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Abstract

In this thesis we make a review of membrane theory; presenting both the
Lagrangian and the Hamiltonian formulation of the bosonic, as well as
the supersymmetric, theory. The spectrum of the theories are derived
and elaborated upon. The connection between membranes and Matrix
theory is explicitly constructed, as is the case of dimensionally reduced
super Yang-Mills theory.

We examine a two-dimensional supersymmetric SU(2) invariant ma-
trix model and prove that no normalizable ground state can exist for
such a model. We then turn to a SU(2) × Spin(D − 2) invariant ma-
trix model corresponding to the regulated supermembrane propagating
in D-dimensional spacetime, and formulate and prove a theorem stat-
ing that D = 11 is the only dimensionality for which an asymptotically
normalizable ground state exists, the power law decay of which is also
derived.
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1
Introduction

Membrane theory has a rather peculiar history and can trace its origins
back to the very depths of the sixties, thus predating the emergence of
its more illustrious and celebrated sibling, string theory. The birthplace
of membrane theory, like many other grand ideas, was in the brilliant
mind of Dirac [1]. In 1962, Dirac was pursuing an alternative model for
the electron and put forth the hypothesis that it should correspond to a
vibrating membrane. The resultant theory was plagued with many dif-
ficulties, however, and was soon abandoned to posterity. Some interest
was later rekindled in the 1970’s; along with the birth of string theory
the strict adherence to a paradigm of a four-dimensional world containing
zero-dimensional objects was seriously questioned (Dirac had been ahead
of his time) and having thus in strings gone from zero to one dimension,
the next step was conceptually easy. During this time the quantum me-
chanics of the membrane was analyzed, and the membrane itself was now
utilized in various models for hadrons. Still plagued by many problems
membrane theory was left in the cradle while string theory grew up fast
and hit puberty, and eventually was elevated to the exalted rank of a
candidate to the Theory of Everything. When the first ”superstring rev-
olution” hit the physics departments in 1984 and propelled string theory
into respectable mainstream physics the membrane spectrum had been
found continuous in the classical theory but discrete in the quantum case.
This rare property of the Hamiltonian was investigated in [2] and is a
very fortuitous trait as a continuous spectrum would spell disaster for a
first quantized theory.

So far everything have concerned only the bosonic membrane, but
if its aspirations are to describe Nature membrane theory must add
fermions into the mix. The huge success in incorporating fermions with
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2 Chapter 1 Introduction

bosons in string theory via supersymmetry hinges on a crucial property
called κ-symmetry. At first believed exclusive to strings, κ-symmetry
was eventually generalized to membranes by Hughes, Liu and Polchin-
ski [3] in 1986. As the newly christened supermembrane burst upon the
scene a flurry of papers was published regarding the emergent theory.
One important contribution was the realization that the type IIA super-
string in ten dimensions could be obtained from the supermembrane in
eleven dimensions by wrapping up one of the membrane’s dimensions on
a circle [4]. Another aspect which later turned out to be very intriguing
and which plays a vital part in this thesis is the possibility to regularize
the supermembrane [5] in terms of certain supersymmetric matrix mod-
els belonging to some finite group, e.g., SU(N). The supermembrane is
then recovered in the N → ∞ limit. These matrix models were stud-
ied [6] some years prior to the discovery of this connection, and then in
the context of dimensionally reduced supersymmetric Yang-Mills theory.

A problem now looming over the membrane community was the ev-
idence pointing to a continuous spectrum for the quantum supermem-
brane. Until this was a proven fact, however, research continued unper-
turbed. The verdict came in a paper in 1989 [7], and the supermembrane
was found guilty of continuity and subsequently condemned to the prison
of bad ideas. Membrane theory thus lay dormant for some years until the
second superstring revolution arrived in 1995 and revitalized the entire
community. It now became apparent that the ten dimensions inherent
in string theory was not enough to describe Nature. Furthermore, the
five different string theories were unified and could trace themselves to
a (M)other theory living in eleven dimensions, the very same dimension-
ality where the supermembrane assume its most appealing form. String
theory was superseded by the newly baptized ”M-theory” as the number
one candidate for the final theory. Little was known about this mysteri-
ous theory other than that it had eleven-dimensional supergravity as a
low-energy limit and that it tied together the various string theories with
different dualities.

Many drastic breakthroughs were also made directly related to mem-
branes. Townsend kick-started 1996 with a paper [8] suggesting that the
continuous spectrum was not a failure of first quantization but instead
implied a second quantized theory from the very beginning, thus turning
the greatest weakness of the theory into a virtue. Slightly prior to this,
Witten showed [9] a connection between D0-branes and matrix theory
and thus tying them together with supermembranes. Based on this work
Banks, Fischler, Shenker and Susskind made a bold conjecture claiming
that these super matrix models in the large N limit exactly described
M-theory in the infinite momentum frame. As these matrix models were
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inexorably linked to supermembranes interest exploded in matrix theory
as well as membrane theory.

As membranes now became the focus of much research the old ques-
tion of the existence and feasibility of obtaining its ground state arose
again, this time with somewhat increased urgency as the stakes, and
consequently the rewards, were considerably higher. Furthermore, ma-
trix theory offered a new set of tools in attacking the problem. It turned
out that the avenue of choice in confronting the membrane vacuum state
is by trying to find the vacuum state of the corresponding SU(N) matrix
model. From 1997 and onwards work on this subject has been conducted
with varying degrees of success. A large contribution to this field is due
to the incessant efforts of Jens Hoppe and collaborators who have made
promising advances mainly in the SU(2) case, which is something we
will study in detail in this thesis. While N = 2 is only a modest part of
N → ∞, its positive answer to the existence of a normalizable ground
state can hopefully be generalized to arbitrary N .

We conclude this brief exposition of the history of membrane theory
by stressing the fact that despite its bumpy ride between pre-eminence
and obscurity membranes are now firmly established as an intricate part
of M-theory. In light of this importance it is no surprise that our lack of
an explicit membrane vacuum state or even proof that such a state exist
is frustrating and simultaneously an incentive to continue the search for
that state.

1.1 Outline of this thesis

This thesis is to a large part a review of membrane theory, although its
content is strongly tilted towards tools needed to analyze the superme-
mbrane vacuum state from the vantage point of matrix theory.

We begin the thesis with a treatment of the basic properties of the
membrane. Before confronting the full-fledged supermembrane we care-
fully work through the less intimidating bosonic membrane, acquiring
much needed tools and formalism along the way. Specifically, we will
analyze the membrane in both Lagrangian and Hamiltonian formalism,
discuss ways of quantization and take the membrane to the lightcone
gauge, and discover an important residual symmetry, area preserving
diffeomorphisms. We then continue with a very condensed introduc-
tion of supersymmetry, giving only the basics needed and swiftly moving
on to discussing the viable choices of implementing supersymmetry into
membrane theory. The stage is thus set for the entrance of the superme-
mbrane, but instead we analyze what restrictions supersymmetry place
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on our theory. Strings and membranes are but two cases of the more
general p-branes, extended objects of p dimensions. As we will show in
the section entitled ”the brane scan” supersymmetry gives us a very def-
inite answer as to which values of p are allowed and in what dimensions
of spacetime they can live in. Having done this we examine the action
of the super p-brane and its attendant symmetries, an easy feat when we
have the bosonic case still fresh in our minds.

The next chapter continues the treatment of supermembranes. We
start with the Hamiltonian perspective and note the conceptually im-
portant area preserving diffeomorphisms (APD) and its implications on
the dynamics of the membrane. The APD algebra is investigated further
as we start building the bridge between supermembranes and matrix
theory. We thus perform the regularization of the membrane. In the
following section we treat another route to matrix theory, namely the
dimensional reduction of super Yang-Mills theory. We then move on
to analyze the spectrum of both the bosonic and supersymmetric mem-
brane, in the bosonic case giving a full proof of the continuous spectrum
for the classical theory and the discrete nature of the quantum case. For
the supermembrane we illustrate the continuous spectrum by using a toy
model.

The remaining part of chapter 3 takes on a slightly different flavor as
we present a brief overview of what has become known as M-theory. The
objective is in part to see the supermembrane in its natural surroundings
and in part to give the author the opportunity to examine issues not di-
rectly connected with the subject matter of this thesis. Briefly, we touch
upon subjects like supergravity, strings and duality. A slightly more in-
depth discussion of the very important BFSS conjecture concludes the
chapter.

The last chapter carries the same title as the thesis and is where we
go into greater detail, narrowing our scope to the conjectured membrane
vacuum state. After a short chronological overview of the research that
has been done on the subject, a toy model ground state is investigated
using a method similar to the one used in the subsequent theorem re-
garding the ground state of the SU(2) invariant matrix model. We then
present in detail the model and method used for analyzing this ground
state, formulate the theorem [10] and examine the proof. The chapter
is concluded by some remarks regarding a novel computational method
that recently have been applied to similar problems.

In the three appendices we go through the notation and conventions
used in the thesis, perform the proof of the κ-symmetry of the superme-
mbrane, and finally present some calculations related to the main ground
state theorem.
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1.2 A remark

While I hold no illusion as to whether this thesis will ever be read beyond
the acknowledgments, or perhaps this introduction, by anyone except my
supervisor (who gets paid to do it), I feel compelled to be at least some-
what considerate of the readability of the text. Most scientific texts are
by their very nature dull and austere, and this thesis is no exception.
However, austerity can be a positive characteristic as it focuses on the
only things of importance, without sugar-coating it. Moderation is as
usual the key, as some authors take this scheme too far and condense
their material into beautifully aesthetic pieces of writing, completely un-
readable to a novice of the field.

While on the subject of aesthetics I would like to comment on chapter 4
and its complete lack of aesthetic expressions. Though some are just
unattractive, the vast majority are plain hideous. The reasons for this is
my strict adherence to keeping the notation of the original papers, which
in this case spawned said obscenities. My only justification would be to
remark that in an attempt to make the expressions more pleasing to the
eye the clarity of the exposition might be lost; an unfair trade to be sure.

Despite the above, I have imagined a collection of enthusiastic and
attentive readers and done my best to present the material in as a peda-
gogical way as possible, striving to heed the words of a man much wiser
that myself: ”Beware the lollipop of mediocrity. Lick once and you suck
forever.”
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2
The Supermembrane

In this initial chapter we review the basic properties of the supermem-
brane. Emphasis is put on aspects relevant to the search for a membrane
vacuum state. Although the majority of the material in this chapter
applies to extended objects of higher (and lower) dimension than two,
the 2-brane, or membrane, is ultimately the most interesting case for the
purpose of this thesis and thus the one we will treat more thoroughly.
The first part of this chapter concerns the bosonic theory and deals with
membranes exclusively, while the later part of the chapter incorporates
supersymmetry and treat the more general case of p-branes.

More in-depth treatments of the supermembrane abound; good ones
include [11,12,13].

2.1 The bosonic membrane

In this section an introduction to the bosonic membrane is made. An
understanding of bosonic membranes will be of great help when we want
to treat the more involved supermembrane.

2.1.1 The membrane action

In the most general case we have a p-dimensional extended object, a p-
brane, propagating in a curved target space of D dimensions. We will,
however, restrict ourselves to the 2-brane in 11-dimensional spacetime.
The reason for this will become clear when we discuss the supermem-
brane. For simplicity we also choose spacetime to be flat with Minkowski
metric ηµν . In analogy with a particle or string sweeping out a worldline
or worldsheet respectively, the time evolution of a membrane will create

7
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Worldvolume

Xµ(ξ)

Spacetime

ξi Xµ· ·z

6

time

Figure 2.1: The mapping from worldvolume to spacetime.

a worldvolume. We choose the worldvolume coordinates to be

ξi = (ξ0, ξ1, ξ2) = (τ, σ1, σ2) (2.1)

Furthermore we make a mapping from the worldvolume to the target
space,

ξ → Xµ(ξ), (2.2)

with the spacetime index µ going over 0, 1, . . . , 10. Next we want to
construct the action of the membrane. To accomplish this we use the
Nambu-Goto action principle, which equates the action with the world-
volume. We thus proceed by constructing a volume element from the
induced metric on the worldvolume by pulling back the target space
metric:

gij(X) = ∂iX
µ∂jX

νηµν ≡ Eµ
i Eν

j ηµν , (2.3)

where the Eµ
i is the dreibein to the worldvolume. We can now form a

volume element and write down the action

S = −
∫

d3ξ
√
−g(X), (2.4)

with g being the determinant of gij. This action was introduced by Dirac
[1] when working on the hypothesis that electrons could be modelled as
vibrating membranes. Nambu and Goto later used the above action for
the string case. For the sake of simplicity the membrane tension T has
been set to unity. T is a constant rendering the action dimensionless
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and can be brought back by simple dimensional analysis. A classically
equivalent action,

S = −
∫

d3ξ
√−ggijEµ

i Ejν +
1

2

√−g, (2.5)

was introduced by Howe and Tucker, and is commonly known as the
Polyakov action. In this action gij is treated as an auxiliary field. How-
ever, if we vary the action with respect to gij we find that gij is just the
induced metric. Substituting this into the Polyakov action we recover the
Nambu-Goto action, thus the classical equivalence. As expected then,
varying either action with respect to Xµ yields the same equations of
motion,

∂i(
√−ggijEµ

j ) = 0. (2.6)

The bosonic membrane exhibit a global symmetry determined by the
target space geometry. In the case of D = 11 Minkowski space it is
simply an invariance under eleven dimensional Poincaré transformations

δXµ = aµ + ωµ
νX

ν . (2.7)

Local symmetry comes in the guise of worldvolume reparametrization
invariance

ξi → ξi′(ξ0, ξ1, ξ2). (2.8)

2.1.2 The Hamiltonian formulation

To leave the lagrangian formalism in favor of the hamiltonian variety we
make use of Dirac’s method for constrained hamiltonian systems [14].
We begin by forming the conjugate momenta

Pµ =
δL

δ(∂0Xµ)
, (2.9)

where the lagrangian is of the Nambu-Goto type. If we introduce the
following shorthand notation

Ẋµ =
∂Xµ

∂τ
X ′µ =

∂Xµ

∂σ1
X̄µ =

∂Xµ

∂σ2
, (2.10)

the conjugate momenta takes the form

Pµ = L−1
(
Ẋµ((X ′X̄)2 −X ′2X̄2) + X ′

µ((ẊX ′)X̄2

− (ẊX̄)(X ′X̄))X̄µ((ẊX̄)X ′2 − (ẊX ′)(X ′X̄))
)

. (2.11)
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From the above we can then obtain a set of primary constraints for the
membrane,

φ1 ≡ P ·X ′ ≈ 0 (2.12)

φ2 ≡ P · X̄ ≈ 0 (2.13)

φ3 ≡ P 2 − (X ′X̄)2X ′2X̄2 ≈ 0, (2.14)

where ≈ 0 means ”weakly zero”, i.e., the constraints may have nonzero
Poisson (or Dirac) brackets with the phase-space variables.

Without any primary constraints the Hamiltonian would simply be
given by

H0 =

∫
dσ1dσ2(ẊµPµ − L). (2.15)

As primary constraints are present, however, we can add arbitrary linear
combinations of the constraints to H0 without effecting the dynamics
of the membrane. Furthermore, as H0 is easily found to be zero the
Hamiltonian is just constructed from the primary constraints alone,

H =

∫ ∫
dσ1dσ2

(
λ(τ, σ1, σ2)φ1 + µ(τ, σ1, σ2)φ2 + ν(τ, σ1, σ2)φ3

)
,

(2.16)
with λ, µ, ν arbitrary functions. These functions in turn are set when we
decide on a particular gauge. To move on to the equation of motion we
first need to introduce the functional Poisson bracket,

{g, H} =

∫ ∫
dσ1dσ2

[
δg

δX(τ, σ1, σ2)
· δH

δP (τ, σ1, σ2)

− δg

δP (τ, σ1, σ2)
· δH

δX(τ, σ1, σ2)

]
. (2.17)

Hamilton’s equation of motion for a general dynamical functional of the
form g[Pµ, X

µ, τ ] is then

ġ =
dg

dt
= {g, H}+

∂g

∂t
. (2.18)

Now it is important to note that the above constraints can be used after
the bracket operation has been performed, thus forcing λ, µ, ν to act as
constants in the Poisson brackets. To see that the primary constraints
are time-independent we must show that

φ̇i = {φi, H} (2.19)

holds true on the subspace of the phase space where (2.12)-(2.14) are
valid. In our case, where H0 is identically zero, we only have to show
that

{φi, φj} = Cijkφk, (2.20)
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where Cijk are arbitrary functions of Xµ and Pµ. Calculating Cijk, while
not especially complicated, are painfully time-consuming and hence left
as an exercise to the reader. In any case, a calculation will show that Cijk

are indeed functions of Xµ and Pµ only [15], i.e. the primary constraints
are conserved. The dynamics of the membrane is then fully specified by
the constraints (2.12)-(2.14) and the equation of motion (2.18) together
with the full Hamiltonian

H =

∫ ∫
dσ1dσ2

(
λ(X ′ · P ) + µ(X̄ · P ) + ν(P 2 − (X ′ · X̄)2 + X ′2X̄2)

)
.

(2.21)
The next logical step in our treatment of the membrane would be to
proceed to a quantum theory. We are then presented with two choices.
We can use covariant quantization to turn Xµ and P µ into operators
satisfying the canonical commutation relations and turn the constraints
along with the Hamiltonian into operator expressions. The other choice,
which we will treat later, entails reducing the degrees of freedom into
an independent set of variables and then quantizing these variables. A
virtue of the latter method is the lack of constraints in the quantum
theory, while the downside is the loss of explicit covariance.

2.1.3 Covariant quantization

We begin by replacing the canonical variables with operators

Xµ → X̂µ, P µ → P̂ µ. (2.22)

These operators are then required to satisfy the canonical commutation
relations:

[X̂µ(τ, σ1, σ2), P̂ ν(τ, σ′1, σ′2)] = 4π2i~gµνδ(σ1 − σ′1)δ(σ2 − σ′2) (2.23)

[X̂µ(τ, σ1, σ2), X̂ν(τ, σ′1, σ′2)] = 0 (2.24)

[P̂ µ(τ, σ1, σ2), P̂ ν(τ, σ′1, σ′2)] = 0. (2.25)

To derive (2.23) and also to get rid of ordering ambiguities we have
assumed H,Xµ and P µ to be Hermitian. To proceed from (2.21) we
make a gauge choice which will make the equation of motion for Xµ

become a linear second order differential equation. To accomplish this
we set the multipliers to

λ = 0, µ = 0, ν =
1

2
. (2.26)

We now get the quantum Hamiltonian

H =
1

2

∫ ∫
dσ1dσ2

(
P 2 − (X ′2X̄2 + X ′ · X̄)2

)
, (2.27)
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and the constraints (2.12)-(2.14) in operator form:

φ̂1 = X ′ · P + P ·X ′ (2.28)

φ̂2 = X̄ · P + P · X̄ (2.29)

φ̂3 = P 2 −X ′2X̄2 + (X ′ · X̄)2. (2.30)

These, in turn, are implemented by requiring

φ̂i |P 〉 = 0, (2.31)

for all physical states |P 〉 (in the Heisenberg picture). However, actually
putting the covariant quantization to some use is difficult. As in string
theory ghosts would likely appear. In the string case the removal of the
ghosts are made easy by the possibility to express the Hamiltonian in
terms of creation and annihilation operators. The lack of creation and
annihilation operators in the membrane case, however, would make said
ghosts very troublesome to exorcise. We therefore drop the discussion of
covariant quantization without further ado.

2.1.4 The lightcone gauge

To learn more about the membrane we need to choose a particular gauge
in which to analyze the inherent physics of the membrane. As in string
theory, the so-called lightcone gauge proves to be advantageous. To enter
the lightcone gauge we first introduce the lightcone coordinates

X± =
1√
2
(X10 ±X0) (2.32)

and denote the transverse coordinates by

~X(ξ) = Xa(ξ), a = 1, . . . , 9 (2.33)

thus reducing the number of coordinates from 11 to 9. We then make
the gauge choice

X+(ξ) = X+(0) + τ, (2.34)

hence implying
∂iX

+ = δi0. (2.35)

We can now write down the induced metric in the lightcone gauge:

grs = ∂r
~X · ∂s

~X ≡ ḡrs,

g0r = ∂rX
− + ~̇X · ∂r

~X ≡ ur,

g00 = 2Ẋ− + ~̇X2.
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The determinant becomes

g = −∆ḡ, (2.36)

where

ḡ ≡ detḡrs, ḡrsḡst = δr
t , ∆ = −g00 + urḡ

rsus. (2.37)

By virtue of the above, the Lagrangian takes the simple form

L = −
√

ḡ∆. (2.38)

The Hamiltonian formulation is, however, of greater interest to us. We
thus form the canonical momenta ~P and P+ conjugate to ~X and X−,
respectively:

~P =
∂L
∂ ~̇X

=

√
ḡ

∆

(
~̇X − urḡ

rs∂s
~X

)
, (2.39)

P+ =
∂L

∂Ẋ− =

√
ḡ

∆
. (2.40)

The Hamiltonian density is

H = ~P · ~̇X + P+Ẋ− − L =
~P 2 + ḡ

2P+
. (2.41)

With the primary constraint

φr = ~P · ∂r
~X + P+∂rX

− ≈ 0 (2.42)

and Lagrange multiplier cr we construct the total Hamiltonian [14]

Htotal =

∫
d2σ{H + crφr}, (2.43)

which has no secondary constraints. The gauge condition (2.34) has a
residual invariance under the spatial diffeomorphism

σr → σr + ξr(τ, σ), (2.44)

which will transform ur as follows:

ur → ur − ∂0ξ
r + ∂sξ

rus − ξs∂su
r. (2.45)

This will allow us to impose the gauge condition

ur = 0, (2.46)
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since ”∂0ξ
r” is independent of ur and can be chosen to cancel the other

terms. From this it follows that the Hamilton equations corresponding
to Htotal imply that cr = 0 and moreover that

∂0P
+ = 0. (2.47)

As P+(σ) transforms as a density under diffeomorphisms we can rewrite
it as a constant times a density, i.e.,

P+(σ) = P+
0

√
w(σ), (2.48)

where we will normalize the function
√

w(σ) according to

∫
d2σ

√
w(σ) = 1. (2.49)

The function wrs(σ) can be interpreted as a 2-by-2 spatial metric on the
membrane itself, and w(σ) as the metric determinant. Except for being
non-singular the metric is arbitrary. However, it is important to note
that no physical quantity can be allowed to depend on our choice of met-
ric. This independence is a consequence of the invariance of the theory
under area preserving diffeomorphisms, together with the fact that, ex-
cept for the Lorentz boost generators, the metric wrs(σ) only appears in
various physical quantities in the guise of the metric determinant

√
w(σ).

Furthermore, area preserving diffeomorphisms, which will be treated in
the next section, leave by definition

√
w(σ) invariant. From the above

expressions we see that P+
0 is the membrane momentum in the X− di-

rection, and

P+
0 =

∫
d2σP+. (2.50)

The center of mass momenta is given by

~P0 ≡
∫

d2σ ~P (σ), (2.51)

P−
0 ≡

∫
d2σH, (2.52)

whereby the mass formula for the membrane becomes

M2 = −2P+
0 P−

0 − ~P 2
0 =

∫
d2σ

{
[~P 2]′ + ḡ√

w(σ)

}
. (2.53)

The relation between the Hamiltonian and mass being

H = M2 = T + V. (2.54)
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The meaning of the prime in equation (2.53) is the exclusion of the zero

mode, ~X0, defined by

~X0 ≡
∫

d2σ
√

w(σ) ~X(σ). (2.55)

The center of mass kinematics are determined by the theory of a free rela-
tivistic particle, while the membrane dynamics are governed by equation
(2.53). An obvious observation regarding the mass formula is the lack
of explicit dependence on the coordinate X−. This coordinate is instead
determined by the gauge condition ur = 0, i.e.,

∂rX
− = − ~̇X · ∂r

~X. (2.56)

For X− to be a globally defined function of σr

∮
(∂0

~X · ∂r
~X) = 0 (2.57)

must be fulfilled for any closed curve on the membrane. This locally
amounts to the condition

φ = εrs(∂r
~P · ∂s

~X) ≈ 0. (2.58)

2.1.5 Area preserving diffeomorphisms

The gauge condition (2.58) used in the previous section leave a residual
gauge symmetry of the lightcone Hamiltonian. This reparametrization
invariance answers to the name of APD, area preserving diffeomorphisms.

Let us introduce a bracket operation on any two functions A(σ) and
B(σ) in the shape of

{A,B}(σ) ≡ εrs

√
w(σ)

∂rA(σ)∂sB(σ), (2.59)

which is manifestly antisymmetric,

{A,B} = −{B, A}, (2.60)

and satisfies the Jacobi identity

{A, {B,C}}+ {C, {A,B}}+ {B, {C,A}} = 0. (2.61)

The bracket is thus a Lie bracket and together with the functions on the
membrane forms an infinite dimensional Lie algebra. We can now rewrite
the potential density ḡ as

ḡ = {Xa, Xb}2, (2.62)
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which turn the Hamiltonian (2.53) into

M2 =
1

2

∫
d2σ

{
[~P 2(σ)]′√

w(σ)
+

√
w(σ){Xa, Xb}2

}
. (2.63)

From this expression we can deduce that {Xa, Xb}2 is a measure of the
potential energy of the membrane. From the fact that

{Xa, Xb} =
εrs

√
w(σ)

∂rX
a∂sX

b (2.64)

is just the area element of the membrane pulled back into spacetime we
conclude that a membrane can change its shape and form, as long as
the area remains constant, without any change in its potential energy.
This is of course the meaning of area preserving diffeomorphisms and
correspond to the transformation

σr → σr + ξr(σ) (2.65)

with
∂r(

√
w(σ)ξr(σ)) = 0. (2.66)

Locally, this amounts to

ξr(σ) =
εrs

√
w(σ)

∂sξ(σ). (2.67)

It is also worth noting that the variation of a function f under an in-
finitesimal area preserving reparametrization is

δf = −ξr∂rf = {ξ, f}. (2.68)

Furthermore we can rewrite the constraint (2.58) in the form

φ(σ) ≡ {~P , ~X} (2.69)

and verify that the mass M actually commutes with this constraint.

2.2 Supersymmetry

The field of supersymmetry has since its birth in the early 1970s grown to
become one of the most expansive and fundamental theories within the
domain of theoretical physics. It would be hubris to attempt to pen down
a self-contained review of such an encompassing field, so excluding some
brief introductory words this section will only present facts pertinent to
membranes. Numerous good reviews of supersymmetry exists; if unable
to get ones hands on the elusive [16] the more readily available [17] and
[18] will suffice.
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2.2.1 Basics

Supersymmetry is a proposed symmetry linking fermions and bosons
together. In essence, every spin-1

2
particle would have a spin-1 sibling

and vice versa. The properties of these twin particles would be the same
as the original ones except for the spin and the name which, incidentally,
is always more funny sounding for the supersymmetric twin (slepton,
wino, higgsino etc.).

The only symmetries possible for the S-matrix (and hence also the
Lagrangian) in particle physics was shown in a classical paper in 1967 by
Coleman and Mandula [19] to be:

• Spacetime symmetries, Poincaré invariance, i.e., the semi-direct
product of translations and Lorentz rotations.

• Internal global symmetries, related to conservation of quantum
numbers like electric charge and isospin.

• Discrete symmetries, C(harge), P(arity) and T(ime).

In deriving the Coleman-Mandula theorem one of the assumptions made
is that the S-matrix involves only commutators. By relaxing this con-
straint and allowing for anticommutating generators as well, room is
made for supersymmetry; an extension of the spacetime symmetry men-
tioned above (resulting in a super-Poincaré algebra). Later, in 1975, it
was proved [20] that supersymmetry is the only additional symmetry
allowed under the aforementioned assumptions.

The operator Q that realizes supersymmetry is thus an anticommu-
tating spinor, with

Q |Boson〉 = |Fermion〉 and Q |Fermion〉 = |Boson〉 . (2.70)

Q and its hermitian conjugate Q† is then by the extension of the Coleman-
Mandula theorem forced to satisfy the algebra

{Q,Q†} = P µ (2.71)

{Q,Q} = {Q†, Q†} = 0 (2.72)

[P µ, Q] = [P µ, Q†] = 0, (2.73)

where we have suppressed the spinor indices on Q and Q†, and where P µ

is the generator of translations.
Irreducible representations of the supersymmetry algebra called su-

permultiplets contain both bosonic and fermionic states (superpartners of
each other). If |Ω〉 and |Ω′〉 belong to the same supermultiplet, then |Ω′〉
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is by definition proportional to some combination of Q and Q† acting on
the superpartner state |Ω〉 (up to spacetime translations and rotations).
Now, since the (mass)2 operator, −P 2, commutes with Q, Q† and all
spacetime translation and rotation operators the particles contained in
the same supermultiplet must necessarily have identical eigenvalues of
−P 2 and hence equal mass. In addition to this, the operators Q and
Q† commute with the generators of gauge transformations. This implies
the fact that superpartners share the same properties of color degrees of
freedom, electric charge and weak isospin.

To make the transition from bosonic membranes to supermembranes
we have to introduce supersymmetry. We are then presented with two
obvious choices; either we introduce supersymmetry locally on the mem-
brane worldvolume (producing a so-called spinning membrane) or on the
target space (yielding superspace). A third option would be to simulta-
neously make use of both these approaches, resulting in something called
superembeddings [21]. This last option, though perhaps the most desir-
able, is plagued with many difficulties and while research in this field is
still being conducted we will not touch on the subject any further.

2.2.2 Worldvolume supersymmetry

Introducing supersymmetry on the worldvolume of a p-brane would pro-
duce (p+1)-dimensional ”matter” supermultiplets (Xµ, χµ), with µ =
0, 1, . . . , D and χ a worldvolume spinor. In the string case, p = 1, this
yields the spinning string of Ramond, and Neveu and Schwarz. After
some GSO projections the obtained spectrum is exactly that of a space-
time supersymmetric theory. Furthermore, the resulting action is equiv-
alent to the normal Green-Schwarz superstring action. An attempt to
construct a spinning membrane was made in [22]. However, the above
procedure led to the inclusion of an Einstein-Hilbert term,

√−gR, when
trying to supersymmetrize the cosmological term

√−g in the bosonic
action. These problems later grew into a no-go theorem for spinning
membranes [23].

2.2.3 Superspace

The obvious alternative to the spinning membrane is to introduce su-
persymmetry on the background space. This is accomplished simply by
adding a number of anticommutating fermionic coordinates, θα(ξ), to the
bosonic ones, Xµ(ξ). Thus yielding the superspace coordinates

ZM = (Xµ, θα). (2.74)
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The fermionic coordinates, however, do not represent any position in
spacetime per se, and is better viewed as ”directions”.

2.2.4 Experimental verification of supersymmetry

Supersymmetry in its unbroken form, with superparticles being degen-
erate in mass with the ”normal” particles, is clearly impossible as such
superparticles easily should have been found by now. Thus, if super-
symmetry exists it does so in a broken form. Various calculations of the
resulting superparticle masses (see e.g. [24] and [25]) place them in the
TeV range. With the advent of the Large Hadron Collider at CERN
in 2006 this energy range will soon come within experimental reach. If
experimental evidence for supersymmetry were to be found it would be
a tremendous victory (and relief) not only for the supersymmetry com-
munity but for string theorists in general as well. It would furthermore
excite them to thenceforth ”eat raspberry cake every day” [26].

2.3 Super p-branes

In this section we meld the two previous ones to produce super p-branes.
We also present the brane scan, which will tell us the viable values of p.
Furthermore we analyze the super p-brane action along with its symme-
tries.

2.3.1 The brane scan

For many students of string theory the first surprise to come to terms
with is the leap from their childhood world of three dimensions to the
mind-boggling world of string theory with a seemingly arbitrarily chosen
number of dimensions. A simple but powerful way to bring some method
to the madness is to make a so-called brane scan [27]. This will provide
us with the allowed dimensions of p-branes for various dimensions of
spacetime. It will also place an upper limit on the dimensionality of
spacetime itself.

Consider a p-brane with worldvolume coordinates ξi (i = 0, 1, . . . , p)
that moves through a D-dimensional spacetime. The p-brane traces a
trajectory described by the functions XM(ξ), with M = 0, 1, . . . , D − 1.
We then enter the static gauge by splitting the functions into

XM(ξ) = (Xµ(ξ), Y m(ξ)), (2.75)

where µ = 0, 1, . . . , p and m = p + 1, . . . , D − 1. Next we put

Xµ(ξ) = ξµ, (2.76)
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which results in the physical degrees of freedom being given by the (D−
p − 1)Y m(ξ). Consequently, the number of bosonic degrees of freedom
on-shell is

NB = D − p− 1. (2.77)

To get a super p-brane we enter superspace by adding the fermionic
coordinates θα(ξ) to the bosonic Xµ(ξ). The number of fermionic degrees
of freedom is naively the number of real components, M , of the minimal
spinor times the number of supersymmetries, N . However, this product
is then halved by κ-symmetry1. Then by going on-shell only half of the
spinor components will be identified as coordinates and the other half as
momenta. It is important to note that this reasoning only applies when
p > 1. The string case is slightly more complicated as we can treat left
and right moving modes separately. If we first consider p > 1 the number
of fermionic degrees of freedom on-shell is

NF =
1

4
MN. (2.78)

To implement supersymmetry on the membrane we must enforce NB =
NF , i.e.,

D − p− 1 =
1

4
MN. (2.79)

We can then easily deduce the dimensionality of the spacetime allowed for
a certain dimension of the p-brane with the help of table 2.1, listing the
number of supersymmetries and minimal spinor components for a given
dimension. For the case of p = 1 we have two options; either we require
matching of the number of right (or left) moving bosons and fermions,
or the sum of both right and left. In the first case (2.79) is replaced by

D − 2 =
1

2
MN, (2.80)

and has solutions for D = 3, 4, 6 and 10, all with N = 1. Furthermore
these solutions actually describe the heterotic string. In the second case
(2.79) remains valid and we get the same solutions for D as above, except
that N = 2, and describe Type II superstrings.

A very fundamental conclusion to be drawn from the above kind of
reasoning is that the maximum possible dimension allowed for spacetime
is eleven. If D ≥ 12 then M ≥ 64, for which there are no solutions to
(2.79). Likewise the upper limit on the dimensionality of the p-brane
is five since (2.79) has no solution for p ≥ 6. The results of the brane
scan are summarized in figure 2.2. From the figure we can easily see that

1This important symmetry is examined more thoroughly in appendix B.
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Dimension D Minimal spinor M Supersymmetries N
11 32 1
10 16 1,2
9 16 1,2
8 16 1,2
7 16 1,2
6 8 1,2,3,4
5 8 1,2,3,4
4 4 1,. . . ,8
3 2 1,. . . ,16
2 1 1,. . . ,32

Table 2.1: Number of minimal spinor components and supersymmetries
for given spacetime dimensions.

the allowed dimensions are organized in four sequences. They are known
as the real (R), complex (C), quaternionic (H) and octonionic (O) se-
quences, and are related to the composition-division algebras R, C,H,O.

Until now we have used only classical considerations to arrive at these
restrictions of dimensionalities. Quantum mechanics can be expected to
throw further restrictions into the mix. In string theory we know that
the D = 10 string, i.e. the string that belongs to the octonionic sequence,
is the only one free from quantum anomalies. In fact it can be shown for
the p-brane that all the other sequences suffer from Lorentz anomalies
in the lightcone gauge. We are thus tempted to conclude that the p = 2
brane in eleven dimensional spacetime is the only viable candidate for a
fundamental super p-brane besides the D = 10 superstring. Later on we
will also find a very close connection between the D = 11 supermembrane
and D = 11 supergravity. For these reasons we will narrow our scope
and focus, for the most part, on the D = 11 supermembrane.

2.3.2 The super p-brane action

Now we have the necessary tools to construct the supersymmetric gen-
eralization of the the bosonic membrane in section 2.1.1.

We start with a general p-brane in a D-dimensional flat superspace.
The worldvolume is then parameterized by the local coordinates

ξi = (τ, σr), (2.81)

where r, s, . . . = 0, 1, . . . , D− 1. As in the bosonic case we first construct
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Figure 2.2: The brane scan.

the induced metric

gij(X, θ) = Eµ
i Eν

j ηµν . (2.82)

In superspace we have a supervielbein of the form

Eµ
i ≡ ∂iX

µ + θ̄Γµ∂iθ, (2.83)

where we have introduced the anticommutating Γ-matrices of the Clifford
algebra2,

{Γµ, Γν} = 2ηµν . (2.84)

By treating gij as an independent variable on the worldvolume we get
the Polyakov action for the super p-brane,

L = −1

2

√−ggijEµ
i Ejµ +

1

2
(p− 1)

√−g, (2.85)

where, as before, we have set the membrane tension to unity. In the same
way as in the bosonic case we can go to the classically equivalent Nambu-
Goto-like action by solving the equations of motion and substituting the

2Further information on Γ-matrices is given in appendix A.
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on-shell metric. For the supermembrane in flat eleven-dimensional target
space this action is

L = −√−g − εijk

(
1

2
∂iX

µ∂jX
ν +

1

2
∂iX

µθ̄Γν∂jθ

+
1

6
θ̄Γµ∂iθθ̄Γ

ν∂jθ

)
θ̄Γµν∂kθ. (2.86)

From the Polyakov action we obtain the Euler-Lagrange equations of
motion,

∂i(
√−ggijEµ

j ) = εijkEν
j ∂j θ̄Γ

µ
ν∂kθ, (2.87)

(1 + Γ)gij /Ei∂jθ = 0, (2.88)

where

Γ ≡ εijk

6
√−g

Eµ
i Eν

j Eρ
kΓµνρ (2.89)

and Γ2 = 1 (for a proof, see appendix B), thus making 1± Γ projection
operators, eliminating half the spinor components.

The symmetries of the action is:

• Global super-Poincaré transformations,

δXµ = aµ + ωµνXν − ε̄Γµθ (2.90)

δθ =
1

4
ωµνΓ

µνθ + ε, (2.91)

where ε is a constant anticommuting spacetime spinor.

• Local gauge symmetry, in the form of worldvolume reparametriza-
tion invariance along a vector field ζ and a fermionic κ-symmetry,

δXµ = ζ i∂iX
µ + κ̄(1− Γ)Γµθ (2.92)

δθ = ζ i∂iθ + (1− Γ)κ, (2.93)

with κ a 32-component Majorana spinor. Via Noether’s theorem we can
obtain the supercharges (supersymmetry generators)

Q =

∫
d2σJ0, (2.94)

with the conserved supercurrent being

J i = −2
√−ggij /Ejθ − εijk

{
Eµ

j Eν
kΓµνθ +

4

3
[Γνθ(θ̄Γµν∂jθ)

+ Γµνθ(θ̄Γ
ν∂jθ)](E

µ
k −

2

5
θ̄Γµν∂kθ)

}
. (2.95)
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We conclude this chapter by presenting the supermembrane action
in a curved background space. The action was proposed by Bergshoeff,
Sezgin and Townsend in 1987 [28] and investigated extensively later that
year [29]. The action presented below differ, however, from their action
by a factor 1/3! in the last term due to slightly different conventions.
The action is,

S =

∫
d3ξ

(
−1

2

√−ggijΠa
i Π

b
jηab +

1

2

√−g − 1

3!
εijkΠA

i ΠB
j ΠC

k BCBA

)
,

(2.96)
where indices A,B, C are flat super indices and a, b are flat vector indices
(A = a, α). The pullback is defined as,

ΠA
i = (∂iZ

M)E A
M , (2.97)

with E A
M the supervielbein and

EA = dZME A
M . (2.98)

The 3-form B is the potential to the 4-form H,

H = dB, (2.99)

with B being defined as

B =
1

3!
EAEBECBCBA. (2.100)

The action has two local gauge invariances; local fermionic κ-symmetry
(investigated in detail in appendix B), and d = 3 reparametrization in-
variance,

δZM = ηi(ξ)∂iZ
M (2.101)

δgij = ηk∂kgij + 2∂(iη
kgj)k. (2.102)
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The Supermembrane: Spectrum

and M-Theory

This chapter has three parts. We begin with a treatment of the link
between matrix theory and supermembranes, then move on to investigate
the membrane spectrum. The last part is a brief overview of what has
become known as M-theory.

3.1 Supermembranes and matrix theory

In this section we will continue our treatment of the supermembrane and
highlight its connection to matrix theory.

3.1.1 Lightcone gauge and Hamiltonian formalism

As before we enter the lightcone gauge by introducing the standard light-
cone coordinates

X± =
1√
2
(X10 ±X0), (3.1)

and imposing the condition

X+(ξ) = X+(0) + τ ⇐⇒ ∂iX
+ = δi0. (3.2)

Transverse coordinates are ~X(ξ) = Xa(ξ), with a = 1, . . . , 9. In complete
analogy for the gamma matrices, we define

Γ± =
1√
2
(Γ10 ± Γ0). (3.3)

25
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The κ-symmetry is gauged fixed by imposing the gauge condition

Γ+θ = 0, (3.4)

thus reducing the number of fermionic degrees of freedom from 32 to 16.
After these substitutions the induced metric becomes

grs = ∂r
~X · ∂s

~X ≡ ḡrs, (3.5)

g0r = ∂rX
− + ∂0

~X · ∂r
~X + θ̄Γ−∂rθ ≡ ur, (3.6)

g00 = 2∂0X
− + (∂0

~X)2 + 2θ̄Γ−∂0θ. (3.7)

Furthermore, the metric determinant can be written as,

g ≡ −∆ḡ, (3.8)

with, as before,

ḡ ≡ detḡrs, ḡrsḡst = δr
t , ∆ = −g00 + urḡ

rsus. (3.9)

The lightcone Lagrangian then becomes

L = −
√

ḡ∆ + εrs∂rX
aθ̄Γ−Γa∂sθ. (3.10)

To obtain the Hamiltonian density we first calculate the canonical mo-
menta ~P , P+ and S (conjugate to ~X, X− and θ):

~P =
∂L

∂(∂0
~X)

=

√
ḡ

∆

(
∂0

~X − urḡ
rs∂s

~X
)

, (3.11)

P+ =
∂L

∂(∂0X−)
=

√
ḡ

∆
(3.12)

S =
∂L

∂(∂0θ̄)
= −

√
ḡ

∆
Γ−θ. (3.13)

The Hamiltonian density is then

H = ~P · ∂0
~X + P+∂0X

− + S̄∂0θ − L (3.14)

=
~P 2 + ḡ

2P+
− εrs∂rX

aθ̄Γ−Γa∂sθ, (3.15)

and the Hamiltonian itself being the integral of the above density over
the membrane, i.e.,

H =

∫

M
d2σH(σ). (3.16)
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Figure 3.1: A membrane with protruding tubes.

The bosonic part of (3.14) was first discovered by Goldstone [30] with
the fermionic part incorporated in [31]. The two primary constraints are

φr = ~P · ∂r
~X + P+∂rX

− + S̄∂rθ ≈ 0 (3.17)

χ = S + P+Γ−θ ≈ 0. (3.18)

In complete analogy with the reasoning in section 2.1.4 we can impose
the gauge condition

ur = 0, (3.19)
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and introduce the normalized spatial metric w(σ), and then produce the
membrane momenta

P+
0 =

∫
d2σP+, (3.20)

~P0 =

∫
d2σ ~P , (3.21)

P−
0 =

∫
d2σH. (3.22)

The membrane mass then becomes

M2 =

∫
d2σ

{
[~P 2]′ + ḡ√

w(σ)
− 2P+

0 εrs∂rX
aθ̄Γ−Γa∂sθ

}
, (3.23)

the prime again indicating the exclusion of the zero modes

~X0 =

∫
d2σ

√
w(σ) ~X(σ) (3.24)

θ0 =

∫
d2σ

√
w(σ)θ(σ). (3.25)

Due to the fact that the bosonic part of (3.23) is

M2 = H = T + V (3.26)

we obtain the potential energy

V =

∫
d2σḡ =

∫
d2σ det

r,s
(∂r

~X · ∂s
~X) =

∫
d2σ(εrs∂rX

a∂sX
b)2. (3.27)

From this expression we deduce that the potential energy will vanish
where the membrane is infinitely thin (i.e., where the ~X’s depend on one
linear combination of the σ’s only). Hence the membrane can sprout
stringlike spikes without any cost in energy. Although we could have
surmised this by way of area preserving diffeomorphisms (as the strings
have zero area), there is a deeper meaning; the spikes do not necessar-
ily need to have a ”stringy” end. A membrane could, e.g., squeeze its
midsection into a string (not a string per se, but an infinitesimally thin
tube), effectively becoming two membranes connected with a string. As
pointed out earlier this string would not carry any energy and the case
where two membranes are connected with a string would actually be
physically indistinguishable from the case without the string connection.
This is a remarkable feature of membrane theory: if membranes can join
and disjoin freely any concept of a ”membrane number” (conserved or
not) becomes irrelevant.
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Figure 3.2: Physically indistinguishable membranes with different topolo-
gies.

3.1.2 Membrane regularization

We will now establish the relation between the APD algebra of the su-
permembrane and the N →∞ limit of a supersymmetric SU(N) matrix
model.

We begin by expanding our superspace coordinates into a complete
orthonormal set of functions YA(σ) on the membrane,

~X(σ) = ~X0 +
∑

A

~XAYA(σ), (A = 0, 1, 2, . . .) (3.28)

and an analogous basis for the fermionic coordinates θ. For the sake of
simplicity we choose YA to be real. We then introduce the metric ηAB to
enable raising and lowering of A,B, . . . indices,

ηABYB(σ) = Y A(σ), (3.29)

where the metric satisfy, as usual,

ηABηBC = δA
C . (3.30)
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Figure 3.3: Membranes connected by infinitesimally thin tubes.

Normalization of YA(σ) is done according to the orthogonality relations

∫
d2σ

√
w(σ)YA(σ)Y B(σ) = δB

A , (3.31)

or, equivalently,

∫
d2σ

√
w(σ)YA(σ)YB(σ) = ηAB. (3.32)

Furthermore we need the completeness relation to be fulfilled,

∑
A

Y A(σ)YA(σ′) =
1√
w(σ)

δ(σ − σ′). (3.33)

This relation is crucial because it allows us to rewrite the Lie bracket in
the new basis,

{YA, YB} = f C
AB YC , (3.34)

with the totally antisymmetric structure constants

f C
AB =

∫
d2σ εrs∂rYA∂sYBY C . (3.35)
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To regularize the membrane we now truncate the theory by placing an
upper limit Λ on the number of modes indexed by A, B, . . .. The APD
group is approximated by a finite-dimensional Lie group GΛ whose struc-
ture constants are equivalent to the APD structure constants in the limit
Λ →∞. We then get the consistency condition

lim
Λ→∞

fAB C(GΛ) = fAB C(APD), (3.36)

for any fixed A,B,C. In the case of spherical membranes [30,32] (a more
recent review can be found in [33]) it was shown that

GΛ = SU(N) (3.37)

where Λ = N2 − 1. This result was subsequently generalized to toroidal
[34], and then later arbitrary [35], membranes. As we are dealing with
SU(N) matrices we can furthermore replace the Lie bracket with a com-
mutator

{·, ·} → [·, ·]. (3.38)

We can elucidate the regularization by working through the example
of toroidal membranes. We then use the torus coordinates 0 ≤, σ1, σ2 < 2π
and define the basis functions

Y~m(~σ) = ei~m·~σ, (3.39)

where ~m = (m1,m2) with m1 and m2 being integers. The weight function
and metric are, respectively,

√
w(~σ) =

1

4π2
, (3.40)

ηmn = δm+n. (3.41)

Inserting this metric into the Lie bracket

{A,B}(σ) ≡ εrs

√
w(σ)

∂rA(σ)∂sB(σ), (3.42)

will then yield

{Y~m, Y~n} = −4π2(~m× ~n)Y~m+~n. (3.43)

This together with the above metric then gives us the structure constants

fmnk = −4π2(~m× ~n)δm+n+k. (3.44)
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Next we use the ’t-Hooft clock and shift matrices

U =




1
1

. . .

1
1




, W =




1
q

q2

. . .

qN−1




, (3.45)

where
q = e

2πik
N (3.46)

and the matrices satisfy
UW = qWU. (3.47)

These will now enable us to write any traceless N×N matrix (and thus all
possible SU(N) matrices) as a linear combination of matrices Um1Wm2 .
The commutator becomes

[Um1Wm2 , Un1W n2 ] = (q−m2n1 − q−m1m2)Um1+n1Wm2+n2 . (3.48)

We now hold ~m and ~n fixed while we take N to infinity. By Taylor
expanding q (ex = 1 + x +O(x2), x → 0 when N →∞) we get

lim
N→∞

[Um1Wm2 , Un1W n2 ] =
2πik

N
(~m× ~n)Um1+n1Wm2+n2 . (3.49)

From this result we conclude that the N →∞ limit of su(N) yields the
same Lie algebra as area preserving diffeomorphisms on the torus.

An important remark we need to make regards the viable choices
of bases of the SU(N) matrices. For the statements we have done on
the equivalence between matrix theory and the supermembrane in this
section to hold we must choose a particular basis for each membrane
topology.

3.1.3 Dimensional reduction of super Yang-Mills theory

We will now make the connection between the supermembrane Hamil-
tonian and a supersymmetric SU(N) matrix model. One can define the
quantum supermembrane as the limit where the truncation of the super-
symmetric matrix model is removed. An alternative approach, which we
will now discuss, is by dimensional reduction of the maximally supersym-
metric SU(N) Yang-Mills theory from 9 + 1 to 1 + 0 dimensions (for a
more thorough review see, e.g., [36])

We start from the 10-dimensional U(N) super Yang-Mills action

S =

∫
d10ξ

(
−1

4
TrFµνF

µν +
i

2
TrΨ̄ΓµDµΨ

)
. (3.50)
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Figure 3.4: Membrane - matrix connection.

The field Aµ is a U(N) hermitian gauge field and Ψ a 16-component
Majorana-Weyl spinor of SO(9, 1). Both fields are in the adjoint repre-
sentation of U(N) with adjoint indices suppressed. The field strength is
given by

Fµν = ∂µAν − ∂νAµ − igY M [Aµ, Aν ] (3.51)

and measures the curvature of Aµ, with gY M being the Yang-Mills cou-
pling constant. The covariant derivative of Ψ is

DµΨ = ∂µΨ− igY M [Aµ, Ψ]. (3.52)

To simplify the forthcoming treatment of the theory we rescale the fields
according to

Aµ → 1

gY M

Aµ (3.53)

Ψ → 1

gY M

Ψ (3.54)

This will cause the coupling constant to appear in the action solely as a
multiplicative constant,

S =
1

4g2
Y M

∫
d10ξ

(−TrFµνF
µν + 2iTrΨ̄ΓµDµΨ

)
, (3.55)

with the field strength and the covariant derivative now being

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] (3.56)

DµΨ = ∂µΨ− i[Aµ, Ψ]. (3.57)
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Mechanics of D0-branes

Figure 3.5: Two different approaches to M(atrix) theory.

To proceed with the dimensional reduction we let the 10-dimensional
field Aµ decompose into a (p + 1)-dimensional gauge field Aα and 9 − p
other adjoint scalar fields Xa. With this decomposition we easily derive
the dimensionally reduced action

S =
1

4g2
Y M

∫
dp+1ξTr

(−FαβFαβ − 2(DαXa)2 + [Xa, Xb] + fermions
)
.

(3.58)
Before we make the transition to the 1 + 0 dimensional theory a few re-
marks concerning the above action is in order. Besides describing a super
Yang-Mills theory in p+1 dimensions the above action describes the low
energy dynamics of N Dirichlet p-branes (i.e., D-branes) in static gauge
(provided that the coupling constant is replaced, of course). D-branes
were discovered by Polchinski in 1995. Briefly put, they can be described
as topological defects on which open strings can have their endpoints on
(for a review, see [37]). From a D-brane viewpoint, Aµ is a gauge field
on the D-brane worldvolume and Xa the transverse fluctuations of the
D-brane.

We now resume our treatment of the super Yang-Mills action by let-
ting Aµ decompose into nine scalars Xa and a one-dimensional gauge
field A0. By gauging away A0 we arrive at the Lagrangian,

L =
1

2
Tr

{
ẊaẊa +

1

2
[Xa, Xb]2 + θT (iθ̇ − Γa[X

a, θ])

}
, (3.59)

which then describe a system of N D0-branes. From the Lagrangian we
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then easily derives the corresponding matrix Hamiltonian,

H =
1

2
Tr

{
P aP a − 1

2
[Xa, Xb]2 + θT Γa[X

a, θ]

}
. (3.60)

This Hamiltonian is the dimensional reduction of the maximally super-
symmetric SU(N) Yang-Mills Hamiltonian from 9+1 to 0+1 dimensions
and also the truncated model of the supermembrane. The above Hamil-
tonian and Lagrangian also play an important role in M-theory by way
of the BFSS conjecture, which we will discuss further in section 3.3.5.

3.2 The (super)membrane spectrum

The matter as to whether the bosonic and supersymmetric membrane
have continuous or discrete spectra is not without its surprises nor im-
plications, some of which we will discuss now.

3.2.1 The bosonic membrane spectrum

The bosonic Hamiltonian belongs to the group of Hamiltonians where
the volume

{(p, q) | p2 + V (q) ≤ E} (3.61)

is infinite for some E < ∞. For such cases the standard wisdom [2]
proclaims that the spectrum is not purely discrete. In the opposite case
where the volume is always finite the same wisdom dictates that the
spectrum is purely discrete. Wisdom, however, is no match for proper
physics and while the latter wisdom holds true, the former does not.

If we express the quantum and classical partition functions as

Zq(t) = Tr(e−tH) (3.62)

Zcl(t) =
1

(2π)ν

∫
dνp dνq e−t(p2+V (q)), (3.63)

we have the Golden-Thompson inequality

Zq(t) ≤ Zcl(t). (3.64)

Our lightcone membrane Hamiltonian can be re-written [38] and ex-
pressed as

H =

∫
d2σ

(
PiP

i +
∑
i<j

(XiXj)
2

)
, i, j = 1, 2, . . . , D − 2. (3.65)
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If we restrict ourselves to the case of D = 4 we obtain (after a slight
change in notation) the Hamiltonian

H1 = − ∂2

∂x2
− ∂2

∂y2
+ x2y2. (3.66)

In [2] no less than five proofs of H1 having a discrete spectrum are given.
We will, however, only concern ourselves with the simplest one. This
proof is derived from the zero point harmonic oscillator,

− d2

dq2
+ ω2q2 ≥|ω | . (3.67)

By treating y as a complex number we get

− d2

dx2
+ x2y2 ≥|y | . (3.68)

By using this and the symmetry between x and y we easily derive the
inequality

H1 = − d2

dx2
− d2

dy2
+ x2y2 (3.69)

=
1

2

(
− d2

dx2
+ x2y2

)
+

1

2

(
− d2

dy2
+ x2y2

)

−1

2

(
d2

dx2
+

d2

dy2

)
(3.70)

≥ 1

2
(−∆+ |x | + |y |) = H2, (3.71)

and show that H2 has a discrete spectrum, since

Tr(e−tH2) = [1 +O(1)]
1

(2π)2

∫
d2p dx dy etp2−t|x|−t|y| (3.72)

= ct−3[1 +O(1)]. (3.73)

This, of course, means that

Zq = Tr(e−tH1) ≤ ct−3. (3.74)

It should be noted, however, that this is a very poor approximation and
the true relation [2] should be

Tr(e−tH1) ≤ O(t−3/2 ln t). (3.75)

Nonetheless, our purpose was only to prove the discreteness of the spec-
trum, which we have now done.
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Figure 3.6: x2y2 potential valley.

To summarize: classically, wave functions can escape to infinity along
the potential valleys. From a membrane perspective this essentially
means sprouting string-like objects from the membrane body. This ”mem-
brane instability” is cured by quantum mechanics, as the finite-energy
wave packets eventually gets stuck in the valleys as these constantly de-
crease in width.

In regard to the bosonic spectrum some similar work done by Lüscher
[39] should be noted. In this paper a discrete spectrum is found for the
(non-supersymmetric) SU(N) Yang-Mills theory in 3+1 dimensions. The
energy values are expanded in a power series. Also, no ground state was
found.

3.2.2 The supermembrane spectrum

In contrast to the bosonic case the supermembrane spectrum is continu-
ous. The proof of this [7] is lengthy and quite technical. Hence we will
forsake the full proof in favor of an analogous proof dealing with a simpler
toy model. We will use a supersymmetric extension of the Hamiltonian
used in the previous section. The Hamiltonian is given by

H =
1

2
{Q,Q†}, (3.76)
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with the supercharges being

Q = Q† =

( −xy i∂x + ∂y

i∂x − ∂y xy

)
, (3.77)

with x and y, of course, being the normal Cartesian coordinates. The
Hamiltonian then becomes

H =

( −∆ + x2y2 x + iy
x− iy −∆ + x2y2

)
, (3.78)

and we immediately recognize the bosonic Hamiltonian in the diagonal
elements. The effect of the fermionic parts, however, will be crucial:
the off-diagonal terms will make a negative energy contribution and thus
negating the confining properties evident in the bosonic theory. More to
the point, it will be possible to construct wave packets that can escape
to infinity along the coordinate axis (i.e., the potential valleys) without
a corresponding infinite cost of energy. The easiest way to show this is
to explicitly construct said wave packets.

To proceed, we choose to study the y = 0 direction and start with
the ansatz

ψt(x, y) = χ(x− t)ϕ0(x, y)ξF , (3.79)

where χ(x) is a smooth function with compact support such that χ van-
ishes unless x is of order t, and

ξF =
1√
2

(
1
−1

)
. (3.80)

If we increase the parameter t the wave packet is translated in the x-
direction. Furthermore, as t → ∞ the wave packet moves to infinity
along the y = 0 valley. The spinor ξF was chosen to maximize the
negative energy contribution of the wave packet, and we have

ξT
F HξF = Hbosonic − x. (3.81)

Moreover, the fermionic contribution to the energy expectation value of
the state ψt turns out to be −t + O(1) for large t (χ dominates when
t becomes large). This negative contribution is exactly what we need
to cancel the bosonic groundstate energy of a harmonic oscillator in the
y = 0 valley. Next we choose a wave function of such an oscillator,

ϕ0(x, y) =

( | x |
π

) 1
4

e−
1
2
|x|y2

. (3.82)
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For ν = 0, 1, 2 we then have

lim
t→∞

(ψt, H
νψt) =

∫
dxχ(x)∗(−∂2

x)
νχ(x), (3.83)

which is finite. In other words, we are allowed to shift the wave packet
to infinity without the energy ever going off to infinity.

To finalize this treatment let us choose an arbitrary energy E ≥ 0 and
ε > 0. Next we choose χ(x) such that

‖ χ ‖= 1, ‖ (−∂2
x − E)χ ‖2<

ε

2
. (3.84)

For large t we will then have

‖ χt ‖= 1, ‖ (H − E)ψt ‖2< ε. (3.85)

Hence, as ε can be arbitrarily small, we have proved that indeed any value
E ≥ 0 is an energy eigenvalue of the Hamiltonian (3.78), which then have
a continuous spectrum. We should end with a remark concerning the full
membrane case: here the wave functions can escape to infinity along
directions corresponding to the generators of the Cartan subalgebra of
the algebra corresponding to the SU(N) group.

3.2.3 A second quantized theory

To recapitulate, we have shown that the bosonic membrane has, clas-
sically, a continuous spectrum and, quantum mechanically, a discrete
spectrum. If supersymmetry is then switched on the spectrum is again
continuous. This is (was) bad news for the first quantization of the the-
ory, which by its very nature should be discrete. In fact, this caused
the membrane community to dishearten and disperse into, at the time,
more interesting research areas. A few years later, around the time of the
BFSS conjecture (see section 3.3.5), there was a revival of membrane the-
ory and the previously fatal flaw, the continuous spectrum, was realized
to be no nothing but a blessing in disguise. The simple, yet profound,
realization was to interpret the continuous spectrum of the quantum su-
permembrane not as a hindrance to first quantize the theory, but as a
sign that the theory is second quantized to begin with. Membrane theory
thus deals with ”multi-membrane” states from the very outset.

3.3 M-theory

In this section we will try to swiftly cover a large part of what is now
called M-theory. The treatment will differ from the rest of the thesis in
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that it will be of much lesser technical nature. The width of the content
is rivaled only by the lack of depth in the treatment.

For more in-depth treatments of string theory, see [40] and [41]; du-
ality, [42]; M-theory, [43] and [42].

3.3.1 Supergravity

Local supersymmetry actually predicts (super)gravity by demanding the
existence of the spin 2 graviton and its supersymmetric partner, the spin
3/2 gravitino. In other words, if general relativity had not been discov-
ered at the time of local supersymmetry, we would have been forced to
invent it. What’s more, supergravity includes the symmetries of both
gravity and the grand unified forces, thus making it a candidate for a
Theory of Everything. Like we showed for p-branes in chapter 2 super-
gravity imposes an upper limit of 11 on the number of spacetime dimen-
sions. It is furthermore in this dimensionality that supergravity takes
its most elegant form. A serious problem of supergravity, however, is its
non-chirality. Nature is chiral, and as Witten among others showed it is
impossible to generate a chiral theory from a non-chiral one (ironically,
it was Witten who later evaded this no-go theorem). Another problem
is the fact that general relativity is non-renormalizable. This in itself
is not a disaster, a renormalizable theory containing both massless and
massive particles can be disguised as a non-renormalizable theory if we
remove the massive particles by using their equations of motion. The
remaining non-renormalizable theory containing only massless particles
is then fully applicable at energies lower than mpc

2, where mp is the mass
scale associated with the excluded massive particles. If we would want
to describe gravity at higher energies, a more fundamental theory with
massive particles included would be needed. The mass mp, we associate
with any quantum theory of gravity and is derived from the fundamental
constants of gravity (G), special relativity (c) and quantum mechanics
(h), thus yielding the relevant energy scale,

Ep = mpc
2 =

√
hc

G
c2 ≈ 1016 TeV. (3.86)

This is the planck energy, and it is in a word, huge. Current energies
available at CERN have just reached the TeV range.

In conclusion, the theory we are looking for should contain super-
symmetry, massive particles and reduce to Einstein’s theory of gravity at
low energies. However, we know all the supersymmetric quantum field
theories and no one of them fulfill those requirements.



3.3 M-theory 41

3.3.2 Strings

String first surfaced in theoretical physics in the 1960s as a model of
hadrons. The theory suffered from various severe problems and was
abandoned in the early 70s in favor of the hugely successful quantum
chromodynamics. A smaller group of physicists remained with string
theory, however, and eventually managed to solve, sidestep or surmount
many of the problems guilty of having condemned string theory to the
periphery of respectable research. In addition, string theory was now
considered not simply a model of strong interactions, but as a candidate
for the Theory of Everything. In 1984, in what has become known as
the (first) superstring revolution, string theory entered mainstream the-
oretical physics. At this time it was shown that certain string theories
(there were five) were free of anomalies. In addition, ways to compactify
the ”excess” dimensions of 10-dimensional superstring theories by way of
Calabi-Yau manifolds were also found.

In string theory the length scale is determined by the string tension
T = (2πα′)−1, where

√
α′ has dimension of length. For string theory to

describe the strength of the gravitational force correctly, we must set
√

α′ ∼ 10−35m. (3.87)

Consequently, this is also the typical length scale of the strings.
When we want to construct a fully consistent string theory, involving

both bosonic and fermionic degrees of freedom, we arrive at no less than
five different consistent theories, all in ten spacetime dimensions. They
are called the type IIA, type IIB, Type I, E8 ×E8 heterotic and SO(32)
heterotic string theories. We hereby give a short description of each of
these theories.

• Type IIA and IIB string theories:. The field description of these two
theories contain eight scalar fields (bosons) and sixteen Majorana-
Weyl spinors (fermions). Bosonic and fermionic degrees of free-
dom remains matched as the sixteen Majorana-Weyl spinors are
equivalent to eight Majorana spinors. From the chiral nature of
the fermions we will differentiate between their handedness by re-
ferring to them as left- and right-moving (eight of each). These
string theories contain closed strings exclusively, and are thus sub-
ject to periodic boundary conditions for the bosonic degrees of free-
dom. The fermions may have either periodic or anti-periodic con-
ditions, which is referred to as Ramond boundary conditions (R)
and Neveu-Schwarz boundary conditions (NS), respectively. Con-
sistency then requires four seperate classes of states in the spec-
trum: R-R, where both left- and right-moving fermions are subject
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to periodic boundary conditions. The other sectors are, of course,
NS-NS, R-NS and NS-R. The next step is to make a so-called GSO
projection. In essence, removing all but about a fourth of the states,
keeping the states with an even number of left-moving fermions and
an even number of right-moving fermions. The A and B variant of
type II string theory arise from the fact that we can choose either
an even or odd fermion number to the ground state. In type IIA
string theory the GSO projection in the left-moving direction are
not the same as in the right-moving direction. In type IIB the GSO
projections are identical for both directions.

The supersymmetry algebra of type IIA is the non-chiral N = 2
superalgebra, while type IIB have the chiral N = 2 superalgebra.
Both consist of 32 supersymmetry generators.

• The heterotic string theories: As with type II string theories these
are closed and oriented strings. Although they both have eight
scalar fields, they have, unlike the type II string, eight right-moving
Majorana-Weyl fermions and 32 left-moving Majorana-Weyl fermions.
Heterotic strings are divided into sectors according to their Neveu-
Schwarz and Ramond boundary conditions and then GSO pro-
jected, in a similar (but not identical) way to type II strings. The
resulting consistent string theories are the SO(32) heterotic and
E8 × E8 heterotic string theories; their names reflecting their re-
spective gauge groups. Their common superalgebra is the N = 1
chiral supersymmetry algebra, which has 16 real generators.

• Type I string theory: In contrast to the other four string theo-
ries, the type I theory contains unoriented, both open and closed,
strings. Open strings of course cannot have periodic boundary
conditions and are instead subjected to Neumann boundary condi-
tions. Furthermore is type I string theory invariant under world-
sheet parity transformation, a symmetry that exchanges left- and
right-moving sectors. Like the heterotic string, the type I spectrum
is invariant under the N = 1 chiral superalgebra.

3.3.3 Duality

Duality is an extremely valuable tool and was to a large part responsible
of unifying the five different string theories under the common banner
of M-theory. What we have said previously about string theory was in
regard of the perturbative regime only. However, duality manages to
bridge the gap to the non-perturbative region. We will touch briefly on
the three principal dualities:
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• T-duality: a perturbative duality relating distances.

• S-duality: a non-perturbative duality relating strong and weak cou-
pling.

• U-duality: a duality of dualities relating T- and S-duality to each
other.

If we compactify a string theory on a circle of radius R we would get the
normal so-called Kaluza-Klein modes quantized according to

p =
n

R
, (3.88)

where n is an integer. However, as we are dealing with strings and not
particles we will have additional modes corresponding to a closed string
wrapped around the circle, with modes

p = mR, (3.89)

where m is the number of times the string has wound around the circle.
Ergo, the left- and right-moving modes are

(pL, pR) =
( n

2R
+ mR,

n

2R
−mR

)
. (3.90)

Thus the mass spectrum for M2 is invariant under

R ←→ 1

2R
, (3.91)

if we also make the exchange n ↔ m. Hence the string seem to exhibit
the same physics if dimensionally reduced to a circle of minuscule size as
to one of titanic proportions. This invariance is the essence of T-duality
and in fact yields an equivalence between type IIA and type IIB string
theory as well as an equivalence between the two heterotic strings.

S-duality, on the other hand, relates strong coupling to weak cou-
pling, and vice versa. As such, it is a very powerful tool and enables
one to use perturbation theory to probe previously barred regions of a
theory. More importantly, S-duality, gives a correspondence between 10-
dimensional string theories and 11-dimensional M-theory (the name, M-
theory, have been rather abused and can mean either the 11-dimensional
non-perturbative extension of string theory, or the entire theory formerly
known as ”string theory”; this thesis will abuse the name further and use
it in both cases interchangeably and letting the context decide its mean-
ing). M-theory is S-dual to type IIA string theory and its strong coupling
limit (gs → ∞) when M-theory is compactified on a circle, S1 [4] (see
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also [44]). Furthermore, M-theory reduces to the E8×E8 heterotic string
when compactified on a line segment, S1/Z2. S-duality also connects the
SO(32) heterotic string with the type I string. A special case of S-duality
concerns type IIB, which in fact is self-dual and thus relates the different
regions of the moduli space within the same theory.

The third important duality is U-duality, which connects T- and S-
duality to each other. If a string exhibits T-duality the U-dual string
would exhibit S-duality, and vice versa. This put the, at the time, con-
jectured S-duality on a firm footing as it was shown to be equivalent to
the well-established T-duality.

3.3.4 M-theory

What has become known as the second superstring revolution was ignited
by a celebrated talk in 1995 by Edward Witten. The five string theories
were now firmly unified by the different dualities. A M(other) theory
living in 11-dimensional spacetime with 11 dimensional supergravity as
the low-energy limit and interconnected with all the five string theories
now became the accepted starting point for further research. M-theory
(in the broad sense of the word) was the name given to this vast theory,
and is summarized in figure 3.7. The link between type I and type IIB, in
the figure denoted by Ω, is an ”orientifold projection”. Going from type
IIB we make an orientation reversal, i.e., σ → −σ. When the smoke
clears we are left with unoriented closed strings and unoriented open
strings with an SO(32) gauge symmetry: Type I string theory.

3.3.5 The BFSS conjecture

Despite the properties we have mentioned M-theory must have, any con-
crete formulation of the theory has not been done. An attempt at this
was made by Banks, Fishler, Shenker and Susskind (BFSS) in 1996 with
a bold conjecture [45] suggesting that, ”M-theory, in the lightcone frame,
is exactly described by the large N limit of a particular supersymmet-
ric matrix quantum mechanics”. More specifically, the matrix quantum
mechanics consists of N D0-branes. From section 3.1.3 we know that
the dynamics of such a system of branes are described by the dimension-
ally reduced U(N) super Yang-Mills Hamiltonian from 9 + 1 to 0 + 1
dimensions. A D-brane has the mass

M =
ms

gs

, (3.92)

where ms is the mass scale of type IIA string theory. Having compactified
the 11-dimensional theory on a circle of radius R, the following relation
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M

Type I

Type IIA

Type IIB

E8 × E8

Heterotic

SO(32)
Heterotic

T

T

S

S

S

Ω

Gravity
Electromagnetism

Strong force
Weak force

D = 4

D = 10
D = 11

Figure 3.7: M-theory schematics.
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holds (up to numerical pre-factors),

gs = Rms. (3.93)

We thus deduce that M = 1/R, which prompts us to interpret the brane
as the first Kaluza-Klein excitation of the 11-dimensional supergravity
multiplet on the circular dimension. The spatial coordinates of the sys-
tem of D0-branes are then represented by N ×N matrices. There might
be higher order corrections, but these are then suppressed by going to
the infinite momentum frame. This frame is reached by letting the mo-
mentum

p11 =
N

R
(3.94)

go to infinity at the same time as R does so. The BFSS conjecture is
that M-theory is described exactly and non-perturbatively by the N →
∞ infinite momentum frame of N D0-branes. The N → ∞ limit is
of course troublesome and perhaps also unnecessary; Susskind made a
further conjecture [46] in 1997, suggesting that the BFSS conjecture was
valid even for finite N .

Since its birth the BFSS conjecture has received much attention and
been intensely scrutinized. More evidence for its validity has been pre-
sented, but perhaps more importantly, so has evidence for the opposite.
For instance, in the aptly named article ”Why matrix theory is hard” [47]
the authors show a possible contradiction arising from the BFSS conjec-
ture. At any rate, the last word has not been said and matrix theory
remains an exciting topic in M-theory.

For further information and references on matrix theory and the BFSS
conjecture, see [48] and [49].



4
The Membrane Vacuum State

In this chapter we will mainly investigate the ground state of a supersym-
metric SU(2) matrix model. This is a natural starting point in the search
for the membrane vacuum state due to the connection between the su-
permembrane and the large N limit of SU(N) matrix models. The bulk
of the treatment will deal with such an SU(2) invariant ground state,
whose asymptotic form we will derive; asymptotic in this case meaning
far away from the center of the potential.

4.1 Overview and preliminaries

This section will present a short chronological overview of the research
that has been done regarding membrane ground states thus far. As
a precursor to the higher-dimensional case presented later we will also
apply our method of finding a vacuum state on a two-dimensional toy
model.

4.1.1 Current state of affairs

The search for the membrane vacuum state spans about twenty years
of research and a large number of articles. We will here attempt to
outline the research done (and not done) so far. Invariably, this will
for the most part be a review of the tour de force of Jens Hoppe and
collaborators: [5, 50,51,52,53,54,55,10,56,57,58,59,60,61].

In 1984, Claudson and Halpern [6] published their work on supersym-
metric ground state wave functions where they investigated the viability
of constructing such states for many different kinds of supersymmetric
Hamiltonians. The first attempt at constructing a ground state wave

47
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function specifically for the membrane was conducted by de Wit, Hoppe
and Nicolai in their seminal paper [5] in 1988. Their analysis concerned
using truncations of the supermembrane. They showed for two different
truncations the absence of a zero energy ground state. They concluded
that, while leaning towards a massive ground state, more work on the
subject was needed. Quite a few years later [50] Hoppe slightly extended
this earlier work, by commentating on some subtleties in the original pa-
per and also showing the lack of a (real) zero energy ground state in the
simplest case of a supermembrane matrix model (SU(2) gauge invariant
supermembrane in D = 4 spacetime). Then in a subsequent paper [51]
it was firmly proven that a normalizable zero mass ground state did not
exist in the SU(2), D = 4 case. Later the same year Hoppe, in a trio
of papers published at a machine-gun pace, made use of another method
to approach the ground state problem. In the first paper [52] he proves
that no solution exists for the case where D = 4, SU(N) with N odd.
He also outlines an analogous model for the more interesting case of
11 dimensions, which is continued in the following paper by obtaining
bosonic solutions to the equations Q†

βψ = 0. The third paper further in-
vestigates the 11-dimensional case and tentatively constructs zero energy
states. A few months later, in the end of 1997, Halpern and Schwartz [62]
used a generalized Hamiltonian Born-Oppenheimer formulation to de-
rive asymptotic, normalizable zero energy solutions of the Schrödinger
equation of SU(2) matrix theory corresponding to the 11-dimensional
supermembrane. Among the ground state candidates found one was
Spin(9) invariant, a property whose significance will become clear later.
The result obtained by their rather cumbersome calculation was later
reproduced by Graf and Hoppe [55] with a simpler approach using the
supercharges (containing first order derivatives) instead of the Hamil-
tonian (containing second order derivatives). The asymptotic ground
state was SU(2) and SO(9) invariant and determined to leading and
sub-leading order from a perturbative expansion of the 16 supercharges
Qβ = Q

(0)
β + Q

(1)
β + . . .. In a follow-up paper [10] in 1999 a more gen-

eral theorem was given regarding the states satisfying Qβψ = 0 of the
supersymmetric matrix models corresponding to supermembranes in di-
mensions D = 4, 5, 7, 11. It is explicitly shown that the 11-dimensional
case is the only case with a square-integrable SU(2)×Spin(D−2) invari-
ant asymptotic ground state wave function, the form of which was also
given. The theorem along with its proof will be treated in detail in sec-
tion 4.2 and 4.3, respectively. Some months after this paper Hoppe and
collaborators [56] started to investigate the SU(3) invariant zero energy
state, an investigation continued in [57] and culminated in [58].

In 2001, Graf, Hasler and Hoppe [59] resolved the issue whether the
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supersymmetric x2y2 potential allows for zero energy ground states or
not. A similar calculation will also be presented in the next section.
In 2002, striving to go beyond the SU(2) and SU(3) case, Hasler and
Hoppe attempt in [60] to generalize the previous model to include SU(N)
invariance. They show that, for all N > 1, when the eigenvalues of
the matrices in the matrix model become large and well separated from
each other the vacuum state wave function factorizes into a product of
supersymmetric harmonic oscillator wave functions and an additional
wave function that will be annihilated by a certain supercharge. Then in
the last relevant paper [61] to date, the same authors prove that the zero
energy states for reduced super Yang-Mills theory in d + 1 dimensions
with d = 2, 3, 5, 9 (the dimension d corresponds to a supermembrane
living in D dimensions according to D = d + 2) is necessarily Spin(d)
invariant.

To summarize the current state of this field, we quote this last paper:
”The general belief, partially proven, is that for d = 2, 3, 5 no zero energy
state exists and that for d = 9 there exists a unique ground state”.

4.1.2 A toy model ground state

In this section we will investigate the possibility of normalized ground
state of a simple two-dimensional model. The supercharge and Hamilto-
nian are similar to the ones used in the toy model of the supermembrane;
they are,

Q = i

(
∂x ∂y + xy

∂y − xy −∂x

)
, (4.1)

and

H = (−∂2
x − ∂2

y + x2y2)1+

(
x −y
−y −x

)
, (4.2)

respectively. We are by now familiar with the characteristics and impli-
cations of the bosonic potential, x2y2, and hence abstain from any further
comments on the potential. It should be duly noted, however, that while
the Hamiltonian is simple, the question whether it admits a normalizable
ground state, is not. In fact, this question remained unsolved for more
than ten years and was given a resolution only recently. The argument
is the following; an approximate solution to

QΨ = 0, (4.3)

when x → +∞ is

Ψ0 = e−
xy2

2

(
0
1

)
. (4.4)
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We use this function as the first term in the asymptotic expansion

Ψ = x−κ(Ψ0 + Ψ1 + . . .). (4.5)

We also expand the supercharge in powers of x, as

Q =
∞∑

n=0

Q(n), (4.6)

where n denotes the different powers of x. In our toy model case the
supercharge (4.1) is just the sum of two terms. We have,

Q(0) = i

(
∂x 0
0 −∂x

)
(4.7)

Q(1) = i

(
0 ∂y − xy

∂y − xy 0

)
. (4.8)

Equation (4.3) now becomes

QΨ =

((
0 ∂y + xy

∂y − xy 0

)
+

(
∂x 0
0 −∂x

)) (
x−κ(Ψ0 + . . .)

)
= 0

This equation is equivalent to a set of equations for n = 0, 1, . . .. By
matching powers of x we get,

(
0 ∂y + xy

∂y − xy 0

)
Ψn + xκ

(
∂x 0
0 −∂x

)
x−κΨn−1 = 0, (4.9)

with n = 1, 2, . . ., and where we multiplied the equation by xκ. We
immediately notice that the case where n = 0 is missing, yielding the
additional equation

(
0 ∂y + xy

∂y − xy 0

)
Ψ0 = 0, (4.10)

where we again have multiplied the equation with xκ. It is now a simple
matter to check that equation (4.10) holds (it does so trivially). To check
equation (4.9) we first multiply the equation with Ψ†

0 from the left. This
kills the first term as we let the derivatives it contain act to the left on
Ψ†

0. After integrating over y the remaining term becomes,
∫ ∞

−∞
(0, e−

xy2

2 )xκ

(
∂x 0
0 −∂x

)
x−κΨn−1dy. (4.11)

This simplifies to

−
∫ ∞

−∞
e−

xy2

2 xκ∂xx
−κΨn−1dy. (4.12)
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We now check the case of n = 1, which yields

−
∫ ∞

−∞

(
κ

x
+

y2

2

)
e−xy2

dy = 0, (4.13)

which have the only solution

κ = −1

4
. (4.14)

Moreover, we note that

∫ ∞

−∞
|x 1

4 e−
xy2

2 |2 dx = ∞. (4.15)

This result proves conclusively that the Hamiltonian (4.2) does not allow
for any square-integrable solution of the asymptotic form (4.5).

From (4.9) we may calculate Ψn>0,

Ψ(x, y) = x
1
4 e−

xy2

2

∞∑
m=0

x−
3m
2

(
y
4x

fm(xy2)
gm(xy2)

)
, x →∞, (4.16)

where f(s) and g(s) are the unique polynomial solutions of

8g′m+2 =

(
3

4
+

3m

2
+

s

2

)
fm − sf ′m, (4.17)

2sf ′m + (1− 2s)fm = (1− 2s− 6m)gm + 4sg′m, (4.18)

and the starting values,

f0 = g0 = 1 , (4.19)

f1 = g1 = 0 . (4.20)

The validity of (4.17) and (4.18) is best shown by inserting (4.16) into
the equation (4.9).

4.2 The SU(2) ground state theorem

This section presents the notation and model used in the SU(2) ground
state theorem, which is also formulated.
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4.2.1 The model

If we have SU(2) as the gauge group the model we are using can be in-
terpreted as a supersymmetric quantum mechanical system of d particles
in X = R3 space.

Using the notation found in [10] we have the bosonic coordinates

q = (~q1, . . . , ~qd) = (qsA)s=1,...,d; A=1,2,3. (4.21)

Their fermionic counterparts are

γi = (γi
αβ)i=1,...,d; α,β=1,...,sd. (4.22)

Here sd is the smallest dimension of the real representation of the Clifford
algebra with d generators,

{γs, γt} = 2δst. (4.23)

The relation between sd and d is

sd =

{
2[d/2] d = 0, 1, 2 mod 8
2[d/2]+1 otherwise,

(4.24)

with [·] being the integer part only. For the dimensionalities of interest
we thus have

d sd

2 2
3 4
5 8
9 16

(4.25)

We can realize Spin(d) in the representation space through matrices R
of SO(sd), in other words,

Spin(d) ↪→ SO(sd). (4.26)

We will also need a Clifford algebra with sd generators and its irreducible
representation on C = C2sd/2

. Incorporating the three ”spatial” degrees
of freedom we then arrive at C⊗3, with the Clifford generators

(~Θ1, . . . , ~Θsd
) = (ΘαA)α=1,...,sd; A=1,2,3. (4.27)

satisfying the Clifford algebra

{ΘαA, ΘβB} = δαβδAB, (4.28)
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which, if realized explicitly, should be done so with great care (we will
do this for the d = 3 case in the appendix). The Hilbert space is thus

H = L2(X, C⊗3) (4.29)

The supercharges that will act on the Hilbert space are

Qβ = ~Θα · (−iγt
αβ

~Ot +
1

2
~qs × ~qtγ

st
βα), (4.30)

where ~Ot are simply the partial derivatives w.r.t. ~qt and with α, β =
1, . . . , sd and s, t = 1, . . . , d, and where,

γst =
1

2
(γsγt − γtγs). (4.31)

The supercharges transform as scalars under SU(2) gauge transforma-
tions that are generated by

JAB = LAB + MAB ≡ −i(qsA∂sB − qsB∂sA)− i

2
(ΘαAΘαB −ΘαBΘαA)

(4.32)
and as spinors under the Spin(d) transformations generated by

Jst = Lst + Mst ≡ −i(~qs · ~Ot − ~qt · ~Os)− i

4
~Θαγst

αβ
~Θβ, (4.33)

To obtain the Hamiltonian of the system we need to calculate the
anticommutation relations of the supercharges. Before we proceed with
this task a warning to sensitive souls and mathematicians is in order; the
following treatment will exhibit a certain laxness of index positioning.
The inherent notation1 of the various quantities involved occasionally
make it highly undesirable to be too meticulous about those lesser things
in life. It should be strongly stressed, however, that clarity in the pre-
sentation have not been sacrificed in favor of aesthetics (there are no
aesthetic expressions in this chapter). If despite this someone would find
the following calculation hard to digest, please take a look at the original
work [10] before voicing any complaints. It should also be noted that the
calculation is done for the case where d = 9.

Having thus dispensed with the amenities, we go right back to work.
Anticommuting the supercharges immediately result in the following four

1We follow the original notation used in [10].
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terms,

{Qα, Qβ} =
{

~Θγ · (−iγt
γα

~Ot), ~Θδ · (−iγp
δβ

~Op)
}

+

{
~Θγ · 1

2
~qs × ~qtγ

st
αγ,

~Θδ · 1

2
~qp × ~qqγ

pq
βδ

}

+

{
~Θγ · (−iγt

γα
~Ot), ~Θδ · 1

2
~qp × ~qqγ

pq
βδ

}

+

{
~Θγ · 1

2
~qs × ~qtγ

st
αγ, ~Θδ · (−iγp

δβ
~Op)

}

= I + II + III + IV.

Starting with the first term, we have,

I = −γt
αγγ

p
βδOtAOpB{ΘγA, ΘδB}

= − (
γ(tγs)

)
αβ

OtAOpB δAB

= −1

2
{γt, γp}αβOtAOpB δAB = −δαβ

9∑
s=1

~O2
s , (4.34)

where we have simply used the Clifford algebras of ΘαA and γs , respec-
tively.

At this juncture we should also mention the symmetry/antisymmetry
of the γ-matrices, vital properties we will use consistently throughout our
calculations,

γ(0), γ(1) symmetric

γ(2), γ(3) antisymmetric

γ(4), γ(5) symmetric

γ(6), γ(7) antisymmetric

γ(8), γ(9) symmetric

The second term becomes,

II =
1

4
γst

αγγ
pq
βδε

ABCqsBqtCεDEF qpEqqF{ΘγA, ΘδD}

= −1

4

(
γstγpq

)
(αβ)

εABCqsBqtCε EF
A qpEqqF

= −1

4

(
γstγpq

)
(αβ)

δBC
EF qsBqtCqpEqqF

= −1

4

((
γstpq

)
(αβ)

− 4δ
[s
[p(γ

t]
q])(αβ) − 2δst

[pq]δαβ

)
δBC
EF qsBqtCqpEqqF .

(4.35)
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Of the three terms above, only the last one survives. The first is zero
due to the antisymmetry in BCEF and symmetry of δ, the second due to
symmetry in αβ coupled with the antisymmetry of γ(2). To continue, we
now have

. . . = −1

4
δαβ δBC

EF (qsBqtCqtEqsF − qsBqtCqsEqtF )

= δαβ
1

2
(εABCqsBqtC)2 = δαβ

∑
s<t

(~qs × ~qt)
2. (4.36)

To proceed with III and IV we need to calculate two terms containing
derivatives. Term III is

− i

2

(
Θ A

γ Θ D
δ γt

γαγpq
βδOtAεDEF q E

p q F
q + Θ D

δ Θ A
γ γpq

βδγ
t
γαεDEF q E

p q F
q O A

t

)

= − i

2

(
Θ A

γ Θ D
δ γt

γαγpq
βδεDEF

(
δtp δAEq F

q + δtq δAF q E
p + q E

p q F
q O A

t

)

+ Θ D
δ Θ A

γ γpq
βδγ

t
γαεDEF q E

p q F
q O A

t

)
. (4.37)

In the next step we will use the simple relation

AB =
1

2
[A,B] +

1

2
{A,B}. (4.38)

Contracting indices and using the antisymmetry of εDEF we obtain,

III = − i

2

(
Θ

[E
(γ Θ

D]
δ) γt

γαγtq
βδεDEF q F

q

+ Θ
[F
(γ Θ

D]
δ) γt

γαγtq
βδεDEF q E

p

+ Θ
[A
(γΘ

D]
δ) γt

γαγpq
βδεDEF q E

p q F
q O A

t

+
1

2
γt

δαγpq
βδεDEF q E

p q F
q O D

t

+ Θ D
δ Θ A

γ γpq
βδγ

t
γαεDEF q E

p q F
q O A

t

)
, (4.39)

and a very similar result for term IV . Taking the non-Θ-terms of III
and IV together and renaming dummy indices, we get

− i

4

(
γp

δβγst
αδ + γp

δαγst
βδ

)
εABCq B

s q C
t O A

p . (4.40)

By manipulating the Dirac matrices according to,

γp
δβγst

αδ + γp
δαγst

βδ =
(
γstγp − γpγst

)
αβ

=
1

2

(
γsγtγp − γtγsγp − γpγsγt + γpγtγs

)
αβ

= 2
(
δptγs − δspγt

)
αβ

, (4.41)
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and inserting this result into (4.40) we get,

− i

2
γt

αβq A
t εABC

(
q B
s O C

s − q C
s O B

s

)
. (4.42)

Saving this for later and instead collecting the remaining terms in III
and IV containing derivatives we are faced with these two creatures,

− i

2
Θ A

γ Θ D
δ

(
γst

αγγ
p
δβ + γst

βγγ
p
δα

)
εABCq B

s q C
t OpD (4.43)

− i

2
Θ

[D
(δ Θ

A]
γ)

(
γst

αγγ
p
δβ + γst

βγγ
p
δα

)
εABCq B

s q C
t OpD. (4.44)

Again using (4.38) and cancelling some terms, we end up with

− i

4

(
γst

αδγ
p
δβ + γst

βδγ
p
δα

)
εABCq B

s q C
t O A

p

= − i

2

(
γs

αβεABCq B
s q C

t O A
t − γt

αβεABCq B
s q C

t O A
s

)

= − i

2
γt

αβq A
t εABC

(
q B
s O C

s − q C
s O B

s

)
. (4.45)

The only terms in III and IV we have not yet dealt with are those
without derivatives, namely,

−iΘ
[B
(δ Θ

A]
γ)

(
γs

δβγst
αγ + γs

δαγst
βγ

)
εABCq C

t . (4.46)

Since it is not matrix multiplication of the Dirac matrices we are forced
to Fierz the expression. We immediately note that due to symmetry
requirements and the fact that γ(5≤n≤9) is already included in γ(0≤n≤4),
the only terms that remain are those for n = 0 and n = 4,

γs
(α(γγ

st
β)δ) = a δαβγt

γδ + b γt
αβδγδ

+ c γs1...s4
αβ γs1...s4t

γδ + d γs1...s4t
αβ γs1...s4

γδ . (4.47)

By using the totally antisymmetric tensor on the last term we can trans-
form it into the c-term. We thus exclude the last term, and then contract
both sides of the equation with (γt)

βγ
. This yields,

L.H.S =
1

4

(
γt

)βγ (
γs

αγγ
st
βδ + γs

αδγ
st
βγ + γs

βγγ
st
αδ + γs

βδγ
st
αγ

)

=
1

4

((
γsγtγst

)
αδ
− (

γsγtγst
)

αδ

)
= 0. (4.48)

The contracted right-hand side of (4.47) becomes,

R.H.S = a
(
γtγt

)
αδ

+ b
(
γtγt

)
αδ

+ 5cγs1...s4
αβ γs1...s4

γδ

= 9aδαδ + 9bδαδ + 5(−6)7(−8)9cδαδ. (4.49)
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Thus we have the relation,

a + b + 1680c = 0. (4.50)

To proceed, we now contract (4.47) with δαβ, giving us

L.H.S =
1

4

(
γsγst + γsγst + γsγst + γsγst

)
= 8γt, (4.51)

and

R.H.S = 16aγt. (4.52)

Instead contracting with δγδ produces a similar relation for the b-term,
except for an additional minus sign hailing from the antisymmetry of γst.
We thus have the following:

a =
1

2
, b = −1

2
. (4.53)

Putting this result into (4.50) gives us c = 0, and we can write down the
Fierzed equation,

γs
δβγst

αγ + γs
δαγst

βγ = δαβγt
γδ − γt

αβδγδ, (4.54)

which, inserted into (4.46), becomes

−iδαβq C
t εABCΘ

[B
(δ Θ

A]
γ)γ

t
γδ + iγt

αβq C
t εABCΘ[B

γ ΘA]
γ . (4.55)

This we can rewrite as

iδαβ~qs ·
(
~Θγ × ~Θδ

)
γs

γδ −
1

2
iγt

αβq A
t

(
ΘB

γ ΘC
γ −ΘC

γ ΘB
γ

)
. (4.56)

We have now finished the calculation of the anticommutation relations
of the supercharges. Gathering the results we have,

{Qα, Qβ} = δαβH + γt
αβqtAεABCJBC , (4.57)

with the Hamiltonian being

H = −
9∑

s=1

~O2
s +

∑
s<t

(~qs × ~qt)
2 + i~qs · (~Θα × ~Θβ)γs

αβ, (4.58)

which furthermore commutes with JAB and Jst.
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4.2.2 The theorem

The question we want answered is now whether there exist a normalizable
state Ψ ∈ H, that is a singlet with respect to SU(2) and Spin(d), and
fulfills

Hψ = 0 (4.59)

i.e., have zero energy. An equivalent, but much easier route is to look for
the zero-modes,

Qβψ = 0, β = 1, . . . , sd. (4.60)

It should also be noted that the requirement of Spin(d) invariance is not
trivial. The full argument is presented in [61].

Introducing the variable r > 0, and the unit vectors ~e and Es obeying

~e 2 = 1,
∑

s

E2
s = 1, (4.61)

the bosonic potential
∑

s<t(~qs × ~qt)
2 will vanish on the manifold

~qs = r~eEs. (4.62)

The dimension of this manifold is

1︸︷︷︸ + 2︸︷︷︸ + (d− 1)︸ ︷︷ ︸ . (4.63)

r ~e Es

Furthermore, we can express points in a conical neighborhood of the
manifold by making use of tubular coordinates,

~qs = r~eEs + r−1/2~ys, (4.64)

where r−1/2 have been added not out of necessity but to simplify for us
later on. The transversal coordinates ~ys obey

~ys · ~e = 0s, ~ysEs = ~0. (4.65)

We also need to remark that ~qs is invariant under the antipode map,

(~e, E, y) −→ (−~e,−E, y). (4.66)

Therefore we will look for, and include, only those states that are even
under this transformation.

We are now ready to present the theorem describing the possible
ground state. The formulation of the theorem is taken verbatim from [10].
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Theorem 4.1 Consider the equations Qβψ = 0 for a formal power series
solution near r = ∞ of the form

ψ = r−κ

∞∑

k=0

r−
3
2
kψk, (4.67)

where : ψk = ψk(~e, E, y) is square-integrable w.r.t. de dE dy;
ψk is SU(2)× Spin(d) invariant;
ψ0 6= 0.

Then, up to linear combinations,

• d = 9: The solution is unique, and κ = 6;

• d = 5: There are three solutions with κ = −1 and one with κ = 3;

• d = 3: There are two solutions with κ = 0;

• d = 2: There are no solutions.

All solutions are even under the antipode map (4.66),

ψk(~e, E, y) = ψk(−~e,−E, y), (4.68)

except for the state d = 5, κ = 3, which is odd, and thus not a viable
ground state.

When we check whether a possible ground state is square-integrable or
not we use the integration measure

dq = dr · r2de · rd−1dE · r 1
2
·2(d−1)dy = r2dr de dE dy (4.69)

Thus, for ψ to be square integrable (at infinity)

∫ ∞
dr r2(r−κ)2 < ∞ (4.70)

must hold. This is fulfilled if κ > 3/2. Hence we can immediately remove
the solutions for d = 3, and d = 5 with κ = −1. As was already pointed
out, the solution d = 5 with κ = 3 is odd under the antipode map (4.66)
and thus cannot be a ground state. This makes d = 9 the sole survivor,
and as this case corresponds to the eleven-dimensional supermembrane,
it makes us warm all over.
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4.3 The Proof

To prove theorem 4.1 we will expand the supercharges in power series
and match these with the power series of the conjectured wave functions
(4.67). This will yield n → ∞ equations, where n = 0 corresponds
to Q0

βψ0 = 0. We then proceed by solving this initial case, and find a
solution that is not necessarily SU(2)×Spin(d) invariant. Next we check
what states are singlets of SU(2) × Spin(d) and proceed to check that
the states are even under the antipode map (4.66). We then continue
by investigating the equations for n > 0 and then finally determine the
different values of κ for the various values of d.

4.3.1 The d = 2 case

The fact that no ground state can exist for d = 2 can easily be derived
without going through the full proof. By examining Jst and showing that
no state J12 satisfying

J12ψ = 0 (4.71)

exists, it follows that no Spin(d) invariant ground state is possible for
d = 2. We start by constructing M12. For d = 2 we have sd = 2 and can
use the standard Pauli matrices, choosing

γ1 = σ1, γ2 = σ3. (4.72)

Thus yielding,

γ12 =

(
0 −1
1 0

)
. (4.73)

For M12 we now get,

M12 = − i

4
ΘαAγ12

αβΘβA =
i

4
(Θ1AΘ2A −Θ2AΘ1A)

=
i

2
Θ1AΘ2A, (4.74)

where we sum over A = 1, 2, 3. We will also need the six Clifford gener-
ators ΘαA. We construct these according to2,

Θα1 =
1√
2

(σα ⊗ 12 ⊗ σ3)

Θα2 =
1√
2

(σ3 ⊗ σα ⊗ 12)

Θα3 =
1√
2

(12 ⊗ σ3 ⊗ σα) .

2More on this scheme can be found in appendix C.
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Explicitly using these 8 × 8 matrices and forming (M12)
2 we obtain a

diagonal matrix whose elements are the squared eigenvalues of M12. The
extracted eigenvalues are 1/4 and 3/4. The final observation that need to
be done is that L12 has the spectrum Z, thus making any state fulfilling
J12ψ = 0 impossible.

4.3.2 Power series expansion of Qβ

To make a power series expansion of the supercharges Qβ we first need
to obtain the derivative

∂

∂qtA

= r1/2(δst − EsEt)(δAB − eAeB)
∂

∂ysB

+r−1

(
eAEt

(
r

∂

∂r
+

1

2
ysB

∂

∂ysB

)
+ ieBEtLBA + ieAEsLst

)

+O(r−5/2). (4.75)

To show this we need to calculate the partial derivatives contained in

∂

∂qtA

=
∂r

∂qtA

∂

∂r
+

∂eB

∂qtA

∂

∂eB

+
∂Es

∂qtA

∂

∂Es

+
∂ysB

∂qtA

∂

∂ysB

. (4.76)

From
~qs = r~eEs + r−1/2~ys (4.77)

we get

dqtA =

(
eAEt − 1

2
r−3/2ytA

)
dr + rEtdeA + reAdEt + r−1/2dytA. (4.78)

We then use the coordinate relations (4.65) and (4.61) to obtain

eAdytA + ytAdeA = 0 (4.79)

EtdytA + ytAdEt = 0 (4.80)

eAdeA = 0 (4.81)

EtdEt = 0. (4.82)

Using these relations we derive the following contractions of (4.78),

eAEtdqtA = dr, (4.83)

(δAB − eAeB)EtdqtA = rdeB − r−1/2ytBdEt, (4.84)

eA(δst − EsEt)dqtA = rdEs − r−1/2ysAdeA, (4.85)

(δAB − eAeB)(δst − EsEt)dqtA = −1

2
r−1/2(dysB + eBysAdeA

+EsytBdEt). (4.86)
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To proceed we introduce two matrices m and M :

mAB = δAB − r−3ytAytB, (4.87)

Mst = δst − r−3ysAytA. (4.88)

These matrices are then used to express the differentials deB and dEs:

deB = (m−1)BC(r−1(δCA − eCeA)Et + r−5/2ytCeA)dqtA, (4.89)

dEs = (M−1)su(r
−1(δut − EuEt)eA + r−5/2ysAEt)dqtA. (4.90)

The validity of the above statements is most easily checked by multiplying
equation (4.84) with both m and M , and then inserting the expressions
(4.87)-(4.90) and checking that the equality still holds. By expanding m
and M we rewrite the differentials as

deB = (r−1(δBA − eBeA)Et +O(r−5/2))dqtA, (4.91)

dEs = (r−1(δst − EsEt)eA +O(r−5/2))dqtA. (4.92)

We can now write down the four differentials

dr = eAEtdqtA, (4.93)

deB = (r−1(δBA − eBeA)Et +O(r−5/2))dqtA, (4.94)

dEs = (r−1(δst − EsEt)eA +O(r−5/2))dqtA, (4.95)

dysB = [r1/2(δBA − eBeA)(δst − EsEt)

+
1

2
r−1eAEtysB]dqtA − eBysAdeA − EsytBdEt, (4.96)

which makes it a simple matter to express the partial derivatives in (4.76)
as:

∂

∂qtA

= r1/2(δst − EsEt)(δAB − eAeB)
∂

∂ysB

+r−1[eAEt(r det r +
1

2
ysB

∂

∂ysB

)]

+r−1(δAC − eAeC)Et(δCB
∂

∂eB

− eBysC
∂

∂ysB

)

+r−1(δut − EuEt)eA(δus
∂

∂Es

− EsyuB
∂

∂ysB

)

+O(r−5/2), (4.97)
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where the last term does not contain any derivatives with respect to r.
By inserting this into iLBA we get

iLBA = qsB
∂

∂qsA

− qsA
∂

∂qsB

= [(δAC − eAeC)ysB − (δBC − eBeC)ysA]
∂

∂ysB

+eB(δAC
∂

∂eC

− eCysA
∂

∂ysC

)

−eA(δBC
∂

∂eC

− eCysB
∂

∂ysC

). (4.98)

This allows us to write down

ir−1eBEtLBA = r−1(δAC − eAeC)Et(δCB
∂

∂eB

− eBysC
∂

∂ysB

), (4.99)

and in analogy with this, also

ir−1eAEsLst = r−1(δut − EuEt)eA(δus
∂

∂Es

− EsyuB
∂

∂ysB

), (4.100)

which, together with (4.97) forms our sought-after derivative (4.75).
We are now armed and ready to expand Qβ,

Qβ = ~Θα · (−iγt
αβ

~Ot +
1

2
~qs × ~qtγ

st
βα)

= −iΘαAγt
αβr1/2(δst − EsEt)(δAB − eAeB)

∂

∂ysB

−iΘαAγt
αβr−1(eAEtr(

∂

∂t
+

1

2
ysB

∂

∂ysB

))

+ΘαAγt
αβr−1(eBEtLBA + eAEsLst)

+~Θα · r1/2(~e× ~yt)Esγ
st
βα

+
1

2
~Θα · r−1(~ys × ~yt)γ

st
βα +O(r−5/2). (4.101)

Next we identify the r-independent operators which we will match with
orders of r−

3n
2 ,

Q0
β = −iΘαAγt

αβ(δst − EsEt)(δAB − eAeB)
∂

∂ysB

+~Θα · (~e× ~yt)Esγ
st
βα, (4.102)

Q̂1
β = −i(~Θα · ~e)γt

αβEt, (4.103)

Q1
β = ΘαAγt

αβ(eBEtLBA + eAEsLst − i

2
eAEtysB

∂

∂ysB

)

+
1

2
~Θα(~ys × ~yt)γ

st
βα. (4.104)
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Higher order terms will not be needed explicitly. We now pair these
operators with powers of r and get the power series expansion of Qβ:

Qβ = r1/2Q0
β︸ ︷︷ ︸ + r−1(Q̂1

βr
∂

∂r
+ Q1

β)
︸ ︷︷ ︸

+ r−5/2Q2
β︸ ︷︷ ︸ + . . . . (4.105)

Q̄0
β Q̄1

β Q̄2
β

Now, before we write down the equation Qβψ = 0 in all its glory we need
to introduce an alternative notation for ψ (cf. previous definition (4.67)),

ψ =
∞∑
n

ψ̄n. (4.106)

By noting the powers of r in Q̄n
β and ψ̄n,

Q̄m
β ∼ r

1
2
− 3m

2 , (4.107)

ψ̄n ∼ r−(κ+ 3n
2

), (4.108)

we find the m-independent quantity,

Q̄m
β ψ̄n−m ∼ r−κ− 3n

2
+ 1

2 . (4.109)

Thus we can finally write down the equation Qβψ = 0,

Q0
βψn + (−(κ +

3

2
(n− 1))Q̂1

β + Q1
β)ψn−1 + Q2

βψn−2 + . . . + Qn
βψ0 = 0,

(4.110)

where n = 0, 1, . . ..

4.3.3 The equation at n = 0

For n = 0 the equation (4.110) is simply

Q0
βψ0 = 0. (4.111)

This equation admits precisely the solutions

ψ0(~e, E, y) = e−
P

s y2
s/2 |F (E,~e)〉 . (4.112)

This solution, however, is not necessarily SU(2)×Spin(d) invariant, and
imposing this condition is something we will do later. To describe the
fermionic states |F (E,~e)〉 we first introduce the two complex vectors ~n±,
satisfying

~n+ · ~n− = 1 (4.113)

~e× ~n± = ∓i~n±, (4.114)
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and thus also

~n± · ~n± = 0 (4.115)

~n+ × ~n− = −i~e. (4.116)

Explicit derivations of ~n± are done in appendix C. We now introduce
the vectors u, v ∈ Rsd and ~Θ(v) = ~Θαvα, allowing us to construct the
fermionic operators

~Θ(v) · ~n±. (4.117)

These operators satisfy the anticommutation relations,

{~Θ(u) · ~n+, ~Θ(v) · ~n−} = {uαΘαAnA
+, vβΘβBnB

−}
= uαvβnA

+nB
−δαβδAB

= uαvα(~n+ · ~n−)

= uαvα. (4.118)

By the same procedure and using (4.115) we also obtain

{~Θ(u) · ~n±, ~Θ(v) · ~n±} = 0. (4.119)

Next, we want to calculate {Q0
α, Q0

β}, and as we have already done this
calculation for the complete supercharges we only give the results,

{Q0
α, Q0

β} = δαβH0 + γt
αβEtεABCMABeC , (4.120)

where the Hamiltonian is,

H0 =

(
−(δst − EsEt)(δAB − eAeB)

∂

∂ysA

∂

∂ytB

+
∑

s

~y2
s

)

+i Esγ
s
αβ~e · (~Θα × ~Θβ) = H0

B + H0
F . (4.121)

What we now aim to do is prove that the fermionic states |F (E,~e)〉 have
to satisfy

~Θ(v) · ~n± |F (E,~e)〉 = 0, when Esγ
sv = ±v. (4.122)

In other words, we want to show that equation (4.111) implies (4.122).
To accomplish this we begin by contracting equation (4.120) with δαβ

and then with γt
αβEt we see that equation (4.111) in fact correspond to,

H0ψ0 = 0 (4.123)

εABCMABeCψ0 = 0. (4.124)
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The next step is to show that these two equations are satisfied if and only
if (4.122) holds. We begin by noting that the bosonic Hamiltonian, H0

B,
is a harmonic oscillator with 2(d − 1) degrees of freedom. Moreover, it
carries the energy 2(d−1) and as a ground state have the wave function,

ϕ0
B = e−

P
s

~y2
s
2 . (4.125)

To investigate the fermionic part of the Hamiltonian, we write

H0
F = iEsγ

s
αβ~e · (~Θα × ~Θβ) = −Esγ

s
αβ(~n+ × ~n−)(~Θα × ~Θβ)

= Esγ
s
αβ

~Θα · (~n+ × ~n−)× ~Θβ = −Esγ
s
αβ

~Θα
~Θβ × (~n+ × ~n−)

= −Esγ
s
αβ((~Θα · ~n+)(~Θβ · ~n−)− (~Θα · ~n−)(~Θβ · ~n+)). (4.126)

To proceed further we decompose Esγ
s
αβ into projection operators,

Esγ
s
αβ = P+ − P−, (4.127)

where the sd × sd matrices have half of their diagonal elements set to
unity,

P+ = diag(1, . . . , 1, 0, . . . , 0), P− = diag(0, . . . , 0, 1, . . . , 1). (4.128)

To continue we now get,

(4.126) = −P+
αβ(~Θα · ~n+)(~Θβ · ~n−) + P+

αβ(~Θα · ~n−)(~Θβ · ~n+)

+P−
αβ(~Θα · ~n+)(~Θβ · ~n−)− P−

αβ(~Θα · ~n−)(~Θβ · ~n+)

= −P+
αα + P+

αβ(~Θα · ~n−)(~Θβ · ~n+) + P+
αβ(~Θα · ~n−)(~Θβ · ~n+)

+P−
αβ(~Θα · ~n+)(~Θβ · ~n−)− P−

αα + P−
αβ(~Θα · ~n+)(~Θβ · ~n−)

= −sd + 2P+
αβ(~Θα · ~n−)(~Θβ · ~n+) + 2P−

αβ(~Θα · ~n+)(~Θβ · ~n−)

(4.129)

where we used the Clifford algebra and the structure of the projection
operators. The attentive reader immediately note from (4.25) that

sd = 2(d− 1). (4.130)

Thus will the first term in H0
F cancel the energy contribution from the

bosonic part of the Hamiltonian. Furthermore we see that the remaining
terms in H0

F kill the state |F (E,~e)〉 if the condition (4.122) holds. In
other words, H0ψ0 = 0, and we are left to show that (4.124) annihilates
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|F (E,~e)〉,

εABCMABeCψ0 = − i

2
εABC(ΘαAΘαB −ΘαBΘαA)eC

= −iεABCΘαAΘαBeC

= −i~e · (~Θα × ~Θα)

= (~n+ × ~n−) · (~Θα × ~Θα)

= (~Θα · ~n+)(~Θα · ~n−)− (~Θα · ~n−)(~Θα · ~n+), (4.131)

where we in the second to last equality used the same reasoning as in the
previous calculation for H0

F . Now using the structure of the projection
operators, we get

. . . = P+
αβ(~Θα · ~n+)(~Θα · ~n−) + P−

αβ(~Θα · ~n+)(~Θα · ~n−)

−P+
αβ(~Θα · ~n−)(~Θα · ~n+)− P+

αβ(~Θα · ~n−)(~Θα · ~n+)

= 2P−
αβ(~Θα · ~n+)(~Θα · ~n−)− 2P+

αβ(~Θα · ~n−)(~Θα · ~n+), (4.132)

where we in the last equality used the Clifford algebra. It is immediately
apparent that this expression annihilates |F (E,~e)〉.

To recapitulate, we have thus derived the form (4.112) of the solutions
to the equation Q0

βψ0 = 0, and specifically shown the conditions (4.122)
the state |F (E,~e)〉 must obey.

4.3.4 Extracting allowed states

The remaining parts of the proof will not be given in full detail. Instead
the remaining steps will be given a slightly more brief explanation. The
reader who wish to delve into the details is referred to [10].

Having obtained and described ψ0 satisfying Q0
βψ0 = 0, the next

step is to extract the states which are SU(2) × Spin(d) invariant. As
we mentioned in section 4.2.1, we have Spin(d) ↪→ SO(sd). Letting
R ∈ SO(sd) and U ∈ SU(2) there is a natural representation of SU(2)×
Spin(d) on the Hilbert space H = L2(X, C⊗3). SU(2) × Spin(d) act
naturally on X through the representation SO(3) × SO(d). In the case
of C⊗3 we have the representation R of Spin(sd) 3 R, satisfying

R(R)∗ΘαAR(R) = R̃αβΘβA, (4.133)

where R̃ = R̃(R) is its above mentioned SO(sd) representation. Using
(4.26) together with the fact that

SO(sd) = Spin(sd)/(Z)2, (4.134)
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we obtain
Spin(d) ↪→ Spin(sd). (4.135)

In other words, we have shown that R is a representation of Spin(d).
Similarly, we have the representation U of SU(2) 3 U on C⊗3,

U(U)∗ΘαAU(U) = UABΘαB. (4.136)

Now, the SU(2)× Spin(d) invariant states are those satisfying,

U(U) |F (E,~e)〉 = |F (E,U~e)〉 (4.137)

R(R) |F (E,~e)〉 = |F (RE,~e)〉 , (4.138)

where (U,R) ∈ SU(2) × Spin(d). The above states are furthermore in
bijective correspondence to the states invariant under (U,R) ∈ U(1) ×
Spin(d− 1). In other words states satisfying

U(U) |F (E,~e)〉 = |F (E,~e)〉 (4.139)

R(R) |F (E,~e)〉 = |F (E,~e)〉 , (4.140)

for some arbitrary but fixed (E,~e), and where U~e = ~e and RE = E.

After replacing ΘαA with operators ~Θα·~e which leave the space (4.122)
invariant, it turns out that this representation decomposes into

C =
(
2(sd/2)−1

)
+
⊕ (

2(sd/2)−1
)
− . (4.141)

The embedding (4.135) and the branching of the representation depend
on our choice of Dirac matrices. After a certain choice (see [10] for details)
the representation of Spin(d) branches into,

C =





(44⊕ 84)⊕ 128 , d = 9
(5⊕ 1⊕ 1⊕ 1)⊕ (4⊕ 4) , d = 5
2⊕ (1⊕ 1) , d = 3.

(4.142)

We will get additional branching for Spin(d− 1) ↪→ Spin(d),

C =





(1⊕ 8v ⊕ 35v)⊕ (28⊕ 56v)⊕ (8s ⊕ 8c ⊕ 56s ⊕ 56c) , d− 1 = 8
1⊕ 1⊕ 1⊕ (1⊕ 4)⊕ (2+ ⊕ 2−)⊕ (2+ ⊕ 2−) , d− 1 = 4
(11 ⊕ 1−1)⊕ 10 ⊕ 10 , d− 1 = 2.

(4.143)
After some further analysis we find the invariant states of interest,

and the Spin(d) representation to which they are associated,

d = 9 : 44

d = 5 : 1, 1, 1, 5

d = 3 : 1, 1
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The next step in the proof is to check that the states are even under
the antipode map (4.66). Doing so excludes only one of the states for
d = 5. After that we need to analyze the equations (4.110) for n ≥ 1.
Doing this, we obtain relations needed for the final step, determining κ.
Accomplishing this task and obtaining the values of κ presented in the
formulation of the theorem then concludes the proof.

4.4 A numerical method

An alternate approach to characterize the membrane vacuum state has
recently been proposed by Wosiek [63]. The main idea is to solve prob-
lems in supersymmetric Yang-Mills quantum mechanics in various di-
mensions by way of an algebraic program. Wosiek has managed to con-
firm many old results and also obtain some new ones, especially for the
case of D = 4 super Yang-Mills theory. The, for our purposes, more
interesting case of D = 10 (which corresponds the supermembrane in
eleven-dimensional spacetime) was investigated further in [64] with some
additional results derived in [65].

Supersymmetric Yang-Mills quantum mechanics has many features in
common with more advanced field theories and as such provides a nice
”theoretician’s laboratory” to study supersymmetry in various guises.
Beside the importance of D = 10 as a model of the supermembrane and
its connection to M-theory, this technique have been applied to SU(2)
invariant Wess-Zumino quantum mechanics and various dimensions of
supersymmetric Yang-Mills quantum mechanics.

The main theme of Wosiek’s approach is to implement the Hamilto-
nian formulation of quantum mechanics into the logical structure of a
computer. Vectors in some Hilbert space are represented by lists with
dynamically varying size. Quantum operators are then just functions of
these lists. The main computational problem is to limit the size of the
Hilbert space which of course limits the number of degrees of freedom
that can be allowed. This introduced cut-off, however, is easily mon-
itored and by increasing the cut-off one can find convergent results of
eigenvalues and thus obtain trustworthy results.

By using the discrete eigenbasis of the occupation number a†a we
have

{|n〉}, |n〉 =
1√
n!

(a†)n |0〉 . (4.144)

Furthermore, we can write the bosonic coordinate and momentum oper-
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Operation Quantum mechanics Mathematica
any state |st〉 List
sum |st1〉+ |st2〉 Add[list1, list2]
number multiply α |st1〉 Mult[α, list1]
scalar product 〈st1 | st2〉 Sc[list1, list2]
empty state |0〉 {1, {1}, {0}}
null state 0 {0, {}}
Table 4.1: Quantum operations and their computer implementation.

ators as

x =
1√
2
(a + a†) (4.145)

p =
1

i
√

2
(a− a†). (4.146)

Since typical quantum observables are functions of these two operators
they can be represented by combinations of the creation and annihila-
tion operators. The fermionic generalization is straightforward but not
reviewed here.

A quantum state is a superposition of an arbitrary number, ns, of
elementary states |n〉, i.e.,

|st〉 =
ns∑
I

aI |n(I)〉 . (4.147)

In the lingo of Mathematica this would look like

st = {ns, {a1, . . . , ans}, {n(1)}, {n(2)}, . . . , {n(ns)}}, (4.148)

which is a list with ns + 2 elements. The first element in in the list
gives the number of elementary states in the linear combination (4.147),
the next element is a sublist containing the ns (real or complex) coeffi-
cients aI , and the remaining ns elements are all sublists specifying the
occupation numbers of elementary states.

To carry out any calculations we must be able to translate quantum
mechanical operations into operations on these lists. This turns out
to be simple and intuitive, examples of which are shown in table 4.1.
Armed with such operations we can construct creation and annihilation
operators as list-valued functions. Then we can define the observables
we need: supersymmetry generators, Hamiltonians etc.

Consequently, to solve a problem we begin by defining a list corre-
sponding to the empty state, then we proceed by generating a finite basis
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of Ncut-off vectors and calculate the quantum observables we need. Next,
we let the computer execute the program, and if it is the spectrum of
the system we are interested in, we simply extract the energy eigenvalues
from the Hamiltonian matrix.

The results obtained using this method have been substantial in the
case of D = 4, which have been fully solved. Specifically, the spectrum
have been obtained with its pattern of discrete and continuous states.
The cut-off can be chosen high enough for the restrictions on the Hilbert
space to become irrelevant.

In D = 10 problems arise. The number of states and hence the com-
putational time increase rapidly as we go up in dimensions. No trustwor-
thy results have thus been obtained for the full D = 10 case. However,
various schemes have been suggested and developed to overcome this
problem. One obvious choice is to exclude the fermionic part of the cal-
culation, greatly reducing the number of states involved. By doing this
the calculation gets manageable and the lower levels of the spectrum can
be found. In the end, the full supersymmetric case is the only case of
real interest (at least for our purposes) and judging by the progress made
by Wosiek in each consecutive published paper in less than two years op-
timism seem to be in order. In addition, as computational power is a
greatly limiting factor and reading that Wosiek is using a common work-
station for his research one cannot help but wonder what results could
be obtained if he was given some time on a supercomputer.
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5
Conclusions

In our goal to examine the membrane vacuum state, we started out by
treating the bosonic membrane and investigating its symmetries, dy-
namics and quantization properties. After introducing supersymmetry
we derived the allowed p-branes and target space dimensionalities. We
investigated further the properties of the super p-brane action in the
Hamiltonian formulation and the lightcone gauge. The APD algebra
and its connection with matrix theory was analyzed and worked through
with the example of toroidal membranes.

Dimensional reduction of super Yang-Mills theory was performed and
its connection to the description of N D0-branes was commented upon.

The spectrum of both bosonic and supersymmetric membranes was
put under close scrutiny and discussed in detail.

In the main chapter we made a brief summary of the research con-
ducted so far in the search for the membrane vacuum state. We then pro-
ceeded by investigating a supersymmetric two-dimensional model with an
x2y2 potential and conclusively proved that no normalizable ground state
could exist, a question that remained unsolved for more than a decade
and was resolved only recently. We then turned to the central theme of
this thesis and treated the SU(2) × Spin(d) invariant supersymmetric
matrix model. In essence, using the first order supercharges Qβ and first
order perturbation theory to obtain a solution to

Qβψ = 0, (5.1)

where β counts the number of supercharges. We then formulated the
theorem regarding the existence and asymptotic form of the possible
ground states. For the allowed dimensions d = 2, 3, 5, 9 of the model
the power law decay of the zero-energy solutions was obtained, with the
following result:
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• d = 9 : A unique, normalizable solution.

• d = 5 : Three solutions, none of which were normalizable.

• d = 3 : Two solutions, none of which were normalizable.

• d = 2 : No solutions.

The form of the asymptotic (near r = ∞) solution we found for the case
of d = 9 was,

ψ =
∞∑

k=0

r−
3
2
k−6ψk, (5.2)

where ψk is SU(2)×Spin(d) invariant and square-integrable on surfaces
where r is constant.

The dimensionality d of the model is related to the dimensionality
D of the spacetime where the supermembrane propagates according to
D = d + 2. Thus the only normalizable solution correspond to the reg-
ulated supermembrane theory in eleven dimensions. Hence the prospect
of finding the true membrane vacuum state remain very much a possi-
bility. While work will likely continue on generalizing the SU(2) model
to arbitrary N , meanwhile exciting results could very well be obtained
from the computational methods of Wosiek, presented in chapter 4.

Having thus briefly summarized what has been done in this thesis,
some remarks about what has not been done would be in order. In
addition, some things which should have been done in greater detail
is worthy of comment. The most obvious item would be the slightly
abbreviated proof of the main theorem, a proof which certainly deserves
to be concluded with the same degree of attention it was begun with.

Another area I would have wished to pursued further is the compu-
tational methods of super Yang-Mills quantum mechanics. The method
is still in its infancy and I believe it holds great promise in supplying, if
nothing else, at least results to serve as a guide for the purely analytical
efforts being conducted.

Membrane theory is a surprisingly large field, and though having
spent a year within its boundaries there are many aspects that by neces-
sity have been left unstudied. For instance the ”spinning membrane” and
superembeddings could be argued to have a place in a thesis like this.
As would the full proof of the continuity of the quantum supermembrane
spectrum.

In the case of the SU(2) matrix model we could have examined fur-
ther the requirement that the groundstate be Spin(d) invariant, or more
thoroughly investigated the work done regarding SU(N > 2) invariant
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generalizations of the model. This would also be the obvious way to con-
tinue the work begun in this thesis. If a generalization could be found to
arbitrary N , the membrane vacuum state would be close at hand.

There have also been other attempts at constructing the membrane
ground state than those presented here worth mentioning. The main
alternative to the approach presented in this thesis is to use Witten
indices, as have been done in, e.g., [66, 67]. However, this approach can
only hope to prove the existence of a vacuum state, not construct it.

In summary, there has been done a great deal toward obtaining the
membrane vacuum state, obstacles have been overcome and there are so
far no evidence against such a state. We thus conclude this thesis by the
remark that while there is still room for much work, there is also room
for much enthusiasm.
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A
Notation and Conventions

In this appendix we try to clarify and explain some of the notation that
has been used throughout the thesis. Some quantities will be explained
thoroughly while others will simply be listed with a short explanation.

With few exceptions the calculations and results presented in this the-
sis have been done so in God-given units, i.e., the divine trinity (~, c, e) is
set to a Godly unity (= 1). We even take this reductionist scheme a little
further by dropping constants such as the membrane tension from most
expressions. The reasons for this, however, is related more to laziness
than any religious leanings.

A.1 General conventions

• We make use of the so-called ”East Coast” metric,

ηµν =




−1
1

. . .

1


 . (A.1)

• For brevity we will sometimes use the Feynman slash,

/Ei = γµEµi. (A.2)

• The adjoint spinor θ̄ is, as usual,

θ̄ = θ†γ0. (A.3)
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Since we limit ourselves to the case where θ is real Γ0 is nothing
but the conjugation matrix C, and thus we have

θ̄ = θT C. (A.4)

• The conjugation matrix acts as a kind of metric for spinors, e.g.,

θα = Cαβθβ, Cαβ = −Cβα (A.5)

θα = θβCβα, CαβCβγ = δα
γ . (A.6)

It should be noted, however, that the conjugation matrix is sym-
metric in chapter 4, where we are dealing with Euclidean space.

• The totally antisymmetric tensor εijk obey

ε012 = 1. (A.7)

• The Dirac gamma matrices is used extensively in this thesis and is
worthy of a more lengthy explanation. When having worked a while
with the matrices in various applications one is bound to notice the
remarkable similarities between γ-matrices and girls, which is where
the notation ”γ” originates from. At first, both seem harmless and
strangely attractive, in the next stage their hidden complexity is
revealed and fills you with self-doubt. By patience (and trial-and-
error) the final stage can be reached, in which one fully understand
them and realize the many applications and plain fun involved.

Dirac matrices are generators to the Clifford algebra and satisfy
the anticommutation relations,

{γµ, γν} = 2ηµν . (A.8)

Continuing the gamma/girl analogy it should be stressed that, just
as two girls never commute1, neither do different γ-matrices.

We also use a shorthand notation for the antisymmetrized product
of Dirac matrices,

γµ1µ2...µn = γ[µ1γµ2 . . . γµn]. (A.9)

For instance, we have,

γµν =
1

2
(γµγν − γνγµ) , (A.10)

γµνρ =
1

6
(γµγνγρ + 5 terms) . (A.11)

1Unless perhaps if they are twins.
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Furthermore, Chapter 2 and 3 lives in Minkowskian spacetime with
(
γ(0)

)
αβ

antisymmetric

(γµ)αβ , (γµν)αβ symmetric

(γµνρ)αβ

(
γµνρδ

)
αβ

antisymmetric,

while chapter 4 inhabit Euclidean space with
(
γ(0)

)
αβ

, (γµ)αβ symmetric

(γµν)αβ , (γµνρ)αβ antisymmetric.

Also, in chapter 4 we need Dirac matrices in various dimensions, in
which case [68] is a good reference and details a recursive scheme
to construct Dirac matrices in arbitrary dimension.

A.2 List of quantities

Here we list quantities used throughout the thesis. In the cases where no-
tation changes or is specific to a certain section it will be clearly noted.
The quantities will be listed according to which chapter they first ap-
peared. To avoid unnecessary repetition in the later chapters we only
list quantities that have not yet appeared. Where deemed necessary a
reference to a proper definition is given in parenthesis.

• Chapter 2

2.1 The bosonic membrane

p : Dimension of brane

D : Dimension of spacetime

ηµν : Flat Minkowski metric

ξi : Worldvolume coordinates

τ, σ1, σ2 : Worldvolume coordinates; ξ0, ξ1, ξ2

Xµ : Embedding fields

gij : Induced metric on the worldvolume

g : Determinant of gij

Eµ
i : Vielbein

T : Membrane tension

Pµ : Conjugate momenta
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Ẋµ, X ′µ, X̄µ : Shorthand for various derivatives, see (2.10)

φi : Primary constraints for the membrane

{·, ·} : Poisson brackets

X̂µ, P̂ µ, φ̂i : Operator form of canonical variables and constraints

X± : Lightcone coordinates
~X, Xa : Transverse coordinates

ḡ, ur, g00 : Components of the induced metric in the lightcone gauge
~P , P+ : Canonical momenta conjugate to ~X and X−

φr : Primary constraint in the Hamiltonian formalism

wrs : Spatial metric on membrane

w : Determinant of wrs

P+
0 : Membrane momentum in the X− direction

~P0, P
−
0 : Center of mass momenta

M : Membrane mass
~X0 : Zero mode

[ · ]′ : Exclusion of the zero mode

Exceptions:
2.1.5 Area preserving diffeomorphisms

{·, ·} : Lie bracket (2.59)

2.2 Supersymmetry

Q,Q† : Supercharges

{·, ·} : Anticommutator

R : Curvature (coefficient in Einstein-Hilbert term)

θα : Fermionic coordinates

ZM : Superspace coordinates

NB : Number of bosonic degrees of freedom

NF : Number of fermionic degrees of freedom

M : Number of minimal spinor components

N : Number of supersymmetries

Eµ
i : Supervielbein

Γµν : Dirac matrices
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Γ : Matrix defined in (2.89)

θ̄ : Adjoint spinor (A.4)

/Ei : Feynman-slashed supervielbein (A.2)

J i : Supercurrents

ΠA
i : Pullback (2.97)

E A
M : Supervielbein (2.98)

H : Curved superspace 4-form

B : The potential of H (2.100)

• Chapter 3

Γ± : Lightcone gamma matrices

χ : Primary constraint

θ0 : Fermionic zero mode

T : Kinetic energy

V : Potential energy

YA : Orthonormal set of basis functions

ηAB : Metric w.r.t. Y C
A

f C
AB : Structure constants

U,W : ’t-Hooft clock and shift matrices

F µν : Field strength

Ψ : 16-component Majorana-Weyl spinor

Aµ : A U(N) hermitian gauge field

Dµ : Covariant derivative

gY M : Yang-Mills coupling constant

Zq : Quantum partition function

Zcl : Classical partition function

ψt : Toy model wave function

χ : Smooth function with compact support

ϕ : Oscillator wave function

ξF : Spinor part of toy model wave function
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ε : Arbitrarily small but positive parameter

Ep,mp : Energy and mass of the Planck scale

R : Radius of circle closed strings wrap around

p : Kaluza-klein modes

• Chapter 4

κ : Exponent in wave function expansion

Ψ : The ground state wave function in toy model

g, f : Polynomial solutions to (4.17) and (4.18)

X : Three-dimensional Euclidean space

q : Bosonic coordinates (4.21)

γi : Fermionic coordinates (4.22)

sd : Dimension the representation of the Clifford algebra

d : Dimension of the ground state model

C : Representation space, see section 4.2.1

ΘαA : Clifford generators (4.27)

s, t : indices; 1, . . . , d

α, β : indices; 1, . . . , sd

H : Hilbert space

~Ot : Derivative w.r.t. ~qt

JAB, LAB,MAB : Transformation generators defined in (4.32)

Jst, Lst,Mst : Transformation generators defined in (4.33)

~e : SO(3) unit vector

Es : SO(d− 1) unit vector

r : Introduced length variable (strictly positive)

~ys : Transversal coordinates

ψ : The ground state wave function

ψn : The nth term in the asymptotic expansion of Ψ

|F (E,~e)〉 : Fermionic states of the ground state wave function

~n± : Complex vectors

H0 : Hamiltonian obtained from Q0.

H0
B, H0

F : Bosonic and fermionic parts of H0
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u, v : Vectors in Rsd

ϕ0
B : Ground state of H0

B

P+, P− : Projection operators

U,R : Group elements

U ,R : Representations of Spin(sd) and SU(2), respectively

4.4 A numerical method

D : Dimension of the super Yang-Mills theory

{·} : (Computer) lists

a†, a : Creation and annihilation operators

|n〉 : Elementary states

x : Bosonic coordinate operator

p : Momentum operator

ns : Number of superposed elementary states

|st〉 : Arbitrary quantum state
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B
Proof of κ-symmetry

For a long time the hypothesized supermembrane was in dire straits;
without κ-symmetry equation (2.79) has no solution for the p = 2 case.
It was thus of crucial importance when Hughes, Liu and Polchinski in
1986 generalized the κ-symmetry of strings to include membranes as
well [3].

In this appendix we prove that the supermembrane action is invariant
under κ-symmetry, by and large following chapter 4 of [69]. In contrast
to the bulk of this thesis we will present the calculations made here in
great detail.

B.1 Preliminaries

In this appendix we will need an easy and logical way to distinguish
between curved and flat space as well as between vectors and spinors.
Thus we change our previous notation in favor of

A,B, C, . . . flat super indices

{
a, b, c, . . . flat vector
α, β, γ, . . . flat spinor

(B.1)

M,N, P, . . . curved super indices

{
m, n, p, . . . curved vector
µ, ν, ρ, . . . curved spinor

(B.2)

Hence our superspace coordinates become

ZM(ξ) = (Xm, θµ)(ξ). (B.3)

Furthermore we define the pullback

ΠA
i = (∂iZ

M)E A
M , (B.4)

85



86 Chapter B Proof of κ-symmetry

where E A
M is the supervielbein. Moreover, we have the 3-form

B =
1

3!
EAEBECBCBA, (B.5)

with,
EA = dZME A

M , (B.6)

where B is the potential to the 4-form H,

H = dB. (B.7)

The supermembrane action in eleven-dimensional supergravity is now

S =

∫
d3ξ

(
−1

2

√−ggijΠa
i Π

b
jηab +

1

2

√−g − 1

3!
εijkΠA

i ΠB
j ΠC

k BCBA

)
.

(B.8)
The κ-symmetry is then defined as

(δκZ
M)Ea

M = 0 (B.9)

(δκZ
M)Eα

M = (1 + Γ)α
βκβ = κ̃α, (B.10)

with κβ(ξ) an anticommuting spacetime spinor and Γ, as usual,

Γ ≡ εijk

6
√−g

Πa
i Π

b
jΠ

c
kΓabc. (B.11)

Furthermore we use the ”1.5 formulation”, with the equation of motion
for gij being

gij = Πa
i Π

b
jηab. (B.12)

B.2 The proof

Before we prove that the above action is invariant under κ-symmetry we
want to check that (1 + Γ) in B.10 is indeed a projection operator. This
amounts to checking that Γ2 = 1. We start by noting that

Γ2 = − 1

36g
εijkΠa

i Π
b
jΠ

c
kεlmnΠl

dΠ
m
e Πn

fΓabcΓ
def

= − 1

36g
εijkΠa

i Π
b
jΠ

c
kεlmnΠl

dΠ
m
e Πn

f ×
(
Γ def

abc + 9δ
[d

[a Γ
ef ]

bc] − 18δ
[de

[ab Γ
f ]
c] − 6δdef

[abc]

)
. (B.13)

To proceed we now rid ourselves of the first term by invoking the antisym-
metry in the indices of Γ and the symmetry in the remaining expression
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(specifically that εijkεlmn = 6δijk
[lmn], and δ is symmetric). To continue the

above we now have,

. . . = − 9

36g
εijkΠ

[a
i Πb

jΠ
c]
k εlmnΠl

[aΠ
m
e Πn

f ]Γ
ef

bc

+
18

36g
εijkΠ

[a
i Πb

jΠ
c]
k εlmnΠl

[aΠ
m
b Πn

f ]Γ
f

c

+
6

36g
εijkΠ

[a
i Πb

jΠ
c]
k εlmnΠl

[aΠ
m
b Πn

c]

=
6

36g
εijkεijk =

6

36
εijkεijk = 1, (B.14)

where we in the second equality have used the same symmetry arguments
as earlier and the simple fact that

Πa
i Π

l
a = δi

l . (B.15)

In the third equality we have used that

εijk = gεijk, (B.16)

which we easily derive from the following expression of g,

g = detgαβ =
1

3!
εijkεlmngilgjmgkn. (B.17)

We have thus convinced ourselves that Γ2 = 1 and move on to check
that the action (B.8) is κ-symmetric. This is a rather lengthy enterprise,
so we choose to split our burden into two terms according to,

δκS =

∫
d3ξ

(
−1

2

√−ggij(δκΠ
a
i )Π

b
jηab

︸ ︷︷ ︸
− δκ(

1

3!
εijkΠA

i ΠB
j ΠC

k BCBA)
︸ ︷︷ ︸

)
.

term I term II (B.18)

We begin by calculating

δκΠ
A
i = (∂iδκZ

M)E A
M + ∂iZ

M(δκE
A

M )

= ∂iκ̃
A − (δκZ

M)∂iE
A

M + ∂iZ
M(δκE

A
M ), (B.19)

where we immediately note that ∂iκ̃
A = 0 as we are dealing with the

bosonic case only (κ̃a = 0). We continue the above and get

. . . = −(δκZ
M)∂iE

A
M + ∂iZ

MδκZ
N∂NE A

M

= −κ̃M∂iE
A

M + ∂iZ
M κ̃N∂NE A

M

= −κ̃MΠN
i ∂NE A

M + ∂iZ
M κ̃N∂NE A

M

= −κ̃M∂iZ
N∂NE A

M + ∂iZ
M κ̃N∂NE A

M

= 2∂iZ
M κ̃N∂[NEA

M}
= 2ΠB

i E M
B κ̃N∂[NEA

M}. (B.20)
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To proceed we introduce the spin connection,

Ω B
A = dZMΩ B

MA , (B.21)

where Ω B
A belong to the Lie algebra ˜SO(1, 10), which is not a superal-

gebra. Ergo, vectors and spinors don’t mix:

Ω β
a = Ω b

α = 0. (B.22)

We also need the covariant derivative,

D = d + Ω, (B.23)

which, if acting on a tensor becomes,

DTA = dTA + TB ∧ Ω A
B (B.24)

DTA = dTA − Ω B
A ∧ TB. (B.25)

We will also need the torsion,

TA = DEA = dEA + EB ∧ Ω A
B . (B.26)

We can now derive two different expressions for TA,

TA =
1

2
dZM1dZM2T A

M2M1
(B.27)

TA = DEA = dZM1∂M1dZ
M2E A

M2

+dZM1E B
M1

dZM2Ω A
M2B , (B.28)

where the factor 1/2 is by convention. Putting these two expressions
equal we obtain

∂[M2E
A

M1} =
1

2
T A

M2M1
+ (−)BM2E B

[M2
Ω A

M1}B , (B.29)

where we have introduced the notation (−)E, with the exponent E = 0
for a bosonic index and E = 1 for a fermionic index. Using (B.29) we
get

δκΠ
A
i = ΠB

i E M
B κ̃NT A

NM︸ ︷︷ ︸ + 2(−)BNΠ C
i E M

C κ̃NE B
[N Ω A

M}B︸ ︷︷ ︸ . (B.30)

term III term IV

Using the relation

T A
NM = (−)N(M+C)E C

M E B
N T A

BC (B.31)
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in term III, we get

III = (−)N(M+C)ΠD
i E M

D κ̃NE C
M E B

N T A
BC

= ΠC
i κ̃βT A

βC . (B.32)

To calculate IV we remind ourselves that A = a and get

IV = −(−)N(B+M)ΠC
i E M

C κ̃NE B
M Ω a

NB

= −Πc
i κ̃

NΩ a
Nc , (B.33)

which, if inserted back into I, vanish due to the antisymmetry of a and
c in Ω a

Nc and symmetry in the remaining expression. Thus we are left
with

I = −√−ggijΠC
i Πa

j κ̃
βTβCa. (B.34)

This can be further simplified by using the renormalization found in [69],

TβCa = 2i(Γa)βC , (B.35)

and the fact that C = γ yields the only non-zero contribution (we reach
this conclusion by dimensional arguments, see [69] for details). We thus
arrive at

I = −2i
√−ggijΠγ

i Π
a
j κ̃

β(Γa)βγ. (B.36)

The next step is to calculate the term

κ̃β(Γd)βγ = (1 + Γ)β
ακα(Γd)βγ

=

(
1 +

εijk

6
√−g

Πa
i Π

b
jΠ

c
kΓabc

)β

α

κα(Γd)βγ. (B.37)

This term we divide into terms proportional to Γ(n), and we draw the
conclusion that we cannot have a term proportional to Γ(4) (the world-
volume is three dimensional, hence antisymmetry in four worldvolume
indices is not possible). We are left with two terms;

εijk

6
√−g

Πa
i Π

b
jΠ

c
k(3ηadΓbcκ)γ (B.38)

and
(κΓd)γ. (B.39)

This result lets us write down the final expression for term I,

I = −2i
√−gglmΠγ

l Π
d
m

(
εijk

2
√−g

Πa
i Π

b
jΠ

c
kηadΓbcκ + κΓd

)

γ

= −2i
√−gΠγ

l

(
εljk

2
√−g

Πb
jΠ

c
kΓbcκ + glmΠd

mκΓd

)

γ

. (B.40)
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To calculate term II we need to use some topological arguments (see,
e.g., [70]). We note that the κ-variation of term III (a 3-form) can be
alternatively expressed as a Lie derivative, i.e.,

δκB̂ = LκB̂ ≡ (diκ + iκd)B̂ = diκB̂ + iκĤ, (B.41)

where iκ is the interior derivative and the hat denotes pullback. The first
term is a total derivative and the second is

iκĤ =
1

3!
d3ξ εijkΠA

i ΠB
j ΠC

k κ̃γHγCBA. (B.42)

From this result we get,

II =
1

3!
εijkΠA

i ΠB
j ΠC

k κ̃γHγCBA. (B.43)

From the constraints of eleven-dimensional supergravity (again, see [69])
H reduces to one term only, and we are left with

II =
3 · 2i
3!

εijkΠa
i Π

b
jΠ

δ
kκ̃

γ(Γba)γδ. (B.44)

Inserting the full expressions for κ̃ and Γ we end up with three terms; V,
VI and VII,

V = iεijkΠa
i Π

b
jΠ

δ
kκ

γ(Γba)γδ, (B.45)

Terms VI and VII both arise from keeping terms proportional to Γ(3) and
Γ(1), respectively, of the remaining term,

i

6
√−g

εijkεlmnΠa
i Π

b
jΠ

δ
kΠ

d
l Π

e
mΠf

n(ΓbaΓdefκ)δ. (B.46)

We note that

ΓbaΓdef = Γba
def + 6Γ

[b
[efδ

a]
d] − 6Γ[fδ

ba
de]. (B.47)

Consequently, term VI becomes,

V I =
i√−g

εijkεlmnΠa
i Π

b
jΠ

δ
kΠ

d
l Π

e
mΠf

n(ηadΓbefκ)δ

=
i√−g

εijkεlmngilΠ
b
jΠ

δ
kΠ

d
l Π

e
mΠf

n(ηadΓbefκ)δ

=
i√−g

(gjngkm − gjmgkn)Πb
jΠ

δ
kΠ

d
l Π

e
mΠf

n(ηadΓbefκ)δ

= 0, (B.48)
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where we in the last equality used the standard symmetry arguments. In
the penultimate equality we used the relation

εijkεlmngkl = gingjm − gimgjn. (B.49)

Keeping terms proportional to Γ(1) gives us,

V II = − i√−g
εijkεlmnΠaiΠbjΠ

δ
kΠ

d
l Π

e
mΠf

n(Γfδ
ba
deκ)δ

= − i√−g
εijkεlmngimgjlΠ

δ
kΠ

f
n(Γfκ)δ

= −2i
√−ggknΠδ

kΠ
f
n(Γfκ)δ, (B.50)

where we in the second equality used the equations of motion (B.12) and
in the last equality used the relation

2ggil = 2
1

3!
εijkεlmngilgjmgkng

il

= εijkεlmngjmgkn. (B.51)

And now, finally, by collecting the relevant terms we find that I − II =
0, i.e.,the κ-variation of the action is zero.
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C
Some explicit calculations in the

d = 3 case

To aid our understanding of the SU(2) ground state theorem we will make
some explicit calculations for the case where d = 3 (and thus sd = 4).

For the d = 3 case we have the Clifford generators

(ΘαA)α=1,2,3,4; A=1,2,3 , (C.1)

defined on C = C4⊗3 and satisfying

{ΘαA, ΘβB} = δαβδAB. (C.2)

To realize this algebra we call upon the Pauli sigma matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (C.3)

These are then used to construct the Dirac gamma matrices,

γ1 = σ1 ⊗ 12 =

(
0 12

12 0

)

γ2 = iσ2 ⊗ σ1 =

(
0 σ1

σ1 0

)

γ3 = iσ2 ⊗ iσ2 =

(
0 iσ2

−iσ2 0

)

γ4 = iσ2 ⊗ σ3 =

(
0 σ3

−σ3 0

)

γ5 = σ3 ⊗ 12 =

(
12 0
0 −12

)
,
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which we note are all real and anticommute. These matrices now pave
the way for the ΘαA-matrices,

Θα1 =
1√
2

(γα ⊗ 14 ⊗ γ5)

Θα2 =
1√
2

(γ5 ⊗ γα ⊗ 14)

Θα3 =
1√
2

(14 ⊗ γ5 ⊗ γα) ,

which are real 64× 64 matrices and realize the (C.2) algebra.
To describe the fermionic states |F (E,~e)〉 we form the two complex

vectors ~n±, satisfying

~n+ · ~n− = 1 (C.4)

~e× ~n± = ∓i~n±, (C.5)

and hence also

~n± · ~n± = 0 (C.6)

~n+ × ~n− = −i~e. (C.7)

To write down the explicit forms of ~n± we need an expression for the
vector ~e. To make it simple for us we set ~e = (1, 0, 0) (we can perform
arbitrary rotations of this vector afterwards). We then make the ansatz,

~n+ = (0, r(cos ρ + i sin ρ), r(− sin ρ + i cos ρ)) (C.8)

~n− =

(
0,

1

2r
(cos ρ− i sin ρ),−r

1

2r
(sin ρ + i cos ρ)

)
, (C.9)

and proceed by checking the relations (C.4)-(C.7):

~n+ · ~n− =
1

2
(cos2 ρ + sin2 ρ + cos2 ρ + sin2 ρ) = 1 (C.10)

~e× ~n+ = (0, r(− sin ρ− i cos ρ), r(cos ρ + i sin ρ)) = −i~n+ (C.11)

~e× ~n− = (0,
1

2r
(sin ρ + i cos ρ),

1

2r
(cos ρ− i sin ρ)) = i~n− (C.12)

~n+ · ~n+ = r2(cos2 ρ− sin2 ρ + 2i sin ρ cos ρ

+ sin2 ρ− cos2 ρ− 2i sin ρ cos ρ) = 0 (C.13)

~n− · ~n− =
1

4r2
(cos2 ρ− sin2 ρ− 2i sin ρ cos ρ

+ sin2 ρ− cos2 ρ + 2i sin ρ cos ρ) = 0 (C.14)

~n+ × ~n− = (−1

2
(cos ρ sin ρ + i cos2 +i sin2 ρ− sin ρ cos ρ

− sin ρ cos ρ + i sin2 ρ + i cos2 ρ + cos ρ sin ρ, 0, 0)

= (−i, 0, 0) = −i~e. (C.15)
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In the spirit of explicitness, we write down specific forms of the unit
vectors ~e and E for the case of d = 9, compliments of [55],

~e =




sin θ cos φ
sin θ sin φ

cos θ


 , (C.16)

and

E =




sin ε8 sin ε7 . . . sin ε2 sin ε1

sin ε8 sin ε7 . . . sin ε2 cos ε1

sin ε8 sin ε7 . . . cos ε2
...

sin ε8 cos ε7

cos ε8




. (C.17)
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