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Regarding the volume as independent thermodynamic variable we point out that black hole horizons 
can hide positive heat capacity and specific heat. Such horizons are mechanically marginal, but thermally 
stable. In the absence of a canonical volume definition, we consider various suggestions scaling differently 
with the horizon radius. Assuming Euler-homogeneity of the entropy, besides the Hawking temperature, 
a pressure and a corresponding work term render the equation of state at the horizon thermally stable 
for any meaningful volume concept that scales larger than the horizon area. When considering also a 
Stefan–Boltzmann radiation like equation of state at the horizon, only one possible solution emerges: the 
Christodoulou–Rovelli volume, scaling as V ∼ R5, with an entropy S = 8

3 S B H .
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The irreducible mass of black holes is connected to an entropy 
function in black hole thermodynamics [1–5]. This relation inspired 
many further investigations about the origin of the fundamental 
equations including various ideas toward quantum gravity [6–14]. 
It is well known that the related equation of state has some pecu-
liar properties from a thermodynamic point of view. Due to the 
fact that the irreducible mass of black holes is proportional to 
the radius of their event horizon, the entropy, proportional to its 
surface, S(M) ∼ M2, is seemingly convex and the heat capacity de-
rived from it is negative. This is common in all bound systems 
where the total energy is negative and the kinetic energy is pos-
itive, then due to an increase of the temperature via an increase 
in the kinetic energy, – in a stationary state satisfying a virial 
theorem, – the total energy will decrease, displaying formally a 
negative heat capacity. A thermal equilibrium between a negative 
specific heat system and a positive one is, however, not possible. 
Black holes in this sense seem thermally unstable.

There are various suggestions that could counterbalance the 
consequent mechanical instability [15–18], however, its very ex-
istence is an obstacle in constructing reasonable statistical theories 
for black holes [19–22]. A careful distinction of extensivity and ad-
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ditivity in the related thermostatistics promises to give an insight 
into the problem [23,24], and a Rényi entropy [25] based theory 
actually removes the convexity of the Bekenstein–Hawking entropy 
of black holes [26–28].

In this Letter we demonstrate that the black hole horizon en-
tropy formula is concave if treated as a function of at least two 
variables, and leads to “normal” thermodynamic behavior, with 
positive specific heat and marginal mechanical stability. We argue 
that considering any reasonable volume concepts (e.g. the Parikh 
[29] or the Christodoulou–Rovelli definition [30]) as an indepen-
dent thermodynamical variable together with the related homo-
geneity assumption, eliminates the inconsistency while keeping 
the original formula.

First a brief review of the custom derivation is given which 
leads to the currently accepted conclusion of assigning negative 
heat capacity to such objects. Then we derive the thermody-
namic properties of Schwarzschild black holes by including the 
usual work term in the first law based only on the assumption 
that the entropy is a first order homogeneous (extensive) func-
tion of the volume. Throughout this work we use units such as 
h̄ = G = c = kB = 1.

2. Black hole EoS with volume term

The traditional presentation of the negative heat capacity prob-
lem is as follows: Schwarzschild black hole horizons have a radius 
of R = 2M , and a Bekenstein–Hawking entropy of a quarter of the 
horizon area
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S = π R2. (1)

Since the internal energy is dominated by the mass energy produc-
ing the same horizon, E = M = R/2, one light-heartedly considers 
a curious equation of state:

S(E) = 4π E2. (2)

This “equation of state” has strange properties. The absolute tem-
perature, determined from

1

T
= dS

dE
= 8π E, (3)

is growing with decreasing energy. This discrepancy results a neg-
ative heat capacity signaling thermal instability in the traditional 
view:

− 1

C T 2
= d2 S

dE2
= 8π > 0, (4)

which leads to the conclusion of having C = −2S < 0. Negative 
heat capacity occurs in all systems having negative total energy. 
It is questionable, however, whether the total energy has to be 
counted as internal energy when deriving thermal properties of 
a system.

Here we present an alternative approach which is thermody-
namically consistent, and free from such oddities. First of all we 
consider the volume, enclosed by the event horizon, as a further 
thermodynamical variable. The physical volume of a black hole has 
been a long standing problem in general relativity. The standard 
definition operates with surfaces of simultaneity and therefore it 
is a strongly coordinate dependent notion. Recently, Christodoulou 
and Rovelli introduced an elegant, geometric invariant definition 
[30], where the volume of a Schwarzschild black hole has been 
defined as the largest, spherically symmetric, spacelike hypersur-
face � bounded by the horizon. The corresponding CR-volume 
(when the thermal property of the Hawking radiation [31] is also 
taken into account) scales as V ∼ R5, which for an astrophysical 
black hole turns out to be very large indeed. This result moti-
vated further investigations about the role this volume may play 
in the thermodynamic behavior of black holes [32–36], in partic-
ular, based only on simple causality considerations, Rovelli argues 
[37] that black holes should have more states than those giving the 
Bekenstein–Hawking entropy, and the CR-volume is large enough 
to store these entropic states.

In this Letter we consider the phenomenological consequences 
of the volume scaling of the black hole entropy, however we do not 
restrict our investigations to the CR-measure only. The approach 
taken here is completely general and valid for any meaningful 
volume definition. We will show, however, that by considering a 
Stefan–Boltzmann radiation like equation of state at the horizon 
(arising naturally from a Hawking radiation), the CR-volume scal-
ing is reproduced.

The step to consider the volume as a thermodynamic variable 
is a fundamental one which also associates a pressure to the event 
horizon. In standard thermodynamics there exists a relationship 
(the Gibbs–Duhem relation (see e.g. [38])) among the intensive pa-
rameters of a system which is a consequence of the first order 
homogeneous property of the entropy function. This homogene-
ity relation is not valid within the standard picture of black hole 
mechanics (see e.g. [23,39] and references therein). A modification 
by York and Martinez [40–42] tries to separate the surface of the 
horizon as an independent thermodynamic variable, however, the 
consequent scaling relations are not first order Euler-homogeneous, 
therefore there is no real Gibbs–Duhem relation in that framework 
[43].
In the present approach, separating the volume to be the in-
dependent thermodynamic variable naturally resolves the Gibbs–
Duhem relation issue, which, together with the well-known power-
law scaling of the energy, E , the total entropy, S , and the volume, 
V , with the horizon radius, R of a Schwarzschild black hole, natu-
rally suggests the general class of equation of states in the form

S(E, V ) = ζ Eα V β, (5)

and the Euler-homogeneity assumption sets the condition α+β=1. 
This form of equation of state does not contradict to the “no hair” 
theorem [44], as long as both E(M) and V (M) depend only on the 
sole physically relevant property of a Schwarzschild black hole, its 
mass M . Nevertheless S(E, V ) has to be handled as a two-variable 
function when obtaining its partial derivatives, and their corre-
sponding physical interpretation. Only these have to be taken at 
the end on physical line described by the pair (E(M), V (M)) in the 
parameter space. Temperature, partial derivative against E , is no 
more or less physical than pressure, obtained from partial deriva-
tive against V . Microscopically both the absolute temperature and 
pressure are positive in kinetic theories, while the classical pres-
sure may turn out to be negative in bound systems. In those cases 
the quantum uncertainty may stabilize such systems. But this very 
same actor is responsible for the Unruh-type Hawking tempera-
ture.

In order to further specify the black hole equation of state by 
keeping the power-law form and without the loss of generality, 
one can parametrize the volume as

V = Rc+3 I V , (6)

where I V is constant, independent of the horizon radius. For any 
choice of c �= 0 the volume in the present context is not the 
Euclidean three-volume, usually considered in everyday thermo-
dynamics. According to the Schwarzschild black hole picture, the 
required dependence of the total energy on the radius, E = M =
R/2, and the total entropy is proportional to the horizon area, 
S = 4πλR2 = πλM2, where λ = 1/4 for the Bekenstein–Hawking 
entropy.

The scaling of the volume with the radius, i.e. the parameter 
c, remains undetermined so far. The parameter λ together with I V

stays also undetermined at this level. From the equation of state 
(5) we have

4πλR2 = ζ (R/2)α (I V Rc+3)β (7)

and therefore

2 = α + β(c + 3). (8)

For further specification of the parameters we need more input 
from the physical picture. Calculating the thermodynamical deriva-
tives of S(E, V ) one interprets the temperature

1

T
= ∂ S

∂ E
= αζ Eα−1 V β = α

S

E
= 8πλαR. (9)

This temperature T is to be equal to the Hawking temperature 
[31], T H = 1/(4π R), which is the Unruh temperature [45], be-
longing to the gravitational acceleration at the horizon (without 
the red-shift factor). Keeping this equality delivers λ = 1/(2α). The 
other partial derivative,

p

T
= ∂ S

∂V
= βζ Eα V β−1 = β

S

V
, (10)

leads to another form of the equation of state, that is generally 
more useful in hydrodynamical calculations,
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p = β

α

E

V
. (11)

The classical choice of β = 0 in (5) leads to zero pressure, p = 0. 
However, as it has been demonstrated by various authors [45–47], 
a nonvanishing pressure at the event horizon is always expected 
originating e.g. from vacuum polarization effects in semi-classical 
approximations to Einstein’s theory. Furthermore, the Hawking ra-
diation [31] also implies a Stefan–Boltzmann radiation-like equa-
tion of state at the horizon with nonzero pressure.

3. Specific heat and stability

In order to show that black holes can have a positive spe-
cific heat, we consider the second partial derivative of the entropy 
against the energy. The definition:

∂2 S

∂ E2
= ∂

∂ E

1

T
= − 1

V cV T 2
(12)

compared with (5) results in

∂2 S

∂ E2
= α(α − 1)

S

E2
. (13)

From this comparison, using 1/T = αS/E , the following solution 
emerges:

cV = α

1 − α

S

V
, (14)

which can be positive when 0 < α < 1. Comparing with the gen-
eral form of the pressure with the power scaling ansatz, we obtain 
the relation:

cV · p = β

(1 − α)

1

V 2
E · S. (15)

Euler-homogeneity requires α + β = 1, which renders the ratio 
β/(1 − α) also to be one. With positive entropy, positive energy 
and pressure, the specific heat at constant volume is necessarily 
positive. Taking into account (8) delivers

α = c + 1

c + 2
and β = 1

c + 2
. (16)

Therefore the specific heat in (15) is always positive when c > −1, 
i.e. when the volume scales with the horizon radius larger than 
the surface area.

In addition to Euler-homogeneity, by requiring the 3-dimen-
sional radiation formula, one considers α = 3β . Together with (8)
this results

α = 6

6 + c
and β = 2

6 + c
. (17)

The only solution which satisfies Euler-homogeneity (16) and the 
radiation equation of state (17) requirements at the same time 
is c = 2, which results in a V ∼ R5 volume scaling, just like 
the Christodoulou–Rovelli volume [30,36]. In this case α = 3/4, 
β = 1/4 and the entropy of the black hole is still proportional 
to the horizon area S ∼ E3/4 V 1/4 ∼ R3/4 R5/4 ∼ R2, although the 
factor, λ = 2/3 leads to a slightly larger coefficient than the one 
in the classical Bekenstein–Hawking formula. This result, however, 
has the clear advantage of having a positive specific heat.

In equating the expressions for α of (16) and (17) provides 
another possible solution, the c = −3. This results in a constant 
volume factor and leads to α = 2 for any β from (8) independent 
of the conditions (16) and (17). α = 2 means also that λ = 1/4, 
which reproduces the Bekenstein–Hawking formula S = π R2. This 
choice, however, is not a real solution of the problem as it can 
never satisfy the conditions (16) and (17) for β simultaneously. For 
example, it provides β = 2/3 from the radiation equation of state 
(11), while β = −1 from Euler-homogeneity. More importantly, as 
it is well known, this choice also leads to a negative specific heat.

4. Causality and the third law of thermodynamics

Based on this possibility of a thermodynamically stable scenario 
for black holes, it is intriguing to discuss certain aspects of it. Var-
ious scalings of the thermodynamically relevant volume with the 
horizon radius – although cannot change our conclusion about a 
positive specific heat, formulated in (15) – give us the possibility 
of different translations of the entropic equation of state, S(E, V )

to the more common mechanic equation of state, p(E/V ).
The most naive assumption (not solving our requirements 

though) deals with c = 0. In this case V ∼ R3, as this were the case 
in Euclidean geometry of the three-space. We note here however, 
that this scaling is also valid for a much wider class of geometries 
(see e.g. [29]). This choice would lead to

p = E/V = ε and cV = S/V = s. (18)

While this scenario appears as thermally perfectly stable, it repre-
sents the allowed most extreme pressure without violating causal-
ity, i.e. it conjectures a velocity of sound equal to that of the 
light: dp/dε = 1. We note here that any c < 0 model, among oth-
ers assuming a surface-shell as the relevant volume with c = −1, 
would lead to an equation of state with an acausal speed of sound, 
dp/dε > 1. From (11) dp/dε = β/α = 1/(c+1), diverges for c = −1.

Finally, the temperature dependence of energy density and 
pressure with assumed Euler-homogeneity connects our result to 
more customary views. Expressing these quantities one obtains

E

V
= ε = σc T c+2 and p = 1

c + 1
σc T c+2. (19)

Here σc = (ζb/a)c+2 is the corresponding “Stefan–Boltzmann con-
stant” for a far observer. It is also worth noting that the specific 
heat, expressed with the temperature,

cV = ζ σ
b/a
c (c + 1) T c+1, (20)

reveals that the thermodynamical view presented here also satisfies 
the third law: at T = 0, also cV = 0 for any c > −1 choice.

Again, the naive volume scaling with c = 0, however physi-
cally allowed, would lead to the strange conclusion p = ε ∼ T 2, 
cV = s ∼ T , but this is all physical and thermally stable. On the 
other hand, arguments assuming a traditional Stefan–Boltzmann 
radiation like equation of state (based on the thermal property of 
the Hawking radiation [31]) are built on p = ε/3 ∼ T 4. This imme-
diately requires c = 2, and leads to a volume measure scaling like 
V ∼ R5. Indeed, as shown above, this power is in perfect agree-
ment with the results of the Christodoulou–Rovelli volume [30,32]
together with the black body spectrum of the Hawking radiation 
[31,36].

According to the original idea of the Hawking radiation [31], the 
scaling volume would be a surface, and hence one would consider 
c = −1. As seen before, the specific heat is negative in this case. 
For c = −1 + 0+ our stability arguments nevertheless hold. The 
causality problem of sound waves, however, remains for all c < 0
models.

5. Conclusions

Extensivity, rigorously distinguished from additivity [42,48,49]
is represented by first order Euler-homogeneity of the entropy by 
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any of its state variables. This is necessary to introduce thermody-
namic densities for fields [50]. Any meaningful concept of black 
hole volume requires reconsidering black hole thermodynamics, 
including the homogeneity relations as well. We showed that stan-
dard thermodynamic properties, i.e. homogeneity and volume scal-
ing, are both compatible with the classic result that the black 
hole’s entropy is proportional with the horizon area. Our approach 
naturally modifies the longstanding issues related to negative heat 
capacity and thermal instability, while the Hawking radiation for-
mula also singles out the Christodoulou–Rovelli volume and the 
λ = 2/3 coefficient factor as physical quantities from the free pa-
rameters of the theory. As for the description of presenting an 
equation of state on the horizon while observing it only from a far 
distance, we are also in accord with phenomenological approaches 
to black hole thermodynamics. Based on this picture a Hawking 
pressure may well be associated to the Hawking temperature at 
black hole horizons.

Apart from the stability issue, there are several important prob-
lems where our extended thermodynamic background can also 
give a deeper insight. The connection to the cosmological term 
in the Einstein equation, for example, has already shown to be 
consistent with a thermodynamic interpretation using volume and 
pressure [51]. The extension to AdS and more general space-
times leads to further consequences [52,53]. The recently sug-
gested complexity-volume relation demonstrates that holography 
can also be connected to volume changes [54–56].

Generalizations of this discussion for charged, rotating and even 
more general black holes shall be postponed to follow-up works. 
Based on some very recent, exciting experimental results [57,58]
on the possible existence of higher dimensions however, the fol-
lowing outlook may be instructive. By considering a d-dimensional 
radiation pressure, one would have β/α = 1/d, which would re-
place c + 3 by c + d in the above derivations. Satisfying Euler-
homogeneity and having a power-like equation of state leads to 
c = 2 and c = −d as formal solutions, i.e. to V ∼ Rd+2 and V ∼
constant. This result distinguishes again the Christodoulou–Rovelli 
scenario for black holes in all spatial dimensions.
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