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Abstract 
As a part of the Argonne Strategic Partnership Project 

(SPP) 85H21, a collaboration between Advanced Photon 
Source (APS), Argonne National Laboratory (ANL) and 
Pohang Accelerator Laboratory (PAL), we have designed, 
constructed, and tested a thin-diamond-crystal  mono-
chromator for the PAL X-ray Free-Electron-Laser (PAL-
XFEL) hard x-ray self-seeding project [1]. The mechanical 
design of the PAL-XFEL diamond crystal hard x-ray self-
seeding monochromator is based on the APS design of a 
thin-diamond-crystal monochromator for the LCLS hard x-
ray self-seeding project [2,3] with enhanced diamond crys-
tal holder for two thin-diamond crystals with thicknesses 
of 30 microns and 100 microns [4]. The customized high 
quality thin-diamond-crystals and special graphite holder 
were provided by the Technological Institute for Super-
hard and Novel Carbon Materials of Russia (TISNCM) [5], 
and tested at the APS [4]. An in-vacuum multi-axis preci-
sion positioning mechanism is designed to manipulate the 
duo-thin- diamond-crystals holder with resolutions and sta-
bilities required by the hard x-ray self-seeding physics. 
Mechanical specifications, designs, and preliminary test 
results of the diamond monochromator are presented in this 
paper. 

INTRODUCTION 
This short    To longitudinally improve the coherent qual-

ity of the x-ray radiation produced by the hard X-ray Free-
Electron-Laser (XFEL), and to reduce the level of the spik-
iness in their spectrum and temporal structures, in 2001 
Saldin and et al. proposed the initial idea of self-seeding 
based on the utilization of Bragg diffraction (BD) from a 
four-bounce diamond crystal monochromator as a band-
pass filter [6]. About ten years later, Geloni and et al. pro-
posed a transmission self-seeding using forward Bragg de-
flection (FBD) from a single diamond crystal with simple 
alignment requirements [7].  

The first hard X-ray self-seeding with forward Bragg de-
flection (FBD) from a single diamond crystal was demon-
strated at the Linac Coherent Light Source (LCLS) in 2012 
[2]. Based on the experiences gained from the first LCLS 
hard x-ray self-seeding (HXRSS) monochromator design 
[3], a thin-diamond-crystal monochromator for the PAL-
XFEL hard x-ray self-seeding project has been designed, 
constructed, and commissioned as a part of the Argonne 

Strategic Partnership Project (SPP) 85H21, a collaboration 
between APS, ANL and PAL. 

 
Figure 1: 3D model of the PAL-XFEL self-seeding mono-
chromator integrated on the undulator girder system. 

The monochromator was manufactured by a Korean 
company (VACTRON [8]) based on the ANL/PAL collab-
orated engineering design, and was installed at the PAL-
XFEL in February, 2018. Manufactured by the TISNCM 
and tested at the APS, the enhanced monochromator dia-
mond crystal holder accommodates two customized high 
quality thin-diamond-crystals with thickness of 30 μm and 
100 μm in the [10] and [11] orientations to satisfy various 
optimization conditions [4, 9]. The PAL-XFEL self-seed-
ing monochromator has been successfully commissioned 
without any design flaws soon after its installation [1]. 

Mechanical specifications, designs, and preliminary test 
results of the diamond crystal monochromator for the PAL-
XFEL are presented in this paper. 

 

 
Figure 2: Photograph of the PAL-XFEL self-seeding mon-
ochromator integrated on undulator girder system. 

COMPACT UHV ENCLOSURE 
A compact vacuum enclosure was designed for the PAL-

XFEL hard x-ray self-seeding monochromator with ultra-
high-vacuum (UHV) compatibility as required by PAL-
XFEL vacuum system. As shown in Fig. 1, the hard x-ray 
self-seeding monochromator is integrated on one of the 
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PAL-XFEL undulator girder system with four dipole chi-
cane magnets and various diagnostic tools including: 
stripline beam position monitor, wire scanner, in-line 
screen monitor, surveillance camera and et al. The self-
seeding monochromator system fits into one original undu-
lator girder as a modular design so that it can be replaced 
with any undulator and relocated in the future. Figure 2 
shows a photograph of the PAL-XFEL self-seeding mono-
chromator integrated on the undulator girder system. 
    As shown in Fig. 3, the monochromator vacuum enclo-
sure hosts a 12” flange for a 4-axis diamond positioning 
system, a beryllium window for x-ray diagnostics, a 25 l/s 
ion pump, two viewports, and a pair of UHV bellows con-
nected to the PAL-XFEL vacuum system. The distance be-
tween the flanges for bellows is limited to less than 212 
mm. The monochromator vacuum enclosure is mounted to 
the girder system through a base plate with alignment 
mechanisms. 

 
Figure 3: 3D model of the PAL-XFEL self-seeding mono-
chromator UHV enclosure. 

PRECISION DIAMOND CRYSTAL  
MANIPULATION IN UHV 

Similar to the LCLS self-seeding monochromator de-
sign, a 4-axis precision stage system for diamond crystal 
manipulation, which includes a precision rotary stage for 
diamond crystal pitch motion control and a set of tip-tilt 
and linear stages is mounted on a 12” base flange as shown 
in Fig. 4. The 12” base flange is equipped with electric 
feedthroughs for various in-vacuum motors and optical en-
coders closed-loop controlled from controllers outside vac-
uum. Precision mounting holes are also prepared for dia-
mond-crystal position survey and alignment from outside 
vacuum.  

Pitch Rotary Stage 
The self-seeding monochromator pitch stage controls the 

Bragg angle of the diamond crystal. It is a customized PITM 
PRS-110 UHV-compatible stepping-motor-driven rotary 
stage with a 0.0001-degree resolution optical angular en-
coder [10]. The customized pitch stage is specified to have 
a better than 0.0002-degree unidirectional repeatability 
with closed-loop control. To protect the optical encoder 
and electronics components in the stage, molybdenum ra-
diation shielding plates are applied to the rotary stage as 
shown in Figure 4.  

 
Figure 4: 3D model of the PAL-XFEL self-seeding mono-
chromator 4-axis precision stage system. 

Tip-tilt and Linear Stages 
As shown in Fig. 4, the PAL-XFEL self-seeding mono-

chromator tip-tilt stage provides a roll adjustment for the 
diamond crystal alignment. Similar to the LCLS self-seed-
ing monochromator design, the 4-bar flexural bearing 
structure is modified from an original APS design for a 
compact multi-dimensional alignment apparatus devel-
oped for multilayer Laue lenses (MLLs) with nanometer-
scale 2-D focusing [2]. The flexure tip-tilt stage is operated 
by a SmarActTM PZT-driven linear stage [11] to provide a 
precise angular positioning around the Yroll-axis, which is 
rotating with the pitch rotary stage, and agrees with the Y-
axis while the pitch rotary angle is at the 90-degree posi-
tion.  
 
Table 1: Design Specifications for The PAL-XFEL 
HXRSS Monochromator 4-axis Precision Stage System 

Stage Design Specifications  
Crystal pitch angle operation range (deg) 32 - 95  
Crystal pitch angle limit switch range (deg) 31 - 96  
Crystal pitch angle hard limit range (deg) 29 - 97  
Pitch angle stability (rms mrad) <0.005  
Crystal roll angle control range (deg) -5.5 - +4.8 
Crystal roll angle stability (rms mrad) <0.010 
X  position control range (mm) -2.8 - +4.8 
Yroll position control range (mm) -12.6 - +2.1 
X and Yroll position stability (rms mm) <0.006 
Crystal extraction position (approx. mm) -11 
Vacuum UHV 
F-F distance (mm) 212 
 
The X and Yroll linear stages, mounted on top of the flex-

ure tip-tilt stage, provide the linear motion required by the 
PAL-XFEL self-seeding monochromator system. During 
the self-seeding test, the X and Yroll linear stages align the 
diamond crystal to the test position. With safety interlock 

10th Int. Partile Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-THPGW089

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T26 Photon Beam Lines and Components

THPGW089
3783

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



control, the X and Yroll linear stages can retract the diamond 
crystal holder to a safe position in the PAL-XFEL normal 
operation condition. Table 1 summarizes the design speci-
fications for the monochromator pitch rotary stage system. 
Figure 5 shows a photograph of the PAL-XFEL self-seed-
ing monochromator 4-axis precision stage system. 
 

 

 

 

 

 

 
 
Figure 5: Photograph of the PAL-XFEL self-seeding mon-
ochromator 4-axis precision stage system with a dummy of 
diamond crystals holder for stage test. 

THIN DIAMOND CRYSTAL PLATE    
HANDLING 

Since the diamond crystal holder for PAL-XFEL self-
seeding monochromator is close to the electron beam in the 
linear accelerator, it is best that the diamond holder be 
made of low-Z materials, such as highly ordered pyrolytic 
graphite (HOPG) to meet radiation safety requirements. 
The new design of diamond crystal holder for PAL-XFEL 
self-seeding monochromator kept the same toothbrush-
shaped HOPG mechanical design of the LCLS self-seeding 
monochromator with several important design improve-
ments as shown in Fig. 6: 

 The new holder is designed to host two thin-film-
diamonds with thickness of 30 μm and 100 μm in 
the [10] and [11] orientations to satisfy various 
optimization conditions at the PAL-XFEL. 

 The new holder includes a HOPG holder base and 
a CVD diamond mounting base to ensure a good 
heat transfer between the diamond crystal and the 
heat sink. 

 CVD diamond post and thin graphite springs are 
used to hold the thin diamond crystals and provide 
a gentle clamping force between the thin diamond 
crystal and CVD diamond mounting base to en-
sure a good thermal contact with minimized strain 
added on the thin diamond crystal.  

The customized high quality thin-diamond-crystals and 
the special graphite and CVD diamond holder components 
were manufactured by the Technological Institute for Su-
per-hard and Novel Carbon Materials of Russia (TISNCM) 
[4, 12]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: 3D model of the PAL-XFEL self-seeding mono-
chromator thin diamond crystal holder. 

SUMMARY 
We presented mechanical specifications and designs of 

the thin-diamond-crystal monochromator for the PAL-
XFEL hard x-ray self-seeding project. In April, 2018, the 
PAL-XFEL commissioning team led by Heung-Sik Kang 
demonstrated the first seeded FEL signal (at ~8.4keV) as 
shown in Figure 7. The results showed spectra amplitude 
of the self-seeding FEL with four times higher than SASE 
at Angstrom wavelengths. The bandwidth of self-seeding 
FEL is as small as 0.5 eV. Further testing and development 
of the PAL-XFEL hard x-ray self-seeding project for user 
operation are forthcoming. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Spectra of the preliminary self-seeding test with 
PAL-XFEL hard x-ray self-seeding monochromator.  
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