ζ
µζν S̃e,1 − 2u(µg2Ṽ

ν)
e,4

(α̃Q,2u
µ − α̃Rs,2ζµ) S̃e,2
+g2Ṽ

µ
e,2

+εµνρσDν(Tg2ζρuσ)

N K Nµ

f1 Se,1 Dµ

(
ζµαRs,1Se,1 − f1V

µ
e,1

)
1
T f1 (uµSe,1 − ζµS5)

f2 Se,2 Dµ

(
ζµαRs,2Se,1 − f1V

µ
e,2

)
1
T f2 (uµSe,2 − ζµS6)

g1 S̃e,1 Dµ

(
ζµα̃Rs,1S̃e,1 − g1Ṽ

µ
e,1

)
g1

(
1
T u

µS̃e,1 + Ṽ µ
3

)
g2 S̃e,2 Dµ

(
ζµα̃Rs,2S̃e,2 − g2Ṽ

µ
e,2

)
g2

(
1
T u

µS̃e,2 + Ṽ µ
2

)
Table 3.4: One-derivative Class HS constitutive relations for a (3 + 1)-dimensional relativistic
superfluid.

hydrostatic due to the Josephson equation. For clarity, let us define the derivatives of the
transport coefficients appearing above as

dfi =
αE,i
T

dT + TαQ,id
µ

T
− 1

2

(
αRs,i +

fi
ζ2

)
dζ2,

dgi =
α̃E,i
T

dT + T α̃Q,id
µ

T
− 1

2

(
α̃Rs,i +

gi
ζ2

)
dζ2, (3.29)

along with
αE,i + fi = αS,iT + αQ,iµ, α̃E,i + gi = α̃S,iT + α̃Q,iµ. (3.30)

Comparing the variation of N to eq. (2.74) and using these definitions, we can read
out the Class HS constitutive relations. The algebra is quite involved; see the appendix
of [4] for detailed steps. For the benefit of the reader, we have summarised the results
in table 3.4. Moving on, introduction of the phase field ϕ does not alter the (thermal)
anomaly polynomial in any way, therefore Class A and Class HV results can be directly
imported from table 3.1. The only worthwhile comment is that we do not need to consider
C0 and C2 terms in Class HV independently. Due to the presence of a “gauge fixed” version
of the gauge field ξµ = Aµ + ∂µϕ, these terms can be absorbed into Class HS by shifting
g1 → g1− µC0− TC2 and g2 → g2−C0. However, the C1 term in Class HV and C term in
Class A remain independent.
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D0 Tµν Jµ K

−Tβ11

(
Pµνζ P ρσζ · ·
· · ·· · ·

)
−β11P

µν
ζ S1

−Tβ(12)

(
Pµνζ ζρζσ + ζµζνP ρσζ · ·

· · ·· · ·

)
−β(12)

(
Pµνζ S2 + ζµζνS1

)
−Tβ(13)

(
· ζρPµνζ ·

ζµP ρσζ · ·
· · ·

)
−β(13)P

µν
ζ S3 −β(13)ζ

µS1

−Tβ(14)

(
· · Pµνζ· · ·

P ρσζ · ·

)
−β(14)P

µν
ζ S4 −β(14)S1

−Tβ22

(
ζµζνζρζσ · ·· · ·· · ·

)
−β22ζ

µζνS2

−Tβ(23)

( · ζρζµζν ·
ζµζρζσ · ·· · ·

)
−β(23)ζ

µζνS3 −β(23)ζ
µS2

−Tβ(24)

( · · ζµζν· · ·
ζρζσ · ·

)
−β(24)ζ

µζνS4 −β(24)S2

−Tβ33

(· · ·
· ζµζρ ·· · ·

)
−β33ζ

µS3

−Tβ(34)

(· · ·
· · ζµ

· ζρ ·

)
−β(34)ζ

µS4 −β(34)S3

−Tβ44

(· · ·· · ·
· · 1

)
−β44S4

−4Tκ11

(
ζ(µP

ν)(ρ
ζ ζσ) · ·
· · ·· · ·

)
−2κ11ζ

(µV
ν)

1

−2Tκ(12)

 · ζ(µP
ν)ρ
ζ ·

ζ(ρP
σ)µ
ζ · ·
· · ·

 −2κ(12)ζ
(µV

ν)
2 −κ(12)V

µ
1

−Tκ22

(· · ·
· Pµρζ ·
· · ·

)
−κ22V

µ
2

2T κ̃[12]

(
· ζ(µε̃ν)ρ ·

−ε̃µ(ρζσ) · ·· · ·

)
−2κ̃[12]ζ

(µṼ
ν)

2 κ̃[12]Ṽ
µ

1

−Tη
(
P
µ〈ρ
ζ P

σ〉ν
ζ · ·
· · ·· · ·

)
−ησµνζ

Table 3.5: One-derivative Class D constitutive relations for a (3 + 1)-dimensional superfluid. We
have defined ε̃µν = εµνρσuρζσ. Note that we have included the dissipative transport coefficient
β44 = α/T in K for completeness.

In the non-hydrostatic sector, we need to write the most generic parametrisation of
C0 which decomposes into a symmetric part D0 and an antisymmetric part D0. They
correspond to Class D and Class D constitutive relations respectively. There are a total
of 11 transport coefficients in Class D: [β[ij]]4×4, [κ[ij]]2×2, [κ̃(ij)]2×2, and η̃. On the other
hand, there are 15 transport coefficients in Class D: [β(ij)]4×4, [κ(ij)]2×2, [κ̃[ij]]2×2, and
η, including β44 = α/T discussed in section 3.2.1. These results have been presented in
tables 3.5 and 3.6. The quadratic form ∆ is given by

T∆ =
4∑

i,j=1

Siβ(ij)Sj +

 2∑
i,j=1

V µ
i κ(ij)Vi,µ +

2∑
i=1

V µ
i κ̃[ij]Ṽj,µ

+ ησµνσµν . (3.31)

Note that
(εµνρσuρζσ)(ετναβu

αζβ) = ζ2Pζ
µ
τ . (3.32)
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D0 Tµν Jµ K

−Tβ[12]

(
P̃µνζρζσ − ζµζν P̃ ρσ · ·· · ·· · ·

)
−β[12]

(
P̃µνS2 − ζµζνS1

)
−Tβ[13]

(
· ζρPµνζ ·

−ζµP ρσζ · ·
· · ·

)
−β[13]P

µν
ζ S3 β[13]ζ

µS1

−Tβ[14]

(
· · Pµνζ· · ·

−P ρσζ · ·

)
−β[14]P

µν
ζ S4 β[14]S1

−Tβ[23]

( · ζρζµζν ·
−ζµζρζσ · ·· · ·

)
−β[23]ζ

µζνS3 β[23]ζ
µS2

−Tβ[24]

( · · ζµζν· · ·
−ζρζσ · ·

)
−β[24]ζ

µζνS4 β[24]S2

−Tβ[34]

(· · ·
· · ζµ

· −ζρ ·

)
−β[34]ζ

µS4 β[34]S3

−2Tκ[12]

 · ζ(µP
ν)ρ
ζ ·

−ζ(ρP
σ)µ
ζ · ·
· · ·

 −2κ[12]ζ
(µV

ν)
2 κ[12]V

µ
1

4T κ̃11

(
ζ(µε̃ν)(ρζσ) · ·· · ·· · ·

)
−2κ̃11ζ

(µṼ
ν)

1

2T κ̃(12)

(
· ζ(µε̃ν)ρ ·

ε̃µ(ρζσ) · ·· · ·

)
−2κ̃(12)ζ

(µṼ
ν)

2 −κ̃(12)Ṽ
µ

1

T κ̃22

(· · ·
· ε̃µρ ·· · ·

)
−κ̃22Ṽ

µ
2

T η̃

(
P
λ(µ
ζ ε̃ν)(ρP

σ)
ζ λ · ·

· · ·· · ·

)
η̃σ̃µνζ

Table 3.6: One-derivative Class D constitutive relations for a (3 + 1)-dimensional superfluid. We
have defined ε̃µν = εµνρσuρζσ.

We can use this to define a new basis of vector structures(
V ′µ1

V ′µ2

)
=

(
V µ

1

V µ
2

)
+

(
0 κ̃

(a)
12 /κ11

0 0

)(
Ṽ µ

1

Ṽ µ
2

)
,(

κ′11 κ′(12)

κ′(12) κ′22

)
=

(
κ11 κ(12)

κ(12) κ22 − ζ2 κ̃[12]

κ11

)
, (3.33)

such that
2∑

i,j=1

V ′µi κ′(ij)V
′
i,µ =

2∑
i,j=1

V µ
i κ(ij)Vi,µ +

2∑
i=1

V µ
i κ̃[ij]Ṽj,µ. (3.34)

In this basis, ∆ takes the form

T∆ =

4∑
i,j=1

Siβ(ij)Sj +

2∑
i,j=1

V ′µi κ′(ij)V
′
i,µ + ησµνσµν . (3.35)

Provided that T > 0, the condition ∆ ≥ 0 implies that η ≥ 0 and the matrices [β(ij)]4×4,
[κ′(ij)]2×2 have all non-negative eigenvalues. This gives 7 inequalities among the 15 Class D
transport coefficients, while the remaining 8 are completely arbitrary.

In summary, the most generic constitutive relations of a (3 + 1)-dimensional relativistic
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superfluid up to one-derivative order are given as: the energy-momentum tensor

Tµν = (E + P )uµuν + Pgµν +Rsξ
µξν

+ uµuν

[
2∑
i=1

αE,iSe,i +
2∑
i=1

α̃E,iS̃e,i −
1

T
Dσ(Tf1ζ

σ) + εαρστuαDρ (Tg1uσζτ )

]

+ 2u(µζν)

[
2∑
i=1

fiS4+i − µ

(
2∑
i=1

αRs,iSe,i +
2∑
i=1

α̃Rs,iS̃e,i

)
+

1

2µ̂s
εαρστζαDρ (Tg1uσζτ )

]

+ ζµζν

[
2∑
i=1

αRs,iSe,i +
2∑
i=1

(
α̃Rs,i −

gi
2µ̂s

)
S̃e,i −

4∑
i=1

β2iSi

]

+ 2u(µ

[
µ

2∑
i=1

fiV
ν)
e,i −

2∑
i=1

giṼ
ν)
e,2+i − Pζ

ν)
αε
αρστDρ (Tg1uσζτ ) + 2C1T

3ων)

+ µ2C
(

3Bν) + 2µων)
)]
− 2ζ(µ

[
2∑
i=1

fiV
ν)
e,i +

2∑
i=1

κ1iV
ν)
i +

2∑
i=1

κ̃1iṼ
ν)
i

]

+ Pµνζ

[
2∑
i=1

fiSe,i −
4∑
i=1

β1iSi

]
− ησµνζ − η̃σ̃

µν
ζ +O(∂2), (3.36)

and the charge current

Jµ = Quµ −Rsξµ

+ uµ

[
2∑
i=1

αQ,iSe,i +

2∑
i=1

α̃Q,iS̃e,i −
1

T
Dν(Tf2ζ

ν) + εανρσuαDν(Tg2uρζσ)

]

− ζµ
[

2∑
i=1

αRs,iSe,i +
2∑
i=1

α̃Rs,iS̃e,i +
4∑
i=1

β3iSi −
1

2µ̂s
εανρσζαDν(Tg2uρζσ)

]

+
2∑
i=1

fiV
µ
e,i +

2∑
i=1

giṼ
µ
e,i −

2∑
i=1

κ2iV
µ
i −

2∑
i=1

κ̃2iṼ
µ
i − Pζ

µ
αε
ανρσDν(Tg2uρζσ)

+ 3µC(4) (2Bµ + µωµ) +O(∂2). (3.37)

The corrected Josephson equation is given by

uµξµ = µ+
1

β44
Dµ (Rsξ

µ)−
3∑
i=1

β4i

β44
Si

+
1

β44
Dµ

(
ζµ

2∑
i=1

αRs,iSe,i + ζµ
2∑
i=1

α̃Rs,iS̃e,i −
2∑
i=1

fiV
µ
e,i −

2∑
i=1

giṼ
µ
e,i

)
+O(∂2), (3.38)

which can be used to substitute for S4 = uµξµ−µ in the constitutive relations above. These
constitutive relations satisfy the second law of thermodynamics with the free energy current

Nµ =
1

T
Puµ +

1

T

2∑
i=1

fi (uµSe,i − ζµS4+i) +
1

T

2∑
i=1

gi

(
uµS̃e,i + Ṽ µ

2+i

)
+

1

T
3µ2C Bµ +

1

T

(
µ3C + 4T 3C1

)
ωµ. (3.39)
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We can also work out the associated entropy current explicitly

JµS = Suµ + g1
1

T
εµνρσuνζρ∂σT + g2Tε

µνρσuνξρ∂σ
µ

T
+ 3C1T

2ωµ

+ uµ

[
2∑
i=1

αS,iSe,i +
2∑
i=1

α̃S,iS̃e,i −
1

T 2
Dσ(Tf1ζ

σ) +
µ

T 2
Dν(Tf2ζ

ν)

+
1

T
εανρσuαDν (Tg1uρζσ)− µ

T
εαρστuαDν (Tg2uρζσ)

]

+
1

T
ζµ

[
4∑
i=1

µβ3iSi +
1

2µ̂s
εαρστζαDρ (Tg1uσζτ )− µ

2µ̂s
ζαε

ανρσDν(Tg2uρζσ)

]

+
µ

T

2∑
i=1

κ2iV
µ
i +

µ

T

2∑
i=1

κ̃2iṼ
µ
i

− 1

T
Pζ

µ
αε
ανρσDν (Tg1uρζσ) +

µ

T
Pζ

µ
αε
ανρσDν(Tg2uρζσ). (3.40)

Including the ideal order pressure P , the superfluid constitutive relations up to the first
derivative order are parametrised by 2 constants and 31 independent transport coefficients,
7 of which are restricted to be non-negative.

Similar to the ordinary fluids, we can also convert the superfluid constitutive relations
to any desired hydrodynamic frame, for example the Landau frame. However, given the
complexity of the constitutive relations as they are, we do not perform this exercise here.

3.2.4 Breaking of non-Abelian internal symmetries

In our discussion above, we focused on Abelian superfluids. However, in recent years
(see e.g. [97]), non-Abelian superfluids have also started to attract some attention in
the literature, in relation to the p-wave superfluidity observed in liquid 3He [98, 99]. In
this section, we explore how our Abelian results might be generalised to accommodate
non-Abelian superfluids. The discussion presented here is directly from our work in [1].

Let us start with a quick recap of the non-Abelian spontaneous symmetry breaking.
More details can be found in section 19 of [100]. Consider a microscopic theory which is
invariant under spacetime Poincaré transformations and the global action of a semisimple
Lie group G (with Lie algebra g). Let ψ be a field in the theory transforming under some
unitary representation D(G) of G, i.e. under a g ∈ G transformation ψ → D(g)ψ. The field
ψ is said to spontaneously break the symmetry from G to its Lie subgroup H ⊂ G (with
Lie subalgebra h ⊂ g), if its ground state expectation value 〈ψ〉 is only invariant under H,
i.e.

D(h) 〈ψ〉 = 〈ψ〉 if and only if h ∈ H. (3.41)

D(g) 〈ψ〉 with g /∈ H represents the “other” ground states the system could have sponta-
neously chosen from. Around 〈ψ〉, the field ψ can be expressed as a group transformation
of a reference field ψ̃, i.e. ψ = D(γ)ψ̃, defined by

ψ̃†D(X) 〈ψ〉 = ψ̃† 〈ψ〉 , ∀ X ∈ g. (3.42)
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Roughly speaking, γ corresponds to the fluctuations of ψ which take us to the nearby
ground states with no energy cost, while ψ̃ contains the genuine excitations of ψ.

Note that eq. (3.42) is invariant under ψ̃ → D(h)ψ̃ with h ∈ H, and hence determines
γ only up to a coset equivalence γ ∼ γh. Let us pick a representative from each coset
γ = γ(ϕ) parametrised by a field ϕ living in the Lie algebra quotient g/h. The field ϕ can be
identified as the Goldstone modes of the broken symmetry. Under a g ∈ G transformation,
these modes transform according to

γ(ϕ)→ gγ(ϕ)h(ϕ, g)−1, ψ̃ → D(h(ϕ, g))ψ̃, (3.43)

for some h(ϕ, g) ∈ H, such that ψ → D(g)ψ and eq. (3.42) remains invariant. From these
transformation properties, it is clear that the theory cannot contain a mass term for ϕ,
rendering it gapless.

Let us make contact with the Abelian case, where G = U(1) is broken down to H = {1}.
The Goldstone mode ϕ is a scalar with γ(ϕ) = e−iϕ. Under a g = eiΛ ∈ U(1) transformation,
it transforms according to e−iϕ → eiΛe−iϕ implying ϕ→ ϕ− Λ. This is what we used in
our construction of Abelian superfluids.

Once we have our Goldstone modes ready, we need to define their covariant derivative,
so as to define the associated superfluid velocity. However, there is a hitch; ϕ lives in
the quotient g/h and it is not very straightforward to define a covariant derivative on
a quotient space. One such notion comes from the Maurer–Cartan form in differential
geometry, however, we can use a much simpler setup for our purposes. Let us introduce
a set of generators {tA} = {ti, ta} of G such that the subset {ti} generates H. We
normalise these generators by choosing tA · tB = 2Tr [tAtB] = ηAB , where ηAB is a diagonal
matrix with entries ±1. We define the action of an element g ∈ G on these generators as
tA → Adg(tA) = (Adg)

B
AtB = gtAg

−1. We can now use these to define a set of projectors

P(tA) = PBAtB =
(
(Adγ−1)Bi(Adγ)iA

)
tB, P(tA) = P

B
AtB =

(
δBA − PBA

)
tB. (3.44)

It can be checked that they covariantly project out the components of X ∈ g along and
against the residual symmetry respectively. Using these, we can package the non-covariant
information in the derivatives of the Goldstone modes ϕ into a covariant object

ξµ = P
(
i∂µγ(ϕ)γ(ϕ)−1 +Aµ

)
∈ P(g), (3.45)

identified as the superfluid velocity. As an added benefit of the projectors we defined, we
can revert back to the ordinary fluids at any point by setting P = 0, P = idg (identity in g).

From this point forward, the analysis is exactly parallel to our Abelian superfluid
discussion. We introduce a set of equations of motion for ϕ

K ≈ 0 ∈ P(g). (3.46)
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The adiabaticity equation for this system is given simply by

DµN
µ −N⊥H =

1

2
TµνδBgµν + Jµ · δBAµ +K · δBϕ+ ∆, ∆ ≥ 0. (3.47)

Here we have defined δBϕ = βµξµ − P(µ)/T . Closely following our Abelian superfluid
calculation, at the ideal order we find the set of constitutive relations, free energy, and
entropy currents for a non-Abelian superfluid to be

Tµν = (E + P )uµuν + Pgµν + ξµ ·Rs · ξν +O(∂),

Jµ = Quµ −Rs · ξµ +O(∂),

K = −α · δBϕ+ Dµ(Rsξ
µ) + [ξµ, Rs · ξµ] +O(∂),

Nµ =
1

T
Puµ + δBϕ ·Rs · ξµ +O(∂),

JµS = Nµ − 1

T
(Tµνuν + µ · Jµ) = Suµ +O(∂). (3.48)

Here α ∈ P(g) × P(g) is a positive semi-definite matrix. On the other hand, Rs ∈
P(g)×sym P(g) is a symmetric matrix, which enters the thermodynamic relations

Gibbs-Duhem equation: dP = SdT +Q · dµ+RABs dµsAB,

Euler scaling relation: E + P = ST +Q · µ,

First law of thermodynamics: dE = TdS + µ · dQ−RABs dµsAB, (3.49)

where µsAB = −1
2ξ
µ
Aξ

ν
Bgµν . By setting K ≈ 0, we can compute the non-Abelian Josephson

equation
uµξµ = P(µ) + Tα′ ·

(
Dµ(Rsξ

µ) + [ξµ, Rs · ξµ]
)

+O(∂), (3.50)

where α′ · α = P. Note, again, that this equation is only accurate at the zero derivative
order. At the first derivative order, it can still admit further corrections.

We wrap up our discussion of non-Abelian superfluids here. We could explicitly write
down the one-derivative corrections, but nothing out of the ordinary happens compared to
the Abelian case.

3.3 | Relativistic fluid surfaces

For the last example of this chapter, let us consider the spontaneous breaking of a spacetime
symmetry rather than an internal one to generate a gapless mode. In the two hydrodynamic
systems that we discussed above, we assumed the fluid to be space-filling, i.e. we assumed
that it extends infinitely in every direction. This is a reasonable assumption when describing
physics deep in the bulk of a fluid, but starts to break down as we approach an interface or
a boundary. The very existence of such a “surface” breaks the translational symmetry of the
theory and considerably modifies the hydrodynamic spectrum. Let us call the Goldstone
mode of this broken translational generator to be f(x). It is just a scalar field with the
transformation property δXf = χµ∂µf . Just like the superfluids, we take f to be O(∂−1)
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in the derivative expansion.

A priori, including f in our description breaks the translational symmetry at every
spacetime point. This has been utilised elsewhere in the literature to model lattices and study
phenomena like momentum relaxation; see e.g. [101]. The corresponding hydrodynamic
constitutive relations can be derived straightforwardly following our superfluid analysis,
by substituting ∂µf for ξµ. Here, however, we are interested in somehow localising the
symmetry breaking into a thin spatial region, so as to form a surface. With this in mind,
let us perform a coordinate transformation to bring the surface of interest to f = 0, and
introduce a distribution functional θ(f) centred around it. We assume that θ(f) completely
characterises the f dependence in the constitutive relations. We further assume that θ′(f)

is positive and is only supported within a narrow region around f = 0. The width of
this region characterises the thickness of the surface. In the limit that the surface is
infinitesimally thin, θ(f) approaches the Heaviside step function, while θ′(f) approaches
the Dirac delta function. We call f > 0 to be the “inside” of the fluid while f < 0 to be its
“outside”.

We take θ(f) to be O(∂0) in the hydrodynamic derivative expansion. Taking its
spacetime derivative we find that ∂µθ(f) = θ′(f)∂µf , which we can formally decompose
into1

zµ = − ∂µθ(f)√
gµν∂µθ(f)∂νθ(f)

= − ∂µf√
gµν∂µf∂νf

,

δ̃(f) = −zµ∂µθ(f) =
√
gµν∂µf∂νf θ

′(f). (3.51)

Due to f being O(∂−1), the inward pointing normal vector to the surface zµ is clearly O(∂0),
while the distribution δ̃(f) is O(∂1). Similarly, one can check that all the higher derivative
tensor structures following from θ(f) can be represented in terms of the derivatives of zµ
along with a series of distributions

δ̃(n)(f) = (−)n+1zµ1 . . . zµn+1Dµ1 . . .Dµn+1θ(f), (3.52)

with δ̃(0)(f) = δ̃(f). We should note that ∂µθ(f) = θ′(f)∂µf is only supported near the
surface, so even though the value of zµ does not depend on θ(f), it is only well defined
when used in conjunction with δ̃(n)(f). Another thing to note is that, as long as the
surface remains thin enough, we can expand the products like δ̃(n)(f)δ̃(m)(f) into an infinite
series

∑
r cr δ̃

(r)(f) for some coefficients cr, so we do not need to consider such products
independently.

Having set the stage, let us write down the adiabaticity equation for this setup

DµN
µ −N⊥H =

1

2
TµνδBgµν + JµδBAµ +

Y δBf√
gνρ∂νf∂ρf

+ ∆, ∆ ≥ 0. (3.53)

1In the original references [6, 59], the symbol nµ has been used for the normal vector to the surface. We
replace it with zµ to avoid confusion with the Newton-Cartan clock form.
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Here we have chosen the equation of motion for f to be Y/
√
gµν∂µf∂νf ≈ 0, and defined

δBf√
gνρ∂νf∂ρf

=
βµ∂µf√
gνρ∂νf∂ρf

= − 1

T
uµzµ. (3.54)

Unlike for superfluids, the adiabaticity equation (3.53) does not have any solution at zero
derivatives. Sure, we could write down a term δBf in Y , but we agreed that all the
dependence on zµ in the constitutive relations must be accompanied by δ̃(n)(f). Moving on
to the ideal order, the Class HS constitutive relations are characterised by a free-energy
density

N = θ(f)Pin(T, µ) + θ̄(f)Pout(T, µ), (3.55)

where θ̄(f) = 1 − θ(f). Here Pin and Pout are the thermodynamic pressures inside and
outside the surface respectively. The only other non-trivial class at ideal order is Class D
with Y ∼ −αθ′(f)δBf for some non-negative coefficient α. Together, they imply a set of
constitutive relations

Tµν = θ(f)Tµνin + θ̄(f)Tµνout +O(∂),

Jµ = θ(f)Jµin + θ̄(f)Jµout +O(∂),

Y = δ̃(f)
(α
T
uµzµ + (Pin − Pout)

)
+O(∂). (3.56)

Here Tµνin/out and J
µ
in/out are the energy-momentum tensors and charge currents of the fluid

inside/outside the surface respectively, worked out previously in eq. (3.4). We see that
there is no dedicated contribution from the surface at the ideal order. On the other hand,
we get our first version of the f equation of motion

uµzµ ≈ −
T

α
∆P +O(∂), where ∆P = Pin − Pout. (3.57)

It materialises the natural expectation that in time the surface moves towards the lower
pressure. Since ∆P characterises the “change” in pressure across the surface, we take it to
be O(∂1) in the derivative expansion. As a corollary of the f equation of motion therefore,
uµzµ is not independent on-shell, but is determined in terms of the other one-derivative
order scalars in the theory.

Things become more interesting when we include the one-derivative corrections, i.e. we
find the constitutive relations that solve eq. (3.53) at two derivative order. In Class HS, the
free-energy density gets improved to admit a surface tension γ(T, µ),

N = θ(f)Pin(T, µ) + θ̄(f)Pout(T, µ)− δ̃(f)γ(T, µ). (3.58)

In addition, following our discussion in section 3.1.2, we also have two copies of Class D
constitutive relations η, ζ, and σ, one on either sides of the surface, and just a single copy
of Class A and HV constants.2 All the other classes are empty. This leads to a set of

2The (thermal) anomaly polynomial is characterised by a set of constants, which are not allowed to vary
over the spacetime manifold. Therefore it is not clear if we can take these constants to be different inside
and outside the surface.
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constitutive relations

Tµν = θ(f)Tµνin + θ̄(f)Tµνout + δ̃(f)
(

(Esur − γ)uµuν − γ (gµν − zµzν)
)

+O(∂2),

Jµ = θ(f)Jµin + θ̄(f)Jµout + δ̃(f)Qsuru
µ +O(∂2),

Y = δ̃(f)
(α
T
uµzµ + (Pin − Pout)−Dµ (γzµ)

)
+O(∂2), (3.59)

where we have defined

−dγ = SsurdT +Qsurdµ, Esur − γ = SsurT +Qsurµ, (3.60)

while Tµνin/out and J
µ
in/out are defined according to eq. (3.11). We see that this time we do get

some dedicated surface contributions to the energy-momentum tensor and charge current.
More interestingly, the f equation of motion also admits a correction to take the form

uµzµ ≈ −
T

α
(∆P −Dµ (γzµ)) +O(∂). (3.61)

With this, we see that the gradient of pressure still contributes to the time-evolution of
the surface, but it can partially be balanced by a surface tension term. To express this
equation in a more familiar form, consider that the fluid in question has a constant surface
tension and focus on a static surface configuration with uµzµ ∝ uµ∂µf = 0. In this regime,
the above equation reduces to

∆P ≈ γDµz
µ +O(∂). (3.62)

This can immediately be recognised as the Young-Laplace equation. So we see that
eq. (3.61) is just the Young-Laplace equation generalised to the out-of-equilibrium fluid
configurations. Higher derivative corrections to the hydrodynamic constitutive relations
and the Young-Laplace equation can also be worked out in a similar manner.

This point of view to describe the surface dynamics of a fluid in terms of a scalar “shape”
field f was introduced in [6, 59]. The results presented in [6] even combine the internal and
spacetime symmetry breaking and present surface dynamics in a superfluid. Apart from
the obvious generalisations, some new hybrid features arise on the surface of a superfluid
owing to the emergence of the new ideal order structures zµξµ and εµνρσuνzρξσ. We do
not concern ourselves with these details here, instead, we just note that they can still be
understood within the off-shell framework of hydrodynamics we have presented in this work.
For more details, we refer the reader to the discussion in [6].

These are all the examples of relativistic hydrodynamics that we consider in this thesis.
We comment on some other possible applications in chapter 6. In the next chapter, we
revisit the rules of hydrodynamics when the underlying spacetime symmetry group is
taken to be Galilean rather than Poincaré, which provides a framework for non-relativistic
hydrodynamics.
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4 | Galilean hydrodynamics

For most practical purposes, the world around us can be regarded as non-relativistic. So it
is natural to formulate a non-relativistic version of hydrodynamics, which is more suited
to our day-to-day applications ranging from hydraulics to biophysics. Non-relativistic
physics emerges as an effective description of the more fundamental relativistic description
of our universe, in a limit where the speed of light c is very large compared to the other
characteristic speeds under consideration. For a typical relativistic system, however, taking
such a limit (sending c → ∞) turns out to be a notoriously non-trivial task to perform.
Except in a few special cases, the non-relativistic limit is either not well defined or is
not unique,1 which forces us to resort to other methods. One such method is to study
the non-relativistic theories independent of their relativistic parents, using as our guiding
principle the Galilean symmetry emergent in the non-relativistic limit. This has, of course,
been the conventional view of “non-relativistic” physics for centuries, long before Einstein
came up with his theory of relativity in 1905 [103]. In this chapter, we take this approach
and set up Galilean hydrodynamics starting from the Galilean symmetry algebra.

To approach Galilean symmetries in a tractable manner, we use the framework of
null fluids that we formulated in a series of papers [2–5]. Null fluids are a one-higher
dimensional embedding of Galilean fluids, which can be seen as anisotropic relativistic fluids
in their own right. Given our handle on relativistic hydrodynamics from chapter 2, they
provide an alternate and more natural framework to study Galilean fluids. In section 1.1.3
we motivated null fluids as an emergent structure starting from Galilean fluids. In this
chapter, however, we introduce null hydrodynamics from a relativistic standpoint, drawing
a comparison with relativistic hydrodynamics discussed in chapter 2 from time to time.
Towards the end of the chapter, we return to how these results can be converted to the
conventional Galilean hydrodynamics language. For a more detailed discussion on the
top-down approach to covariantly organise Galilean symmetries into a higher dimensional
structure, see [82].

4.1 | Galilean field theories and null backgrounds

4.1.1 From Poincaré to Galilean algebra

Let us start at the very beginning—symmetries. Galilean field theories are known (or
defined) to transform covariantly under the action of the so-called Galilean algebra.2 The

1For example, Maxwell’s electromagnetism is known to have more than one non-relativistic limits [102].
2To be precise, this is actually a central extension of the Galilean algebra, sometimes known as the

Bargmann algebra. Galilean algebra sits inside the Bargmann algebra as a special case with M = 0.
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generators of this algebra are given as

Continuity: M, Time-translation: H Translations: Pa,

Galilean boosts: Ba, Rotations: Jab. (4.1a)

The associated conserved quantities are the mass, energy, momenta, centre of mass velocity,3

and angular momenta respectively. Here the indices a, b, . . . run over the d− 1 flat spatial
coordinates. For the familiar universe we live in, d − 1 = 3, but it is useful to keep d

arbitrary to allow for the study of non-relativistic systems which are effectively confined to
a thin film (d − 1 = 2) or a chain (d − 1 = 1). On flat space, these generators have the
following non-vanishing commutation relations

[Ba, H] = iPa, [Ba, Pb] = iδabM,

[Jab, Pc] = i (δac Pb − δbc Pa) , [Jab, Bc] = i (δacBb − δbcBa) ,

[Jab, Jcd] = i (δac Jbd − δad Jbc − δbc Jad + δbd Jac) , (4.1b)

where δab is the Kronecker delta. If this algebra is not familiar, it would help to consider it
for a minute. Starting at the end, the rotation generators Jab in the last line satisfy the
standard SO(d−1) algebra. Furthermore, the commutators in the second line merely state
the fact that the translation and boost generators Pa and Ba transform as SO(d−1) vectors.
Since Jab commutes with the remaining generators M and H, they transform as SO(d−1)

scalars. We also see that when we commute a boost Ba with a time translation H, we end
up generating a spatial translation. The characteristic feature of the Galilean algebra is the
boost-translation commutator, which measures the mass of a state. This is the only place
where M appears in the algebra and is therefore central.

Let us leave the Galilean algebra here for now and consider a (d + 1)-dimensional
Poincaré algebra with generators

Spacetime translations: Pa, Lorentz transformations: Jab. (4.2a)

Here the indices a,b, . . . run over d+ 1 higher dimensional coordinates. They satisfy the
usual commutation relations

[Pa, Pb] = 0, [Jab, Pc] = i (ηac Pb − ηbc Pa) ,

[Jab, Jcd] = i (ηac Jbd − ηad Jbc − ηbc Jad + ηbd Jac) , (4.2b)

where ηab is the pseudo-Riemannian flat Minkowski metric. The generators Jab naturally
span a Lorentz algebra SO(d, 1). The spacetime translation generators Pa are SO(d, 1)

vectors and mutually commute. Let us choose a set of null coordinates (xa) = (x−, x+, xa)

such that η++ = η−− = η+a = η−a = 0, η+− = −1, and ηab = δab. In this coordinate
system, consider a subset of the Poincaré generators, all of which commute with the null

3This conserved quantity is surprisingly much less talked about. The point particle version of this
“conservation law” is that the centre of mass of a collection of particles moves at a constant velocity in any
inertial reference frame.
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momenta P−. They are given by

M ≡ −P−, H ≡ −P+, Pa, Ba ≡ −Ma−, Mab. (4.3)

In fact, the only generators that do not make the cut are Ma+. We can check that these
generators are closed under the commutation relations (4.2b), and exactly span the d-
dimensional Galilean algebra (4.1). We, therefore, see that a d-dimensional Galilean algebra
sits as a subalgebra in a (d+ 1)-dimensional Poincaré algebra, with one of the null momenta
acting as the central mass generator. See [76] for an extensive review of this construction,
and an extension to the Schrödinger algebra—Galilean analogue of a conformal algebra
appearing naturally in non-relativistic holography [104]—arising from the null reduction of
a (d+ 1)-dimensional relativistic conformal algebra.

This is rather convenient, as instead of starting from a d-dimensional relativistic theory
and taking a c→∞ limit, or trying to write down a d-dimensional Galilean theory directly
based on symmetries, we can start with a (d+ 1)-dimensional relativistic theory and reduce
it over a light cone (introduce a null Killing vector) to get a Galilean theory. This is given
the name null reduction [73–75] in the literature, also known as light-cone reduction or
discrete light-cone quantisation. It has some obvious benefits over the other two approaches.
We do not need to take a limit, so the prescription is perfectly well defined and unique.
Also, we know how to deal with relativistic field theories reasonably well, which we can
directly use to our advantage without having to deal with the technicalities of the much
less understood Galilean field theories. The idea of null reduction has been used readily
in the literature to reproduce known results and to get new insights into non-relativistic
physics. Perhaps the most important of these results, at least in the current context, has
been to reproduce Newton-Cartan geometries [77, 78] starting from a Bargmann structure
(relativistic manifold carrying a covariantly constant null Killing vector) in one higher
dimension; see e.g. [105–109]. Newton-Cartan geometries are a covariant representation
of spacetime backgrounds which respect Galilean isometries. They are quite useful when
describing Galilean physics as they treat space and time coordinates at the same footing,
however, Galilean boost symmetry is not manifest in this formalism. As we go ahead, we
provide a self-contained review of the aspects of it that we need.

4.1.2 Null backgrounds

As we did for relativistic hydrodynamics in section 2.1, let us start by setting up (d+ 1)-
dimensional null backgrounds to which our null fluids are coupled. Roughly speaking, these
are extensions of the Bargmann structures we mentioned above, to allow for non-trivial
torsion and background gauge fields, in a way that they precisely capture the respective
d-dimensional Galilean structure. Let the (d+ 1)-dimensional theory we are interested in
be living on a spacetime manifoldM with coordinates denoted by the indices m,n, . . .. In
this context, the indices a,b, . . . can be seen as coordinates on the frame bundle FM of
M. Given our Poincaré symmetries, Noether’s theorem postulates the existence of a set of
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associated conserved currents

Energy-momentum tensor: Tm
a , Spin current: Σma

b. (4.4a)

For completeness, let us also introduce a Lie group G of internal symmetry which our
theory of interest might enjoy. We call the associated Lie algebra g, which is endowed with
a Lie bracket denoted by [ ◦ , ◦ ] and a positive semi-definite inner product denoted by ◦ · ◦.
The associated g valued conserved current is taken to be

Charge current: Jm. (4.4b)

To probe these Noether currents, it is convenient to couple the theory to a set of relativistic
background sources onM, one corresponding to each current,

Vielbein: eam, Spin connection: Ca
mb ,

Gauge connection: Am. (4.5)

This is the exact same structure that we introduced in section 2.1 to study relativistic
hydrodynamics. eam is a local frame field which furnishes an invertible map between the
tangent bundle and the frame bundle. The spin connection Ca

mb and the gauge connection
Am are one-form gauge fields valued in so(d, 1) and g respectively. Along with an affine
connection

Γr
ms ≡ e r

a (∂me
a
s + ebsC

a
mb ) , (4.6)

they define a covariant derivative operator Dm onM. Under an infinitesimal local Poincaré
and G transformation parametrised by X = (χm,ΛΣ

χ ,Λχ), the variation of the background
fields (4.5) is given by eq. (2.16) of our relativistic discussion.4

Recall that the Poincaré generator Ma+ did not commute with the null momenta P−
and hence got left out when performing a null reduction to obtain the Galilean algebra. It
follows that the respective Noether current Σma

+ does not have any Galilean interpretation
either. It holds to reason, therefore, that the associated background source Ca

m− must
also be switched off for consistency so that these “unphysical” relativistic currents are not
probed. With a little bit of algebra, we can show that this implies

Ca
m− = ean (∂mV

n + Γn
mrV

n) = eanDmV
n = 0, (4.7)

where V m = e m
− is a null vector field. Furthermore, we should require that the back-

ground sources which do have a Galilean interpretation are left invariant under a local P−
transformation. Since P− acts on the background by a Lie shift along V m, it equivalently
implies that V m acts as an isometry on all the background fields. These are the defining
features of the so-called Bargmann structures—spacetimes with a covariantly constant null
isometry—which have been shown to be equivalent to the lower dimensional Newton-Cartan
backgrounds, at least in the absence of an independent spin connection and gauge field.

4All the results from section 2.1 can be directly imported here by changing d→ d+ 1 and switching to
the uppercase indices.
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Before generalising this statement to backgrounds with arbitrary connections, let us
do a quick counting exercise. After imposing eamV

m = δa−, the vielbein eam has d(d+ 1)

independent components. d2 of these make up a d-dimensional Galilean version of the
vielbein, while the remaining d are identified with the components of a mass gauge field on
a Newton-Cartan background. So this counting checks out. On the other hand, the spin
connection Ca

mb , which is antisymmetric in a↔ b and satisfies Ca
m− = 0, has d(d− 1)/2

independent components for each of the d+ 1 values that the spacetime index m can take.
In contrast, the d-dimensional Galilean spin connections also have d(d− 1)/2 components,
but only for d distinct spacetime indices. The same goes for the gauge connection Am as
well, which has d+ 1 g-valued components as opposed to d expected in a d-dimensional
Galilean theory. To have an exact mapping, therefore, we must somehow get rid of these
extra components. Due to the presence of a preferred vector field V m in the background,
the only such components we can eliminate in a Poincaré invariant manner are V mCa

mb

and V mAm. They are not gauge-invariant, however, so we cannot merely set them to zero.
Therefore, we introduce some arbitrary symmetry parameters ΛΣ

V ∈ so(d, 1) and ΛV ∈ g on
the background and require

V mCa
mb + ΛΣ a

V b = V mAm + ΛV = 0, (4.8)

This eliminates the extra d(d− 1)/2 components from the spin connection and a g-valued
component from the gauge connection. We dub this requirement as the “compatibility of
null isometry”, and call the Bargmann structures that respect it to be null backgrounds. It
is clear that these null backgrounds are in exact correspondence with the Newton-Cartan
backgrounds, both in terms of the field content and symmetries, and as an added benefit
have all the Galilean symmetries manifest in disguise of a Poincaré invariant structure.

For later convenience, let us recollect the definition of null backgrounds. We call a
manifoldM with relativistic background sources (eam, C

a
mb , Am) to be a null background

if it admits a preferred set of symmetry data V = (V m,ΛΣ
V ,ΛV ) such that

1. Action of V is an isometry: δVeam = δVC
a
mb = δVAm = 0,

2. V m is null: V mVm = 0,

3. V m is covariantly constant: DmV
n = 0, and

4. V is compatible: V mAm + ΛV = 0, V mCa
mb + ΛΣ

V
a
b = 0.

Existence of the null isometry V leads to some nice features on null backgrounds. Firstly,
contraction of the spacetime indices of the Riemann curvature tensor R a

mn b, field strength
Fmn, and Cartan torsion tensor Ta

mn (defined in eq. (2.15)) with V m vanishes

V mTa
mn = V mFmn = V mR a

mn b = 0. (4.9a)

These follow trivially from the symmetry variations in eq. (2.16) upon substituting V for
X. Furthermore, contraction of the SO(d, 1) indices of R a

mn b and Ta
mn with V a is also
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determined to be
R a

mn bVa = 0, Ta
mnVa = 2∂[mVn] ≡ Hmn. (4.9b)

These can also be easily derived using D[mDn]V
r = D[mVn] = 0. The presence of these

relations is quite natural; they ensure that the respective quantities have the correct
number of independent components as we would expect in a d dimensional Galilean
background. Finally, we note that if ϕ is an arbitrary tensor transforming in some well
behaved representation of diff× so(d, 1)× g, then

δVϕ = V mDmϕ. (4.10)

The easiest way to convince oneself of its validity is to see it work for some specific examples
of ϕ. It essentially works because of the compatibility requirement (condition 4) imposed
on the connections on a null background, and would not be generically true on a Bargmann
structure. For most of this work, we are dealing with tensor structures which respect the
null isometry V, i.e. δVϕ = 0. Through eq. (4.10), this is equivalent to the requirement that
ϕ be covariantly constant along V m.

4.1.3 Ward identities

Parallel to our relativistic discussion in section 2.1.3, we would like to draw some generic
conclusions about the physical theories coupled to null backgrounds. Let the theory in
question be described by some dynamical fields ϕI with associated equations of motion
EI ≈ 0, and some (effective) action S[eam, C

a
mb , Am,V;ϕI ]. To be consistent with our null

backgrounds setup, we require the dynamical fields to respect the null isometry V, i.e.
δVϕ

I = V mDmϕ
I = 0. This ensures that the fields ϕI only have a dependence on the d

spacetime coordinates, which is what we expect for a Galilean theory. Consequently, all
the observables in the theory, especially the conserved currents, are covariantly constant
along V m.

Under an infinitesimal symmetry transformation X, demanding the variation of the
action δXS to be zero, modulo anomalies, leads to a set of identities similar to eq. (2.19),

DmT
m

a = ea
n (Tb

nmT
m

b +Rnm
c
bΣmb

c + Fnm · Jm) +OIaEI ,

DmΣmab = T [ba] + Σ⊥ab
H +OIabEI ,

DmJ
m = J⊥H +OIEI , (4.11)

where Dm = Dm + ea
nTa

mn. The Hall currents Σ⊥a
H b and J⊥H appearing here characterise

the possible anomalies; they are considered in detail in the next subsection. On-shell, when
EI ≈ 0, these identities reduce to the Noether conservation laws for various currents

DmT
m

a ≈ ean (Tb
nmT

m
b +Rnm

c
bΣmb

c + Fnm · Jm) ,

DmΣmab ≈ T [ba] + Σ⊥ab
H ,

DmJ
m ≈ J⊥H. (4.12)
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These will be the starting point for our hydrodynamic discussion later.

Consider the following deformation of the Noether currents:

Tm
a → Tm

a + V mθ1a, Σmab → Σmab + V mθ
[ab]
2 − θm[a

3 V b], Jm → Jm + V mθ4, (4.13)

where θ’s are some arbitrary tensor structures. The energy-momentum and charge compo-
nents in eqs. (4.11) and (4.12) remain invariant, while the spin equation changes by a term

(
θ

[a
1 + Dmθ

m[a
3

)
V b]. (4.14)

This term only affects the conservation laws for the spin current components Σma
+ which,

if we recall, do not show up in the lower dimensional Galilean spectrum. Therefore, as far
as the Galilean currents are concerned, shifts given in eq. (4.13) are mere redundancies
in the higher dimensional Noether currents. They are not really surprising either; they
are merely illustrating the fact that a (d + 1)-dimensional relativistic theory has many
more observables compared to a d dimensional Galilean theory. There could be a family of
relativistic theories that would give rise to the same Galilean theory upon null reduction.
Ideally, we would like to be able to fix these redundancies once and for all by making some
suitable choice, however there is no “(d+ 1)-dimensional covariant” choice we can make at
this point. The procedure for projecting out the unphysical degrees of freedom is essentially
the null reduction prescription which leads to Newton-Cartan geometries, as we discuss
in section 4.2. When working in the null background formalism while discussing Galilean
hydrodynamics, we let these redundancies be, to enjoy working in a manifestly covariant
formalism of Galilean physics.

4.1.4 Galilean anomalies

In this subsection, we outline the anomaly inflow mechanism for Galilean field theories and
use it to explicitly compute the Hall currents appearing in the conservation laws eq. (4.12).
These results were originally discussed in our work in [5], which we directly import here.
Similar to our relativistic treatment in section 2.1.4, we introduce a (d+ 2)-dimensional
bulk manifold B, on whose boundary our physical manifoldM lives, except that B is also
required to be a null background with compatible null isometry V. The indices on B are
denoted by a hat. At the boundary, we keep our physical theory with generating functional
WM while in the bulk we introduce a generating functional WB given by

WB =

∫
B
I. (4.15)

The full generating functional W = WM +WB is required to be symmetry-invariant. For
this to happen, the anomaly polynomial of the theory P = dI should be closed, invariant
under all the symmetries, and should not be expressible as the exterior derivative of a
symmetry-invariant form.

Now comes the interesting part. On even dimensional (d+ 1 = 2n) null backgrounds,
the allowed anomaly polynomial would take the usual Chern-Simons structure of relativistic
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theories P = PCS, which is made out of the Chern classes of F and the Pontryagin classes
of R. Note however that neither of F or R has a component along V m, hence PCS is
identically zero. This suggests that we cannot get anomalies in an even dimensional null
theory, and hence odd dimensional Galilean field theories are anomaly-free. Since odd
dimensional relativistic theories are anomaly free as well, this is in fact physically sensible.
If we had not required the compatibility of our background connections with the null
isometry, V mFmn and V mR a

mn b would not be zero, and we would end up with anomalous
odd-dimensional Galilean field theories. This was the case, for example, for the Galilean
anomalies found in [110].

The problem is that if we now shift our attention to odd dimensional (d+1 = 2n+1) null
backgrounds, there is no Chern-Simons anomaly polynomial to start with. Consequently,
our even dimensional Galilean theories are rendered anomaly-free as well. We presented a
resolution to this problem in [3, 5], which we now outline. Let us introduce a vector field
vm such that vmvm = 0 and vmVm = −1, and define v = vmdxm. With the help of this, we
can write down an odd-rank anomaly polynomial

P = v ∧PCS. (4.16)

Although this expression makes explicit reference to vm, one can show that it is invariant
under its arbitrary redefinition vm → vm + δvm. This follows from the fact that the
change δvm does not have any component along V m, due to the normalisation property
δ(vmV

m) = V mδvm = 0. We can convince ourselves that after the introduction of vm, there
are no more terms which can be written in the anomaly polynomial. Returning to the
generating functional integrand I, it can only be defined in the so-called transverse gauge
where ΛΣ

V = ΛV = 0 leading to V mCa
mb = V mAm = 0. In this gauge, I = −v∧ICS. Taking

a differential we obtain
dI = P − dv ∧ ICS = P . (4.17)

The second term in the middle expression is zero in the transverse gauge, as it does not
have any component along V m. Hence, we recover the proposed anomaly polynomial.

Having our anomaly polynomial in place, the rest of the story is an exact parallel of
section 2.1.4. In particular, we can use eq. (2.25) to compute the Galilean Hall currents as

?(d+2)ΣH = v ∧ ∂PCS

∂R
, ?(d+2)JH = v ∧ ∂PCS

∂F
. (4.18)

We can also verify that ΣH
a
bV

b = 0, as the SO(d, 1) indices of ΣH
a
b come from Ra

b,
which have a zero contraction with V b.

This finishes our discussion of (d+ 1)-dimensional null backgrounds. We have discussed
their structure, symmetries, conservation laws, and equivalence to the lower dimensional
Galilean backgrounds. In the next section, we illustrate their equivalence to Newton-Cartan
backgrounds in d-dimensions.
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4.2 | Null reduction to Newton-Cartan backgrounds

Over the past decade, we have learned that the correct way to probe the conserved currents of
a Galilean field theory is to couple it to a version of (torsional) Newton-Cartan backgrounds,
in a way that keeps all the symmetries manifest. These backgrounds were first introduced in
1923 in a series of seminal papers by Élie Cartan [77, 78], to describe a covariant framework
for Newtonian gravity. Since then, they have been continually developed and extended
upon, particularly in the context of covariant Newtonian gravity and coupling to Galilean
field theories; see e.g. [79–82, 111–121] and also [122–126] for some related topics. Alongside,
it has also been known that Newton-Cartan backgrounds can be obtained via reducing a
relativistic background along a null isometry [105–109]. In the following, we start from
our null backgrounds, discussed in the previous section, and establish their equivalence to
torsional Newton-Cartan backgrounds. This also provides us with a natural null reduction
prescription for (d + 1)-dimensional field theories coupled to null backgrounds down to
d-dimensional Galilean field theories. We provide a self-contained review of the aspects
of Newton-Cartan backgrounds that we require for our subsequent discussion of Galilean
hydrodynamics. For more details, we recommend checking out the PhD thesis of Michael
Geracie [127], where he discusses the most generic torsional Newton-Cartan geometries and
their coupling to Galilean field theories.

Let us consider a foliation of the spacetime manifold asM = S1 ×N , where we have
compactified the V m direction into an infinitesimal circle S1. The resultant d-dimensional
null hypersurface N represents a Galilean (Newton-Cartan) spacetime. As N is a null
hypersurface, to perform such a foliation uniquely we also require an arbitrary null field
vm doubly normalised as vmvm = 0 and vmVm = −1. Since we are introducing this vector
field by hand just to perform the reduction, the actual physical results are invariant under
an arbitrary shift of vm. This choice can be understood as providing a “Galilean frame of
reference”. When working with hydrodynamics, the null fluid velocity um preferentially
provides such a frame of reference which we refer to as the “fluid frame”. For now however,
we stick to an abstract vm for the sake of generality. Formally, we define null reduction as
this choice of vm and subsequent decomposition of the (d+ 1)-dimensional theory into an
effective d-dimensional one.

Let us first choose a basis onM as (xm) = (x∼, xµ) and partially fix the SO(d, 1) and
G-transformation symmetries to set V = (∂∼, 0, 0), i.e. V m = δm∼, ΛΣ

V
a
b = ΛV = 0. The

condition V mDm = 0 simply becomes D∼ = 0. At this point, we can already decompose the
conservation laws as

DµT
µ
a ≈ e ν

a
(
Tb

νµT
µ
b +R c

νµ bΣµb
c + Fνµ · Jµ

)
,

DµΣµa
b ≈

1

2
(ebµT

µa − eaµTµb) + Σ⊥a
H b,

DµJ
µ ≈ J⊥H, (4.19)

up to the ambiguities given in eq. (4.13). Here the background structure can be understood
as a d-dimensional manifold N (with indices µ, ν, . . .) with an “extended” (d+1)-dimensional
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frame bundle (with indices a,b, . . .). Note that we have not introduced the field vm yet, so
the description is still fully covariant. As we discussed in an appendix of [5], the fact that
the Galilean physics can be packaged into this “extended space” structure was first realised,
for theories without anomalies or spin currents, by [82], where the authors arrived at this
bottom-up starting from the generic d-dimensional Newton-Cartan backgrounds. See [127]
for a review. The novelty in the null-background formalism is that the symmetries are
nicely arranged in terms of a Poincaré invariant structure.

4.2.1 Newton-Cartan backgrounds

Let us now introduce the Galilean frame velocity field vm. We pick a basis on the frame
bundle (xa) = (x−, x+, xa) such that V a = δa− and va = δa+ . To this end, we can choose
a specific representation of the Minkowskian metric ηab and decompose the background
fields as

ηab =

 0 −1 0

−1 0 0

0 0 δab

 , eam =

1 −bµ
0 nµ

0 eaµ

 ,

Ca
∼b = 0, Ca

µb =

0 0 cµb

0 0 0

0 c aµ Caµb

 , Am =

(
0

Aµ

)
, (4.20)

such that nµvµ = 1 and eaµvµ = 0. The tensor structures appearing in this decomposition
define a Newton-Cartan background

Mass gauge field: bµ, Clock form: nµ Spatial vielbein: eaµ,

Temporal spin connection: c a
µ , Spatial spin connection: Caµb ,

Gauge connection: Aµ. (4.21)

They serve as the background sources associated with the Galilean symmetry generators
given in eq. (4.1). nµ serves as the “time-vielbein” on Galilean backgrounds, while eaµ is the
spatial vielbein. bµ is an external U(1) gauge field associated with the conservation of mass,
while the connections Aµ ∈ g and Caµb ∈ so(d−1) are associated with G-transformations
and spatial rotations respectively. Finally, c a

µ couples to the Galilean boosts and can be
interpreted as the acceleration of the possibly non-inertial lab frame. Using the vielbein
eaµ, we can define an inverse vielbein e µ

a via eaµe
µ
b = δab and ea

µnµ = 0. Together they
furnish a resolution of identity

ea
µeaν + vµnν = δµν , (4.22)

and can be used to decompose the higher dimensional inverse vielbein

e m
a =

 1 0

bνv
ν vµ

bνe
ν
a e µ

a

 . (4.23)
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We can also define a degenerate spatial projection operator (also called spatial metric)
via hµν = δabe

a
µe
b
ν , hµν = δabea

µeb
ν , and hµν = hµσhσν = ea

µeaν . They satisfy hµνnµ =

hµνv
ν = 0. Since there is no non-degenerate metric on N , raising/lowering of µ, ν, . . .

indices is not permitted. However a, b, . . . indices can be raised/lowered using the Kronecker
delta δab. On the other hand, the vielbeins eaµ and eaµ can be used to project the tensors
on N to tensors on R(d−1), and in turn lift the tensors on R(d−1) to “spatial tensors” on N
(whose nµ or vµ contraction is zero).

Decomposing the null background affine connection, we find that the only non-trivial
components are

Γr
µn =

(
0 cµ

aeaν − D̃µbν

0 Γλµν = vλ∂µnν + ea
λ
(
ebνC

a
µb + nνc

a
µ + ∂µe

a
ν

)) . (4.24)

Here we have identified Γλµν as the Newton-Cartan affine connection, which along with
Caµb and Aµ, defines a covariant derivative operator D̃µ. We can check that Γλµν is the
unique affine connection that satisfies

D̃µnν = 0, D̃µe
a
ν + nνc

a
µ = 0 ⇐⇒ eaνD̃µv

ν = c a
µ , D̃µe

ν
a = 0, (4.25)

which are the Galilean equivalent of the metric compatibility condition. From here, we
see that c a

µ is indeed the background frame acceleration. For later use, let us define the
globally inertial Galilean frames as those for which cµa identically vanishes. However, for a
generically curved Newton-Cartan background, there is no guarantee that such a frame
would exist.

Under the null background symmetry transformations derived from eq. (2.16), the
Newton-Cartan background fields (4.21) transform as

δXbµ = £χbµ + ∂µΛm
χ + Λτχa e

a
µ

δXnµ = £χnµ

δXe
a
µ = £χe

a
µ − Λσ aχ b e

b
µ − Λτ aχ nµ,

δXcµ
a = £χcµ

a − Λσ aχ b cµ
b + ∂µΛτ aχ + CaµbΛ

τ b
χ ,

δXC
a
µb = £χC

a
µb + ∂µΛσ aχ b + [Cµ,Λ

σ
χ]ab,

δXAµ = £χAµ + ∂µΛχ + [Aµ,Λχ]. (4.26)

provided that we identify the Galilean symmetry parameters as

X =
(
χµ , Λm

χ = −χ∼ , Λτ aχ = ΛΣ a
χ + , Λσ aχ b = ΛΣ

χ
a
b , Λχ

)
. (4.27)

We can also work out the transformation properties of vµ and e µ
a as

δXv
µ = £χv

µ + e µ
a Λτ aχ , δXe

µ
a = £χe

µ
a + Λσ bχ ae

µ
b . (4.28)

Note that the diffeomorphisms along V m take the form of mass gauge transformations on
the Newton-Cartan backgrounds, justifying the name “mass gauge field” for bµ. On the
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other hand, Λχ ∈ g acts as a G-gauge transformation on the respective gauge field Aµ. The
action of χµ is a spacetime diffeomorphism, i.e. it acts on all the background fields by a
Lie drag, as we would expect. The action of Λσ

χ ∈ so(d−1) is also simple; it transforms
Caµb as a gauge field and rotates the SO(d−1) vectors eaµ, cµa, and ea

µ appropriately.
Finally, we have the Galilean boost transformations parametrised by Λτ a

χ , which mix up
the background fields non-trivially. They are also known as Milne boosts in the literature.

We can null reduce the null background torsion, curvature, and field strength into the
Newton-Cartan language. The only surviving components are

Fµν , Ta
µν =

−Bµν−Hµν

Ta
µν

 , R a
µν b =

0 0 −Rµνb
0 0 0

0 −R a
µν R a

µν b

 . (4.29)

Here we have defined

Mass torsion: Bµν = 2D̃[µbν] − Ωµν , Spacetime torsion: Tλ
µν = 2Γλ[µν],

Spacetime curvature: R λ
µν ρ = 2

(
∂[µΓλν]ρ + Γλ[µ|σΓσν]ρ

)
,

Field strength: Fµν = 2∂[µAν] + [Aµ, Aν ], (4.30)

where Ωµν = 2ea[νc
a

µ] is the (boost-non-invariant) Galilean frame vorticity, and further

Hµν = −nλTλ
µν = −2∂[µnν], Ta

µν = eaλTλ
µν = 2∂[µe

a
ν] + 2c[µ

anν] + 2Ca[µbe
b
ν],

R a
µν = −R λ

µν ρe
a
λv

ρ = −2
(
∂[µc

a
ν] + Ca[µbc

b
ν]

)
,

R a
µν b = R λ

µν ρe
a
λe

ρ
b = 2

(
∂[µC

a
ν]b + Ca[µcC

c
ν]b

)
. (4.31)

Using these definitions, we can rewrite the Newton-Cartan affine connection given in
eq. (4.24), into a more standard form found in the literature

Γλµν = vλ∂µnν +
1

2
hλσ (∂µhσν + ∂νhσµ − ∂σhµν)

+ n(µΩν)σh
λσ +

1

2

(
e λ
a Ta

µν − 2ea(νTa
µ)σh

λσ
)
. (4.32)

As far as we are aware, this was first written down in [82].5

Finally, using the (d+ 1)-dimensional volume form εmn..., we can define the raised and
5Let us say that our background contains a scalar field χ which transforms as δXχ = −Λm

χ . We can
use it to define boost-invariant torsion tensors Bµν = vλMλHµν and Tλ

µν =
(
hλσMσ − vλ

)
Hµν where

Mµ = bµ + ∂µχ. For these special class of Newton-Cartan backgrounds, the affine connection can be
expressed as

Γλµν =
(
vλ − hλσMσ

)
∂µnν +

1

2
hλσ

(
∂µhνσ + ∂νhµσ − ∂σhµν

)
, (4.33)

where hµν = hµν + 2n(µMν). These backgrounds, termed as torsional Newton-Cartan geometries (TNC) in
the literature [108, 128], appear naturally in the holography of Lifshitz spacetimes. A further restriction on
Hµν setting hµρhνσHρσ = 0 leads to the so called twistless torsional Newton-Cartan geometries (TTNC).
If we were to switch off Hµν entirely, we would recover the torsionless Newton-Cartan geometries.
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lowered Newton-Cartan volume elements

εµν... = vmε
mµν... = −ε∼µν..., εµν... = V mεmµν... = ε∼µν.... (4.34)

Even though one of them involves an explicit mention of vm, they are actually independent
under an arbitrary frame redefinition. Note that since there is no raising/lowering operator
on Newton-Cartan backgrounds, these two volume forms are independent. We can also define
an associated Hodge duality operator ?, that uses εµν... to map m-rank differential forms
to (d−m)-rank contravariant forms, while conversely εµν... to map m-rank contravariant
forms to (d −m)-rank differential forms. It can be checked that ?2 = (−)m(d−m) when
acting on an m-rank differential or contravariant form.

4.2.2 Noether currents and conservation equations

Let us now move on to the Noether currents Tm
a , Σma

b, and Jm. We start by recalling
that there is a redundancy in the definition of these currents given by eq. (4.13), which
allows us to eliminate some components. In the following decomposition, we have denoted
these unphysical components by “×”, leading to

Tm
a =

(
× × ×
−ρµ −εµ pµa

)
, Jm =

(
×
jµ

)
,

Σ∼ab = ×, Σµa
b =

 × 0 ×
0 × −τµb
−τµa × σµab

 . (4.35)

From here we can identify the Noether currents associated with the Galilean symmetry
generators given in (4.1)

Mass current: ρµ, Energy current: εµ Momentum current: pµa,

Temporal spin current: τµa , Spatial spin current: σµab,

Charge current: jµ. (4.36)

With these identifications, the physical components of the Noether conservation laws (4.12)
can be converted into the respective conservation laws of a Galilean theory with spin current

Mass conservation (continuity): D̃µρ
µ ≈ 0,

Energy conservation (time translation): D̃µε
µ ≈ −vµfµ − pµacµa,

Momentum conservation (spatial translations): D̃µp
µ
a ≈ eaµfµ − ρµcµa,

Temporal spin conservation (Galilean boosts): D̃µτ
µ
a ≈

1

2
(nµp

µ
a − eaµρµ) ,

Spatial spin conservation (rotations): D̃µσ
µab ≈ pµ[aeb]µ − 2τµ[ac b]µ + σ

⊥ab
H ,

Charge conservation (G-transformations): D̃µj
µ ≈ j⊥H. (4.37)
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Here D̃µ = D̃µ + vνHνµ − e ν
a Ta

νµ, while fµ denotes the external Lorentz force due to the
presence of background fields

fµ = Hµνε
ν +Bµνρ

ν + Ta
µνp

ν
a +R a

νµ τ
ν
a +R a

µν bσ
νb
a + Fµν · jµ, (4.38)

which act as a Galilean energy and momentum source. The terms coupling to cµa = eaνD̃µv
ν

in eq. (4.37) are due to the chosen Galilean frame vµ not being globally inertial. Finally,
we have the Galilean Hall currents σ

⊥ab
H = Σ⊥abH and j⊥H = J⊥H, which can be explicitly

computed via the reduction of eq. (4.18) leading to

j⊥H = − ?
(
∂PCS

∂F

)
, σ

⊥a
H b = − ?

(
∂PCS

∂Rb
a

)
. (4.39)

Eq. (4.37) are the complete set of conservation equations for a Galilean invariant field
theory coupled to a curved spacetime background. In particular, note the temporal spin
conservation equation. It implies that in the absence of a temporal spin current, the mass
flux ρa = eaµρ

µ must equal the momentum density pa = nµp
µ
a in a Galilean theory, which

is commonplace in non-relativistic physics.

To get some intuition, it is helpful to see these conservation laws on a flat Galilean
background, where all the technicalities of Newton-Cartan backgrounds drop out. To do
this, let us choose a basis (xµ) = (t, xi) such that nµ = ∂µt. We choose to work in a frame
given by vµ = δµt, and set Caµb = c a

µ = bµ = 0, and eaµ = δaµ. Let us also choose the
background gauge field Aµ to be Abelian and restrict to d = 4 for familiarity. In this
simplified case, the conservation laws are given as

∂tρ
t + ∂iρ

i = 0, ∂tε
t + ∂iε

i = Ei j
i, ∂tp

t
k + ∂ip

i
k = q Ek + εkijj

iBj ,

∂tτ
t
k + ∂iτ

i
k =

1

2

(
ρk − ptk

)
, ∂tσ

tjk + ∂iσ
ijk = p[kj],

∂tq
t + ∂ij

i = 0. (4.40)

Here we have defined the electric field Ei = Fit and the magnetic field Bi = 1
2εijkF

jk.
The first and last equations are obviously the continuity equations for mass and charge
respectively. The second equation is the continuity equation for energy, telling us that the
rate of change of energy is proportional to the work done by the electric fields. The third
equation is the Navier-Stokes equation for balancing force; note that the term on the right
is merely the Lorentz force due to the electromagnetic fields. Finally, the two equations in
the middle line are the conservation equations for the spin currents. For theories with no
spin current, they merely tell us that the mass flux is same as the momentum density, and
the stress tensor is symmetric.

4.2.3 Reference frame transformations

Recall that we had introduced an arbitrary vector field vm to facilitate the null reduction.
Since the relativistic parent theory does not depend on this choice of vm, after all is said and
done, we will be left with an additional vm redefinition freedom in our Galilean theory. This
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is equivalent to the choice of Galilean reference frames. Let us see how various Galilean
quantities defined above transform under this frame transformation: vm → vm +ψm. Firstly,
the normalisation conditions of vm imply that

V mψm = 0, vmψm = −1

2
ψmψm. (4.41)

While we do this transformation, we would still like the tangent space vector va to be equal
to δa+ . To achieve this, we need to follow this transformation by a tangent space rotation
with matrix

Oa
b = δab + ψaVb − V a

(
ψb + V aVb

1

2
ψmψm

)
∈ SO(d, 1). (4.42)

One can check that va → Oa
b(vb + ψb) = va, while ηab → Oa

cO
b
dη

cd = ηab and
V a → Oa

bV
b = V a. On the other hand

eam → Oa
be

b
m = eam + ψaVm − V a

(
ψm − Vm

1

2
ψrψr

)
. (4.43)

Choosing a basis and performing the null reduction, the conditions (4.41) reduce to

ψ∼ = 0, vµψµ = −1

2
hµνψµψν , nµψ

µ = 0, −ψ∼ + bµψ
µ = −1

2
hµνψ

µψν . (4.44)

Note that using the lowering operator and these identities we have

ψµ = gµnψ
n = −nµ (ψ∼ − bνψν) + hµνψ

ν = −nµ
1

2
(hρσψ

ρψσ) + hµνψ
ν , (4.45)

therefore all the information in ψm can be encoded into ψµ, which satisfies nµψµ = 0. We
find that nµ, hµν , and eaµ are invariant under this transformation, while

vµ → vµ+ψµ, bµ → bµ+ψµ, hµν → hµν−2n(µψν), eaµ → eaµ−ψanµ. (4.46a)

Comparing these to eq. (4.26), we can convince ourselves that we are merely performing a
finite Galilean (Milne) boost parametrised by Λτ aχ = ψa. Among the connections, Aµ, Γλµν ,
and Caµb are invariant, while cµa → cµa + D̃µψa. The field strength Fµν , temporal torsion
Hµν , and spatial curvature R a

µν b are again invariant, while the remaining components
transform as

Ta
µν → Ta

µν + ψaHµν , Bµν → Bµν + ψaT
a
µν +Hµν

1

2
ψaψa,

R a
µν → R a

µν − Caµbψb. (4.46b)

We can repeat the same procedure for Noether currents as well. We get that the mass
current ρµ, charge current jµ, and temporal spin current τµa are invariant, while the other
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currents mix up according to

εµ → εµ +
1

2
ρµψaψa − pµaψa, pµa → pµa − ρµψa,

σµab → σµab + τµaψb − ψaτµb. (4.46c)

One can check that with these transformations, the Lorentz force fµ defined in eq. (4.38) is
rendered frame invariant.

Due to the non-trivial nature of these transformation rules, they are quite hard to imple-
ment in a purely d-dimensional description and have led much of the recent developments
in the field of Newton-Cartan geometries. When working in the null background description
however, this invariance is automatic because the field vm was only introduced at the end
for the purposes of reduction and is not present in the theory by itself.

4.2.4 The non-relativistic limit

Over these last two subsections, we have taken an axiomatic approach to set up Galilean
invariant theories, their symmetries, background fields, and conservation equations. It is
perhaps instructive to reflect back and consider how this structure could arise in a c→∞
limit of a relativistic theory. The discussion here is motivated from the work of [121]. Let us
start with the d-dimensional Poincaré algebra (2.1). The first thing we should note is that
we have one less generator than the Galilean algebra (4.1) that we are hoping to achieve
via a non-relativistic limit. There is no analogue of the Galilean mass generator M on
the relativistic side. It is quite natural because the relativistic theories do not distinguish
between mass and energy; in a relativistic framework mass and energy are not independently
conserved, but only their combination. To define a non-relativistic limit therefore, we must
be provided with an emergent U(1) symmetry in the relativistic theory when probed at
low energies. Typically, this would arise due to the emergence of certain particle number
currents at low energies, which are conserved in the absence of enough energy to combine
or split particles. Let us denote the generator of this additional U(1) symmetry by M , and
the associated conserved current by Rµ. This symmetry does not talk to the Poincaré or G
sectors of the theory, therefore M commutes with all the other generators.

To take a non-relativistic limit, we need to introduce a c-scaling for various relativistic
quantities and then take c→∞. Let us start by picking a basis (xa) = (c t, xa) and choose
a decomposition for various Poincaré generators as

Pα =

(
−cM − 1

cH + . . .

Pa + . . .

)
, Jαβ =

(
0 −cBb + . . .

−cBa + . . . Ma
b + . . .

)
, (4.47)

where ellipses denote the subleading terms in c. The Poincaré commutation relations
in eq. (2.1), when truncated to the highest order in c, exactly reproduce the Galilean
commutators in eq. (4.1). This suggests that the Noether currents undergo a corresponding
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decomposition

Tµα =

(
−c ρµ − 1

c ε
µ + . . .

pµa + . . .

)
Σµα

β =

(
0 −c τµb + . . .

−c τµa + . . . σµab + . . .

)
,

Rµ = ρµ + . . . , Jµ = jµ + . . . . (4.48)

Now let us move on to the non-relativistic limit of the relativistic background fields. In
addition to the fields defined in section 2.1, we now also have a gauge field Bµ associated
with the generator M . We choose the following c-scaling for these fields

eαµ =

(
c nµ

eaµ

)
, eα

µ =

(
1
cv
µ

ea
µ

)
, Bµ = c2nµ + bµ, Tα

µν =

(
−cHµν + 1

cΩµν

Ta
µν

)
,

(4.49)

while the gauge field Aµ stays as such. The limits of affine and spin connections can be
worked out from here, which gives us exactly their Newton-Cartan expressions

Γλµν →
(

Γλµν

)
NC

+ . . . , Caµb →
(
Caµb

)
NC + . . . , Caµt = cµ

a + . . . . (4.50)

These scalings are defined based on the requirement that

〈Tµα 〉δeαµ + 〈Σµα
β〉δC

β
µα + 〈Jµ〉 · δAµ

= ρµδbµ − εµδnµ + pµaδe
a
µ − 2τµa δc

a
µ + σµabδC

b
µa + jµ · δAµ + . . . . (4.51)

This ensures that in c→∞ limit, the Galilean sources couple correctly to their respective
Galilean currents. As a non-trivial check of these scaling rules, we can take a c→∞ limit
of the δX variations defined in eq. (2.16) and find that they indeed reduce to the Galilean
ones defined in eq. (4.26), provided that we identify the spin parameters as

ΛΣ
χ
a
t → Λτ aχ , ΛΣ

χ
a
b → Λσχ

a
b. (4.52)

Finally, at the highest order in c, the relativistic conservation laws (2.20) also exactly map
to the Galilean ones given in eq. (4.37).

With all this machinery in place, we are finally ready to discuss Galilean hydrodynamics.
In the next section, we introduce hydrodynamics on null backgrounds and use it work out
the principles of Galilean hydrodynamics coupled to Newton-Cartan backgrounds.

4.3 | Null fluids

4.3.1 Hydrodynamics on null backgrounds

Following our relativistic discussion in section 2.2, we now formulate a theory of hydrody-
namics on null backgrounds. We start with the assumption that the fundamental theory we
are seeking to describe respects the spacetime Poincaré transformations and some internal
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global G-transformations, and is left invariant by the action of a null isometry V. This
postulates the existence of the associated V respecting conserved currents (Tm

a ,Σ
ma

b, J
m).

In the low-energy regime, the theory would be described by some effective massless degrees
of freedom ϕI . Therefore the conserved currents can generically be expressed in terms of ϕI ,
the background fields (eam, C

a
mb , Am,V), and their derivatives. Due to Noether’s theorem,

these currents satisfy the identities (4.11).

Thanks to these identities, the conservation laws (4.12) can serve as a placeholder for a
vector, a so(d, 1)-valued scalar, and a g-valued scalar linear combinations of the equations
of motion. That is to say that out of the dynamic fields ϕI , eq. (4.12) can serve as equations
of motion for some degrees of freedom packaged into a set of symmetry parameters

B =
(
βm , ΛΣ

β , Λβ
)
. (4.53)

The remaining dynamical fields and their equations of motion are represented by ϕi and
Ei ≈ 0 respectively. Recall that the spin conservation equation in eq. (4.12) is only relevant up
to an arbitrary vector redefinition (4.14). Therefore we should not treat all the components
in ΛΣ

β to be independent. We can fix this by choosing δBV a = βm∂mV
a − ΛΣ

β
a
bV

b = 0,
which can be checked to be a covariant condition. The fields B can also be represented in
terms of a set of hydrodynamic fields

Null velocity: um with umum = 0, umVm = −1,

Temperature: T, Mass chemical potential: µm,

Spin chemical potential: µΣ ∈ so(d, 1) with µΣa
bV

b = 0,

G chemical potential: µ ∈ g, (4.54)

defined via

βm =
1

T
(um − µmV

m) , ΛΣ
β
a
b + βmCa

mb =
1

T
µΣa

b, Λβ + βmAm =
1

T
µ. (4.55)

We can now go ahead and write down the most generic null fluid constitutive relations:
expressions for (Tm

a ,Σ
ma

b, J
m, Ei) in terms of the dynamical fields ϕi and B, the background

fields (eam, C
a
mb , Am,V), and their derivatives, arranged in a derivative expansion.

The remainder of the story exactly parallels that for relativistic fluids given in sections 2.2
and 2.3. In the following we recapitulate the key points of the discussion. Upon taking the
hydrodynamic fields B on-shell, the partially on-shell conservation laws are given by

DmT
m

a ' ean
(

Tb
nmT

m
b +Rnm

c
bΣmb

c + Fnm · Jm
)

+OiaEi,

DmΣmab ' T [ba] + Σ⊥ab
H +OiabEi,

DmJ
m ' J⊥H +OiEi. (4.56)

The second law of thermodynamics requires that the null fluid constitutive relations should
be accompanied by an entropy current Jm

S whose divergence is positive semi-definite, i.e.
DmJ

m
S ≥ 0, for all partially on-shell (thermodynamically isolated) fluid configurations. This
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statement can be re-expressed in a more useful off-shell language by defining a free energy
current and a free energy Hall current

Nm = Jm
S + βaTm

a +
(
ΛΣ
β
b
a + βmCb

ma
)

Σma
b + (Λβ + βmAm) · Jm +N i

β
mEi,

N⊥H =
(
ΛΣ
β
b
a + βmCb

ma
)

Σ⊥aH b + (Λβ + βmAm) · J⊥H, (4.57)

where N i
β
m is defined in eq. (2.18). Using these definitions and the partially on-shell

conservation laws (4.56), we can convert the second law statement into an adiabaticity
equation

DmN
m −N⊥H = Tm

a δBe
a
m + Σma

bδBC
b
ma + Jm · δBAm + EiδBϕi + ∆, ∆ ≥ 0, (4.58)

where ∆ is a positive semi-definite quadratic form. The δB variation of various fields is given
in eq. (2.16). In writing this equation, we have already fixed a large amount of redefinition
freedom in the arbitrarily defined hydrodynamic fields. The remaining freedom can be
fixed by rendering our constitutive relations to be independent of umδBgmn, umδBC

a
mb ,

and umδBAm. In this form, the second law requires that for a set of constitutive relations
(Tm

a ,Σ
ma

b, J
m, Ei) to be physically allowed, they must admit a free energy current Nm,

which satisfies the adiabaticity equation for some positive semi-definite quadratic form ∆.
We classify the most generic constitutive relations allowed by this restriction in sections 4.3.3
to 4.3.5. First, let us see how the null fluid constitutive relations can be translated to the
d-dimensional Galilean fluid language.

4.3.2 Null reduction to Galilean hydrodynamics

Once we are given a set of null fluid constitutive relations (Tm
a ,Σ

ma
b, J

m, Ei), we can use
the null reduction prescription outlined in section 4.2 to obtain the respective constitutive
relations for a Galilean fluid. To perform the explicit reduction, however, we need a map
between the dynamical fields of a null fluid and those of a Galilean fluid. Upon introduction
of a frame velocity vm, the hydrodynamic fields in eq. (4.54) can be decomposed into

uµ with uµnµ = 1, T, µm, µσ ab, µτ a, µ, (4.59)

where

um =

(
bµu

µ + 1
2u

aua

uµ

)
, µΣa

b =

0 0 µτ b

0 0 0

0 µτ a µσ ab

 . (4.60)

In terms of these, we can also find out

um =

(
−1

uµ = ūµ + bµ − nµ 1
2u

aua

)
. (4.61)

We have defined the “spatial” components of the Galilean fluid velocity as ūµ = uµ − vµ

which satisfy ūµnµ = 0, or equivalently on the frame bundle ua = eaµu
µ = eaµū

µ. We can
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also define the projection operators against the fluid velocity

pµν = hµν , pµν = hµν − 2n(µūν) + nµnν ū
ρūρ, pµν = pµρpρν . (4.62)

The other dynamical fields ϕi in the fluid description might also admit such a decomposition,
but in the absence of their explicit transformation properties, we leave them abstract in
this discussion. We later look at some explicit examples in chapter 5.

Under a Galilean frame transformation vm → vm + ψm defined in section 4.2.3, most of
these dynamical fields remain unchanged, except the spatial fluid velocity and temporal
spin chemical potential, which transform according to

ua → ua − ψa, µτ a → µτ a + µσ abψ
b. (4.63)

If instead of working in an arbitrary Galilean frame, we decided to work in the naturally
defined fluid frame of reference given by vµ = uµ, we can choose ψµ = ūµ setting ūµ → 0.
At a calculational level therefore, it is always best to work in the fluid frame of reference. If
required, we can later perform a frame transformation outlined in eq. (4.46) with ψµ = −ūµ

and get back the generic frame results.

Due to the second law of thermodynamics, the null fluid constitutive relations are accom-
panied by an entropy current Jm

S and a quadratic form ∆, such that for thermodynamically
isolated fluid configurations, we have DmJ

m
S ' ∆ ≥ 0. Upon null reduction, this statement

transforms into a local second law for Galilean fluids,

D̃µs
µ ' ∆ ≥ 0, where sµ = JµS . (4.64)

Following our null fluid discussion, we know that to satisfy the second law requirement,
the Galilean fluid must admit a free energy current nµ = Nµ such that the following
adiabaticity equation is satisfied for any (on-shell or off-shell) fluid configuration

D̃µn
µ − n⊥H = ρµδBbµ − εµδBnµ + pµaδBe

a
µ

− 2τµaδBcµa + σµabδBC
b
µa + jµ · δBAµ + EiδBϕi + ∆. (4.65)

Here n⊥H = N⊥H is the anomalous free energy Hall current. The δB variation of various fields
used here can be obtained by a substituting X with B in eq. (4.26).

To summarise, a Galilean fluid is characterised by its conserved currents, which in the
minimal setting are the mass current ρµ, energy current εµ, and momentum current pµa.
Depending on the physical application we have in mind, we can also throw in some possibly
non-Abelian charge currents jµ, spin currents τµa and σµab, and equations of motion Ei
corresponding to additional gapless modes in the fluid description (like Goldstone modes of
broken symmetries). We start with the most generic form of these currents allowed by the
Galilean symmetries, called the constitutive relations, in terms of some dynamical fields:
fluid velocity uµ, temperature T , chemical potentials µm, µτ a, µσ ab, and µ, and additional
gapless fields ϕi, arranged in a derivative expansion. Dynamical equations for these fields
are given by the conservation equations (4.37). For convenience, we can also introduce some
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background fields: frame fields eaµ, e
µ
a , and nµ, connections Γλµν , Caµb, Aµ, and bµ, and

a Galilean frame velocity vµ. To be physically relevant, the fluid constitutive relations are
required to satisfy the second law of thermodynamics, which essentially requires them to
be accompanied by an entropy current sµ whose divergence is locally positive semi-definite.
This can equivalently be posed as the requirement that there must exist a free energy current
nµ so that the adiabaticity equation (4.65) is satisfied. To work out these constitutive
relations in a manner that manifestly preserves the Galilean invariance, it is convenient to
work in a one-higher dimensional null fluid picture, where the symmetry structure is exactly
that of a relativistic fluid. The Galilean adiabaticity equation also happens to be equivalent
to the adiabaticity equation in the null fluid formalism, which can be used to derive the
constraints on the Galilean fluid constitutive relations in a more convenient language.

4.3.3 Anomaly induced transport

Having derived the Galilean version of the adiabaticity equation, we would now like to inspect
and classify all of its solutions. Since the anomaly inflow mechanism on null backgrounds,
as discussed in section 4.1.4, is subtly different from its relativistic counterpart, in this
subsection we first focus on a particular anomaly induced solution to eq. (4.58). Later in
section 4.3.4, we also discuss its extension to include transcendental anomalies.

Following [5], we note that the shadow connections for null fluids should be defined
with respect to the null isometry V m, as opposed to the fluid velocity which was used for
relativistic fluids in eq. (2.58), i.e.

Â = A+ µV , Ĉa
b = Ca

b + µΣ a
b V , (4.66)

where V = Vmdxm. They satisfy

Λβ + βmÂm = ΛΣ a
β b + βmĈa

mb = 0, ΛV + V mÂm = ΛΣ a
V b + V mĈa

mb = 0. (4.67)

We can use these to work out the respective shadow field strength and curvature, followed
by the shadow anomaly polynomial and Hall currents. In particular, the shadow free energy
Hall current is given by

?(d+2)N̂H =
1

T
?(d+2)

(
µ · ĴH + µΣ · Σ̂H

)
. (4.68)

Let us further define

?ΣP =
V

dV
∧ ?(d+2)

(
ΣH − Σ̂H

)
, ?JP =

V

dV
∧ ?(d+2)

(
JH − ĴH

)
,

?qP = − V

dV ∧ dV
∧
(
P − P̂ + T dV ∧ ?(d+2)N̂H

)
. (4.69)

In terms of these, we can read out the anomaly induced constitutive relations, also known
as the Class A transport, as simply

(Tm
a )A = qmPVa, (Σma

b)A = ΣP
a
b, (Jm)A = Jm

P . (4.70a)
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along with (Ei)A = 0. They satisfy the null fluid adiabaticity equation (4.58) with the free
energy current

(Nm)A =
1

T
(−qmP + µΣ a

b Σmb
P a + µ · Jm

P) . (4.70b)

Like in the relativistic case, we note that there is no Class A contribution to the entropy
current Jm

S . Upon performing the null reduction, we can see that, in fact, only the energy
current εµ, spatial spin current σµab, charge current jµ, and free energy current nµ get an
anomaly-induced contribution. All the other currents stay untouched by anomalies.

That the solutions (4.70) satisfy the Galilean adiabaticity equation (4.58), can either be
established via an explicit computation, or more easily via a bulk effective action

SA =

∫
B

V

dV
∧
(
P − P̂

)
, (4.71)

which generates the anomaly induced constitutive relations at the boundary. The adi-
abaticity equation follows from here by invoking the invariance of this action under an
infinitesimal symmetry variation along B.

4.3.4 Transcendental anomalies

We can extend the Class A constitutive relations (4.70) to include slightly more generic
solutions of the adiabaticity equation (4.58). To this end, like we did in section 2.3.3, we
extend our theory by introducing an auxiliary U(1)T global symmetry, with background
gauge field AT

m and chemical potential µT = T (ΛT
β + βmAT

m) = T . The associated shadow
gauge field is given by ÂT = AT + TV . Having done that, we can use the respective field
strength FT

mn to write down new terms in the anomaly polynomial. Unlike the relativistic
case, however, we can further involve terms in the anomaly polynomial made out of the
Chern classes of Ω = du. The shadow field corresponding to u is given by û = u+ µmV ,
with the property that βmûm = 0. There is no analogue of this in relativistic hydrodynamics.
Finally, the full thermal anomaly polynomial for this enlarged theory is given as

PT = P + PHV , PHV = u ∧
∑
j≥1

(F T)
∧j ∧PHV,j , (4.72)

where P is the original anomaly polynomial made out of F and R, while PHV,j are
(d+ 2− 2j)-rank anomaly polynomials which can in addition involve Ω. Note that since
we now have a preferred vector field um, we have used it to define the anomaly polynomials
instead of an arbitrary vector field vm used in section 4.1.4.

Now, we can use the mechanism outlined in the previous subsection to generate a
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particular solution for the adiabaticity equation of the enlarged theory

DmN
m −N⊥H − J⊥TH

= Tm
a δBe

a
m + Σma

bδBC
b
ma + Jm · δBAm + Jm

T δBA
T
m + Jm

Ω δBum + EiδBϕi

=
(
Tm

a + Jn
ΩPnau

m + Jm
Ωua

)
δBe

a
m

+ Σma
bδBC

b
ma + Jm · δBAm + Jm

T δBA
T
m + EiδBϕi. (4.73)

In the second step, we have expanded δBum = (Pmau
n + δnmua) δBe

a
n. Various Hall currents

are now being defined with respect to the thermal anomaly polynomial PT, in particular

?(d+2)JTH =
∂PT

∂F T
= u ∧

∑
j≥1

j(F T)
∧(j−1) ∧PHV,j ,

?(d+2)JΩH =
∂PT

∂Ω
= u ∧

∑
j≥1

(F T)
∧j ∧

∂PHV,j

∂Ω
. (4.74)

On the other hand, we have defined the free energy Hall current to be

?(d+2)NH =
1

T
?(d+2) (µΣ a

bΣH
b
a + µ · JH + µmJΩH) . (4.75)

In the limit that we take FT
mn → 0, JΩH vanishes and NH takes its original unextended

form. The quantity δBAT
m = βnFT

nm also vanishes. With these simplifications, we can show
that the extended adiabaticity equation reduces to

DmN
m − J⊥TH −N⊥H

=
(
Tm

a + Jn
ΩPnau

m + Jm
Ωua

)
δBe

a
m + Σma

bδBC
b
ma + Jm · δBAm + EiδBϕi, (4.76)

This is almost the form of the adiabaticity equation that we require for our original theory,
except for the residual ?(d+2)JTH = u ∧PHV,1 piece. Note that ?(d+2)JTH is closed, as its
derivative does not have any component along V m. If it also happens to be exact, we can
absorb it into the free energy current. To this end, we can use the fact that there exists a
gauge-non-invariant IHV,1 such that dIHV,1 = PHV,1, and therefore

?(d+2)JTH = u ∧ dIHV,1 = −d (u ∧ IHV,1)− u ∧Ω ∧ ιV IHV,1. (4.77)

Here ιV denotes the interior product along V m. If we work in the transverse gauge for
the null isometry, i.e. ΛV = ΛΣ

V = 0, where ιVA = ιVC = 0, we can always ensure the
last piece to vanish as long as PHV,1 has at least one instance of F or R. In that case,
?(d+2)JTH is, in fact, exact. However, if it is purely made out of Ω, i.e. PHV,1 = Ω∧d/2,
the respective term decisively does not vanish

u ∧Ω ∧ ιV IHV,1 = −u ∧Ω∧d/2 6= 0. (4.78)

Consequently, to generate constitutive relations for our Galilean system of interest, we are
not allowed to have the term u∧FT ∧Ω∧d/2 in the thermal anomaly polynomial PT. With
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this taken care of, we can rewrite eq. (4.76) into

Dm
(
Nm − ?(d+1) (u ∧ IHV,1)m

)
−N⊥H

=
(
Tm

a + Jn
ΩPnau

m + Jm
Ωua

)
δBe

a
m + Σma

bδBC
b
ma + Jm · δBAm + EiδBϕi, (4.79)

which is precisely the form that we expect for our original theory. Therefore, we can use
the particular solutions of the extended adiabaticity equation to generate new solutions of
our original adiabaticity equation.

Let us now return to the actual solutions. Following the procedure of the previous
subsection, we note that the P part of the thermal anomaly polynomial PT simply generates
the Class A constitutive relations as before. On the other hand, the PHV part generates
the new Class HV constitutive relations. Let us denote the Hall currents defined using PHV

with the wrapper ( )HV
. This allows us to define the analogues of eq. (4.69) for Class HV

in FT
mn → 0 limit

?ΣPHV
= − V

dV
∧ ?(d+2)(Σ̂H)HV

∣∣∣
F T→0

, ?JPHV
= − V

dV
∧ ?(d+2)(ĴH)HV

∣∣∣
F T→0

,

?JTPHV
=
V

dV
∧ ?(d+2)

(
(JTH)HV

− (ĴTH)HV

) ∣∣∣
F T→0

,

?JΩPHV
= − V

dV
∧ ?(d+2)(ĴΩH)HV

∣∣∣
F T→0

?qPHV
=

V

(dV )∧2
∧
(
P̂HV − TdV ∧ ?(d+2)

(
(N̂H)HV

+ (ĴTH)HV

)) ∣∣∣
F T→0

. (4.80)

In terms of these, the Class HV constitutive relations are given as

(Tm
a )HV

= qmPHV
Va + Jm

ΩPHV
ua + Jn

ΩPHV
Pnau

m,

(Σmab)HV
= Σmab

PHV
, (Jm)HV

= Jm
PHV

,

(Nm)HV
= Jm

TPHV
+

1

T

(
−qmPHV

+ µΣ·Σm
PHV

+ µ·Jm
PHV

+ µmJ
m
ΩPHV

)
− ?(d+1) (u ∧ IHV,1)m ,

(4.81)

along with (Ei)HV
= 0. The associated entropy current, like the relativistic case, is

non-trivial in Class HV

(Jm
S )HV

= Jm
TPHV

. (4.82)

In fact, in contrast to Class A, all the currents, except the temporal spin current τµa, get a
contribution form Class HV.

The Class HV constitutive relations satisfy the non-anomalous version of the Galilean
adiabaticity equation (4.58). It can be verified by noting that these constitutive relations
can be generated from the boundary variation of a bulk effective action

SHV = −
∫
B

V

dV
∧ P̂HV

∣∣∣
F T→0

. (4.83)

The non-anomalous adiabaticity equation follows by making use of the invariance of this
effective action under an infinitesimal variation along B.
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Before closing the subsection, let us make an interesting observation about the torsion-
less case. Because, 2∂[mVn] = Ta

mnVa, the 2-form dV = 0 on torsion-less backgrounds.
Also, V ∧ F̂ T = TV ∧ dV = 0. It follows that all the terms in the extended anomaly
polynomial that have more than two instances of F T (i.e. j > 2) do not contribute to the
Class HV constitutive relations at all. So, for torsionless null hydrodynamics, the Class HV

anomaly polynomial simplifies to

PHV = u ∧ F T ∧PHV,1 + u ∧ F T ∧ F T ∧P(d−2)
HV,2

, (4.84)

which is characterised by far less number of constants than the full anomaly polynomial.
This should be contrasted with the relativistic case, where no such simplification happens
in the torsion-less limit.

4.3.5 Classification of hydrodynamic transport

Having discussed two particular classes of solutions, we are now ready to exhaust the most
generic solutions of the Galilean adiabaticity equation. As the analysis is an exact analogue
of our relativistic discussion in section 2.3, we will be brief. Denoting the hydrodynamic
constitutive relations as C and the non-hydrodynamic fields as Φ given in eq. (2.54), which
are seen as vectors in a hybrid vector space V, the Galilean adiabaticity equation (4.58)
can be expressed in a compact form

DmN
m = N⊥H + C · δBΦ + ∆, ∆ ≥ 0. (4.85)

As this equation has the exact same structure as its relativistic counterpart in eq. (2.55), we
can follow through the same discussion for classifying all of its solutions. To summarise, the
hydrodynamic constitutive relations satisfying eq. (4.85) can be classified into six distinct
classes:

• Hydrostatic sector: In this sector, constitutive relations and free energy current
are constructed out of independent tensor structures that, or any of their linear
combinations, do not vanish in a hydrostatic configuration. That is to say that they
cannot contain an instance of “δB”. They are classified into three classes:

1. Class A (anomaly induced transport): These constitutive relations are
induced by the anomalies in our symmetries. They are completely fixed in terms
of the anomaly polynomial, which in turn is characterised by a set of constant
anomaly coefficients. See section 4.3.3.

2. Class HV (hydrostatic vector transport): These are the non-anomalous
hydrostatic constitutive relations whose corresponding free-energy current flows
transverse to βm and V m. They are also completely determined up to some
arbitrary constants. See section 4.3.4.

3. Class HS (hydrostatic scalar transport): These are the hydrostatic consti-
tutive relations whose free energy current has a component that flows along βm.
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They are characterised by a hydrostatic scalar density N via the formula given
in eq. (2.74). See section 2.3.4.

• Non-hydrostatic sector: In this sector, constitutive relations and free energy
current are made out of independent tensor structures that vanish in a hydrostatic
configuration. That is to say that they involve at least one instance of “δB”. They are
classified into two classes:

4. Class D (non-dissipative transport): These are the non-hydrostatic consti-
tutive relations that do not cause any production of entropy. They are completely
determined by Dn|n≥0 ∈ V×V with D

T
n = −(−)nDn. See section 2.3.5.

5. Class D (dissipative transport): These are the constitutive relations which
are solely responsible for the production of entropy. They are completely
determined by Dn|n≥0 ∈ V×V with D

T
n = (−)nDn. See section 2.3.5.

• Finally, we also have a set of trivial solutions to the adiabaticity equation

6. Class S (entropy transport): This class contains solutions of the adiabaticity
equation with vanishing constitutive relations but non-trivial free energy and
entropy transport. These include Nm ∼ NV V m +DnX

mn + 1
2Tm

nrX
r for a scalar

NV and an antisymmetric tensor Xmn, for which DmN
m is trivially zero. The

remainder of the class is completely characterised by a set of matrices Smn|m,n≥1

with ST
mn = Snm. See section 2.3.6.

The Class S constitutive relations are not genuine hydrodynamic transport. They
merely characterise the multitude of entropy currents which satisfy the second law
for the same set of constitutive relations.

This finishes our discussion of the null/Galilean fluid constitutive relations and their
classification following from the second law of thermodynamics. In the next chapter, we
study some specific examples of Galilean hydrodynamics to illustrate how this construction
works.
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5 | Applications: Galilean hydrodynamics

In chapter 4 we formulated a new framework to study Galilean hydrodynamics. In this
chapter, we explore how it works in practice. We first study ordinary Galilean fluids at one-
derivative order and later extend to Galilean superfluids and Galilean fluids with surfaces.
For concreteness, we focus on d = 4, which means that our null fluids are 5-dimensional,
but Galilean fluids are 4-dimensional.

5.1 | Galilean fluids

Our first example are the ordinary Galilean fluids which we derived heuristically in sec-
tion 1.1.3. They do not possess any additional gapless modes, neither do that have any
spin-current or torsion. The absence of background torsion requires us to set ∂[mVn] = 0

in our final results. These Galilean fluids are the most standard examples of Galilean
hydrodynamics, or hydrodynamics at large. The results obtained here can, therefore, be
verified with a standard text like [10].

5.1.1 Ideal null fluids

Let us start with the zero derivative order ideal null fluids. Class HS is the only non-empty
class at this order, which is characterised by a hydrostatic scalar density N , given by an
arbitrary scalar P (T, µ, µm) as a function of the temperature T , chemical potential µ, and
mass chemical potential µm of the fluid. The δB variations of these ideal order scalars are
given as

δBT = TV (mun)δBgmn, δB
µm

T
=

1

2T
umunδBgmn, δB

µ

T
=

1

T
umδBAm. (5.1)

Using these, we can compute the divergence of the ideal order free energy current to be

Dµ (Pβm) =
1√
−g
δB
(√
−g P

)
=

1

2
PgmnδBgmn +

∂P

∂T
δBT +

∂P

∂µm
δBµm +

∂P

∂µ
· δBµ,

=
(
Rumun + 2Eu(mV n) + PPmn

)1

2
δBgmn +Qum · δBAm, (5.2)

where Pmn = gmn + 2u(mV n) and we have defined

S =
∂P

∂T
, R =

∂P

∂µm
, Q =

∂P

∂µ
, E = T

∂P

∂T
+ µm

∂P

∂µm
+ µ · ∂P

∂µ
− P. (5.3)
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Comparing eq. (5.2) with eq. (2.74), we can easily read out the ideal null fluid constitutive
relations, free energy, and entropy currents

Tmn = Rumun + 2Eu(mV n) + PPmn +O(∂), Jm = Qum +O(∂),

Nm =
1

T
Pum +O(∂), Jm

S = Sum +O(∂). (5.4)

Using eq. (5.3), we can also show that the coefficients appearing here follow a set of
thermodynamic relations

Gibbs-Duhem equation: dP = S dT +R dµm +Q · dµ,

Euler scaling relation: E + P = S T +Rµm +Q · µ,

First law of thermodynamics: dE = T dS + µmdR+ µ · dQ. (5.5)

Similar to the ideal relativistic fluids, we see that the ideal null fluids also are completely
characterised by their equation of state P = P (T, µ, µm). We have arrived at the null fluid
constitutive relations that we derived in section 1.1.3.

Having worked out the null fluid constitutive relations, we can perform the null reduction
prescribed in section 4.3.2 and read out the respective ideal Galilean fluid constitutive
relations in an arbitrary frame of reference. We find

εµ =

(
E +

1

2
Ruaua

)
uµ + Pūµ +O(∂), pµa = Ruµua + Pe µ

a +O(∂),

ρµ = Ruµ +O(∂), jµ = Quµ +O(∂),

nµ =
1

T
Puµ +O(∂), sµ = Suµ +O(∂). (5.6)

From here we can identify E as the energy density, R as the mass density, P as the isotropic
pressure, Q as the charge density, and S as the entropy density of the Galilean fluid. Note
that nµpµa = ρµeaµ = Rua, therefore the boost Ward identity in eq. (4.37) is trivially
satisfied with τµa = 0. The same is true for the rotation Ward identity as well, because the
stress tensor is symmetric, i.e. pµ[ae

b]
µ = 0. This is characteristic of torsionless Galilean

hydrodynamics.

5.1.2 One-derivative corrections

We are interested in the possible one-derivative corrections that these constitutive relations
can admit. With this in mind, let us make some definitions which are useful in the following
discussion

Θ = Dmu
m, σmn = Pm〈rP s〉nDmun = PmrP ns

(
D(mun) −

1

3
PrsΘ

)
,

am = unDnu
m, ωm = εmnrstVnur∂sut,

Em = Fmnun, Bm =
1

2
εmnrstVnurFst. (5.7)
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PT Tmn Jm Nm

C u ∧ F ∧ F ∧ F 6µ2C V (mBn) 6µC Bm 3µ
2

T C B
m

C2 u ∧ FT ∧ FT ∧ F 2C2T
2V (mBn) C2TB

m

C0 u ∧ FT ∧ F ∧ F 4TµC0V
(mBn) 2TC0B

m
2µC0B

m

−1
2C0ε

mnrstunArFst
+1

3C0ε
mnrstunArAsAt

C ′2 u ∧ FT ∧ FT ∧Ω 2C ′2T
2V (mωn) C ′2Tω

m

C ′0 u ∧ FT ∧Ω ∧ F
2TµmC

′
0V

(mBn)

+2TµC ′0V
(mωn)

+2TC ′0u
(mBm)

TC ′0ω
m µC ′0ω

m + µmC
′
0B

m

−1
2C
′
0ε

mnrstunArΩst

Table 5.1: One-derivative Class A and HV constitutive relations for a (4+1)-dimensional null
fluid. Lie algebra traces are understood in columns PT, Tmn, and Jm. Note that the C0 and C ′

0

terms is in the anomaly polynomial are linear in FT, hence the associated free energy current is not
gauge-invariant.

Angular brackets denote a traceless symmetric combination. Note that Em and Bm

characterise the components of electric and magnetic fields in the fluid frame of reference.
In lab frame, these definitions would be slightly different. We can also null reduce these
definitions to obtain their respective Newton-Cartan versions

Θ = D̃µu
µ, σµν = pµρpνσ

(
pτ(ρD̃σ)u

τ − 1

3
pρσΘ

)
,

aµ = uνD̃νuµ, ωµ = −εµνρσnν∂ρuσ,

Eµ = Fµνu
ν , Bµ = −1

2
εµνρσnνFρσ. (5.8)

To find the derivative corrections, let us start with the hydrostatic sector. Just like
the relativistic case, Class HS is empty, while there are non-trivial Class A and Class HV

constitutive relations. They are collectively characterised by a 7-rank thermal anomaly
polynomial

PT = C u ∧ tr[F ∧ F ∧ F] + C2 u ∧ FT ∧ FT ∧ trF + C0 u ∧ FT ∧ tr[F ∧ F ]

+ C ′2 u ∧ FT ∧ FT ∧Ω + C ′0 u ∧ FT ∧Ω ∧ trF . (5.9)

Note that we have not included a term proportional to u∧FT ∧Ω∧Ω, as it is not allowed
by the adiabaticity equation; see the discussion around eq. (4.76). We have also not included
the term u ∧ FT ∧ FT ∧ FT, which does not contribute on torsion-less null backgrounds.
Following sections 4.3.3 and 4.3.4, we can now easily read out the respective constitutive
relations. The results have been summarised in table 5.1.

Next, let us consider the non-hydrostatic constitutive relations. Since the definition of
“δB” already contains a derivative, at one-derivative order the only relevant non-hydrostatic
constitutive relations are parametrised by C0. It can be split into a symmetric part D0

and an anti-symmetric part D0 according to eq. (2.80). Using the tensor structures we
have available, we can write down 5 possible terms in D0 making up Class D; they are the
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D0 Tµν Jµ

−Tζ
(
PmnP rs ·
· ·

)
−ζ PmnΘ

−Tη
(
Pm〈rP s〉n ·
· ·

)
−η σmn

−4Tκ
(
V (mP n)(rV s) ·

· ·

)
−2κV (mP n)r 1

T ∂rT

−2TκQ

(
· V (mP n)r

V (rP s)m ·

)
−2κQ V

(mP n)r
(
TDr

µ
T − Er

)
−κQPmn 1

T ∂nT

−Tσ
(
· ·
· Pmr

)
−σPmn

(
TDn

µ
T − En

)
Table 5.2: One-derivative Class D constitutive relations for a (4 + 1)-dimensional null fluid.

D0 Tµν Jµ

−2TκQ

(
· V (mP n)r

−V (rP s)m ·

)
−2κQ V

(mP n)r
(
TDr

µ
T − Er

)
κQP

mn 1
T ∂nT

Table 5.3: One-derivative Class D constitutive relations for a (4 + 1)-dimensional null fluid.

bulk viscosity ζ, shear viscosity η, thermal conductivity κ, thermo-electric conductivity
κQ, and electric conductivity σ. The results have been summarised in table 5.2. On the
other hand, there is just one transport coefficient in Class D, denoted by κQ, which is
another kind of thermo-electric conductivity. The corresponding constitutive relations have
been summarised in table 5.3. Finally, the quadratic form ∆ associated with the Class D
constitutive relations is given by

T∆ = ζΘ2 + ησmnσmn + σPmn
(
TDm

µ

T
− Em

)(
TDn

µ

T
− En

)
+ 2κQP

mn 1

T
∂mT

(
TDn

µ

T
− En

)
+ κPmn 1

T 2
∂mT∂nT. (5.10)

Demanding it to be positive semi-definite yields a set of 4 inequality constraints among the
5 dissipative transport coefficients

ζ ≥ 0, η ≥ 0, σ ≥ 0, κ ≥ κ2
Q/σ. (5.11)

These are the same as we found in section 1.1.3.

In summary, the constitutive relations of a null fluid up to the first order in derivatives
are given as

Tmn = Rumun + 2(E + P )u(mV n) + Pgmn − η σmn − ζ PmnΘ

− 2V (mP n)r
(
κ

1

T
∂rT + (κQ + κQ)

(
TDr

µ

T
− Er

))
+ 2

(
3µ2C + C2T

2 + 2TµC0 + TµmC
′
0

)
V (mBn) + 2

(
C ′2T

2 + TµC ′0
)
V (mωn)

+ 2TC ′0u
(mBn) +O(∂2),

Jm = Qum − (κQ − κQ)Pmn 1

T
∂nT − σ Pmn

(
TDn

µ

T
− En

)
+ (6µC + 2TC0)Bm + TC ′0ω

m +O(∂2). (5.12)
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The associated free energy and entropy currents are

Nm =
1

T
Pum +

(
3
µ2

T
C + C2T + 2µC0 + µmC

′
0

)
Bm +

(
TC ′2 + µC ′0

)
ωm

− C0ε
mnrstun

(
1

2
ArFst −

1

3
ArAsAt

)
− 1

2
C ′0ε

mnrstunArΩst +O(∂2),

Jm
S = Sum +

(µm

T
κ+

µ

T
(κQ − κQ)

)
Pmn 1

T
∂nT

+
(µ
T
σ +

µm

T
(κQ + κQ)

)
Pmn

(
TDn

µ

T
− En

)
+
(
2C2T + 2µC0 + µmC

′
0

)
Bm +

(
2TC ′2 + µC ′0

)
ωm

− C0ε
mnrstun

(
1

2
ArFst −

1

3
ArAsAt

)
− 1

2
C ′0ε

mnrstunArΩst +O(∂2). (5.13)

They satisfy the second law of thermodynamics, provided that the ideal order transport
coefficients satisfy the thermodynamic relations and the first order dissipative transport
coefficients satisfy their respective inequalities. Finally, performing the null reduction yields
us the Galilean fluid constitutive relations

ρµ = Ruµ + TC ′0B
µ +O(∂2),

εµ =

(
E +

1

2
Ruaua + TC ′0B

ν ūν

)
uµ + Pūµ − η σµν ūν − ζ Θūµ

− hµν
(
κ

1

T
∂νT + (κQ + κQ)

(
TDν

µ

T
− Eν

))
+
(
C ′2T

2 + TµC ′0
)
ωµ

+

(
3µ2C + C2T

2 + 2TµC0 + TµmC
′
0 +

1

2
TC ′0u

aua

)
Bµ +O(∂2)

pµa = Ruµua + Peµa − η σµνeνa − ζ Θeµa + TC ′0 (uµBa +Bµua) +O(∂2),

jµ = Quµ − (κQ − κQ)hµν
1

T
∂νT − σ hµν

(
TDν

µ

T
− Eν

)
+ (6µC + 2TC0)Bµ + TC ′0ω

µ +O(∂2). (5.14)

If we instead wanted these results in the mass frame, we could perform a frame transformation
uµ → uµ − TC ′0Bµ/R. In this frame, the mass current is just ρµmass = Ruµ, while the other
currents look like

εµmass =

(
E +

1

2
Ruaua

)
uµ + Pūµ − hµν

(
κ

1

T
∂νT + (κQ + κQ)

(
TDν

µ

T
− Eν

))
+ ξ′BB

µ + ξ′ωω
µ − η σµν ūν − ζ Θūµ +O(∂2),

pmass
µ
a = Ruµua + Peµa − η σµνeνa − ζ Θeµa +O(∂2),

jµmass = Quµ − (κQ − κQ)hµν
1

T
∂νT − σ hµν

(
TDν

µ

T
− Eν

)
+ ξBB

µ + ξωω
µ +O(∂2). (5.15)



106 | Chapter 5. Applications: Galilean hydrodynamics

Here we have defined the parity-odd transport coefficients

ξB = 6µC + 2TC0 −
Q

R
TC ′0, ξω = TC ′0,

ξ′B = 3µ2C + C2T
2 + 2TµC0 −

E + P − µmR

R
TC ′0, ξ′ω = C ′2T

2 + TµC ′0. (5.16)

This is the standard form of the first order Galilean hydrodynamics, which was first derived in
full generality in [3]. Note that these constitutive relations still satisfy nµpµa = ρµeaµ = Rua

and pµ[ae
b]
µ = 0, so the boost and rotation Ward identities are identically satisfied.

5.2 | Galilean superfluids

In this example, we study Abelian Galilean superfluids. These are essentially Galilean
fluids with a spontaneously broken U(1) symmetry. The associated Goldstone phase field
ϕ serves as a gapless mode in the hydrodynamic description. The first theory of Galilean
superfluid dynamics was written down by London [129] and was later elaborated upon by
Landau and Tisza [130, 131], to describe the phenomenology of liquid 2He. The ideal order
results can be found in [10], which we have extended to include one-derivative corrections
in our work [4]. The results presented here have been taken directly from [4].

5.2.1 Goldstone modes and Josephson equation

Under an infinitesimal symmetry transformation parametrised by X = (χm,Λχ), the
Goldstone mode ϕ transforms as δXϕ = χm∂mϕ− Λχ. We can define a covariant superfluid
velocity by a taking a derivative of ϕ, leading to

ξm = ∂mϕ+Am, (5.17)

which satisfies 2∂[mξn] = Fmn. We demand δVϕ = V m∂mϕ − ΛV = −1. The value −1

is purely a choice; different choices yield the same results up to a hydrodynamic frame
transformation. With the current choice, we can make a direct comparison of our results
with Landau [10]. Due to the compatibility condition of the connection Am, it follows that

V mAm + ΛV = 0 =⇒ V mξm = −1. (5.18)

Let us call the equation of motion for ϕ to be

K ≈ 0. (5.19)

Following eq. (4.58), we can write down an adiabaticity equation for null superfluids

DmN
m =

1

2
TmnδBgmn + JmδBAm +KδBϕ+ ∆, ∆ ≥ 0. (5.20)
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where
δBϕ = βm∂mϕ− Λβ =

1

T
(umξm + µm − µ) . (5.21)

Recycling our relativistic discussion from section 3.2.1, we can solve the adiabaticity
equation (5.20) at the zeroth order in derivatives and get the Josephson equation for null
superfluids

K = −αδBϕ ≈ 0 =⇒ umξm ≈ µ− µm +O(∂). (5.22)

Note that this equation is slightly different compared to relativistic superfluids, due to
the presence of the mass chemical potential µm on the right hand side. This is due to the
fact that in a Galilean superfluid, a linear combination of U(1)-mass and U(1)-internal
symmetry is broken, while the other linear combination remains unbroken. In the null
reduced form, it equivalently implies

−µs −
1

2
hµνζ

µζν ≈ µ− µm +O(∂), (5.23)

where ζµ = ξµ − uµ is the relative velocity of the superfluid component with respect to
the ordinary fluid component. The scalar µs = −1

2ξ
mξm, on the other hand, is called

the superfluid potential. In practise, the Josephson equation can be used to eliminate
one of the chemical potentials. In [10] e.g., Landau is working in a setup with no U(1)

chemical potential, i.e. µ = 0, and has implicitly eliminated the mass chemical potential
via µm ≈ µs + 1

2hµνζ
µζν . Care should be taken when comparing the results, because what

we are calling µs is denoted by µ in [10].

5.2.2 Ideal null superfluids

Let us now work out the ideal null superfluids. As always, Class HS is the only non-
empty class for ideal null superfluids as well. However, the hydrostatic scalar density
N characterising Class HS is given by a function of four variables P (T, µ, µm, µs). We
have omitted the only other possible ideal order scalar umξm in the functional dependence,
because it is not independent on-shell due to the Josephson equation. We have already
provided the δB variations of T , µm, and µ in eq. (5.1); for µs we find

δBµs =
1

2
ξmξnδBgµν − ξmδBAm − ξmDmδBϕ. (5.24)

We can now compute the divergence of the free energy current

Dm (βmP ) =
1√
−g
δB
(√
−gP

)
=

1

2
PgµνδBgµν +

∂P

∂T
δBT +

∂P

∂µ
δBµ+

∂P

∂µm
δBµm +

∂P

∂µs
δBµs,

=
(
Rumun + 2Eu(mV n) + PPmn +Rsξ

mξn
)1

2
δBgmn

+ (Qum −Rsξn) δBAm + Dm (Rsξ
m) δBϕ−Dm (Rsξ

mδBϕ) , (5.25)
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where we have defined

S =
∂P

∂T
, R =

∂P

∂µm
, Q =

∂P

∂µ
, Rs =

∂P

∂µs
,

E = T
∂P

∂T
+ µm

∂P

∂µm
+ µ

∂P

∂µ
− P. (5.26)

Comparing eq. (5.25) with eq. (2.74), we can read out the ideal null superfluid constitutive
relations, free energy, and entropy currents

Tmn = Rumun + 2(E + P )u(mV n) + Pgmn +Rsξ
mξn +O(∂),

Jm = Qum −Rsξm +O(∂),

K = −αδBϕ+ Dm(Rsξ
m) +O(∂),

Nm =
1

T
Pum + δBϕRsξ

m +O(∂),

Jm
S = Nm −

(
Tmnβn +

µ

T
Jm
)

= Sum +O(∂). (5.27)

In the entropy current, we have ignored a term proportional to V m, as it does not contribute
to the second law. Due to the definitions (5.26), the coefficients appearing above satisfy
the thermodynamic relations

Gibbs-Duhem equation: dP = SdT +Qdµ+Rdµm +Rsdµs,

Euler scaling relation: E + P = ST +Qµ,

First law of thermodynamics: dE = TdS + µdQ+ µmdR−Rsdµs. (5.28)

Using eq. (5.27), we can work out the first correction to the Josephson equation, leading to

umξm = µ− µm +
T

α
Dm (Rsξ

m) +O(∂). (5.29)

We can perform the null reduction on the ideal null superfluid constitutive relations to
obtain their respective Galilean form

ρµ = Ruµ +Rsξ
µ +O(∂),

εµ =

(
E +

1

2
Ruaua

)
uµ +Rsξ

µ

(
µs +

1

2
ξaξa

)
+ Pūµ +O(∂)

pµa = Ruµua + Pe µ
a +Rsξ

µξa +O(∂), jµ = Quµ −Rsξµ +O(∂),

nµ =
1

T
Puµ +O(∂), sµ = Suµ +O(∂). (5.30)

Like ordinary Galilean fluids, P is the isotropic pressure of the superfluid, while R, E, Q,
and S are its mass, energy, charge, and entropy densities respectively. The coefficient Rs
can be identified with the superfluid density. Note that the linear combination ρµ + jµ does
not have any Rs dependence, because the associated linear combination of U(1)-mass and
U(1)-internal symmetry is unbroken. The Josephson equation, on the other hand, becomes

−µs −
1

2
hµνζ

µζν = µ− µm +
T

α
D̃µ (Rsξ

µ) +O(∂). (5.31)
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In the limit µ = 0, these results can be compared with their textbook version in [10].

5.2.3 One-derivative corrections

Let us talk about one-derivative corrections to these constitutive relations. In table 5.4,
we have provided a list of one-derivative tensor structures that we require in the following
discussion. Note that this list is not complete; it only contains terms that show up in our
calculation. We have defined ζm = Pmnξn and Pmn

ζ = Pmn− ζmζn/ζ2, along with their null
reduced form ζµ = ξµ − uµ and pµνζ = pµν − ζµζν/ζ2.

Beginning with the hydrostatic sector, we note that the Class HS constitutive relations
are now characterised by a hydrostatic scalar density N given as

N = P + f1 S1 + f2 S2 + f3 S3 + g1 S̃e,1 + g2 S̃e,2 + g3 S̃e,3. (5.32)

We have chosen not to include the first order hydrostatic scalars: Dmξ
m and ξm∂mµs, as

the former is a total derivative and the latter can be exchanged for Dm(Rsξ
m), which is

not hydrostatic due to the Josephson equation. We define the derivatives of the transport
coefficients appearing above as

dfi =
1

T
αE,idT + TαRn,id

µm

T
+ TαQ,id

µ

T
− 1

2

(
αRs,i −

fi
2µ̂s

)
dζ2,

dgi =
1

T
α̃E,idT + T α̃Rn,id

µm

T
+ T α̃Q,id

µ

T
− 1

2

(
α̃Rs,i −

gi
2µ̂s

)
dζ2, (5.33)

along with

αE,i + fi = αS,iT + αQ,iµ+ αRn,iµm, α̃E,i + gi = α̃S,iT + α̃Q,iµ+ α̃Rn,iµm. (5.34)

By performing a δB variation of N and comparing it to eq. (2.74), we can read out the
respective Class HS constitutive relations. The results have been summarised in table 5.5.
Now for Class A and Class HV, we can directly import the results from the respective
ordinary fluid calculation in table 5.1. We should note, however, that due to the presence
of a “gauge fixed” version of the gauge field ξm = Am + ∂mϕ, three constants in Class HV,
i.e. C2, C0, and C ′0, can be removed by shifting g1, g2, and g3. Therefore, only the C ′2 term
in Class HV and the C term in Class A remain independent for a Galilean superfluid.

Finally, let us consider the non-hydrostatic sector. We need to write the most generic
expression for C0, which decomposes into a symmetric part D0 and an antisymmetric part
D0. They correspond to Class D and Class D constitutive relations respectively. There are
a total of 20 transport coefficients in Class D: [β[ij]]5×5, [κ[ij]]3×3, [κ̃(ij)]3×3, and η̃. On the
other hand, there are 25 transport coefficients in Class D: [β(ij)]5×5, [κ(ij)]3×3, [κ̃[ij]]3×3,
and η, including β55 = α/T discussed in section 5.2.1. The results have been summarised
in tables 5.6 and 5.7. The associated quadratic form ∆ takes the form

T∆ =

5∑
i,j=1

Siβ(ij)Sj +

 3∑
i,j=1

V m
i κ(ij)Vj,m +

3∑
i,j=1

V m
i κ̃[ij]Ṽj,m

+ ησmnσmn. (5.35)
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Null background Newton-Cartan background

Non-hydrostatic — on-shell independent

S1
T
2 P

mn
ζ δBgmn Pmn

ζ Dmun pζ
µ
νD̃µu

ν

S2 TV mζnδBgmn ζm
(

1
T ∂mT + unHnm

)
ζµ
(

1
T ∂µT + uνHνµ

)
S3

T
2 ζ

mζnδBgmn ζmζnDmun ζµζνD̃µu
ν

S4 TζmδBAm ζm
(
T∂m

µ
T − Em

)
ζµ
(
T∂µ

µ
T − Eµ

)
S5 TδBϕ umξm + µm − µ −1

2ζ
aζa − µs + µm − µ

V m
1 TPmr

ζ V nδBgrn Pmn
ζ

(
1
T ∂nT + urHrn

)
pµνζ

(
1
T ∂νT + uρHρν

)
V m

2 TPmr
ζ ζnδBgrn 2Pmr

ζ ζnD(run) 2pµνζ ζσpρ(σD̃ν)u
ρ

V m
3 TPmn

ζ δBAn Pmn
ζ

(
T∂n

µ
T − En

)
pµνζ

(
T∂ν

µ
T − Eν

)
σmn
ζ

T
2 P

r〈m
ζ P

n〉s
ζ δBgrs Pmr

ζ P ns
ζ

(
D(rus) − 1

2P
ζ
rsS1

)
pµρζ p

νσ
ζ

(
pτ(ρD̃σ)u

τ − pζρσ
2 S1

)
Ṽ m

1 εmnrstVnurζsV1,t −εµνρσnνζρV1,σ

Ṽ m
2 εmnrstVnurζsV2,t −εµνρσnνζρV2,σ

Ṽ m
3 εmnrstVnurζsV3,t −εµνρσnνζρV3,σ

σ̃mn
ζ P

l(m
ζ εn)rstpVrusζtσ

ζ
pl −pλ(µ

ζ εµ)ρστnρζσστλ

Non-hydrostatic — on-shell dependent

S6 TumV nδBgmn
1
T u

m∂mT
1
T u

µ∂µT
S7 TumδBAm Tum∂m

µ
T Tuµ∂µ

µ
T

S8
T
2 u

munδBgmn Tum∂m
µm
T Tuµ∂µ

µm
T

S9 TumζnδBgmn ζm
(
T∂m

µm
T + am

)
ζµ
(
T∂µ

µm
T + aµ

)
V m

4 TPmr
ζ unδBgrn Pmn

ζ

(
T∂n

µm
T + an

)
pµνζ

(
T∂ν

µm
T + aν

)
Ṽ m

4 εmnrstVnurζsV4,t −εµνρσnνζρV4,σ

Hydrostatic

Se,1
1
T ζ

m∂mT
1
T ζ

µ∂µT
Se,2 Tζm∂m

µ
T Tζµ∂µ

µ
T

Se,3 Tζm∂m
µm
T Tζµ∂µ

µm
T

V m
e,1

1
T P

mn
ζ ∂nT

1
T p

µν
ζ ∂νT

V m
e,2 TPmn

ζ ∂n
µ
T Tpµνζ ∂ν

µ
T

V m
e,3 TPmn

ζ ∂n
µm
T Tpµνζ ∂ν

µm
T

S̃e,1 TεmnrstζmVnur∂sut Tεµνρσnµζν∂ρuσ
S̃e,2

1
2Tε

mnrstζmVnurFst
T
2 ε
µνρσnµζνFρσ

S̃e,3
1
2Tε

mnrstζmVnurHst
T
2 ε
µνρσnµζνHρσ

Ṽ m
e,1 TPζ

m
kε

knrstVnur∂sut −Tpζµτετνρσnν∂ρuσ
Ṽ m
e,2

1
2TPζ

m
kε

knrstVnurFst −T
2 pζ

µ
τετνρσnνFρσ

Ṽ m
e,3 TPζ

m
kε

knrstξnur∂sut
Tpζ

µ
τετνρσζν∂ρuσ

+(µs + 1
2ζ
µζµ)Ṽ µ

e,1

Ṽ m
e,4

1
2TPζ

m
kε

knrstξnurFst

T
2 pζ

µ
τετνρσζνFρσ

+(µs + 1
2ζ
µζµ)Ṽ µ

e,2
...

...
...

Table 5.4: First order data for 5-dimensional null and 4-dimensional Galilean superfluids. Note
that for null fluids coupled to torsionless backgrounds, we must switch off Hmn, setting S2 = Se,1,
V m
1 = V m

e,1, and S̃e,3 = 0. However, in the intermediate steps, they are independent.
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N Tmn Jm

f1 Se,1

(
αRn,1u

mun+2αE,1V
(mun)+αRs,1λ

mn+f1P
mn
ζ

)
Se,1

−2f1ξ
(mV

n)
e,1 + 2f1ζ

(mV n)S6 − 2V (mun) 1
T Dr(Tf1ζ

r)

(αQ,1u
m − αRs,1ζm)Se,1
+f1V

m
e,1

f2 Se,2

(
αRn,2u

mun+2αE,2V
(mun)+αRs,2λ

mn+f2P
mn
ζ

)
Se,2

−2f2ξ
(mV

n)
e,2 + 2f2ζ

(mV n)S7

(αQ,2u
m − αRs,2ζm)Se,2
+f2V

m
e,2

−um 1
T Dr(Tf2ζ

r)

f3 Se,3

(
αRn,3u

mun+2αE,3V
(mun)+αRs,3λ

mn+f3P
mn
ζ

)
Se,3

−2f3ξ
(mV

n)
e,3 + 2f3ζ

(mV n)S8 − umun 1
T Dr(Tf3ζ

r)

(αQ,3u
m − αRs,3ζm)Se,3
+f3V

m
e,3

g1 S̃e,1

(
umunα̃Rn,1+2V (mun)α̃E,1+α̃Rs,1λ

mn+g1
ζmζn

ζ2

)
S̃e,1

+2u(mV n)g1Se,1 + 2u(mεn)krstDk (Tg1Vrusξt)

−2g1V
(mṼ

n)
e,3 − 2g1u

(mṼ
n)
e,1

(α̃Q,1u
m − α̃Rs,1ζm) S̃e,1
+g1Ṽ

m
e,1

g2 S̃e,2

(
umunα̃Rn,2+2V (mun)α̃E,2+α̃Rs,2λ

mn+g2
ζmζn

ζ2

)
S̃e,2

−2g4V
(mṼ

n)
e,4 − 2g2u

(mṼ
n)
e,2

(α̃Q,2u
m − α̃Rs,2ζm) S̃e,2
+g2Ṽ

m
e,2 +

εmnrstDn (Tg2Vrusξt)
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Table 5.5: One-derivative Class HS constitutive relations for a (3 + 1)-dimensional relativistic
superfluid. We have defined λmn = ζmζn + 2ζ(mun) − 2ζ(mV n)(urξr). Note that even thought S̃e,3
is zero on a torsionless background, its variation does lead to non-trivial constitutive relations.

Noting the identity

(εmnrstVrusζt) (εmklopV
luoζp) = ζ2Pζ

n
k, (5.36)

we can define a new basis for one-derivative vectorsV
′m

1

V ′m2

V ′m3

 =

V
m

1

V m
2

V m
3

+

0 a12 a13

0 0 a23

0 0 0


Ṽ

′m
1

Ṽ ′m2

Ṽ ′m3

 , κ′ij = κij + kij , (5.37)
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m

2

−Tη
(
P

m〈r
ζ P

s〉n
ζ · ·
· · ·· · ·

)
−η σmn

ζ

Table 5.6: One-derivative Class D constitutive relations for a (4 + 1)-dimensional null superfluid.
We have defined ε̃mn = εmnrstVrusζt. We have also included β55 = α/T in K for completeness.
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Table 5.7: One-derivative Class D constitutive relations for a (4 + 1)-dimensional null superfluid.
We have defined ε̃mn = εmnrstVrusζt.
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The rationale is that in this basis, the quadratic form ∆ can be arranged into a form which
can be made explicitly positive semi-definite

T∆ =
5∑

i,j=1

Siβ(ij)Sj +
3∑

i,j=1

V ′mi κ′(ij)V
′
j,m + ησmnσmn. (5.39)

Given T ≥ 0, the condition ∆ ≥ 0 implies that η ≥ 0 and the matrices [β(ij)]5×5 and
[κ′(ij)]3×3 have all non-negative eigenvalues. This gives us 9 inequalities among the 25
dissipative transport coefficients, while 16 remain completely arbitrary.

This finishes our discussion of the first order Galilean superfluid dynamics. Due to
their technical form, we have left the explicit constitutive relations in their null fluid form.
We can always perform the null reduction prescribed in section 4.2 and express them in
the Newton-Cartan language. For reference, we have null reduced all the one-derivative
superfluid data in table 5.4. The explicit null reduction of the constitutive relations can be
found in our paper [4].

5.3 | Galilean fluid surfaces

For the final example of this thesis, we consider the breaking of the spacetime translational
symmetry to form surfaces in a Galilean fluid. The discussion presented here is taken
from [6], and is a straight forward generalisation of our relativistic discussion in section 3.3.
We introduce a Goldstone mode f(x) corresponding to a broken momentum generator,
with the symmetry transformation δXf = χm∂mf . We require that V m∂mf = 0. We
also introduce a distribution functional θ(f), with properties similar to section 3.3: its
derivative θ′(f) is strictly positive and is only supported in a thin band around f = 0; all
the f -dependence in the constitutive relations comes via θ(f); the function f ∼ O(∂−1),
while the distribution θ(f) ∼ O(∂0). Derivatives of θ(f) can be characterised in terms of
the derivatives of the unit normal vector

zm = − ∂mf√
gmn∂mf∂nf

, (5.40)
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along with the distributions

δ̃(n)(f) = (−)n+1zm1 . . . zmn+1Dm1 . . .Dmn+1θ(f). (5.41)

Denoting the equation of motion for f by Y/
√
gmn∂mf∂nf ≈ 0, we can write the Galilean

adiabaticity equation as

DmN
m −N⊥H =

1

2
TmnδBgmn + JmδBAm +

Y δBf√
gmn∂mf∂nf

+ ∆, ∆ ≥ 0. (5.42)

In an exact correspondence with the relativistic results in section 3.3, up to one-derivative
order, this equation allows a set of Class HS constitutive relations parametrised by

N = θ(f)Pin(T, µ, µm) + θ̄(f)Pout(T, µ, µm)− δ̃(f)γ(T, µ, µm). (5.43)

Here θ̄(f) = 1−θ(f). In Class D we have a term like Y ∼ −αθ′(f)δBf for some non-negative
coefficient α. Plus, following section 5.1.2, we have two copies of Class D and D constitutive
relations η, ζ, κ, σ, κQ, and κQ, one on either side of the surface, and one copy of Class A
and Class HV constants. Together, they imply a set of constitutive relations

Tmn = θ(f)Tmn
in + θ̄(f)Tmn

out

+ δ̃(f)
(
Rsuru

mun + 2 (Esur − γ)u(mV n) − γ (gmn − zmzn)
)

+O(∂2),

Jm = θ(f)Jm
in + θ̄(f)Jm

out + δ̃(f)Qsuru
m +O(∂2),

Y = δ̃(f)
(α
T
umzm + (Pin − Pout)−Dm (γzm)

)
+O(∂2). (5.44)

The bulk contributions Tmn
in/out and Jm

in/out to the energy-momentum tensor and charge
current are taken directly from section 5.1.2. In addition, there are surface contributions to
the constitutive relations, which are basically ideal Galilean fluids living at the boundary,
with the negative of surface tension acting as a pressure.

Upon null reduction they imply the Galilean fluid constitutive relations in the Newton-
Cartan language

ρµ = θ(f)ρµin + θ̄(f)ρµout + δ̃(f)Rsuru
µ +O(∂2),

εµ = θ(f)εµin + θ̄(f)εµout + δ̃(f)

[(
Esur +

1

2
Rsuru

aua

)
uµ − γ (ūµ + zµvνzν)

]
+O(∂2),

pµa = θ(f)pin
µ
a + θ̄(f)pout

µ
a +Rsuru

µ − γ (e µ
a − zµza) +O(∂2)

jµ = θ(f)jµin + θ̄(f)jµout + δ̃(f)Qsuru
µ +O(∂2). (5.45)

Note that zµ = hµνzν along with the normalisation condition zµzνhµν = 1. On the other
hand, we get the Young-Laplace equation

uµzµ ≈ −
T

α

(
∆P − hµνD̃µ (γzν)

)
+O(∂), where ∆P = Pin − Pout, (5.46)

which is reminiscent of its relativistic incarnation. We see that the motion of the surface is
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governed by the balance of pressures inside and outside, and the surface tension term.

This finishes our discussion of Galilean fluids with surfaces. The generalisation of these
results to Galilean superfluids is quite straight forward and has been discussed in [6].
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6 | Outlook

In this thesis, we discussed the principles of relativistic and Galilean hydrodynamics. We
built upon the fundamental considerations of symmetries, thermal field theories, and
thermodynamics, and presented a universal framework for hydrodynamics that allows for
arbitrary gapless modes in its spectrum. This brings together a variety of otherwise distinct
hydrodynamic treatments like superfluid dynamics, surface fluid dynamics, magnetohy-
drodynamics, and obviously ordinary fluid dynamics. We argued that the time-evolution
of these gapless modes can also be derived from within the hydrodynamic framework by
a suitable generalisation of the second law of thermodynamics to off-shell configurations.
This provides a neat hydrodynamic argument to derive the Josephson equation in super-
fluid dynamics and Young-Laplace equation in surface fluid dynamics. Our treatment of
hydrodynamics also includes an arbitrary spin current and background torsion, which has
not been discussed in full generality in the literature before.

Using this framework, we presented an all-order analysis of the second law of thermody-
namics and classified the most generic hydrodynamic transport compatible with it. We
found that the second law imposes some strict constraints in the hydrostatic sector, by
forcing the constitutive relations to be characterised by a free energy density (Class HS) and
a finite set of constants (Class A and HV). In the non-hydrostatic sector, however, we found
the second law to be much more lenient; it classifies the hydrodynamic transport into Class
D and Class D, but only imposes some inequalities on the leading order Class D transport
coefficients and none thereafter. Prior to this work, a similar classification analysis had
been done in the literature for the restricted case of ordinary fluid dynamics [52]. Although
our classification scheme draws heavily from that of [52] in the hydrostatic sector, the two
are quite distinct in the non-hydrostatic sector. Most notably, the classification presented in
this thesis is non-redundant, i.e. there is no overlap between various classes, and it purifies
the true dissipative transport from the mere redundancies (Class S) in the choice of an
entropy current that satisfies the second law for a given set of constitutive relations.

Apart from reproducing some known results in hydrodynamics, we applied the ideas
discussed in this thesis to study some novel hydrodynamic systems. We presented a theory
of non-Abelian superfluid dynamics with a partially broken (semisimple) Lie group of
internal symmetries. We introduced a pair of projection operators that allowed us to
define a superfluid velocity corresponding to the Goldstone modes valued in the Lie-algebra
quotient, irrespective of the details of the explicit symmetry breaking. Expressed in terms
of these projectors, we illustrated that the non-Abelian superfluid dynamics can be made
structurally similar to its Abelian counterpart. We derived the non-Abelian generalisation of
the Josephson equation, which, similar to the Abelian case, determines the time derivatives
of the Goldstone modes in terms of the corresponding Lie-algebra components of the
chemical potential. Recently, non-Abelian superfluids have started to gain some attention
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in the literature regarding the modelling of p-wave superfluidity observed in liquid 3He [97].
It will be interesting to see if the results found in this thesis have an analogue in these
physical systems.

We also studied how the hydrodynamic constitutive relations are modified near a surface
or an interface in a fluid. We introduced a new gapless hydrodynamic mode, called a shape-
field, to characterise such surfaces and used its dynamics to reproduce the Young-Laplace
equation. We worked out the hydrodynamic constitutive relations up to one-derivative
order, which amounts to zero-derivative order on the surface, and identified the well-known
transport coefficient, surface tension, in the surface thermodynamics. Hydrodynamic
configurations with surfaces are quite interesting as they can be used to model fluids
undergoing a phase transition, like the fluid-superfluid phase transition in liquid helium
or the confinement-deconfinement phase transition in the quark-gluon plasma. Further
exploration in this direction, perhaps holographic, will be quite intriguing.

In the introduction of this thesis, we briefly outlined how the theory of magnetohy-
drodynamics (MHD) can also be incorporated into the same framework by allowing for a
dynamical U(1) gauge field as an additional gapless mode in the hydrodynamic description.
Although this preliminary analysis checks out quite naturally, we have not considered MHD
in rigorous detail in this thesis. As a natural next step, we should verify that the calculation
does indeed work out at arbitrarily high orders in the derivative expansion without any
surprises. As an interesting aside, note that the dynamical equation of MHD (1.51) forces
us to set the charge density to be an order one quantity in the derivative expansion, which
algebraically determines the associated chemical potential in terms of the other fields in the
theory. The same equation is also present in the conventional formulation of MHD as well;
see e.g. [54]. However, the chemical potential is still typically taken to be an independent
hydrodynamic variable in MHD, which is puzzling. It will be interesting to see if the
off-shell formalism of magnetohydrodynamics can shed some light on this issue.

On another front, in a recent paper [60], an alternative interpretation of MHD has
been proposed. Instead of introducing a dynamical gauge field, the authors considered
hydrodynamics with a global 1-form symmetry corresponding to the conservation of magnetic
field lines and reproduced the spectrum of MHD. It was realised in [8], however, that there
are some issues with defining hydrostatic configurations in these theories. In particular,
unlike regular hydrodynamics, in the presence of a higher-form symmetry, the second law
of thermodynamics does not seem to be sufficient to guarantee the hydrostatic principle.
Since the off-shell formalism of hydrodynamics detailed in this thesis renders the connection
between the second law and the hydrostatic principle quite transparent, we would like to
see if it can be utilised to resolve this discrepancy.

In the second part of this thesis, we offered a new viewpoint of Galilean hydrodynamics.
Realising that a generic Galilean theory can be covariantly coupled to a one-higher dimen-
sional null background, we formalised hydrodynamics on such null backgrounds from an
axiomatic standpoint. The fluids thus obtained, which we call null fluids, are a one-higher
dimensional relativistic embedding of Galilean fluids, which manifest all the Galilean sym-
metries, especially boosts, in terms of a Poincaré invariant structure. They are essentially
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relativistic fluids coupled to a spacetime background carrying a null isometry. Due to the
anisotropy introduced by this additional background vector field, null/Galilean fluids are
characterised by many more transport coefficients compared to their relativistic cousins.
One way to understand this distinction is to note that the Galilean fluids carry an additional
conserved current, i.e. mass current, in their spectrum, with its own dynamical chemical
potential and background gauge field. Correspondingly, we have additional constitutive
relations to write down and additional fields to generate the associated tensor structures,
which eventually leads to the increase in the number of allowed transport coefficients.

Owing to our handle on the Poincaré symmetry, relativistic fluids are typically much
better understood in the literature compared to their Galilean counterparts. Null fluids
can potentially bridge this gap in our understanding by providing a mechanism to import
all the exotic relativistic machinery at our disposal directly into Galilean hydrodynamics.
We witnessed two non-trivial applications of this idea in this thesis. Firstly, we imported
the classification scheme of relativistic hydrodynamics into Galilean hydrodynamics and
used it to perform an all-order analysis of the second law of thermodynamics. Similar
to the relativistic case, we found that the second law imposes some strict constraints in
the hydrostatic sector, while only requires some leading-order transport coefficients to be
non-negative in the non-hydrostatic sector. We studied the explicit application of this to
ordinary Galilean fluids, Galilean superfluids, and surfaces in Galilean fluids. Secondly, we
used the preexisting transgression machinery of relativistic hydrodynamics [94] to work out
the effects of anomalies on the Galilean hydrodynamic transport. We also used this language
to classify the set of constants, called transcendental anomalies, which are left undetermined
by the second law of thermodynamics. We found that Galilean hydrodynamics admits many
more of these constants compared to the relativistic case. There has been some work in the
literature which associates these undetermined constants in relativistic hydrodynamics to
anomaly coefficients by demanding the consistency of Euclidean vacuum [87]. We are not
aware if a similar argument exists for Galilean hydrodynamics as well.

During this construction, we devised an anomaly inflow mechanism for Galilean field
theories using null backgrounds, classifying the possible ’t Hooft anomalies. The anomalies
we found only affect the rotations and internal symmetries, while leaving the space-time
translations, mass conservation, and Galilean boost symmetries non-anomalous. It is
interesting to note that the Galilean anomaly polynomial is structurally equivalent to the
relativistic anomaly polynomial, and hence the number of anomaly coefficients on both
sides match. Owing to this, the structure of Hall currents that enter the conservation laws
is also quite similar in both the cases. Hence the results we have obtained promise to be
the genuine non-relativistic anomalies and not just a mathematical manifestation of the
Galilean invariance. That being said, we still need to explicitly construct a Galilean field
theory that exhibits these anomalies, which we leave for the future explorations.

As we discussed in the introduction, a fundamental motivation for the continued research
interest in hydrodynamics is to get insights into the physics of out-of-equilibrium thermal
field theories, especially the irreversible dissipative phenomena. A part of this program is
to write down a Wilsonian effective action for hydrodynamics, which should provide a first
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principle understanding of the dissipative hydrodynamic transport. The off-shell formalism
of hydrodynamics discussed here provides a natural starting point to frame these questions.
Much progress has already been made towards writing down a Schwinger-Keldysh effective
action for ordinary fluid dynamics [68, 71]. As a prospective direction, it will be interesting
to see if these constructs can be extended to include the arbitrary gapless modes discussed
in this thesis, thereby providing an extension to more generic hydrodynamic treatments
like superfluid dynamics and magnetohydrodynamics. For now, we leave these ambitious
ventures open for speculation.
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