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We numerically study the effect of short-ranged potential disorder on massless noninteracting three-
dimensional Dirac and Weyl fermions, with a focus on the question of the proposed (and extensively
theoretically studied) quantum critical point separating semimetal and diffusive-metal phases. We
determine the properties of the eigenstates of the disordered Dirac Hamiltonian (H) and exactly calculate
the density of states (DOS) near zero energy, using a combination of Lanczos on H2 and the kernel
polynomial method on H. We establish the existence of two distinct types of low-energy eigenstates
contributing to the disordered density of states in the weak-disorder semimetal regime. These are (i) typical
eigenstates that are well described by linearly dispersing perturbatively dressed Dirac states and
(ii) nonperturbative rare eigenstates that are weakly dispersive and quasilocalized in the real-space
regions with the largest (and rarest) local random potential. Using twisted boundary conditions, we are able
to systematically find and study these two (essentially independent) types of eigenstates. We find that the
Dirac states contribute low-energy peaks in the finite-size DOS that arise from the clean eigenstates which
shift and broaden in the presence of disorder. On the other hand, we establish that the rare quasilocalized
eigenstates contribute a nonzero background DOS which is only weakly energy dependent near zero energy
and is exponentially small at weak disorder. We also find that the expected semimetal to diffusive-metal
quantum critical point is converted to an avoided quantum criticality that is “rounded out” by
nonperturbative effects, with no signs of any singular behavior in the DOS at the energy of the clean
Dirac point. However, the crossover effects of the avoided (or hidden) criticality manifest themselves in a
so-called quantum critical fan region away from the Dirac energy. We discuss the implications of our results
for disordered Dirac and Weyl semimetals, and reconcile the large body of existing numerical work
showing quantum criticality with the existence of these nonperturbative effects.
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I. INTRODUCTION

Recently, there has been an intense experimental effort
to find gapless semiconductors that host isolated points in
momentum space with linearly touching valence and
conduction bands. This thrust has been fueled by the
exciting possibility of studying massless three-dimensional
Dirac (for Kramers degenerate bands) and Weyl (for non-
Kramers degenerate bands) fermions in solid-state systems.
(The fact that the two-dimensional version of a Dirac-Weyl
system already exists in the form of graphene has obviously
been a great impetus in this search for three-dimensional
Dirac-Weyl materials.) This has led to establishing three-
dimensional Dirac semimetals in the compounds Cd3As2

(Refs. [1–3]), Na3Bi (Refs. [4,5]), Bi1−xSbx (Refs. [6–8]),
BiTlðS1−δSeδÞ2 (Refs. [9,10]), ðBi1−xInxÞ2Se3
(Refs. [11,12]), and Pb1−xSnxTe (Refs. [13–15]). Even
more recently, the existence of Weyl semimetals [16–18]
in TaAs (Refs. [19,20]) and NbAs (Ref. [21]) has been
established. This low-energy description is also applicable
to various other physical systems that host gapless Dirac or
Weyl points such as the pyrochlore iridates [16] and the
Bogoliubov quasiparticle properties of nodal superconduc-
tors. With the experimental discovery of such a large
number of Dirac-Weyl materials (and the great deal of
interest and excitement surrounding them), as established
by their electronic band structures through photoemission
spectroscopy (i.e., linearly touching conduction and
valence bands), one of the immediate important questions
is how robust this noninteracting clean system is to the
presence of interaction and disorder, physical effects
invariably present in real solid-state materials. Here, we
study the fundamental effects of static potential disorder on
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noninteracting Dirac-Weyl systems. (We note that, typi-
cally, these materials are considered to be weakly interact-
ing because of the strong screening provided by the large
background lattice dielectric constant in the systems.)
Because of the invariable presence of disorder in all

solid-state materials, there has been a substantial amount
of theoretical activity studying the effect of disorder on
noninteracting Dirac and Weyl fermions [22–39]. Focusing
on the undoped (i.e., Fermi energy at E ¼ 0) Dirac point
(i.e., the band touching point), the quadratically vanishing
density of states at zero energy [ρðEÞ ∼ E2] associated with
the linear three-dimensional energy band dispersion places
these problems in a different class than that of a conven-
tional metal with a parabolic energy dispersion and a
nonzero Fermi energy. In a standard metal, the nonzero
density of states at the Fermi level gives a finite mean-free
path at leading order in a random potential. (We note that a
regular metal is different from a Dirac-Weyl system even in
the hypothetical limit of a vanishing Fermi energy since
there is an energy gap between conduction and valence
bands for the regular metal whereas a Dirac-Weyl system is
gapless—i.e., a regular metal simply becomes an ordinary
gapped semiconductor in the zero Fermi energy limit,
whereas the gapless Dirac-Weyl system is a nontrivial
semimetal for zero Fermi energy.) For the Dirac problem of
interest here, from a scaling analysis of the action, it is
straightforward to see the perturbative irrelevance in three
dimensions of disorder for massless Dirac and Weyl
fermions [22]. Thus, the semimetal (SM) phase could be
stable up to some nonzero critical disorder strength, with a
disorder-driven itinerant quantum-critical point (QCP) into
a so-called diffusive metal (DM) phase at higher disorder.
(We mention here, for completeness, that in two dimen-
sions, e.g., graphene, disorder is perturbatively relevant,
and thus infinitesimal disorder immediately converts
undoped graphene from being a semimetal in the clean
limit into a diffusive metal—thus, two is the perturbative
lower critical dimensionality for the disordered Dirac-Weyl
problem.) The natural question that now arises with respect
to the disordered three-dimensional Dirac-Weyl systems
is whether the perturbative robustness of the semimetallic
phase to disorder applies generally or is simply a
perturbative result (perhaps to all orders in the perturba-
tion theory), not valid in the nonperturbative theory. The
goal of the current work is to settle this question
definitively. Although the disordered Dirac-Weyl systems
have been theoretically studied very extensively in the
literature [22–39], essentially all of this work, except for a
very recent one (Ref. [27]), study the properties of the
disorder-driven SM-DM quantum phase transition, taking
it for granted that such a disorder-induced QCP indeed
exists in three dimensions following the predictions of the
perturbative field theory. Our current work reconciles the
huge body of QCP theoretical work in the literature with
the existence of nonperturbative or rare-region effects

which lead to the “suppression” or “avoidance” of such a
SM-DM QCP.
It is known that nonperturbative effects of rare regions

may give rise to a nonzero (albeit exponentially small)
density of states at zero energy for an infinitesimal strength
of disorder [27,40], thus converting the ballistic excitations
in a weakly disordered SM to diffusive in the low-energy
limit, which thus results in the absence of a strict SM
phase (with vanishing zero-energy DOS). It is not uncom-
mon for disorder to fundamentally change the nature of
clean critical points (e.g., the Harris criterion [41] says this
happens when the clean correlation length exponent
ν < 2=d), while the Chayes-Chayes-Fisher-Spencer
(CCFS) [42] inequality for the exact correlation length
exponent of the disordered system (ν ≥ 2=d) applies to
critical points that occur in the presence of quenched
randomness. Interestingly, the one-loop perturbative
renormalization group (RG) calculations of the critical
exponents for the proposed SM to DM QCP are consistent
with the CCFS inequality (since ν ¼ 1, Refs. [22,23]) as, in
fact, are the two-loop RG calculations [26,39] and all
numerical estimates in the literature [24,25,32,33,35,36];
therefore, it is not a priori obvious that rare region effects
should change the universality of this transition. Given the
field theoretic RG analyses and the large body of direct
numerical studies of the disorder-driven SM-DM QCP,
finding the various critical exponents and identifying the
critical coupling, as well as the apparent consistency
between the theoretical (and numerical) correlation expo-
nent with the CCFS inequality, it seems reasonable to
assume that the rare regions arising out of nonperturbative
disorder effects do not change the nature of the QCP in any
substantial manner. In this work, we explore the fate of this
SM-DM QCP using specialized numerical techniques that
allow for the direct study of these rare region effects. Our
work definitively establishes that the putative SM-DMQCP
becomes avoided or hidden because of the rare region
effects, although the crossover effects of the avoided QCP
show up in the numerical results. This is thus consistent
with all the earlier numerical work finding an apparent
existence of the QCP, which, we now argue, strictly
speaking, does not exist when examined to the lowest
energies. Our work leads to the important conclusion
that there is no disorder-driven SM-DM QCP in three-
dimensional Dirac-Weyl systems, only an avoided QCP,
and the Dirac point develops nonzero (albeit exponentially
small) DOS even for weak disorder.
To put the problem into context, we first review the

existing evidence for the disorder-driven SM to DMQCP in
undoped Dirac-Weyl systems. The seminal work of Fradkin
[22] established the existence of this disorder-driven
(perturbatively accessible) QCP. More recently, the proper-
ties of this proposed QCP have been calculated in a
renormalization-group treatment of the problem [23],
which has now been extended to two loops [26,39]. The
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field theory of the QCP can be constructed in terms of an
interacting “Q4 theory” (similar to a ϕ4 theory for magnet-
ism but now Q is the replicated matrix field) strongly
coupled to massless Dirac fermions [33], while for the
Weyl case due to topological considerations, a separate
field theory has been derived [29,38]. Tuning the clean
model away from the Dirac or Weyl limit by varying the
power law of the dispersion relation [30,31], this transition
has been shown to occur even in some one-dimensional
models [34] (akin to a long-range Ising model). Thus, the
existence of the putative SM-DM QCP seems to be well
established from a field-theoretic perspective.
Because of the noninteracting nature of the problem,

various numerical techniques, which can reach rather large
system sizes, have been used to study the properties of this
QCP. A main focus has been the direct calculation of the
low-energy DOS ρðEÞ since the DOS is expected to be
singular at E ¼ 0 at the transition. Moreover, the DOS can
be related to the critical exponents via the scaling hypoth-
esis [24]. Following this, the dynamic exponent z and the
correlation length exponent ν have now been numerically
estimated for several models using the directly numerically
calculated DOS [24,33–36]. In addition to the DOS, the
conductivity has also been studied across this transition
[25,30,35,37] and has led to estimates of z and ν for a single
Weyl cone [32], which are consistent with the exponents
obtained from DOS calculations. In all of these numerical
calculations, the CCFS inequality ν ≥ 2=d is well satisfied.
It is important to mention that totally independent from this
SM to DM transition, at a much larger disorder strength, the
Anderson localization transition has been established in
some of these models [28,35]. The current work is entirely
in the low-disorder regime (where the SM-DM–avoided
QCP resides) and has nothing to do with the high-disorder
Anderson localization transition from a DM phase to an
Anderson insulator phase [28], which occurs at roughly
Wl=t ¼ 3.75 for the model under consideration with
Gaussian disorder (see the Appendix).
Despite all of this evidence for a stable SM phase and a

SM-DMQCP in the presence of disorder, the effects of rare
regions call their existence into doubt (and also raise the
important and relevant question of why the extensive
previous numerical work on the problem always indicates
the existence of such a SM-DM QCP). As shown in
Ref. [27] through a Lifshitz tail [43] type analysis for
the DOS [44], rare quasilocalized eigenstates (“rare
regions”) will contribute an exponentially small (in dis-
order strength) DOS at zero energy, thus making the
lowest-energy excitations diffusive for arbitrarily weak
disorder. Therefore, in the strictest sense, there cannot be
a disorder-driven SM-DM QCP in this problem since
“both” phases must have nonzero DOS at zero energy,
although the rare region-induced DOS, being exponentially
small, may very well be extremely difficult to discern (or
more precisely, the SM-DM transition cannot have a DOS

with zero energy in one phase and nonzero in the other
phase as one of its features). These rare eigenstates in the
Dirac-Weyl case are distinct from traditional Lifshitz-tail
states in a band gap (e.g., of a regular semiconductor), as
they are only quasilocalized (in contrast to the exponential
nature of the disorder-induced Lifshitz-band-tail states in
the semiconductor band gap), with the eigenfunctions
falling off at short distances as a power law ∼1=r2 of
the distance r from the local extremes of the random
potential, and presumably being extended and weakly
diffusive at much longer length scales. However, none of
the previous numerical studies on the SM-DM QCP has
ever observed any signs of these “elusive” rare eigenstates,
apart from possibly a large conductance tail in the data
of Ref. [32], whose relation to rare events has not been
made clear (and which may very well be a finite-size
effect because finite-size systems always have finite con-
ductance). Overall, the numerical data in recent papers
seem consistent with the existence of a disorder-driven
SM-DMQCP, with a notable agreement between analytical
and numerical calculations of the dynamic exponent
zð≈1.5within error barsÞ.
In this paper, focusing on a particular lattice model of

Dirac (and time-reversal symmetric Weyl) fermions in the
presence of short-range potential disorder, we address these
issues (i.e., both the QCP and rare regions on the same
footing) by first finding the rare eigenstates in the SM
regime and then exploring the behavior of the model in the
vicinity of the SM-DM–avoided QCP. We choose a
relatively simple model that has been shown [28,33] to
exhibit a sharp SM to DM transition (or crossover), without
the additional complications of mass terms. Using (sepa-
rately) Lanczos [45,46] and the kernel polynomial method
(KPM) [47], we provide definitive numerical evidence for
the existence of two distinct types of low-jEj eigenstates
in the three-dimensional undoped (i.e., Fermi level at the
band touching point taken to be zero energy) Dirac-Weyl
systems for weak disorder strengths. Focusing first on the
distribution of the first few low-jEj eigenstates, we show for
weak disorder that the DOS is well described by “Dirac
peaks” (the clean eigenstates that have moved and broad-
ened in energy because of disorder) and an orders-of-
magnitude smaller (i.e., rarer) “background” that fills in
between these finite-size Dirac peaks, giving a nonzero
contribution to ρðE ¼ 0Þ. We are able to systematically
establish that the eigenstates that make up the peaks are
perturbatively dressed Dirac eigenstates, and the smaller
background DOS comes from quasilocalized rare eigen-
states. As we show, the peak eigenstates are well described
by perturbation theory and are Dirac plane waves weakly
distorted by the random disorder potential; they disperse
linearly from E ¼ 0. The rare eigenstates are quasilocalized
(i.e., the wave functions fall off algebraically rather than
exponentially) and thus weakly dispersive. Our numerical
results indicate that these rare eigenstates arising from
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disorder (with no clean system analogs) are power-law
localized like ∼1=rx at short distances r from the site or
cluster with the largest disorder strength with the power law
x in the range 1.5–2.0, in excellent agreement with the
analytic prediction (∼1=r2) [27].
We estimate the zero-energy DOS from the background

rare-region contribution using Lanczos and the KPM
separately, finding good agreement between the two
methods. Our reason for using two completely independent
numerical methods in identifying and quantifying rare-
region contributions to the DOS is to ensure the accuracy
and consistency of our results, given the significance of our
findings. Over a range of about 4 orders of magnitude in
the DOS, it satisfies the rare region form ρðE¼0Þ∼
expð−a=W2Þ well, whereW is the amplitude of the random
potential. As the disorder strength W increases, eventually
there is a crossover to the avoided quantum-critical (AQC)
regime, where there is no longer a clear separation of the
eigenstates between dispersive Dirac states and quasilo-
calized rare resonances, as the magnitudes of the DOS
contributions from the dressed Dirac states and the rare
regions start overlapping. In this crossover AQC regime,
the DOS far enough away from E ¼ 0 does show a
quantum-critical form ρðEÞ ∼ jEjðd=zÞ−1 with a z ≅ 1.5
(Ref. [33]), but this scaling behavior is cut off at lower
energies. Thus, we conclude that for the model under
consideration (and other models with similar symmetry
considerations), the SM-DM QCP is converted by non-
perturbative effects into an avoided QCP, although the
crossover effects of the AQCP manifest themselves at
nonzero energies in spite of the QCP itself being sup-
pressed. Our results, taken together with previous work, are
consistent with a QCP that is “hidden” by effects that are
nonperturbative in the disorder. But a quantum critical
regime still exists over a range of nonzero energies, where
the rare-region correction to quantum critical scaling is
small and the nonzero energy behavior of the avoided QCP
can therefore manifest itself. The actual size of this cross-
over region in the energy or disorder space depends
crucially on the nonuniversal details of the problem. In
other words, the nonzero value of ρðE ¼ 0Þ due to the rare
eigenstates cuts off the divergence of the correlation length
at some length scale ξRR; thus, for length scales ξ < ξRR,
and over the corresponding energy scales, the model
looks critical. This is why the previous numerical studies
[24,28,32–36] observed an “apparent” SM-DM QCP. Our
work thus not only establishes the nonexistence of the
disorder-driven SM-DMQCP at the Dirac point due to rare-
region effects but also reconciles the large body of existing
numerical work, finding the existence of such a QCP by
showing that the QCP becomes avoided at some large-
enough length scale (i.e., the correlation length never
diverges in the thermodynamic limit), whereas at length
scales smaller than this rare-region-induced cutoff length
scale, the observed behavior is consistent with a QCP.

Figure 1 gives an overview of the behavior: At weak
disorder in theSMregime [e.g.,W ¼ 0.4t,where t is theusual
nearest-neighbor kinetic hopping amplitude as in Eq. (1)], the
DOS is close to the expectedρðEÞ ∼ E2. But actually there is a
very small nonzero DOS at E ¼ 0 that cannot be seen on this
linear plot. In the avoided quantum-critical regime near
W ¼ 0.75t, over a significant range of jEj, the DOS is closer
to the expected QC behavior of ρðEÞ ∼ jEj, although this
singularity is always rounded out near E ¼ 0 because of the
rare-region-induced contribution which cuts off the quantum
criticality. We are able to quantify how rounded out the
singularity is by fitting the low-energy DOS to an analytic
form. Then, in the DM regime at even larger values ofW, the
nonzero ρðE ¼ 0Þ becomes large.
The numerical work presented here establishes three

distinct aspects of the disordered Dirac spectra: (1) Well
below the putative SM-DM transition in the weak-disorder
regime, there is a nonzero DOS at zero energy; (2) this
nonzero DOS arises from the rare regions and is not due to
dispersive Dirac quasiparticles, and it obeys the expected
rare-region phenomenology (power-law quasilocalized
eigenstates, and exponentially small DOS); (3) this con-
verts the phase transition into an avoided QCP, which
still exhibits a quantum-critical regime, but at the lowest
energies and the longest length scales, it becomes an
apparently nonsingular crossover between the diffusive
metal regime and the regime of a semimetal with these
rare quasilocalized eigenstates.

II. MODEL AND METHODS

We study the effect of potential disorder on massless
three-dimensional Dirac fermions on a simple cubic lattice
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FIG. 1. DOS ρðEÞ versus energy E for systems of linear size
L ¼ 71 at KPM expansion order NC ¼ 2048 averaged over
twisted boundary conditions. We used 1000 disorder realizations
for each value W of the disorder. As W approaches the avoided
transition atW ≈ 0.75t, the DOS sharpens up, approaching ρðEÞ ∼
jEj over some range of jEj. Although ρð0Þ is nonzero at all values
ofW, this only becomes apparent on this linear scale forW > 0.6t,
where Ref. [33] estimated the location of the QCP to be.
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in the presence of twisted periodic boundary conditions.
We consider the following Dirac Hamiltonian (introduced
in Refs. [28,33]),

HD ¼
X

r;μ¼x;y;z

�
1

2
itμψ

†
rαμψ rþμ̂ þ H:c:

�
þ
X

r

~VðrÞψ†
rψ r;

ð1Þ

where ψ r is a four-component Dirac spinor and the αμ are
the Dirac operators. We work in the Dirac representation

αμ ¼
�

0 σμ

σμ 0

�
; ð2Þ

where σμ denotes the Pauli operators. The clean dispersion

relation is E0ðkÞ ¼ �t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

μ sinðkμÞ2
q

for tx ¼ ty ¼ tz ¼ t,

and the model has eight Dirac points at kD ¼ fð0; 0; 0Þ;
ðπ; 0; 0Þ; ð0; π; 0Þ; ð0; 0; πÞ; ðπ; π; 0Þ; ðπ; 0; πÞ; ð0; π; πÞ;
ðπ; π; πÞg. The model has both time-reversal symmetry and
a continuous axial symmetry [28,33].
In order to get only one of the two degenerate eigen-

values associated with the conservation of axial charge, we
construct a two-component model defined as

HW ¼
X

r;μ¼x;y;z

�
1

2
itμχ

†
rσμχrþμ̂ þ H:c:

�
þ
X

r

~VðrÞχ†rχr;

ð3Þ

where χr is a two-component Pauli spinor, the σμ are the
Pauli operators, there is now only a degeneracy due to time-
reversal symmetry, and the model represents a Weyl
Hamiltonian. In the following, we will only work with
HW and, from this point on, refer to it asH. We can remove
time-reversal symmetry by putting twisted boundary con-
ditions on our samples of size L × L × L, so tμ ¼
t expðiθμ=LÞ with −π < θμ < π. Then, there are generally
no degeneracies in a finite-size system, and the effect of the
random potential at first order in perturbation theory is to
simply rigidly move the energies of all these plane-wave
eigenstates by the average value of the random potential,
which is of order L−3=2. To remove this leading-order finite-
size effect, we shift the random potential to always have
mean zero: The unshifted random potential VðrÞ at each
site is chosen independently from a Gaussian distribution
with zero mean and standard deviation W. We use ~VðrÞ to
denote the shifted random potential with mean zero:
~VðrÞ ¼ VðrÞ − V0 with

P
rVðrÞ=L3 ¼ V0. We always

use energy units with t ¼ 1.
The clean system with W ¼ 0 has a spectrum that

consists of discrete levels in any finite-size system. Once
we then average over the random potential at nonzeroW in
the semimetal regime, these discrete Dirac energy levels

each give a broadened peak in the DOS. We want to
minimize this broadening as much as possible in order
to be able to see the rare quasilocalized eigenstates at low
energies in between these Dirac peaks. This is the moti-
vation for shifting the random potential to always have zero
average; see Fig. 2. This does not change the system at all
in the limit of large L, but it changes the finite-size effects
on the disorder-averaged DOS, making it easier to clearly
see the rare region contributions in spite of their small
values.
One of the main results of this paper is to directly detect

the nonzero DOS at zero energy for weak disorder in
the semimetal regime, arising from rare quasilocalized
eigenstates. To do this, we use twisted boundary conditions
such that in the clean system (W ¼ 0), the DOS of a finite
system does indeed strictly vanish at E ¼ 0. Standard
periodic boundary conditions for this system unfortunately
put Dirac states right at E ¼ 0, thus obscuring this question.
Introducing disorder broadens these disorder-averaged
Dirac peaks, but for standard periodic boundary conditions,
the peak remains centered at zero energy, as shown in
Fig. 3(a). This connection of a clean Dirac state to its
weakly disordered counterpart is made concrete in Sec. III,
where we firmly establish that each eigenstate in the
peak does represent a (perturbatively dressed) dispersive
Dirac state. We can push all of the Dirac states away from
zero energy by using twisted boundary conditions [see
Fig. 3(b)], which is achieved by tμ ¼ t expðiθμ=LÞ and
using periodic boundary conditions. For example, consider
a twist of θ ¼ ðπ=4; 0; 0Þ as in Fig. 3(b); this pushes the
lowest-energy eigenstates out to E ¼ �tj sinðπ=4LÞj (for
W ¼ 0), with no state closer to E ¼ 0.
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FIG. 2. The distribution of the absolute value of the lowest-
energy eigenvalue, i.e., ρlowðjEjÞ, in the absence and presence of a
shift of the random potential, computed from Lanczos on H2 for
L ¼ 55, W ¼ 0.3t, 10000 disorder realizations, and a twist
θ ¼ ðπ=3; 0; 0Þ. Shifting the random potential dramatically
sharpens the width of the distribution of the lowest-energy
eigenvalue and has thus suppressed the leading finite-size effect.
The twist puts this peak at a nonzero energy; see Fig. 3.
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For the Lanczos calculations that follow, we consider
odd L and use a twist of θ ¼ ðθx; 0; 0Þ, usually with
0 < θx < π=2. This is enough to lift the degeneracy of
the eigenstates with the four lowest jEj. Focusing on
nondegenerate states is preferable for Lanczos calculations
since it has difficulties with degenerate eigenvalues. When
we want to push all of the Dirac states as far away from
zero energy as possible, we use a twist of θ ¼ ðπ; π; πÞwith
even L, which places the lowest-energy eigenstates at
�t

ffiffiffi
3

p jsinðπ=LÞj; we find this to be helpful when we use
the KPM to estimate the rare eigenstate contribution to the
zero-energy DOS. Finally, when we want to estimate ρðEÞ
while minimizing the finite-size effects at all E, we use

KPM and average over all possible twisted boundary
conditions, as in Fig. 1.
We study the low-energy eigenstates of H using the

Lanczos method and the KPM separately. The Lanczos
method provides accurate estimates of eigenstates and
eigenenergies provided the spectrum has no near degener-
acies. Therefore, we focus on the two-component model,
usually with odd L and a twist θx ¼ π=3. We cannot use the
Lanczos method at the largest disorder strengths because of
the spectrum becoming too dense near zero energy, so
Lanczos misses states because of the near degeneracies. In
the semimetal regime, the four lowest-energy Dirac states
for this twist and odd L are at energies near�E0 and�2E0,
where E0 ∼ 1=L depends on both L and W. Even though
disorder breaks the particle-hole symmetry ðE → −EÞ, for
weak disorder it is only weakly broken, and the Lanczos
method on H2 combines states at the (approximately) same
jEj into the same peak in ρðjEjÞ, as shown in Fig. 4. In order
to space out these eigenvalues, we also do the Lanczos
method on fH − ½E0ðW;LÞ=4�g2. This puts the first four
states near jH − ðE0=4Þj ¼ 3E0=4; 5E0=4; 7E0=4; 9E0=4,
effectively separating the peaks for each Dirac state,
provided the width of each peak is not too broad.
Focusing on Nu eigenstates from Lanczos, the

low-energy average DOS can be computed from their
distribution,

ρlowðjEjÞ ¼
1

NRL3

XNR

r

XNu

i¼1

δ(E − jEiðrÞj) ð4Þ

for NR disorder realizations, where EiðrÞ is the ith
eigenvalue of the rth disorder realization. We often get
the Nu ¼ 4 lowest states. A few comments about the
definition of ρlowðjEjÞ are in order: First, this definition
implies that the DOS is normalized as the number of states
per volume per dE, and therefore, it will have the same
meaning as the full DOS for a particular energy E. The
(full) average DOS is defined as

ρðEÞ ¼ 1

NRL3

XNR

r

XD

i¼1

δ(E − EiðrÞ); ð5Þ

where D ¼ 2L3 is the total number of states for the two-
component model. Second, the low-energy DOS in Eq. (3)
is only an accurate estimate of the full DOS for energies
jEj ≤ E�

Nu
, where E�

Nu
¼ minfrgjENu

ðrÞj, i.e., the minimum
value of the largest (Nu) eigenvalue Lanczos has computed.
As a result, whenever we show ρlow, we also plot vertical
dashed lines to mark E�

Nu
ðW;LÞ (apart from Fig. 2 where

this is not an issue because of the very weak disorder). For
jEj > E�

Nu
, Lanczos begins to miss some energy eigenval-

ues, and this low-energy estimate of the DOS will be
depleted relative to the full ρðEÞ. Lastly, since Lanczos has
individual eigenvalue resolution (as opposed to the KPM),
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FIG. 3. Disorder-averaged density of states computed from the
KPM for W ¼ 0.1t as a function of LE using the shifted random
potential ~VðrÞ (a) without a twist and (b) with a twist of
θx ¼ π=4. The Dirac states that exist in the clean limit are
broadened by the disorder but remain well separated. Without a
twist, there is a Dirac peak at E ¼ 0. Applying a twist splits this
peak and pushes it away from zero energy, so there are no states
near E ¼ 0. We have checked that in between the peaks, there are
no states, and the flat background seen here is solely an artifact of
the KPM. We have also checked (not shown) that this KPM
background is independent of NC, provided NC is not too small.
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we bin the results to generate a smoother estimate of
the DOS.
For the KPM calculations presented in Sec. IV, we

consider twisted boundary conditions with θ ¼ ðπ; π; πÞ.
The technical details of the KPM can be found in Ref. [47].
KPM essentially trades off computing eigenvalues of H for
directly computing ρðEÞ via an expansion in terms of
Chebyshev polynomials to an order NC, and it uses a kernel
to filter out Gibbs’s oscillations due to truncating the
expansion. (Avoiding direct diagonalization to calculate
the eigenenergies allows the KPM to go to very large
system sizes to directly compute the DOS, which would be
inconceivable within an exact diagonalization.) Here, we
use the Jackson kernel [47], which amounts to replacing the

delta function in Eq. (5) with a normalized Gaussian with a
standard deviation σ ¼ π=NC [in units of the bandwidth
∼2ð ffiffiffi

3
p

tþWÞ] so that the DOS over the full bandwidth
remains normalized to

R
ρðEÞdE ¼ (total number of states

per volume). In the calculations that follow, we are using
NC ¼ 1024 unless otherwise stated. When we average over
samples, we use the same energy grid for all samples. In
order to effectively use the KPM to study the rare-region
contribution to the DOS, we find it essential to consider two
issues: First, because of this artificial broadening, using the
twisted boundary conditions to push the Dirac peaks as far
away from zero energy as possible is helpful so that they do
not contaminate the estimate of ρðE ¼ 0Þ. Second, even if
there is a strictly zero DOS at a particular energy E, the
KPM will give a nonzero number for ρðEÞ and will thus
give an artificial background to the KPM DOS; for
example, see Fig. 3. As a result of this artificial back-
ground, even in the presence of the twist, we find that the
KPM cannot accurately determine ρð0Þ for the smallest W
of interest. Therefore, we can use the Lanczos to obtain
ρð0Þ for weak disorder and the KPM for large disorder,
whereas for intermediate disorder strengths, we find that
the estimates from the two methods do match consistently,
which is an important numerical check for our results.

III. EIGENSTATES OF H

In this section, we study the nature of the eigenstates of
H. As we discuss below, in the semimetal regime at weak
disorder, we find two qualitatively distinct types of eigen-
states that give separate contributions to the DOS for finite
samples. In this regime, we find that the DOS can be
separated into “peaks” and a background that lies in
between the peaks. This separation is useful as it will
allow us to study the eigenstates that make up each
contribution separately. This is shown clearly in Fig. 4
for L ¼ 25 and 10 000 disorder realizations using Lanczos
onH2 for the first four lowest-energy eigenstates. Note that
H2 puts the Dirac peaks that are at the (approximately)
same value of jEj on top of each other, so in this figure the
four states at E ≅ �E0;�2E0 produce two peaks.
For very weak disorder, we see the two expected Dirac

peaks with a background DOS developing between the
peaks. For larger disorder strengths in the semimetal
regime, the Dirac peaks remain, and in addition, we find
that the background is detected all the way down to zero
energy. We expect that the low-energy tail is orders of
magnitude too small for W=t ¼ 0.30 and 0.40 to be
observed for these system sizes and this number of disorder
realizations, but it is still actually present at any nonzeroW.
We find this background DOS is an increasing function of
jEj. For still larger disorder in the AQC regime, the
distinction between “peaks” and background is eventually
lost. For these larger disorder strengths, we expect that
the excitations are all diffusive, and there are no longer
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FIG. 4. Density of states computed from Lanczos on H2 for the
first four eigenstates, for system size L ¼ 25, twist θx ¼ π=3 for
(a) weak disorder and (b) for moderate disorder. The vertical
dashed lines mark E�

Nu
ðW;LÞ (see main text). The two-

component nature of the DOS, consisting of Dirac peaks and
a smooth “background,” is clear over an intermediate range of
disorder W in the semimetal regime. The background DOS
extending down to zero energy is detected for W ≥ 0.5t. As W
increases, the Dirac peaks broaden, and eventually the clear
distinction between peaks and background is lost at larger W in
the avoided quantum-critical regime.
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well-defined dispersive Dirac excitations; this occurs where
the Dirac peaks are no longer visible ðW ≅ 0.7tÞ. For lower
disorder strengths, the low-energy background DOS rep-
resents quite rare eigenstates; e.g., for W ¼ 0.5t, the
magnitude of the DOS at the peak versus the low-energy
(rare-region) background is separated by almost 4 orders of
magnitude. This explains why earlier numerical work
invariably failed to find any rare-region-induced back-
ground DOS, thus concluding (erroneously) that the system
remains a semimetal with zero DOS at E ¼ 0 up to the
critical disorder strength.
Previous numerical studies of the SM-DM transition

[24,28,33–36] used periodic boundary conditions and even
L, which produces a very strong finite-size effect on the
zero-energy DOS in the semimetal. In the current model
with Dirac points occurring at momenta commensurate
with the lattice, even L and periodic boundary conditions
place the lowest-energy eigenstates into the Dirac-peak
centered around E ¼ 0. In models where the Dirac or Weyl
cone is located at momentum incommensurate with the
lattice, this is not the case. However, without carefully
choosing L or using a twist, Dirac or Weyl states will
inevitably come sufficiently close to zero energy, producing
a strong finite-size effect at E ¼ 0 (this is straightforward to
see from our results since it is essentially equivalent to
considering a small twist in our current model). By pushing
the Dirac states away from zero energy, we have now
allowed the background DOS at zero energy to be visible in
the semimetal regime. In the remainder of this section, we
study the two different types of eigenstates separately,
i.e., the rare eigenstates that contribute to the low-energy
background DOS and the typical Dirac states that make up
the peaks in the DOS. In the next section, we estimate the
background contribution to the zero energy DOS.

A. Rare eigenstates

In Ref. [27], the theory of rare quasilocalized eigenstates
in three-dimensional Dirac systems has been derived from a
Lifshitz-tail-type formalism with the essential idea that the
rare-region effects in the Dirac-Weyl gapless systems are
basically like the resonant versions of Lifshitz tail states,
which reside in energy band gaps. It was found that the
eigenstate that corresponds to a rare event, i.e., a disorder
configuration that has either a site or a small group of sites
that has a very large disorder strength, is a quasilocalized
resonance that decays from the site rmax with maximal
disorder in a power-law fashion like ψðrÞ ∼ 1=r2 for
r=L ≪ 1 and r≡ jr − rmaxj more than one lattice spacing.
It is important to stress that the existence of these rare
eigenstates of H is nonperturbative in the disorder strength,
and hence, it is outside the scope of the perturbative-field
theoretic analysis of the SM-DM QCP discussed in the
literature.
We now study the properties of eigenstates in a particular

rare-disorder realization that gives rise to states in the

background DOS. In this subsection, we focus on a sample
of size L ¼ 25 and a disorder strength W ¼ 0.5t. By
varying the twist θx in the x direction, we can determine
the dispersion of an eigenstate in the “mini” Brillioun zone
for momentum −π=2 < θx < 3π=2. Focusing on the lowest
four eigenstates of H2, we determine the sign of each
eigenvalue of H from its corresponding eigenvector and
construct the dispersion of these four eigenstates in both
positive and negative energies, as shown in Fig. 5. There
are two weakly dispersive and thus quasilocalized states
and two dispersive Dirac states, and these states hybridize
near avoided level crossings. The states come in pairs with
opposite spin. For twist θx ¼ 0 and π, the system has time-
reversal symmetry and thus degenerate Kramers doublets.
In this sample, the rare states have a small negative energy,
but among samples with such states, the energy is smoothly
distributed through zero energy, resulting in a nonzero
contribution to the zero-energy density of states.
Now that we have determined how this rare state

disperses, we turn to the magnitude of the wave function
ψðrÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jψaðrÞj2 þ jψbðrÞj2
p

, where a and b label the two
spinor components for the lowest-jEj eigenstate with a twist
that makes the state the most weakly dispersing, i.e., at
θx ¼ π=2. For plotting purposes, we show

P
zjψðx; y; zÞj2,

which clearly shows a (quasi)localized wave function; see
Fig. 6. We find the location in real space where two
neighboring sites have a large disorder strength Vi ∼ 3W at
the same location rmax, where the wave function’s magni-
tude is maximal. The probability of this disorder configu-
ration is quite rare, relative to the probability of a typical
configuration (Vi ∼W); it occurs with a probability
∼ expð−9Þ, and therefore, this is indeed a rare eigenstate.
We define the decay of the wave function from its

maximal value by computing ψðrÞ≡ ψðjr − rmaxjÞ (for
jrμ − rμmaxj < L=2, respecting the periodic boundary con-
ditions). In Fig. 7(a), we show the scatter plot of the decay
of the wave function from its maximal value, which
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FIG. 5. The dispersion of the four lowest-jEj eigenstates in the
mini-zone for L ¼ 25 and W ¼ 0.5t for a sample that shows two
quasilocalized eigenstates.
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indicates a power-law trend in the data. We then discretize
the r axis into bins and average the value of ψðrÞ=ψðrmaxÞ
in each bin, which yields ψbinðrÞ as shown in Fig. 7(b) for
W ¼ 0.5t. To demonstrate the sample-to-sample variations,
we also show ψbinðrÞ for W ¼ 0.6t in Fig. 8 for two
different disorder realizations that give rise to distinct
quasilocalized eigenstates. We now reach one of our main
results, where over a range of r, we find the (binned) rare
wave-function decays like

ψRðrÞ ∼
1

rx
; ð6Þ

with a power-law exponent x that varies realization to
realization of disorder in the range 1.5–2.0, which is in
excellent agreement (within numerical accuracy) with the
analytic prediction of ψðrÞ ∼ 1=r2 in Ref. [27].
It is interesting to contrast these eigenstates with states in

the Lifshitz tail of the DOS in the presence of a band gap.
The latter are exponentially localized [48] at a site with a
very large disorder and contribute an exponential tail to
the DOS near the band edge [43]. Here, there is no band
gap, and as a consequence, these rare eigenstates are only
power-law bound on these short length scales, and it is in
this sense that they are only quasilocalized. Intuitively,
these rare states “pull” some spectral weight out of the
Dirac bands and can place that weight at arbitrarily low
energy, thus contributing to a background DOS that
remains nonzero through E ¼ 0. Thus, the rare regions
destroy the simple distinction between the SM phase (with
zero DOS at zero energy) and the DM phase (with nonzero
DOS at zero energy) as the DOS is always nonzero albeit
very small for weak disorder. The system is unstable to any
disorder, which immediately produces a nonzero DOS at
zero energy.
For increasing disorder strengths that remain in the SM

regime, the probability to generate more then one rare

region increases, which makes it increasingly likely to
find multiple quasilocalized power-law states in a single
wave function per sample. Again focusing on an eigenstate
that contributes to the low-energy background DOS for
W ¼ 0.66t, in Fig. 9 we show

P
zjψðx; y; zÞj2, which

clearly reveals the existence of a biquasilocalized wave
function. Since each wave function falls off (roughly) as
1=r2 from the sites (r1 and r2), the overlap of these two
quasilocalized peaks produces a nonzero tunneling matrix
element that goes as tRRðr1 − r2Þ ∼ 1=jr1 − r2j2. Therefore,
it is natural to expect that this tunneling will produce a
diffusive metal where the conductance is mediated by
hopping between these rare regions of large probability
amplitude [27]. We do expect that such wave functions are
also generated at much weaker disorder; however, their

FIG. 6. Projected probability density
P

zjψðx; y; zÞj2 versus x
and y for a weakly dispersing rare state with L ¼ 25, W ¼ 0.5t,
and a twist θx ¼ π=2. Note the system has periodic boundary
conditions [with tx ¼ t expðiθx=LÞ], and we set the lattice
spacing to unity.
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FIG. 7. Decay of the wave function for a weakly dispersing rare
state from its maximal value with L ¼ 25, W ¼ 0.5t, and a twist
θx ¼ π=2. (a) Scatter plot of the wave function as a function of r,
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dashed line is the fit to a power-law form.
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probability is so small that they are essentially never found
in these sample sizes.

B. Perturbatively dressed Dirac eigenstates

We now consider the eigenstates that make up the low-
energy Dirac peaks in the DOS. ForW ¼ 0.3t and L ¼ 25,
by varying the twist, we again determine how the four
lowest-jEj states disperse in the mini-zone for a typical
sample. As shown in Fig. 10, we find that the states
disperse linearly, just as they do in the absence of the
random potential. The only visible effects of the random
potential are a small renormalization of the Fermi velocity
that we discuss below and weakly avoided level crossings
at θx ¼ �π=2, where the resulting eigenstates are standing

waves. The probability density in one of these standing-
wave eigenstates is shown in Fig. 11. Here, we can see that
the eigenstate is very regular, with only weak “noise,” due
to the perturbatively irrelevant disorder.
We now focus on the quantitative properties of the

lowest-jEj Dirac peak at twist θx ¼ π=3 and their depend-
ence on W and L (see Appendix A for the perturbative
analysis, which is consistent with our numerical results
for states in the Dirac peaks). By restricting the random
potential to have sum zero, we have eliminated the first-
order-in-W perturbative effect. At order W2, there is level
repulsion from all other momenta, which is dominated by
the many states that are far away in energy since the DOS is
so small at low jEj. The net effect of all this level repulsion
is to reduce the Fermi velocity at orderW2 because positive
(negative) energy states have stronger repulsion from the
other positive (negative) energy states since they are closer
in energy, and thus the mean energy is pushed down (up) by
the level repulsion. This is illustrated in Fig. 12(a), where
we see a ∼W2 suppression of the energy fits well over most
of the semimetal regime. The random component of the
level repulsion gives the sample-averaged Dirac peaks a
line width ∼W2=L2 for small W [see Fig. 12(b) for the
full-width-at-half-maximum (FWHM) Γ versus W]. Here,
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FIG. 8. Decay of the binned and averaged wave function from
its maximal value for two different disorder samples that produce
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FIG. 9. Projected probability density
P

zjψðx; y; zÞj2 versus x
and y for a biquasilocalized rare state in the low-energy tail
of the DOS with L ¼ 25, W ¼ 0.66t, and a twist θx ¼ 0.325π.
Note the system has periodic boundary conditions [with
tx ¼ t expðiθx=LÞ], and we have set the lattice spacing to unity.
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FIG. 10. The dispersion of four Dirac eigenstates in the mini-
zone for L ¼ 25 and W ¼ 0.3t.

FIG. 11. Projected probability distribution
P

zjψðx; y; zÞj2 for a
linearly dispersing Dirac eigenstate for L ¼ 25, W ¼ 0.3t, and a
twist θx ¼ π=2.
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we find that the dependence on W fits this quadratic
behavior only for quite small W, and the line width
increases faster than ∼W2 throughout most of the SM
regime.
We now turn to the system-size dependence of the jEj

peaks. For the linearly dispersing Dirac excitations, we find
that each peak’s energy follows the leading 1=L depend-
ence inherited from its clean limit behavior, as shown in
Fig. 13(a), with an exponent x from E ∼ 1=Lx that varies
from 0.995 to 1.010 [see the inset of Fig. 13(a)]. We find
this behavior clearly up to a disorder strength of about
W ∼ 0.62t (not shown), beyond which cleanly identifying
the energy of the peak above the (relatively) large

background is no longer possible. We have also checked
that this holds for the second peak as well, up toW ∼ 0.62t
(not shown). The FWHM Γ of the first peak is shown in
Fig. 13(b), which is well described by the perturbative
result Γ ∼ 1=L2 only for very weak disorder strengths
W ≤ 0.1t, which is consistent with where Γ deviates from
the perturbative expectation (∼W2) as in Fig. 12(b). For
W > 0.1t, we find a systematic decrease of the exponent x
in Γ ∼ 1=Lx.
Thus, we have shown that in the semimetallic regime,

most properties of the eigenstates that make up the low-
energy Dirac peaks in the DOS are well described by
treating the Dirac eigenstates perturbatively in the disorder
strength. These Dirac peaks in the spectrum survive up to a
disorder strength W ≈ 0.6t. The one property that is not
well captured perturbatively is the dependence of the width
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determined from Lanczos with a twist θx ¼ π=3. (a) The energy
of the first Dirac peak from H2 in Fig. 4 versus W. The dashed
line is a fit to E1ðWÞ ¼ E1ð0Þ − aW2, with a the only fit
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the perturbative form bW2 with fit parameter b. We find that the fit
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more strongly than quadratically in W for larger disorder
strengths.
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of the Dirac peaks on W, which grows faster than ∼W2 in
most of the SM regime.
For larger disorder strengths, the model enters the

avoided quantum critical regime, with a substantially
nonzero ρð0Þ, and there is no longer a clear distinction
between the peak and the background contributions to the
DOS. In this regime, the rare eigenstates (that make up the
background) are no longer rare at all and become typical
eigenstates, as the background fills in between the peaks. It
is both compelling and consistent that in our microscopic
study of these Dirac peaks, we find that they are no longer
clearly part of the excitation spectrum for disorder strengths
W > 0.62t, where the earlier KPM study using periodic
boundary conditions on this model found the diffusive
metal regime. Thus, the SM-DM crossover behavior
survives the existence of the rare regions, although the
SM-DM QCP itself is destroyed by the rare regions.

IV. DENSITY OF STATES

We are now in a position to estimate the rare eigenstate
contribution to the zero-energy background DOS. It is

important to emphasize that this is in contrast to the
estimate of the Dirac peaks’ contribution to ρð0Þ in
Refs. [28,33]. We first discuss our results for Lanczos
on ½H − E0ðW;LÞ=4�2 with a twist θx ¼ π=3 and 10000
disorder realizations for each value of W and L. We then
move onto the results using the KPM on H with a twist of
θ ¼ ðπ; π; πÞ and 1000 disorder realizations.
The estimates of the low-energy density of states from

Lanczos on ðH − E0=4Þ2 are shown in Fig. 14 for disorder
strengths W=t ¼ 0.50, 0.54, 0.58, which are all in the
semimetal regime. We find that the background contribu-
tion to the DOS develops an L-independent low-energy tail,
which is one of our main results. Therefore, this estimate of
ρð0Þ is nonzero in the thermodynamic limit, albeit quite
small for a weak disorder strength. We also find that in this
regime, the Dirac peaks remain and continue to sharpen for
increasing L; their energies and widths are shown in
Figs. 12 and 13 and discussed in Sec. III. The orders-of-
magnitude difference between the background and the
Dirac-peak contributions to the DOS indicates the difficulty
in trying to observe the rare-region contribution to the DOS
at zero energy without appropriately choosing the boundary
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FIG. 14. Low-energy DOS computed using Lanczos on ½H − E0ðW;LÞ=4�2 with four states kept, and a twist θx ¼ π=3 forW ¼ 0.50t
(a), W ¼ 0.54t (b), and W ¼ 0.58t (c). The vertical dashed lines mark E�

Nu
, where for larger energies the DOS may be underestimated

because of this calculation not getting the fifth and higher states. The label for each L is the same for each plot. We find a clear
L-independent low-energy tail, which we take as an estimate of ρð0Þ. We also find that the Dirac peaks remain and continue to sharpen
for increasing L in this range of L and W, as detailed in Figs. 12 and 13.
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FIG. 15. The full DOS ρðEÞ versus E computed using the KPM onH with a twist θ ¼ ðπ; π; πÞ for disorder strengthsW=t ¼ 0.60 (a),
W=t ¼ 0.625 (b), andW=t ¼ 0.65 (c), with labels in (c) for each L shared across all plots. For each of these disorder strengths, we find a
flat L-independent DOS for low energy, the appearance of Dirac peaks or “shoulders” for intermediate energies, and an approximately
power-law DOS for larger energies. Inset of (a): ρðEÞ versus E for W=t ¼ 0.60 and L ¼ 60 showing the energy regime where
approximately ρðEÞ ∼ jEj, which we suggest is the quantum-critical regime. Inset of (b): ρðEÞ forW=t ¼ 0.625 versus LE showing how
the Dirac peaks line up as expected on this plot.
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conditions to explicitly separate these distinct contributions
to the DOS. We should note that these Lanczos estimates of
the low-energy DOS are actually of ρ½E0ðLÞ=4�, thus not at
strictly zero energy. But we find that in this very-low-
energy range, the DOS has only a weak energy dependence,
so this is not a significant difference, especially compared
to the roughly 4-order-of-magnitude range of the DOS as
we vary W.
When estimating ρð0Þ using KPM, we would like to

push the Dirac peaks as far away from zero energy as

possible. The Dirac peaks are broadened both because of
disorder and because we use finite NC in the KPM, and we
want to minimize any contribution from this broadening to
the estimated ρð0Þ. This is achieved by using a twist of
θ ¼ ðπ; π; πÞ in each direction and even L. It is important
to also remember that the KPM introduces an artificial
KPM background (as shown in Fig. 3), which at small W
contaminates our estimate of the true background DOS.
Therefore, we cannot extend the KPM estimates of ρð0Þ to
as small W as we have for Lanczos. As shown in Fig. 15,
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FIG. 16. (a) DOS from the KPM with an expansion order NC ¼ 2048 for W=t ¼ 0.6 averaged over the twist and disorder for 1000
realizations. The data are well converged in system size for L ≥ 37. We find three distinct energy regimes separated by vertical (dotted)
lines. For sufficiently low energies, the DOS is essentially flat with mainly diffusive excitations in the DM regime. For intermediate
energies (including the energy range where the Dirac peaks are in Fig. 15), a fit of the DOS (thin dashed line) goes as ρðEÞ ≈
ρð0Þ þ ajEjx with x ¼ 1.9 ≈ 2 and z ¼ 0.97 ≈ 1, clearly identifying this as the SM regime. For larger energies, the DOS is fit to (thick
dashed line) ρðEÞ ¼ bþ cjEjy, with y ¼ 1.07 and z ¼ 1.45 ≈ 1.5, which is in good agreement with the expected scaling from the QCP.
(b) DOS from the KPM averaged over the twist and disorder for 1000 realizations with a linear system size L ¼ 71 for various values of
W displaying the crossover regimes in energy as a function of disorder. For increasing disorder, the size (in E=t) of the DM regime
increases while that of the SM regime decreases until, for large-enough disorder, there is a direct crossover from the DM to the QC
regime close to the avoided QCP atWc ¼ 0.75t. Note that the value of ρð0Þ here is larger than for a twist of θ ¼ ðπ; π; πÞ, as averaging
over the twist mixes together the Dirac- and rare-state contributions to the zero-energy DOS. (c) Fit parameter aðWÞ as a function ofW
extracted from fitting ρðEÞ − ρð0Þ to aðWÞjEj2 in the low-energy limit from the KPM averaged over the twist and disorder for 1000
realizations with a linear system size L ¼ 71. We find that aðWÞ is a smooth function of W and that it provides an accurate estimate of
the avoided QCP Wc ¼ 0.75t. Thus, we find that the DOS is not described by the combination of a smooth background and a critical
part; the critical point is sufficiently rounded out. (d) Schematic crossover diagram as a function of energy and disorder strength. Despite
the existence of rare-region effects, we still find that semimetal and quantum-critical regimes exist, albeit at nonzero energies. The
quantum-critical scaling regime is “anchored” by the avoided QCP and consistent with the perturbative RG analysis.
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using the KPM for disorder strengths W=t ¼ 0.600,
0.625, 0.650, we find a flat low-energy background
contribution to the DOS that is L-independent and
extends all the way to E ¼ 0. Similar to the Lanczos
data, we still observe the Dirac peaks separating the
smooth DOS at higher energies from the flat background,
although for W > 0.6t these peaks are rounded out into
“shoulders.” For energies above these Dirac peaks or
shoulders, we find that in this AQC regime, the DOS is
close to the quantum-critical form ρðEÞ ∼ jEj, which is in
agreement with the data in the absence of a twist [33].
Thus, the crossover effects of the QCP survive, but the
QCP itself does not.
The Dirac peaks in the SM regime are separated by 1=L

[see inset of Fig. 15(b)] and are a finite-size effect, whereas
the DOS is converged in L both at high energy and near
zero energy. We can remove this finite-size effect by
averaging over the twist, which we do by generating a
random-twist vector θ ¼ ðθx; θy; θzÞ, where each θi is a
random twist for each disorder realization, uniformly
distributed between 0 and π; thus, we average over the
twist and disorder. This is displayed in Fig. 16(a) for 1000
disorder or twist realizations and a disorder strength
W=t ¼ 0.6. For system sizes L ≥ 37, we find that the
data are well converged in L for all energies, and as a result,
the data clearly display three regimes in energy: the DM
regime at the lowest energies, where the DOS does not
depend on E; the SM regime at intermediate energies,
where ρðEÞ ∼ E2; and the QC regime at higher energies,
where, roughly, ρðEÞ ∼ jEj. As shown in Fig. 16(b), at
smallerW, the QC regime disappears by moving up to near
the cutoff. At larger W, the size (in energy) of the DM
regime grows, and the SM regime disappears, leaving a
direct DM to QC crossover, and at much higherW, the QC
regime again disappears by moving up to near the cutoff. It
is important to emphasize that the DOS is always smooth
through E ¼ 0 and L independent for our largest values
of L. We can directly characterize this by expanding the
DOS as ρðE;WÞ ≈ ρð0;WÞ þ aðWÞjEj2 þ…. As shown in
Fig. 16(c), aðWÞ rises smoothly, developing a finite peak,
with no divergence and no sign of any QC singularity at
E ¼ 0. The location of the peak value of aðWÞ provides
an estimate of the avoided QCP: We find Wc ≈ 0.75t,
which is consistent with the crossover regime in energy in
Fig. 16(b). The implications of this are twofold: First,
estimating the location of the QCP based on an apparent
vanishing of ρð0Þ actually underestimates Wc because (as
we have shown) ρð0Þ is always nonzero. Second, there is no
indication at all of any singularity in the DOS in this system
at any critical value of W, and the QCP is clearly rounded
out (“avoided”). This establishes that our numerical results
are inconsistent with the DOS being expressed as a sum of
two independent terms, a singular one arising from the
quantum criticality and a smooth background contribution
from rare regions. This overall behavior is illustrated in the

schematic disorder versus energy crossover diagram in
Fig. 16(d).
Using the two estimates we now have from the L-

independent part of the background DOS, we fit our data to
the rare-region form

log ρð0Þ ∼ ðt=WÞ2; ð7Þ

which fits remarkably well over 4 orders of magnitude of
ρð0Þ going down to W ¼ 0.48t from Lanczos and up to
W ¼ 0.8t for the KPM, with again no sign of any singular
behavior at a critical value ofW, as shown in Fig. 17(a). We
find good agreement between Lanczos and KPM estimates
of ρð0Þ, which implies that the background DOS is twist
independent. We find that the slopes of the fitted lines in
Fig. 17(a) are in good agreement and match to within ∼1%
with a small offset between the two (about a 10% differ-
ence). We attribute the systematic underestimate of ρð0Þ
from Lanczos to this method missing nearly degenerate
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FIG. 17. (a) Fit of the zero-energy background DOS to the rare-
region form. Log of ρð0Þ versus ðt=WÞ2 for the L-independent
part of the background DOS computed from Lanczos and the
KPM. (b) Various estimates of the zero-energy DOS from
Lanczos and the KPM with and without a twist. The data for
the KPM without a twist are reproduced from Ref. [33].
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eigenvalues that can arise from squaring the Hamiltonian.
In addition, for small disorder strengths, we see the KPM
estimate starts to “peel off” systematically from the fitted
line; we attribute this to the artificial KPM background in
the DOS setting a lower bound to the value of ρð0Þ that we
can accurately estimate with the KPM.
To conclude this section, we now discuss the various

estimates of ρð0Þ using Lanczos, the KPM with no twist,
and the KPM with a twist of π in all directions, as shown in
Fig. 17(b). Deep in the DM regime at high W, we expect
that ρð0Þ should be completely independent of the twist and
L (note this region cannot be reached with Lanczos as the
spectrum is too dense), which is in good agreement with
the numerics shown in Fig. 17(b). For weaker disorder
strengths, the DOS from the KPM with a twist and the
Lanczos estimates exponentially decrease and remain L
independent, becoming orders-of-magnitude smaller than
the L-dependent value of ρð0Þ without a twist. As we
illustrated in Fig. 3(a), this is because a Dirac peak sits at
E ¼ 0 if there is no twist, making this a very strong finite-
size effect for ρð0Þ in the semimetal regime. The onset of
this strong finite-size effect occurs near the avoided
quantum-critical point. The avoided quantum-critical point
also affects the DOS away from zero energy, giving it a
quantum-critical scaling of roughly ρðEÞ ∼ jEj over a range
of energy. A crossover diagram summarizing this is shown
in Fig. 16(d). We emphasize that although this crossover
diagram is schematic, all aspects of it are obtained from our
numerical results presented in this work.

V. DISCUSSION AND CONCLUSION

Our results have demonstrated that in the semimetal
regime, the quasilocalized rare eigenstates live on a
continuum of low energies that contribute a nonzero
L-independent low-energy DOS. These rare eigenstates
do not live in isolation, and in principle, there can actually
be several per sample (here, we have demonstrated a pair of
these resulting in a biquasilocalized wave function as
shown in Fig. 9), with a nonzero tunneling matrix element
that falls off with separation between the peaks (r) like
∼1=r2. All of these results are suggestive that these rare
states are not fully localized. Therefore, we now turn to the
low-energy level statistics to directly address this question.
We compute the adjacent gap ratio defined as

ri ¼
minðδi; δiþ1Þ
maxðδi; δiþ1Þ

; ð8Þ

where δi ¼ Eiþ1 − Ei is the level spacing between neigh-
boring energy eigenvalues. Here, we focus on the center of
the band and only compute ri for the lowest four jEj
eigenvalues through exact diagonalization on even L
samples with periodic boundary conditions, so the level
spacing will capture a mixture of both Dirac and rare
eigenstates. Focusing on weak disorder where we can find

the background DOS, as shown in Fig. 18, we find that the
disordered average hri ≈ 0.53 (to within numerical accu-
racy) for the biggest L we have considered, and therefore,
the level statistics satisfy the Gaussian orthogonal ensemble
(GOE) [49]. We also find that hri is unaffected by crossing
the avoided QCP at W ≈ 0.75t. This establishes that the
low-energy eigenstates have a nonzero level repulsion and
thus are not localized eigenstates. Therefore, we can safely
conclude that the quasilocalized eigenstates that fall off in a
power-law fashion are not localized, in strong contrast to
the exponentially localized Lifshitz states (that live in a
band gap or band edge).
In this work, we have considered the effects of potential

disorder on a three-dimensional model that possesses an
axial symmetry, which is pertinent to describing the bulk
physics in various Dirac semimetals as well as time-
reversal-invariant Weyl systems. We expect our results to
be broadly applicable to models with the same symmetries
as HD or HW. In this regard, Ref. [33] found that ρð0Þ was
numerically independent of tuning either potential, axial, or
mass disorder for three-dimensional Dirac fermions; how-
ever, now our work establishes that this is true with regards
to the Dirac eigenstates only (as this was what was being
computed in Ref. [33]). Nonetheless, since the model with
potential or axial disorder has a continuous axial symmetry,
they can both be written in the form of HW , while for mass
disorder, they cannot [28,33]; thus, our results also apply to
axial disorder. It will be interesting to see if this observation
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FIG. 18. Adjacent gap ratio focusing on the lowest four jEj
eigenstates computed from exact diagonalization as a function of
disorder for various system sizes. For system sizes L ¼ 4, 6, 8,
10, we have used 10000 disorder realizations, while for L ¼ 12,
14, we have considered 3000 and 1000, respectively. We find, in
the weak disorder regime, the level statistics is GOE, and
therefore, these low-energy eigenstates are not localized. The
upper dashed line marks the expected GOE value hri ≈ 0.53,
while the lower dashed line marks the expected value of Poisson
statistics hri ≈ 2 ln 2 − 1 (Ref. [49]), for localized eigenvalues
that have no level repulsion. Note that these results are consistent
with the large disorder transition [28] (see Appendix B) belong-
ing to the orthogonal universality class.
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remains true with regards to the background (rare eigenstate
contribution) to the DOS. It will be exciting to explore
disordered models with other symmetries, such as, for
example, cases with disorder that preserves particle-hole
symmetry. Perhaps there are other models where the
semimetal is stable to disorder and a true phase transition
out of the semimetal occurs at some nonzero disorder
strength. This is, however, well beyond the scope of the
current work where we consider the canonical (and by far
the most studied) model of short-range potential disorder in
the context of disorder-driven SM-DM QCP, finding that
the QCP does not exist (or becomes avoided) because of
rare-region effects, but the crossover effects of the QCP
may exist in the quantum-critical fan region.
Our results raise the following question: Is there a field-

theoretic description of these rare eigenstates and this
avoided critical point? It is now clear that the self-consistent
Born approximation and perturbative RG do not capture
the crucial but nonperturbative effects of the rare disorder
configurations. It is important to mention that the analytic
theory of these rare eigenstates has been obtained following a
“Lifshitz-tail” analysis, and Lifshitz-tail eigenstates can also
be taken into account within a field-theory context and appear
as an instanton configuration [50]. It is therefore suggestive
that the rare eigenstates that we have studied here will
contribute some sort of nonperturbative instanton configura-
tion that fundamentally changes the perturbative result (i.e.,
the self-consistent Born approximation) and the associated
renormalization group analysis based on loop expansions.
Constructing this effective action incorporating the existing
field together for both Dirac [33] and Weyl [29,38] fermions
should provide an effective theory for the avoided QCP and
remains an important open question for the future.
The direct consequences of our findings on the nontrivial

topological properties of clean Dirac and Weyl semimetals
such as the surface Fermi arc states [16] and the axial
anomaly [51–53] is an interesting and open question. The
absence of a bulk gap and the presence of these rare
quasilocalized eigenstates may provide a scattering channel
from surface arc states into the bulk, endowing them with a
nonzero quasiparticle lifetime and dissipative transport
properties [54] at sufficiently low energies. With regards
to the axial anomaly that has been indirectly observed
through a measurement of the longitudinal magneto resis-
tance [55–57], we expect this does survive for reasonable
transport time scales [58], as the quasiparticle lifetime at
low energies and weak disorder goes as τ ∼ 1=ρð0Þ and will
therefore be exponentially large in the strength of disorder.
However, our results do establish that any perturbative
treatment of the problem that is carried out at nonzero
Fermi energy [59] cannot be extended down to E ¼ 0 (i.e.,
to the Dirac or Weyl cone) because of the existence of
nonperturbative rare states. Lastly, the physics of the
axial anomaly at larger fields in the quantum limit is
unchanged by our findings because this is well described

by quasi-one-dimensional dispersive states that host their
own chiral anomaly in one dimension [60]. Both of these
questions are sufficiently interesting, and the effects of
nonperturbative states upon them are sufficiently nuanced
that they warrant their own separate study well beyond the
scope of the present work.
It is interesting to compare our results for the avoided

QCP with that of various strongly correlated systems (such
as heavy fermion metals [61,62] or cuprate superconduc-
tors [63], where the evidence of a QCP is quite striking)
where broken symmetry phases set in (such as super-
conductivity) and mask the zero-temperature transition. In
these systems, the quantum-critical features are observed
within the quantum-critical fan and have a strong effect on
finite-temperature thermodynamic and transport properties.
With this in mind, and the schematic crossover diagram
in Fig. 16(b) that contains a quantum-critical fan that is
anchored by the avoided QCP, we still expect that if
experiments on Dirac and Weyl semimetals can be tuned
to the (zero-energy) Dirac point, thermodynamic signatures
of the avoided QCP should show up in the crossover
regime, e.g., a specific heat varying like ∼T2. Upon
lowering the temperature, this power law will eventually
cross over to ∼T because of the rare regions masking the
QCP. Thus, in the current problem, the QCP is truly
avoided (rather than “hidden”) because there is no way,
even as a matter of principle, to think of a situation to
restore the QCP since disorder is the tuning parameter both
for creating the QCP and for producing the rare regions
destroying the QCP. This is conceptually somewhat differ-
ent from the situation with heavy fermions or cuprates
where the origin of the superconductivity might be distinct
from the origin of the QCP, at least as a matter of principle,
so one can imagine suppressing the superconductivity
(e.g., by applying a strong magnetic field) to restore the
QCP. In the Dirac-Weyl system, our current work defini-
tively establishes that the disorder-driven SM-DM QCP
does not exist, as it appears to have been suppressed by the
finite density of states contributed by the rare regions. What
does survive, however, is the crossover effect of the QCP,
which should produce effective scaling behavior provided
one is at reasonably high energy (i.e., high temperature
and/or high frequency). Such an apparent “effective scal-
ing” behavior, numerically observed in many earlier
theoretical studies, has led to the erroneous conclusion
on the existence of a disorder-driven QCP in Dirac-Weyl
systems, which our current work establishes as being
nonexistent since it is avoided at the lowest energy (or
the largest length) scale.
To conclude, we have studied the effects of rare

eigenstates for Dirac and Weyl semimetals in the presence
of potential disorder. Using Lanczos (on H2) and KPM
(on H) with twisted boundary conditions, we have estab-
lished a systematic method to isolate and study the effects
of rare regions in detail. We have shown that for weak
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disorder, the model under consideration possesses two
classes of eigenstates. Consistent with the perturbative
irrelevance of the disorder, the first are Dirac eigenstates
that are well described by perturbation theory in the random
potential. These eigenstates disperse linearly with a wave
function that is qualitatively consistent with a Dirac
plane-wave state weakly perturbed by the random potential.
The second class of eigenstates are the rare eigenstates
that are very weakly dispersive and whose wave function
is power-law quasilocalized near a site with strong
disorder strength. These eigenstates contribute a back-
ground DOS that extends all the way to zero energy and
is exponentially small in the disorder strength W. As a
result of this nonzero DOS at zero energy, the expected
semimetallic regime with DOS ρðEÞ ∼ E2 only exists at
energy scales above that set by the rare-region contribution
to the DOS, and the apparent semimetal to diffusive metal
QCP is avoided, pushing the quantum-critical regime to
nonzero energy.
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APPENDIX A: PERTURBATION THEORY

Here, we determine the leading finite-size and disorder
effects from a perturbative analysis in the strengthW of the
random potential. For simplicity, we focus on the two-
component model (3). We use odd L and include twisted
boundary conditions such that the system has no degen-
eracies at zero disorder, where the eigenenergies and
eigenfunctions are

Eð0Þ
k;� ¼ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2kx þ sin2ky þ sin2kz

q
; ðA1Þ

ψ ð0Þ
k;�ðrÞ ¼

1ffiffiffiffiffiffi
L3

p eik·rϕ�
k ; ðA2Þ

k ¼ k0 þ 2πðl; m; nÞ=L; ðA3Þ

where the ϕ�
k are normalized two-component spinors, k0 is

the wave number allowed by the twisted boundary con-
ditions that is closest to zero, and l, m, n are integers.

1. First-order correction to the eigenfunctions

We have chosen the random potential ~VðrÞ to always
sum to zero over all sites, so since there are no degen-
eracies at zero disorder, the first-order corrections to the
eigenenergies all vanish. The first-order contribution to

the eigenfunction ψk;�ðrÞ ¼ ψ ð0Þ
k;�ðrÞ þ ψ ð1Þ

k;�ðrÞ þ � � � is
given by

ψ ð1Þ
k;�ðrÞ ¼

X

q≠k;s
ψ ð0Þ
q;sðrÞ

P
R
~VðRÞ½ψ ð0Þ

q;sðRÞ�†ψ ð0Þ
k;�ðRÞ

Eð0Þ
k;� − Eð0Þ

q;s

;

ðA4Þ

where s is summed overþ and −. For nonzeroW, this sum
is infrared divergent in the limit of large L at energies away
from the Dirac point, due to the small energy denominators.
This reflects the fact that the mean-free path is finite away
from the Dirac energy, and those eigenfunctions are highly
changed by the scattering when L exceeds the mean-free
path. However, if we look at the eigenstates with energies
closest to the Dirac point, as we do in this paper, then the
vanishing of the DOS as ∼E2 suppresses this infrared
divergence, and the sum is instead dominated by other

typical states with energies far from Eð0Þ
k;�. As a result, the

first-order correction to these eigenfunctions is random,
with only short-range correlations and a relative magnitude
that is ∼W and independent of L at large L.

2. Second-order correction to the eigenenergies

The second-order contribution to the eigenenergy is
given by

Eð2Þ
k;� ¼

X

q≠k;s

jPR
~VðRÞðψ ð0Þ

q;sðRÞÞ†ψk;�ðRÞj2
Eð0Þ
k;� − Eð0Þ

q;s

: ðA5Þ

We are interested in states near the Dirac point, so let us

look, in particular, at Eð2Þ
k0;þ. The contributions from typical

momenta q that are far from the Dirac points cancel to
leading order: Let us look at the contributions from the four
other states at momenta q ¼ k0 �Q. These two momenta
are very close to equal and opposite, and as a consequence,
the corresponding eigenspinors ϕþ

k0�Q are nearly identical
to ϕ−

k0∓Q, the corresponding energy denominators are of
opposite sign and of nearly equal magnitude, and magni-
tudes of the matrix elements are nearly identical. Thus, the
level repulsion from the higher-energy states almost exactly
cancels that from the lower-energy states. What remains
from these four other states is a random energy shift of
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order W2=L4 that on average lowers this positive eigene-
nergy Ek0;þ by ∼W2=L4. When these are summed over all
L3 other momenta, this gives an average decrease in this
eigenenergy by ∼W2=L, which gives a decrease of the
Fermi velocity by ∼W2. The random contribution summed
over all these other typical states to the eigenenergy is
smaller by a factor of L3=2, and so is ∼W2=L5=2.

The contribution to Eð2Þ
k0;� from other states that are

nearby in energy is random and ∼W2=L2, so it does not
contribute to the shift of the Fermi velocity in the limit of
large L but does dominate the random energy shift from
other typical states. Thus, when averaged over samples, this
“Dirac peak” has linewidth ∼W2=L2 at second order in W.

APPENDIX B: LOCALIZATION TRANSITION
AT LARGE DISORDER

In this appendix, we determine the location of the
localization transition at large disorder, well away from
the avoided QCP. For the model in Eq. (1), this transition
has been studied in detail for the box distribution of
disorder [28] but not for the Gaussian distribution we have
considered in the present paper. We determine the locali-
zation transition by first computing the local DOS ρiαðEÞ
at a site i and orbital α using the KPM [47], and then
computing the typical DOS ρtðEÞ from the geometric
mean, these are defined as

ρiαðEÞ ¼
X

k;β

jhk; βji; αij2δðE − EkβÞ; ðB1Þ

ρtðEÞ ¼ exp
�

1

2Ns

XNs

i¼1

X2

α¼1

hlog ρiαðEÞi
�
: ðB2Þ

We only consider a few sites Ns ≪ V to improve the
statistics, and h…i denotes a disorder average. Because of
the low DOS in the SM regime, the typical DOS is not well
suited to study the lack of localization of the quasilocalized
rare states, and therefore, for this purpose, we have used
level statistics as shown in the main text in Fig. 18. For
large disorder, the average DOS is sufficiently large, and
therefore, the typical DOS is well behaved [see Fig. 19(a)].
We use periodic boundary conditions and even L, as for
these large disorder strengths, twisted boundary conditions
have a negligible effect. We focus on the localization
transition at E ¼ 0, as the mobility edge has been shown
to be relatively standard [28]; i.e., it starts at the band edge
and decreases in jEj for increasing W. The results for large
disorder and various system sizes with a KPM expansion
order of NC ¼ 4096 are shown in Fig. 19(a); we find that
ρtð0Þ is well converged for L ≥ 30. To study the localiza-
tion transition, we fix the linear system size to L ¼ 40 and
vary the KPM expansion order. By extrapolating ρtðE ¼ 0Þ
to zero in Fig. 19(b), we find an estimate of the localization

transitionWl as a function ofNC; extrapolating toNC → ∞
yields an estimate of the localization transition at
Wl=t ¼ 3.75� 0.25. This places the standard Anderson
localization transition for E ¼ 0 at a much larger disorder
strength than the avoided QCP.
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