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We calculate the contribution to emittance growth rates due to Coulomb scattering of particles within
relativistic beams such as those found in colliders and accumulator rings. We allow for the variation of lattice
parameters around the ring, which is the case for typical strong-focusing lattices presently being studied. We
find that the emittance growth corresponds to a tendency of the beam rest-frame momentum space to relax
to a spherical shape. Finally, we apply our results to the Antiproton Accumulator and Energy Saver lattices
currently being built at Fermilab.

I. INTRODUCTION

In anticipation of the existence of intense stored relativistic antiproton and proton
beams in colliders and accumulator rings, there is a need to understand fully the effects
of intrabeam scattering. This is already a rather well-understood subject. The most
definitive published work appears to be that of Piwinski,l which treats the couplings of
the various degrees of freedom in the phase space. However, it does not include the
most general situation encountered in a strong-focusing lattice. This generalization was
considered subsequently by Sacherer and Mohl, and a computer code which embodies
those modifications does exist at CERN. After this work was completed, we were
informed by Piwinski that he also worked out the general formulae in 1979. Meanwhile,
we also worked out these results using somewhat different techniques. Throughout
these derivations we set h = c = 1. Our approach, which we believe to be reasonably
simple and easy to apply, provides some insights into the nature of the old results and
how the addition of a strong-focusing lattice affects them. The main conclusions are as
follows:
1. In general, the total six-dimensional beam emittance will grow. For bunched beams,

the growth rate is given by the simple formula

(1.1)

11 (:
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where lJ, is the fine structure constant, M is the particle mass, N is the number of
particles per bunch (for an unbunched beam, N is the number of particles in the
beam), log is a Coulomb logarithm which we take to be 20 throughout these
calculations, yis the Lorentz contraction factor, r is the total 6-dimensional rms

invariant phase volume (for an unbunched beam replace r by r/j2), and
H(AI, A2 , A3 ) is a "shape factor" which has the following properties:
a. H is dimensionless
b. H is homogeneous, i.e.

(1.2)

it therefore depends upon only two independent variables.
c. H has a one-dimensional integral representation; it is essentially the integral

introduced by Piwinski. I

2. In the rest frame of the beam, in general, the beam momentum space (assuming
Gaussian distributions) will be ellipsoidal in shape. The parameters I/A, I/A,
l/A measure the dimensions of the ellipsoid along its principal axes.

3. H > 0 unless Al = A2 = A3 , in which case the rest-frame distribution is spherical.
In that case H = 0; the small Coulomb scatterings leave the distribution-and the
total phase volume-invariant. In all other cases, there is emittance growth, along
with a tendency for the beam momentum space to relax to a spherical shape.

The symbol <>denotes an average over positions of the beam around the ring.
It is easy to show that whenever the combination of lattice functions <t> ==

11' - 11 ~x'/2~x does not vanish, the eigenvalues AI' A2 , A3 cannot be all equal; hence
H will not vanish. In general, the condition <t> = 0 will not be met at almost all points
around a strong-focusing lattice; hence the emittance will always grow. One can only
cut the losses, not eliminate them. This is true both below and above the transition
energy.

Formulae, only sightly more complicated, exist for growth rates for the individual
horizontal, vertical, and longitudinal emittances. They are given below.

II. CALCULATION OF FORMULAE

Following Piwinski, we consider a Gaussian phase-space distribution for the beam. We
find it convenient to use the canonical phase-space distribution

with

N
p(x, p) = r e-S(x,p),

1 1
S(x, p) = 2Aij 8Pi 8pj + Bij 8Pi 8xj + 2Cij 8Xi 8xj

r = fd3x d3p e-S(x,p),

(2.1)

(2.1a)

(2.tb)

where 8p and 8x are the momentum and coordinate deviations from the reference
values p and x and N is the number of particles in the beam. For bunched beams, we
consider only one bunch in the ring.
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To set our notation, the expression for S is

S(x, p) = S(h) + S(v) + SO),

where
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(2.2)

S(h) _ ~ '2 _ ~x' ,+ _1_ (1 + ~x'2) 2 (2.2a)- 2 x p 2 xpxp 2 A 4 xp,
Ex €x ExPx

A A" 2
S(v) = _P_z Z,2 _ ~ + _z_ (2.2b)

2€z 2€z 2€z~z'

82

2a 2 (for an unbunched beam),
SO) = " (2.2c)

82 (8 - 8)2
-2 + 2 2 (for a bunched beam),
a" as

where ~x and ~z are the horizontal and vertical betatron functions, Ex and €z the rms
beam emittances, ax, a z, as, and a p the rms beam width, height, bunched-beam length,
and momentum spread, and

a 2
x

Ex =~,

a 2
z

€z =~,

a
a=-.l!.-
" p'

xp = x - 11(8)8,

xp' = x' - 11'(8)8,

where 11(8) is the momentum dispersion function and

, 8px
x == -_-,

p

_ 8pz
z' = -_-,

P

8 == 8ps
p

(2.2d)

(2.2e)

(2.2f)

(2.2g)

(2.2h)

(2.2i)

(2.2j)

(2.2k)

The relativistic "Golden Rule" for the transition rate due to a two-body scattering
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process P1 + P2 ~ P1' + P2' can be written2 in the form:

where uH is the invariant Coulomb scattering amplitude given by

uH = 41tCX
2 'q

with the 4-momentum transfer

and

(2.3a)

(2.3b)

(2.3c)

In Eq. (2.3), the factor 1/2 is what is left over from several factors of 2 associated with
particles 1 and 2 being identical both before and after collision. We have assumed that
small-angle scattering is dominant and omitted the exchange (interference) term in
IJIII 2

•

We will be interested in the rate of change of emittances or other functionsf(p + 8p)
of momentum deviations. The rate equation is given by

d(f(p) = ~ fd 3X d
3
Pl d

3
p2 e- S (X,Pl)-S(X,P2)

dt 2r2 Y1 Y2

X luHI 2 [f(P1') - f(P1) + f(P2') - f(P2)]

X d3p1' d3p2' 8(4)(P1' + P2' - P1 - P2)
Yl' Y2' (2n)2 .

But note that

so t~at we can rewrite Eq. (2.4) as

d<f(p) = ~ fd 3X d
3

Pl d
3

p2 e- S(x,p,j-S(X,P2) JAI 2 [f(Pl') - f(Pl)]
dt r Y1 Y2

X d3p1' d3p2' . 8(4)(P1' + P2' - PI - P2)
Y1' Y/ (2n)2 .

(2.4)

(2.5)

(2.6)

We are interested in the behavior of small momentum fluctuations about some mean
value. In the last integral, we write the 4-vectors

P1' = P1 + q (2.7)
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(2.8)

The momenta P1 and pz can be expanded about the central value Ii (we will often ignore
the bar):

- ; ~ - ~
P1 = P + "2 + ~ = P + U1'

- ; ~ - ~
pz = P + "2 - ~ = P + uz,

where; = P1 + pz - 2p and A = !(P1 - pz)·
To second order in all small quantities, we have

(2.9)

(2.10)

'The factors S can be simplified as well. Note that

with

Thus we can rewrite Eq. (2.6) as follows

(2.13)

where we have introduced the 4-vector

which with

(2.14a)

(2.14b)
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[cf Eqs. (2.9) and (2.10)J, has the properties

~·w = 0,

~2 = _1~12 < 0,

w2 + 4~2 = 4M 2
•

The x and ~ integrations can be done immediately, leaving

with

{

r for bunched beams,

r= r for unbunched beams.
J2

where we must do the integrals

fd3 'd 3 ,
I - ~~ qP,qv 6(4)( '+ '_ _ )

p,v - , , 4 PI P2 PI P2 .
YI Y2 q

(2.14c)

(2.14d)

(2.14e)

(2.15)

(2.16)

(2.17a)

(2.17b)

The Lorentz tensor structure of the integrals allows for a reasonably effortless
evalution. The integrals depend upon the two 4-vectors ~ and ~p,. In the center-of­
mass system (ems) of the collision shown in Fig. 1, we have

~o = 0,

I

P,

(2.18a)

z .,

FIGURE 1. Scattering between two beam particles in their center-of-mass system.
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10 = 0, (2.18b)

100 = 0, (2.18c)

IOi = 0. (2.18d)

Thus

IJl = 1\JlI(1\2), (2.19a)

( ~U\, A,(A
2
)AIlAv) - 2 (2.19b)IIlV = -gllv + W 2 - IA2 1 I(A ),

and we need only to obtain I, A, 1. Using nonrelativistic kinematics in the cms, we get

where P is just the magnitude of the 3-momenta in the ems. Using

we find

2 f 1pI(A ) ~ -1[M d(cos 9) 4p2(l _ cos 9)'

and finally

Now

f
(1 - cos 0)2

133 '" d(cos 9) (1 _ cos 9)2

has no logarithm. Let us approximate it by zero. This means

A = 1.

Finally,

III = 1(1\2)

_ fd 3 ,b(2E1' - W) p2 sin2 9 cos2 <p
- Pi [2p2 (1 _ cos 0)]2

reM 4
~ 41A2 11/2 In~.

mm

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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The minimum eoccurs at maximum impact parameter bmax ' From the old argument

(2.26)

or,

(2.27)

We define the Coulomb logarithm

(2.28)

It is a rather large number and we ignore the variation with 1~21. We further note that if
one wants to go beyond the leading log approximation, one needs to keep the exchange
term in the elastic scattering amplitude A. Thus we have in any frame

(2.29a)

(2.29b)

Next we must evaluate IJl and IJlv in the laboratory frame. But first we note that to the
requisite order in small quantities,

wJW2 = ~y,

where Pis the mean particle velocity in the laboratory frame. Therefore,

To evaluate 1~21 in the laboratory frame, we have

(2.30)

(2.31)

(2.32)

However,

implies

(2.33)



and therefore

Thus, we arrive at
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(2.34)

d<J> rtMr:t2N(lOg)f d3~e-S(L\) 02J { 3A iA. }
-----;It = y2f . JILW _ lAo PI2 .oP;fJpj bij + y2~i~j ~ [IAI2_ I~. P1 2] .

(2.35)

Now we change variables to

(2.36a)

(2.36b)

(2.36c)

This accounts for the longitudinal Lorentz contraction associated with the trans­
formation to the beam rest frame and helps establish correspondence with the Piwinski
calculation.! Now we write

(2.37)

with

L ij = L~~) + L~'l + L~ty,

and

-y<p 0

L(h) = Bx
2 2

-y<p ~ + 2<p2 0
Ex Bx2 Y

0 0 a

2 (0 a

~)La 1 (unbunched),
a 2

" a a
L(l) =

22 (0 a

~)-la 1 (bunched),
a 2

" a a

(2.37a)

(2.37b)

(2.37c)
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where
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(

0 0 0)
L(v) = ~z 0 0 0,

€z 0 0 1
(2.37d)

(2.37e)

These matrices are all that is needed to characterize the emittance growth rates.
Defining a kernel Kij as

na? MN (log) f d3ee-8i8jLij/4 2

Kij = - (9 2 9 2 () 2)3 /2 (Oij9 - 39 i 9j ),
4yr x + y + z

we derive the diffusion equation

(2.38)

with

o2f o2f o2f

oPx2 y--
oPxopzoPxOPy

[Df] = p2 o2f 202f o2f
y-- y~ y--

OPxOPy Py opyopz

o2f o2f o2f

oPxopz
y--

opz2oPyoPz
P

(2.39)

(2.40)

Again the powers of y reflect the effect of the transformation into the rest frame of the
beam, where the dynamics is simplest.

To further simplify the integral we perform the following steps:
(1) Write

1 _ foo dA A1/2 - ).02 /4

[(2 )3/2 - 0 4fi e .

(2) Treat Lij temporarily as a general matrix and write

(3) Do the Gaussian integration
(4) Carry out the differentiation with the help of the identity

~ det(L + AI) = ( 1 A) det(L + AI).
uLij L + I ij

(2.41)

(2.42)

(2.43)
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Thus we are led to the basic formula for Kij
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1t
2

r.t
2
MN (log) foo d'A'A

1
/
2

{ (1 ) ( 1 )}
Kij = yf 0 [det(L + AJ)]1/2' Oij 1',. L + AJ - 3 L + AJ ij .

(2.44)

The diffusion coefficients Kij depend only upon the shape of the momentum
distribution as expressed by the tensor Lij .

III. GROWTH RATES

Let us now consider various choices for the functionJ. An interesting one is energy. The
original equation, the "Golden Rule," shows directly that (d/dt)/(Jp 2 + m2

) = 0,
leading to the traceless condition for K. This expresses the fact that kinetic energy is
conserved in the Coulomb scattering process. However, in a strong-focusing lattice
there is exchange of kinetic and potential energy, and thus this does not lead to an
invariant of the motion.

Our main concern will be the emittance growths themselves. Since

S(a) _ 1 { I
(a) ~ ~ • ~ ~ d· (~)2}

(X,p) - €a 2aij UPiUPj + terms In uxup an In uX , (3.1)

where a = h, v, 1and the a~j) depend only upon lattice parameters and y, then evidently

<€aS(a» = crli) \~ OPiOPj + terms in oxop and in (OX)2)

fd 3 xd 3p s(a) e- s

=€ ~~----

a f d 3 xd 3 p e- S

[
0 I fd d -As<a)]

=-€a OA
n XaPa e A=l

(3.2)

It follows that the emittance growth rate is

(3.3)

We may now (i) rescale longitudinal momenta by the factor y, (ii) replace the matrix
A~j) by L~j), and finally, (iii) evaluate (d/dt)/(OPiOPj) in terms of the kernel Kij ,
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observing that all Lorentz contraction factors y neatly cancel. We then find 3

~ _ (Q) _ n
2

rJ.2 MN (log) If 00 . d.A A
1

/
2

t
a

- ~ KijLij - yf \ 0 [det(L + A/)r/2

x {TrL(Q)Tr( 1 ) _ 3TrL(Q)( 1 )}). (3.4)
L + AI L + AI

The brackets <...>indicate that this must be averaged around the ring.
A simpler expression exists for the total growth rate, obtained by summation over

a = h, v, 1: 3

~ _ ~ _ n2
rJ.2 MN (log) If 00 dA A1/2

t - ~ t a - yf \ 0 [det(L + A/)r/2

x {Tr(L + A/) Tr(L~ AI) - 9}).
Let Ai ~ A2 ~ A3 ~ 0 be the eigenvalues of the matrix L. Then

(3.5)

(3.6)

(3.7)

rr. 2 rJ. 2 MN (log)

T yf
/ fOO dAA

1/2

X \ (A1 - A2f 0 (A1 + A)3/2(A2 + A)3/2(A3 + A)1/2

+ two cyclic permutations) .

As mentioned in the introduction, whenever <p i= 0 the eigenvalues Ai cannot be all
equal. This happens at almost all points around a strong-focusing lattice; thus the
emittance will always grow. However, in many instances we have Ai > ,A 2 ~ A3 . In
such cases, we can analytically evaluate (see Appendix)

[ foo dA A1/2

H == (A1 - A2f 0 (A1 + A)3/2(A2 + A)3/2(A3 + A)1/2

+ two cyclic permutationsJ
- [ 2(A1 + 2A2) . - 1 j¥-i- A2 - 6J- SIn .

JA2 {A i - A2 ) }"1

For the case Ai > A2 > A3 , we can express the integrals in H in terms of elliptic
integrals of the first and second kinds:4

1
1/1 drJ.

F(\jJ, k) = J 1 k2' 2 '
o - SIn rJ.

E(\jJ, k) = f: J1 - k2 sin2 a. da.,

(3.8a)

(3.8b)
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where in our case

.p::=T;
'" = arc sm '>/~'
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(3.9a)

k=
A1(A2 - A3)

A2(A1 - A3)'
(3.9b)

Through somewhat lengthy manipulations, we arrive at

(3.10a)

(3.10b)

(3.10c)

These expressions are useful if one wants to evaluate H(A 1 , "'-2' A3) without going to the
computer, since many tables of elliptic integrals are available (e.g., see Ref. 4). We find
that Eq. (3.10c) is not as useful as Eqs. (3.10a and b) because in Eq. (3.10c) the elliptic
integrals must be known to high enough accuracy for certain careful cancellations to
occur and give the correct result.

IV. APPLICATIONS

Now that we have expressions for 1/r and 1/'ta , we can apply these results to accelerator
rings, including those with varying lattice parameters such as the Antiproton
Accumulator (pA) and the Energy Saver at Fermilab.
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A. Antiproton Accumulator

Two lattices denoted pA Lattice 1and 2 which have been suggested for Fermilab's pA
(shown in Fig. 2) are given in Tables I and II. The pA has a radius of 75.45 m. As usual,
we take

(4.1)

The sets of lattice parameter values shown are symmetrically repeated around the ring.
For the antiprotons in the pA, we take y = 9.53, corresponding to an energy of

8 GeV. If we take an average of the parameter values for pA Lattice 1 we have

~x = 23 m, (4.2a)

~z = 20 m, (4.2b)

Tlx = 4 m, (4.2c)

~x' = -0.03, (4.2d)

Tlx' = -0.2, (4.2e)

~--------------/ '-

is INJECTION

TARGET
BYPASS

is TARGET

FIGURE 2. Fermilab antiproton accumulator.
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TABLE I
(fiA LATTICE 1)

n ~X<n) ~z(n) llx(n) cxx(n) llx'(n)

1 16.06408 16.06449 8.38079 -.91442 0.00000
2 21.23496 15.68017 9.05335 -3.82147 1.18619
3 23.59398 14.95611 9.40920 -4.04191 1.18619
4 26.48412 14.30821 9.79566 -3.04559 .71863
5 42.39209 12.78990 11.43442 - 3.93037 .71863
6 35.12411 20.70422 9.71488 6.57736 -2.20918
7 31.29110 23.50540 9.05213 6.19931 -2.20918
8 22.71608 30.64482 7.10634 .59576 -.69190
9 21.58421 30.51809 6.41445 .53611 -.69190

10 18.57151 29.84594 4.27707 .32821 -.53449
11 18.37995 29.76338 4.11672 .31031 -.53449
12 16.94134 28.53499 2.52800 .10241 -.37709
13 16.76557 27.89769 1.86809 -.00197 -.37709
14 17.07768 27.273i6 1.69537 -.62588 -.31482
15 19.51782 23.69816 1.14443 -.76849 -.31482
16 25.86528 17.52494 .32141 -1.05255 -.15742
17 26.50414 17.05877 .27418 -1.07700 -.15742
18 35.00226 12.50054 -.00018 -1.36105 -.00001
19 35.82623 12.19578 -.00019 -1.38550 -.00001
20 34.08160 12.81345 -.00019 4.15174 .00002
21 18.52780 20.76027 -.00015 2.98566 .00002
22 16.81931 21.55618 -.00014 .72711 0.00000
23 11.00240 18.00078 -.00014 0.00000 0.00000
24 8.74872 8.75124 8.38079 0.00000 0.00000

n denotes lattice location.

Also, we take

giving

Ex = Ez = 0.42 X 10- 6 m,

(1" = 1.2 X 10- 4
,

I == Current = 0.041 Amperes,

(4.3a)

(4.3b)

(4.3c)

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)
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TABLE II
(pA LATTICE 2)

n ~x(n) ~An) llx(n) cxx(n) llx'(n)

1 7.51071 7.55360 .02120 0.00000 .00000
2 16.03401 16.02850 .02120 -1.06528 .00000
3 15.53793 19.17085 .02007 1.90064 -.00393
4 13.68349 24.17460 .01807 1.74984 -.00393
5 16.76594 23.99550 .01766 -4.58600 .00326
6 27.44113 14.41993 .02098 -5.92108 .00326
7 31.26892 11.15060 .02152 .76887 -.00173
8 29.92010 9.79484 .01996 .72286 -.00173
9 27.83752 7.99675 .08378 .64540 .08559

10 21.66828 8.03922 .63055 .32034 .08559
11 19.42273 9.41216 .64624 3.79226 -.02674
12 3.14183 29.95906 .55938 1.21987 -.02674
13 2.15912 30.19702 .59697 .09827 .12271
14 25.97882 1.88764 1.49889 - 3.33891 .12271
15 26.11610 2.61163 1.45152 3.16693 -.24735
16 7.13551 24.09558 .42778 1.41897 -.24735
17 6.38438 25.88834 .27920 -.33727 -.16284
18 12.79658 12.57896 -.44220 -1.11011 -.16284
19 21.13383 7.18600 -.67070 -1.63914 .01214
20 22.84421 6.59317 -.66453 -1.72776 .01214
21 22.84815 6.58917 -.63626 1.71935 .11084
22 18.91308 8.15721 -.50112 1.50824 .11084
23 8.81615 18.37091 .59492 .72561 .37414
24 8.12362 19.83055 .78498 .63765 .37414
25 8.12377 19.81626 .98524 -.63799 .50692
26 9.93691 16.38485 1.60328 -.84916 .50692
27 21.15170 7.19325 4.48961 -1.63202 .77023
28 22.85453 6.59882 4.88089 -1.72000 .77023
29 23.22550 6.48369 4.98959 -.42352 .48906
30 23.66890 6.38794 5.23803 -.44932 .48906
31 28.76809 8.75719 8.04362 -.67884 .75236
32 31.30352 11.16025 9.36221 -.76783 .75236
33 27.46905 14.42967 9.12488 5.92904 -1.41913
34 16.77984 24.00716 7.68304 4.59183 -1.41913
35 13.68958 24.18218 7.86105 -1.74848 1.71086
36 15.54252 19.17523 8.73017 -1.89903 1.71086
37 16.03626 16.03021 9.22419 1.06761 .00000
38 7.49431 7.53979 9.22419 -.00000 .00000
39 7.51071 7.55360 .02120 .00000 .00000

n denotes lattice location.

For both the Accumulator and the Energy Saver, l/tz « l/tx and l/rz « l/t[, so that
we are mainly interested in understanding the ratio tx/t1of horizontal and longitudinal
intrabeam-scattering diffusion times. In addition for both the Accumulator and the
Energy Saver, a useful approximation is obtained by expanding Eq. (3.4) and neglecting
~x/€x and ~z/€z relative to

2 2 ~ y2
L2L,~ y2<J>2, and -2'
Ex~x Ex 0'"

After tedious manipulations of Eq. (3.4), we are led to

~ _ n
2

(X2 MN (log) [y211 2 Px 2<j>2} fO dA fi [2aA + b] (4.5)- - + Y {A3 A2 bA p/2 't x yr Ex~x Ex 0 + a + + c
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~ _n2
tt

2
MN (log) [my2 ] fOO dA ft [2aA + b]

't l - Ar cr 2 0 {A3 + aA2 + bA + C}3/2'

where m = 1(2) for an unbunched (bunched) beam and

Thus we obtain

131

(4.6)

(4.7)

(4.8a)

(4.8b)

(4.8c)

(4.9)

In Eq. (4.7), we see the tendency for 1/'tz to be negative and several orders of magnitude
less than 1/'tx and 1/'tl . As long as dropping ~x/€x and ~z/€z relative to the quantities in
Eqs. (4.4c-e) is justified, we have

whenever

1 1
->­
't l 'tx '

(4.10a)

(4.10b)

We numerically evaluate Eq. (3.4) for 1/'tx , 1/'tz , 1/Ll for each of the lattice locations
shown in Table I for pA Lattice 1. For an unbunched beam, we have

where C is the ring circumference, so that from Eq. (3.4) we have3

n2 tt2M N (log) r 0
2 I (log)(6.25 x 1018

)

yrunbunched 4ft~3y4€x€zcr'1

(4.11)

(4.12)
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where I is measured in amperes and

r1
ro = M = 1.4 x 10- 18 m (4.13)

is the classical proton radius. Recall that throughout these calculations we take the
Coulomb log = 20. For Ex, Ez ' art' and I we use the values given in Eqs. (4.3a-c). The
results are given in Table III. A summary of the averaged diffusion rates is given in

TABLE III

(Diffusion Rates for pA Lattice 1)

1 1 1
-(hrs- 1) -(hrs- 1) -(hrs- 1)

n 'L[ 'Lx Lz

1 0.920 0.252 -0.00267
2 0.857 0.235 -0.00275
3 0.842 0.231 -0.00273
4 0.823 0.226 -0.00271
5 0.731 0.202 -0.00261
6 0.683 0.188 -0.00314
7 0.683 0.188 -0.00322
8 0.695 0.191 -0.00316
9 0.708 0.194 -0.00310

10 0.758 0.126 -0.00311
11 0.762 0.127 -0.00309
12 0.801 0.0692 -0.00314
13 0.810 0.0701 -0.00312
14 0.812 0.0703 -0.00313
15 0.818 0.0709 -0.00320
16 0.828 0.0187 -0.00320
17 0.828 0.0187 -0.00318
18 0.825 -0.00287 -0.00287
19 0.823 -0.00281 -0.00284
20 0.827 -0.00293 -0.00290
21 0.874 -0.00322 -0.00325
22 0.889 -0.00315 -0.00321
23 1.060 -0.00269 -0.00282
24 1.270 0.347 -0.00209

Ex = Ez = 0.42 X 10- 6 m

art = 1.2 x 10- 4

I = 0.041 A

y = 9.53

(~) = 0.830 hrs- 1

t l avg

(~) = 0.117 hrs - 1
t x avg

(~) = -0.00297 hrs- 1

t z avg
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TABLE IV

(Averaged Diffusion Rates in hrs- 1 for pA Lattice 1)

133

I = 0.041A y = 9.53

(J"

1.8 X 10- 4 0.789 0.4950 -0.01150

0.10 X 10- 4

0.50 X 10- 4

0.90 X 10- 4

1.20 X 10- 4

1.80 X 10- 4

2.80 X 10- 4

151.0
5.56
1.58
0.830
0.325
0.110

0.149
0.137
0.125
0.117
0.102
0.0834

-0.00390
-0.00357
-0.00322
-0.00297
-0.00250
-0.00189

1.8 X 10- 4 0.182 0.0371 -0.000929

TABLE V

(Averaged Diffusion Rates in hrs - 1 for pA Lattice 2)

I = 0.041 y = 9.53

(J"

1.8 X 10- 4 1.08 0.420 -0.00923

0.10 X 10- 4

0.50 X 10- 4

0.90 X 10- 4

1.20 X 10- 4

1.80 X 10- 4

2.80 X 10- 4

186.0
6.96
2.01
1.07
0.431
0.151

0.124
0.115
0.106
0.0987
0.0865
0.0706

-0.00289
-0.00266
-0.00243
-0.00227
-0.00196
-0.00154

1.8 X 10- 4 0.237 0.0313 -0.000716

Tables IV and V for pA Lattices 1 and 2, respectively. In Figs. 3a-h, we plot (l/t1)avg and
(l/tx)avg vs. emittance and (J" for pA Lattices 1 and 2, with I = O.041A and y = 9.53.

B. Energy Saver

The Fermilab Energy Saver has far too many lattice parameter values to present in a
tables here; nmax = 567 and the radius is 1 km. The average lattice parameter values are

~x = 73 m, (4. 14a)
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FIGURE 3[a, b]. (1/t1)avg [(l/tx)avgJ vs. crtj for pA Lattice 1 with 1 = O.041A and y = 9.53.
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FIGURE 3[e, f]. (l/t,)avg [(l/'tx)avg] vs. €x,z for pA Lattice 1 with I = O.041A and 'Y = 9.53.
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FIGURE 3[g, h]. (l/'tl)avg [(l/'tx)avg] VS. €x,z for pA Lattice 2 with I = O.041A and y = 9.53.
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~z = 75 m,

llx = 2.7 m,

~x' = -1.6,

llx' = -0.01.

(4. 14b)

(4.14c)

(4.14d)

(4.14e)

For a bunched beam, we have

O"s = rms bunch length = 0.4 m,

giving

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.15e)

(4.16a)

(4. 16b)

(4.16c)

(4.16d)

(4.16e)

Thus, the quantities in Eqs. (4.16a-b) are considerably smaller than those in
Eqs. (4. 16c-e), so that our approximations leading to Eq. (4.9) are justified.

We now evaluate Eq. (3.4) numerically for 1/'tx , 1/'tz , 1/'t[ for the 567 lattice locations
and compute the averages. 3 For a bunched beam, we have

(4.17)

and use the values for y, N, and O"S' given in Eqs. (4.15). We summarize the averaged
diffusion rates for the Energy Saver in Table VI. In Figs. 4a-,d, we plot 1/'t[ and 1/'tx VS.

emittance and 0"'7' using the average lattice parameters given in Eqs. (4. 14a-e) and the
same y, N, and O"s given above.
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TABLE VI

(Averaged Diffusion Rates in hrs - 1 for the Energy Saver)

N = 1011, y = 103
, as = 0.4 m

a" (~t. (~t. (~t.
(Ex = Ez = 0.104 x 10- 8 m)

0.1 x 10- 3 0.492 0.489 -0.0000579
0.2 x 10- 3 0.0904 0.306 -0.0000403
OJ x 10- 3 0.0316 0.220 -0.0000302
0.4 x 10- 3 0.0147 0.171 -0.0000239
0.5 x 10- 3 0.00803 0.140 -0.0000197
0.6 x 10- 3 0.00487 0.118 -0.0000166
0.7 x 10- 3 0.00318 0.102 -0.0000143
0.8 x 10- 3 0.00219 0.0899 -0.0000126
0.9 x 10- 3 0.00157 0.0803 -0.0000112
1.0 x 10- 3 0.00117 0.0726 -0.0000100

a" (~t. (~t. (~t.
(Ex = €z = 0.2085 X 10- 8 m)

0.1 x 10- 3 0.198 0.1050 -0.0000120
0.2 x 10- 3 0.0389 0.0713 -0.00000906
0.3 x 10- 3 0.0141 0.0529 - 0.00000710
0.4 x 10- 3 0.00667 0.0418 -0.00000578
0.5 x 10- 3 0.00369 0.0344 - 0.00000485
0.6 x 10- 3 0.00226 0.0293 -0.00000415
0.7 x 10- 3 0.00149 0.0254 -0.00000362
0.8 x 10- 3 0.00103 0.0225 -0.00000320
0.9 x 10- 3 0.000744 0.201 -0.00000287
1.0 x 10- 3 0.000555 0.0182 -0.00000259

a" (Dav. (~t. (~t.
(Ex = Ez = 0.4165 x 10- 8 m)

0.1 x 10- 3 0.0767 0.0218 - 0.00000238
0.2 x 10- 3 0.0161 0.0160 - 0.00000194
0.3 x 10- 3 0.00606 0.0124 - 0.00000160
0.4 x 10- 3 0.00294 0.00998 -0.00000134
0.5 x 10- 3 0.00165 0.00835 -0.00000115
0.6 x 10- 3 0.00103 0.00716 - 0.00000100
0.7 X 10- 3 0.000680 0.00626 - 0.000000886
0.8 x 10- 3 0.000475 0.00556 - 0.000000791
0.9 x 10- 3 0.000345 0.00500 - 0.000000714
1.0 x 10- 3 0.000259 0.00454 - 0.000000649

V. DISCUSSION AND SUMMARY

In this paper we have extended existing published calculations on intrabeam scattering
to include the case of strong-focusing lattices. We have found that whenever the lattice
function <I> = 11' - ~x'11/2~x is nonvanishing, the overall 6-dimensional emittance
grows. The formula for this growth rate, Eq. (3.6), is found to be especially simple. We
have also obtained approximate analytic formulae for various limiting situations. In
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FIGURE 4[a, b]. 1j't1[ljt xJvs. (J" for averaged Energy Saver lattice with N = 1011, (Js = 0.4 m, y = 103
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particular, whenever y2/crr/ dominates the other terms in L[cf., Eq. (2.37)J, it is useful
to write l/t == l/tx + l/tz + l/t[ ~ 1/t1 and express 1/r1 in terms of elliptic integrals.

The results of this work have been applied to both preliminary designs for the
Fermilab Antiproton Accumulator ring and to the Energy Saver and are presented in
various tables and graphs. We find that for reasonable parameter choices the emittance
growth rates are not rapid enough to be a severe design constraint.

ACKNOWLEDGMENTS

We have greatly benefited from stimuiating discussions with J. Peoples, A. Ruggiero
and other members of the Fermilab Antiproton Source Group. One of us (S.M.) would
like to thank E. Treadwell, A. Tanner, and members of the Fermilab Computer
Department for their help, and also acknowledge the Ford Foundation for research
support which was provided to former Ford Postdoctoral Fellows. Finally, we both
appreciate helpful comments from A. Piwinski of DESY.

APPENDIX

We want to evaluate analytically the integral H[cf., Eq. (3.7)J for the case Al >
A2 ~ A3 . Write

(AI)

But remember that H(A I , A2 , A3 ) is homogeneous, so that in Eqs. (1.2) and (At) we can
set

and write

Then let

so that

1
rJ. == ;;:'

I

A = £ tan 2-·e,

dA = 2£ tan esec2 ede,

(A2)

(A3)

(A4)

(A5a)

(A5b)
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we have
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1 . ~
v = ~SIn'P'

y'1-£

sin <Po = fi-=€,
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(A6)

(A7a)

(A7b)

4fi-=€ f4>O d<p cos <p sin
2 <p [1 1 . 2 ~JH = - SIn 'PJ€ 0 COs

3 <p (1 - £)

4 f4>O (1 )J d<l> ------z::h - 1 (cos2
<I> - €)

£(1 - £) 0 cos 'P

4 .. {<po(1 + £) - -2
1

(<1>0 + sin <1>0 cos <1>0 - € tan <l>o}
)£(1 - £)

2(1 + 2£) . - 1 ~ 6
= SIn y' 1 - £ - .

)£(1 - £)
(A8)

Using Eq. (A3), we find

(A9)
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