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Abstract

The Gerda experiment at the Laboratori Nazionali del Gran Sasso in Italy uses germanium detectors made from material

with an enriched 76Ge isotope fraction to search for neutrinoless double beta decay of this nucleus. Applying a blind

analysis we find no signal after an exposure of 21.6 kg·yr and a background of about 0.01 cts/(keV·kg·yr). A half-life

limit of T 0ν
1/2 > 2.1 · 1025 yr (90% C.L.) is extracted. The previous claim of a signal for 76Ge is excluded with 99%

probability in a model independent way.
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Fig. 1. Model of the Gerda experiment. The labels are: 1 = detector array (not to scale), 2 = cryostat, 3 = inner copper lining, 4 =

water tank, 5 = clean room, 6 = lock for Ge detector insertion.

1. Introduction

Lepton number is not conserved in neutrinoless double beta (0νββ) decay of isotopes like 76Ge. This

process is predicted to occur by many extensions of the standard model [1, 2, 3, 4]. Consequently, there is

large interest to search for this process and a number of experimental programs using different experimental

techniques and isotopes are currently taking data or will soon start [5, 6].

The Gerda experiment located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy

operates germanium diodes as detectors and sources of 0νββ decay of 76Ge. The 76Ge isotope fraction

of the detector material is enriched from 7.8 % to ≈86 %. The signature of the decay is a peak at Qββ =
2039.061 ± 0.007 keV [7] in the measured energy spectrum.

Part of the Heidelberg-Moscow collaboration has claimed to have observed 28.75 ± 6.86 0νββ decay

events of 76Ge [8]. This observation converts to a half-life of T 0ν
1/2
= (1.19+0.37

−0.23
) · 1025 yr. Later, the pulse

shapes of the detector signals have been analyzed to strengthen the significance of the observation [9]. We

restrict our comparison to the first publication since there are some problems in the later publication like the

missing efficiency correction in the derived half-life [10].

Recently, Kamland-Zen [11] and EXO-200 [12] have report 90 % C.L. half-life limits for 0νββ decay of
136Xe of 1.9 · 1025 yr and 1.6 · 1025 yr, respectively. Nuclear matrix element calculations are needed to relate

these results to the claim for 76Ge which complicates the comparison. This is not the case for Gerda since

we use the same isotope. We report here about our first result which is published in [13].

2. Experiment and data selection

Gerda operates refurbished semi-coaxial diodes from the Heidelberg-Moscow experiment [14] and from

the International GErmanium eXperiment (IGEX) [15, 16]. Here we report results from the first measure-

ment period from November 2011 to May 2013. Five newly produced detectors of BEGe type [17] have

been added in July 2012. In addition, we operated one semi-coaxial detector with natural isotope compo-

sition. Two semi-coax detectors exhibited a large leakage current soon after the deployment and were not

used. The leakage current of all other detectors was stable within 20 pA. One BEGe showed unstable energy
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Fig. 2. Left: Shift of the 2615 keV calibration peak position between consecutive calibrations for the individual semi-coaxial detectors.

The detector names are listed in the legend. The insert shows the projection of the shifts. Right: 42K peak in physics data of all

semi-coaxial detectors.

calibration and was therefore also not included in the analysis. A detailed description of the experiment is

given in Ref. [18].

The detectors are mounted in low mass copper holders and operated in 64 m3 liquid argon which serves

as coolant and as shield against external background radiation. The shielding is complemented by 3 m of

water which is instrumented with photo multipliers to detect the Cerenkov light of muons traversing the

setup. Fig. 1 shows a model of Gerda.

Each detector signal is read out by a charge sensitive amplifier located at close distance of ≈ 30 cm to the

detectors in the liquid argon. The outputs are digitized with 100 MHz Flash ADCs. All event parameters like

the deposited energy or the rise time of the detector signal are reconstructed by digital filters offline [19, 20].

Unphysical events triggered e.g. by noise are identified and rejected. A visual scan of all events with energy

deposition between 1.3 and 2.7 MeV showed that no real event was rejected and that no unphysical event is

kept.

The energy reconstruction and noise rejection was cross checked with a second completely independent

algorithm. The selected event samples around Qββ were identical and the reconstructed energies agreed with

each other within σ = 0.9 keV.

0νββ decays deposit almost always energy in only one detector. Events with depositions in several detec-

tors or in correlation with a muon candidate (within 8 μs) are therefore not considered. These requirements

remove about 40 % of the events around Qββ. Two events within 1 ms in the same detector are most likely

from the 214Bi-214Po decay chain and therefore rejected. These cuts cause practically no dead time.

To calibrate the energy, we collect (bi)weekly data sets with 228Th sources deployed close to the detec-

tors. Fig. 2 (left) shows for the semi-coaxial detectors the drift of the 2615 keV peak relative to the position

of the corresponding previous calibration. The gain drifts by typically less than 0.05 % which is small rel-

ative to the typical energy resolution of 0.2 % at Qββ (full width at half maximum, FWHM). Fig. 2 (right)

shows the strongest background peak of the physics data from 42K decays. The reconstructed peak position

agrees within 0.3 keV with the nominal value of 1524.7 keV which is also true for weaker lines in the spec-

trum. The fitted resolution (FWHM) of 4.5 keV is only slightly larger than the value of 4.3 keV expected

from calibration data. From this comparison and the known extrapolation of the resolution to Qββ we expect

for the semi-coaxial detector an average resolution of 4.8±0.3 keV and 3.2±0.2 keV for the BEGe detectors.

The resolution of all detectors was stable within 0.1 keV during the entire data taking period. All numbers

show that the detector performance was sufficiently stable and that the physics data is well calibrated.

We performed a blind analysis. Events in the interval Qββ ± 20 keV were hidden until the calibration

was finalized and all selection cuts were frozen.

Visible γ peaks in the energy spectrum (see Fig. 3) are from 40K and 42K decays and the decay chains

of 226Ra and 232Th. Between the trigger threshold of 40-100 keV and 570 keV, the spectrum is dominated
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Fig. 3. Spectra of physics data for semi-coaxial, BEGe and natural detectors [22].

by 39Ar β decays; between 570 keV and 1700 keV the main contribution is from double beta decay with

neutrino emission (2νββ decays) [21]. Above 3 MeV we observe α decays on the detector p+ contact

surfaces; predominantly from 210Po but to a smaller extent also from the 226Ra decay chain. Around 2 MeV,

we observe a mixture of contributions [22].

We fit the physics spectrum of the semi-coaxial and the BEGe detectors between 570 and 7500 keV

to a background model consisting of the above mentioned contributions at different locations. Despite the

fact that the location and composition of the events around Qββ can not be determined precisely with the

available statistics (see Fig. 4), we know that the background

• is largely dominated by sources close to the detectors or on the detector surfaces,

• is not expected to have a peak in the blinded energy window,

• can be well approximated by a constant intensity in the energy window from 1930 - 2190 keV with

the exclusion of two intervals at 2104±5 keV and 2119±5 keV where we expect sizable contributions

from known γ peaks. Other lines expected in this window from e.g. 214Bi decays are too weak (� 1

count) to be relevant.

If bremsstrahlung energy loss of electrons in 0νββ events is small, all ionization occurs in a small volume

of the detector (single site events). Background events from Compton scattered photons deposit often energy

in several well separated locations (multi site events). The induced current signal on the readout electrode

will in general be different for the two classes. Surface background events also exhibit distinct signal shapes.

This feature is used in Gerda to discriminate background events. A detailed description of the algorithms is

given in Ref. [23]. Here, we will only discuss them briefly.
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For BEGe detectors, the ratio of the maximum of the current pulse, A, over the deposited energy, E,

allows for a simple, powerful and robust selection. Double escape peak (DEP) events of 2615 keV photons

from 208Tl decays of the calibration data serve as proxy for the pulse shape of 0νββ decays. For the ac-

cepted range of 0.965 < A/E < 1.07 we find a signal efficiency of 0.92±0.02 while more than 80 % of the

background events around Qββ are removed. We cross check the signal efficiency with 2νββ decays in the

interval 1.0 - 1.4 MeV. The value of 0.91 ± 0.05 agrees well.

For the semi-coaxial detectors, the neural network algorithm TMlpANN implemented in TMVA [24] is

used to identify single site events. The times when the charge pulses reach 1%, 3%, ..., 99% of the maximum

are the input variables. Two hidden layers with 51 and 50 neurons are used. For training, DEP events at

1593 keV serve as signal sample and gamma events at 1621 keV from 212Bi decays serve as multi site event

sample. The training is performed for each detector and for three periods of similar conditions. The cut on

the classifier output of the neural network is chosen to retain 90 % of the DEP.

To cross check the selection, two independent algorithms based on a projective likelihood method im-

plemented in TMVA and on the current pulse asymmetry have been developed. Of the physics data events

between 1930 and 2190 keV (outside the blinded window) about 45 % are rejected by the neural network.

All of these events are rejected by at least one other method and about 90 % of them are rejected by both.

This gives confidence that the classification of background events by the neural network is meaningful.

We assume that the pulse shape selection efficiency for 0νββ decays is the same as for the DEP events

used for training. To cross check this assumption, the efficiency for 2νββ events in the energy interval 1.0

- 1.3 MeV was measured to be 0.85±0.02 for the total data set. A special calibration data set with a 56Co

source was taken since this spectrum has two usable DEPs at 1576 keV and at 2231 keV, see Fig. 5. Applying

the neutral network selection we find for the different detectors efficiencies between 83 % and 95 % for the

two additional DEPs. In summary, we estimate the efficiency and the systematic uncertainty of the 0νββ
selection to be 0.90+0.05

−0.09
.

Our pulse shape selections are intended to yield the best sensitivity for a T 0ν
1/2

limit: The expected

background counts at Qββ are low and hence only a moderate rejection is needed while keeping the efficiency

high. It is worth to notice that all DEPs reconstruct at the correct energy, independent whether the pulse

shape selection is applied or not. Hence we expect that a possible 0νββ decay signal reconstructs at Qββ.

3. Results

The data are split into three sets. One contains the BEGe data. A second one (labelled “silver” set) covers

a short period of semi-coaxial data with higher background index at the time when the BEGe detectors were
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Fig. 5. Part of the 56Co calibration spectrum without (red) and with (green) pulse shape selection. The main DEPs are at 1576 keV

(left) and at 2231 keV (right). At 2180 keV and 2251 keV are DEPs with lower statistics.

deployed. The rest of the semi-coaxial data is labelled “golden” set. The relevant analysis parameters of all

sets are listed in Tab. 1.

After the analysis methods discussed above have been frozen, the events in the blinded window have

been processed. The expected background counts and observed number of events are consistent in all sets,

with and without pulse shape discrimination (see last two columns of Tab. 1 and Fig. 6). Hence, Gerda sees

no indication for a 0νββ decay signal and a half-life limit is extracted. All results are given with pulse shape

discrimination applied.

The observed signal count N0ν
k (or limit) for each data set k = (golden, silver, BEGe) is related to the

half-life T 0ν
1/2

by

N0ν
k =

ln 2 · NA · εk · Ek

mA · T 0ν
1/2

(1)

where NA is Avogadro’s constant, εk is the efficiency, Ek the exposure and mA = 0.0756 kg the molar mass

of the enriched material. εk is the product of the (set dependent) enrichment fraction f76, the active volume

fraction of the detectors fav, the fraction of 0νββ events which deposit all energy in the active volume ffep

and the pulse shape selection efficiency discussed above.

We fit each of the energy spectra of the three sets to a normalized function f (E | bk, 1/T 0ν
1/2

) which is the

sum of a constant bk for the background and a Gaussian for a possible 0νββ signal. The latter is centered

at Qββ ± 0.2 keV and has a width σk = δEk/2.35 (Tab. 1) given by the known energy resolution. The

240 keV wide window for the background estimate spans from 1930 keV to 2190 keV without the intervals

(2104 ± 5) keV and (2119 ± 5) keV from known γ lines.

f (E | bk, 1/T 0ν
1/2) =

1

240 keV · bk + N0ν
k

(bk +
N0ν

k (1/T 0ν
1/2

)
√

2π · σk
exp

(E − Qββ)2

2σ2
k

) (2)

with N0ν
k (1/T 0ν

1/2
) given by Eq. 1.

We perform a profile likelihood fit. The (unbinned extended) likelihood L is

L (bk, 1/T 0ν
1/2) =

∏

k

μNk
k · e−μk

Nk!

∏

events

f (E | bk, 1/T 0ν
1/2) (3)

with Nk being the number of observed events in data set k and μk = bk · 240 keV + N0ν
k the expected number
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Fig. 6. Physics spectrum of all 3 data sets after unblinding without (histogram) and with (solid grey) pulse shape selection [13].

Table 1. List of analysis parameters for the three sets without and with pulse shape discrimination. εk is the total 0νββ decay detection

efficiency. δEk is the energy resolution (FWHM). The total detector mass is used to calculate the “exposure” Ek . “bkg” is the number

of events in the 1930-2190 keV window (without the intervals (2039 ± 5) keV, (2114 ± 5) keV and (2119 ± 5) keV) and “BI” is the

corresponding background index. “ROI exp” is the expected background count in a ±5 keV window around Qββ and “ROI obs” is

observed counts after the unblinding.

set k εk δEk exposure bkg BI ROI exp ROI obs

keV kg·yr 10−3cts/(keV·kg·yr)

without PSD

golden 0.688 ± 0.031 4.8 17.9 76 18 ± 2 3.3 5

silver 0.688 ± 0.031 4.6 1.3 19 63+16
−14

0.8 1

BEGe 0.720 ± 0.018 3.2 2.4 23 42+10
−8

1.0 1

with PSD

golden 0.619+0.044
−0.070

4.8 17.9 45 11 ± 2 2.0 2

silver 0.619+0.044
−0.070

4.6 1.3 9 30+11
−9 0.4 1

BEGe 0.663 ± 0.022 3.2 2.4 3 5+4
−3 0.1 0

of events. The product for L is over all events in all data sets. The profile likelihood λ(1/T 0ν
1/2

) is then

λ(1/T 0ν
1/2) =

max
bk

L(bk, 1/T 0ν
1/2

)

max
b̂k ,1/T̂ 0ν

1/2

L(b̂k, 1/T̂ 0ν
1/2

)
(4)

In the fit we require 1/T 0ν
1/2
≥ 0, i.e. N0ν

k ≥ 0. The 90 % coverage limit is defined as the 1/T 0ν
1/2

value

for which −2 · ln λ changes by 2.7. We verified with a toy Monte Carlo that the coverage of this method is

sufficient. The best fit yields 1/T 0ν
1/2
= 0 and the limit is

T 0ν
1/2 > 2.1 · 1025 yr (90 % C.L.) (5)

Systematic uncertainties on the peak position, the resolution, and all efficiencies are taken into account by a

Monte Carlo method: the half-life limit is calculated for 10000 randomly chosen parameter sets according

to the known distributions. The quoted limit is the average over all individual limits. Without the systematic

uncertainties the limit improves by 1.5 %. The (median) sensitivity is 2.4 · 1025 yr.
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toy Monte Carlo realizations of the experiment for the hypothesis H1 of a signal according to the claim. The bin size is 0.025·10−25 yr−1.

We perform also a Bayesian analysis. A binned likelihood fit and the above mentioned sampling method

for the systematic error are used. The fit is performed with the BAT toolkit [25] and a flat prior in 1/T 0ν
1/2

between 0 and 10−24 yr−1. The posterior distribution peaks at 1/T 0ν
1/2
= 0 and the 90 % credible limit is

T 0ν
1/2
> 1.9 · 1025 yr. The (median) sensitivity is 2.0 · 1025 yr.

The spectral fit can be extended to include the spectra from Heidelberg-Moscow (interval 2000-2080 keV,

Fig. 4 of Ref. [14]) and IGEX (interval 2020-2060 keV, Table II of Ref. [15]). We assume that the back-

grounds are constant as a function of energy in these intervals. Experimental parameters (exposure, energy

resolution, efficiency factors) are obtained from the original references or, when not available, extrapolated

from the values used in Gerda. Fig. 7 (left) shows the profile likelihood curves for the individual experiments

and the combination. The latter yields

T 0ν
1/2 > 3.0 · 1025 yr (90 % C.L.). (6)

4. Comparison to other experiments

We perform a hypothesis test using the 0νββ half-life of the claimed signal [8] (hypothesis H1). In this

case we would expect 5.9 ± 1.4 signal events in the energy interval of Qββ ± 2σk above a background of

2.0 ± 0.3 counts. In a frequentist analysis we generate 10000 toy experimental spectra for each of the three

data sets with Poisson distributed background and signal strength. Fig. 7 (right) shows for each realization

the best fitted inverse half-life 1/T 0ν
1/2

from the profile likelihood fit. Only 1 % of the realizations yield our

experimental result 1/T 0ν
1/2
= 0. In case the restriction 1/T 0ν

1/2
≥ 0 is dropped in the fit, only 0.6 % of the

realizations yield
∑

k Nk ≤ 0. Thus we reject the claim with 99 % probability.

In a Bayesian analysis we calculate the Bayes factor, i.e. the probability ratio p(data|H1)/p(data|H0)

with H0 being the background only hypothesis. The Bayes factor is 0.024. It includes all uncertainties and

clearly favors the background-only hypothesis.

Our limit can be compared to the recent results for the isotope 136Xe. Neither EXO-200 nor Kamland-

Zen observe a signal and they place 90 % confidence level limits of 1.6 · 1025 yr [12] and 1.9 · 1025 yr [11]

for the half-life, respectively. The sensitivities are 1.0 · 1025 yr for Kamland-Zen [11] and 0.7 · 1025 yr for

EXO-200 [26].1 Fig. 8 shows the experimental limits together with a selection of different nuclear matrix

element calculations for the case of light neutrino exchange.

For the sensitivity estimate, the product of the background index and the energy resolution divided by

the signal detection efficiency enters. This quantity is for Gerda 0.006 cts/(mol·yr·δE) (normalized to mole

1At the time of writing EXO announced an updated result [27] based on a 3.8-fold exposure. The sensitivity is 1.9 · 1025 yr (90 %

C.L.) however the limit is only T 0ν
1/2
> 1.1 · 1025 yr (90 % C.L.). We restrict our discussion to the published value.
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Fig. 8. Comparison of recent T 0ν
1/2

limits for 76Ge and 136Xe and correlations of the two half-lives for different matrix element

calculations (assuming light neutrino exchange). The calculations are from Ref. [28] (EDF), [29] (ISM), [30] (IBM), [31] (pnQRPA),

[32] (QRPA) and [33] (SkM-HFB-QRPA). No axial vector quenching is assumed, i.e. gA = 1.25. mee denotes the effective neutrino

mass and values of 0.2 eV (diamonds), 0.3 eV (dots) and 0.4 eV (stars) are marked on all axes.

instead of kg), for EXO-200 about 0.044 cts/(mol·yr·δE) and for Kamland-Zen about 0.19 cts/(mol·yr·δE),

This comparison explains why despite our lower exposure, Gerda reaches a half-life sensitivity which is a

factor of 2 better compared to the published EXO-200 and Kamland-Zen values. However, for the calcu-

lation of physics parameters like the effective neutrino mass, also phase space factors and nuclear matrix

elements enter which favor 136Xe (see Fig. 8). Note, that quenching of the axial vector coupling could

change the conversion strongly and heavier nuclei are typically more affected [30].

5. Summary

Gerda collected in a first phase of data taking 21.6 kg·yr of exposure with a background of about 0.01

cts/(keV·kg·yr) (after pulse shape discrimination). We performed a blind analysis and found no signal of

0νββ decay. Hence we place a limit of T 0ν
1/2
> 2.1 · 1025 yr for 76Ge at 90 % C.L. The claimed 0νββ signal is

ruled out with 99 % probability in a model independent way.

In a second phase, the experiment aims to improve the background to a level of 0.001 cts/(keV·kg·yr).
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