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THE GEOMETRY- AND OPTICS OF SYNCHROTRON RADIATIONt
A. P. SABERSKY

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA

The geometrical-optical properties of synchrotron radiation coming from a curving, relativistic electron beam do
not fit into any usual category of light or radiation source. The center of the apparent source of radiation depends
on the position of the observer with respect to the orbit, and the source has an axial extent which is a function of
the sizes of the beam and the' observation aperture. The beam image formed by focusing the synchrotron light
is subject to distortions and depth of field errors. These errors are calculated, and, in/some cases, methods of
correction are given. The limits put on resolution by geometrical effects are given. Beam orbit changes cause
errors in the angular acceptance of observation systems: these effects can also be corrected. The dimensions of the
diffuse shadows cast by rays from the finite-sized source impinging on edges are calculated.

FIGURE 1 Basic geometry of synchrotron radiation
emission and observation.
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with respect to the local straight trajectory, 2b.
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where the independent variables are:

R = the radius of bend
10 = the distance from the end of the curved orbit

to a perpendicular from the observation point
d = the perpendicular distance from the observa­

tion point to the straight trajectory.

If one is using these equations in the design of
synchrotron .radiation shields or other systems it is
very convenient to plot sets of solutions on a graph
for reference.

When the orbit of the electron beam moves
radially, the emission point moves also. We look

In high energy electron accelerators and storage
rings, synchrotron radiation gives the machine
designer many problems, and solves a few. This
paper gives derivations of the properties of synchro­
tron light interesting to those who use synchrotron
light to study electron beams in extent and intensity,
and those who use the synchrotron light itself as a
tool.

An excellent review of synchrotron radiation
properties has beenpresentedby R. P. Godwin1

; there
is also a careful analytical treatment in the book by
Sokolov and Ternov. 2 Some of the problems of
imaging and using synchrotron radiation have been
treated by Tomboulian and Hartman. 3

1. INTRODUCTION

2. GEOMETRIC PROPERTIES

We concern ourselves with the problem of an
observer at a point struck by synchrotron radiation.
What point on the electron orbit illuminates the
observation point, and how i~ the location of the
emission point to be defined?

We first represent the electron beam as a single
line and the emitted radiation as rays tangent to a
curved orbit. We deal only with orbits in uniform
magnetic fields and field-free spaces throughout.
The observation point is in a field-free region
adjacent to a sharply bounded bending field, in the
plane of the bend. The geometry of the problem is
shown in Figure 1. In Appendix A, we derive
equations for the emission distance 1and the angle

t Work supported by the U.S. Atomic Energy Commission.
P.A. A4-
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at the case in which the orbit moves perpendicular
to itself at the original emission point. For cos 2c5
~ 1, the changes in orbit position can be expressed
as changes in d.

The change in emission distance, I, with d is given
by

aZ_R(Zo+k1
/
2-d·R·k- 1

/
2)_ . -1/2

ad - (10 +k1/ 2)2 R k

k=lo2+2dR.

This quantity defines the slope of a line of
emission points with respect to the original observa­
tion axis (Figure 2). If 0211ad2 ~ allad in the region

object for optical observation. We use the phase­
space techniques commonly applied to charged
particle optics4 for- analysis. We assume that
defining apertures are rectangular, so that the ray
optics can be treated separately in the horizontal
and vertical planes.

Following the geometrical analysis of the
previous section, we first treat a line beam emitting
a single ray tangent to its curvature. We leave out
the dependence of angle on time and assume that
our observation system looks at all rays for all
time. The optical axis is the ray passing through
the center of the observation aperture (Figure 3).
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FIGURE 2 Definition of the optical axis and line of
emission points.

of interest, allad can be considered a constant.
ablad can be treated similarly.
For the full emission angle, Y = 2b

ay = (1 2+2dR)-1/2
ad 0

FIGURE 3 Coordinates for phase space representation
of the light source.

The tangent point, T, is the point x = 0, Z = 0, and
angles are referred to the z axis, as shown. For
example, we look at two points on opposite sides of
T, T 1 and T2 at an angle b (Figure 4). The tangent

al
~d ad ~ 1.

xSince I changes with d, the horizontal angular
acceptance of an aperture at the observation point
also changes with orbit displacements. The
fractional change in aperture angle, a = sll (Figure
12), for a displacement ~d is:

~a ~dal

a-= --y ad

lj

8
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This effect may be troublesome in photometric
work. A method of correction is given in Appendix
B.

3. BEAM IMAGE: HORIZONTAL
COMPONENT

A curved particle beam emitting a collimated cone
of light tangent to its curvature is an unusual

FIGURE 4 Projection of tangent rays to the source
plane.

at T 1 is projected forward to the z = 0 line, and the
tangent at T2 is projected back~ards. All tangents
are similarly projected to z = O. For small 0, the
trace of the tangents on the x - eplane at z = 0 is
expressed by (see Figure 5):
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has a finite divergence.t The total light divergence
angle, etat , is usually given as the quadratic sum of
these two divergences. The total divergence has
no effect on the intensity distribution in the source
area if

We treat only this case.
A restricting aperture forms a pair of lines

parallel to the eaxis in phase space. The aperture
edges can be transformed backwards or forwards
along the optical axis to any other point, where they
will also appear as a pair of parallel straight lines.
We define an aperture ±awide, symmetrical about
the optical axis. The equations of the edges are,
for the +a and - a edges, respectively,

82
x=R-

2
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FIGURE 5 Phase-space representation of the light source
atz=O.

x=tRe2
•

It is desirable to work at z = 0 because a linear
transformation of this trace to another z results in a
very complex function.

When a beam of electrons with a finite size, ±X03'

and zero divergence is centered on the line beam of
the previous section, the rays it emits fill an area
whose boundaries are parallel to the original
central ray line (Figure 6). This areawill bereferred
to as the source area.

x-a = 0,
x+a = o.

Transformed backwards a distance I along the
Z axis, the equations of the edges are

fJ+(x-a)jl = 0,
fJ+(a-x)jl = o.

The two edges of the observation aperture,
transformed back to the emission point, are
superimposed on the source area (Figure 7). In

e
Transmitted

Radiation

Visible synchrotron light has a divergence angle
in the horizontal plane, typically milliradians for
ultrarelativistic electrons. The particle beam also

FIGURE 6 Light source area.

FIGURE 7 A distant aperture transformed backwards
onto the source area.

this case, the aperture size (±a), is smaller than the­
beam size (±x).

We can now define e?Cactly the boundaries of the'
source area seen through the aperture, and we need.
to know how accurately this source represents the
horizontal beam cross section. A typical optical

t We assume that the beam divergence is small enough so
that its size is constant in the region of interest.
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observation device, such as a television camera or
photographic film, looks at the intensity distribution
in one plane perpendicular to the optical axis. All
information about angular distribution or x, 0
correlation is lost in this process. What we see is
the projection of the distribution in (x,O) onto the x
axis.

If the beam were an ordinary self-luminous
object, the boundaries of the light source area would
be straight, parallel to the 0 axis and symmetrical
about x = o.

However, looking at Figure 7 as an example, we
can see errors due to curvature and asymmetry of
the source area boundaries. The magnitude of the
error is approximately equal to the difference
between X o and the projections of the four inter­
section points onto the x axis. An approximation
to the total error, Axo, is given by

(xo+a)2
Axo = R -1--- ·

angular power distribution in the penumbra is
related to the radial power distribution in the beam,
exactly as the shadow angle is related to radial
orbit displacements. The power distribution in a
penumbra radially outward from an -edge is deter­
mined by the beam power distribution radially
inside the beam center line. For a radial beam
current distribution per) the angular penumbral
power distribution is

P(angular) = P(r) ay/ad.

For a Gaussian beam current distribution with
standard deviation width x, the total power in the
penumbra is

P(penumbra) = 1.25 Po ay/ad,

where P(J is the power per radian in the synchrotron
radiation.

5. BEAM IMAGE-VERTICAL

FI GURE 8 Shadow effects due to finite beam size.

4. SHADOW EFFECTS

l5y= resolution
A = light wavelength
¢ = angular width.

In this section we derive the vertical resolution of an
ideal optical system used to observe the electron
beam by its emitted light. Since the emission
properties of the beam determine the ultimate
resolution limit, rather than the properties of the
optical system, we shall always refer to the resolu­
tion in object space.

An electron beam emitting synchrotron radiation
is a self-collimated luminous object. The angular
divergence of the light in the vertical plane is a
function of the bending radius and the energy of the
electron beam. A useful, precise tabulation of
synchrotron light properties can be found in
Ref. 5. The ultimate vertical resolution in the
image is determined by the vertical angular
divergence of the light, ¢ :

The visible synchrotron radiation is elliptically
polarized, the angular distributions being quite
different for the components perpendicular or
parallel to the plaJ?e of bend. 6 Thus, the angular
distribution of the light can be modified by using
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IfAxo~ xo, we may forget about the distortions.
Note that as the quantity a becomes very small,
Axo does not go to zero.

If the distortions are a problem, they can be
partially compensated with second-order optics
(Appendix C) or improved by increasing I.

The treatment so far has been geometrical, and
one must include diffraction effects when dealing
with small horizontal apertures.
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If the observation point is an edge, such as a
protection collimator, the synchrotron radiation
casts a shadow whose edge is tangential to the beam
orbit (Figure 8). The distribution of electrons in a
real beam causes a penumbra to extend beyond the
straight shadow edge cast by a line beam. The
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FIGURE 10 A system which limits depth-of-field error
due to horizontal beam size.
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It is interesting that the vertical resolution
depends on horizontal beam size and horizontal
aperture.

It is possible to reduce the effect due to the beam
horizontal size by placing a horizontal image stop
in the image plane of the optical instrument (Figure
10). The restricted image can be refocused or the

J
a

Horizontal Emission Area

polarization analyzers in front of the optical
system used to image the light.

The electron beam has a finite divergence, 7 and
this should be properly added to the light divergence
angle, for resolution and depth of field calculations;
however, the beam divergence is usually small
compared to the light divergence angle, and will be
ignored.

For a beam with horizontal size Xo, each edge of
the horizontal aperture defines a line which is a
boundary of the horizontal emission area (Figure 9).

FIGURE 9 Horizontal emission area of a beam observed
through an aperture.

The other two edges have the curvature of the
orbit. The angle subtended by an aperture of size
ais

stop may be put slightly upstream of the image
plane.

If the image is to be scanned with a slit, the slit
may be tilted with respect to the optical axis so that
it is parallel to the image of the line of emission
points.

!hus, the length of arc forming the curved boundary
is

of)
C=R·a·­ad-

ACKNOWLEDGEMENTS

I wish to thank F. Bulos and H. Wiedemann for reading
the manuscript.

Treating the emission area as a parallelogram, the
effective z extent of the horizontal emission area
can be expressed, for small f), as

01 of)
~z = Xo ad +R . a -ad-

The depth field oferror is

c5Y2 =c5z·4> -

If all distributions of angle and intensity are
Gaussian, the vertical resolution is given by

~y = [(~Yl)2+(~Y2)2]l/2.

For a more exact formulation of the depth-of­
field problem, one must consider the effect of the
sharp edges of the emissioJ;l area due to the aperture
edges differently from the 'soft' edges due to the
beam-intensity distribution.

REFERENCES

1. R. P. Godwin, 'Synchrotron radiation as a light source,'
Springer Tracts in Modern Physics (Springer, Berlin,
1969); Vol. 51.

2. A. A. Sokolov and I. M. Ternov, Synchrotron Radiation
(Pergamon Press, New York, 1968).

3. D. H. Tomboulian and P. L. Hartman, Phys. Rev. 102,
1423 (1956).

4. For example, A. P. Banford, The Transport of Charged
Particle Beams (E. and F. N. Spon, Ltd., London, 1966).

5. R. A. Mack, 'Spectral and angular distributions of
synchrotron radiation,' Report No. CEAL-1027, Cam­
bridge Accelerator Laboratory (1966).

6. See Ref. 1, p. 8.
7. M. Sands, 'The physics of electron storage rings-an

introduction,' Proc. Int. School ofPhysics, 'Enrico Fermi,'
Varenna, Course 46 (1969); also Report No. SLAC-121,
Stanford Linear Accelerator Center (1970).

Received 30 April 1973;
and in final form 14 June 1973



204 A. P. SABERSKY

APPENDIX A

Synchrotron Light Geometry

Line Of
Emission Points

FIGURE 12 The change in acceptance angle due to
horizontal orbit distortions.
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FIGURE 11 Detailed geometry of synchrotron radi~tion

emission and observation.

Referring to Figure 11,

10 =AB
I=EC

d=CB

m=EF=·FA
m = Rtan~

FB = lo+m
d= FBtan2~

d= (10+Rtanb)tan2~

Ietx = tan ~

2x
tan2x =---

1 . 2·-x
2x

-1-2 (10 +Rx) = d
-x

We shall use the proportionality between Al and
Ay to correct the acceptance change. An optical
system for correction is shown schematically in
Figure 13. The filter at the focal plane of the lens
has a transmission profile for light

T(x) = power(transmitted)jpower(total)O < T ~ 1

8 tx
. Xo

orbit~ - ~Il:)
Aperture :

I

rfi
Filter
Plane

finally

~ -10 -[10
2+d(2R+d)]1/2

tan u = ----------
2R+d

FIGURE 13 An optical system which corrects errors in
the angular acceptance of a photometric system due to
horizontal orbit distortionso

d
11 = -:-2~+ Rtan~

SIn u
For an orbit distortion, d, the power at the aper­

ture is

APPENDIX B
(d) _ s

P -p Z-d(fJZjfJd)

Acceptance Angle Correction

The acceptance angle is a = s/I (refer to Figure 12).
The fractional change in acceptance is

Ad a1
Aa/a=-·­

1 ad
for

Al = Ad(a1/ad)~lo

p = po~er radiated into 1 radiano

The ray passes through the lens and reaches the
filter at

x = -f8 = -fo do cay/ad)
thus

x ad
d= -_o-

f ay
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and P(d) expressed as power variation at the focal
plane, P(x), is

The first order transformation matrix for this
system, up tof', is

s
P(x) = P 1+ (xjf)(vljvy)

where x is the ray deviation at the focal plane
(Figure 13). Now, we posit a constant power
passed through the system, independent ofd

Po = P(x)· T(x).

Po is the power transmitted when y = 0, and

Po = p. To·(sll)

To = T(x)atx = 0.

To is arbitrary, and can be chosen for convenience.
Then,

Po ToX at
T(x) = Px = TO+JT vy"

We work with a single ray from the central
trajectory, (Xo,8o),

In front off' we have the ray coordinates

x =f80

p= 1-1If·

If we were imaging a conventional point source
instead of the curved central trajectory, x=O, and
the second term would be zero. Since the second
term is second order in (}o, we need a second­
order lens, which is described by the simplified
second-order lens matrix

APPENDIX C

Correction of the Phase-Space Curvature

We wish to straighten the boundaries of the source
area by introducing corrections into the horizontal
imaging system, assuming that the horizontal and
vertical systems are separable. At the source, the
distortion in each ray· is an error in x, proportional
to (}2. We need to transform the distribution of
rays such that we have errors in (), proportional x 2

,

then they can be corrected by a focusing device.

Emission Second-Order
Point Lens Lens Image

f f'/6 0 0 (
D-Lf-I I
-~f.Q~

Q-f

FIGURE 14 An imaging optical system which corrects
errors in the horizontal plane due to source curvature.

We use the optical systenl illustrated in Figure 14.
The lensfhas focallengthj.

where 11k is the strength of the second-order
element.

At the exit of the second-order lens we have

In order to eliminate all second-order terms,

thus

A conventional (first order) thin lens transforms
rays such that
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A thin second-order lens has the characteristic

2

(J= -~
k •

This lens may be realized by grinding a reflecting
or refracting surface to a third-order curve Zocx3

(Figure 15).
We look at the image in its normal position

(Figure 14).

1-41------..-Z

x

FIGURE 15 A second-order focusing element.




