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Abstract

In current cosmic scenario, an accelerated expansion era is being reported by

various observations. The reasoning of such scenario is still unknown, the pres-

ence of an unknown energy component is seen which is named as DE. There

are various approaches to discuss the existence of DE and present acceleration

of universe. One of such attempts is the modification of Einstein’s gravity, here

we attempt to explore this problem within the modified gravity based on non-

minimal matter-geometry coupling. We examine f(R, T,Q) theory (where R is

the Ricci Scalar, T is the trace of EMT T uv and Q = RuvT
uv is interaction of EMT

T µν and Ricci Tensor Ruv). We formulate the dynamical equations in the back-

ground of FLRW model and find the result of non-conserved EMT using the

divergence of the field equations. In this scenario test particles deviates from

geodesic motion and an extra force is there due to non-minimal coupling. We

applied this result to find an expression for energy density ρ for particular choice

of Lagrangian. Furthermore, we discuss the energy bound on the model param-

eters and discuss the late time cosmic acceleration for best suitable parameters

in accordance with recent observations.

We also study the cosmic evolution of non-minimally coupled f(R, T ) gravity

(where R stands for Ricci scalar and T for trace of EMT) with matter formed of

CM and radiations. We find the cosmic evolution in the background of CM and

compare the results with NCM and ΛCDM model. In this study, we consider

the flat FLRW metric and formulate the dynamical equations. Here, we choose

ix



two models of non-minimal coupled f(R, T ) gravity (already reconstructed in

[1]), and discuss the evolution of cosmological parameters, the effective EoS ωeff

and the deceleration parameter q(z) in the universe containing self-interacting

CM and radiations. In graphical description of these parameters we establish

the comparison of results for self-interacting CM, NCM and ΛCDM model. Our

results are consistent with the observational data.
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Abbreviations

In this thesis, the convention to be used for the metric signatures will be (+,−,−,−)

and Greek indices will vary from 0 to 3, if different it will be mentioned. Also,

we shall use the following list of abbreviations.

GR: General Relativity

DE: Dark Energy

DM: Dark Matter

EMT: Energy Momentum Tensor

EoS: Equation of State

CMBR: Cosmic Microwave Background Radiations

BAO: Baryon Acoustic Oscillations

LSS: Large Scale Structure

FLRW: Friedmann-Lemâitre-Robertson-Walker

Λ: Cosmological Constant

ΛCDM: Λ-Cold Dark Matter

NEC: Null Energy Condition

WEC: Weak Energy Condition

SEC: Strong Energy Condition

DEC: Dominant Energy Condition

SNeIa: Supernovae Type Ia
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BD: Brans Dicke

EFE: Einstein Field Equation

GSLT: Generalized Second Law of Thermodynamics

CM: Collisional Matter

NCM: Non-Collisional Matter

MTG: Modified Theories of Gravity

WMAP: Wilkinson Microwave Anisotropy Probe

LHS: Left Hand Side

RHS: Right Hand Side

WIMP: Weakly Interacting Massive Particles

MACHO: Massive Compact Halo Objects
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Chapter 1

Introduction
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Currently our universe is experiencing an accelerated expansion phase and

multiple astrophysical researches have been conducted to observe this cosmic

scenario. It is highly assumed and considered that this cosmic acceleration is

the consequence of an anonymous energy named as DE [2]. Antagonistic to

the gravitational pull, the DE is expanding the universe by having a negative

pressure which is completely opposite to the ordinary matter. Many attempts

have been made to unveil the reason for accelerated cosmic expansion. The

major findings [3] enlists DE as the major candidate with overall contribution

of 68.3%, the other significant 26.8% contribution is from DM despite its elu-

sive and un-explored nature. Baryon, is the major part of visible cosmos which

accounts for 4.9% among cosmic ingredients. Despite tremendous researches

and observations, late time cosmic acceleration is still a significant as well as

challenging area for cosmologists. However, attention is attached to the confir-

mation through measurements from temperature anisotropies of the existence

of DE as puzzling cosmic ingredient with reference to cosmic acceleration by

CMBR [3], BAO [4], LSS [5], weak lensing [6] and most recent Planck’s data [7].

Furthermore, to describe the nature of DE several theoretical models are pro-

posed like phantom [8], quintessence [9] and fluids with anisotropic EoS [10].

In ΛCDM model, the role of DE in GR is played by Λ. Yet the origin of cos-

mological constant Λ is still under question and Λ has two well-known prob-

lems known as coincidence and fine-tuning. The EoS is proposed to describe

the properties of DE which is stated as ωDE = pDE

ρDE
where p stands for cosmic

pressure and ρ for energy density. The EoS is evaluated by considering that

universe is isotropic and homogeneous, and taking the FLRW space-time at the

background. In ΛCDM model ωDE is exactly equal to -1 whereas in quintessence

model ωDE is dynamical quantity and −1 < ωDE < −1
3

. Moreover ωDE varies

with time and ωDE < −1 in phantom model. It concludes that different model

descriptions such as fluid description and the description of a scalar field theory
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might describe cosmic picture. DE models can also be establish by reconstruc-

tion of Einstein Hilbert action that further guide to the modified gravity models.

The preliminary step is to substitute Einstein Hilbert term by scalar curvature

and it results in the formation of f(R) gravity [11]. In this theory, the general

non-linear function f depends on the Ricci scalar R and if we replace this generic

function f by f ≡ R− 2Λ then we will get the classic ΛCDM model. This theory

is also interesting due to the fact that for a specific BD parameter [12] it devel-

ops correspondence with the BD theory that include non-minimal coupling of

scalar field and geometry. This coupling is also further constructed in f(R) grav-

ity [13, 14]. Bertolami et al. [14] gave another direction to f(R) gravity where

they coupled matter Lagrangian density Lm with the Lagrangian as a function

of scalar curvature. In [15], authors developed the equivalence of scalar tensor

theories with this theory which involves non-minimal scalar curvature term and

a non-minimal coupling of the matter and scalar curvature. This non-minimal

coupling further lead to non-conserved matter EMT which shows that test par-

ticles deviates from geodesic motion [16]. In [17], Harko generalized this non-

minimal coupling by introducing a function of matter Lagrangian. Later Wu

[18] further extended this work by studying few forms of curvature components

and forming the thermodynamic laws. Harko along with the contributions of

Lobo [19] proposed another induced form of f(R) by involving curvature mat-

ter coupling incorporating matter langrangian Lm and defined generic function

f(R,Lm). In [20], Sharif and Zubair discussed the non-equilibrium thermody-

namics in f(R,Lm) gravity, and develop constraints on two specific gravita-

tional models f(R,Lm) = λexp
(

1
2λ
R + 1

λ
Lm

)
and f(R,Lm) = αR+βR2+γLm to

secure the validity of GSLT in this theory. In [21], authors presented the torsion-

matter coupling and inclusion of boundary term to discuss different cosmic is-

sues.

The selection of matter Lagrangian density has an issue in modified theo-
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ries, specifically for those which involve non-minimal coupling with matter

Lagrangian. For the natural conservation of matter we are restricted to take

matter Lagrangian as Lm = p then extra force will be vanished [22] or for the

sake of effective non-minimal coupling we can also take Lm = −ρ [15]. Al-

ternative method to modify the Lagrangian of Einstein’s equations is to take

the function which depends on trace T of the EMT [23], so ΛCDM model can

be taken of the form R + 2Λ(T ). Finally, by using this idea Harko et al. [24]

proposed the extension of f(R) gravity by replacing the function f with the

new dependent parameters R and T and non-minimal coupling of geometry

and matter allowed in astonishing theory known as f(R, T ) gravity. The coin-

ciding with constructive geometry matter coupling shows the deviation of test

particles from geodesic motion which ruled to additional force as proposed in

different theories [14, 17, 22, 24].

Due to remarkable growing interest in this theory the efficacy of thermody-

namics laws in f(R, T ) theory have been discussed by Sharif and Zubair [25]

and it is concluded that the equilibrium picture of thermodynamics cannot be

achieved due to matter geometry interaction. Attempts to reconstruct f(R, T )

Lagrangian has also been made under various considerations like the family

of holographic DE models by supposing the FLRW universe [26], considering

an auxiliary scalar field [27] and anisotropic solutions [28]. Jamil et al. [29]

worked on the reconstruction of cosmological models and they showed that the

dust fluid reproduce Einstein static universe, ΛCDM and de sitter Universe. Al-

varenga et al. [30] discussed the development of matter density perturbations in

this theory and they presented the required constraints to get the standard conti-

nuity equation in f(R, T ) theory. Other way, Sharif and Zubair [1] reconstructed

cosmological models by applying additional constraints for the conserved EMT

and studied the stability of the constructed models. Furthermore, the dynamical

systems in f(R, T ) gravity were explored by Shabani and Farhoudi [31] that re-
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sulted in the development of a vast scale of considerable cosmological solutions.

Other cosmic issues including compact stars, wormholes and gravitational in-

stability of collapsing stars have been discussed in literature [32].

Lately, the non-minimal coupling of the EMT and Ricci tensor is introduced,

resulting in the modified yet more complicated theory known as f(R, T,Q)

gravity [33, 34]. Due to complicated non-minimal matter-geometry coupling

EMT is generally non-conserved and additional force is there. Therefore, it pro-

poses a vast range to explore different cosmic features as thermodynamics prop-

erties have already been studied by Sharif and Zubair [35] and they [36] also dis-

cussed the energy conditions for particular models of f(R, T,Q) gravity. They

found that the non-minimal coupling becomes the reason of the deviation of test

particles from geodesic motion and that gives strength to the non-equilibrium

representation of thermodynamics. This induced the idea that the efficacy of

GSLT in an expanding universe might lead to the thermal equilibrium in future.

E. H. Baffou et al. [37] studied the stability of de-sitter and power law solution

by using perturbation scheme for particular models.

In this thesis, we are motivated to discus the cosmological evolution in f(R, T,Q)

theory, which is based on more general matter-geometry coupling. We pick

two particular model of the form f(R, T,Q) = R + αQ + βT and f(R, T,Q) =

R(1 + αQ). We solve the matter conservation equation to find the explicit ex-

pression of energy density. Evolution of EoS parameter ωeff and deceleration

parameter is discussed employing the power law cosmology. We also discuss

CM within f(R, T ) theory and discuss the deceleration parameter by consider-

ing CM plus radiations. This thesis is organized as follows: In chapter II, we

defined the all important definitions related to this work. In chapter III, we dis-

cuss the evolution of two significant models in f(R, T,Q) gravity and present

the expressions for ρeff , peff and ωeff . The model parameters are constrained

using the energy bounds. Chapter IV is devoted to CM in f(R, T ) theory, we

5



discuss the significant models of f(R, T ) theory by considering CM+radiations

and compare their results with NCM and ΛCDM model. Chapter V, summa-

rizes the important results and comparison with observational data.
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Chapter 2

Preliminaries
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In this chapter, we will explain the basic definitions which are necessary to

understand this thesis.

2.1 The Big Bang Theory

In physical cosmology, most of the cosmologists believe that the universe has

a beginning and the universe was infinitely dense when time was zero. Al-

though, many people believe that universe has no beginning and no end but in

1929, Hubble [38] observed that cosmos is expanding, and galaxies are moving

away from each other. He also suggested that if we go in past almost 10 to 20

million years ago then the cosmos has infinite density which means that there

was a singularity. Hawking and Penrose [39] were also believer of the big bang

cosmology. They proved in their theorem that the time and universe had a be-

ginning in terms of big bang explosion. The big bang theory predicts that at

the beginning, the universe would have been infinitely hot and dense. At the

big bang singularity, GR and all other physical laws would have been broken.

There was no one to predict what would come out of the singularity. We cannot

predict the events before the big bang since we have no observational conse-

quences. As universe expands, temperature of universe decreases and this was

started just after the big bang.

2.1.1 Inflation

The inflationary era was started just after 10−36 seconds of the big bang singu-

larity and some believed that it was about 10−33 and 10−32 seconds after the big

bang. After the big bang universe continues to expand but at less acceleration

rate as compare to current acceleration rate. The basically inflationary theory is

about exponential expansion of cosmos at the very beginning time of the uni-

verse. In other words, we can say that the era of repulsive gravity which is

8



responsible for early expansion is known as inflation. Just after the repulsive

gravity era, the era of attractive gravity began with the creation of those parti-

cles which can maintain there state of equilibrium at the highest temperature.

As time passes, temperature of the cosmos decreases and eventually it reaches

at the stage which is enough to create first nuclei of the cosmos. If we accept

this theory then it gives strength to the hot big bang.

2.2 The Cosmological principle

In the cosmological principle, we assumes that universe is isotropic and ho-

mogenous. The key idea of this principle is that universe represents the same

picture at any particular epoch in whichever direction we may look from what-

ever position. Copernicus observed that the Earth occupies a relatively unim-

portant position rather at the center of the universe. The same is true for the

Sun which looks similar to all other stars. The cosmological principle is the

modified form of the Copernican principle. This principle suggests that all the

positions in the universe are equivalent, also the physical properties are position

independent. This assumption implies that our universe is homogeneous. The

second assumption is concerned with the equivalence of all spatial directions.

The space around us looks to be isotropic. It is to be noted that the cosmological

principle is not based on observational consequences but it was an assumption

to apply the theory of GR on the structure of the universe. This assumption

helped scientists (Friedmann, 1920; Lemâitre, 1927) to construct the universe

models since at that time there was no observational data to contradict it. Cos-

mological models are constructed following the idea that universe is filled with

matter of the same average density and same average pressure, both of these

quantities vary with time uniformly throughout the universe.
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2.3 Cosmic Observations

The following are the different cosmic observations.

2.3.1 Type Ia Supernovae Observation

Perlmutter et al. [Supernova Cosmology Project (SCP)] [3] and Riess et al. [High-

redshift Supernova Search Team (HSST)] [40] separately announced the late-

time cosmic acceleration by observing distant supernovae of Type Ia (SNeIa).

Till 1998, in the redshift range (z = 0.18 − 0.83) Perlmutter et al. had discov-

ered the 42 supernovae and Riess et al. had also found 16 high-redshift SNeIa

together with 34 nearby supernovae. The history of supernovae is extremely

bright and cause a blast of radiations. The supernovae can be restricted by the

absorption lines of chemical elements. The spectral line of hydrogen element

is restricted by Type II. Other than spectral line of hydrogen it is restricted by

Type I. If a supernovae have a absorption line of only ionized silicon then it is

restricted by Type Ia. If a supernovae have a absorption line of helium then it is

restricted by Type Ib. Type Ic supernovae has a absorbtion line of both silicon

and helium. When the mass of the white dwarf in a binary system overtake

the Chandrasekhar limit [41] by absorbing gas from other star then explosion

of Type Ia developed. That’s why, the peak of brightness occur when the ab-

solute luminosity of Type Ia is almost constant, the distance to a SNeIa can be

calculated by its apparent luminosity. In this manner, the SNeIa plays the role

of standard candle and we can measure the luminosity distances practically.

2.3.2 Cosmic Microwave Background Radiation

The temperature of the universe would have fallen about ten thousand million

degrees just one second after the big bang. At that time, universe would have

10



contained particles like photons, electrons and neutrinos (the particles which

are affected by the weak force and gravity) and their antiparticles, also protons

and neutrons. As the universe cooled down to about one billion degrees, pro-

tons and neutrons would have begun combining to form the nuclei of helium,

hydrogen and other light particles. After that atoms would have formed due to

the combination of electrons and nuclei [39]. Gamow investigated the nuclear

fusion process, i.e., formation of nuclei together with neutrons and protons. In

1948, Gamow and his student Alpher presented the picture of dense and hot

earlier universe. Alpher and Hamer made prediction that radiation of the early

era still exist at present. In 1965, Penzias and Wilson confirmed their predic-

tion, as they observed cosmic microwave background radiation. In 1992, a satel-

lite named Cosmic Background Explorer (COBE) measured the spectrum of the

CMB radiation and detected slight fluctuations of the temperature of CMB [42].

The results from WMAP [43] reveals that temperature variations in CMB follow

a distinctive pattern predicted by cosmological theory. The anisotropies in the

CMB are confirmed from the recent observations and this behavior is helpful to

tell us about the present and past history of the universe. The discovery of CMB

was the strongest evidence in the favor of hot big bang.

2.3.3 Planck’s Observation

Planck’s high-precision cosmic microwave background map [7] has offers sci-

entists to select the most clear value of the cosmos ingredients. The simple mat-

ter forms galaxies and stars is just contribute 4.9% of the cosmos. DM which is

marked indirectly by its gravitational impact on closely mater contributes 26.8%

of the cosmos and the remaining part of the cosmos is 68.3% which is responsi-

ble of accelerated expansion of cosmos known as DE.
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2.4 Dark Matter

DM is a matter in clusters, galaxies and possibly between clusters, that cannot

be observed directly but that can be detected by its gravitational effects [39]. In

1933, Zwicky was interested to measure the mass of coma cluster. He showed

that velocity dispersion of galaxies in cluster exceeds the expected for a grav-

itationally bound system. Zwicky postulated the presence of missing mass.

WMAP data reveals that total density of our universe contains 23% of DM. Cos-

mologists postulate that DM is present in the outer regions of galaxies but its

nature is still unknown. Usually DM was considered as ordinary matter in some

undetectable form like gas clouds or MACHOs like neutron stars, black holes

and white dwarfs. Recent observations show that presence of DM may be due

to masses of light elementary particles such as neutrinos or axions. It may con-

sist of exotic particles such as WIMPs and yet such particles are to be detected

experimentally [39].

2.5 Dark Energy

In cosmology, DE is mysterious type of energy which is supposed to fill all of the

space, reasoning to accelerate the cosmic expansion. DE is a mysterious force

which is responsible for driving the galaxies away from each other against the

force of gravity. The evidence of DE has not been detected directly. It appeared

as the anti-gravity force whose properties are still unknown. The recognition

that DE appears to exist has completely altered the landscape of theoretical

physics and driving a host of astrophysicists to launch new cosmic probes to

detect its nature. Significant number of papers have been written on this sub-

ject, while it is still a debate to understand much about the nature of DE.
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2.5.1 Quintessence

Wetterich [44], Caldwell [45], and Ratra and Peebles [46], introduced the quinte-

ssence to solve the fine tuning problem of cosmological constant Λ at present

era. Evolution of quintessence model is depends on its potential which is de-

scribed by scalar field. This is a dynamical scalar field which can explain the

role of DE in an accelerating universe. The cosmological constant is attributed

to the vacuum energy with constant energy density ρ, pressure p and an EoS

ω = −1 whereas quintessence is a time varying inhomogeneous field with an

EoS ω > −1 [44]-[48]. In quintessence, DE dominates the cosmic acceleration of

the universe for future evolution. The dominance of quintessence field increases

with the increase in ω.

2.5.2 Phantom

Phantom energy is a hypothetical form of DE with EoS ω < −1. The difference

between the DE with ω > −1 and ω < −1 becomes apparent if we consider

the expansion of the universe. Phantom energy [8] violates the dominant en-

ergy condition [49] that might result in the existence of wormholes. For phan-

tom energy, the energy density emerge and becomes unbounded in a bounded

time. Phantom energy increases the gravitational repulsion that will destroy

the galaxies and then any bound system including elementary particles [8, 50].

Expansion factor of the universe dominated by the phantom energy diverges in

a finite time to approach the future singularity [50, 51]. This situation is also

termed as cosmic doomsday when all the objects, from galaxies to nucleons will

be ripped apart. According to Baushev [52], phantom energy is not enough to

produce big rip because ω does not seem to be constant throughout the evolu-

tion of the universe.
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2.5.3 Quintom

Quintom is a unified DE model with EoS parameter getting across the cosmo-

logical constant boundary ω = −1 from either side. Feng et al. [53] considered

the effects of cosmic age and Supernovae Ia limits on the variation of the EoS

parameter ω. They found that age limits can lower the variation of amplitude

on the EoS parameter. Current Supernovae Ia data favors the transition of ω

from quintessence to phantom. The quintom model predicts some interesting

features related to the evolution and fate of the universe. In quintom scenario,

the universe would avoid the singularities such as big bang, big rip [54, 55].

2.6 The Cosmological Constant

Einstein involved the Λ in the field equations to obtain a static and finite cosmo-

logical solution [56]. He thought that universe is positively curved and attrac-

tive gravity is balanced by repulsive gravity of Λ. However, the cosmological

constant was neglected with the discovery of expansion of the cosmos. The sim-

plest form of DE is the energy associated with the vacuum, i.e., the cosmological

constant which has EoS ω = −1. The matter is responsible to slow down the ex-

pansion but DE is playing the role of opponent to the matter and accelerate

the cosmic expansion. In 1983, Linde presented a model of the expanding uni-

verse known as chaotic inflationary model. He suggested that there is no phase

transition and cooling. Quantum theory implies that spacetime is filled with

quantum fluctuations. According to spectrometric theory, the infinite positive

and negative energies of the ground states would cancel out between particles

of different spin. But all these energies would not cancel out because quantum

fluctuations would have large values in some regions of the early universe. The

vacuum energy of those regions would behave like cosmological constant and

hence would expand in an inflationary manner due to the repulsive gravita-
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tional effect of vacuum energy [39].

2.7 ΛCDM Model

The first type of explanation accommodates this acceleration with GR by invok-

ing DE as a strange cosmic fluid having large negative pressure [57]. The EoS

relating pressure and energy density of this fluid is defined as pDE = ωDEρDE

where ωDE < −1
3

is necessitated in the EFE to provide comic acceleration. For

the particular case ωDE = −1, this fluid behaves precisely as a cosmological

constant Λ. Within this approach, the so-called concordance ΛCDM model is

best fitted to the recent observational data by WMAP [43]. In the scenario of

ΛCDM, the universe is spatially flat, dominated by DE (cosmological constant

or vacuum energy) and cold dark matter which is made up of weakly interact-

ing particles yet to be discovered. Except this, the curious ΛCDM consists of

CMB particles (photons and neutrino) and baryonic matter (protons and nuclei

plus electrons) making up only 4% of the total energy. It is based on the follow-

ing two assumptions:

• GR is a correct theory of gravity at all scales,

• Universe is homogeneous and isotropic.

Although ΛCDM is in good agreement with current observations, however,

problems related to a pure cosmological constant make it an unappealing so-

lution from theoretical viewpoint.

2.8 Cosmological parameters

The following are the significant cosmological parameters.
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2.8.1 Hubble parameter

The Hubble parameter H the most important quantity in cosmology as it is used

to guess the age and the size of the cosmos. It represents the rate at which the

cosmos is expanding. Although the Hubble parameter changes with time and

given as

H =
˙a(t)

a(t)
, (2.1)

where dot represents the derivative with respect to time. a(t) would be zero

at the time of big bang and it would be increasing when we consider expanding

universe.

2.8.2 Deceleration parameter

Deceleration parameter q is one of the classical parameters in cosmology. The

point is that if we can measure the change in the Hubble parameter then we

have important information to explain the nature and fate of the cosmos. The

deceleration parameter “q” describes the change of rate at which the cosmic

expansion is going to slow down because of self-gravitation. It is stated as

q = − äa

ȧ2
, (2.2)

herein, above equation a(t) indicates scale factor. In this context, ȧ
a

is the Hubble

parameter denoted by H , and its present value is H0, the Hubble constant. In

accordance to the latest examinations, the expansion rate of cosmos is currently

accelerating, it is because of the effects of DE. This yields negative values for

the deceleration parameter. Deceleration parameter is also described in terms

of Hubble parameter as

q =
d

dt
(
1

H
)− 1. (2.3)
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2.8.3 Equation of State

The EoS in cosmology described by dimensionless number ω as, ω = p
ρ

where p

stands for pressure and ρ for energy density. If we evaluate the EoS by consider-

ing that universe is isotropic, homogeneous, and taking the FLRW space-time at

the background then EoS for ωDE is exactly equal to -1 in ΛCDM model whereas

in quintessence model ωDE is dynamical quantity and −1 < ωDE < −1
3

. More-

over ωDE varies with time and ωDE < −1 in phantom model.

2.9 The Energy Momentum Tensor

In GR, the EMT T µν represents the source of the gravitational field. The relation

of Einstein tensor and EMT is given as Gµν = 8πGT µν The components of the

EMT can be written into a matrix with the property that T µν = T νµ. For arbitrary

manifold, the EMT is defined as

T µν = ρuµuν + σlmδµl δ
ν
m, (2.4)

where uµ is for four velocity, ρ is for matter density and σlm is the stress density

given as

σlm =
dF l

dSm

, (l,m = 1, 2, 3) (2.5)

Here dF l is representing the force acting on the area element dSm.

The different components of EMT describe the following meanings

• Energy density ρ is represented by T00 component of EMT.

• Energy flow across the surface xi is represented by T0i component of EMT.

• Flow of momentum across the surface is represented by Ti0 component of

EMT.

• Stress is represented by spatial components Tij of EMT.
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2.9.1 Perfect fluid

A fluid which shows no heat conduction and viscosity is known as perfect fluid.

These type of fluid are only described by their pressure p and mass density

ρ. The EMT that describes a perfect fluid in the local frame is for signature

(−,+,+,+)

T µν = (ρ+ p)uµuν + pgµν , (2.6)

if we use this signature (+,−,−,−) then EMT for perfect fluid takes the follow-

ing form

T µν = (ρ+ p)uµuν − pgµν , (2.7)

if we will take p = 0, then EMT represents the only dust case of the universe

and EMT takes the following form

T µν = ρuµuν . (2.8)

The components of EMT for perfect fluid in the local frame can be written as

T µν = diag[ρ, p, p, p]. (2.9)

2.10 Non-Minimal coupling

In a simple wording, we can differentiate minimal and non-minimal coupling

by saying that minimal coupling is a weak coupling and non-minimal coupling

is a strong coupling. If we discuss mathematically then, we know that coupling

is based on different mathematical models, if we choose the model in terms of

addition then it is known as minimal coupling like, following are the examples

of minimal coupling,

• f(R, T ) = R + αT

• f(R, T ) = f(R, T ) = β1R
µ + β2R

ν + 2k2

−1+3ω
T + β3T

1
2
−
√

−1+ω(3+ω−3ω2)

(1+ω)
√
−2+6ω

18



If we choose the models in term of product then coupling is known as non-

minimal coupling like, following are the examples of non-minimal coupling

• f(R, T ) = R(1 + αT n)

• f(R, T,RµνT
µν) = R + αRµνT

µν + βT .

2.11 FLRW Metric

To arrive at the form of the FLRW metric, we first choose the time coordinate so

that space-time slices of fixed t are homogeneous and isotropic. In other words,

physical conditions on each slice are the same at every position, and in every

direction. We choose the threading to be orthogonal to the slicing, correspond-

ing to g0i = 0. Isotropy requires that an observer moving with the threading

measures zero velocity for the cosmic fluid, or in other words zero momentum

density. The threading is therefore comoving (moving with the fluid flow). Ho-

mogeneity demands that the proper time interval between slices is independent

of position, which means that we can choose t as proper time corresponding to

g00 = −1. Homogeneity and isotropy require that the distance between nearby

threads is proportional to a universal scale factor a(t). Putting all this together,

the FLRW line element takes the form

ds2 = −dt2 + a2(t)gij(x1, x2, x3)dxidxj (2.10)

The Universe is observed to be expanding, corresponding to a(t) increasing with

time.
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2.12 Conservation Equation

The conservation of energy and momentum is the important limitations on the

RHS of the EFE in the form of EMT, which can be expressed by the relation

∇µT
νµ = 0 (2.11)

This constraint means that Ruv ∝ Tµν is not true because ∇µR
νµ ̸= 0. By using

contracted Bianchi identities ∇µT
νµ = 1

2
gµν∇µR, we can use the Einstein tensor

on the LHS, this will satisfy the conservation of energy and momentum. That

is, we set

Gµν = Rµν −
1

2
gµνR (2.12)

and then finally arrive at the following EFE

Gµν = κTµν , (2.13)

where κ = 8πG.

2.13 Einstein Field Equations

The EFE Gµν = 8πGTµν describe the relation between space-time geometry and

matter content. We can also write EFE as

Gµν = Rµν −
1

2
Rgµν = 8πGTµν . (2.14)

The LHS of this equation represent geometry and RHS corresponds the matter

distribution. The suppressed idea is that the energy matter distribution tells us

that how space time is curved and how gravity plays its role. Therefore, if we

apply any condition on Tµν then it will be immediately referred to the conditions

on Einstein Tensor Gµν [49]. Matter energy distribution is responsible for casual

and geodesic structure of space-time. For this purpose energy conditions ensure
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that the casuality principle is appreciated and acceptable physical sources have

to be studied [49, 58]. In GR, the metric tensor gµν plays the same role as does

the scalar potential ϕ in Newtonian theory of gravitation. The EFEs reduce to

Poisson’s equations in the weak field approximation (Newtonian limit). These

are the second order partial as well as non-linear differential equations for the

metric components [58].

In GR, we solve the field equations simultaneously for the space-time metric

and matter distribution. In particular, these equations for the vacuum solutions

are obtained by choosing Tµν = 0. The matter distribution in these equations sat-

isfies the principle of local conservation of energy and momentum, i.e. Tµν;µ = 0.

This equation gives information about the behavior of matter [58].

2.14 Modified Theories of gravity

After Edwin Hubble’s theory of expanding cosmos, latest examinations from

Supernovae Type Ia and CMBR [3], have confirmed the phenomena of accel-

erated expanding cosmos. Although, GR is the most elementary theory that

is compatible with experimental data of gravity but still it leaves various eras

like DE and DM to be explained, which led a way to the alternative theories

of gravity. The modified theories are really helpful to explain the reasonable

cosmic expansion history. MTG being a large distance modifications of GR are

reconstructed by adding an extra degree of freedom that may be scalar, vector

or tensor field. There are several approaches to extend Einstein formulation of

gravity, e.g., by the inclusion of spin-0 particles, i.e., scalar field, higher order

terms of curvature and non-Christoffel connections in its gravitational sector. A

successful modification of GR is the one for which the predicted measurements

of solar system tests do not deviate much from the corresponding estimations

of GR. In 1980, f(R) gravity was introduced by Starobinsky [59]. The theory of
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f(R) gravity is famous because of cosmological importance of its models. f(R)

gravity can be directly found by varying the Ricci scalar R by the function f(R)

in the Einstein-Hilbert action and its defined as

S =
1

2κ2

∫
d4x

√
−gf(R) +

∫
d4x£M(gϕφ,ΨM), (2.15)

where f(R) is the function of Ricci scalar R, £M denotes matter Lagrangian, gϕφ

is the metric and ΨM represents the matter field.

2.15 f (R, T ) Gravity

In the presence of ordinary matter, we will discuss the formulation of f(R, T )

gravity for FLRW space-time as well as filed equation. We have the following

action of this gravity [24]

S =
1

κ2

∫
f(R, T )

√
−gd4x+

∫
Lm

√
−gd4x, (2.16)

where R is Ricci Scalar and T is the trace of EMT T = gµνTµν . Here matter la-

grangian represented by Lm. we have the following set of equations by varying

the action (2.16)

8πTµν − fTTµν − fTΘµν = fRRµν −
1

2
fgµν + (gµν2−∇ν∇µ)fR. (2.17)

We have a following relation between Ricci scalar R and the trace T of the EMT

by contraction of above equation

8πT − fTT − fTΘ = fRR + 32fR − 2f. (2.18)

The ∇ and 2 stands for the covariant derivative and d’Alembert operator re-

spectively in the above equation. Furthermore, fR and fT represents the func-

tion derivatives with respect to R and T , respectively. The term Θµν is defined

by

Θµν =
gαβδTµν

δgµν
= −2Tµν + gµνLm − 2gαβ

∂2Lm

∂gµν∂gαβ
.
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Here, we choose Lm = −Pm, which gives us the following expression for Θµν

Θµν = −2Tµν − Pmgµν . (2.19)

With the help of equation (2.19), the field equation (2.17) can be converted in the

following form

Rµν −
1

2
Rgµν = k2

effT
eff
µν , (2.20)

with k2
eff = k2+fT

fR
is the effective gravitational constant and

T eff
µν = Tµν +

1

k2 + fT

[
1

2
gµν(f −RfR) + fTPmgµν − (gµν −∇µ∇ν)fR

]
(2.21)

is the effective EMT. In this study, we consider the flat FLRW geometry de-

scribed by the metric

ds2 = dt2 − a2(t)dx2,

where a(t) is the scale factor and dx2 comprises the spatial part of the metric.

R = −6(2H2 + Ḣ),

where H stands for Hubble parameter and dot for the differentiation with re-

spect to time t.

2.16 f (R, T,RµνT
µν) Gravity

The f(R, T,Q) theory is the most generalized theory among other modified the-

ories like f(R) and f(R, T ) and this theory is very effective for non-minimal

coupling of geometry and matter. The action of this complicated theory takes

the following form [33, 34]

A =
1

2κ2

∫
dx4

√
−g [f(R, T,RµνT

µν) + Lm], (2.22)

where κ2 = 8πG, f(R, T,Q) is a general function which depends on three com-

ponents, the Ricci scalar R, trace of the EMT T , product of the EMT T µν to Ricci
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tensor Rµν , and Lm shows the matter Lagrangian. The EMT for matter is defined

as

Tµν = − 2√
−g

δ(
√
−gLm)

δgµν
. (2.23)

If the dependence of the matter action only on metric tensor then the EMT yields

Tµν = gµνLm − 2∂Lm

∂gµν
. (2.24)

The field equations in f(R, T,Q) theory can be found by varying the action (2.22)

with respect to gµν as

RµνfR − {1
2
f − LmfT − 1

2
∇α∇β(fQT

αβ)}gµν + (gµν2−∇µ∇ν)fR +
1

2

2(fQTµν) + 2fQRα(µT
α
ν) −∇α∇(µ[T

α
ν)fQ]−GµνLmfQ − 2(fTg

αβ + fQ

Rαβ)
∂2Lm

∂gµν∂gαβ
= (1 + fT +

1

2
RfQ)Tµν . (2.25)

The subscripts shows the derivatives with respect to R, T,Q, and box function

defined as 2 = ∇β∇β , ∇µ represent covariant derivative. If we will choose the

particular form of Lagrangian then Equation (2.25) can be shifted towards the

well known field equations in f(R) and f(R, T ) theories. The field equation

(2.25) can be rewritten into the form of effective EFE as

Gµν = Rµν −
1

2
Rgµν = T eff

µν . (2.26)

This effective form of EFE is similar to GR’s standard field equations. Here T eff
µν ,

the effective EMT in f(R, T,Q) theory is found to be as

T eff
µν =

1

fR − LmfQ
[Tµν(

1

2
fQR + 1 + fT ) + gµν{

1

2
(f − fRR)− fTLm

1

2
∇α

∇β(fQT
αβ)} − (gµν2−∇µ∇ν)fR − 1

2
2(TµνfQ)2fQRα(µT

α
ν) +∇α

∇(µ[T
α
ν)fQ] + 2(gαβfT +RαβfQ)

∂2Lm

∂gµν∂gαβ
]. (2.27)

Applying the covariant divergence to the field equation (2.25), we get

∇µTµν =
2

2(1 + fT ) +RfQ
[∇µ(fQR

αµTαν) +∇ν(LmfT )−
1

2
(fQRσζfT

gσζ)∇νT
σζ −Gµν∇µ(fQLm)−

1

2
[∇µ(RfQ) + 2∇µfT ]Tµν ]. (2.28)
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It is important to see that any modified theory which involve non-minimal cou-

pling between geometry and matter does not obey the ideal continuity equa-

tion. This complicated theory f(R, T,Q) also involves this type of non-minimal

coupling so it also deviate from standard behavior of continuity equation. Here,

non-minimal coupling between geometry and matter produce extra force acting

on massive particles, whose equation of motion is given by [34]

d2xλ

ds2
+ Γλ

µνu
µuν = fλ,

where

fλ =
hλν

(ρ+ p)(1 + 2fT +RfRT )

[
(fT +RfRT )∇νρ− (1 + 3fT )∇νp−

(ρ+ p)fRTR
σρ(∇νhσρ − 2∇ρhσν)− fRTRσρh

σρ∇ν(ρ+ p)
]
. (2.29)

It has been found that the impact of non-minimal coupling is always present

independent of the choice matter Lagrangian, the extra force does not vanish

even with the Lagrangian Lm = p as compared to the results presented in [14,

60]. In [34], authors also presented the Lagrange multiplier approach and found

the conservation of matter EMT. Moreover, if one eliminates the dependence of

Q, it results in divergence equation of f(R, T ) theory as given below

∇αTαβ =
fT

1− fT

[
(Θαβ + Tαβ)∇αlnfT − 1

2
gαβ∇αT +∇α

Θαβ

]
.

In [30], Alvarenga et al. shown that choice of a specific model within these

theories can guarantee the conservation of EMT and continuity equation is valid

for the model f(R, T ) = f2(T ) + f1(R), where f2(T ) = T
1+3ω
2(1+ω)α+ β.

In flat FLRW background, and considering the perfect fluid ρeff and peff can
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be found as

ρeff =
1

fR − LmfQ
[ρ+ fT (ρ− Lm) +

1

2
(f − fRR) +

3

2
(Ḣ − 3H2)fQρ

−3H∂tfR − 3

2
pfQ(3H

2 + Ḣ) +
3

2
H∂t[fQ(p− ρ)]],

peff =
1

fR − LmfQ
[p+ fT (p+ Lm) +

1

2
(fRR− f) +

1

2
(3H2 + Ḣ)fQ(−p

+ρ) + 2H∂tfR + ∂ttfR +
1

2
∂tt[fQ(−p+ ρ)] + 2H∂t[fQ(p+ ρ)]], (2.30)

where R = −6(2H2+Ḣ) and upper dot for the time derivative. Here, we ignored

those terms which involved the second derivative of matter Lagrangian with

respect to gµν . In the case of perfect fluid the matter Lagrangian can either be

Lm = ρ or Lm = −p.
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Chapter 3

Cosmic evolution in the background
of non-minimal coupling in
f (R, T,RµνT

µν) Gravity
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We are interested to explore the cosmic evolution using matter conservation

equation of more generic modified theory. We choose two significant mod-

els, first is of the form f(R, T,Q) = R + αQ + βT and second is f(R, T,Q) =

R(1 + αQ). We formulate the dynamical equations for both two models in the

background of FLRW space-time and find the result of non-conserved EMT us-

ing the divergence of the field equations. Furthermore, we discuss the energy

bound on the model parameters and discuss the late time cosmic acceleration

for best suitable parameters in accordance with recent observations.

3.1 f (R, T,Q) = R + αQ + βT

Here, we will set Lm = ρ and we will take the simplest model f(R, T,Q) =

R+αQ+βT where α, β are coupling parameters. In this model, choice of α = 0

results in minimal coupling of the form f(R, T ) = R + βT [24], such model has

been widely studied in the formalism of f(R, T ) gravity (for review see [32]).

Moreover, the choice of α = β = 0, results in Eisntein’s formalism of GR.

For a flat FLRW universe, the non-zero components of FLRW equation for

peff = p+ pDE and ρeff = ρ+ ρDE are

3H2 = ρeff ,

−2Ḣ − 3H2 = Peff , (3.1)

where dots being time derivative and components of ρDE and pDE are given as

follows

ρDE =
1

2αρ− 2
[3βp− (β − 12αH2)ρ− 2αρ2 + 3αH(ρ̇− ṗ)],

pDE =
1

2αρ− 2
[−ρ(β + 6αH2 + 4αḢ) + p(−5β + 12αH2 − 2αρ+ 4α

Ḣ)− α(4H(ṗ+ ρ̇)− p̈+ ρ̈)], (3.2)
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and effective EoS ωeff is

ωeff = [−ρ(β + 6αH2 + 4αḢ) + p(−2− 5β + 4α(3H2 + Ḣ))− α(4H

(ρ̇+ ṗ) + ρ̈− p̈)][3βp− ρ(2 + β − 12αH2) + 3αH(−ṗ+ ρ̇)]−1. (3.3)

The EoS of DE is, ωDE = pDE

ρDE

ωDE = [−ρ(β + 6αH2 + 4αḢ) + p(−5β + 12αH2 − 2αρ+ 4αḢ)− α(4

H(ρ̇+ ṗ) + ρ̈− p̈)][3βp− ρ(β − 12αH2)− 2αρ2 + 3αH(−ṗ+ ρ̇)]−1 (3.4)

and conservation equation (2.28) takes the form

ρ̇+ 3H(ρ+ p) = [−18αH3(ρ+ p)− 6αH(p+ ρ)Ḣ + 3ṗ(β − αḢ) + ρ̇(β

−3αḢ)− 9αH2(ρ̇+ ṗ)][2(1 + β − 6αH2 − 3αḢ)]−1. (3.5)

Now the above equations are expressed in terms of redshift by using relation

a(t) = 1
1+z

, where d
dt

= −(1 + z)H d
dz

whereas p = p(z) and ρ = ρ(z). Where

prime is for derivative with respect to redshift parameter z.

3H(p+ ρ)− (1 + z)Hρ′ =
1

2(1 + β + 3αH(−2H + (1 + z)H ′))
[−(H

(1 + z)β(3p′ + ρ′) + 9αH2(2p+ 2ρ− (1 + z)(p′ + ρ′)) + 3(1 + z)αHH ′

(−2p− 2ρ+ (1 + z)(p′ + ρ′)))]. (3.6)

The revolutionary field equation Gν
µ = 8πGT ν

µ shows the connectedness of ge-

ometry of the fabric of space-time with matter content of cosmos, represented

in GR. The LHS of the previously stated field equation show the Einstein tensor,

which satisfy the Bianchi identities ∇νG
ν
µ ≡ 0 and RHS shows the EMT. If the

covariance derivative of EMT is zero (∇µT
ν
µ = 0) then it shows the conservation

of matter in every part of the universe. EFE can be explored on different choices

of metric gµν and EMT T µ
ν . Although matter and geometry are on same footing

but GR does not allow us to check the possible effects of non-minimal coupling
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between them. These limitations of GR vanished in recently developed theo-

ries like f(R, T ) and f(R, T,Q) theories. In these theories EMT is not conserved

(∇µT
ν
µ ̸= 0), we use this result to find the value of energy density. Such for-

mation of energy density from the nonconserved EMT helps to study the role

of non-minimal coupling in cosmic expansion. Before finding the value of ρ(z)

we should know the relation of H(z). Many theoretical relations exists in litera-

ture which are observationally consistence. But here we will take the power law

expansion in terms of red shift defined as H(z) = H0(1 + z)
1
m , where m is the

power law exponent.

Power law cosmology appears as a good phenomenological explanation of

the evolution of universe, it can explain the cosmic history including radiation

era, the DM era and the accelerating DE dominated era. The evolution of the

scale factor for the standard fluids provided by theses solutions such as dust

matter case (m = 2/3) or radiation dominated eras (m = 1/2). Also, m & 1

shows a late-time accelerating cosmos. It provides an interesting alternative

to deal with the problems like (horizon, flatness and age problems) associated

with the standard model. Evolution of power law model has been discussed in

various articles [61], for instance it talks about the the flatness, age and horizon

problems for the parametric value m ≥ 1 [62]. These type of solutions are found

to be consistent with various data sets including nucleosynthesis [63, 64], with

the age of high-redshift objects such as globular clusters [63, 64], with the SNeIa

data [62, 65], and with X-ray gas mass fraction measurements of galaxy clusters

[66]. In the framework of power law cosmology, authors have discussed the an-

gular size-redshift data of compact radio sources [67], the gravitational lensing

statistics and SNeIa magnitude-redshift relation [64, 68].

In this scenario, energy density ρ(z) is found by solving the Eq. (3.6) as

ρ(z) = e−
(1+ω)(6(1+β) log(1+z)+

m(−1+3m+β)(1+3ω) log[m(2+β−3βω)+3H2
0(1+z)

2
m α(1−ω+m(−1+3ω))]

−1+m+ω−3mω )

−2+β(−1+3ω) c (3.7)
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where c stands for constant of integration. As energy density is found to be

in an exponential form so it will remain positive for all values of unknowns

parameters like α, β, ω, m. It will only depend on constant of integration c when

we take negative value of c then energy density will be negative or less than zero

otherwise for all positive values of c energy density will remain positive. One

can also get the relation between time and redshift as

t =

(
1

1 + z

) 1
m

. (3.8)

Using the value of ρ(z), one can get ρeff and peff in terms of redshift as and we

take c = 10 and ω = 1

ρeff =
10(6H2

0m(1 + z)
2
mα +m(2− 2β))

4(−1+3m+β)
−2+2β (−1 + 6H2

0 (1 + z)
2
mα + β)

−(1 + z)
12(1+β)
−2+2β + 10α(6H2

0m(1 + z)
2
mα +m(2− 2β))

4(−1+3m+β)
−2+2β

,

(3.9)

peff = 23+
6m

−1+β 5(m(1 + 3H2
0 (1 + z)

2
mα− β))1+

6m
−1+β (3H4

0 (−16 + 21m)

(1 + z)
4
mα2 − 12H2

0m(1 + z)
2
mα(2 + β)−m(−1 + β)(1 + 3β))[(1 +

z)
6(1+β)
−1+β − 10α(6H2

0m(1 + z)
2
mα +m(2− 2β))

4(−1+3m+β)
−2+2β ]−1, (3.10)

and effective EoS in term of redshift can be written as

ωeff = [48H4
0 (1 + z)

4
mα2 +m(−1− 63H4

0 (1 + z)
4
mα2 − 2β + 3β2 + 12

H2
0 (1 + z)

2
mα(2 + β))][m(1 + 3H2

0 (1 + z)
2
mα− β)(−1 + 6H2

0 (1 + z)
2
mα

+β)]−1. (3.11)

Cosmic acceleration can be defined through a dimensionless cosmological func-

tion known as the deceleration parameter q. Here, q is given by

q = −aä

ȧ2
=

1

m
− 1, (3.12)

q characterizes the accelerating or decelerating behavior of cosmos, here, q <

0 describe an accelerating epoch, whereas q > 0 shows decelerating epoch. In
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Figure 3.1: The LHS figure shows the evolution of ρeff whereas the RHS figure

shows the behavior ωeff . Herein, we set α = 10, β = −5, m = 1.066658, and

H0 = 67.3 [7].

power law cosmology, we require m > 1 to restrict q as q > −1. Graphical

representation of effective components ρeff , EoS ωeff are shown in Fig. 3.1. In

this discussion, we choose the following values of unknown parameters α =

10, β = −5, and m = 1.066658. For this value of m, deceleration parameter

is −0.0624924 which favors the expanding behavior of cosmos. It can be seen

that ρeff is positive and increasing function as shown on right plot and ωeff

approaches to −1 at z = 0 representing the ΛCDM epoch in accordance with

recent observations from Planck’s data [7].
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3.2 Energy conditions for f (R, T,Q) = R + αQ + βT

Gravity

The EFE Gµν = 8πGTµν describe the relation between space-time geometry and

matter content. The LHS of this equation represent geometry and RHS corre-

sponds the matter distribution. The suppressed idea is that the energy matter

distribution tells us that how space time is curved and how gravity plays his

role. Therefore, if we apply any condition on Tµν then it will be immediately re-

ferred to the conditions on Einstein Tensor Gµν [49]. Matter energy distribution

is responsible for casual and geodesic structure of space-time. For this purpose

energy conditions ensure that the casuality principle is appreciated and accept-

able physical sources have to be studied [49, 58]. The energy conditions are

based on Raychaudhuri equations and can be taken from the expansion given

by
dθ

dτ
= −θ2

2
− σµνσ

µν + ωµνω
µν −Rµνk

µkν (3.13)

where θ, σµν and ωµν shows expansion, shear and rotation respectively. These

parameters are related to the congruence explained by the null vector field kµ.

The shear is a spatial tensor with σ2 ≡ σµνσ
µν ≥ 0, thus it is obvious from Ray-

chaudhuri equations that for any hypersurface orthogonal congruences, which

forces ω ≡ 0, the condition for attractive gravity reduce to Rµνk
µkν ≥ 0. How-

ever, in GR, through the EFE we can write Tµνk
µkν ≥ 0. In the context of mod-

ified theory we used the effective EMT which is shown in equation (2.27) and

positivity condition, Rµνk
µkν ≥ 0 in the Raychaudhuri equations gives the fol-

lowing form of NEC T eff
µν kµkν ≥ 0 and for ordinary matter we can also write

Tmat
µν kµkν ≥ 0. It is simple to prove that the previous conditions impose energy

density positive in all local frame of references by using local lorentz transfor-

mation. Energy conditions describes the behavior of the similarity of lightlike,

timelike and spacelike curves. It is generally used in GR to find and study the
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ρeff ≥ 0 ρeff + peff ≥ 0 ρeff + peff ≥ 0, ρeff ≥ 0

m α β α β α β

1.1 1.1 ≤ β ≤ 270 −1.3 ≤ β ≤ 0.9 0 ≤ α ≤ 0.00000016 −0.64 ≤ β ≤ 0.11

−550 ≤ β ≤ −2.8

2 α ≥ 1.01 1.1 ≤ β ≤ 1500 α ≥ 1.01 −2.9 ≤ β ≤ 0.9 0 ≤ α ≤ 0.0000013 −0.58 ≤ β ≤ 0.29

−3000 ≤ β ≤ −8

10 1.1 ≤ β ≤ 9000 −17.8 ≤ β ≤ 0.9 0 ≤ α ≤ 0.00001 −0.55 ≤ β ≤ 0.22

−17900 ≤ β ≤ −50

Table 3.1: Validity ranges of parameters α and β for the model R + αQ+ βT .

singularities of space time. The energy conditions, NEC, WEC, SEC and DEC in

terms of EMT are given by

NEC: ρeff + peff ≥ 0,

WEC: ρeff ≥ 0, ρeff + peff ≥ 0,

SEC: ρeff + 3peff ≥ 0, ρeff + peff ≥ 0,

DEC: ρeff ≥ 0, ρeff ± peff ≥ 0. (3.14)

Now, we will discus the energy conditions for our first model of f(R, T,Q)

gravity which is R + αQ+ βT by considering FLRW metric.

WEC is found to be of the following form

ρeff = ρ+
1

2αρ− 2
[3βp− (β − 12αH2)ρ− 2αρ2 + 3αH(ρ′ − p′)], (3.15)

NEC yields as

ρeff + peff =
1

2αρ− 2
[−2p(1 + β − 6αH2 + 2(1 + z)αHH ′) + ρ(−2

(1 + β) + 6αH2 + 4(1 + z)αHH ′) + (1 + z)αH((1 + z)H ′(−ρ′ + p′)

+(8p′ + (p′′ − ρ′′)(1 + z))H)] ≥ 0. (3.16)
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SEC yields as

ρeff + 3peff =
1

2αρ− 2
[−2ρ(1 + 2β + 3αH2 − 6(1 + z)αHH ′)− 6p

(1 + 2β − 6αH2 + 2(1 + z)αHH ′) + 3(1 + z)αH((1 + z)H ′(p′ − ρ′) +

H(6p′ + 2ρ′ + (1 + z)(p′′ − ρ′′)))] ≥ 0. (3.17)

DEC yields as

ρeff − peff =
1

2αρ− 2
[2ρ(−1 + 9αH2 − 2(1 + z)αHH ′) + 2p(1 + 4β

−6αH2 + 2(1 + z)αHH ′)− (1 + z)αH((1 + z)H ′(p′ − ρ′) +H(2p′ +

6ρ′ + (1 + z)(p′′ − ρ′′)))] ≥ 0. (3.18)

The inequalities (3.15-3.18) have dependence on these parameters m, α and β.

We fixed two parameters z, c and find the valid regions by varying the ranges of

remaining parameters. We fix the constant of integration as c = 10 and range of

z will be from −0.9 to 10 and show the results for WEC and NEC. The validity

region for different cases are shown in Table. 3.1 in which we took the different

values of m to show the relation between α, β and m. Initially, we fix the value of

m = 1.1 for WEC then range for alpha is α ≥ 1.01 and for beta is (1.1 ≤ β ≤ 270)

and (−550 ≤ β ≤ −2.8). If we take value of m = 10 then the ranges of β will also

increase like for α ≥ 1.01, it requires (1.1 ≤ β ≤ 9000) and (−17900 ≤ β ≤ −50).

We can see that WEC is valid only for positive values of α whereas β needs some

particular range for different values of α and m. If we take small value of m then

validity range is also small for β, likewise if we increase the starting value of α

then range of β also increases. Choice of m and particular range of β are directly

proportional to each other while α ≥ 1.01 and α has also direct relation with β.

If we will take larger value of α then we have to choose the larger value for β

and vice versa, like if we choose m = 2 then α = 10 and β = −5 but if decrease

the value of alpha as α = 1.001 then β will be −8. ρeff + peff ≥ 0 is also valid

for positive values of α. In this setup, we show different ranges of β depending
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Figure 3.2: The LHS figure shows the validity region for ρeff ≥ 0 whereas the

RHS figure shows the validity region for ρeff + peff ≥ 0. Herein, we set H0 =

67.3.
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Figure 3.3: The LHS figure shows the validity region for WEC (ρeff ≥ 0, ρeff +

peff ≥ 0) in 3D whereas the RHS figure shows the validity region for WEC in

2D. Herein, we set H0 = 67.3, and for 2D plot we set z = 0, m = 10.
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on the particular ranges of α and results are shown in Table. 3.1. If we choose

m = 1.1 with α ≥ 1.01 then range of β is (−1.3 ≤ β ≤ 0.9). If we fix m = 2

and α ≥ 1.01 then range of β is (−2.9 ≤ β ≤ 0.9). From this discussion we can

conclude that range of β for ρeff + peff ≥ 0 lies between −2.9 and 0.9 for any

value of α ≥ 1.01 and m > 1. Finally, in the last two columns of Table. 3.1 we

show the combine validity region for WEC and NEC. Same in this case if we

increase the value of m then the ranges of α also increases. Keep in notice that

in common region, range of α is also restricted and very short. For m = 1.1

range of α is (0 ≤ α ≤ 0.00000016) and range of β is (−0.64 ≤ β ≤ 0.11). If we fix

m = 10 then range of α is (0 ≤ α ≤ 0.00001) and range of β is (−0.55 ≤ β ≤ 0.22)

for ρeff .

We show the graphical description for validity regions of ρeff ≥ 0 and ρeff +

peff ≥ 0 in Figs. 3.2-3.3. In Fig. 3.2, we show the validity region for ρeff ≥ 0

ρeff +peff ≥ 0 for the particular choice m = 10. Fig. 3.3, shows the region which

validate the NEC for m = 10. Right side of Fig. 3.3 presents the common region

for both ρeff ≥ 0 and ρeff + peff ≥ 0 at z = 0 and m = 10. In 2D regional plot

yellow color shows the region of ρeff ≥ 0 and blue color shows the region for

ρeff + peff ≥ 0. The validity regions of energy conditions are shown in Table.

3.1.

We can write the energy conditions in the combined form as

βA1 + αHA2 ≥ A3 (3.19)

where Ai,s purely depend on energy conditions which are under discussion for

WEC, we found the values of Ai,s

AWEC
1 =

3p− ρ

2
,

AWEC
2 = 6ρH +

3

2
(1 + z)H(p′ − ρ′),

AWEC
3 = ρ, (3.20)
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for NEC, we can found as

ANEC
1 = −ρ− p,

ANEC
2 = p(6H − 2(1 + z)H ′) + ρ(3H + 2H ′(z + 1)) +

z + 1

2
[H ′(z + 1)

(−ρ′ + p′) +H(8p′ + (z + 1)(−ρ′′ + p′′))],

ANEC
3 = p+ ρ, (3.21)

for SEC, we can found as

ASEC
1 = −2ρ− 6p,

ASEC
2 = 3p(6H − 2(1 + z)H ′) + ρ(−3H + 6(z + 1)H ′) +

3(z + 1)

2

[(z + 1)H ′(p′ − ρ′) +H(6p′ + 2ρ′ + (1 + z)(p′′ − ρ′′))],

ASEC
3 = ρ+ 3p, (3.22)

for DEC, we can found as

ADEC
1 = 4p,

ADEC
2 = p(−6H + 2H ′(z + 1)) + ρ(9H − 2H ′(z + 1))− z + 1

2
[(z + 1)

(p′ − ρ′)H ′ +H(2p′ + 6ρ′ + (1 + z)(p′′ − ρ′′))],

ADEC
3 = ρ− p. (3.23)
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3.3 f (R, T,Q) = R(1 + αQ)

We intend to dicuss the cosmic evolution using matter conservation equation of

more generic modified theory. Here, we will set Lm = ρ and we will take the

second model f(R, T,Q) = R(1 + αQ) where α is coupling parameter. In this

model, the choice of α = 0, results in Eisntein’s formalism of GR.

For a flat FLRW universe, the non-zero components of FLRW equation for

peff = p+ pDE and ρeff = ρ+ ρDE are

3H2 = ρeff ,

−2Ḣ − 3H2 = Peff , (3.24)

where dots being time derivative and components of ρDE and pDE are given as

follows

ρDE =
−1

1 + 3α(p+ ρ)(3H2 + Ḣ)
[3α(−18H4(ρ+ p) + 3H2(ρ(ρ+ p) +

Ḣ(5p− 7ρ)) + Ḣ(ρ(ρ+ p) + 3(ρ− p)Ḣ) + 3H3(5ṗ− 3ρ̇) + 6HḢ

(ṗ− ρ̇) + (p− ρ)Ḧ)], (3.25)

pDE =
−1

1 + 3α(p+ ρ)(3H2 + Ḣ)
[3α(6H4(−p+ ρ) + 2H3(ṗ+ 5ρ̇) + 4

(−ṗ+ ρ̇)Ḧ) + 2H(9Ḣ(ρ̇− ṗ) + 2Ḧ(−2p+ 3ρ)) + Ḣ(p(ρ+ p) + (−11

p+ 7ρ)Ḣ − 2p̈+ 2ρ̈) +H2(3p(p+ ρ)− (p− 25ρ)Ḣ − 5p̈+ 3ρ̈) +

2(−p+ ρ)H3], (3.26)

and effective EoS ωeff is

ωeff = [−3α(6H4ρ+ 2H3(ṗ+ 5ρ̇) + 4(−ṗ+ ρ̇)Ḧ + 6H(3Ḣ(−ṗ+ ρ̇) +

2ρḦ) + Ḣ(7ρḢ − 2p̈+ 2ρ̈) +H2(25ρḢ − 5p̈+ 3ρ̈) + 2ρH3) + p(1 + 3α

(6H4 +H2Ḣ + 11Ḣ2 + 8HḦ + 2H3))][ρ+ 9α(6H4(p+ ρ) +H2

(−5p+ 7ρ)Ḣ + (p− ρ)Ḣ2) +H3(−5ṗ+ 3ρ̇) + 2H(Ḣ(−ṗ+ ρ̇) +

(ρ− p)Ḧ)]−1. (3.27)
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The EoS for DE is found to be as, ωDE = pDE

ρDE

ωDE = [6H4(−p+ ρ) + 2H3(ṗ+ 5ρ̇) + 4(−ṗ+ ρ̇)Ḧ + 2H(9Ḣ(ρ̇− ṗ)

+2Ḧ(−2p+ 3ρ)) + Ḣ(p(ρ+ p) + (−11p+ 7ρ)Ḣ − 2p̈+ 2ρ̈)H2(3p(p

+ρ)− (p− 25ρ)Ḣ − 5p̈+ 3ρ̈) + 2(−p+ ρ)H3][−18H4(ρ+ p) + 3H2(ρ

(ρ+ p) + Ḣ(5p− 7ρ)) + Ḣ(ρ(ρ+ p) + 3(ρ− p)Ḣ) + 3H3(5ṗ− 3ρ̇)

+6H((ṗ− ρ̇)Ḣ + Ḧ(p− ρ))]−1. (3.28)

and conservation equation (2.28) takes the following form for this model

ρ̇+ 3H(ρ+ p) =
9α(2H2 + Ḣ)(3H2 + Ḣ)(2H(p+ ρ) + ṗ+ ρ̇)

1 + 18α(2H2 + Ḣ)2
. (3.29)

In this scenario, by using the equation (3.29) and converting it into redshift by

using the relation a(t) = 1
1+z

and d
dt

= −(1 + z)H d
dz

whereas p = p(z). Energy

density ρ(z) is found to be as

e(1+ω)(3 log(1+z)−m(−1+3m)(1+3ω) log[−m2+9H4
0(−1+2m)(1+z)

4
m α(1−ω+m(−1+3ω))]

4−4ω+4m(−1+3ω)
)c, (3.30)

where c stands for constant of integration. As energy density is found to be

in an exponential form so it will remain positive for all values of unknowns

parameters like α, ω, m, z. It will only depend on constant of integration c when

we take negative value of c then energy density will be negative or less than

zero otherwise for all positive values of c energy density will remain positive.

One can also get the relation between time and redshift as

t =

(
1

1 + z

) 1
m

. (3.31)

Using the value of ρ(z), one can get ρeff and peff in terms of redshift as and we

take c = 10 and ω = 1

ρeff = [10(1 + z)6(m2 + 180H4
0m

2(1 + z)
4
mα− 972H8

0 (−1 + 2m)(1 +

z)
8
mα2)][m(−m+ 18H4

0 (−1 + 2m)(1 + z)
4
mα)3m + 60H2

0 (1 + z)6+
2
mαm

(m− 3m2 + 18H4
0 (1 +m)(−5 + 6m))(1 + z)

4
mα]−1, (3.32)
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peff = [10(1 + z)6(m4 + 12H4
0m

2(−1 + 6m(2 + 5m))(1 + z)
4
mα+ 108

H8
0m(−1 + 2m)(−16− 51m+ 78m2)(1 + z)

8
mα2 − 34992H1

02(1− 2m)2

(−1 +m)(1 + z)
12
mα3)][m(m− 18H4

0 (−1 + 2m)(1 + z)
4
mα)2(60H2

0 (−1

+3m)(1 + z)6+
2
mα +m(m(−m+ 18H4

0 (−1 + 2m)(1 + z)
4
mα))−1+3m)]−1,

and effective EoS in term of redshift can be written as

ωeff = −2 +
2

m
− 4m

−m+ 18H4
0 (−1 + 2m)(1 + z)

4
mα

− [m(2 +m) + 6

H4
0 (2 + 9m(3 + 2m))(1 + z)

4
mα][m2 + 180H4

0m
2(1 + z)

4
mα− 972H8

0 (−1

+2m)(1 + z)
8
mα2]−1. (3.33)

Graphical representation of effective components EoS ωeff are shown in Fig. 3.4
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Figure 3.4: The LHS shows the evolution of ωeff for m = 1.6 whereas the RHS

shows the behavior ωeff for m = 2. Herein, we set α = 10 and H0 = 67.3 [7].

for two different values of m. In this discussion, we choose the following values

of unknown parameters α = 10, m = 1.6, and m = 2. For the value of m = 2,

deceleration parameter is −0.5 which favors the expanding behavior of cosmos.

It can be seen that ρeff is positive and increasing function as shown on right

plot and ωeff and ωDE are exactly equal to −1, shown in Fig. 3.5, representing

the ΛCDM epoch in accordance with recent observations from Planck’s data [7].
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Figure 3.5: The LHS shows the Evolution of ωDE whereas the RHS shows the

behavior of ρeff . Herein, we set α = 10, m = 2, and H0 = 67.3 [7].

3.4 Energy conditions for the model

f (R, T,Q) = R(1 + αQ)

Now, we will discus the energy conditions for our second model of f(R, T,Q)

gravity which is R(1 + αQ) by considering FLRW metric. The validity of above

mentioned inequalities (3.14) is totaly model dependent. In this model these

depend on two parameters "α" coupling parameter, and "m" the power law ex-

ponent. Here, we fixed H0 = 67.3, c = 10. ρeff ≥ 0 is valid for all positive values

of α, i.e., α > 0 and m > 1. ρeff + peff ≥ 0 is valid for α > 0, and m is restrict

in this model between 1 < m < 2, this inequality is not valid for greater values

of m. NEC is also valid for the positive values of α and m should be between

1 < m < 2. We showed the valid regions of NEC and WEC in Fig. 3.6 and

Fig. 3.7. respectively.
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Figure 3.6: The LHS shows the validity region for ρeff ≥ 0 whereas the RHS

shows the validity region for ρeff + peff ≥ 0. Herein, we set H0 = 67.3.
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Figure 3.7: The LHS shows the validity region for WEC (ρeff ≥ 0, ρeff+peff ≥ 0)

in 3D whereas the RHS also shows the validity region for WEC in 2D. Herein,

we set H0 = 67.3, and for 2D plot we set z = 0, m = 10.
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Chapter 4

Late time cosmic evolution with
collisional matter in f (R, T ) gravity
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In this chapter, we discuss the cosmic evolution of non-minimally coupled

f(R, T ) gravity in the presence of CM plus radiation. We find the cosmic evo-

lution in the background of CM and compare the results with NCM and well

known ΛCDM model. In this chapter, we also consider the FLRW space-time

and formulate the dynamic equations. Here, we choose the two significant non-

minimal models and discuss the cosmological parameters, the effective EoS, and

deceleration parameter by considering CM plus radiations. In graphical repre-

sentation, we show the comparison between CM without radiation, NCM, CM

with radiations and ΛCDM model.

4.1 Collisional Matter within f (R, T ) Theory

The analytical results of high energy particle detectors, like WMAP, PAMELA

and ATIC show that the production of the electron-positron in the universe is

greater than to that observed by cosmic ray collisions and Supernovae SNeIa ex-

plosions [69]. This issue helps us to find the total destruction of WIMP’s which

are the candidate for DM and this process is collisional [70]. The consideration

of collisional DM is the solution for the problem of recent cosmic picture which

shows the greater amount of energy than its total matter contents. Now, our dis-

cussion topic is late times dynamics of the cosmos by considering CM. Kleidis

and spyrou [71] discover the cosmic dynamics exclusively by considering CM

in the Einstein gravity and realized that deceleration parameter q is not depen-

dent of redshift and remains constant. So eventually, we are not able to discus

the transition phase from decelerated phase to accelerated one. The late time

dynamics in the presence of CM is discussed by Oikonomou, V.K. et al. [72, 73]

and they came with the result that, the CM is not the only one that can not

describe the late-time cosmic acceleration but it can modifies the cosmic accel-

eration in f(R) gravity. This discovery motivated us to the future evolution of
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cosmic parameters in f(R, T ) gravity. Simply, DE EoS parameter ωDE is able to

cross the phantom divide line even in the presence of CM. We can see that firstly

CM was introduced and studied in GR and f(R) gravity. Mostly, self interacting

CM model was discussed with perfect fluid in which total mass-energy density

is basic assumption, denoted by ϵm which depends on two terms and defined as

ϵm = ρm + ρmΠ, (4.1)

Because of the fact of checking the ordinary matter content relating ρmΠ, the

invariant part referred by ρm here. The energy density part of the EMT related

to thermodynamical content of CM is represented by ρmΠ. Although fluid is not

dust like, but it has positive pressure and satisfies the EoS:

Pm = ωρm, (4.2)

where EoS parameter is represented by ω and 0 < ω < 1. And it is assumed that

the potential energy density is

Π = Π0 + ωln(
ρm
ρm0

) (4.3)

with ρm0 and Π0 are present day values. Using (4.1) and (4.3) we obtain the

following relation of total energy density of the Universe as follows:

ϵm = ρm(1 + Π0 + ωln(
ρm
ρm0

)). (4.4)

In the conserved medium the continuity equation for the motion of volume ele-

ment is stated as:

∇νTµν = 0. (4.5)

And the EMT reduces as

Tµν = (ϵm + Pm)uµuν − Pmgµν , (4.6)

where uµ = dxµ

ds
is the four velocity and satisfies the equation uµuν = 1. It is

noted that Pm = pm because of the negligence of the pressure of the ordinary
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matter. Using FLRW line element, conservation equation given in (4.5) becomes

˙ϵm + 3
ȧ

a
(ϵm + Pm) = 0. (4.7)

Combining (4.2) and(4.4), gives the following result

ρm = ρm0

(a0
a

)3

. (4.8)

with a0 the current scale factor. Here we can see that CM can be described by

(4.4) and (4.8). Π0 has the following form and Ωm = 0.3183 by Planck’s data [7]

Π0 =

(
1

ΩM

− 1

)
(4.9)

and its numerical value is Π0 = 2.14169.

There is an important case need to be discused that our universe is filled with

both CM and relativistic matter which is commonly known as radiations. To

discus this significant case ρmatt is defined as following

ρmatt = ϵm + ρr0a
−4, (4.10)

where ρr0 represent the present energy density for radiation. The pressure for

this case is given by

Pmatt = pm + pr, (4.11)

where pm is the pressure for CM and pr is the pressure from radiation. By using

equation (4.4) and (4.8) we can get equation (4.10) in the following form

ρmatt = ρm0a
−3(1 + Π0 + 3ωln(a)) + ρr0a

−4. (4.12)

We can also rewrite above equation (4.12) as

ρmatt = ρm0(g(a) + χa−4), (4.13)

where χ is defined as χ = ρr0
ρm0

, its numerical value is χ = 3.1 × 10−4. g(a)

represent the nature of CM and it is defined as following

g(a) = a−3(1 + Π0 − 3ωln(a)). (4.14)

Keep in mind that, if we will take ω = 0 and Π0 = 0 in this formalism then we

will get g(a) = a−3 and its represent the NCM which is considered to be dust.
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4.2 Late time Cosmological Evolution in f (R, T ) The-

ory

We will check the behavior and characteristic of deceleration parameter q(z) and

EoS parameter ωeff in f(R, T ) gravity. We are assuming that the cosmos is not

only filled with ordinary matter and DE but also is filled with self interacting

CM. So rewriting field equation in these conditions as:

3H2 =
1 + fT
fR

ϵm +
1

fR
[
1

2
(f −RfR)− 3ṘHfRR + PmfT ], (4.15)

−2Ḣ − 3H2 =
1 + fT
fR

Pm +
1

fR
[2ṘHfRR + R̈fRR + Ṙ2fRRR − 1

2
(f

−RfR)− PmfT ]. (4.16)

Partial derivative with respect to time is represented by dot. We rewrite the RHS

of (4.15) and (4.16) in terms of effective energy density ρeff and pressure Peff as

follows

3H2 = k2
effρeff , (4.17)

−2Ḣ − 3H2 = k2
effPeff . (4.18)

Here k2
eff = 1+fT

fR
, and ρeff , Peff has the following form

ρeff = ϵm +
1

1 + fT
[
1

2
(f −RfR)− 3ṘHfRR + PmfT ], (4.19)

Peff = Pm +
1

1 + fT
[2ṘHfRR + R̈fRR + Ṙ2fRRR − 1

2
(f −RfR)

−PmfT ]. (4.20)

With the energy density ρDE = ρeff − ϵm and the pressure PDE = Peff − Pm.

Conservation Law with the effective energy density is found to be

d(k2
effρeff )

dt
+ 3Hk2

eff (ρeff + Peff ) = 0. (4.21)

Using (4.17) and (4.18) the above equation takes the form

18
fRR

fR
H(Ḧ + 4HḢ) + 3(Ḣ +H2) +

1 + fT
fR

ϵm + Pm
fT
fR

+
f

2fR
= 0. (4.22)
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Using redshift z = 1
a
− 1 above equation can be written as

d2H

dz2
=

3

z + 1

dH

dz
− 1

H
(
dH

dz
)2 − [3fR(H

2 − (1 + z)H
dH

dz
) +

f

2
+ PmfT

+(1 + fT )ϵm][18H
3fRR(1 + z)2]−1. (4.23)

In following subsection, we will describe the late time cosmology by consider-

ing the CM and radiations. We numerically solve the differential equation (4.23)

for H(z) and used this interpolating function H(z) for further graphical analysis

to check the correspondence of models [1] with existing literature in the pres-

ence of self interacting CM and radiations. We will discus two different types

of non-minimal models in this theory. We have the following parameters for all

plots. (ω = 0 for NCM), (ω = 0.5 for CM) and (ω = 0.8 for CM+radiations) and

the observational value for present Hubble parameter is taken H0 = 68.3, and

fractional energy density Ωm0 = 0.3183.

4.2.1 f(R, T ) = α1R
γ1T γ2 + α2T

In first place we consider pure non-minimally coupled model in the background

of f(R, T ) gravity of the form f(R, T ) = α1R
γ1T γ2 + α2T . In [1], authors re-

constructed this model and check the instability of such model against density

matter perturbations and Dolgov Kawasaki instability criterion.

The condition for the viability of this model requires that

fRR = α1γ1(γ1 − 1)Rγ1−2T γ2 ≥ 0, (4.24)

so that we need to have γ1 > 1, and α1 > 0. Herein, in graphical analysis, we

choose the following parameters α1 = 20, α2 = 15, H0 = 68.3, and Ωm = 0.3183.

We employ the numerical approach to find H(z) by solving Eq. (4.23). We

discuss the deceleration parameter, ωeff and ωDE for three cases namely, non-

CM, CM, and CM plus radiations. We present two different cases depending on
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Figure 4.1: The LHS plot shows the evolution of deceleration parameter whereas

the RHS plot shows the evolution of effective EoS. Herein we set, α1 = 20, α2 =

15, γ1 = 10, and γ2 = −0.7.
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Figure 4.2: The LHS plot shows the evolution of H(z) whereas the RHS plot

shows the evolution of EoS for dark energy. Herein we set, α1 = 20, α2 =

15, γ1 = 10, and γ2 = −0.7.
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the powers of R and T in above model. For the first model, we set γ1 = 10 and

γ2 = −0.7, so that f(R, T ) takes the form

• α1R
10T−4/5 + α2T

In Fig. 4.1 the LHS represent the evolution of deceleration parameter for four

different cases in term of redshift. Blue curve represent the standard ΛCDM

model, green curve is for NCM, black curve is for CM, red curve is for combine

CM plus radiations. We can clearly see that from Fig. 4.1 that the behavior of

the green curve and red curve is almost same as blue (ΛCDM) curve but the

black curve is lower than the blue curve and changes its behavior. We can also

observe the transition phase in LHS of Fig. 4.1 for NCM, CM, and CM plus

radiation. In the case of NCM, CM plus radiation transition phase is almost

equal to ΛCDM model, equal to zt = 1.9 and for CM case shows the transition

phase at zt = 7.6 and this is the larger value as compare to observations. In the

RHS of the Fig. 4.1, we represents the evolution of effective EoS for NCM, CM,

and for radiations plus CM case and the color scheme is same as for deceleration

parameter. The graphs shows that in all cases ωeff approaches to -1 and black

line is not crossing the phantom divide line [74] but green and red line crossed

the phantom divide line. The LHS of Fig. 4.2 represents the evolution of H(z)

which is numerically calculated for this model and we found the current value

of H(z) for this model at z = 0 is equal to 68.4 for all cases NCM, CM, and CM

plus radiation consistent with the recent Planck’s data [7]. The RHS of Fig. 4.2

represents the evolution of EoS for DE. DE is approaches to −1 for CM, for NCM

and CM plus radiation case its greater than −1.

For the second case we set γ1 = 10 and γ2 = −0.5, so that f(R, T ) takes the

form

• α1R
10T−1/2 + α2T
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Figure 4.3: The LHS plot shows the evolution of deceleration parameter whereas

the RHS plot shows the evolution of effective EoS. Herein we set, α1 = 20, α2 =

15, γ1 = 10 and γ2 = −0.5.
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Figure 4.4: The LHS plot shows the evolution of H(z) whereas the RHS plot

shows the evolution of EoS for dark energy. Herein we set, α1 = 20, α2 =

15, γ1 = 10 and γ2 = −0.5.
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Again we use the numerical approach to discuss this f(R, T ) model by using

equation of motion (4.23). In Fig. 4.3 the LHS represent the evolution of deceler-

ation parameter for four different cases in term of redshift. Blue curve represent

the standard ΛCDM model, green curve is for NCM, black curve is for CM, red

curve is for combine CM plus radiations. We can clearly see that from Fig. 4.3

that the behavior of the green curve, black curve and red curve is almost same

as blue (ΛCDM) curve for this model. We can also observe the transition phase

in LHS of Fig. 4.3 for NCM, CM, and CM plus radiation. In the case of NCM

transition phase is almost equal to zt = 2, CM plus radiation transition phase is

almost equal to zt = 1.9 and for CM case shows the transition phase at zt = 1.8.

In the RHS of the Fig. 4.3, we represents the evolution of effective EoS for NCM,

CM, and for radiations plus CM case and the color scheme is same as for decel-

eration parameter. The graphs shows that in all cases ωeff approaches to −1 and

all the lines, green, black, red crosses the phantom line [74] for this model. The

LHS of Fig. 4.4 represents the evolution of H(z) which is numerically calculated

for this model and we found the current value of H(z) for this model at z = 0 is

equal to 68.4 for all cases NCM, CM, and CM plus radiation in accordance with

[7]. The RHS of Fig. 4.4 represents the evolution of EoS for DE. In this model DE

for CM, for NCM and CM plus radiation case is greater than −1.

4.2.2 f(R, T ) = β1R
µ + β2R

ν + 2k2

−1+3ωT + β3T
1
2−

√
−1+ω(3+ω−3ω2)

(1+ω)
√
−2+6ω +

β4T
1
2+

√
−1+ω(3+ω−3ω2)

(1+ω)
√
−2+6ω

This model represents a generic minimal coupling model of the form f(R, T ) =

f(R) + f(T ). The second derivative of above model is given by

fRR = β1µ(µ− 1)Rµ−2 + β2ν(ν − 1)Rν−2 ≥ 0. (4.25)

The validity of this model also depends on second derivative fRR which should

be greater than zero and it would be valid when µ > 1, ν > 1, β1 > 0 and
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Figure 4.5: The LHS plot shows the evolution of deceleration parameter whereas

the RHS plot shows the evolution of effective EoS. Herein we set, β1 = 5, β2 =

10, β3 = 15, β4 = 20, µ = 25 and ν = 30.
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Figure 4.6: The LHS plot shows the evolution of H(z) whereas the RHS plot

shows the evolution of EoS for dark energy. Herein we set, β1 = 5, β2 = 10, β3 =

15, β4 = 20, µ = 25 and ν = 30.
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β2 > 0. We choose the following parameters, β1 = 5, β2 = 10, β3 = 15, β4 = 20,

µ = 25, ν = 30, and Ωm = 0.3183 for NCM, CM and combine case for CM plus

radiation. We will numerically discuss this f(R, T ) model by using equation

of motion (4.23). In Fig. 4.5 the LHS represent the evolution of deceleration

parameter for four different cases in term of redshift. Blue curve represent the

standard ΛCDM model, green curve is for NCM, black curve is for CM, red

curve is for combine CM plus radiations. We can clearly see from Fig. 4.5 that

the red curve and black curve overlapped each other, here we distinguished

them with black and red dashed line. Green line is slightly varies from red and

black line. We can also observe the transition phase in LHS of Fig. 4.5 for CM,

and CM plus radiation is also same at zt = 2.2. In the case of NCM transition

phase is almost equal to zt = 2.1. In the RHS of the Fig. 4.5, we represents

the evolution of effective EoS for NCM, CM, and for radiations plus CM case

and the color scheme is same as for deceleration parameter. The graphs shows

that in all cases ωeff approaches to -1 and all the lines, green, black, red crossed

the phantom divide line [74] for this model. The LHS of Fig. 4.6 represents the

evolution of H(z) which is numerically calculated for this model and we found

the current value of H(z) for this model at z = 0 is equal to 68.4 for all cases

NCM, CM, and CM plus radiation. The RHS of Fig. 4.6 represents the evolution

of EoS for DE. In this model DE for CM, for NCM and CM plus radiation case

is greater than −1.
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Chapter 5

Summary and Discussion
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Modified theories become the appropriate candidates to discus the acceler-

ated cosmic expansion. f(R, T,Q) is a generalized MTG based on the coupling

of matter and curvature. This complicated theory involve the contraction of T µν

and Rµν and it is the extended form of f(R, T ) theory [24]. Although, f(R, T,Q)

gravity is the extension of f(R, T ) theory but there exists a notable difference

while taking the contraction term Rµν . For example, if we involve the role of

radiation dominated fluid, then filed equations turn down to f(R) gravity and

effect of non-minimal coupling would be vanished in f(R, T ) but this is not

the case for f(R, T,Q) due to the involvement of contraction term Q. Q is the

inclusive term which involve the strong non-minimal coupling as compared to

other MTG. So it is strongly motivational to test these models with non-minimal

coupling and explore their results in cosmology.

In this thesis, we have constructed a cosmological scenario from the compli-

cated non-minimal coupling of matter and geometry in the f(R, T,Q) gravity.

We consider two simple cases of non-minimal coupling in this modified theory

in the form of models f(R, T,Q) = R + αQ + βT and f(R, T,Q) = R(1 + αQ).

Dynamical equations are presented in chapter III, where we consider the power

law cosmology to find an expression for energy density ρ. Using Eq. (3.30),

it is obvious to find the expressions of effective EMT and its components. In

power law cosmology, one can represent the cosmic history depending on the

choice of parameter m. Here, we set parameter m according to the evolution

of q as per recent observational data. In Fig. 2.22, we set m = 1.0666580 with

q = −0.0624924 to see the evolution of ρeff and ωeff , it is found that WEC is sat-

isfied and ωeff → −1 validating the current cosmic epoch [7]. It is to be noted

that we set the choice of parameters α and β as per validity ranges expressed

in Table. 3.1, where we develop the constraints on these parameters for differ-

ent values of m satisfying WEC and NEC. Evolution of WEC and NEC versus

redshift z is presented in Fig. 2.23-2.25.
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Data q H0(kms−1Mpc−1) m ωeff

H(z)(14points)[76] −0.18+0.12
−0.12 68.43+2.84

−2.80 1.221 −1.31601

SN(Union2)[76] −0.38+0.05
−0.05 69.18+0.55

−0.54 1.613 −1.84677

H(z) + SN(Union2)[76] −0.34+0.05
−0.05 68.93+0.53

−0.52 1.516 −1.74099

H(z)(29points)[77] −0.0451+0.0614
−0.0625 65.2299+2.4862

−2.4607 1.0473 −0.953795

SN(Union2.1)[77] −0.3077+0.1045
−0.1036 68.7702+1.4052

−1.3754 1.4445 −1.65392

Table 5.1: Observational data results for power law exponent m and ωeff for the

model f(R, T,Q) = R + αQ+ βT .

In literature, observational constraints have been developed on the choice of

power law exponent m, cosmological parameters q and H0. Kaeonikhom et al.

[75] explored the phantom power law cosmology using cosmological observa-

tions from CMBR, BAO and observational Hubble data, they found the best

fit value of power law exponent as m ≈ −6.51+0.24
−0.25. In [76], Kumar found the

constraints on Hubble and deceleration parameters from the latest H(z) and

SNeIa data as q = −0.18+0.12
−0.12, H0 = 68.43+2.84

−2.80kms-1Mpc-1 and q = −0.38+0.05
−0.05,

H0 = 69.18+0.55
−0.54 kms-1Mpc-1 respectively. The combination of H(z) and SNeIa

data yields the constraints q = −0.34+0.05
−0.05, H0 = 69.18+0.55

−0.54kms-1Mpc-1. The con-

sistent observational constraints on both of the parameters q and H0 according

to latest 28 points of H(z) are found as q = −0.0451+0.0.0614
−0.0625 , H0 = 65.2299+2.4862

−2.4607,

in case of Union2.1 SN data, these parameters take the values q = −0.3077+0.1045
−0.1036,

H0 = 68.7702+1.4052
−1.3754 [77]. Using the data set of Kumar [76] and Rani et al. [77],

we choose the parameter m and develop the ranges of ωeff as shown in Table.

5.1 for the model f(R, T,Q) = R + αQ + βT . For m = 1.221, ωeff is found to

be −1.31601 which agrees with the observational results of Planck+WMAP+H0

[7]. Also, for the choice of m = 1.0473 and m = 1.4445, results of ωeff are consis-

tent with the observational data of 95%(WMAP5+BAO+SN) [78] and WMAP9

[43].
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Data q H0(kms−1Mpc−1) m ωeff

H(z)(14points)[76] −0.18+0.12
−0.12 68.43+2.84

−2.80 1.221 −0.361998

SN(Union2)[76] −0.38+0.05
−0.05 69.18+0.55

−0.54 1.613 −0.760074

H(z) + SN(Union2)[76] −0.34+0.05
−0.05 68.93+0.53

−0.52 1.516 −0.680739

H(z)(29points)[77] −0.0451+0.0614
−0.0625 65.2299+2.4862

−2.4607 1.0473 −0.0903275

SN(Union2.1)[77] −0.3077+0.1045
−0.1036 68.7702+1.4052

−1.3754 1.4445 −0.615438

Table 5.2: Data results for power law exponent m and ωeff for the model R(1 +

αQ).

We consider a second model of non-minimal coupling in the f(R, T,Q) mod-

ified theory in the form of model f(R, T,Q) = R(1 + αQ). Dynamical equations

are also presented in section III, where we consider the power law cosmology to

find an expression for energy density ρ. Using Eq.(3.30), it is obvious to find the

expressions of effective energy momentum tensor and its components. In power

law cosmology, one can represent the cosmic history depending on the choice

of parameter m. Here, we set parameter m according to the evolution of q as per

recent observational data. It is to be noted that we set the choice of parameters

α and m as per validity ranges expressed in Table 3.1, where we develop the

constraints on coupling parameter α for different values of m satisfying WEC

and NEC. In Fig. 2.22, we set m = 2 with q = −0.5 to see the evolution of ρeff

and ωeff , it is found that WEC is satisfied and ωeff = −1 validating the current

cosmic epoch [7].

For the second model f(R, T,Q) = R(1 + αQ) we also use the data set of

Kumar [76] and Rani et al. [77], we choose the parameter m and develop the

ranges of ωeff as shown in Table. 5.2 for the second model f(R, T,Q) = R(1 +

αQ). For m = 2, ωeff is found to be −0.5 which agrees with the observa-

tional results of Planck+WMAP+H0 [7]. Also, for the choice of m = 1.0473

and m = 1.4445, results of ωeff are consistent with the observational data of
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95%(WMAP5+BAO+SN) [78] and WMAP9 [43].

In chapter IV, we have discussed the cosmological features of f(R, T ) mod-

els which involve both minimal and non-minimal matter geometry coupling in

the presence of CM plus radiations, and compared our results NCM, and CM

without radiations. Usually, in theories of gravity, we only discuss the inter-

action of ordinary matter and DE with zero pressure but both of them are also

self-interacting. In this study we assume the new form of matter expect ordi-

nary matter and DE, which is self interacting CM and having a positive pres-

sure with EoS ω satisfying the relation 0 < ω < 1. The observational results

are also supporting the concept of self-interacting CM so, its absolutely reason-

able to discuss such kind of CM and its effects on cosmological evolution of the

universe. Here, we focus on the transition of EoS parameter from decelerated

phase to the accelerated phase and explore the crossing of phantom divide line

for the considered f(R, T ) models. The crossing of phantom divide line is also

feasible from observational data [74].

In [1], authors reconstructed nonminimally coupled f(R, T ) gravities in the

scenario of cosmological evolution including ΛCDM, phantom or non-phantom

eras and possible phase transition from decelerating to accelerating. Here, the

power law reconstructed models of f(R, T ) gravity from [1], and discussed their

cosmological evolution in the framework of NCM, CM and CM plus radiations.

Our main focus is to explore the cosmological evolution of the effective EoS ωeff

and deceleration parameter q(z) in terms of redshift. In first case we consider

the f(R, T ) model of the form f(R, T ) = α1R
γ1T γ2 + α2T . keeping in view the

Dolgov Kawasaki instability criterion, we find γ1 > 1 and α1 > 0. We took

values of powers of R and T of the form (i) γ1 = 10, γ2 = −0.7 and (ii) γ1 =

10, γ2 = −0.5. For the first case α1R
10T−4/5 + α2T , we find the transition of

decelerated to acceleration phase in the evolution of EoS parameter ωeff , and it

approaches to −1 in accordance with the recent observational data. Moreover,
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the behavior of deceleration parameter and ωDE supports the ΛCDM model. For

α1R
10T−1/2+α2T model, we find similar sort of behavior of parameters. For the

second model of the form f(R, T ) = f(R) + f(T ) = β1R
µ + β2R

ν + 2k2

−1+3ω
T +

β3T
1
2
−
√

−1+ω(3+ω−3ω2)

(1+ω)
√

−2+6ω + β4T
1
2
+

√
−1+ω(3+ω−3ω2)

(1+ω)
√

−2+6ω , we find that it is all the curves merge

for NCM, CM and CM plus radiations. In order to settle the Dolgov Kawasaki

instability we set the parameters satisfying the conditions µ > 1, ν > 1, β1 > 0

and β2 > 0. It is observed that time of transition in all the cases is almost similar.

In our discussion we find the present day value of Hubble parameter H(z) as

68.4 in accordance with recent Planck’s results [7].

We compared our results in f(R, T ) with ΛCDM model and pressure less mat-

ter. We found that the results are strongly depends on model. The transition

phases also varies with respect to models and cases as well like for CM, NCM,

Radiations we get the transition phases at different points. It would be nice to

reconstruct more consistent model as per the recent observational data.
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