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ABSTRACT 
Gauge invariance for fractionally charged anyonic quasipartides in a 2-

dimensional multiply-connected system requires multi-component wave functions, 
and leads to the emergence of a hidden topological Z^ symmetry and the 
associated quantum number (the n-ality) for many-body eigenstates. In certain 
situations, it relates the fractional charge to anyon statistics. The 
implications for the fractional quantum Hall effect (FQHE) are also discussed. 

Gauge invariance plays , a 
fundamental role not only in particle 
physics, but also in macroscopic quantum 
phenomena, such as flux quantization"*" in a 
superconducting ring and the integral 

2 
quantum Hall effect . Recently, direct 

3 
evidence has been experimentally available 
for a quasiparticle of charge e - e/3 in 
the FQHE with the filling factor u - 1/3. 
This urges the necessity of a theoretical 
understanding of gauge invariance for 
fractionally charged quasiparticles. 

Consider a cylindrical (or 
toroidal) system with a magnetic flux $ 
through the hole. Gauge invariance^" 
implies that all physical properties of the 
system are periodic functions of $ with the 
period (flux quantum) $ q - hc/e, where e is 
the constituent (electron) charge. The 
problem is under what conditions the system 
of quasiparticle excitations with 
fractional charge e can have, as required 
by gauge invariance, a (q times, if e -
e/q) smaller period $ than the naturally 
expected $ q - hc/e . 

To study this problem, we use the 
braid group formalism^ on a cylinder** (or 
on a torus**), appropriate for anyonic 
quasiparticles in FQHE. We will show that 

if the anyon system is described by a one-
component wave function, there is no period 
smaller than $ q . In fact, on a cylinder, 
the braid group generators consist of not 
only usual (i - 1, N-l) which 
interchanges the i-th and (i+l)-th 
particles, but also of additional p^ (j -
1, N) representing moving a particle 
along a simple loop around the hole once 
with j-1 particles to its left. 

1-d unitary BGR's are characterized 
by two parameters 8 and $: 

The minimal change in $ that leads to the 
same BGR is $ q . This is compatible with 
gauge invariance (the existence of another 
period $ q) , if and only if e is an 
integral multiple of constituent charge e. 

Conversely, when the anyon 
quasiparticles carry fractional charge e , 
for the system to possess a period smaller 
than $ , the wave function must have more o 
than one component. So we are led to 
consider an M-dimensional representation 
for and p^ . Assume the anyons obey 



i.6 scalar statistics: a. - e L, with I.. 
x M M 

being the M x M unit matrix. are 

represented by 

where T. are $-independent M x M matrices 
2i.$ * satisfying T j + ^ " T j e • If e /e - m/n 

with m, n mutually prime, a smaller period 
$ o implies the minimal period $ q /n and the 
unitary equivalence of the two BGR's 

Multiplying the eigenvalues of T^ by exp{i 
2n/n) should just shuffle them, so M must 
be divisible by n. If M » n, the situation 
is irreducible under the large gauge 
transformation which shifts $ by $ q /n. 
The form of p. ($) is determined as 

J 

with W is a diagonal n x n matrix given by 

In such basis, each base state changes into 
another if one moves one anyon around the 
hole once, and returns to itself after n 
rounds (up to a possible phase). 

Similarly, we can discuss the torus 
case, in which anyons require a multi-
component wave function^'^. If the latter 
forms an irreducible BGR, gauge invariance 
relates the anyon charge to its (scalar) 
statistics 8. In fact, for anyons on a 

i.6 * torus with - e I , (8/n) $ q is always 
a period for $. To see this, we note that 
on a torus, besides ai there are generators 
TV pi ^ ~ I» N) corresponding to 
moving the i-th particle along one of the 
fundamental non-contractible loops. They 
satisfy, among others, 

and rAp.) have a factorized $ ($ )-
x y 

dependence as in (1). Changing $ by * x 

( 0 / 7 r ) $ o just gives rise to a phase factor 
exp(2i0), which shifts r to This 
only turns the BGR into an equivalent one 
and therefore does not alter any physical 
properties. For an irreducible BGR, M - q 
for 6 - ;r(p/q) with p and q mutually prime, 
the minimal period is $ q /q. So the period 
$ o required by gauge invariance must be an 
integral multiple of the latter, and 
therefore e /e - m/q with integer m. 

The above conditions have very profound 
physical implications. First let us 
consider the cylinder case. The wave 
function for fractionally charged 
quasipar tides has to have n-components 
with n > 1. To specify their many-body 
states, besides the positions one needs an 
extra index, the index of components (or 
"sheets") s(-l, ..., n). We emphasize that 
this index generally is not associated to 
individual quasiparticles. Eq. (4) shows 
that the operation of moving one anyon 
around the hole is given by, up to some 
phase, the winding operator W which acts on 
the sheet indices. Note that W n - 1. 
Normally, the Hamiltonian H, no matter how 



complicated it may be, with various 
interactions, impurities or defects or 
external field all included, always 
commutes with W. So the eigenvalues of W, 
exp(i27rk/n) or simply k (mod n), give us a 
good quantum number, the so-called n-ality, 
for the many-body energy eigenstates. 

Because the (k,$)-dependence of the 
eigenvalues of p. is through the 
combination $ + k $ Q /n, the energy or any 
physical property satisfies 

E(k,S,{a})-f(S + k$Q*/ri, {a}), (8) 

where {a} is a set of usual quantum 
numbers. Thus the energy spectrum is 
actually a collection of n sectors, each 
corresponding to a one-component system 
with a central flux, differing from each 

* other by $ /n and therefore admits a o 
smaller period $ q /n. 

Moreover, (8) implies the existence of 
level crossings or spectral flow. Because 
the topological n-ality is a good quantum 
number, a gap can never be open at the 
level crossing points unless the two levels 
involved have the same n-ality. A 
numerical result showing the pattern of 
level crossings for a 3-anyon system on a 3 
x 3 cylindrical lattice with 6 - T T/5 and e 
- e/3 is given by Fig. 1. (The details 

Figure 1. Spectral flow on a cylinder 

will be presented elsewhere^.) Note in 
particular that the three lowest levels 
flow into each other with a period 1/3, but 
for each fixed level the period is three 
times larger. Though this kind of pattern 
is not typical for an anyon system, but 
there are good reasons to believe that the 
ground states of a cylindrical FQH system 
have such a pattern of level crossings. 
Such a scenario is essentially what 

g 
proposed by Tao and Wu six years ago and 

9 
recently refined by Thouless This has 
been shown by Niu, Thouless and W u ^ to be 
sufficient to give the fractional 
quantization of the Hall conductance in the 
topological approach. 

A consequence of our results is that the 
i/ - 1/q FQH edge states on a cylinder must, 
like the bulk states, carry a Z -like 
quantum number. 

When put on a torus, the Laughlin states 
for v - 1/q with q odd correspond to an 
irreducible BGR. So from gauge invariance 
alone we can infer that the fractional 
charge of quasiparticles must be an 
integral multiple of e/q. In the torus 
case, we have two non-commuting winding 
operators and , similar to (7), 
respectively corresponding to moving an 
anyon along different fundamental loops: 

2i0 
WjW 2 - W 2 W l e ' They a r e symmetries in 
the thermodynamic limit and the spectrum 
has q-fold exact degeneracy for each level 
of anyons. 

Our topological discussion is quite 
general and model-independent, but does not 
tell what underlying dynamical mechanism 
will give rise to the spectrum required by 
gauge invariance. It would be interesting 
to speculate on the possible relevance to 
quarks, which are also fractionally charged 
and carry a triality. 
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