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Abstract. We have given an analytical formalism for developing optical analogues of
spherically symmetric black hole spacetimes, and demonstrated the exact similarity between the
electromagnetic wave equations in an inhomogeneous medium in flat spacetime and in a general
relativistic curved spacetime. The permittivity and permeability of the inhomogeneous optical
medium act as the metric components of an effective optical spacetime. Manifest properties of
black holes, like curved trajectories of light rays and quasi-normal modes follow directly from
our formalism. It is also applied to the specific case of Schwarzschild spacetime. The formalism
would facilitate table-top experiments to investigate black hole phenomena.

1. Introduction

Advances in Transformation Optics and Analogue Gravity have led to systems that closely
resemble those engendered by the general theory of relativity such as the black holes. Models
that have come under the category of Analogue Gravity [1] make use of sound waves in flowing
medium [2] like super fluids in BEC [3, 4], to mimic certain aspects of a black hole. Such
systems developed until now are not exact analogues of any real spacetimes with corresponding
metric tensors. On the other hand, Transformation Optics has utilized the formalism of general
relativity [5] to build gradient index static media in order to gain excellent control over the light
paths in those media [6]. Although, much of the efforts in Transformation Optics have been
directed towards developing technological applications, the results can be used effectively to
investigate and construct models of optical analogues of gravity. In this context, we have given
a general analytical formalism for developing optical black hole analogues using static optical
media. Our purpose is to simulate, in as much detail as possible, a gravitational black hole and
its manifestly characteristic phenomena, such as the existence of a ‘no-return’ surface, namely,
the event horizon, the bending of light rays, and the quasi-normal modes. To achieve this, we
must have: (i) A region outside the horizon that replicates the black hole spacetime, and (ii) A
perfect light absorber, which can act as the event horizon.

In the following sections, we have described how a particular profile of permittivity and/or
permeability of the optical analogue can lead to an ‘optical spacetime’ that has the black hole
metric, and therefore, reproduces the gravitational phenomena outside the event horizon. Within
the framework of our formalism, we further have discussed the broadband omni-directional light
absorber developed by Narimanov and Khildishev [7] that serves exactly as a perfect absorber,
or a black hole.
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2. Electromagnetic wave equation in an inhomogeneous medium

The macroscopic electromagnetic field strength tensor in a continuous medium is defined as [2]:

Iμν = ZμνστFστ , (1)

where F0μ = −Fμ0 = −Eμ, Fij = εijkB
k, I0ν = Iν0 = Dν , and Iij = εijkHk. Here, Fστ

is the field strength tensor in free space and Zμνστ is a fourth rank tensor whose components
are the permittivity and permeability tensors. It is antisymmetric in the first two (μ, ν), and
the last two (σ, τ) indices. εijk is the Levi-Civita symbol. The Roman indices span 1, 2, 3, while
the Greek indices range over 0, 1, 2, 3. Eq. (1) is the succinct form of the two known equations:
D = εE and H = μ−1B. For an optical medium in flat spacetime, the Maxwell’s equations
involving sources are given by:

(ZμνστFστ ),ν = 0. (2)

The tensor Z is related to the permittivity and permeability tensors in the following way:

Z0i0j = −Z0ij0 = Zi0j0 = −Zi00j = −
1

2
εij , and (3)

Zijkl =
1

2
εijmεklnμmn

−1. (4)

For a curved spacetime with metric gμν , Maxwell’s equations are given by:

∂

∂xν

[√
−g(gμσgντ − gμτ gνσ)Fστ

]
= 0. (5)

The similarity of Eqs. (2) and (5), suggest an analogy between an inhomogeneous medium and
a curved spacetime, and hence, we can write:

Zμνστ =

√
−ḡ
√

γ

(
ḡμσ ḡντ − ḡμτ ḡνσ

)
. (6)

ḡμσ is a function of the permittivity and permeability, and is used with a bar on the top to
distinguish it from the actual metric. Here, γ is the determinant of the spatial metric in the
ambient curvilinear coordinate system (r, θ, φ), defined by γαβ = −gαβ + (g0αg0β)/g00, where
g is the metric of the ambient flat spacetime. In spherical polar coordinate system on a flat
spacetime,

√
γ = r2 sinθ.

The field strength Fστ is written in terms of the four-potentials Aμ, which are expanded in
the vector spherical harmonics as follows [9]:

Fστ = Aτ,σ − Aσ,τ ,

Aμ =
∑
lm

[(
0, 0,

alm

sin θ

∂Y lm

∂φ
,−alm sin θ

∂Y lm

∂θ

)

+

(
f lmY lm, hlmY lm, klm ∂Y lm

∂θ
, klm ∂Y lm

∂φ

)]
, (7)

where alm are odd parity functions, and f lm, hlm, klm are even parity functions of r and t.
Y lm(θ, φ) are scalar spherical harmonics.

Using the above in Eq. (5), we get the following equation for odd parity functions:

(
μ̄−1

θθ alm
,r

)
,r
− ε̄θθ ∂2alm

∂t2
−

l(l + 1)

r2
alm = 0, (8)
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and for even parity functions, we get:

(
μ̄−1

θθ blm
,r

)
,r
− ε̄θθ ∂2blm

∂t2
−

l(l + 1)

r2
blm = 0. (9)

These equations are similar to those developed for the gravitational case, by J A Wheeler
and D Brill [8], and also by R Ruffini, J Tiomno and C V Vishveshwara [9] (who included the
source term), which are shown below:

(
grralm

,r

)
,r
− g00

∂2alm

∂t2
−

l(l + 1)

r2
alm = 0, (10)

and for even parity functions, it is:

(
grrblm

,r

)
,r
− g00

∂2blm

∂t2
−

l(l + 1)

r2
blm = 0. (11)

The similarity in Eqs. (9), (10) and (11) gives rise to the similarity in a number of phenomena,
which depend on the form of the wave equation. One can formulate an optical spacetime with an
effective optical metric, whose components are related to the permittivity and the permeability
tensors as defined previously, and given as: ḡrr = μ̄−1

θθ = μ̄−1

φφ , ḡ00 = −ε̄θθ = −ε̄φφ, and

ε̄θθμ̄−1

θθ = 1. Metamaterials can be used to realize such an optical spacetime. Such a system has
been studied, particularly, for the Schwarzschild spacetime in [10].

3. Discussions

Choosing ε̄θθ =
(
1 − L

r

)
−1

and μ̄−1

θθ =
(
1 − L

r

)
, one gets an exact analogue of Schwarzschild

black hole spacetime as:[(
1 −

L

r

)
alm

,r

]
,r

−
(
1 −

L

r

)
−1 ∂2alm

∂t2
−

l(l + 1)

r2
alm = 0. (12)

Here, r = L can be considered to be the location of the event horizon. Therefore, we have the
simplified equation as:

∂2alm

∂r2
∗

−
∂2alm

∂t2
−

(
1 −

L

r

) l(l + 1)

alm
alm = 0. (13)

This is exactly similar to the equation obtained in the gravitational case. Here, we have used the
Regge-Wheeler tortoise coordinate r∗ = r+Lln( r

L
−1). Following are the two metric components

of the effective optical spacetime: g00 = −(1− L
r
)−1, and grr = (1− L

r
). The necessary conditions

for a spacetime around a black hole are g00 = 0, grr = 0 at the event horizon. We have clearly
seen that the effective metric satisfy these. This indicates that the medium can be used to
simulate a Schwarzschild black hole spacetime. The analysis of the gravitational bending of
light and quasi-normal modes will be exactly like that in the gravitational case.

3.1. The optical black hole of Narimanov and Khildishev

In order to simulate black hole phenomena, we must have: (i) a medium, which simulates black
hole spacetime, and (ii) a perfect absorber, which acts like a black hole, and absorbs the entire
incident light. We have already developed the formalism for designing the equivalent optical
spacetime around a black hole. The omni-directional, broadband optical absorber developed in
[7] can be used to mimic the black hole. The model developed by Narimanov and Khildishev
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consists of: (i) A central core (C) of complex permittivity, which absorbs the entire incident
light, and (ii) An outer shell (S), with some permittivity profile, which bends the incident light,
guiding it to the core, and thus, ensuring that entire incident light converges to the core, without
any loss. The model with the core and the shell is placed in an external medium. Our formalism
can be used to arrive at the Hamiltonian used by Narimanov and Khildishev. Starting from our
wave equation and with the Eikonal approximation, we get their Hamiltonian as:

(μ̄θθ)
−1

ε̄θθ
(
∂S

∂r
)2 +

m2

r2ε̄θθ
= H. (14)

This gives a trajectory of the light ray as:

φ = φ0 +

∫ m

r

m

r1

dξ√
C0ε̄θθ(m

ξ
) − ξ2

, ξ =
m

r
. (15)

There is no need to introduce an optical spacetime here, as we have been considering bending of
light into the absorbing core, inside the event horizon. Here, the focus is on absorbing the entire
incident light rather than mimicking a spacetime. Their permittivity choice ε̄θθ = ε̄0

θθ[1+(R
r
)n]

serves the purpose well.
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