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Abstract

Under the assumption that the mass scale M of physics beyond the Standard Model
(BSM) is far above the electroweak scale v, effective field theories (EFTs) are the suitable
method for a consistent separation of the physical processes at these disparate mass scales.
We construct EFT frameworks for the generic description of physics BSM - covering the
two relevant cases that particles of the BSM sector can or can not be produced on-shell
at the Large Hadron Collider (LHC) or a future collider.
In the first scenario we focus on the case where a new heavy resonance S with mass
MS � v is discovered at a collider. We assume that the BSM sector contains further yet
undiscovered particles with masses of order M ∼ MS . We discuss the case where S is a
scalar Standard-Model (SM) gauge singlet and formulate an EFT to describe the decays of
S into SM particles. We demonstrate that for a consistent separation of the mass scales
M and v the appropriate operators in the EFT are non-local Soft-Collinear-Effective-
Theory (SCET) operators rather than higher-dimensional local operators. We construct
the effective Lagrangian up to the next-to-next-to-leading order in the power-counting
parameter λ ∼ v/M and consider the renormalisation-group (RG) equations which allow
the resummation of large logarithms of M/v. Our approach provides a template for
the construction of analogous EFTs which are suited to describe resonances of different
charges and spin. We illustrate our framework in two examples. In the first example we
demonstrate that our EFT applies also in the case of the double hierarchy v �MS �M .
In the second example we consider a BSM model, where S and heavy, vector-like fermions
are added to the SM. We perform the matching of the BSM model to the EFT and show
that resummation yields sizeable effects in phenomenologically relevant decay channels.
In the second scenario we consider the case where the mass scale M of the BSM model
is above the energy reach of the collider. We apply the Standard-Model Effective Theory
(SMEFT) in collider studies for the processes dijet- and dilepton production. We derive
bounds on the contributing Wilson coefficients and on the mass scale M . For the first
time in analyses of this type we employ a consistent expansion in the EFT series in powers
of 1/M2. We truncate our signal predictions for the cross sections at order 1/M2 and
introduce a theory uncertainty to model the terms of order 1/M4. In our analysis we
allow for multiple SMEFT operators to contribute at a time. We identify and bound two
distinct linear combinations of Wilson coefficients in both studies. The bounds arising
in our approach are generically weaker than the overly stringent bounds obtained in
previous studies without appropriate theory uncertainties. The method developed in this
work can be applied to further processes and the bounds obtained in our approach may
serve as an important input for future global fits in the SMEFT framework.
The two frameworks developed and applied in this thesis provide a toolbox for the con-
sistent EFT description of BSM physics in the cases described above.
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Overview of Publications

This thesis is based on work published during the time of the author’s PhD project. This
chapter provides an overview of these publications and specifies the contribution of the
author to the respective research project.

[1] S. Alte, M. König and M. Neubert, Effective Field Theory after a New-Physics
Discovery, JHEP 08 (2018) 095 [1806.01278]:

In this work we construct an EFT framework - the SCETBSM - for the case where
a new heavy scalar with a mass far above the electroweak scale is discovered at
a collider under the assumption that additional unobserved particles of the BSM
sector with similar masses exist.

All authors contributed to the collection of the relevant SCET ingredients in Sec-
tion 3.2, and to the construction of the SCETBSM Lagrangian and the calculation
of the decay rates in Sections 3.3 and 3.4. Matthias Neubert extracted some of the
RG equations in Sections 3.5.1 and 3.5.2 from the literature and earlier calcula-
tions. The RG equations for the Wilson coefficients C(1)

QLq̄R φ
, C(2)

QLq̄R φ
and CQLq̄R

in equations (3.79), (3.80) and (3.82) include the operator mixing and were derived
independently by all authors. The resummation effects discussed in Section 3.5.3
were studied by all authors. The analysis of the SCETBSM approach in Section 3.6
for the case of a double hierarchy M �MS � v was performed by all authors with
the exception of the RG equations in Section 3.6.1, which were mainly obtained by
Matthias Neubert.

For the calculations the author used the program Mathematica with the packages
Feyncalc [2,3], RunDec [4] and HypExp [5,6]. For the publication the author created
Figure 3.1 with JaxoDraw [7, 8] and Matthias König made Figures 3.2 to 3.7. All
authors contributed to the text.

[9] S. Alte, M. König and M. Neubert, Effective Theory for a Heavy Scalar Coupled
to the SM via Vector-Like Quarks, Eur. Phys. J. C79 (2019) 352 [1902.04593]:

We illustrate the SCETBSM approach by matching a concrete BSM model, where
a scalar and additional vector-like fermions are added to the SM, to the EFT. We
compute the Wilson coefficients and discuss the impact of resummation on the
relevant decay channels.
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Overview of Publications

All authors performed the computations underlying the whole work. For these cal-
culations, the author used the program Mathematica with the packages Feyncalc [2,
3], RunDec [4] and HypExp [5, 6]. For the publication Matthias König created the
figures and all authors contributed to the text.

[10] S. Alte, M. König and W. Shepherd, Consistent Searches for SMEFT Effects
in Non-Resonant Dijet Events, JHEP 01 (2018) 094 [1711.07484]:

In this work we develop a framework for the consistent application of the SMEFT
in collider studies. We apply this framework to the process dijet production and
derive bounds on the parameters of the SMEFT.
The author generated the pseudodata underlying the whole collider analysis. The
author implemented the SMEFT operators in FeynRules [11], generated partonic
Monte-Carlo pseudodata with MadGraph [12], employed PYTHIA [13] for showering
and simulated the detector effects with Delphes [14]. Based on these pseudodata
Matthias König and the author performed the statistical analysis and derived the
bounds on the SMEFT parameters with advice from William Shepherd. Matthias
König and the author computed the analytic cross sections. For the whole analysis
after the generation of the pseudodata, the author used Mathematica with the
packages Feyncalc [2, 3], RunDec [4] and ManeParse [15].
For the publication, Matthias König created the figures and all authors contributed
to the text. The figures shown in this thesis were produced by the author.

[16] S. Alte, M. König and W. Shepherd, Consistent Searches for SMEFT Ef-
fects in Non-Resonant Dilepton Events, accepted for publication in JHEP (2019)
[1812.07575]:

In two collider studies we search for SMEFT effects in data for dilepton production
taken at the LHC and the Tevatron. We apply the framework developed in [10]
and derive bounds on the parameters of the SMEFT contributing to this process.
The author performed the Monte-Carlo simulations for both collider studies by
generating partonic pseudodata with MadGraph [12]. The author used the SMEFTsim
package [17,18] for the contributing SMEFT operators. With advice from William
Shepherd, Matthias König and the author derived the bounds in the statistical
analysis based on the pseudodata. Matthias König and the author computed the
analytic cross sections. For the analysis the author used the same programs as
stated for the previous project [10]. In addition the author applied the Mathematica
interface of the Cuba library [19] for the numerical integration over the parton
distribution functions in the calculation of the hadronic cross sections.
Matthias König created the figures for the publication and all authors contributed
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to the text. The figures shown in this thesis were produced by the author.

The author composed the following proceedings discussing the work of the four authors
after his talk on ICHEP 2016:

[20] S. Alte, Y. Grossman, M. König and M. Neubert, Exclusive Radiative Decays
of Z Bosons in QCD Factorization, PoS ICHEP2016 (2016) 618 [1703.07242].

The following paper which contains partly work from the author’s master project was
finished and published during the time of the author’s PhD project, but is not discussed
in this thesis:

[21] S. Alte, M. König and M. Neubert, Exclusive Weak Radiative Higgs Decays in
the Standard Model and Beyond, JHEP 12 (2016) 037 [1609.06310].
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Notations and Conventions

In the following we collect the notations and conventions employed in the whole thesis.
We use natural units where the speed of light c and the reduced Planck constant ~ fulfill

c = ~ = 1 .

Unless explicitly stated otherwise, we denote Lorentz indices with values 0,1,2,3 by greek
letters. We employ the following convention for the metric tensor:

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

For the Levi-Civita tensor εµναβ we use the convention ε0123 = −1. The gamma matrices
are denoted as γµ with the defining anticommutator

{γµ, γν} = γµγν + γνγµ = 2 gµν ,

and the fifth gamma matrix is defined as γ5 = iγ0γ1γ2γ3. Moreover, we use the quantity
σµν = i

2 [γµ, γν ] with the commutator [γµ, γν ] = γµγν − γνγµ. We employ the Feynman
slash notation /a = γµaµ for a generic four-vector aµ. Unless stated otherwise, we sum
over repeated indices. For a generic Dirac spinor ψ we employ the definition ψ̄ = ψ†γ0.
We denote the unitary group and the special unitary group of degree n by U(n) and
SU(n), respectively. The structure constants of the non-abelian groups are defined by
the relations [T a, T b] = i fabc T c with T a = λa/2 for SU(3), where λa is a Gell-Mann
matrix, and by the relation [τ i, τ j ] = i εijk τk with τ i = σi/2 for SU(2), where σi is
a Pauli matrix. Unless stated otherwise, the indices in the adjoint representation of
SU(3) are a, b, c ∈ {1, 2, . . . , 8} and indices in the adjoint representation of SU(2) are
i, j, k ∈ {1, 2, 3}. The antisymmetric tensor in two and three dimensions is defined by
ε123 = +1 and ε12 = +1.
Concerning loop calculations we use dimensional regularisation in D = 4−2ε dimensions
and the MS scale µMS = µ e

γ/2
√

4π , where µ is the renormalisation scale and γ the Euler-
Mascheroni constant.
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List of Abbreviations

BSM beyond the Standard Model.

ChPT chiral perturbation theory.
CL confidence level.
CP charge conjugation and parity.

EFT effective field theory.
EWSB electroweak symmetry breaking.

HEFT Higgs-Effective Field Theory.
HQET Heavy-Quark Effective Theory.

IR infrared.

LEP Large Electron-Positron Collider.
LHC Large Hadron Collider.
LO leading order.

MC Monte-Carlo.
MFV minimal flavour violation.

NLO next-to-leading order.
NNLO next-to-next-to-leading order.
NP new physics.
NRQCD Non-Relativistic QCD.

PDF parton distribution function.

QCD Quantum Chromodynamics.
QED Quantum Electrodynamics.
QFT quantum field theory.

RG renormalisation-group.

SCET Soft-Collinear Effective Theory.
SM Standard Model.
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List of Abbreviations

SMEFT Standard-Model Effective Theory.
SSB spontaneous symmetry breaking.

UV ultraviolet.

VEV vacuum expectation value.
VLQ vector-like quark.
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1 Introduction

The eagerness of mankind to understand the inner properties of matter exists at least
since as early as 600 B.C. More than 2500 years lie between the philosophical concept of
“atomism” and the discovery of the Higgs boson at a gigantic particle collider - the Large
Hadron Collider (LHC) at CERN - in 2012 [22, 23]. The discovery of the Higgs boson
- predicted already in the 1960s [24–29] - marks the end of the experimental searches
for particles predicted by the Standard Model (SM). The time after the achievement of
this great milestone is at least as exciting as it is uncertain. On the one hand, the SM
provides a very successfull explanation of a plethora of phenomena and the discovery of
the Higgs boson manifests another experimental confirmation of SM predictions. On the
other hand, the SM does not account for gravity and further important experimental
observations such as dark matter and neutrino oscillations. A vast variety of models
beyond the Standard Model (BSM) addresses different shortcomings of the SM, such as
for example supersymmetry, models with extra dimensions or models with compositeness.
However, as for today concrete experimental evidence for these models is absent. In fact,
the current bounds on the mass scales of various BSM models arising from searches at
the LHC typically already lie in the TeV range. Many experimental anomalies such as
the famous 750 GeV diphoton excess [30,31] turned out to be statistical fluctuations. The
future will show whether the current anomalies observed in flavour observables [32–36]
point to any specific extension of the SM.
In the current situation, where concrete evidence for BSM models is absent at the energies
probed at the LHC, it is natural to assume that the mass scale M of these models lies
well above the electroweak scale v ≈ 246 GeV, i.e. v � M . The energy at the LHC
might or might not be sufficient to produce the particles of the BSM sector on shell. In
this thesis, we consider both of these options. If the energy reach of the LHC is sufficient
and a new particle is discovered, it is very likely that further particles of a whole new
BSM sector with similar masses exist. In this case and in the case where the energy at
the collider is not sufficient for the on-shell production, it is crucial to develop consistent
theoretical methods for the separation of the different mass scales.
Effective field theories (EFTs) provide the appropriate tools for this task. In a setting with
one high energy scale - in our case the mass scaleM - and one low energy scale - in our case
v - an EFT framework allows a systematic separation of the physical processes relevant
at the corresponding energy scale. Physical quantities are expanded in terms of the ratio
v/M of both energy scales and large logarithms of the inverse scale ratio M/v emerging
in perturbative calculations are resummed by renormalisation-group (RG) methods. The
EFT framework allows one to study effects of BSM models with a minimum amount
of well-defined assumptions regarding the underlying symmetries and the field content
at the low energy scale. In this sense, the EFT is often referred to as being “model-
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1 Introduction

independent” as opposed to “ultraviolet (UV)-complete” models featuring the definition
of the full particle content and the symmetries at the high energy scale.
In the first scenario [1, 9] we consider the case where a scalar, SM gauge singlet S with
mass MS � v and width ΓS � MS is discovered in a resonance search at the LHC
or a future collider. Furthermore, we assume that other particles of the BSM sector
with similar masses M ∼ MS exist, but are not discovered. This scenario is completely
analogous to many of the numerous explanations for the alleged 750 GeV diphoton res-
onance [30, 31]. In fact, approximately 500 publications emerged on the arXiv. In many
of these publications a local effective Lagrangian containing operators with mass dimen-
sion five is employed to describe the coupling of the hypothetical resonance to photons.
An example for a dimension-five operator inducing the decay of S into two photons
is 1

M S FµνF
µν , where F denotes the field strength tensor of the photon and where we

explicitly included the suppression by one power of the BSM scaleM . However, the trun-
cation of the local EFT expansion at the dimension-five level is not justified in general.
To illustrate the problematic issue we add derivatives and consider the dimension-seven
operator 1

M3 S (∂αFµν) (∂αFµν) which is suppressed by three powers of M at the La-
grangian level. However, the contribution of this operator to amplitudes for the decays of
S is not necessarily suppressed since the derivatives can give rise to powers of MS ∼ M
in the numerator. While the diphoton excess made history as a statistical fluctuation
rather than a spectacular discovery [37,38], the fundamental question of how to describe
the results in a consistent EFT approach remains.
In this work we provide an answer to this question and construct a consistent EFT
tailored for the scenario described above. Our EFT approach achieves a consistent sep-
aration of the physics at the mass scales v and M . To this end we employ methods
from Soft-Collinear Effective Theory (SCET) [39–42] and correspondingly name our EFT
“SCETBSM”. We construct the Lagrangian to describe the decays of S into SM parti-
cles up to the next-to-next-to-leading order (NNLO) in the power-counting parameter
λ ∼ v/M , perform the resummation of large logarithms of the ratio M/v using the rele-
vant RG equations and demonstrate the power of our theory by applying it in the context
of a UV-complete model where S and heavy, vector-like fermions are added to the SM.
In the second scenario [10, 16] we focus on the case where the mass scale M of the BSM
model is above the reach of the LHC, in addition to our underlying assumption M � v.
In this case the Standard-Model Effective Theory (SMEFT) provides the suitable EFT
framework to study BSM effects in collider studies. In the SMEFT the SM Lagrangian
is systematically supplemented by local operators with mass dimensions larger than four.
These higher-dimensional operators are built from SM fields and enter the SMEFT La-
grangian with corresponding dimensionless Wilson coefficients C and appropriate inverse
powers ofM . In particular, the dimension-six Lagrangian contains the suppression factor
1/M2 and the dimension-eight Lagrangian contains 1/M4. A large number of collider
studies exists placing bounds on the Wilson coefficients of the dimension-six Lagrangian
(see, e.g. [43–57] for different sets of dimension-six operators) and on the scale M . In
this work we focus in particular on dijet production and dilepton production, where rel-
evant previous studies include [58–60]. A huge number of SMEFT collider studies shares
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a common, highly problematic feature concerning the consistency in the expansion of
physical quantities in terms of the power-counting parameter 1/M . The problematic as-
pect of these studies is that the Lagrangian and thus also the amplitude is truncated at
the dimension-six level. However, the analysis is based on cross sections which contain
the squared amplitude. In terms of the SMEFT power counting, the interference of the
dimension-eight amplitude with the SM amplitude is of exactly the same importance as
the squared dimension-six amplitude, yet it is neglected in these analyses. In addition
to that, a SMEFT analysis at a hadron collider such as the LHC is complicated already
at the level of the squared dimension-six amplitude. The reason is that the contribution
to scattering processes arising from four-fermion operators grows with the partonic colli-
sion energy, which is not fixed between different events at a hadron collider. For events
where the collision energy is close to the mass scale M , the SMEFT expansion breaks
down. One approach to avoid this breakdown is to artificially remove events with par-
tonic collision energies larger than M from the analysis (see, e.g [61–64]). However, this
approach fails to quantify how reliable the influence of an event with a collision energy
below but very close to M is in the statistical analysis. A final shortcoming of existing
SMEFT collider studies concerns the number of operators considered. In many analyses
only one operator is switched on at a time to derive bounds on the SMEFT parame-
ters. This treatment gives rise to artificially strong bounds since cancellations between
contributions from different operators are not taken into account.
In this work we develop a framework to resolve all these issues. We truncate the signal
prediction for the cross sections at order 1/M2 in the power counting, i.e. at the level of
the interference of the dimension-six amplitude with the SM amplitude. To account for
the higher-order corrections in the SMEFT power counting we introduce a theory uncer-
tainty which models the contributions at order 1/M4. The theory uncertainty contains
the neglected squared dimension-six piece as well as an estimate for the contribution from
the interference of the dimension-eight amplitude with the SM amplitude. To illustrate
our approach we perform collider studies exploiting LHC and Tevatron data for dijet
and dilepton production. We identify the relevant linear combinations of contributing
operators and derive bounds on the Wilson coefficients and on the scale M .
This thesis is structured as follows: In Chapter 2 we provide a concise introduction
to the theoretical background with a particular focus on the SM of particle physics,
effective theories, the SMEFT and the SCET. In Chapter 3 we construct the SCETBSM
Lagrangian for the decays of the resonance S into SM particles up to the NNLO in power
counting. Furthermore, we discuss the relevant RG evolution equations and extend our
approach to the case where M �MS instead of M ∼MS . In Chapter 4 we consider the
matching of a UV-complete model, where the SM is supplemented by the scalar S and
by heavy, vector-like fermions, to the SCETBSM and discuss the effects of resummation
for phenomenological studies. In Chapter 5 we discuss the consistency requirements
for SMEFT analyses, develop our framework, and perform collider studies for dijet and
dilepton production which give rise to bounds on a variety of SMEFT parameters. We
draw our conclusions in Chapter 6.
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2 Theoretical Foundations

In this chapter we provide the theoretical foundations for the studies presented in later
chapters. We assume background knowledge about quantum field theory (QFT) and
group theory. Some pedagogical introductions to these topics are [65–71]. In Section 2.1
we briefly summarise the SM of particle physics based on [67, 71–74]. Following [74–78]
we discuss EFTs in Section 2.2. The two specific EFTs applied in this work, namely the
SMEFT and the SCET, are introduced in Section 2.3 based on [74] and in Section 2.4
following [77,79,80], respectively.

2.1 The Standard Model
Our understanding of the fundamental particles and their interactions is collected in the
SM of particle physics. The SM is the result of the fruitful interplay of theory and experi-
ment. Many of the most important theoretical frameworks were already developed in the
1960s. A non-exhaustive selection of the relevant concepts contains the development of
non-abelian gauge theories by Yang and Mills [81], the Goldstone theorem [82] concerning
the spontaneous breaking of symmetries proven by Goldstone, Weinberg and Salam [83]
and the mechanism explaining how the masses of the SM fields arise, commonly referred
to by the “Higgs mechanism”, developed by Higgs and others [24–29]. Further milestones
in the development of the SM are the quark model invented by Gell-Mann and Zweig [84],
the concept of asymptotic freedom developed by Gross, Wilczek and Politzer [85,86] and
the proof that spontaneously broken gauge theories are renormalisable from ’t Hooft and
Veltman [87,88]. On the experimental side the discovery of the Higgs boson at CERN in
2012 [22,23] is one of the numerous major achievements.
Mathematically the SM is a QFT. It exhibits a gauge symmetry with the underlying
gauge group

SUc(3)× SUW (2)×UY (1) , (2.1)

where the subscripts indicate the charges associated with the gauge groups, namely colour
c, weak isospin W and hypercharge Y . The particles are represented by quantum fields
transforming under different representations of the gauge group (2.1) and the Lorentz
group. The spin of a particle is related to the corresponding representation of the Lorentz
group. The SM field content consists of the gauge fields with spin 1, the fermion fields
with spin 1/2 and the Higgs field with spin 0. In Table 2.1 we provide an overview of the
fermion fields and the Higgs field with the representation under the SUc(3) gauge group
(second column), the representation under the SUW (2) gauge group (third column) and
the hypercharge (fourth column). The fermion fields are represented by chiral projections
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2 Theoretical Foundations

Field SUc(3) SUW (2) UY (1)
φ 1 2 1

2

QpL ∈
{(

uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)}
3 2 1

6

upR ∈ {uR, cR, tR} 3 1 2
3

dpR ∈ {dR, sR, bR} 3 1 −1
3

LpL ∈
{(

νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)}
1 2 −1

2

epR ∈ {eR, µR, τR} 1 1 −1

Table 2.1: Higgs field and fermion fields in the SM with the corresponding representation
with respect to the gauge groups SUc(3) (second column) and SUW (2) (third
column). The charges under UY (1) transformations are provided in the fourth
column. The index p ∈ {1, 2, 3} indicates the generation of the respective
fermion. The fermion fields are projections of Dirac spinors on the left- and
right-handed chiral components.

of Dirac spinors. For a generic Dirac spinor ψ we define the left-handed projection as
ψL = 1−γ5

2 ψ and the right-handed projection as ψR = 1+γ5
2 ψ. We note that fermion

fields of different chirality transform differently under the SM gauge group. Furthermore,
there exist three different generations of fermions, i. e. p ∈ {1, 2, 3} in Table 2.1. In
general we use the indices p, r, s, t as generation indices. The quarks are up quarks u,
down quarks d, strange quarks s, charm quarks c, bottom quarks b and top quarks t.
The leptons are electrons e, muons µ and tau leptons τ with the corresponding neutrinos
νe, νµ and ντ .
The Lagrangian of the SM respects both Lorentz and gauge symmetry. It can be decom-
posed according to

LSM = LGB + LF + LH + LY + LGF + LFP . (2.2)

The piece containing the kinetic terms for the gauge bosons is

LGB = −1
4G

a
µνG

µν,a − 1
4W

i
µνW

µν,i − 1
4BµνB

µν . (2.3)

The field strength tensors are

Gaµν = ∂µG
a
ν − ∂νGaµ + gS f

abcGbµG
c
ν , (2.4)

W i
µν = ∂µW

i
ν − ∂νW i

µ + g εijkW j
µW

k
ν , (2.5)

Bµν = ∂µBν − ∂νBµ , (2.6)

where the gauge fields of SUc(3) - the gluon fields - are Gaµ, the gauge fields of SUW (2)
are W i

µ and the gauge field of UY (1) is Bµ. The corresponding gauge couplings are gS , g
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2.1 The Standard Model

and g′. We furthermore define the strong coupling αS = g2
S/(4π) and the fine-structure

constant α = e2/(4π), where e is the elementary charge related to the gauge couplings by
the weak mixing angle θW as e = g sin θW . The Lagrangian containing the kinetic terms
for the fermions is

LF =
∑
ψ∈SM

iψ̄ /D ψ , (2.7)

where the sum includes the fermion fields presented in Table 2.1. The definition of the
covariant derivative Dµ depends on the field it acts on. For the case where a generic field
ψ transforms as (3,2, Y ) under the SM gauge group in the notation of Table 2.1, the
covariant derivative is

Dµψ =
(
∂µ − i gS Gaµ

λa

2 − i gW
i
µ

σi

2 − i g
′Bµ Y

)
ψ . (2.8)

The cases where ψ transforms as a singlet under a non-abelian gauge group is obtained
by omitting the term containing the corresponding gauge field in equation (2.8). The
piece of the Lagrangian LSM containing the kinetic term and the potential of the Higgs
field is

LH = (Dµφ)† (Dµφ) + µ2φ†φ− λ
(
φ†φ

)2
, (2.9)

where µ2 is the squared mass parameter and λ denotes the quartic Higgs coupling. Re-
quiring the stability of the Higgs vacuum the quartic coupling needs to fulfill λ > 0. The
piece of the Lagrangian coupling the fermions to the Higgs doublet is

LY = −Y pr
l L̄pL φ l

r
R − Y

pr
d Q̄pL φd

r
R − Y pr

u Q̄pL φ̃ u
r
R + h.c. , (2.10)

where Y pr
l , Y pr

u and Y pr
d are the entries of the complex matrices Yl, Yu and Yd, and

h.c. denotes the hermitian conjugate. The conjugate of the Higgs doublet is defined
as φ̃ = iσ2 φ

∗. The remaining pieces of the SM Lagrangian LGF and LFP arise in the
process of quantising the gauge fields. They contain the gauge-fixing terms and the
Faddeev-Popov ghosts [89]. Both pieces are not important for the discussion in this
work.
There exist no explicit mass terms for the fermions and the gauge bosons in the La-
grangian LSM due to gauge and Lorentz symmetry. The masses are generated in the
spontaneous symmetry breaking (SSB) of the SUW (2) × UY (1) symmetry to the UQ(1)
symmetry of electromagnetism, where the electric charge Q is the associated quantum
number [24–29]. The relation between the electric charge and the quantum numbers in
the unbroken phase is Q = T 3 + Y , where T 3 is the third component of the weak isospin
such that T 3 = 1/2 for the upper component of an SUW (2) doublet and T 3 = −1/2
for the lower component. We refer to this symmetry-breaking process by electroweak
symmetry breaking (EWSB). A necessary condition for EWSB is that the squared mass
parameter µ2 in the Higgs Lagrangian (2.9) is positive. The excitations of the Higgs
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2 Theoretical Foundations

doublet around the ground state give rise to the physical Higgs boson. Concretely, we
parameterise the Higgs doublet as

φ(x) = 1√
2

(
−i
√

2ϕ+(x)
v + h(x) + iϕ3(x)

)
, (2.11)

where the scalar fields ϕ+ and ϕ3 are the Goldstone bosons arising in the EWSB according
to the Goldstone theorem [82]. The physical Higgs boson is h and the vacuum expectation
value (VEV) is denoted by v. The mass terms for the gauge bosons in the broken phase,
the W and the Z boson, are generated from the kinetic term in the Higgs Lagrangian (2.9).
The relevant relations at tree level are

v2 = µ2

λ
, m2

h = 2µ2 , λ = g2

8
m2
h

m2
W

, mW = 1
2gv , mZ = mW

cos θW
, (2.12)

where mh, mW and mZ are the masses of the Higgs boson, the W boson and the Z boson.
The mass terms for the fermions arise in the EWSB from the Yukawa Lagrangian (2.10).
In the broken phase the diagonalisation of the mass matrices in generation space is
achieved by the transformations fL → UfL fL and fR → WfR fR, where f ∈ {u, d, e}.
In the context of these transformations we use u, d, e as a short-hand notation for the
vectors in generation space. Concretely, the vector u corresponds to (u, c, t)T , the vector
d denotes (d, s, b)T and the vector e represents (e, µ, τ)T . The unitary matrices UfL
and WfR are chosen such that the matrices U †eLYlWeR , U

†
dL
YdWdR and U †uLYuWuR are

diagonal.
The SM provides a very successful explanation of the phenomena observed up to energies
currently probed at the LHC. However, there exist phenomena which are not captured by
the SM such as dark matter [90–92], neutrino masses [93–97] and baryogenesis [98, 99].
Moreover, the SM does not incorporate gravity as an interaction. Finally, there are
also concerns addressing the SM as a theory itself such as the hierarchy problem (see
for example appendix A in [78] for a pedagogical explanation). These aspects make it
necessary to develop theories beyond the SM referred to as physics BSM or new physics
(NP). EFTs are a powerful tool for both physics within and beyond the SM.

2.2 Effective Field Theories
For the details about EFTs not covered in this section we refer the reader to a collection
of review articles and lectures [77,78,100–107].
We illustrate the general notion of an effective theory by the following words from Howard
Georgi [75]:

To do physics amid this remarkable richness, it is convenient to be able to
isolate a set of phenomena from all the rest, so that we can describe it without
having to understand everything. Fortunately, this is often possible. We can
divide the parameter space of the world into different regions, in each of which

8



2.2 Effective Field Theories

there is a different appropriate description of the important physics. Such an
appropriate description of the important physics is an “effective theory”.

The world we live in contains a vast amount of phenomena at disparate scales of energy,
length and time. A concrete example is the difference in the time scales set by the age
of the universe, ∼ 1017 s [92], and the lifetime of the top quark, ∼ 10−24 s [108]. In
the construction of an effective theory the important physical processes at the scale of
interest are isolated and an appropriate theory for those processes is developed. For the
description of a process involving two disparate scales one constructs the effective theory
by expanding physical quantities in the ratio of the scales. The leading term in this
expansion corresponds to the limit where the small scale is set to zero and the large scale
is set to infinity.
A familiar example is the description of motions with velocities v which we regularly
encounter in our everyday life. These velocities are much smaller than the speed of
light c. Thus, Newton’s laws of motion [109] provide a valid approximate description of
these motions and it is usually not necessary to include effects of the special theory of
relativity [110]. The expansion parameter in this example is the ratio of velocities v/c. We
motivate the necessity for effective quantum field theories or EFTs within fundamental
particle physics by noting that even within the SM the mass scales of the particles range
from the upper limit of the neutrino masses ∼ eV [108] up to the mass of the top quark
∼ 1011 eV [108].
In the following we illustrate the construction of an EFT in more detail. Under the
assumption that there exists one fundamental mass scale M the EFT provides an ap-
proximate description for processes at energies E much smaller than M . The notion of
“decoupling” formalised by theorems such as the one from Appelquist and Carrazone [111]
describes the effect of heavy states, i. e. states with masses of order M , on processes
with energies of order E at the perturbative level. In a simplified version decoupling
theorems state that a Feynman diagram containing loops with internal heavy states is
suppressed with respect to the diagram with no heavy states by some powers of the small
scale ratio E/M . In the concrete construction of the EFT Lagrangian in the path-integral
approach the integration over the Fourier modes of the fields with frequencies of orderM
is performed, a step commonly referred to as “integrating out” the high-frequency modes.
We refer the reader to section 2 in [77] for further details about the construction of the
effective Lagrangian. In the end, the general structure of the effective Lagrangian is

Leff =
∑
i

giQi , (2.13)

where the sum includes all the local operators Qi built from the light fields. The operators
are required to respect the symmetries of the theory. The couplings of the EFT gi encode
the information about the physics at energy scales of orderM . We rewrite these couplings
as

gi = CiM
−γi , (2.14)
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2 Theoretical Foundations

where the dimensionless quantities Ci are referred to as the Wilson coefficients. Working
in four dimensions and denoting the mass dimensions of the effective operators by [Qi], it
follows from a dimensional analysis that γi = [Qi]−4. We apply the concept of naturalness
in the sense of ’t Hooft [112] and assume Ci ∼ 1 for the Wilson coefficients. According to
’t Hooft the couplings of the effective theory measured in appropriate units of the relevant
mass scale, i. e. the Wilson coefficients Ci, should only deviate decisively from ∼ 1 if
there is a mechanism explaining this deviation. An example for such a mechanism is the
case where setting a Wilson coefficient to zero increases the symmetry of the Lagrangian.
In this case a Wilson coefficient much smaller than ∼ 1 is still considered to be natural.
For further details about the concept of naturalness we refer the reader to the review
article [113]. Using dimensional analysis we expect the contribution of an operator Qi to
a dimensionless observable for a process at an energy E �M to scale as

Ci

(
E

M

)γi
. (2.15)

The SM Lagrangian discussed in the last section contains one operator with γi < 0 - the
Higgs mass operator - and operators with γi = 0. The contribution of these operators in
the limit of low energies E → 0 grows for the case γi < 0 and is constant for γi = 0. In this
sense the SM can be viewed as an effective low-energy description of a more fundamental
theory. We focus on the case γi > 0 in the following since it is the most relevant one for
our later analysis1. Due to the assumption E/M � 1 the contribution of an operator is
the more suppressed the higher the mass dimension of the operator is. As a consequence,
one can truncate the sum in the effective Lagrangian (2.13) at a fixed order in the series
in E/M depending on the desired precision of the calculation. However, it is crucial to
estimate the effect of higher-order contributions in this series in concrete applications.
As a summary of the decoupling EFT approach we point out that the separation of the
physics at the low energy scale E and the high energy scale M is achieved as follows:
the information about the physics at the UV energy scale M is encoded in the Wilson
coefficients Ci whereas the physics at the infrared (IR) energy scale E is determined from
low-energy matrix elements of the operators Qi. Examples for decoupling EFTs are the
effective Lagrangian for light-by-light scattering at energies much smaller than the mass
of the electron [114] and the Fermi theory of the weak interactions at energies much
smaller than the mass of the W boson [115]. In this work we focus on the SMEFT where
the SM is viewed as an effective low-energy theory of some yet unknown UV theory. We
discuss details of the SMEFT in Section 2.3.
The operators in the effective Lagrangian (2.13) are local operators. However, there ex-
ist EFTs where the effective Lagrangian contains non-local operators. Such non-local
operators arise in particular in effective theories where different components of the four-
momenta of the particles exhibit different scaling properties with respect to the scale
ratio. In contrast to that one assigns a scaling to the square of the four-momenta in

1We intentionally refrain from assigning the misleading terms “relevant”, “irrelevant” and “marginal”
to the different cases for γi.
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2.2 Effective Field Theories

the local EFT discussed above. A prominent example for an EFT with non-local oper-
ators is the SCET [39–42] applied in this thesis. Originally, SCET was developed as an
EFT for processes in Quantum Chromodynamics (QCD). We discuss details of SCET in
Section 2.4 in particular explaining how non-local operators arise.
The SCET in its original formulation for QCD processes represents the concept of a
top-down EFT where the UV-complete theory is known. Even though the UV-complete
theory is known it is still useful and in many cases crucial to employ an EFT framework.
In the calculation the EFT allows to employ the techniques and tools suitable to describe
the physics at the corresponding energy scale. As an example, in many applications of
EFTs to QCD processes the low energy scale lies in the non-perturbative regime of QCD
whereas the theory is perturbative at the high energy scale. A further advantage of using
an EFT is the resummation of large logarithms which we explain in more detail below.
The Wilson coefficients in the top-down EFT approach can be calculated in a matching
calculation. In this matching calculation one requires the EFT and the full theory to give
rise to the same S-matrix elements at a certain scale referred to as the matching scale.
Prominent examples for top-down EFTs are the Heavy-Quark Effective Theory (HQET)
(see e. g. the review [116]) and the Non-Relativistic QCD (NRQCD) [117, 118]. These
two EFTs provide low-energy descriptions of QCD suited for different applications.
As opposed to the top-down EFT approach the SMEFT is an example for a bottom-up
EFT. The bottom-up approach is useful either when the UV-complete theory is not known
or when the matching of the UV-complete theory to the EFT is difficult or not possible
at all. In the bottom-up approach one constructs the most general Lagrangian containing
the fields of the EFT at a certain order in the EFT power counting imposing the relevant
symmetries on the operators in the Lagrangian. The couplings in the effective Lagrangian
can be extracted from measuring suitable observables to the precision needed at the order
in the power counting. The SMEFT is a bottom-up EFT since the UV-completion of
the SM is not yet known. In this case the EFT allows a consistent interpretation of
experimental results with a minimum amount of assumptions. Another example for a
bottom-up EFT is chiral perturbation theory (ChPT) (see e. g. the reviews [119, 120])
developed to describe QCD below the scale of hadronisation. Although the UV-complete
theory is known in this case it is not clear how the matching to QCD can be performed
since QCD is not perturbative at the low energy scale where the degrees of freedom are
bound states of baryons and mesons compared to the quarks and gluons in QCD.
As a final aspect of this discussion we elaborate on one main advantage of using an EFT
framework, namely the ability to systematically account for large logarithms emerging in
computations beyond tree level. We focus on a two-scale problem with one high energy
scale M and one low energy scale m � M . In this setting a typical one-loop QCD
diagram gives rise to terms of the form αS

4π ln
(
M2

m2

)
and in general powers of this term

arise from Feynman diagrams beyond the one-loop level. Since by assumption M � m

the perturbative expansion in powers of αS breaks down if αS
4π ln

(
M2

m2

)
∼ 1. In an EFT

approach to this two-scale problem employing dimensional regularisation the full-theory
result is split up into the Wilson coefficients containing logarithms of the ratio M/µ
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and operator matrix elements containing logarithms of the ratio m/µ, where µ denotes
the mass scale introduced in dimensional regularisation. Thus, large logarithms do not
arise if one evaluates the Wilson coefficients at the high scale, i.e. µ = M , and the
operator matrix elements at the low scale, i.e. µ = m. The fact that large logarithms
are absent if both quantities are evaluated at the suitable energy scales represents the
general notion of EFTs discussed above, namely a systematic separation of the physical
processes at disparate energy scales. However, it is still necessary to either express the
Wilson coefficient at the high scale in terms of the Wilson coefficient at the low scale
or - analogously - express the operator matrix elements at the low scale in terms of the
operator matrix elements at the high scale. This is achieved by solving the relevant RG
equation. A typical RG equation for a Wilson coefficient C exhibits the form

µ
d

dµ
C(µ) =

[
γ0
αS
4π +O

(
α2
S

)]
C(µ) , (2.16)

where γ0 is referred to as the anomalous dimension. Employing the one-loop running of
the strong coupling,

µ
d

dµ
αS(µ) = −2β0

α2
S

4π +O
(
α3
S

)
, (2.17)

the general solution of the RG equation (2.16) is

C(µ) =
[
αS(µ)
αS(µ0)

]− γ0
2β0

C(µ0) =

 ∞∑
j=0

aj(β0, γ0)
j!

(
αS(µ)

4π ln
(
µ2

µ2
0

))jC(µ0) . (2.18)

The second equality in this equation is the expansion in powers of the strong coupling,
where the series coefficients aj are functions of the coefficients β0 and γ0. We explicitly
observe that applying this solution to the problem discussed above, i.e. identifying µ = M

and µ0 = m, sums up the infinite tower of terms αS
4π ln

(
M2

m2

)
.

2.3 The Standard-Model Effective Theory
We discussed in Section 2.1 the need for physics BSM. The bottom-up EFT approach
presented in Section 2.2 allows a view of the SM as an EFT of some yet unkown UV-
complete theory. Two different approaches exist in this context, namely the SMEFT
and the Higgs-Effective Field Theory (HEFT). The main difference between the SMEFT
and the HEFT lies in the assumptions applied in the scalar sector of the theory. In
the HEFT the Higgs-like particle discovered at CERN [22,23] is identified with a gauge-
singlet scalar and thus not part of the SUW (2) doublet φ as it is the case in both the SM
and the SMEFT. As a gauge-singlet this field exhibits general couplings to the other SM
fields. In the HEFT the Goldstone bosons of EWSB are treated in analogy to the pions
in chiral symmetry breaking in ChPT. The HEFT was developed as a consistent EFT
in [121–138] where we refer the reader to for further details.
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The SMEFT is a decoupling EFT as described in Section 2.2. The light degrees of freedom
are the SM states specified in Table 2.1, the EFT series is an expansion in powers of 1/M ,
where M denotes the mass scale of NP2, and the symmetries imposed are the SM gauge
symmetry and Lorentz symmetry. These assumptions lead to the SMEFT Lagrangian

LSMEFT = LSM + L(5) + L(6) + L(7) + L(8) + . . . , (2.19)

where the different pieces correspond to terms of different order in 1/M . The leading
term is the SM Lagrangian LSM. The couplings in LSM receive corrections from the
higher-dimensional operators in the pieces L(i), where i > 4. These pieces have the
structure

L(i) =
Ni∑
j=1

C
(i)
j

M i−4Q
(i)
j , (2.20)

where the Wilson coefficients are denoted by C(i)
j and the sum includes the complete set

of Ni non-redundant operators Qj with the mass dimension [Qj ] = i.
Such a set of non-redundant operators defines an operator basis. Two operators are
redundant if they can be related to each other for example by applying the equations
of motion, Fierz identites, integration by parts or field redefinitions. As an example we
consider the dimension-six operator Q2G = (DµGµν)a(DρG ν

ρ )a from the set of operators
considered in [56] in the conventions of [57], where (DµGνα)a = ∂µG

a
να − gSfabcGbµGcνα.

Applying the classical equations of motion one finds [57]

(DµGµν)a = gS
(
Q̄L γν T

aQL + ūR γν T
a uR + d̄R γν T

a dR
)

+O
( 1
M

)
, (2.21)

where a sum over the generations is implied on the right-hand side of the equation.
Two important points are worth to note. First, we observe that the operator Q2G can
be mapped onto four-fermion operators by applying the equations of motion. Second,
this mapping receives contributions suppressed by 1/M . These corrections imply that a
change of the operator basis at the dimension-six level in general gives rise to changes
beyond the dimension-six Lagrangian.
In the following we discuss the different pieces of the SMEFT Lagrangian (2.19). Omitting
to count the different combinations of flavour indices and the hermitian conjugate, there
exists one operator in the dimension-five Lagrangian L(5). This operator [139] in the
convention of [57] is

Qνν =
(
φ̃†LpL

)T
C
(
φ̃†LrL

)
, (2.22)

where C is the charge-conjugation operator. In general we omit the flavour indices on
the operators and in particular write Qνν instead of Qprνν . While this operator is irrele-
vant for the applications discussed in this work it is crucial in the context of neutrinos.

2Within the SMEFT community the scale M is widely referred to as Λ.
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(
R̄R

) (
R̄R

) (
L̄L
) (
R̄R

)
Qee (ēpγµer) (ēsγµet) QLe

(
L̄pγµLr

)
(ēsγµet)

Quu (ūpγµur) (ūsγµut) QLu
(
L̄pγµLr

)
(ūsγµut)

Qdd
(
d̄pγµdr

) (
d̄sγ

µdt
)

QLd
(
L̄pγµLr

) (
d̄sγ

µdt
)

Qeu (ēpγµer) (ūsγµut) QQe
(
Q̄pγµQr

)
(ēsγµet)

Qed (ēpγµer)
(
d̄sγ

µdt
)

Q
(1)
Qu

(
Q̄pγµQr

)
(ūsγµut)

Q
(1)
ud (ūpγµur)

(
d̄sγ

µdt
)

Q
(8)
Qu

(
Q̄pγµT

aQr
)

(ūsγµT aut)

Q
(8)
ud (ūpγµT aur)

(
d̄sγ

µT adt
)

Q
(1)
Qd

(
Q̄pγµQr

) (
d̄sγ

µdt
)

Q
(8)
Qd

(
Q̄pγµT

aQr
) (
d̄sγ

µT adt
)

(
L̄R

) (
R̄L

)
and

(
L̄R

) (
L̄R

) (
L̄L
) (
L̄L
)

QLedQ
(
L̄jper

) (
d̄sQ

j
t

)
QLL

(
L̄pγµLr

) (
L̄sγ

µLt
)

Q
(1)
QuQd

(
Q̄jpur

)
εjk
(
Q̄ksdt

)
Q

(1)
QQ

(
Q̄pγµQr

) (
Q̄sγ

µQt
)

Q
(8)
QuQd

(
Q̄jpT

aur
)
εjk
(
Q̄ksT

adt
)

Q
(3)
QQ

(
Q̄pγµτ

iQr
) (
Q̄sγ

µτ iQt
)

Q
(1)
LeQu

(
L̄jper

)
εjk
(
Q̄ksut

)
Q

(1)
LQ

(
L̄pγµLr

) (
Q̄sγ

µQt
)

Q
(3)
LeQu

(
L̄jpσµνer

)
εjk
(
Q̄ksσ

µνut
)

Q
(3)
LQ

(
L̄pγµτ

iLr
) (
Q̄sγ

µτ iQt
)

Table 2.2: Baryon-number-conserving four-fermion operators in the SMEFT Lagrangian
in the basis of [57]. We omit to write the chirality labels. The operators
are classified into four different classes according to their chirality structure.
These classes are only right-handed fields (upper left list), only left-handed
fields (lower right list) and two different types of left- and right-handed mixed
operators (upper right and lower left lists).

After symmetry breaking the operator Qνν generates neutrino masses and mixings. As
discussed in Section 2.1 neutrino masses are a phenomenon observed in nature which is
not captured by the SM Lagrangian.
A large amount of phenomenological studies employing different sets of dimension-six
operators exist (for example [43–56]). The first consistent reduction of dimension-six
operators to an operator basis was achieved in [57]. We use this basis, commonly referred
to as the “Warsaw basis”, in this thesis. Focussing on the baryon-number-conserving
operators, there exist ten classes of dimension-six operators in [57]. We collect the four-
fermion operators in Table 2.2. We omit the chirality labels of the fields which are as
specified in Table 2.1. In Table 2.2 the indices j and k are indices in the fundamental
representation of SUW (2). There exist four classes of four-fermion operators classified
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according to the chirality structure of the fermion fields. These classes correspond to
only right-handed fields (upper left list), only left-handed fields (lower right list) and
two different types of left- and right-handed combinations (upper right and lower left
lists) differing in the way the SUW (2) indices are contracted. Omitting to count different
flavour combinations the total number of four-fermion operators is 25. In addition to
these four-fermion operators there exist 34 non-four fermion operators classified in six
classes. The complete list of these operators is not relevant for the analyses in this thesis
and we refer the reader to table 2 in [57]. Together there exist 59 operators under our
assumptions if the operators are flavour universal. The RG evolution of these operators
is studied in [140–142].
For the dimension-seven Lagrangian L(7) an operator bases exists [143,144]. Furthermore,
tools to count the number of non-redundant operators and to construct bases at even
higher order exist [145–149].

2.4 The Soft-Collinear Effective Theory
A typical process suited to be described in terms of SCET contains particles where some
components of their four-momenta pµ are of the order of the high energy scaleM whereas
the invariant masses are small, i.e. p2 �M2. Originally, SCET was developed for decays
of B mesons into final states with light mesons [39–42,150,151]. The high energy scale in
these processes is determined by the mass of the decaying B meson and thus of the order
of the b-quark mass mb. The low energy scale is set by the masses of the light mesons and
thus of the order of the QCD scale ΛQCD. As a result, the expansion parameter of the
SCET in these applications is λ = ΛQCD/mb. Beyond these original applications, SCET
methods were applied to a vast variety of processes, also including electroweak processes
(see e.g. [152–154]). For an overview we refer the reader to chapter 9 in [79].
Before we discuss the construction of a SCET Lagrangian we introduce suitable coordi-
nates. As indicated in the last paragraph we focus on a process where some components
of the three-momenta of light particles are of the order of the large energy scale. We
define a set of k three-vectors ni with |ni| = 1 and i ∈ {1, . . . , k} by taking the three-
momenta of the particles and neglecting the components which are not of the order of the
large scale. These directions are the jets-defining directions. Using the three-vectors ni
we define four-vectors nµi = (1,ni) and n̄µi = (1,−ni) such that ni · n̄i = 2 and decompose
a general four-vector pµ according to

pµ = n̄i · p
nµi
2 + ni · p

n̄µi
2 + pµ⊥ . (2.23)

The four-vector pµ⊥ contains the components from the plane perpendicular to nµi and
n̄µi . A typical choice for one jet direction, i.e. k = 1, is nµ1 = (1, 0, 0,−1) and n̄µ1 =
(1, 0, 0, 1). In this case the perpendicular piece of the four-vector pµ = (p0, p1, p2, p3) is
pµ⊥ = (0, p1, p2, 0). To discuss the scaling properties of pµ with respect to the power-
counting parameter λ we represent pµ by the components in the decomposition (2.23) as
(ni · p, n̄i · p, |p⊥|).
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The first step in the construction of a SCET for a given process is to identify the relevant
momentum modes and their scaling properties with respect to λ. The momentum modes
which are integrated out in the construction of the SCET Lagrangian are the hard modes
with scaling ∼M (1, 1, 1), where M denotes the large energy scale as above. In a typical
setting there furthermore exist ni-collinear momentum modes with scaling ∼M (λ2, 1, λ)
such that one component in the decomposition (2.23) is large. Momentum modes where
the three pieces in (2.23) are suppressed by powers of λ but exhibit equal scaling properties
are the soft modes with scaling ∼ M (λ, λ, λ) and the ultra-soft modes with scaling
∼M (λ2, λ2, λ2). Especially in the context of factorisation proofs so-called Glauber gluons
with momenta scaling ∼M (λ2, λ2, λ) play an important role (see, e.g. [155,156]). For a
comprehensive overview about the SCET approach to Glauber gluons we refer the reader
to [157]. To conclude this paragraph about the different momentum scalings we note
that in general one distinguishes two different classes of SCET applications. In a SCETI
setting the particles where the three terms in (2.23) exhibit the same scaling have a
virtuality different from the virtuality of the ni-collinear particles whereas both have the
same virtuality in a SCETII setting.
To illustrate the construction of the SCET Lagrangian we consider an example setting
where the relevant momentum modes are hard, n1-collinear, n2-collinear and ultra-
soft. The full-theory fields are split up into four pieces corresponding to the different
momentum regions. Concretely, a full-theory quark field ψ is split up according to
ψ → ψh + ψn1 + ψn2 + ψus. The hard mode ψh is integrated out in the construction
of the low-energy Lagrangian while the n1-collinear mode ψn1 , the n2-collinear mode ψn2

and the ultra-soft mode ψus constitute the degrees of freedom in the EFT Lagrangian.
The scaling of these different components with respect to λ follows from suitable two-
point correlation functions. The Dirac spinors ψni contain two components with different
scaling. One splits up ψni = ξni + ηni , where the two components are defined by the
projections ξni = (/ni /̄ni/4) ψni and ηni = (/̄ni/ni/4) ψni . To derive the scaling of the
component ξni we consider

〈0|T
{
ξni(x)ξ̄ni(0)

}
|0〉 = /ni /̄ni

4 〈0|T
{
ψni(x)ψ̄ni(0)

}
|0〉

/̄ni/ni
4

=
∫

d4p

(2π)4
i

p2 + iε
e−ip·x

/ni /̄ni
4 /p

/̄ni/ni
4

∼ λ4 1
λ2 = λ2 ,

(2.24)

where T denotes the time-ordered product. To arrive at the scaling in the last line of
(2.24) we note that p2 ∼ λ2 and /p ∼ (n̄i · p)/ni with n̄i · p ∼ 1 for ni-collinear fields. The
scaling relations presented in the construction of the SCETBSM Lagrangian in Chapter 3
follow in analogy to the procedure presented here.
The scaling properties of the fields allow one to construct the SCET Lagrangian at some
order in power counting. The most general set of operators is built - taking the relevant
symmetries into account - from the field components in the EFT Lagrangian. For each
operator a Wilson coefficient is introduced containing the information about the physics at
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the high energy scale. As a special feature of the SCET the EFT operators are in general
non local. In the following we explain how these non-localities arise. For a ni-collinear
momentum p the component n̄i · p scales as λ0 and is thus unsuppressed. It follows that
also the corresponding component of the derivative acting on a general ni-collinear field
is unsuppressed, i. e. (n̄i · ∂) ψni ∼ λ0. Thus, in principle an infinite amount of these
derivatives needs to be included for each ni-collinear field in the Lagrangian giving rise
to an infinite amount of operators with appropriate Wilson coefficients. However, it is
more convenient to map the infinite amount of derivatives to non-localities of the fields.
For that purpose we expand a general ni-collinear SCET field ψni as

ψni(x+ t n̄i) =
∞∑
j=0

tj

j! (n̄i · ∂)j ψni(x) , (2.25)

where t parameterises the position along the light-like direction n̄i. Including a Wilson
coefficient Cj for each term in the series yields

∞∑
j=0

Cj
j! (n̄i · ∂)j ψni(x) =

∫
dtC(t)ψni(x+ t n̄i) , (2.26)

where we introduce the Wilson-coefficient function C with the moments Cj =
∫
dtC(t) tj .

Including non-local operators, one carefully needs to restore the invariance of the La-
grangian under gauge transformations. One approach is to first construct a non-local
operator and to restore gauge invariance by including Wilson lines as gauge links after-
wards. Alternatively, one uses so-called gauge-covariant building blocks containing the
Wilson lines in the first place and builds the operators from these building blocks. We
pursue the latter option, define the relevant quantities in Section 3.2 and perform the
construction of the SCET Lagrangian in Sections 3.3 and 3.4.
The Feynman rules for the SCET are derived from the SCET Lagrangian in analogy to
the derivation of the SM Feynman rules from the SM Lagrangian. At the level of Feynman
diagrams there exists a one-to-one correspondence between diagrams containing the low-
energy modes from the SCET Lagrangian and diagrams in the full theory expanded
in certain momentum regions. This correspondence is referred to by the “strategy of
region” [158,159]. The strategy-of-region approach is a useful tool to identify the relevant
degrees of freedom in the SCET construction. As a concrete example we refer the reader
to a discussion of the Sudakov form factor as provided for example in section 3 of [80].
Concerning the RG equations it is a special feature of SCET that these are in general more
complicated compared to the example we considered in equation (2.16) in Section 2.2.
Concretely, the presence of Sudkov double logarithms gives rise to logarithms of the scale
ratio in the anomalous dimensions. A typical RG equation for a two-scale problem similar
to the one discussed in Section 2.2 exhibits the form

µ
d

dµ
C(µ) =

[
γcusp(αS) ln

(
M2

m2

)
+ γV (αS)

]
C(µ) , (2.27)
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where γcusp is the “cusp anomalous dimension”. The solution of this RG equation resums
the Sudakov logarithms. This resummation of Sudakov logarithms is one of the main
advantages of the SCET. We discuss the solutions of RG equations of the form (2.27) in
our concrete applications in Chapter 3.
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3 Effective Field Theory After a New-Physics
Discovery

This chapter is published in [1] under the creative commons license CC-BY 4.0 (http:
//creativecommons.org/licenses/by/4.0/). We performed minor modifications to
the text, the notation and the formatting.

3.1 Introduction
Following the discovery of a new heavy particle with mass far above the electroweak scale,
understanding its properties will be a crucial task for both theorists and experimenters.
In many well-motivated extensions of the SM, such as models based on supersymmetry,
compositeness, or extra dimensions, one expects that the first new particle to be discov-
ered is one member of a larger sector of particles with similar masses, characterised by
a scale M � v. Barring any further discoveries, the most general approach to studying
the new particle’s properties – via its decays into SM particles and its production rates –
would be to embed it into an EFT formalism. The purpose of this work is to show how
this can be done consistently.
While no new particles have yet been discovered at the LHC, the high-luminosity run
still offers a significant discovery potential for new heavy resonances, for which the mass
reach extends out to about 6TeV (see e.g. [160, 161]). An energy upgrade to 27TeV or
a future 100TeV collider could extend this reach significantly. The phantom 750GeV
diphoton resonance, for which preliminary evidence was reported by the ATLAS and
CMS collaborations in late 2015 [30, 31], provides a concrete example with which to il-
lustrate the motivation for our work. Hundreds of phenomenological papers have been
written in response to these hints. In most of them, the authors have assumed the ex-
istence of a neutral spin-0 boson S with mass MS ≈ 750GeV and constructed the most
general EFT Lagrangian at dimension-five order, in which S is coupled to SM fields. The
underlying assumption is that these dimension-five operators arise from integrating out
additional heavy particles. However, in the vast majority of models addressing the dipho-
ton resonance these other particles had masses of the same order, governed by a scale
M ∼ MS & 1TeV. In such a situation, it is evident that a conventional EFT approach
cannot be employed in a systematic way to study the on-shell decay and production
rates of the new particle. The naive assumption that amplitudes of the dimension-five
Lagrangian scale like vn/M , where v ≈ 246GeV is the electroweak scale, is invalid in this
case. The reason is that EFT matrix elements scale with powers of the mass parameters
present in the theory, which now are v and MS . For MS ∼ M � v, higher-dimensional
operators can be unsuppressed with respect to lower-dimensional ones, since their con-
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3 Effective Field Theory After a New-Physics Discovery

tributions can scale with (MS/M)2n = O(1) relative to the dimension-five contributions.
Factors ofM2

S in the numerator can arise, e.g., from operators containing extra derivatives
or longitudinally polarised gauge fields. Thus, infinite towers of EFT operators would
need to be retained to include all terms of a given order in v/MS – a task that is usually
impracticable. Also, a conventional EFT would not allow one to resum large logarithms
of the scale ratio MS/v.
A successful theoretical framework to address this situation will have to accomplish the
following tasks: i) it must be flexible enough to retain the full dependence on the two
NP scales: the mass MS of the heavy resonance that has been discovered, and the mass
scale M characterising the other particles belonging to the new sector; ii) it must allow
for a consistent separation of the contributions arising from the scales MS and v, and in
particular it must provide the tools to resum large (double) logarithms of the scale ratio
MS/v using RG equations. Note that with MS ∼ few TeV these logarithms can be very
large, e.g. αS ln2(M2

S/m
2
t ) ∼ 5 for MS = 5TeV, and hence resummation is obligatory,

even for electroweak radiative corrections.
The situation encountered here is similar to the case of B-meson decays to final states
containing light mesons. A systematic heavy-quark expansion of the corresponding decay
amplitudes in the small ratio ΛQCD/mb is made complicated by the fact that the light
final-state particles carry energies Ei = O(mb) that scale with the heavy-quark mass.
This obstacle was overcome with the QCD factorisation approach developed in [162–164]
and the construction of SCET [39–42]. In the present work, we use established SCET
technology to derive a consistent EFT that can be employed to study the decays of a new
heavy particle S into SM particles. The decay amplitudes are systematically expanded
in powers of the ratio λ = v/MS � 1. The scale MS enters via the large energies and
momenta carried by the light SM particles in the final state. While SCET was developed
for QCD processes originally, generalisations to electroweak processes have been discussed
in [152–154]. In several aspects our approach follows the line of reasoning laid out in these
papers. However, we go significantly further by developing the SCET approach beyond
the leading order in the power expansion, where several new and subtle issues arise. For
example, there is a non-trivial mixing of operators at leading and subleading order, which
gives rise to a novel source of large double logarithms, which we resum. We shall refer to
the EFT we develop as “SCET beyond the SM” (SCETBSM).
We stress that our effective theory is not meant as an alternative to the EFT extension
of the SM referred to as SMEFT [43,45,46,57,139] (see [74] for a recent review). SMEFT
parameterises NP effects from heavy virtual particles in a model-independent way by
extending the SM through local, higher-dimensional operators built out of SM fields.
Assuming there are no light new particles beyond the SM, it provides the appropriate
EFT framework for studying indirect hints of NP. SCETBSM, on the other hand, is
constructed to describe the decays of a new on-shell heavy resonance into SM particles.
In our treatment we will assume that the new resonance is narrow (ΓS/MS � 1), such
that its width can be neglected when constructing the effective theory. If S decays
primarily into SM particles, our results obtained for the various decay widths show a
posteriori that this assumption is justified.
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The construction of the SCETBSM Lagrangian is process dependent. In this paper we will
develop a general toolbox, which allows for a simple, systematic and intuitive construction
of the relevant effective Lagrangians for BSM practitioners, even if they are not experts on
SCET. For simplicity, we assume that S has spin-0 and is a gauge singlet under the SM.
After reviewing some basic aspects of SCET in Section 3.2, we construct in Sections 3.3
and 3.4 the relevant effective Lagrangians for all two-body decays of S into SM particles,
and for all three-body decay processes involving a fermion pair in the final state. The
extension to new particles with spin S = 1/2 or 1, or particles which carry SM quantum
numbers, is straightforward. However, if S is a member of an SUW (2) multiplet, then a
gauge-invariant EFT can only be built in terms of the entire multiplet.
In the conventional EFT approach, the decay amplitudes of S into pairs of SM particles
receive contributions from operators of dimension D = 5 (in the case of S → Zh these
contributions start at one-loop order), but nevertheless these amplitudes have different
scaling properties with λ = v/MS , namely (see e.g. [165,166])

M(S → hh) = O(λ0) , M(S → V V ) = O(λ0) ,
M(S → ff̄) = O(λ) , M(S → Zh) = O(λ2) ,

(3.1)

where V represents a gauge boson (massive or massless) and f a fermion. As mentioned
earlier, for MS ∼ M an infinite tower of higher-dimensional operators with D ≥ 7 can
give rise to unsuppressed corrections to these amplitudes. For example, the operators

1
M

SBµνB
µν and 1

M3 S (∂αBµν)(∂αBµν) , (3.2)

where Bµν denotes the field strength associated with hypercharge, contribute terms of
orderM2

S/M andM4
S/M

3 to the S → γγ amplitude, respectively. In the case of the decay
S → Zh, the scaling M(S → Zh) ∝ v2/M derived in [166] arose from apparently acci-
dental cancellations of terms scaling like M2

S/M among different diagrams, and it is thus
well motivated to ask whether higher-dimensional operators induce larger contributions
scaling like M2n

S /M2n−1 = O(λ0).
In the present work, we derive the scaling laws (3.1) from first principles and show that
they remain valid even in the case where the two scalesM andMS are of the same order.
To this end, we construct the relevant SCETBSM Lagrangians up to NNLO in λ. The
finite sets of non-local SCET operators arising at each order in the λ expansion accounts
for infinite towers of local EFT operators. The scaling properties of the operators in
SCET translate directly into the scalings of the various decay amplitudes. The complete
information about the UV completion of the theory, i.e. about the yet unknown particles
with masses of order M ∼ MS and their interactions, is contained in the Wilson coeffi-
cients of the effective Lagrangian. In Section 3.5 we show how by solving RG equations
one can resum the large (double) logarithms of the scale ratio MS/v. While most of our
discussion focusses on the interesting case where M ∼ MS are two scales of the same
order, we discuss in Section 3.6 scenarios in which there is a double hierarchy, such that
M � MS � v. In this case a conventional EFT framework can be used to identify the
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leading terms in an expansion in powers of MS/M , while the SCETBSM is needed to or-
ganise in a systematic way the expansion in λ = v/MS and resum large logarithms of this
scale ratio. We derive model-independent expressions for the Wilson coefficients in the
SCETBSM Lagrangian in terms of the parameters of the local EFT including operators
up to dimension five. In Section 3.7 we present our conclusions along with an outlook on
future work.

3.2 Basic Elements of SCET
Our goal in this work is to develop a consistent EFT for the analysis of the on-shell decays
of a hypothetical new, heavy spin-0 boson S (with mass MS � v) into SM particles. For
simplicity we assume that S is a singlet under the SM gauge group. We also allow for the
existence of other heavy particles with similar masses M ∼MS , which have not yet been
discovered. They are integrated out and thus do not appear as degrees of freedom in the
effective Lagrangian. As we will show, the appropriate EFT is intrinsically non-local and
consists of operators defined in SCET. Nevertheless, the theory is well defined and can
be constructed following a set of simple rules. As our desire is to elucidate the main ideas
of our proposal and to present the construction of the SCETBSM Lagrangian in the most
simple and transparent way, we will be brief on some technicalities, which are familiar
to SCET practitioners but may look intimidating to others. Interested readers can find
more details in the original papers [39–42] and in the review [79].
The intrinsic complication in constructing an EFT for the decays of a heavy particle S
into light (or massless) particles is that the large mass MS enters the low-energy theory
as a parameter characterising the large energies Ei ∼ MS of the final-state particles.
This is different from conventional EFTs of the Wilsonian type, in which short-distance
fluctuations of heavy virtual particles are integrated out from the generating functional
of low-energy Green’s functions. In SCET, the large energies carried by the light particles
give rise to non-localities along the nearly light-like directions in which these particles
travel.
In a given decay process of the heavy particle S, the final state contains jets-defining
directions {n1, . . . ,nk} of large energy flow. Each jet may consist of one or more collinear
particles, which have energies much larger than their rest masses. For each jet direction
ni, we define two light-like reference vectors nµi = (1,ni) and n̄µi = (1,−ni), with ni ·n̄i =
2. The four-momentum p of a particle in the jet can then be written as

pµ = n̄i · p
nµi
2 + ni · p

n̄µi
2 + pµ⊥ , (3.3)

where n̄i · p = O(MS) is much larger than ni · p = O(m2/MS). The different components
scale as

(ni · p, n̄i · p, p⊥) ∼MS (λ2, 1, λ) , (3.4)

where λ = v/MS is the expansion parameter of the effective theory, and we assume
that the masses of the light particles are set by the electroweak scale v. Particles whose
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momenta scale in this way are referred to as “ni-collinear particles”. The particles inside a
given jet can interact with each other according to the Feynman rules of SCET, which are
equivalent to the usual Feynman rules of the SM [42]. However, an ni-collinear particle
cannot interact directly with an nj-collinear particle contained in another jet.1 The
effective Lagrangian of SCET, from which one derives the Feynman rules, is discussed in
the Appendix 3.8.
In SCET, ni-collinear particles are described by effective fields referred to as “collinear
building blocks” [151, 167]. They are composite fields invariant under so-called “ni-
collinear gauge transformations”, which preserve the scaling of the particle momenta
shown in (3.4). The building blocks are defined with the help of ni-collinear Wilson
lines [39–41] built out of the various gauge bosons associated with the SM gauge group.
We define

W (G)
ni (x) = P exp

[
igS

∫ 0

−∞
ds n̄i ·Gni(x+ sn̄i)

]
,

W (W )
ni (x) = P exp

[
ig

∫ 0

−∞
ds n̄i ·Wni(x+ sn̄i)

]
,

W (B)
ni (x) = P exp

[
ig′ Y

∫ 0

−∞
ds n̄i ·Bni(x+ sn̄i)

]
,

(3.5)

where gS , g and g′ denote the gauge couplings of SUc(3), SUW (2) and UY (1), while
Gµni(x) ≡ Gµ,ani (x)T a, Wµ

ni(x) ≡ Wµ,j
ni (x) τ j and Bni(x) denote the corresponding ni-

collinear gauge fields. They are defined such that their Fourier transforms only contain
particle modes whose momenta satisfy the scaling in (3.4). The path-ordering symbol “P”
is defined such that the gauge fields are ordered from left to right in order of decreasing
s values. For a given SM field, the corresponding collinear Wilson line is obtained by the
appropriate product of the objects defined in (3.5), where the hypercharge generator Y in
the definition ofW (B)

ni is replaced by the hypercharge of the respective field. For example,
the collinear Wilson lines for the scalar Higgs doublet and a right-handed up-quark field
are

Wni(x) = W (W )
ni (x)W (B)

ni (x) and Wni(x) = W (G)
ni (x)W (B)

ni (x) , (3.6)

where Y takes the values 1
2 and 2

3 , respectively.
The ni-collinear building blocks for the scalar Higgs doublet and the SM fermions are
defined as

Φni(x) = W †ni(x)φ(x) ,

Xni(x) = /ni /̄ni
4 W †ni(x)ψ(x) ≡ PniW †ni(x)ψ(x) ,

(3.7)

where the projection operator Pni , which is defined such that /niPni = 0 and P 2
ni = Pni ,

projects out the large components of the spinor of a highly energetic fermion. The ni-
collinear building blocks for the gauge bosons are defined as (for A = G,W,B) [151,167]

1Such interactions can however be mediated by the exchange of ultra-soft particles, see Section 3.5.
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Aµ
ni(x) = W (A)†

ni (x)
[
iDµ

niW
(A)
ni (x)

]
= gA

∫ 0

−∞
ds n̄iν

[
W (A)†
ni Aνµni W

(A)
ni

]
(x+ sn̄i) , (3.8)

where iDµ
ni = i∂µ+gAAµni denotes the collinear covariant derivative, gA is the appropriate

gauge coupling (which in the case A = B includes the hypercharge generator, so gG ≡ gS ,
gW ≡ g, and gB ≡ g′ Y ), and Aνµni is the field-strength tensor associated with the collinear
gauge field Aµni . Note that for the hypercharge gauge field the Wilson lines cancel out in
the last expression in (3.8), and hence one finds

Bµ
ni(x) = g′ Y

∫ 0

−∞
ds n̄iαB

αµ
ni (x+ sn̄i) . (3.9)

We will also use the expansions of the gauge-boson building blocks in the generators of
the gauge groups, i.e.

Gµni(x) = Gµ,ani (x)T a , Wµ
ni(x) = Wµ,j

ni (x) τ j , Bµ
ni(x) = Y Bµ,a

ni (x) , (3.10)

where in the latter case a = 1. The building blocks for the collinear fermion and gauge
fields satisfy the constraints

/niXni(x) = 0 , n̄i ·Ani(x) = 0 . (3.11)

The Wilson lines contain the longitudinal components n̄i · Ani of the gauge fields, while
the gauge-invariant collinear fields Aµ

ni themselves have no such components. Because of
the presence of the Wilson lines, the SCET fields can create or absorb particles along
with an arbitrary number of (longitudinal) gauge bosons coupling to these particles and
traveling in the same direction. In this sense the effective fields describe “jets” of collinear
partons. Note that a different set of collinear fields (scalars, fermions and gauge fields)
is introduced for each direction ni of large energy flow.
The collinear building blocks have well-defined scaling properties with the expansion
parameter λ. One finds [41,42]

Φni ∼ λ , Xni ∼ λ , A
µ
ni⊥ ∼ λ , ni ·Ani ∼ λ2 . (3.12)

In analogy with (3.3), the transverse gauge fields are defined as

A
µ
ni⊥ = Aµ

ni − ni ·Ani

n̄µi
2 , (3.13)

where we have used that n̄i ·Ani = 0.
It follows that operators containingN collinear fields (irrespective of their directions) have
scaling dimension d ≥ N in λ, and adding more fields to an operator always increases its
scaling dimension. This is how SCET can be employed to construct a consistent expansion
in powers of λ. Operators in the effective Lagrangian can also contain derivatives acting
on collinear fields, which produce collinear momenta when taking matrix elements of an
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µ

UV theory

µ ∼M ∼MS

SUc(3)× SUW (2)×UY (1)
SM particles massless

µ ∼ v

SUc(3)×UQ(1)
SM particles massive

µ

UV theory

µ ∼M

local EFT

µ ∼MS

SCETBSM

µ ∼ v

Figure 3.1: Schematic description of the construction of the SCETBSM for the generic
case M ∼ MS (left), and for the case of a double hierarchy M � MS � v
(right).

operator. There is no need to use covariant derivatives, since the building blocks are gauge
invariant by themselves. From (3.4) it follows that one can add an arbitrary number of
in̄i · ∂ derivatives acting on ni-collinear fields, while ini · ∂ or i∂µ⊥ derivatives gives rise to
additional power suppression. The freedom to introduce in̄i · ∂ derivatives at will implies
that ni-collinear fields can be delocalised along the n̄i direction, and hence the operators
appearing in the SCET Lagrangian are non-local. A first hint at this non-locality is the
presence of the Wilson lines themselves, see (3.5).
The heavy particle S with four-velocity v should be represented in the effective theory by
an effective field Sv(x) e−iMSv·x, whose soft interactions are described by a “heavy-particle
effective theory” constructed in analogy with heavy-quark effective theory [116,168–172].
Since in our case S is a gauge singlet and has no interactions, this step is unnecessary.
It would become a relevant step if one constructs the effective theory for a resonance S
that is charged under any of the SM gauge groups.

3.3 SCETBSM for Two-Body Decays of S
We now have the tools to construct an EFT for the decays of a new heavy particle S with
mass MS � v into SM particles. The basic construction of the SCETBSM is illustrated
in the left panel of Figure 3.1. It consists of the following steps:

1. At the NP scale µ ∼ MS ∼ M , the complete UV theory (which is unknown, of
course) is matched onto an extension of SCET built out of the resonance S and
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ni-collinear SM fields. All heavy particles besides the resonance S, as well as “hard”
quantum fluctuations with virtualities of order MS , are integrated out in this step.
Since the mass of S is much above the electroweak scale, its interactions can be
described in terms of operators in the unbroken phase of the electroweak symmetry,
preserving full SUc(3)× SUW (2)× UY (1) gauge invariance. If there is a hierarchy
between the scales M and MS (right panel of Figure 3.1), then the two scales are
integrated out in two steps, see Section 3.6.

2. In the next step, the effective operators and their Wilson coefficients are evolved
from the high-energy scale µ ∼ MS to the electroweak scale µ ∼ v. This is ac-
complished by solving the RG equations of the effective theory. In this process,
the SM particles can be treated as massless. In the SCET community, this version
of the effective theory is called SCETI. The relevant anomalous dimensions can
be calculated using standard technology. Solving the RG equations resums large
logarithms of the scale ratio MS/v to all orders in perturbation theory.2

3. At the electroweak scale the symmetry is broken to SUc(3) × UQ(1), and mass
effects from SM particles need to be taken into account. This is accomplished
by introducing mass terms for the ni-collinear fields. In loop calculations, it is
also necessary to include so-called soft mass-mode fields with momentum scaling
(λ, λ, λ) [173–175]. This version of the effective theory is often referred to as SCETII.
The presence of mass terms in loop calculations gives rise to the collinear anomaly
[176]. The corresponding loop integrals require an additional analytic regulator
beyond dimensional regularisation, which leads to the appearance of additional
large logarithms in the matrix elements of the low-energy effective theory. It can
be shown that these rapidity logarithms do not exponentiate and hence they do not
spoil the resummation accomplished in step 2 [153,176,177].

4. If one is interested in processes involving particles much lighter than the weak scale,
then at µ ≈ v an additional matching step is required, in which the SM particles
with weak-scale masses (the top quark, the Higgs boson, and the W and Z bosons)
are integrated out. This theory is then evolved down to a scale µ characteristic to
the process of interest, where the relevant operator matrix elements are evaluated.

Each ni-collinear field in the SCETBSM Lagrangian carries a collinear momentum in the
corresponding direction ni with a large net energy and thus must produce at least one
ni-collinear particle entering the final state. By momentum conservation, each operator
in the SCETBSM Lagrangian must contain at least two different types of collinear fields,
representing particles moving in different directions. Because of EWSB, the effective
theory also contains scalar fields carrying no four-momentum. These are represented by
a constant field Φ0 ∼ λ, which does not transform under collinear gauge transformations.

2Unlike in applications of SCET to hadronic decays of B mesons, there is no need to perform an additional
matching at an intermediate “hard-collinear” scale µ ∼

√
vMS [154]. The reason is simply that no

such scale can be formed out of the physical momenta of the particles involved in the decay.
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3.3 SCETBSM for Two-Body Decays of S

After EWSB one replaces

Φ0
EWSB−−−−→ 1√

2

(
0
v

)
. (3.14)

In this section we focus on the simplest, but phenomenologically most important case of
two-body decays of the heavy resonance S. Then the vectors n2 = −n1 point in opposite
directions, and therefore n2 = n̄1 and n1 = n̄2 for the light-like reference vectors. Since
the choice of the direction of the reference vectors is arbitrary, all operators in the effective
Lagrangian must be invariant under the exchange n1 ↔ n2.

3.3.1 Effective Lagrangian at O(λ2)

It is convenient to work in the rest frame of the decaying particle, in which the light
final-state particles carry large energies Ei = O(MS). Since the operators in the effective
Lagrangian must contain at least one n1-collinear and one n2-collinear field, the power-
counting rules in (3.12) imply that the leading operators have scaling dimension d = 2.
While invariance under ni-collinear gauge transformations is ensured by constructing
the effective Lagrangian in terms of collinear building blocks, the operators must also
be invariant under global gauge transformations, i.e. they must conserve the colour and
electroweak charges. At O(λ2), the only gauge-invariant operators are those containing
either two scalar doublets or two transverse gauge fields. Considering the first possibility,
we write the corresponding term in the effective Lagrangian as

Leff 3
∫
ds dt C̄φφ(s, t,M, µ)

× S(x)
[
Φ†n1(x+ sn̄1) Φn2(x+ tn̄2) + Φ†n2(x+ tn̄2) Φn1(x+ sn̄1)

]
,

(3.15)

where we have taken into account that collinear field operators can be delocalised along
the n̄i directions, as discussed in Section 3.2. The position-space Wilson coefficient C̄φφ
depends on the NP scaleM via the masses of the yet unknown particles, which have been
integrated out, and on the scale µ at which the effective operator is renormalised. It also
depends on the coordinates s and t parameterising the non-locality of the operator with
respect to the position of the field S(x).
The large components n̄i·Pi of the total collinear momenta in each jet are fixed by external
kinematics. We introduce momentum operators n̄i · Pi to obtain these components from
the quantum fields.3 We can then use translational invariance to make the dependence
on these components explicit. This gives

Leff 3 Cφφ(n̄1 · P1, n̄2 · P2,M, µ)S(x)
[
Φ†n1(x) Φn2(x) + Φ†n2(x) Φn1(x)

]
, (3.16)

where the Fourier-transformed Wilson coefficient is defined as

Cφφ(ω1, ω2,M, µ) =
∫
ds dt C̄φφ(s, t,M, µ) eisω1 eitω2 . (3.17)

3In some formulations of SCET the collinear fields carry the large momentum components as labels, and
the operators n̄i · Pi are referred to as the “label operators” [41].
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The dependence of the Wilson coefficient on its arguments is restricted by the fact that the
Lagrangian must be invariant under the reparameterisation transformations nµi → αi n

µ
i ,

n̄µi → n̄µi /αi applied to the light-like reference vectors in each collinear sector [178]. It
follows that Cφφ in (3.16) depends on its first two arguments only through the combination

n1 · n2
2 n̄1 · P1 n̄2 · P2 =

(
n1
2 n̄1 · P1 + n2

2 n̄2 · P2

)2
' P2

S . (3.18)

Here and below we use the symbol “'” for equations valid at leading power in λ. For
two-body decays, the total collinear momenta add up to the momentum of the decaying
resonance S, and the operator P2

S has eigenvalue M2
S . With a slight abuse of notation,

we thus write the corresponding contribution to the effective Lagrangian in the form

Leff 3M Cφφ(MS ,M, µ)Oφφ(µ) , with Oφφ = S
(
Φ†n1Φn2 + Φ†n2Φn1

)
. (3.19)

All fields are now evaluated at the same spacetime point. We have factored out the
NP scale M in the final definition of the Wilson coefficient to ensure that the function
Cφφ(MS ,M, µ) is dimensionless. Contrary to a conventional EFT, in our approach the
short-distance Wilson coefficients depend on all the relevant heavy scales in the problem
(MS and the mass scale M of yet undiscovered heavy particles), and this dependence
can be arbitrarily complicated depending on the details of the underlying UV theory. In
this way, the SCETBSM Lagrangian accounts for infinite towers of local operators in the
conventional EFT approach.
The remaining operators arising at O(λ2) contain two transverse gauge fields. Their
Lorentz indices can be contracted with the help of two rank-two tensors defined in the
plane transverse to the vectors n1 and n2. We introduce the objects (with ε0123 = −1)

g⊥µν = gµν −
n1µn2ν + n2µn1ν

n1 · n2
, ε⊥µν = εµναβ

nα1 n
β
2

n1 · n2
. (3.20)

The latter definition is such that ε⊥12 = 1 if nµ1 = (1, 0, 0, 1) and nµ2 = (1, 0, 0,−1). The
complete effective Lagrangian can then be written in the form

L(2)
eff = M Cφφ(MS ,M, µ)Oφφ(µ)

+M
∑

A=G,W,B

[
CAA(MS ,M, µ)OAA(µ) + C̃AA(MS ,M, µ) ÕAA(µ)

]
,

(3.21)

where (a summation over the group index a is understood for non-abelian fields)

Oφφ = S
(
Φ†n1Φn2 + Φ†n2Φn1

)
,

OAA = S g⊥µν A
µ,a
n1 Aν,a

n2 ,

ÕAA = S ε⊥µν A
µ,a
n1 Aν,a

n2 .

(3.22)

Note that ε⊥µν changes sign under n1 ↔ n2, and hence the last operator indeed has the
correct symmetry properties. The first two operators in this list are even under a charge
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3.3 SCETBSM for Two-Body Decays of S

conjugation and parity (CP) transformation whereas the third operator is odd (assuming
that S does not transform under CP). Here and below we indicate CP-odd operators and
their Wilson coefficients by a tilde.
The gauge fields contained in the Wilson lines entering the definitions of the gauge-
invariant building blocks in (3.7) and (3.8) become important in loop calculations or in
applications with multiple emissions of particles in the same jet direction. An exception
is the Wilson line associated with the scalar doublet in (3.7), which after EWSB accounts
for the longitudinal polarisation states of the two physical W bosons and the physical Z
boson.
The SCETBSM Lagrangian (3.21), which is valid for scales µ < MS , is constructed in the
unbroken phase of the electroweak gauge symmetry, in which all particles other than the
heavy resonance S can be treated as massless. As shown in Figure 3.1, at the electroweak
scale µ ∼ v this Lagrangian must be matched onto an effective Lagrangian constructed
in the broken phase, where the residual gauge symmetry is SUc(3) × UQ(1) and where
the SM particles acquire masses. While this matching is non-trivial at loop order (see
e.g. [153, 154, 173–175]), at tree level one simply needs to transform the various fields to
the mass basis. In particular, after EWSB the collinear building block representing the
scalar doublet takes the form

Φni(0) = 1√
2
W †ni(0)

(
0

v + hni(0)

)
, (3.23)

where

Wni(0) = P exp
[
ig

2

∫ 0

−∞
ds

(
c2
w−s2

w
cw

n̄i · Zni+ 2sw n̄i ·Ani
√

2 n̄i ·W+
ni√

2 n̄i ·W−ni − 1
cw
n̄i · Zni

)
(sn̄i)

]
.

(3.24)
We have replaced the gauge fields Wµ,j and Bµ in terms of the mass eigenstates W±, Z
and A. Here cw = cos θW and sw = sin θW denote the cosine and sine of the weak mixing
angle. It follows that

Oφφ = S(0)hn1(0)hn2(0) +m2
Z

∫ 0

−∞
ds

∫ 0

−∞
dt S(0) n̄1 · Zn1(sn̄1) n̄2 · Zn2(tn̄2)

+m2
W

∫ 0

−∞
ds

∫ 0

−∞
dt S(0)

[
n̄1 ·W−n1(sn̄1) n̄2 ·W+

n2(tn̄2) + (+↔ −)
]

+ . . . ,

(3.25)

where the dots represent terms containing more than two collinear fields. Taking into
account that external collinear Higgs and vector bosons have power counting λ−1, it
follows from (3.21) that the S → hh and S → V V decay amplitudes obey the scaling
rules shown in (3.1). Note, however, that whereas these rules were obtained by consid-
ering dimension-five operators in the conventional EFT Lagrangian, the scaling relations
derived in SCET are exact.
It is straightforward to evaluate the relevant two-body decay amplitudes and decay rates
described by the effective Lagrangian (3.21). For the di-Higgs decay mode of S, we obtain
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M(S → hh) = M Cφφ , Γ(S → hh) = M2

32πMS
|Cφφ|2

√
1− 4m2

h

M2
S

, (3.26)

where here and below we suppress the arguments of the Wilson coefficients.
The decay amplitudes involving two vector bosons in the final state can be expressed in
terms of the general form-factor decomposition

M(S → V1V2) = M
[
F V1V2
⊥ ε∗1⊥ · ε∗2⊥ + F̃ V1V2

⊥ ε⊥µν ε
∗µ
1⊥ ε

∗ν
2⊥ + F V1V2

‖
m1m2
k1 · k2

ε∗1‖ · ε
∗
2‖

]
, (3.27)

where kµi are the momenta of the outgoing bosons, mi denote their masses, and εµi ≡
εµ(ki) are their polarisation vectors. The transverse and longitudinal projections of the
polarisation vectors are defined as

εµ⊥(ki) = εµ(ki)− n̄i · ε(ki)
nµi
2 − ni · ε(ki)

n̄µi
2 , εµ‖ (ki) = εµ(ki)− εµ⊥(ki) . (3.28)

The first two terms in (3.27) correspond to the perpendicular polarisation states of the
two bosons, while the third term refers to the longitudinal polarisation states. The latter
only arise for the massive vector bosons Z and W. The ratio m1m2/(k1·k2) factored out in
the definition of the longitudinal form factor F V V‖ takes into account that the longitudinal
polarisation vectors scale as εµi‖(ki) ' kµi /mi = O(λ−1). Our definition ensures that all
three form factors are of the same order in SCET power counting. The result (3.27) can
also be written in the equivalent form

M(S → V1V2) = MF V1V2
⊥

ε∗1 · ε∗2 − k2 · ε∗1 k1 · ε∗2
k1 · k2 −

m2
1 m

2
2

k1·k2

+MF̃ V1V2
⊥

εµναβ k
µ
1 k

ν
2 ε
∗α
1 ε∗β2[

(k1 · k2)2 −m2
1m

2
2
]1/2

+MF V1V2
‖

m1m2 k2 · ε∗1 k1 · ε∗2
(k1 · k2)2 −m2

1m
2
2
,

(3.29)
which is independent of the light-like reference vectors used in SCET.
To derive the tree-level expressions for the form factors from the effective Lagrangian
(3.21), we use that the one-boson Feynman rule for the gauge-invariant SCET field A

µ,a
ni⊥

yields gA ε∗µi⊥(ki), where gA denotes the appropriate gauge coupling, while the Wilson-line
terms in (3.25) produce the structure

n̄1 · ε∗1
n̄1 · k1

n̄2 · ε∗2
n̄2 · k2

=
ε∗1‖ · ε

∗
2‖

k1 · k2
. (3.30)
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We thus obtain the transverse form factors

F gg⊥ = g2
S CGG , F̃ gg⊥ = g2

S C̃GG ,

F γγ⊥ = e2 (CWW + CBB) , F̃ γγ⊥ = e2(C̃WW + C̃BB
)
,

F γZ⊥ = e2
(
cw
sw

CWW −
sw
cw

CBB

)
, F̃ γZ⊥ = e2

(
cw
sw

C̃WW −
sw
cw

C̃BB

)
,

FZZ⊥ = e2
(
c2
w

s2
w

CWW + s2
w

c2
w

CBB

)
, F̃ZZ⊥ = e2

(
c2
w

s2
w

C̃WW + s2
w

c2
w

C̃BB

)
,

FWW
⊥ = e2

s2
w

CWW , F̃WW
⊥ = e2

s2
w

C̃WW ,

(3.31)

while the longitudinal form factors are given by

FZZ‖ = −Cφφ , FWW
‖ = −Cφφ . (3.32)

The fact that these form factors are given in terms of the Wilson coefficient of the oper-
ator containing two scalar fields is a nice expression of the Goldstone-boson equivalence
theorem [179–181]. The remaining longitudinal form factors vanish.
From (3.27) we see that the S → V1V2 decay amplitudes scale like M and hence are of
O(λ0) in SCET power counting. The corresponding decay rates can be obtained from
the general expression

Γ(S → V1V2) = SV1V2
M2

16πMS
λ1/2(x1, x2)

[
2
(
|F V1V2
⊥ |2 + |F̃ V1V2

⊥ |2
)

+ |F V1V2
‖ |2

]
,

(3.33)
where xi ≡ m2

i /M
2
S , and λ(x, y) = (1−x−y)2−4xy. The factor SV1V2 takes into account

a symmetry factor 1/2 for identical bosons and a colour factor (N2
c − 1) = 8 for the

digluon rate. By measuring the polarisations of the vector bosons it would be possible to
separately probe the three form factors characterising each decay.

3.3.2 Effective Lagrangian at O(λ3)

The operators arising at subleading order in the expansion in λ contain fermion fields.
We decompose Dirac matrices appearing in bilinears of the form X̄n1 . . .Xn2 as

γµ = /n1
n1 · n2

nµ2 + /n2
n1 · n2

nµ1 + γµ⊥ , (3.34)

such that n1µγ
µ
⊥ = n2µγ

µ
⊥ = 0. Pulling out a factor 1/M to make the Wilson coefficients

dimensionless, we find that the most general effective Lagrangian can be written in the
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form

L(3)
eff = 1

M

[
C ij

FLf̄R
(MS ,M, µ)O ij

FLf̄R
(µ)

+
∑
k=1,2

∫ 1

0
duC

(k) ij
FLf̄R φ

(u,MS ,M, µ)O(k) ij
FLf̄R φ

(u, µ) + h.c.
]

+ 1
M

∑
A=G,W,B

[ ∫ 1

0
duC ij

FLF̄LA
(u,MS ,M, µ)O ij

FLF̄LA
(u, µ) + (FL → fR) + h.c.

]
,

(3.35)
where we have defined the mixed-chirality operators

O ij

FLf̄R
(µ) = S X̄ i

L,n1Φ0 X
j
R,n2

+ (n1 ↔ n2) ,

O
(1) ij
FLf̄R φ

(u, µ) = S X̄ i
L,n1Φ(u)

n1 X
j
R,n2

+ (n1 ↔ n2) ,

O
(2) ij
FLf̄R φ

(u, µ) = S X̄ i
L,n1Φ(u)

n2 X
j
R,n2

+ (n1 ↔ n2) ,

(3.36)

and the same-chirality operators

O ij

FLF̄LA
(u, µ) = S X̄ i

L,n1 /A⊥(u)
n1 X

j
L,n2

+ (n1 ↔ n2) ,

O ij

fRf̄RA
(u, µ) = S X̄ i

R,n1 /A⊥(u)
n1 X

j
R,n2

+ (n1 ↔ n2) .
(3.37)

In (3.35) a sum over the flavour indices i, j is implied. We do not show colour and
SUW (2) indices. The left-handed fermions FL are SUW (2) doublets, while the right-
handed fermions fR are singlets. If the right-handed fermion field in (3.36) refers to an up-
type quark, the scalar doublet Φ needs to be replaced by Φ̃ with Φ̃a = εab Φ∗b = (φ∗2,−φ∗1)T
to ensure gauge invariance. Our notation is such that, e.g., the coefficient C ij

FLf̄R
multiplies

an operator which produces a left-handed fermion doublet FL with generation index i
and a right-handed anti-fermion f̄R with generation index j. Note that, in general, the
Wilson coefficients can be arbitrary complex matrices in generation space.
When SCET operators contain two or more collinear fields belonging to the same jet, the
total collinear momentum Pi carried by the jet is shared by the various particles described
by these fields. Each component field carries a positive fraction uj of the large component
n̄i · Pi, such that

∑
j uj = 1. The product of Wilson coefficients times operators then

becomes generalised to a convolution in these variables. In our discussion above a single
variable u appears, which refers to the longitudinal momentum fraction carried by the
boson field. To see how it arises, consider the first operator in (3.37) as an example. Its
contribution to the effective Lagrangian can be written in the form (leaving out flavour
indices and omitting a second term with n1 ↔ n2 for simplicity)∫

dr ds dt C̄FLF̄LA(r, s, t,M, µ)S(x) X̄L,n1(x+ sn̄1) /A⊥n1

(
x+ (r + s)n̄1

)
XL,n2(x+ tn̄2)

=
∫
dr CFLF̄LA(r, n̄1 · P1, n̄2 · P2,M, µ)S(x) X̄L,n1(x) /A⊥n1(x+ rn̄1)XL,n2(x) ,

(3.38)
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where the Wilson coefficient in the second step is defined in analogy with (3.17). To
complete the switch to momentum space we take a Fourier transform of the Wilson
coefficient with respect to r. This gives∫

dω CFLF̄LA(ω, n̄1 · P1, n̄2 · P2,M, µ)
∫
dr

2π e
−iωr S(x) X̄L,n1(x) /A⊥n1(x+ rn̄1)XL,n2(x)

=
∫
dω CFLF̄LA(ω, n̄1 · P1, n̄2 · P2,M, µ)S(x) X̄L,n1(x)

[
δ(in̄1 · ∂ + ω) /A⊥n1(x)

]
XL,n2(x) .

(3.39)
The δ-function ensures that the variable ω is set equal to the the large (outgoing) momen-
tum component n̄1 · pA carried by n1-collinear gauge field. Since this must be a fraction
of the large component n̄1 · P1 of the total collinear momentum, it is useful to replace
ω = u n̄1 · P1 in the final step. This yields∫

duCFLF̄LA(u n̄1 · P1, n̄1 · P1, n̄2 · P2,M, µ) δ
(
u− n̄1 · PA1

n̄1 · P1

)
× S(x) X̄L,n1(x) /A⊥n1(x)XL,n2(x) .

(3.40)

The operator n̄1 ·PA1 picks out the large momentum component carried by the gauge field,
whereas n̄1 ·P1 produces the large momentum component carried by all n1-collinear fields
together. Using reparameterisation invariance, the Wilson coefficient in this expression
can be rewritten in the form CFLF̄LA(u,MS ,M, µ) shown in (3.35), where we also use the
short-hand notation

S X̄ i
L,n1 /A⊥(u)

n1 X
j
L,n2
≡ δ

(
u− n̄1 · PA1

n̄1 · P1

)
S(x) X̄L,n1(x) /A⊥n1(x)XL,n2(x) . (3.41)

Several additional comments are in order. First, we do not include same-chirality op-
erators in (3.37) in which instead of /A⊥n1 there is a derivative i/∂⊥ acting on one of the
collinear building blocks. These operators can be reduced to those in (3.35) using the
equations of motion. For instance, one finds that

S X̄ i
L,n1i/∂⊥X

j
L,n2

+ (n1 ↔ n2) = (Yf )jk
(
Oik
FLf̄R

+O
(2) ik
FLf̄R φ

)
−
∑
r

(
Oji
FLF̄LAr

)†
,

S
[
X̄ i
L,n1(−i

←−
/∂⊥)X j

L,n2

]
+ (n1 ↔ n2) =

(
Y ∗f
)ik [(

Ojk
FLf̄R

)† +
(
O

(2) jk
FLf̄R φ

)†]−∑
r

Oij
FLF̄LAr

,

(3.42)
where Yf with f = u, d, e are the SM Yukawa matrices (for quarks the expressions on the
right-hand side must be summed over f = u, d), and the sums over r run over the different
gauge bosons which couple to the fermion described by XL. Similar relations hold for
the corresponding operators involving right-handed fields. Secondly, in addition to the
operators in (3.37), one can construct operators in which the indices of the transverse
objects Aµ

n1⊥ and γν⊥ are contracted using the ε⊥µν tensor defined in (3.20). However, these
operators can be reduced to those in (3.37) using the identity (with γ5 = iγ0γ1γ2γ3)

[γ⊥µ , γ⊥ν ] = −iε⊥µν
[/n1, /n2]
n1 · n2

γ5 , (3.43)
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which holds in four spacetime dimensions [182].4 From this relation it follows that

P †n1ε
⊥
µν γ

ν
⊥Pn2 = iP †n1γ

⊥
µ γ5 Pn2 . (3.44)

Finally, we note that at O(λ3) there do not appear operators containing two collinear
fermion fields belonging to the same jet. These operators would need to include the
bilinears (modulo L↔ R)

X̄ i
L,n1

/̄n1
2 X

j
L,n1

= O(λ2) or X̄ i
L,n1Φni

/̄n1
2 γ⊥µ X

j
R,n1

= O(λ3) , (3.45)

where γ⊥µ is now defined with respect to the plane spanned by the vectors n1 and n̄1, and
the subscript ni on the scalar doublet could be 0, n1 or n2. In case of the first operator,
the required n2-collinear field could be n2 ·An2 , Φ†n2Φn2 , (Φ†n2Φn1 +h.c.), or (Φ†n2Φ0+h.c.),
all of which are of O(λ2). In the second case, the open Lorentz index must be contracted
with A

µ
ni⊥ or ∂µ⊥, both of which count as O(λ). Hence, any such operator is at least of

O(λ4).
The effective Lagrangian (3.35) describes the two-body decays of S into a pair of SM
fermions. Taking into account that external collinear fermions have power counting λ−1,
it follows that the S → ff̄ decay amplitudes obey the scaling rule shown in (3.1). At tree
level, only the operator OFLf̄R and its hermitian conjugate give non-zero contributions.
After EWSB the fermion fields must be rotated from the weak to the mass basis, and in
the process the Wilson coefficients in (3.35), which are matrices in generation space, are
transformed as well. In matrix notation, we have e.g.

CFLf̄R → U †fLCFLf̄RWfR ≡ CfLf̄R
, (3.46)

where fL (with a lower case) now refers to one of the two members of the left-handed
doublet, and UfL and WfR with f = u, d, e denote the rotation matrices transforming
the left-handed and right handed fermions from the weak to the mass basis. In order
not to clutter our notation too much, we use the same symbol but with a straight “C”
instead of the slanted “C” for the Wilson coefficients in the mass basis. We then find the
non-zero decay amplitudes

M(S → fiL f̄jR) = v√
2M

C ij

fLf̄R
ūL(k1)P †n1Pn2vR(k2) = v√

2
MS

M
C ij

fLf̄R
eiϕij ,

M(S → fiR f̄jL) = v√
2M

C ji ∗
fLf̄R

ūR(k1)P †n1Pn2vL(k2) = v√
2
MS

M
C ji ∗
fLf̄R

e−iϕji ,

(3.47)

where i, j are flavour indices. Note that the products of two highly energetic fermion
spinors give rise to the appearance of the hard scale MS in the matrix elements of the

4In dimensional regularisation, so-called “evanescent” operators containing anti-symmetric products of
more than two γµ⊥ matrices can appear at loop order. A regularisation scheme including the effects of
these operators must be employed for higher-order calculations. This is the two-dimensional analogue,
in the space of transverse directions, of the standard procedure employed in four dimensions [183,184].
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3.3 SCETBSM for Two-Body Decays of S

SCET operators. The expressions on the right hold up to some complex phases, which
depend on the phase conventions for the fermion fields. The corresponding decay rates
are given by (with xi = m2

i /M
2
S)

Γ(S → fiL f̄jR) = Nf
c

v2MS

32πM2 λ
1/2(xi, xj)

∣∣C ij

fLf̄R

∣∣2 ,
Γ(S → fiR f̄jL) = Nf

c

v2MS

32πM2 λ
1/2(xi, xj)

∣∣C ji

fLf̄R

∣∣2 , (3.48)

where Nf
c is a colour factor, which equals 3 for quarks and 1 for leptons. Beyond the

Born approximation, the remaining operators in (3.35) also contribute to the decay rates.
In Section 3.5 we will study the mixing of these operators under renormalisation.
In general, the couplings of S to fermions contain both CP-even and CP-odd terms. Let
us decompose the various complex matrices of Wilson coefficients in the mass basis into
their real and imaginary components, for example

CfLf̄R
≡ KfLf̄R

+ iK̃fLf̄R
, (3.49)

and likewise for C(i)
fLf̄R φ

and CfLf̄RA
. Under a CP transformation the effective Lagrangian

(3.35) transforms into an analogous expression with all Wilson coefficients replaced by
their complex conjugates. It follows that the terms involving the real parts of the coeffi-
cients (KfLf̄R

etc.) are CP even, while those involving the imaginary parts (K̃fLf̄R
etc.)

are CP odd.

3.3.3 Effective Lagrangian at O(λ4)

The only two-body decay of the heavy resonance S not yet accounted for is S → Zh.
Operators mediating this decay arise first at NNLO in the λ expansion. At this order a
large number of new operators arise, but only a single operator contributes to the S → Zh
decay amplitude at tree level. It reads

L(4)
eff 3

C̃φφφφ(MS ,M, µ)
M

[
iS
(
Φ†n1Φ0 − Φ†0 Φn1

)(
Φ†n2Φ0 + Φ†0 Φn2

)
+ (n1 ↔ n2)

]
= C̃φφφφ(MS ,M, µ)

M
2iS

(
Φ†n1Φ0 Φ†n2Φ0 − Φ†0 Φn1 Φ†0 Φn2

)
.

(3.50)

The tilde on the Wilson coefficient indicates that this operator is CP odd [166]. The
corresponding decay amplitude is given by

M(S → Zh) = −iC̃φφφφ
v2mZ

M

n̄1 · ε∗‖(k1)
n̄1 · k1

. (3.51)

It vanishes unless the Z boson is longitudinally polarised, in which case one finds

M(S → Z‖h) = −iC̃φφφφ
v2

M
, (3.52)

35



3 Effective Field Theory After a New-Physics Discovery

in accordance with (3.1). To derive this result, we have used the exact representation

εµ‖ (k1) = k1 · k2

m1
[
(k1 · k2)2 −m2

1m
2
2
]1/2

(
kµ1 −

m2
1

k1 · k2
kµ2

)
(3.53)

for the longitudinal polarisation vector. For the decay rate, we obtain (with xi = m2
i /M

2
S)

Γ(S → Zh) = v4

16πMSM2 λ
1/2(xZ , xh)

∣∣C̃φφφφ∣∣2 . (3.54)

The puzzling fact that the S → Zh decay amplitude scales like λ2, whereas all other
diboson amplitudes scale like λ0, finds a natural explanation in our approach.
The complete list of the operators arising at O(λ4) in the effective Lagrangian describing
the two-body decays of the heavy resonance S is rather extensive. It includes opera-
tors containing S along with four scalar fields, four transverse gauge fields, two scalar
fields and two transverse gauge fields, four fermion fields, two fermion fields and two
scalar/transverse gauge fields, and two fermion fields and an ultra-soft gauge or scalar
field. Moreover, in some of these operators a transverse gauge field can be replaced by a
transverse derivative, or two transverse gauge fields can be replaced by a small component
of a collinear gauge field or an ultra-soft gauge field. A complete classification of these
operators is left for future work.

3.4 SCETBSM for Three-Body Decays of S

The construction of the effective Lagrangian describing three-body decays of the heavy
resonance S proceeds in analogy with Section 3.3. Generically, the three SM particles in
the final state have momenta aligned with three different directions ni with i = 1, 2, 3, and
hence the scalar products ki·kj = O(M2

S) are set by the mass scale of the decaying particle.
The leading SCET operators involving three ni-collinear fields are of O(λ3) and contain
fermion bilinears. The corresponding operators can be constructed as in Section 3.3.2.
The purely bosonic three-body decays S → hhh, S → hV1V2 and S → V1V2V3 appear
first at O(λ4) in the SCET expansion. They will not be considered in detail here.
Without loss of generality, we choose the outgoing boson along the direction n3. Dirac
matrices are still decomposed as shown in (3.34), where now n1 · n2 = 1 − cosφ12 with
φ12 = <)(n1,n2) is no longer equal to 2. We find

L(3)
eff = 1

M

[
D ij

FLf̄R φ
({m2

kl},M, µ)Q ij

FLf̄R φ
(µ) + h.c.

]
+ 1
M

∑
A=G,W,B

[
D ij

FLF̄LA
({m2

kl},M, µ)Q ij

FLF̄LA
(µ)

+D ij

fRf̄RA
({m2

kl},M, µ)Q ij

fRf̄RA
(µ)
]
,

(3.55)

36



3.4 SCETBSM for Three-Body Decays of S

with
Q ij

FLf̄R φ
(µ) = S X̄ i

L,n1Φn3X
j
R,n2

+ (n1 ↔ n2) ,

Q ij

FLF̄LA
(µ) = S X̄ i

L,n1γ
⊥
µ A

µ
n3⊥X

j
L,n2

+ (n1 ↔ n2) ,

Q ij

fRf̄RA
(µ) = S X̄ i

R,n1γ
⊥
µ A

µ
n3⊥X

j
R,n2

+ (n1 ↔ n2) .

(3.56)

Once again i, j are flavour indices. Note that the symbol ⊥ on γ⊥µ means “perpendicular
to the plane spanned by n1 and n2”, see (3.34), while on the gauge field A

µ
n3⊥ it means

“perpendicular to the plane spanned by n3 and n̄3”, see (3.13). The contraction of these
two objects gives rise to a non-trivial dependence on the light-like reference vectors of
the three final-state particles, shown in relation (3.63) below.
We denote the Wilson coefficients by D and the operators by Q in order to distinguish
them from the corresponding quantities in the Lagrangian for two-body decays shown in
(3.35). If the right-handed fermion field in (3.56) refers to an up-type quark, the scalar
doublet Φn3 needs to be replaced by Φ̃n3 to ensure gauge invariance. The Wilson coef-
ficients DFLf̄R φ

are arbitrary complex matrices in generation space, while DFLF̄LA
and

DfRf̄RA
are hermitian matrices. As before, we will denote the corresponding coefficients

after transformation to the mass basis with an unslanted symbol “D” (and use fL instead
of FL to represent one of the two members of the weak doublet).
Note that there are no convolution integrals in (3.55), in contrast with (3.35). On the
other hand, by a generalisation of the argument given before (3.18), the Wilson coefficients
can now depend on the three invariants (with k 6= l ∈ {1, 2, 3})

nk · nl
2 n̄k · Pk n̄l · Pl =

(
nk
2 n̄k · Pk + nl

2 n̄l · Pl
)2
' (Pk + Pl)2 . (3.57)

For a three-body decay, these invariants evaluate to the squared invariant masses m2
kl of

the different pairs of final-state particles, which are subject to the relation

m2
12 +m2

23 +m2
13 = M2

S +m2
1 +m2

2 +m2
3 'M2

S . (3.58)

It is straightforward to derive from (3.55) the relevant tree-level expressions for the 3-body
decay amplitudes of the heavy resonance S. Since both the Wilson coefficients and the
matrix elements of the effective Lagrangian depend on the pair invariant masses squared,
we can only compute the doubly differential decay rate, summed over polarisations of
the vector boson where appropriate, in two of these variables (the so-called Dalitz-plot
distribution) in a model-independent way.
We begin with the decay modes mediated by the opposite-chirality operators in (3.55),
for which we obtain

d2Γ(S → fiL f̄jR h)
dm2

12 dm
2
23

= d2Γ(S → fiL f̄jR Z)
dm2

12 dm
2
23

= Nf
c

512π3M3
S

m2
12

M2
∣∣Dij

fLf̄R φ

∣∣2 , (3.59)

and
d2Γ(S → fiL f̄jRW

±)
dm2

12 dm
2
23

= Nf
c

256π3M3
S

m2
12

M2
∣∣Dij

fLf̄R φ

∣∣2 , (3.60)
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Process Colour/coupling factor Coefficient
S → fiL f̄jL γ Nf

c α T fL3 Dij

fLf̄LW
+ YfLD

ij

fLf̄LB

S → fiR f̄jR γ Nf
c α YfRD

ij

fRf̄RB

S → fiL f̄jL Z Nf
c α T fL3

cw
sw

Dij

fLf̄LW
− sw

cw
YfLD

ij

fLf̄LB

S → fiR f̄jR Z Nf
c α − sw

cw
YfRD

ij

fRf̄RB

S → fiL f̄jLW
± Nf

c α
1
sw

Dij

fLf̄LW

S → fiR f̄jRW
± Nf

c α 0
S → qiL q̄jL g NcCFαS Dij

fLf̄LG

S → qiR q̄jR g NcCFαS Dij

fRf̄RG

Table 3.1: Colour factors, gauge couplings and Wilson coefficients entering the ex-
pressions for the doubly differential decay rates for the three-body decays
S → fiL f̄jL V and S → fiR f̄jR V , all of which are given by a formula analo-
gous to (3.62).

where as before Nf
c = 3 for quarks and 1 for leptons. Here m2

12 = m2
ff̄

and m2
23 = m2

f̄h

or m2
f̄V

. Analogous expressions hold with L↔ R on the left-hand side and i↔ j on the
right-hand side. To arrive at these results, we have used that

n1 · n2
2 n̄1 · k1 n̄2 · k2 ' 2k1 · k2 ' m2

12 . (3.61)

Only the longitudinal polarisation state of the electroweak gauge bosons contributes to
these rates.
From the same-chirality operators in (3.55) we obtain slightly more complicated expres-
sions. Focussing on the case where a fermion pair is produced along with a photon, we
find

d2Γ(S → fiL f̄jL γ)
dm2

12 dm
2
23

= Nf
c α

32π2M3
S

m2
12

M2
(m2

13)2 + (m2
23)2

(M2
S −m2

12)2

∣∣∣T fL3 Dij

fLf̄LW
+ YfLD

ij

fLf̄LB

∣∣∣2 ,
d2Γ(S → fiR f̄jR γ)

dm2
12 dm

2
23

= Nf
c α

32π2M3
S

m2
12

M2
(m2

13)2 + (m2
23)2

(M2
S −m2

12)2

∣∣∣YfRDij

fRf̄RB

∣∣∣2 ,
(3.62)

where T fL3 denotes the weak isospin of the left-handed fermion, and YfL , YfR are the
hypercharges of the fermions. Only the two transverse polarisation states of the vector
bosons contribute to these rates. The squared decay amplitudes depend in a non-trivial
way on the light-like reference vectors of the final-state mesons. We find that they involve
the quantity

n1 · n3 n2 · n̄3 + n2 · n3 n1 · n̄3
n1 · n2

' 2 (m2
13)2 + (m2

23)2

(M2
S −m2

12)2 . (3.63)

To derive this result, we have replaced ni · n̄3 = 2ni · v − ni · n3, where vµ is the four-
velocity of the decaying resonance S. We have then multiplied all light-like vectors with
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the corresponding energies (defined in the rest frame of S) to obtain kµi ' Ein
µ
i , and at

the end eliminated the energies using thatm2
12 = (k1+k2)2 = (MSv−k3)2 'M2

S−2MSE3
etc. The decay rates for the production of fermion pairs along with other gauge bosons
are given by analogous expressions with different charge and colour factors and involving
different combinations of Wilson coefficients, as shown in Table 3.1.
Neglecting the masses of the final-state particles, the boundaries of the Dalitz plot are
such that

0 < m2
12 < M2

S , 0 < m2
23 < M2

S −m2
12 . (3.64)

Since our results have been derived under the assumption that the invariant mass of each
pair of final-state particles is of order MS , strictly speaking they are not valid near the
boundary of the Dalitz plot. On the other hand, since the boundary effect occurs in a
power-suppressed region of phase space, one usually does not need to worry about this
issue, unless the squared decay amplitude is singular near the boundary.
If the Wilson coefficients only depend on m2

12 but not on m2
23 and m2

13 individually,
the expressions in (3.59), (3.60) and (3.62) can be integrated over m2

23 to obtain the
distributions in the invariant mass of the fermion pair. We will show in Section 3.6
that this condition is satisfied (at least at tree level) in all models featuring a double
hierarchy M � MS � v. We quote the result for the interesting case of the decay
S → tt̄Z. Summing over the different polarisation states of the fermions, and defining
x12 = m2

tt̄
/M2

S , we find

dΓ(S → tt̄Z)
dx12

= NcM
3
S

512π3M2 x12(1− x12)
{[∣∣D33

uLūR φ
(x12)

∣∣2 +
∣∣D33

uRūLφ
(x12)

∣∣2]
+ 32πα

3

[ ∣∣∣∣ cw2sw
D33
uLūLW

(x12)− sw
6cw

D33
uLūLB

(x12)
∣∣∣∣2

+
∣∣∣∣2sw3cw

D33
uRūRB

(x12)
∣∣∣∣2 ]}.

(3.65)

With the help of (3.59), (3.60) and Table 3.1, all other rates can be obtained from this
expression by means of simple substitutions.

3.5 Evolution Equations for the Wilson Coefficients
Large logarithms of the scale ratio MS/v can be systematically resummed to all orders
in perturbation theory using our effective theory. The leading effects arise from Sudakov
double logarithms related to the interplay of soft and collinear emissions of virtual par-
ticles. They are controlled by so-called cusp logarithms in the anomalous dimensions of
SCET operators [39], which govern the scale dependence of the Wilson coefficients in
the effective Lagrangian of SCETBSM. The relevant anomalous dimensions are computed
from the UV divergences of SCET operators and are independent of the masses of the SM
particles. They can be most conveniently derived by setting all masses to zero and using
off-shell external momenta as infrared regulators. The relevant version of the effective
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theory is called SCETI. It describes the interactions of ni-collinear fields with so-called
ultra-soft fields with momentum scaling (λ2, λ2, λ2) [41,42]. Note that the ultra-soft scale
λ2MS ∼ v2/MS lies parametrically below the characteristic scale v of the low-energy the-
ory. This scale arises in intermediate steps of the calculation, but it drops out from the
final expressions for the anomalous dimensions.5
The discussion in this section is considerably more technical than that in previous sec-
tions. The reader not interested in these technicalities may directly proceed with Sec-
tion 3.6, noting however that there is a well-defined formalism which allows us to derive
the evolution equations needed to resum large logarithms in the SCETBSM.

3.5.1 Operators Containing a Single Field in Each Collinear Direction
The scale dependence of the Wilson coefficients of operators containing a single ni-
collinear field for each direction of large energy flow can be described by a universal
anomalous dimension depending on scalar products formed out of the different collinear
momenta {p} = {p1, . . . , pn} (strictly speaking the momenta pi should be replaced by the
corresponding label operators Pi), such that [185]

µ
d

dµ
C({p}, µ) = Γ({p}, µ)C({p}, µ) . (3.66)

For the Wilson coefficients of operators containing at most three external particles, the
all-order structure of the anomalous dimension is extremely simple: It contains so-called
“dipole terms” for pairs of particles i and j, which involve logarithms of the kinematic
invariants sij = 2pi · pj (with all momenta outgoing) and correlations of the two particles
in the space of group generators, as well as single-particle terms for each field [185–
188]. Moreover, using charge conservation, one can eliminate all group generators in
terms of the eigenvalues of the quadratic Casimir operators Ci ∈ {CF , CA} for particles
transforming in the fundamental or the adjoint representation of the gauge group. The
two-particle terms involve the universal cusp anomalous dimension for light-like Wilson
loops [189]. Since the SM gauge group is a direct product of three simple groups Gr
with G1 = UY (1), G2 = SUW (2) and G3 = SUc(3), the cusp terms involve a sum over
the three group factors. The anomalous dimensions for two- and three-particle operators
take the form

Γ({p1, p2}, µ) =
∑
r

C
(r)
1 γ(r)

cusp ln −s12 − i0
µ2 +

∑
i=1,2

γi ,

Γ({p1, p2, p3}, µ) = 1
2
∑
r

∑
π(i,j,k)

(
C

(r)
i + C

(r)
j − C

(r)
k

)
γ(r)
cusp ln −sij − i0

µ2 +
∑

i=1,2,3
γi ,

(3.67)
5It would be possible to calculate the anomalous dimensions using the masses of the SM particles as
infrared regulators. In this case the ultra-soft scale does not arise (except in graphs involving massless
gauge-boson exchange), but the calculations are far more complicated due to the appearance of rapidity
divergences, which require analytic regulators beyond dimensional regularisation [176,177].
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where π(i, j, k) refers to the even permutations of (1, 2, 3). For non-abelian SU(N) groups
one has C(r)

F = (N2 − 1)/(2N) and C(r)
A = N . For the hypercharge group G1 = UY (1)

one sets C(1)
F = Y 2

i and C(1)
A = 0, where Yi denotes the hypercharge of the particle i. If

a particle does not transform under a group Gr, then C(r)
i is set to zero.

The single-particle anomalous dimensions γi for fermions contain terms involving the SM
Yukawa matrices, which multiply the Wilson coefficients in (3.66) from the left (for a field
X̄ producing an outgoing fermion) or from the right (for a field X producing an outgoing
anti-fermion).
From (3.67), it is straightforward to derive exact all-order relations for the anomalous
dimensions governing the scale dependence of the Wilson coefficients of the two-jet oper-
ators in the effective Lagrangian (3.21) arising at O(λ2) and for the three-jet operators in
the effective Lagrangian (3.55) arising at O(λ3). Omitting all arguments for simplicity,
we obtain

Γφφ =
(1

4 γ
(1)
cusp + 3

4 γ
(2)
cusp

)(
ln M

2
S

µ2 − iπ
)

+ 2γφ ,

ΓBB = Γ̃BB = 2γB ,

ΓWW = Γ̃WW = 2γ(2)
cusp

(
ln M

2
S

µ2 − iπ
)

+ 2γW , (3.68)

ΓGG = Γ̃GG = 3γ(3)
cusp

(
ln M

2
S

µ2 − iπ
)

+ 2γG ,

and

ΓQ
FLf̄R φ

=
[1

2
(
Y 2
FL

+ Y 2
fR
− Y 2

φ

)
γ(1)
cusp + δfq

4
3 γ

(3)
cusp

](
ln m

2
12
µ2 − iπ

)
+
[1

2
(
Y 2
φ + Y 2

FL
− Y 2

fR

)
γ(1)
cusp + 3

4 γ
(2)
cusp

](
ln m

2
13
µ2 − iπ

)
+ 1

2
(
Y 2
φ + Y 2

fR
− Y 2

FL

)
γ(1)
cusp

(
ln m

2
23
µ2 − iπ

)
+ γFL + γf̄R + γφ ,

ΓQ
fRF̄Lφ

= ΓQ
FLf̄R φ

(m2
13 ↔ m2

23, FL ↔ fR) ,

ΓQ
FLF̄LB

=
[
Y 2
FL
γ(1)
cusp + 3

4 γ
(2)
cusp + δfq

4
3 γ

(3)
cusp

](
ln m

2
12
µ2 − iπ

)
+ γFL + γF̄L + γB ,

ΓQ
FLF̄LW

=
[
Y 2
FL
γ(1)
cusp −

1
4 γ

(2)
cusp + δfq

4
3 γ

(3)
cusp

](
ln m

2
12
µ2 − iπ

)
+ γ(2)

cusp

(
ln m

2
13
µ2 + ln m

2
23
µ2 − 2iπ

)
+ γFL + γF̄L + γW , (3.69)

ΓQ
QLQ̄LG

=
[
Y 2
QL
γ(1)
cusp + 3

4 γ
(2)
cusp −

1
6 γ

(3)
cusp

](
ln m

2
12
µ2 − iπ

)
+ 3

2 γ
(3)
cusp

(
ln m

2
13
µ2 + ln m

2
23
µ2 − 2iπ

)
+ γQL + γQ̄L + γG ,
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ΓQ
fRf̄RB

=
[
Y 2
fR
γ(1)
cusp + δfq

4
3 γ

(3)
cusp

](
ln m

2
12
µ2 − iπ

)
+ γfR + γf̄R + γB ,

ΓQqRq̄RG =
[
Y 2
qR
γ(1)
cusp −

1
6 γ

(3)
cusp

](
ln m

2
12
µ2 − iπ

)
+ 3

2 γ
(3)
cusp

(
ln m

2
13
µ2 + ln m

2
23
µ2 − 2iπ

)
+ γqR + γ q̄R + γG ,

where δfq = 1 if the fermion is a quark and 0 otherwise. We have indicated the anomalous
dimensions of the three-jet operators by a superscript “Q”.
In general, the cusp anomalous dimensions γ(r)

cusp and the single-particle anomalous di-
mensions γi depend on the three gauge couplings α1 = α/c2

w, α2 = α/s2
w and α3 = αS ,

the quartic scalar coupling, and the Yukawa couplings. Up to two-loop order, however,
the cusp anomalous dimension for the gauge group Gr only depends on the corresponding
coupling αr. Explicitly, it is given by [189–191]

γ(r)
cusp = αr

π
+

(67
36 −

π2

12

)
C

(r)
A −

∑
f

5
18 T

(r)
F df −

1
9 T

(r)
F dφ

(αr
π

)2
+ . . . , (3.70)

where T (r)
F = 1/2 for the non-abelian groups (r = 2, 3) and T (1)

F = Y 2
i for the hypercharge

group. The coefficients df and dφ are the dimensions of the representations of the chiral
fermions and the scalar doublet with respect to the other two gauge groups. The sum
runs over the chiral fermion multiplets of the SM model, and we have used that there is
a single complex scalar doublet.6 Explicitly, one finds

γ(1)
cusp = α1

π
− 17

6

(
α1
π

)2
+ . . . ,

γ(2)
cusp = α2

π
+
(

2− π2

6

)(
α2
π

)2
+ . . . , (3.71)

γ(3)
cusp = α3

π
+
(

47
12 −

π2

4

)(
α3
π

)2
+ . . . .

The three-loop coefficient of the cusp anomalous dimension is only known for a single
gauge group and neglecting the contributions from the scalar Higgs doublet [193].
We will restrict our discussion here to a consistent resummation of Sudakov logarithms
at leading logarithmic order. This requires the calculation of the cusp anomalous dimen-
sion to two-loop order, as given in (3.71), while the remaining anomalous dimensions
are required with one-loop accuracy. For fermions and the scalar doublet, the one-loop

6In the same notation, the one-loop coefficient of the β function for a given gauge coupling reads [192]

β
(r)
0 = 11

3 C
(r)
A −

∑
f

2
3 T

(r)
F df −

1
3 T

(r)
F dφ .
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coefficients from gauge interactions in units of αr/π are −3C(r)
F /4 [187] and −C(r)

F [152],
respectively. The one-loop coefficients of the anomalous dimensions of the gauge fields
vanish, since in contrast to [187] we have included the gauge couplings in the definitions
of the ni-collinear gauge fields in (3.8). Including also the contributions from the Yukawa
interactions to the wave-function renormalisations of the fields, we obtain

γfL = γf̄L = −Y 2
fL

α1
4π −

9α2
16π − δfq

α3
π

+ 1
32π2 YfY

†
f ,

γfR = γf̄R = −Y 2
fR

α1
4π − δfq

α3
π

+ 1
32π2 Y

†
f Yf ,

γφ = −α1
4π −

3α2
4π +

∑
f

Nf
c y

2
f

8π2 ,

(3.72)

where in the last expression the sum runs over the different fermion species, and yf
denotes the Yukawa coupling of the fermion f .

3.5.2 Two-Jet Operators at O(λ3)

For operators containing more than one ni-collinear field in a given direction, the anoma-
lous dimensions are more complicated than the simple expressions shown in (3.67). This
concerns, in particular, the anomalous dimensions governing the scale dependence of the
Wilson coefficients of the two-jet operators arising at O(λ3) in the SCETBSM Lagrangian,
which we have defined in (3.36) and (3.37). Since these operators depend on a variable u
(the fraction of the total collinear momentum carried by the boson field), the anomalous
dimensions are distribution-valued functions. Also, there is a non-trivial mixing of these
operators under renormalisation. Finally, we will find that some of the convolution inte-
grals appearing in the evolution equations exhibit endpoint singularities at the boundary
of the integration domain, which need to be treated with care. For simplicity, we will
only explore the effects of QCD evolution here, leaving a more complete treatment to
future work. We will thus assume that the fermion fields in the three-jet operators are
quark fields.
The presence of the scalar doublet implies that, as far as QCD evolution is concerned,
the mixed-chirality operators in (3.36) renormalise like two-jet operators, with anomalous
dimensions given by (in this section we keep the dependence on the colour factors CF =
4/3 and CA = 3 explicit)

ΓQLq̄R = CF γ
(3)
cusp

(
ln M

2
S

µ2 − iπ
)

+ 2γq ,

Γ(i)
QLq̄R φ

= CF γ
(3)
cusp

(
ln (1− u)M2

S

µ2 − iπ
)

+ 2γq ; i = 1, 2 ,
(3.73)

where we have used that γQL = γqR ≡ γq = −3CFαS/(4π) + . . . under QCD evolution.
The same is true for the same-chirality operators for which the gauge field belongs to
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3 Effective Field Theory After a New-Physics Discovery

Figure 3.2: One-loop diagrams contributing to the anomalous dimension Γqq̄G in (3.75).
The short dashed line represents the heavy scalar resonance S. Solid lines
denote collinear quarks, curly lines with dashes denote collinear gluons, and
simple curly lines represent ultra-soft gluons. Collinear fields moving along
the same direction are drawn next to each other.

SUW (2) or UY (1), i.e.

ΓQLQ̄LB = ΓqRq̄RB = ΓQLQ̄LW = ΓqRq̄RW = CF γ
(3)
cusp

(
ln (1− u)M2

S

µ2 − iπ
)

+2γq . (3.74)

When only QCD corrections are taken into account, the cusp anomalous dimension [193]
and the anomalous dimension of the quark field [194,195] are known to three-loop order.
The same-chirality operators containing a gluon field exhibit a more interesting behavior.
Due to the dependence of the operators OQLQ̄LG and OqRq̄RG on the variable u, the
anomalous dimension governing the multiplicative renormalisation of these operators is a
distribution-valued function of two variables u and w. We find that the scale dependence
of the corresponding Wilson coefficients is determined by the evolution equation (with
q = QL or qR)

µ
d

dµ
Cqq̄G(u,MS ,M, µ) =

∫ 1

0
dw Γqq̄G(u,w,MS , µ)Cqq̄G(w,MS ,M, µ) , (3.75)

where here and below we use a boldface notation to indicate that the Wilson coefficients
are matrices in generation space. The anomalous dimension Γqq̄G can be calculated in
analogy with the derivation of the anomalous dimensions of the subleading SCET current
operators arising in B-meson physics performed in [182,196] (see [197] for related recent
work). It is convenient to use the background-field gauge [198] for the external gluon, in
which the combination gS Gµ,a is not renormalised. Evaluating the UV divergences of the
one-loop diagrams shown in Figure 3.2, supplemented by wave-function renormalisation,
we obtain (with ū ≡ 1− u and w̄ ≡ 1− w)

Γqq̄G(u,w,MS , µ) =
[
CF

(
ln ūM

2
S

µ2 − iπ −
3
2

)
+ CA

2

(
ln u
ū

+ 1
)]

γ(3)
cusp δ(u− w)

+ w̄
[
V1(ū, w̄) + V2(ū, w̄)

]
+O(α2

S) .
(3.76)

44



3.5 Evolution Equations for the Wilson Coefficients

Figure 3.3: Left: One-loop diagram responsible for the mixing of the operators OQLQ̄LG
and OqRq̄RG into the three mixed-chirality operators in (3.36). A dashed line
ended by a cross indicates a zero-momentum scalar field Φ0, while a dashed
line bending to the right shows a collinear scalar field. Right: Mixing of
the O(λ2) operators OGG and ÕGG into the operator OQLq̄R by means of
subleading interactions in the SCET Lagrangian. The dotted line represents
an ultra-soft quark.

The logarithmic terms in the first line are exact to all orders in perturbation theory,
whereas the remaining terms have been computed at one-loop order. The kernel functions
Vi, which are symmetric in their arguments, have been computed first in [182]. At one-
loop order one finds

V1(ū, w̄) + V2(ū, w̄) = −CA2
αS
π

{
1
ūw̄

[
ū
θ(u− w)
u− w

+ w̄
θ(w − u)
w − u

]
+

+
(
w

w̄
− 1
u

)
θ(u− w) +

(
u

ū
− 1
w

)
θ(w − u)

}

+
(
CF −

CA
2

)
αS
π

[(
2− ūw̄

uw

)
θ(u+ w − 1) + uw

ūw̄
θ(1− u− w)

]
,

(3.77)
where for symmetric functions g(u,w) the plus distribution is defined to act on test
functions f(w) as

∫ 1

0
dw [g(u,w)]+ f(w) =

∫ 1

0
dw g(u,w) [f(w)− f(u)] . (3.78)

Using arguments based on conformal symmetry, it was shown in [182] how the convolution
in (3.75) can be diagonalised by expanding the Wilson coefficients in a suitable basis of
Jacobi polynomials. This will be discussed in more detail elsewhere.
Next, we find that the operators OQLQ̄LG and OqRq̄RG mix into the three mixed-chirality
operators in (3.36). The diagram responsible for this mixing is shown on the left-hand
side in Figure 3.3. The evolution equations for the Wilson coefficients of these operators
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read

µ
d

dµ
C

(1)
QLq̄R φ

(u, µ) = Γ(1)
QLq̄R φ

(u, µ)C(1)
QLq̄R φ

(u, µ)

+
∫ 1

0
dw Γmix(u,w, µ)Yq(µ)CqRq̄RG(w, µ) ,

µ
d

dµ
C

(2)
QLq̄R φ

(u, µ) = Γ(2)
QLq̄R φ

(u, µ)C(2)
QLq̄R φ

(u, µ)

+
∫ 1

0
dw Γmix(u,w, µ)C†

QLQ̄LG
(w, µ)Yq(µ) ,

(3.79)

and (only if CGG = C̃GG = 0 !)

µ
d

dµ
CQLq̄R(µ) = ΓQLq̄R(µ)CQLq̄R(µ)

+
∫ 1

0
dw Γmix(0, w, µ)

[
Yq(µ)CqRq̄RG(w, µ) +C†

QLQ̄LG
(w, µ)Yq(µ)

]
,

(3.80)
where we have defined the mixing kernel

Γmix(u,w, µ) = CFαS(µ)
π

θ(1− u− w)
1− u +O(α2

S) . (3.81)

The anomalous dimensions Γ(i)
QLq̄R φ

and ΓQLq̄R have been given in (3.73). For simplicity,
we have omitted the dependence of the Wilson coefficients on the NP scales MS and M ,
as well as the dependence of the anomalous dimensions on the scale MS .
The evolution equation (3.80) needs to be modified if the Wilson coefficients CQLQ̄LG
and CqRq̄RG exhibit non-integrable singularities at the endpoint of the integration region.
As we discuss in the Appendix, this happens whenever CGG 6= 0 or C̃GG 6= 0. Hard
matching contributions then produce poles in the Wilson coefficients located at w = 1,7
whose residues are related to the coefficients CGG and C̃GG. While at first sight the
presence of these poles appears to give rise to endpoint-divergent integrals of the form∫ 1

0 dw
1

1−w in (3.80), a careful treatment reveals that the form of the mixing kernel in (3.81)
must be modified in this case. The dimensionally regularised loop integral produces an
extra factor

(
w(1− w)

)−ε, which regularises the singularities at w = 1 at the expense of
introducing a 1/ε2 pole. Next, for CGG 6= 0 or C̃GG 6= 0 there is an additional contribution
arising from the mixing of the operators in the O(λ2) effective Lagrangian (3.35) into the
O(λ3) operator OQLq̄R , which happens via subleading terms in the SCET Lagrangian
connecting collinear fields with an ultra-soft quark field. The relevant diagram is shown
on the right-hand side in Figure 3.3. The two effects conspire to produce an extra term
in the evolution equation (3.80) proportional to a combination of CGG and C̃GG times
a cusp logarithm. Details of this calculation are presented in the Appendix. The final

7In higher orders of perturbation theory, the poles can be multiplied by logarithms of (1− w).
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result for the corrected form of the evolution equation (3.80) reads

µ
d

dµ
CQLq̄R(µ) = ΓQLq̄R(µ)CQLq̄R(µ)

+ M2

M2
S

[
γqq̄cusp

(
ln M

2
S

µ2 − iπ
)

+ γ̃qq̄

]
g2
S(µ)

(
CGG(µ) + iC̃GG(µ)

)
Yq(µ)

+
∫ 1

0
dw Γmix(0, w, µ)

[
Yq(µ) C̄qRq̄RG(w, µ) + C̄†

QLQ̄LG
(w, µ)Yq(µ)

]
,

(3.82)
where

γqq̄cusp = CFαS(µ)
π

+O(α2
S) , γ̃qq̄ = CFαS(µ)

π
+O(α2

S) , (3.83)

and the subtracted coefficients C̄qq̄G(w, µ) (with q = QL or qR) are obtained from the
original ones by subtracting all terms of order (1 − w)−1 modulo logarithms. At lowest
order in perturbation theory, we show in the Appendix that

C̄QLQ̄LG(u, µ) = CQLQ̄LG(u, µ)− M2

M2
S

g2
S(µ)

1− u
[
CGG(µ)− iC̃GG(µ)

]
,

C̄qRq̄RG(u, µ) = CqRq̄RG(u, µ)− M2

M2
S

g2
S(µ)

1− u
[
CGG(µ) + iC̃GG(µ)

]
.

(3.84)

Note that the evolution equations (3.75) and (3.79) do not require similar modifications,
because the factor (1− w) in the second line of (3.76) and the θ(1− u− w) function in
(3.81) eliminate the singularities at w = 1.
The cusp anomalous dimension γqq̄cusp in (3.83) is a new object, which arises from the
exchange of an ultra-soft quark between two collinear sectors. This is likely to be a new
universal quantity, which arises in SCET applications beyond the leading power in the
expansion parameter λ. The calculation of the two-loop coefficient of this quantity is an
interesting open problem, to which we will return in future work.

3.5.3 Resummation of Large Logarithms

To illustrate the results derived above, we now perform the resummation of large log-
arithms of the scale ratio MS/v for two representative cases, working consistently at
leading logarithmic order. We focus on the examples S → 2 jets and S → tt̄+ jet, where
in both cases the jets are seeded by gluons (quark jets contribute at subleading power
only). At tree level, the expression for the S → 2 jets rate obtained from (3.33) reads

Γ(S → 2 jets) = M2

MS
8πα2

S(µ)
(
|CGG(µ)|2 + |C̃GG(µ)|2

)
. (3.85)
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Likewise, the Dalitz distribution for the decay S → tt̄+ jet obtained from (3.62) reads

d2Γ(S → tt̄+ jet)
dx12 dx23

= M3
S

M2
αS(µ)
8π2

x12
(
x2

13 + x2
23
)

(1− x12)2

×
( ∣∣∣D33

uLūLG
({xij}, µ)

∣∣∣2 +
∣∣∣D33

uRūRG
({xij}, µ)

∣∣∣2 ), (3.86)

where we have defined xij = m2
ij/M

2
S with x12 + x23 + x13 = 1. In the above relations

we suppress the dependence of the Wilson coefficients on the NP scales M and MS . The
scales µ on the right-hand side of the equations should be chosen equal to a characteristic
scale of the process. In the first case, this should be a scale associated with the definition
of the jets, while in the second case the scale should be around the top-quark mass.
We will now derive how the Wilson coefficients at these low scales can be computed, at
leading logarithmic order, in terms of the Wilson coefficients at the high scale MS . We
will focus on QCD evolution only, since this will give rise to the largest effects.
The general solution of the RG equation (3.66) has been derived in [199, 200]. For the
specific cases considered here, where the relevant anomalous dimensions are given by ΓGG
in (3.68) and ΓQ

QLQ̄LG
, ΓQqRq̄RG in (3.69), we obtain at leading logarithmic order

CGG(µ) = exp
[ 6

49 g(MS , µ) + 6
7 iπ ln r

]
CGG(MS) , (3.87)

with the same relation connecting C̃GG(µ) with C̃GG(MS), and

D33
uAūAG

({xij}, µ) = exp
[ 17

147 g(MS , µ) +
(4

7 + 17
21 iπ

)
ln r

]
D33
uAūAG

({xij},MS)

× (x12)
1

21 ln r (x23 x13)−
3
7 ln r ,

(3.88)

with A = L,R. We have defined the ratio r = αS(µ)/αS(MS) and

g(MS , µ) = 4π
αS(MS)

(
1− 1

r
− ln r

)
+
(251

21 − π
2
) (

1− r + ln r
)

+ 13
7 ln2 r . (3.89)

These expressions apply for six massless flavours of quarks, and they should thus not be
evaluated below the scale of the top-quark mass mt ≈ 173GeV. For a scalar resonance of
mass MS = 2TeV, we find numerically

CGG(mt) ≈ (0.42 + 0.36 i)CGG(MS) ,

D33
uAūAG

({xij},mt) ≈ (0.52 + 0.42 i)
(

x
1/9
12

x23 x13

)0.11

D33
uAūAG

({xij},MS) ,
(3.90)

indicating that evolution effects can be quite sizable. In the second case, these effects
lead to an additional, non-trivial dependence on the kinematic variables xij .
The solution of the RG equations governing the evolution of the Wilson coefficients
of the two-jet operators arising at O(λ3), which we have derived in Section 3.5.2, is
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more complicated. These equations can either be solved by numerical integration or by
constructing a suitable complete set of basis functions which diagonalise the relevant
anomalous-dimension kernels [182]. We leave a detailed discussion of these matters for
future work.

3.6 SCETBSM for the Scale Hierarchy M �MS � v

While our SCETBSM approach was designed to deal with the case where the masses of
the heavy new resonance S and of other, yet undiscovered new particles are of the same
order, it also applies to NP scenarios in which there is a double hierarchy, such that
M � MS � v. It is interesting to study this case in some detail, as it provides a nice
test case with which to illustrate our method.

3.6.1 Effective Lagrangian Below the New-Physics Scale M
If the scale M characterising the NP lies much above the scale of the resonance S, the
undiscovered heavy particles can be integrated out in a first step, see the right panel of
Figure 3.1. This is the standard case of integrating out heavy virtual degrees of freedom,
which are too massive to be produced as real particles. The effective Lagrangian obtained
after this first step consists of local operators built out of S and SM fields. We can write

Leff(M > µ > MS) = LSM + LSMEFT + LS . (3.91)

Here LSMEFT is the EFT extension of the SM by higher-dimensional operators constructed
out of SM fields only. Up to dimension-six order, the corresponding operators have been
classified in [43, 45, 46, 57, 139]. LS describes the interactions of S with itself and with
SM fields. Up to dimension-five order, we write the most general expression for this
Lagrangian in the form

LD≤5
S = 1

2 (∂µS)(∂µS)− V (S)−Mλ1 S φ
†φ− λ2

2 S2φ†φ− λ3
6M S3φ†φ− λ4

M
S
(
φ†φ

)2

+ cGG
M

αS
4π S G

a
µνG

µν,a + cWW

M

α

4πs2
w

SW i
µνW

µν,i + cBB
M

α

4πc2
w

SBµνB
µν (3.92)

+ c̃GG
M

αS
4π S G

a
µνG̃

µν,a + c̃WW

M

α

4πs2
w

SW i
µνW̃

µν,i + c̃BB
M

α

4πc2
w

SBµνB̃
µν

− 1
M

(
S Q̄L Ŷu φ̃ uR + S Q̄L Ŷd φdR + S L̄L Ŷe φ eR + h.c.

)
.

Here V (S) denotes the scalar potential, which in particular accounts for the mass MS

of the scalar resonance. Gaµν , W i
µν and Bµν denote the field strength tensors of SUc(3),

SUW (2) and UY (1), and G̃µν,a = 1
2 ε

µναβ Gaαβ etc. are the dual field strengths. The
quantities Ŷf with f = u, d, e are arbitrary complex matrices in generation space. We have
used the equations of motion for the SM fields and for the field S to eliminate redundant
operators, such as S φ†D2φ, (∂µS) (φ†iDµφ+h.c.), (∂µS) ψ̄γµψ (with an arbitrary chiral
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fermion ψ), and (�S)φ†φ.8 Note that the coupling Mλ1 of the Higgs-portal operator
S φ†φ is dimensionful and naturally of order M (i.e., it has a “hierarchy problem”). Our
operator basis agrees with the one obtained in [201], where a complete operator basis
was constructed up to dimension D = 7. Compared with [202], we have eliminated the
redundant operator S (∂µS)(∂µS).
It is straightforward to calculate the tree-level contributions to the S → hh, S → V V
and S → ff̄ decay amplitudes from the above effective Lagrangian and to reproduce the
scaling relations shown in (3.1). The only non-trivial case concerns the S → Zh decay
amplitude, for which the leading dimension-five contribution arises at one-loop order and
was calculated in [166]. The first tree-level contribution to the S → Zh decay amplitude
arises from the dimension-seven operator

LD=7
S 3 C7

M3 (∂µS) (φ†iDµφ+ h.c.)φ†φ . (3.93)

This contribution is suppressed by three powers of the NP scale.

3.6.2 RG Evolution From the New-Physics Scale to the Scale MS

Up to dimension-five order, the Wilson coefficients λi, cV V , c̃V V , and Ŷf in (3.92) evalu-
ated at the NP scale µ0 ∼M encode the complete information about the UV completion
of the theory at higher scales.9 After these coefficients have been fixed from a matching
calculation in the context of a particular model, they can be evolved from the high scale
µ0 ∼ M to the intermediate scale µ ∼ MS set by the mass of the resonance S (see the
right panel in Figure 3.1). In this process, large logarithms of the scale ratio M/MS � 1
are resummed. Since in our case S is a gauge singlet under the SM, the relevant anoma-
lous dimensions are those of the corresponding SM operators without the field S. For
simplicity, we will consider here only the effects related to QCD evolution.
At leading logarithmic order, only the Wilson coefficients Ŷf associated with quark fields
change under scale variation, and we find (with q = u, d)

Ŷq(µ) =
(
αS(µ)
αS(µ0)

)3CF /β0

Ŷq(µ0) , (3.94)

where β0 = 11
3 CA −

2
3 nf is the first coefficient of the QCD β-function. All other Wilson

coefficients are scale independent in this approximation. Beyond the leading order the
evolution effects become more interesting. For the scale dependence of the coefficient

8The authors of [165] have used the equation of motion for the scalar Higgs doublet to eliminate the
portal interaction S φ†φ instead of the operator S (Dµφ)†(Dµφ), which we have eliminated. This is
not a suitable choice, because the portal interaction is a dimension-three operator, whose contribution
is enhanced by two powers of the cutoff scale relative to the dimension-five operators in the effective
Lagrangian.

9The Wilson coefficients of the Weinberg operators contained in LSMEFT also enter at this order, but
they do not play a role in our analysis.
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Figure 3.4: One-loop diagram responsible for the mixing of the Wilson coefficients cGG,
c̃GG and Ŷq described by (3.98).

cGG(µ), which is renormalised multiplicatively, an exact solution can be written in terms
of the QCD β-function [203,204]. It reads

cGG(µ) = β(αS(µ))/α2
S(µ)

β(αS(µ0))/α2
S(µ0)

cGG(µ0) =
[
1 + β1

β0

αS(µ)− αS(µ0)
4π + . . .

]
cGG(µ0) .

(3.95)
We write the perturbative expansions of the β-function in the form

β(αS)
α2
S

= − 1
2π

(
β0 + β1

αS
4π + . . .

)
, (3.96)

where β1 = 34
3 C

2
A − 10

3 CAnf − 2CFnf . For the CP-odd coefficient c̃GG(µ) no exact
solution is available. At next-to-leading order (NLO), one obtains

c̃GG(µ) =
[
1 + (γsJ)1

β0

αS(µ)− αS(µ0)
4π + . . .

]
c̃GG(µ0) . (3.97)

Here (γsJ)1 = −6CFnf is the two-loop coefficient in the anomalous dimension of the
flavour-singlet axial-vector current [205].
Starting at NLO, there is a non-trivial mixing of the Wilson coefficients cGG, c̃GG and
Ŷq under renormalisation, caused by the diagram shown in Figure 3.4. For the CP-even,
flavour-diagonal coefficients, this effect was first studied in [206]. Including also flavour
non-diagonal couplings and CP-odd coefficients, we find that the mixing is governed by
the RG equation

µ
d

dµ
Ŷq(µ) = γy(µ) Ŷq(µ) + γqg(µ)

[
cGG(µ)− ic̃GG(µ)

]
Yq(µ) , (3.98)

where γy is the anomalous dimension of the SM Yukawa couplings, while γqg accounts
for the mixing effects. The perturbative expansions of these objects read

γy(αS) = γy0
αS
4π + γy1

(
αS
4π

)2
+ . . . , γqg(αS) = γqg1

(
αS
4π

)2
+ . . . , (3.99)

where γy0 = −6CF , γy1 = −3C2
F − 97

3 CFCA + 20
3 CFTFnf [207], and γqg1 = −24CF . At
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NLO, the solution to the RG equation (3.98) takes the form

Ŷq(µ) = Uy(µ, µ0)
[
Ŷq(µ0)− γqg1

2β0

αS(µ)− αS(µ0)
4π

(
cGG(µ0)− ic̃GG(µ0)

)
Yq(µ0)

]
,

(3.100)
where

Uy(µ, µ0) =
(
αS(µ)
αS(µ0)

)− γ
y
0

2β0
[
1− γy1β0 − β1γ

y
0

2β2
0

αS(µ)− αS(µ0)
4π + . . .

]
. (3.101)

Relations (3.95), (3.97) and (3.100) describe the scale dependence of the Wilson coeffi-
cients between the NP scale µ0 ∼M and the scale µ ∼MS .

3.6.3 Matching to SCETBSM at the Scale µ ∼MS

At the scale µ ∼ MS , the effective Lagrangian (3.91) is matched onto the SCETBSM
Lagrangians discussed in Section 3.3 and 3.4. The leading contributions arise from the
operators of dimension up to five. They originate from the D = 5 operators contained
in (3.92), or from the D = 3 Higgs-portal interaction S φ†φ in combination with a D = 6
interaction from the effective Lagrangian LSMEFT. We will now derive the corresponding
matching conditions at tree level. In this approximation, time-ordered products of S φ†φ
with operators of the SMEFT Lagrangian in the basis of [57] do not give rise to non-zero
matching contributions.

Matching Coefficients at O(λ2)

We begin with the Wilson coefficients of the O(λ2) SCETBSM operators in the effective
Lagrangian (3.21), for which we obtain

Cφφ(MS ,M, µ) = −λ1 ,

CGG(MS ,M, µ) = −M
2
S

M2
cGG
8π2 , C̃GG(MS ,M, µ) = M2

S

M2
c̃GG
8π2 ,

CWW (MS ,M, µ) = −M
2
S

M2
cWW

8π2 , C̃WW (MS ,M, µ) = M2
S

M2
c̃WW

8π2 ,

CBB(MS ,M, µ) = −M
2
S

M2
cBB
8π2 , C̃BB(MS ,M, µ) = M2

S

M2
c̃BB
8π2 .

(3.102)

All scale-dependent quantities are evaluated at the matching scale µ ∼MS .

Matching Coefficients at O(λ3)

The matching conditions for the Wilson coefficients of the two-body O(λ3) SCETBSM
operators in the effective Lagrangian (3.35) follow by evaluating the tree-level Feynman
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Figure 3.5: Diagrams contributing to the tree-level matching conditions for the Wilson
coefficients of O(λ3) operators. The first two graphs contribute the two terms
in (3.103) and (3.106), while the third diagram generates the coefficients in
(3.105) and (3.107).

diagrams shown in Figure 3.5. We write the results in terms of matrices in generation
space. For the coefficients of the mixed-chirality operators, we obtain (with f = u, d, e)

CFLf̄R(MS ,M, µ) = −Ŷf −
M2λ1
M2
S

Yf ,

C
(i)
FLf̄R φ

(u,MS ,M, µ) = −Ŷf −
M2λ1

(1− u)M2
S

Yf ; i = 1, 2 .
(3.103)

The matrices Yf refer to the original Yukawa matrices of the SM. Several of the coefficients
of the same-chirality operators vanish at tree level, namely

CLLL̄LG(u,MS ,M, µ) = C`R ¯̀
RG

(u,MS ,M, µ) = 0 ,
CfRf̄RW (u,MS ,M, µ) = 0 .

(3.104)

For the remaining coefficients, we find

CQLQ̄LG(u,MS ,M, µ) = −αS2π
u

1− u (cGG + ic̃GG) 1 ,

CqRq̄RG(u,MS ,M, µ) = −αS2π
u

1− u (cGG − ic̃GG) 1 ,

CFLF̄LW (u,MS ,M, µ) = − α

2πs2
w

u

1− u (cWW + ic̃WW ) 1 ,

CFLF̄LB(u,MS ,M, µ) = −YFLα2πc2
w

u

1− u (cBB + ic̃BB) 1 ,

CfRf̄RB(u,MS ,M, µ) = −YfRα2πc2
w

u

1− u (cBB − ic̃BB) 1 ,

(3.105)

where YFL and YfR in the last two relations refer to the hypercharges of the fermions.
Note that at tree level these coefficients are diagonal in flavour space. Once again, all
scale-dependent quantities are evaluated at the matching scale µ ∼MS .
The matching conditions for the O(λ3) operators governing three-body decays of the
resonance S are given by similar expressions. In analogy with (3.103), we find

DFLf̄R φ
({m2

kl},M, µ) = −Ŷf −
M2λ1
m2

12
Yf . (3.106)
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Figure 3.6: Representative one-loop diagrams contributing to the matching condition for
the Wilson coefficients C̃φφφφ in (3.110). Dashed lines with a cross denote
zero-momentum insertions of the scalar field ϕ0

0. In the first and third graph
one must sum over all possible attachments of the scalar lines on the fermion
loop.

The coefficients DFLF̄LA
and DfRf̄RA

are given by expressions analogous to those in
(3.105), with the replacement u/(1− u)→ (M2

S −m2
12)/m2

12; for example, we find

DQLQ̄LG
({m2

kl},M, µ) = −αS2π
M2
S −m2

12
m2

12
(cGG + ic̃GG) 1 . (3.107)

Note that, as anticipated in Section 3.4, these results only depend on the invariant mass
m12 of the fermion pair.
The explicit expressions for the Wilson coefficients in (3.103) and (3.105) confirm our
general arguments presented in Section 3.5.2. The coefficients contain poles at u = 1,
whose residues are determined in terms of the Wilson coefficients of the O(λ2) operators
given in (3.102).

Matching Coefficient C̃φφφφ at O(λ4)

The coefficient C̃φφφφ in the effective Lagrangian (3.50) receives matching contributions
starting at one-loop order. Writing the scalar doublets in the form

Φni = W †ni

(
−iϕ+

ni
1√
2

(
ϕ0
ni + iϕ3

ni

) ) , Φ0 = 1√
2

(
0
ϕ0

0

)
, (3.108)

where ϕ0
0 denotes a zero-momentum boson, we find that

L(4)
eff 3

C̃φφφφ(MS ,M, µ)
M

S
(
ϕ0

0

)2 (
ϕ3
n1ϕ

0
n2 + ϕ3

n2ϕ
0
n1

)
+ . . . , (3.109)

where the dots represent contributions involving more than five fields. In order to deter-
mine C̃φφφφ, we compute the four-particle decay amplitude S → ϕ3(k1)ϕ0(k2)ϕ0(0)ϕ0(0)
with two zero-momentum particles in the final state, in both the full theory – defined
by the Lagrangian (3.92) – and the effective theory. Treating all particles other than
S as massless and performing the matching calculation with on-shell external states, all
loop graphs in the effective theory are scaleless and hence vanish. In the full theory, the
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one-loop diagrams shown in Figure 3.6 give rise to non-zero results. All other diagrams
are scaleless. Note that the evaluation of the two graphs involving the Bµ and Wµ

3 gauge
bosons requires a regulator in order to avoid that the gauge-boson propagator becomes
singular. We introduce an infinitesimal momentum q to the “zero-momentum” ϕ0 boson
coupling to the vector boson and take the limit q → 0 after summing up all diagrams. In
that way, we find in the MS subtraction scheme

C̃φφφφ(MS ,M, µ) = −
∑

f=u,d,e

Nf
c T

fL
3

16π2

[
ImTr

(
ŶfY

†
f YfY

†
f

)(
L2 − 2iπL− 7π2

6

)

− ImTr
(
ŶfY

†
f

)(
4λ+ e2

2s2
wc

2
w

)(
L− iπ − 2

)]
,

(3.110)
where λ denotes the quartic scalar coupling of the SM (not to be confused with our SCET
expansion parameter), T fL3 denotes the weak isospin of the left-handed fermions, and
L = ln(M2

S/µ
2). The complex matrices Ŷf have been defined in (3.92), while Yf are the

Yukawa matrices of the SM. A simple result for the traces can be obtained by transforming
the Yukawa matrices to the mass basis and defining

(
U †f ŶfWf

)
ii
≡ yfi

(
cfi + ic̃fi

)
, where

yfi is the SM Yukawa coupling of the fermion fi. This leads to

C̃φφφφ(MS ,M, µ) = −
∑

f=u,d,e

Nf
c T

fL
3

16π2

∑
i=1,2,3

c̃fi

[
y4
fi

(
L2 − 2iπL− 7π2

6

)

− y2
fi

(
4λ+ e2

2s2
wc

2
w

)(
L− iπ − 2

)]
.

(3.111)
The dominant contribution is likely to arise from the top quark.
In [166], it was shown that a tree-level contribution to C̃φφφφ arises first from a dimension-
seven operator in the effective Lagrangian obtained by integrating out the NP scale M ,
shown in (3.93). We find that the corresponding matching contribution reads

δC̃φφφφ = − M2
S

2M2 C7 , (3.112)

where C7 itself is most likely suppressed by a loop factor. This contribution is paramet-
rically suppressed compared with that in (3.110) by a factor M2

S/M
2 � 1.

3.7 Conclusions
We have developed a theoretical framework to construct a consistent EFT for the on-shell
decays into light SM particles of the first new heavy resonance beyond the SM that will
be discovered at the LHC or elsewhere. Our approach is flexible enough to retain the
full dependence on the mass MS of the new resonance S and on the masses of other,
yet undiscovered particles. It can thus deal with the important situation where the first
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particle to be discovered is a member of a new sector characterised by a mass scale M . It
provides a consistent separation between the electroweak scale v ≈ 246GeV and the NP
scales MS and M , irrespective of whether MS ∼ M are of similar magnitude or if there
is a double hierarchy v � MS � M . Large double and single logarithms of scale ratios
can be resummed to all orders in perturbation theory by solving RG evolution equations
in the effective theory.
Our effective theory SCETBSM is a variant of SCET, in which the effective Lagrangian
is constructed out of gauge-invariant collinear building blocks for the particles of the SM
along with a field representing the new heavy resonance S. We have worked out in detail
the case where S is a spin-0 boson that is a singlet with respect to the SM gauge interac-
tions. We have constructed the most general effective Lagrangian at leading, subleading,
and partially subsubleading order in the expansion in λ = v/MS . It describes all two-
body decays of S into SM particles. We have also constructed the leading-order effective
Lagrangian describing three-body decays of S. We have calculated the anomalous dimen-
sions of the operators in the effective Lagrangian and derived the RG evolution equations
for their Wilson coefficients. For the operators arising at next-to-leading order in λ sev-
eral subtleties arise. These operators mix under renormalisation, and their anomalous
dimensions are distribution-valued functions depending on the momentum fractions car-
ried by different collinear field operators. The evolution equations involve a new cusp
anomalous dimension originating from the exchange of an ultra-soft quark between two
collinear sectors. There has recently been an increasing interest in applications of SCET
beyond the leading power in λ [197, 208–216]. The results obtained in this paper are an
important contribution to this rapidly developing field.
There are several extensions and refinements of our approach which are worth pursuing.
The matrix elements of the SCETBSM operators, which we have computed at tree level,
should be calculated to one-loop order. These matrix elements contain large rapidity
logarithms of the scale ratio MS/v from the collinear anomaly, despite the fact that the
hard scaleMS has been integrated out from the low-energy effective theory. Understand-
ing the structure of these logarithms and showing that they do not spoil factorisation is
an important ingredient of our approach. It will be important to complete the calcula-
tion of the one-loop anomalous dimensions of the two-jet operators arising at O(λ3) in
the SCETBSM Lagrangian, which we have presented in Section 3.5.2, by including the
contributions from electroweak and Yukawa interactions. Perhaps more importantly, the
two-loop contribution to the cusp anomalous dimension γqq̄cusp in (3.83) should be cal-
culated. This quantity is associated with the exchange of an ultra-soft quark between
two collinear fields moving along different directions. It is a crucial new ingredient for
a consistent Sudakov resummation at subleading power in SCET. Finally, it would be
interesting to provide a complete classification of the operators arising at O(λ4) in the
SCETBSM Lagrangian, whose structure we have only sketched in Section 3.3.3.
Our work can be generalised in several ways. In particular, it would be interesting to
extend it to other cases of new heavy resonances, which are well motivated theoretically.
This includes various heavy leptoquarks or Z ′ bosons, which have been proposed to
address some present anomalies in rare and semileptonic decays of B mesons [217–222]
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(see [223] for a recent review). It also applies to heavy particles that can serve as mediators
to the dark sector, generalising the hybrid EFT framework recently proposed in [224].
Finally, it would be interesting to calculate the Wilson coefficients in the SCETBSM
Lagrangian in some concrete NP models. Specifically, in future work we plan to illustrate
our results in the context of an extension of the SM containing heavy, vector-like fermions.
As our community eagerly awaits the discovery of new heavy particles, we have developed
here a general EFT approach that allows one to describe the decays of such particles into
SM particles in a model-independent way, systematically separating the NP scales from
the scales of the SM, accounting for the full complexity of the (partially unknown) UV
completion via Wilson coefficient functions and providing a framework for the resumma-
tion of large logarithms to all orders in perturbation theory.
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3.8 Appendix: Derivation of the Evolution Equation (3.82)
Effective Lagrangian of SCET

The leading-order SCET Lagrangian describing a massless, n-collinear fermion (of any
chirality)

ξn(x) = /n/̄n
4 ψ(x) (3.113)

interacting with a (abelian or non-abelian) gauge field Aµ reads [39,42]

L(0)
ξ,n(x) = ξ̄n(x) /̄n

2

(
in ·D + i /D⊥c

1
in̄ ·Dc

i /D⊥c
)
ξn(x) + . . . , (3.114)

where the dots represent the effective Yang-Mills Lagrangian and gauge-fixing terms. The
covariant collinear derivative is defined as

iDµ
c = i∂µ + gAA

µ
n(x) , (3.115)

where gA denotes the relevant gauge coupling. The covariant derivative without a sub-
script “c” is defined as

in ·D = in · ∂ + gA n ·An(x) + gA n ·Aus(x−) . (3.116)

It includes the ultra-soft gauge field n · Aus in addition to the small component of the
collinear gauge field n · An, both of which have the same power counting (∼ λ2). Note
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that the ultra-soft gauge field is multipole-expanded and lives at position x− ≡ n
2 n̄ · x.

This ensures that only the relevant components n · pus of ultra-soft momenta, which can
compete with the corresponding small components n · pn of collinear momenta, enter in
the computation of Feynman diagrams. The Feynman rules of SCET follow from the
Lagrangian (3.114) in the usual way.
At subleading order in the expansion in powers of λ new interaction vertices arise. The
terms of O(λ) and O(λ2) have been constructed in [42]. Of particular importance to our
discussion below is the coupling of a collinear fermion to an ultra-soft fermion qus, which
enters at first order in λ. The relevant effective Lagrangian reads

L(1)
ξq,n = ξ̄n(x) i /D⊥cWn(x) qus(x−) + h.c. , (3.117)

where Wn is the collinear Wilson line introduced in (3.5), and the ultra-soft quark field
has power counting qus ∼ λ3. The Lagrangians (3.114) and (3.117) can be written for
any collinear sector of the theory.

Endpoint Singularities in Collinear Contributions

For NP models in which the Wilson coefficients of the leading SCETBSM operators
in (3.21) are non-zero, one can show on general grounds that the Wilson coefficients
C

(i)
FLf̄R φ

(u, µ), CFLF̄LA(u, µ), and CfRf̄RA(u, µ) are singular in the limit u→ 1. The ori-
gin of these singularities can be understood as follows. When integrating out some heavy
degrees of freedom generates the operators in (3.22), the same UV physics will also gen-
erate corresponding vertices in which one of the two outgoing collinear lines is replaced
by a line carrying a hard momentum. Consider, for example, the vertex shown on the
left-hand side in Figure 3.7 (a corresponding graph exists with n1 and n2 interchanged).
If we denote the momentum of the n1-collinear gluon by k1 = uP1, then the hard gluon
carries momentum k2 = P2 + (1− u)P1. The vertex function can then be written in the
form

M
[
CGG(u,MS ,M, µ) g⊥αβ + C̃GG(u,MS ,M, µ) ε⊥αβ

]
g2
S δab , (3.118)

where the dependence on u enters through the invariants 2k1 · k2 = uM2
S and k2

2 =
(1− u)M2

S . Clearly, for u→ 1 we recover

lim
u→1

CGG(u,MS ,M, µ) = CGG(MS ,M, µ) , (3.119)

and likewise for C̃GG, where CGG and C̃GG are the coefficients in the effective Lagrangian
(3.21).10 Consider now the diagram shown on the right-hand side in Figure 3.7, which
yields the following hard matching contributions to the Wilson coefficients (omitting some

10Beyond tree level this relation is more complicated. The coefficient on the left-hand side can contain
hard loop corrections ∼ (µ2/k2

2)nε, which are absent in the coefficient on the right-hand side.

58



3.8 Appendix: Derivation of the Evolution Equation (3.82)

k1

k2 (hard)

uP1

ū P1

P2

Figure 3.7: Vertex function connecting S with a collinear gluon and a hard gluon (left),
and the corresponding hard matching contribution to the Wilson coefficients
in (3.120) (right).

arguments):

∆CQLQ̄LG(u, µ) = M2

M2
S

g2
S(µ)

1− u
[
CGG(u, µ)− iC̃GG(u, µ)

]
,

∆CqRq̄RG(u, µ) = M2

M2
S

g2
S(µ)

1− u
[
CGG(u, µ) + iC̃GG(u, µ)

]
.

(3.120)

This produces poles at u = 1, whose residues are given in terms of the coefficients CGG
and C̃GG in the effective Lagrangian (3.21). At first sight, these give rise to endpoint-
divergent integrals

∫ 1
0 dw

1
1−w when inserted into (3.80).

To see how these integrals are cured, we need to look at the relevant operator mixing con-
tribution in more detail. Consider the one-loop contributions to the S → qiL(k1)q̄jR(k2)φ∗
decay amplitude, where the scalar field carries zero momentum. We include multiplica-
tive radiative corrections to the matrix element of the operator O ij

QLq̄R
as well as the

mixing contribution shown by the first diagram in Figure 3.3. Before renormalisation,
i.e. written in terms of bare Wilson coefficients, we find

M(S → qiLq̄
j
Rφ
∗) = 1

M

〈
qiLq̄

j
Rφ
∗|OijQLq̄R |S

〉
tree

×
[
Z−1
QLq̄R

CijQLq̄R −
∫ 1

0
dwNε(w)

(
µ2

−k2
1

)ε
Y ik
q CkjqRq̄RG(w)

−
∫ 1

0
dwNε(w)

(
µ2

−k2
2

)ε (
C†
QLQ̄LG

(w)
)ik

Y kj
q

]
,

(3.121)

where (here and below we omit the “−i0” regulator in the arguments of the logarithms)

Z−1
QLq̄R

= 1 + CFαS
π

[
1

2ε2 + 1
2ε

(
ln µ2

−M2
S

+ 3
2

)]
,

Nε(w) = eεγE
CFαS

2π (1− ε) Γ(ε)
(
w(1− w)

)−ε
.

(3.122)
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Naively expanding Nε(w) as Nε(w) = CFαS/(2πε)+“finite terms” reproduces the mixing
terms shown in (3.80). However, in the presence of the poles at u = 1 in (3.120), such an
expansion does not capture all the 1/ε singularities. Let us split up the Wilson coefficients
in two terms, such that

CijqRq̄RG(w) = M2

M2
S

g2
S

1− w
(
CGG + iC̃GG

)
δij + C̄ijqRq̄RG(w) , (3.123)

and similarly for C†
QLQ̄LG

(w). The subtracted coefficients C̄ijqRq̄RG(w) and C̄ij
QLQ̄LG

(w)
are integrable at w = 1. We then obtain from (3.121)

M(S → qiLq̄
j
Rφ
∗) = 1

M

[
Z−1
QLq̄R

CijQLq̄R

− CFαS
2πε

∫ 1

0
dw
[
Y ik
q C̄kjqRq̄RG(w) +

(
C̄†
QLQ̄LG

(w)
)ik

Y kj
q

]
− CFαS

2π eεγE Γ(ε) Γ(2− ε) Γ(−ε)
Γ(1− 2ε)

[(
µ2

−k2
1

)ε
+
(
µ2

−k2
2

)ε ]

× g2
SM

2

M2
S

(
CGG + iC̃GG

)
Y ij
q

] 〈
qiLq̄

j
Rφ
∗|OijQLq̄R |S

〉
tree

.

(3.124)
It follows that, in the MS subtraction scheme, the bare Wilson coefficient CijQLq̄R receives
the counterterms

CijQLq̄R
∣∣
ren = Z−1

QLq̄R
CijQLq̄R −

CFαS
2πε

∫ 1

0
dw
[
Y ik
q C̄kjqRq̄RG(w) +

(
C̄†
QLQ̄LG

(w)
)ik

Y kj
q

]
+ CFαS

2π

[
2
ε2

+ 1
ε

(
ln µ2

−k2
1

+ ln µ2

−k2
2
− 2

)]
g2
SM

2

M2
S

(
CGG + iC̃GG

)
Y ij
q .

(3.125)
The endpoint singularities are regularised in this expression and give rise to the double
poles in 1/ε; however, the appearance of the collinear logarithms is worrisome, as it would
indicate a sensitivity of the associated anomalous dimension to infrared scales.

Contribution From the Exchange of an Ultra-Soft Quark

This dependence is cancelled by the contribution from a loop diagram involving the
exchange of an ultra-soft quark between the two collinear sectors, shown on the right-
hand side in Figure 3.3. In this graph the Sgg vertex descents from the O(λ2) effective
Lagrangian (3.21). It is combined with two insertions of the subleading SCET Lagrangian
(3.117), which couples a collinear fermion to a collinear gauge field and an ultra-soft quark.
More accurately, the diagram arises from the subleading-power operator

T
{
OGG(x), i

∫
d4yL(1)

ξq,n1
(y), i

∫
d4z L(1)

ξq,n2
(z), i

∫
d4wL(−1)

q̄Φq (w)
}
, (3.126)
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and similarly with ÕGG instead of OGG. The Lagrangian

L(−1)
q̄Φq = − (q̄us,L Yq Φ0 qus,R + h.c.) (3.127)

describes the coupling of ultra-soft quarks to the zero-momentum scalar field Φ0. With
qus ∼ λ3 and Φ0 ∼ λ, and taking into account that the ultra-soft measure scales as
d4xus ∼ λ−8, it follows that this Lagrangian contributes terms of O(λ−1) to the action.
This lifts the operator in (3.126) from the naive expectation O(λ4) to O(λ3).11
Evaluating the contribution of the operator (3.126) to the matrix element in (3.121), we
obtain an extra contribution inside the bracket on the right-hand side of (3.124), which
reads

−CFαS2π eεγE (1− ε) Γ(ε) π

sin πε

(
µ2(−M2

S)
(−k2

1)(−k2
2)

)ε
g2
SM

2

M2
S

(
CGG + iC̃GG

)
Y ij
q . (3.128)

This term has the effect of removing the collinear logarithms in expression (3.125) and
replacing them by a logarithm of the hard scale. We thus obtain the final result

CijQLq̄R
∣∣
ren = Z−1

QLq̄R
CijQLq̄R −

CFαS
2πε

∫ 1

0
dw
[
Y ik
q C̄kjqRq̄RG(w) +

(
C̄†
QLQ̄LG

(w)
)ik

Y kj
q

]
+ CFαS

2π

[
1
ε2

+ 1
ε

(
ln µ2

−M2
S

− 1
)]

g2
SM

2

M2
S

(
CGG + iC̃GG

)
Y ij
q

(3.129)
for the counterterms. From this expression, it is straightforward to derive the RG evolu-
tion equation (3.82).

11One might worry that multiple insertions of the Lagrangian (3.127) can promote the operator to even
lower order in λ. However, graphs with such multiple insertions do not produce UV poles and are
scaleless when evaluated on shell. If we would introduce soft mass-mode fields instead of ultra-soft
fields, then the coupling of the soft quark to the scalar doublet is a leading-power interaction, while
the coupling of a soft quarks to a collinear quark and gluon in (3.117) appears at O(λ1/2). Also in
this case the operator (3.126) is of O(λ3).
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4 Effective Theory for a Heavy Scalar Coupled to
the SM via Vector-Like Quarks

This chapter is published in [9] under the creative commons license CC-BY 4.0 (http:
//creativecommons.org/licenses/by/4.0/). We performed minor modifications to
the text, the notation and the formatting.

4.1 Introduction
Following the discovery of a new particle with a mass far above the electroweak scale
v ≈ 246GeV, a program for studying its couplings to the SM would be of highest priority.
In the likely situation where the new resonance is the first member of a richer sector of
NP, the appropriate way to study its decay and production processes must rely on an EFT
framework. The main reason is that other, yet undiscovered heavy particles can couple
to both the SM and the new resonance S and hence affect its interactions. Secondly,
the large scale hierarchy between the mass of the heavy resonance and the weak scale,
which (roughly) sets the masses of the SM particles, introduces large Sudakov double
logarithms in the calculation of decay rates and production cross sections, which must
be resummed to all orders of perturbation theory. Finally, for the most interesting case
where the mass of the new resonance is close to the massesMi of yet undiscovered states,
there is short-distance physics associated with both scales, which must be disentangled
from the longer-distance physics associated with the electroweak scale.
We have shown in [1] that the appropriate EFT to deal with this scenario must be
based on an effective Lagrangian built out of non-local light-ray operators defined in
SCET [39–42]. Our theory called SCETBSM provides a systematic expansion of the
decay amplitudes of the new heavy particle in powers of λ = v/MS � 1. For the case
of a scalar resonance S transforming as a singlet under the SM gauge group, we have
constructed the complete operator basis at leading and subleading order in the expansion,
corresponding to operators of O(λ2) and O(λ3), respectively.
The leading-order effective Lagrangian for two-body decays of S consists of operators
in which S is coupled to two effective bosonic fields, which describe so-called collinear
particles moving along directions n1 and n2, which point back-to-back in the rest frame
of the decaying resonance. One has [1]

L(2)
eff = M Cφφ(M,MS)Oφφ +M

∑
A

[
CAA(M,MS)OAA + C̃AA(M,MS) ÕAA

]
. (4.1)

HereM denotes the characteristic mass scale of unresolved new heavy particles. The sum
extends over the three gauge groups of the SM: A = B for UY (1), A = W for SUW (2),
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4 Effective Theory for a Heavy Scalar Coupled to the SM via Vector-Like Quarks

and A = G for SUc(3). The relevant SCETBSM operators have the form (a summation
over the group index a is understood for non-abelian fields)

Oφφ = Sv
(
Φ†n1Φn2 + Φ†n2Φn1

)
,

OAA = Sv g
⊥
µν A

µ,a
n1 Aν,a

n2 ,

ÕAA = Sv ε
⊥
µν A

µ,a
n1 Aν,a

n2 .

(4.2)

Here Sv is an effective field for the heavy resonance defined as in heavy-quark effective
theory [116, 168, 169, 172], with v denoting its four-velocity. The reference vectors n1
and n2 indicate the directions of large momentum flow of the final-state particles. The
effective fields consist of so-called “gauge covariant building blocks” [151, 167] Φ and A

containing the Higgs doublet and the transversely polarised gauge fields, respectively,
dressed up with Wilson lines in the appropriate representation of the gauge group. The
Lorentz indices of the gauge fields can be contracted with either the symmetric tensor
g⊥µν or the antisymmetric tensor ε⊥µν defined in the plane orthogonal to n1 and n2. Note
that the different fields in the operators in (4.2) interact only via soft quanta, since there
is only a single collinear field in each sector; hard interactions with virtualities of order
M2
S or M2 are integrated out in the construction of the effective Lagrangian and are

contained in the Wilson-coefficient functions.
Note the important fact that the Wilson coefficients in (4.1) depend on both, the massMS

of the scalar resonance and the parameterM representing the typical mass scale of other,
yet undiscovered heavy particles. As we shall see below, in this way our effective theory
sums infinite towers of local operators in the conventional EFT approach. In some sense,
the Wilson coefficients in our Lagrangian can be regarded as form factors depending on
the large momentum transfers q2 = O(M2

S) flowing through Feynman diagrams, which
can resolve the small non-localities corresponding to exchanges of the heavy vector-like
quarks (VLQs).
At subleading order in power counting the operator basis contains five different types of
operators, all of which consist of fermion bilinears along with a Higgs doublet or a gauge
field, see Section 4.3. In Section 4.5 we study some aspects of the extension of the effective
Lagrangian to O(λ4), which is necessary to describe the two-body decay S → Zh.
In this work, we illustrate the SCETBSM approach by considering a concrete extension
of the SM featuring a heavy, gauge-singlet scalar field S along with three generations of
heavy VLQs. Vector-like fermions play an important role in models of partial composite-
ness [225], as realized e.g. in composite-Higgs models (see e.g. [226–228]) and scenarios
featuring a warped extra dimension [229–231]. Extensions of the SM featuring both
vector-like fermions and a singlet scalar are among the popular simplified models for
dark matter (see e.g. [232,233]).

4.2 High-Energy Extension of the Standard Model
The benchmark model we explore in this paper is an extension of the SM by a real scalar
S, transforming as a singlet under the SM gauge group, and (three generations of) a
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4.3 Tree-level Matching Onto SCETBSM

VLQ doublet Ψ, transforming as (3,2)1/6. Besides the Higgs portal, the VLQs mediate
the renormalisable interactions between the SM and the new sector. We assume that
the mass of the scalar and the masses of the VLQs are both much heavier than the
electroweak scale v ≈ 246GeV. The most general Lagrangian of our model is

LUV = LSM + 1
2(∂µS)(∂µS)− M2

S

2 S2 − λ3
3! S

3 − λ4
4! S

4

+ Ψ̄(i /D −M)Ψ−
(
Ψ̄φ̃GuuR + Ψ̄φGddR + h.c.

)
− κ1S φ

†φ− κ2
2 S2φ†φ

− S Ψ̄
(
X − iγ5X̃

)
Ψ− S

(
Ψ̄VQQL + h.c.

)
.

(4.3)

The second line contains the couplings of the VLQs to SM fields, where φ̃a = εabφ
∗
b .

There is no need to include the gauge-invariant terms Ψ̄iγ5M̃Ψ− (Ψ̄GQQL+h.c.), since
they can be removed by unitary transformations of the quark fields. The terms in the
third line contain the portal couplings of the heavy scalar to the Higgs field. Note that
the couplings κ1 and λ3 have mass dimension 1. The interactions in the last line describe
the couplings of S to the VLQs and SM quarks. We assume that the parameters λi in
the scalar potential are chosen such that the scalar field S does not acquire a vacuum
expectation value. For the same reason, we have omitted the tadpole term λ1S from the
potential.
Boldface symbols in (4.3) denote matrices in generation space. The matrices Gu,d and
VQ are arbitrary complex matrices, while M , X and X̃ are hermitian. Without loss of
generality we work in the mass basis for the VLQs, where M is a real, positive diagonal
matrix. For simplicity, we assume that the three mass eigenvalues are degenerate, i.e.
M = M 1. The common mass of the VLQs is then identified with the “new physics
scale” M in (4.1).
Suppose that the heavy scalar S has been discovered, while the VLQs have not yet been
observed experimentally. Our goal is to construct an EFT describing the interactions of
S with SM particles. The appropriate EFT in such a scenario is the SCETBSM [1]. It
would be straightforward to extend our analysis to the case of vector-like fermions with
different quantum numbers. However, in order to keep the presentation as transparent as
possible, we find it advantageous to consider the simplest case of a single type of VLQ.

4.3 Tree-level Matching Onto SCETBSM

When the full theory in (4.3) is matched onto the SCETBSM two types of short-distance
modes are integrated out: First, one removes virtual exchanges of the VLQs, which do
not appear as external states in the EFT (since these particles are assumed to be yet
undiscovered). In addition, one integrates out off-shell fluctuations of the SM fields as
well as of the scalar field S carrying virtualities of order q2 ∼M2

S . While the first step is
standard, the second step differentiates the SCETBSM approach from local EFTs such as
the SMEFT [43,45,46,57,139].
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4.3.1 Integrating out the Vector-Like Quarks
At tree level, the heavy VLQs can be integrated out by solving their classical equations
of motion. This yields the “non-local effective Lagrangian”

Leff = LSM + 1
2(∂µS)(∂µS)− M2

S

2 S2 − λ3
3! S

3 − λ4
4! S

4

− κ1S φ
†φ− κ2

2 S
2φ†φ− F̄ 1

i /D −M − S
(
X − iγ5X̃

) F , (4.4)

where
F = φ̃GuuR + φGddR + S VQQL . (4.5)

Note that the heavy scalar field S is still a propagating field at this stage, and indeed the
last term in (4.4) contains couplings of SM fields to an arbitrary number of S fields. The
terms of zeroth order in S read

Leff
∣∣
S0 = LSM + F̄0

1
M − i /D F0 , (4.6)

where F0 = φ̃GuuR + φGddR. Expanding the denominator in powers of covariant
derivatives would generate an infinite set of higher-dimensional, gauge-invariant oper-
ators, which account for the virtual effects of heavy VLQs on the interactions among SM
particles in the context of the SMEFT.
For our purposes the most relevant terms in (4.4) are those linear in S. They are

Leff
∣∣
S1 = −κ1S φ

†φ+
[
S Q̄LV

†
Q

1
M − i /D F0 + h.c.

]
− F̄0

1
M − i /D S

(
X − iγ5X̃

) 1
M − i /D F0 .

(4.7)

In order to match this expression onto the SCETBSM effective Lagrangian describing two-
body decays of the heavy scalar S, we replace the SM fields by fields in the EFT. The
relevant fields are the soft field Sv for the heavy resonance and collinear fields describing
particle jets moving along light-like directions nµ1 = (1,n1) and nµ2 = (1,n2). The precise
definitions of these fields, which include collinear Wilson lines, can be found in [1]. For
the special case of the Higgs doublet, the low-energy theory also contains a soft field
Φ0 carrying no four-momentum. After EWSB this field is set to the Higgs vacuum
expectation value. The relevant replacement rules are extremely simple:

φ→ Φ0 + Φn1 + Φn2 + . . . ,

ψ → ψn1 + ψn2 + . . . ,

gAµ,a → Aµ,a
n1 + Aµ,a

n2 + . . . .

(4.8)

Here ψ = QL, uR, dR denotes a generic SM quark field, while A = B,W,G is a generic
gauge field. The effective gauge fields in SCETBSM include the gauge couplings in their
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4.3 Tree-level Matching Onto SCETBSM

definition. The collinear quark and gauge fields are subject to the constraints /ni ψni = 0
and n̄i ·Aa

ni = 0, where n̄µi = (1,−ni). Note that the components n̄i ·Aa of the gauge fields
are contained in the Wilson lines of the effective theory. The collinear fields satisfy simple
power-counting rules in the expansion parameter λ = v/MS of SCETBSM: the fields Φ0,
Φni , ψni and A

µ,a
⊥,ni are all of O(λ), whereas the longitudinal gauge fields ni · Aa

⊥,ni
are of O(λ2). The subscript ⊥ refers to the components of an ni-collinear gauge field
perpendicular to the four-vectors nµi and n̄µi . Derivatives acting on ni-collinear fields can
be decomposed into the components n̄i · ∂ = O(λ0), ∂µ⊥ = O(λ) and ni · ∂ = O(λ2). The
dots in (4.8) stand for soft fields, which are power-suppressed relative to the collinear
fields and will play no role for our discussion.
It is now straightforward to extract from (4.7) the terms of leading order in the λ expan-
sion. Obviously, the first term on the right-hand side generates the tree-level contribution

Cφφ = −κ1
M

(4.9)

to the Wilson coefficient of the scalar operator Oφφ in the SCETBSM Lagrangian (4.1).
After the introduction of SCET fields the quantity F0 is of O(λ2), while QL is of O(λ).
Hence the leading terms in the Lagrangian originating from VLQ exchange are of O(λ3)
and arise from the term in brackets in the first line of (4.7). Since gauge fields in SCETBSM
are always power suppressed, we can expand the inverse-derivative operator sandwiched
between spinor fields of opposite chirality in the form

1
M − i /D →

M

M2 +� +O(λ) . (4.10)

The Laplace operator in the denominators of these expressions must only be kept if the
product of fields on which this operator acts has virtuality of order M2

S . We thus obtain

Leff
∣∣λ3

S1 = 1
M

∑
q=u,d

[
Sv Q̄L,n1V

†
QGq

(
Φ0 + Φn2

)
qR,n2

+ Sv Q̄L,n1V
†
QGq

M2

M2 +� Φn1qR,n2 + h.c.
]

+ (n1 ↔ n2) ,
(4.11)

where for q = u the doublet Φ must be replaced by Φ̃. The first graph in Figure 4.1
shows a diagram in the complete theory giving rise to these matching contributions.

4.3.2 Integrating out Off-Shell Fluctuations
If the portal coupling κ1 in (4.3) is non-zero, then the second diagram shown in Figure 4.1
produces another tree-level matching contribution, in which the propagator for the Higgs
doublet carries a virtuality of order q2 ∼ M2

S . The corresponding contribution to the
effective Lagrangian can be written in the form

∆Leff
∣∣λ3

S1 =
∑
q=u,d

κ1Sv
(
Φa

0 + Φa
n1 + Φa

n2

) 1
�
Q̄aL,n1Yq qR,n2 + h.c.+ (n1 ↔ n2) , (4.12)
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QL

φ

qR

Ψ

φ

QL

qR

φ

Figure 4.1: Tree-level diagrams giving rise to the effective Lagrangians (4.11) (left) and
(4.12) (right). Thick lines denote S and the VLQs, whereas the thin lines
represent SM particles.

where the inverse Laplace operator arises from the Higgs propagator. The sum of (4.11)
and (4.12) gives the complete tree-level effective Lagrangian at O(λ3).

4.3.3 Wilson Coefficients
The complete basis of SCETBSM operators at O(λ3) has been constructed in [1]. The
effective Lagrangian at this order can be written in the form (summed over i, j)

L(3)
eff = 1

M

∑
q=u,d

[
C ij
QLq̄R

(M,MS)O ij
QLq̄R

+
∑
k=1,2

∫ 1

0
duC

(k) ij
QLq̄R φ

(u,M,MS)O(k) ij
QLq̄R φ

(u) + h.c.
]

+ 1
M

∑
A

[ ∫ 1

0
duC ij

QLQ̄LA
(u,M,MS)O ij

QLQ̄LA
(u) + (QL → qR) + h.c.

]
,

(4.13)

where the sum in the last lines runs over the three gauge fields A = B,W,G. For simplicity
we consider operators containing quark fields only. We have defined the mixed-chirality
operators

O ij
QLq̄R

= Sv Q̄
i
L,n1Φ0 q

j
R,n2

+ (n1 ↔ n2) ,

O
(1) ij
QLq̄R φ

(u) = Sv Q̄
i
L,n1Φ(u)

n1 q
j
R,n2

+ (n1 ↔ n2) ,

O
(2) ij
QLq̄R φ

(u) = Sv Q̄
i
L,n1Φ(u)

n2 q
j
R,n2

+ (n1 ↔ n2) ,

(4.14)

and the same-chirality operators

O ij

QLQ̄LA
(u) = Sv Q̄

i
L,n1 /A⊥(u)

n1 Q j
L,n2

+ (n1 ↔ n2) ,

O ij
qRq̄RA

(u) = Sv q̄
i
R,n1 /A⊥(u)

n1 q jR,n2
+ (n1 ↔ n2) ,

(4.15)

where i, j are generation indices. When an operator contains more than two collinear
fields describing particles moving in the same direction, the total collinear momentum
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carried by this jet is split up among the fields. Our convention is that in each operator the
bosonic field carries the longitudinal momentum fraction u ∈ [0, 1], while the fermionic
field carries momentum fraction (1 − u). From (4.11) and (4.12), we obtain for the
tree-level matching conditions in matrix notation (with q = u, d)

CQLq̄R = V †QGq −
κ1
M

Yq
ξ
,

C
(1)
QLq̄Rφ

=
V †QGq

1− ξu− iε −
κ1
M

Yq
ξ(1− u) + iε

,

C
(2)
QLq̄Rφ

= V †QGq −
κ1
M

Yq
ξ(1− u) + iε

,

CQLQ̄LA = CqRq̄RA = 0 ; A = B,W,G ,

(4.16)

where we have defined ξ = M2
S/M

2. The iε prescriptions are those from the Feynman
propagators. Note that κ1 is naturally of order M . The parameter ξ governs the ratio
of the mass of the heavy scalar resonance, which we assume has been discovered, and
the mass of the VLQs, which we assume have not yet been discovered. This ratio is in
principle arbitrary, but in many realistic models is expected to be of O(1). The fact
that SCETBSM correctly captures the dependence on both mass parameters is a unique
feature of this EFT [1].
Analogous operators containing lepton fields also exist, and indeed they can be generated
at tree level in our model via the Higgs portal interaction proportional to κ1. However,
the corresponding Wilson coefficients are strongly suppressed by the leptonic Yukawa
couplings.
The coefficients in (4.16) are given in the weak basis. After EWSB, these coefficients
should be transformed to the mass basis of the SM quarks. This transformation diag-
onalises the Yukawa matrices Yq, while V †QGq → U †qLV

†
QGqWqR , where UqL and WqR

with q = u, d denote the rotation matrices transforming the left-handed and right-handed
quark fields from the weak to the mass basis.

4.4 One-Loop Matching

With the exception of Oφφ, the bosonic operators in the SCETBSM Lagrangian receive
matching corrections starting at one-loop order. We now discuss the calculation of these
corrections for the Wilson coefficients of the leading operators of O(λ2) in (4.1). The
relevant Feynman diagrams are shown in Figure 4.2. The first graph contains a loop
of VLQs, while the remaining diagrams feature loops with off-shell Higgs doublets. To
perform the matching in the simplest possible way, we calculate these diagrams setting
all SM masses to zero. Then loop graphs in the EFT are scaleless and vanish, and hence
the Wilson coefficients are given directly in terms of the diagrams shown in the figure.
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A

A

Ψ
A

A

φ A

A

φ

Figure 4.2: One-loop diagrams contributing to the Wilson coefficients CAA and C̃AA in
(4.1). We do not show crossed graphs, in which the two boson lines are
exchanged. Loops graphs involving SM fermions do not arise at leading order
in λ.

We find (with A = B,W,G)

CAA = dA
π2 Tr(X)

[4− ξ
ξ

g2(ξ)− 1
]

+ d′A
4π2

κ1
M

,

C̃AA = dA
π2 Tr(X̃) g2(ξ) ,

(4.17)

where ξ = M2
S/M

2 as above, and the group-theory factors dA are given by

dB = NcY
2
ψ = 1

12 , dW = TFNc

2 = 3
4 , dG = TF = 1

2 ,

d′B = Y 2
φ = 1

4 , d′W = TF
2 = 1

4 , d′G = 0 .
(4.18)

The relevant loop function reads

g(ξ) =


arcsin

√
ξ

2 ; ξ ≤ 4 ,

i

2 ln 1 +
√

1− 4/ξ
1−

√
1− 4/ξ

+ π

2 ; ξ ≥ 4 .
(4.19)

The ξ-dependent contributions arise from integrating out the VLQs, while the term pro-
portional to the Higgs-portal coupling κ1 is obtained by integrating out loops of virtual
Higgs doublets carrying virtualities of order M2

S , in analogy with the discussion in the
previous section.
It is instructive to study the ξ-dependent terms in (4.17) in more detail. Focussing on the
case of C̃AA for concreteness, and assuming that M2

S < 4M2, we can expand the Wilson
coefficient in powers of the ratio ξ = M2

S/M
2, finding

C̃AA = dA
2π2 Tr(X̃)

∞∑
k=1

Γ
(1

2
)

Γ(k)
k Γ
(1

2 + k
) ( M2

S

4M2

)k
. (4.20)

The first term in the sum gives a contribution to (4.1) which corresponds to the local
dimension-five operator SFµνF̃µν , the second term corresponds to local dimension-seven
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Figure 4.3: One-loop diagrams contributing to the coefficient C(1)
φφ in (4.21).

operators such as S(∂αFµν)(∂αF̃µν) or (�S)FµνF̃µν , the third term corresponds to local
dimension-nine operators, and so on. Our SCETBSM approach thus sums up an infinite
tower of local operators. In an extension of the SMEFT consisting of local operators
built out of SM field and the field S (see e.g. [165,201]), one would typically only include
the leading dimension-five operators. In realistic scenarios where MS ∼ M , however, all
contributions are of the same order.
The one-loop matching calculation for the coefficient Cφφ in (4.1) is more involved. We
write the result in the form

Cφφ = −κ1
M

(1 + δκ1) + C
(1)
φφ . (4.21)

The quantity δκ1 contains the loop corrections to the tree-level result in (4.9), while C(1)
φφ

contains contributions to the Wilson coefficient involving couplings other than κ1. The
relevant diagrams for the latter terms are shown in Figure 4.3. We obtain

C
(1)
φφ = Nc

8π2 Tr
[
X(GuG

†
u +GdG

†
d)
] [

2 ln M
2

µ2 − 3 + 2
√

4− ξ
ξ

g(ξ) + 4
ξ
g2(ξ)

]

+ Nc

8π2 Re Tr
[
VQ(YuG†u + YdG†d)

] [
2 ln M

2

µ2 − 3− 1− ξ
ξ

ln(1− ξ − iε)
]

− Ncκ2
2π2ξ

Tr(X)
(

ln M
2

µ2 − 1
)
− κ2λ3

32π2M

(
π√
3
− 1

)
.

(4.22)

The calculation of δκ1 is discussed in Appendix 4.8. Unlike the results shown in (4.17),
these expressions contain an explicit dependence on the renormalisation scale µ, at which
the operators and Wilson coefficients are defined (in the MS scheme). The matching
results presented here refer to a scale µ ∼ M , at which they do not contain any large
logarithms; the evolution to lower scales will be discussed later in Section 4.6. The scale
dependence of the coefficient C(1)

φφ must be compensated by the scale dependence of the
portal coupling κ1 in (4.21).

4.5 One-Loop Matching for S → Zh

There is one potential two-body decay of a heavy scalar resonance S that cannot be
described using the operators arising at leading and subleading order in SCET power
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Figure 4.4: Example diagrams contributing to the matching of the Wilson coefficient
C̃φφφφ.

counting. This is the mode S → Zh, where the Z boson is longitudinally polarised.
Only the CP-odd component of the scalar can decay to this final state, which makes this
channel interesting to study the CP properties of a new scalar resonance [166,234]. The
following discussion is significantly more technical than that in the previous two sections
and can be skipped in a first reading.
The relevant O(λ4) operators in the SCETBSM Lagrangian mediating the S → Zh decay
can be written in the form [1]

L(4)
eff = C̃φφφφ(M,MS)

M
2iSv

(
Φ†n1Φ0 Φ†n2Φ0 − h.c.

)
+ . . . , (4.23)

where the dots stand for fermionic operators, which contribute to the decay amplitude
at one-loop order. The operator written out explicitly gives the tree-level contribution

M(S → Z‖h)
∣∣
tree = −iC̃φφφφ

v2

M
. (4.24)

Since in the VLQ model we consider the Wilson coefficient C̃φφφφ is generated starting at
one-loop order, it will be necessary to include other loop-suppressed effects for consistency
(see below).
Representative one-loop diagrams contributing to the matching coefficient C̃φφφφ are
shown in Figure 4.4. Evaluating the relevant graphs in the MS scheme, we obtain after
a lengthy calculation

C̃φφφφ = − Nc

16π2ξ

∑
q=u,d

2T q3

{
Tr
(
X̃GqY

†
q YqG

†
q

) [
− LM

(
ξ + (1− ξ) ln(1− ξ)

)
+ f1(ξ)

]
+ Tr

(
X̃GqG

†
qGqG

†
q

)
f2(ξ) + Tr

(
X̃GqG

†
q

) [
(g2 + g′ 2) f3(ξ) + λH f4(ξ)

]
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+ ImTr
(
G†qVQYqY

†
q Yq

) [ξ
2 L

2
S − LM

(
ξ + (1 + ξ) ln(1− ξ)

)
+ f5(ξ)

]
+ ImTr

(
G†qVQYqG

†
qGq

) [
ξ (LS − LM ) ln(1 + ξ) + f6(ξ)

]
+ ImTr

(
G†qVQYq

) [
(g2 + g′ 2)

[
− LM

(
1 + 4− 3ξ

4ξ ln(1− ξ)
)

− ξ

4 (LS − LM ) + f7(ξ)
]

(4.25)

+ λH
[
2LM ln(1− ξ)− 2ξ (LS − LM ) + f8(ξ)

]]}

− Nc

16π2ξ

∑
q=u,d

Qq g
′ 2
{
Tr
(
X̃GqG

†
q

) [
LM

(2− ξ
2 + 1− ξ

ξ
ln(1− ξ)

)
+ f9(ξ)

]

+ ImTr
(
G†qVQYq

) [
LM

(6− ξ
2 + 3− 2ξ

ξ
ln(1− ξ)

)
+ f10(ξ)

]}
.

Here T u3 = 1
2 and T d3 = −1

2 are the weak isospins of up- and down-type quarks, Qq denote
the quark electric charges in units of e, λH is the quartic coupling of the Higgs field, and g,
g′ are the gauge couplings of SUW (2) and UY (1). The logarithms LM = ln(M2/µ2) and
LS = ln(M2

S/µ
2) − iπ contain the dependence on the factorisation scale µ, and we have

defined the functions fi(ξ) collected in Appendix 4.9. For ξ > 1, the above expressions
must be analytically continued using the prescription ξ → ξ + iε. In the limit where
ξ � 1, corresponding to M2

S � M2, the result (4.25) can be expanded in powers of ξ.
We find that the leading terms of O(ξ0) agree with eq. (6.20) in [1], where we had defined
the matrices Ŷq = G†qVQ. Moreover, the terms linear in ξ are consistent with eq. (24)
in [234].
An interesting feature of the result (4.25) is the rather complicated dependence of the
terms involving the factorisation scale µ, which are contained in the logarithms LM and
LS , on the mass ratio ξ = M2

S/M
2. In conventional EFT applications the coefficients of

the µ-dependent terms in Wilson coefficients and operator matrix elements are functions
of the coupling constants of the theory, but they do not depend in a non-trivial way
on the masses of heavy particles that have been integrated out. The reason is that
the µ-dependence must cancel between Wilson coefficients and matrix elements, and the
low-energy theory does not know about the masses of the heavy particles.
In the present case, the µ-dependence of the contribution to the S → Zh decay amplitude
entering via the Wilson coefficient C̃φφφφ in (4.25) is cancelled by the scale dependence
of one-loop matrix elements of operators involving fermion pairs, which are induced by
tree-level matching at O(λ4). Indeed, since in our model C̃φφφφ arises at one-loop order,
the one-loop matrix elements of other O(λ4) operators, which appear already at tree
level, must be included for consistency. The relevant terms can be extracted from (4.7).
For the purpose of illustration we consider the last operator in this result, which contains

73



4 Effective Theory for a Heavy Scalar Coupled to the SM via Vector-Like Quarks

the flavour matrices X and X̃. At O(λ4), it gives rise to the structure

Leff
∣∣λ4

S1 3 −
1
M

∑
q=u,d

[
q̄R,n1Φ†0 SvG†q

(
X − iγ5X̃

)
Gq

× 1
M2 +� i/∂ Φn2 qR,n1 + h.c.

]
+ (n1 ↔ n2) .

(4.26)

For q = u the doublet Φ must be replaced by Φ̃. We only need to consider operators
where both fermions are described by collinear fields moving along the same direction,
since later we need to take matrix elements where the fermion pair is converted into a
collinear Higgs or Z boson. Between the collinear spinors only the n1 · ∂ component of
the derivative survives, and hence the derivative gives zero when acting on the fermions.
We now define the following set of SCETBSM hermitian operators (here and below we
abbreviate ū ≡ 1− u):

O
(±) ij
qRq̄Rφφ

(u) = Sv
[
q̄

(u) i
R,n1

/v q(ū) j
R,n1
∓ q̄(ū) i

R,n1
/v q(u) j

R,n1

] (
Φ†n2Φ0 ± Φ†0Φn2

)
,

Õ
(±) ij
qRq̄Rφφ

(u) = iSv
[
q̄

(u) i
R,n1

/v q(ū) j
R,n1
± q̄(ū) i

R,n1
/v q(u) j

R,n1

] (
Φ†n2Φ0 ± Φ†0Φn2

)
.

(4.27)

Here u denotes the fraction of the total n1-collinear momentum carried by the final-state
quark. The operators shown in the first line are CP even, while those in the second line
are CP odd. Writing the relevant terms in the Lagrangian in the form

L(4)
eff 3

1
M2

∑
q=u,d

∫ 1

0
du

[
C

(±) ij
qRq̄Rφφ

(M,MS , u)O(±) ij
qRq̄Rφφ

(u)

+ C̃
(±) ij
qRq̄Rφφ

(M,MS , u) Õ(±) ij
qRq̄Rφφ

(u)
]
,

(4.28)

we obtain the Wilson coefficients (in matrix notation)

C
(+)
qRq̄Rφφ

(u,M,MS) = MS

2M
G†qXGq

1− ξū ,

C
(−)
qRq̄Rφφ

(u,M,MS) = MS

2M 2T q3
G†qXGq

1− ξū ,

C̃
(+)
qRq̄Rφφ

(u,M,MS) = MS

2M
G†qX̃Gq

1− ξū ,

C̃
(−)
qRq̄Rφφ

(u,M,MS) = MS

2M 2T q3
G†qX̃Gq

1− ξū .

(4.29)

The factors 2T q3 arise because for q = u the operators involve the scalar doublets Φ̃ rather
than Φ.
The CP-odd operators in (4.27) contribute at one-loop order to the S → Zh decay
amplitude via the diagrams shown in Figure 4.5. Working in the fermion mass basis, we
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4.5 One-Loop Matching for S → Zh

Z

h

q

Z

h

q

Figure 4.5: One-loop contributions of the operators Õ(+) ij
qRq̄Rφφ

(left) and Õ(−) ij
qRq̄Rφφ

(right) to
the S → Zh decay amplitude.

find in the MS scheme

i〈Z‖h| Õ
(+) ij
qRq̄Rφφ

(u) |S〉 = δijNc

8π2 v2MS

(
y2
q T

q
3 −Qqg

′ 2uū
)

ln µ2

m2
q − uūm2

Z − iε
,

i〈Z‖h| Õ
(−) ij
qRq̄Rφφ

(u) |S〉 = δijNc

16π2 v
2MS y

2
q (u− ū) ln µ2

m2
q − uūm2

h − iε
.

(4.30)

Multiplying these expressions with the corresponding Wilson coefficients in (4.29) and
integrating the result over u we obtain the contribution to the S → Zh decay amplitude,
which must be added to the one in (4.24).
Here we are mainly concerned with the cancellation of the µ-dependent terms in the final
expression for the decay amplitude. Note that the scale-dependent terms in (4.30) have
simple coefficients involving coupling constants and some factors of v and MS needed for
dimensional reasons. The non-trivial dependence on the mass ratio ξ arises when these
matrix elements are multiplied by the corresponding Wilson coefficients and integrated
over the variable u. To display our results we use the Z-boson mass in the denominator
of the corresponding logarithms, and we omit the remaining terms that are scale inde-
pendent and free of large logarithms. Combining the contributions in (4.24) and (4.30),
we find

〈Z‖h| L
(4)
eff |S〉 = −iC̃φφφφ

v2

M

− i Nc

16π2ξ

v2

M

∑
q=u,d

{
2T q3 Tr

(
X̃GqY

†
q YqG

†
q

)
ln µ2

m2
Z

(
ξ + (1− ξ) ln(1− ξ)

)

−Qq g′ 2 Tr
(
X̃GqG

†
q

)
ln µ2

m2
Z

(2− ξ
2 + 1− ξ

ξ
ln(1− ξ)

)
+ terms involving VQ

}
+ scale-independent terms .

(4.31)
We have transformed the expressions (4.30) back to the weak basis by replacing y2

q δij →
(Y †q Yq)ij . Inspection of (4.25) shows that the µ-dependent terms indeed cancel out in
this result.
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4.6 Resummation of Large Logarithms
SCETBSM offers a systematic framework for expanding the decay amplitudes for the
heavy resonance S into SM particles in powers of v/MS and resumming large logarithms
of this scale ratio. As before, we assume that the scales M and MS are of similar
magnitude. Since the rates are affected by Sudakov double logarithms, resummation is
important even in cases where the logarithms arise from electroweak interactions [152–
154]. These logarithms suppress the decay rates and hence should be taken into account
when deriving bounds on the masses and couplings of hypothetical new heavy particles.
We now illustrate this point by focussing on a few important two-body decay modes of a
heavy scalar resonance S.
For the purposes of illustration, we assume MS = 2TeV and M = 2.5TeV for the masses
of S and of the VLQs, respectively. We calculate the Wilson coefficients in the effective
Lagrangians (4.1) and (4.13) at the high scale µ = M and evolve them down to a char-
acteristic scale for the process of interest. This evolution is governed by RG equations
derived in [1]. As long as the characteristic scale is of the order of the weak scale, it is
appropriate to include all SM particles in the anomalous dimensions and β-functions of
the EFT. A consistent approximation is obtained by including the leading terms in the
matching coefficients at the high scale and using two-loop approximations for the cusp
anomalous dimension and β-functions as well as one-loop approximations for all other
anomalous dimensions in the evolution to low energies (see below).

4.6.1 S → 2 Jets Decay
At lowest order in perturbation theory the process S → 2 jets proceeds primarily via the
decay S → gg, whose rate is enhanced by a factor M2

S/v
2 relative to the S → qq̄ decay

rate. Also, in many models the latter rate is suppressed by the light quark masses. We
thus obtain Γ(S → 2 jets) ≈ Γ(S → gg) with

Γ(S → gg) = M2

MS
8πα2

S(µj)
(
|CGG(µj)|2 + |C̃GG(µj)|2

)
. (4.32)

Here µj is the characteristic scale inherent in the definition of the jets, such as an upper
bound on the jet invariant mass. At the high matching scale µh = M the relevant Wilson
coefficients have been given in (4.17). The two coefficients obey the same RG equation [1]

µ
d

dµ
CGG(µ) =

[
3γ(3)

cusp

(
ln M

2
S

µ2 − iπ
)

+ 2γG
]
CGG(µ) . (4.33)

Note the important fact that for Sudakov problems the anomalous dimensions themselves
contain a (so-called “cusp”) logarithm, and that they have non-zero imaginary parts. At
leading logarithmic order, we need γ

(3)
cusp to two-loop and γG to one-loop order. The

relevant expressions are

γ(3)
cusp = αS

π
+
(

47
12 −

π2

4

)(
αS
π

)2
+O(α3

S) , (4.34)
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and γG = 0 +O(α2
S). Solving the RG equation, we find

CGG(µ)/CGG(M) = C̃GG(µ)/C̃GG(M) = UGG(µ,M) , (4.35)

where [199,200]

UGG(µ,M) = exp
[ 6

49 g(µ,M) + 6
7 (iπ − ln ξ) ln r

]
, (4.36)

with r = αS(µ)/αS(M) and

g(µ,M) = − 4π
αS(M)

(1
r
− 1 + ln r

)
−
(251

21 − π
2
) (
r − 1− ln r

)
+ 13

7 ln2 r . (4.37)

An analogous relation holds for C̃GG. If we assume that the characteristic jet scale is
µj = 100GeV, then

UGG(µj ,M) ≈ 0.38 e0.98i . (4.38)
The decay rate in (4.32) is suppressed by the factor |UGG(µj ,M)|2 ≈ 0.147. Not including
these resummation effects would vastly overestimate the decay rate.

4.6.2 S → tt̄ Decay
The largest two-body decay rate into quark-antiquark final states is likely to be that into
top quarks. At leading order in perturbation theory the corresponding decay rate is given
by

Γ(S → tt̄) = 3
16π

v2MS

M2

√
1− 4m2

t

M2
S

∣∣∣(CQLūR

)
33(mt)

∣∣∣2 . (4.39)

At the high matching scale µh = M the coefficient CQLūR has been given in (4.16).
The related coefficient CQLūR (with a straight letter “C”) is obtained by transforming
this expression to the quark mass basis. Including only QCD effects, it obeys the RG
equation [1]

µ
d

dµ
CQLūR(µ) =

[
4
3γ

(3)
cusp

(
ln M

2
S

µ2 − iπ
)

+ 2γq
]

CQLūR(µ) , (4.40)

where γq = −αS/π +O(α2
S). Solving this equation, we obtain

CQLūR(µ) = Uqq̄(µ,M) CQLūR(M) , (4.41)

with
Uqq̄(µ,M) = exp

[ 8
147 g(µ,M) + 8

21

(
iπ + 3

2 − ln ξ
)

ln r
]
. (4.42)

Evolving the coefficient down to the scale of the top-quark mass, we find

Uqq̄(mt,M) ≈ 0.90 e0.31i . (4.43)

The decay rate in (4.39) is suppressed by the factor |Uqq̄(mt,M)|2 ≈ 0.81. In this case,
resummation effects have a more modest impact on the decay rate.
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4.6.3 S → γγ Decay
It is instructive to also consider an example where only electroweak Sudakov logarithms
contribute. The diphoton decay mode has a very similar structure as the S → gg mode
discussed above. At leading order in perturbation theory the decay rate is given by

Γ(S → γγ) = M2

MS
πα2

(
|CWW (mW )+CBB(mW )|2+|C̃WW (mW )+C̃BB(mW )|2

)
. (4.44)

Here α ≈ 1/137.036 is the fine-structure constant. The Wilson coefficients need to be
evolved down to the scale of electroweak symmetry breaking, which we identify with the
mass of the W boson. Below the weak scale the running stops. At the high matching
scale µh = M the relevant coefficients have been given in (4.17). The coefficients CWW

and C̃WW obey the same RG equation [1]

µ
d

dµ
CWW (µ)=

[
2γ(2)

cusp

(
ln M

2
S

µ2 − iπ
)

+ 2γW
]
CWW (µ) . (4.45)

The relevant cusp anomalous dimension is

γ(2)
cusp = α2

π
+
(

2− π2

6

)(
α2
π

)2
+ . . . , (4.46)

whereas γW vanishes at one-loop order. Here α2 = g2/(4π) is the coupling constant of
SUW (2). The Wilson coefficients CBB and C̃BB, on the other hand, are scale independent
at leading logarithmic order. It follows that

CWW (mW ) + CBB(mW ) = UWW (mW ,M)CWW (M) + UBB(mW ,M)CBB(M)
(4.47)

and similarly for the other two coefficients in (4.44), where UBB(mW ,M) ≈ 1, while
UWW (µ,M) is given by an expression similar to (4.36), but with different numerical
coefficients and with αS(µ) replaced by the coupling α2(µ). Numerically, we obtain

UWW (mW ,M) ≈ 0.80 e0.23i , UBB(mW ,M) ≈ 1 . (4.48)

The impact of these resummation effects on the diphoton decay rate depends on the
values of κ1/M and Tr(X) in (4.17). In the limit where the term proportional to κ1 can
be neglected, the decay rate is suppressed by the factor |0.9UWW (mW ,M)+0.1|2 ≈ 0.67.
The resummation of electroweak Sudakov logarithms thus has a sizable impact on the
rate.

4.6.4 S → hh Decay
As a final example we consider the decay mode S → hh, whose rate is given by

ΓS→hh = M2

32πMS

√
1− 4m2

h

M2
S

|Cφφ(mh)|2 . (4.49)
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The Wilson coefficient satisfies the RG equation [1]

µ
d

dµ
Cφφ(µ) =

[(1
4 γ

(1)
cusp + 3

4 γ
(2)
cusp

)(
ln M

2
S

µ2 − iπ
)

+ 2γφ
]
Cφφ(µ) , (4.50)

where
γ(1)
cusp = α1

π
− 17

6

(
α1
π

)2
+ . . . ,

γφ = −α1
4π −

3α2
4π + 3y2

t

8π2 + . . . ,

(4.51)

and γ(2)
cusp has been given in (4.46). Here α1 is the coupling constant of UY (1) (not rescaled

by a factor 5/3). Since there are now three different couplings involved, it is easiest to
integrate the RG equation (4.50) numerically, using the one-loop β-functions for the
various couplings. Writing the solution in the form Cφφ(mh) = Uφφ(mh,M)Cφφ(M), we
find

Uφφ(mh,M) ≈ 0.79 e0.08i . (4.52)

It follows that the di-Higgs decay rate is suppressed by the factor |Uφφ(mh,M)|2 ≈ 0.62,
which is once again a significant correction.

4.7 Conclusions
When a new heavy resonance beyond the SM is discovered, it will be important to have
an EFT description of its decay and production modes, in which the NP scale M is
disentangled from the electroweak scale. This effective theory should be able to deal with
the situation that the new state is a member of a larger sector of NP. In this paper we
have illustrated the recently developed SCETBSM approach [1] to solve this problem in
the context of an extension of the SM by a heavy scalar singlet S and a set of vector-like
heavy quarks. We have performed the matching calculation for the Wilson coefficients in
the effective Lagrangian both at tree level and including the leading one-loop corrections.
These coefficients are in general non-trivial functions of the mass ratio ξ = M2

S/M
2,

where MS is the mass of the scalar resonance while M sets the masses of the vector-like
quarks. In this way, our effective theory resums an infinite tower of local operators in
the conventional effective field-theory approach to describe the interactions of S with SM
fields. For the special case of the decay S → Zh, the Wilson coefficient of the relevant
operator contains logarithms of the form ln(M2

S/µ
2) and ln(M2/µ2) with coefficients that

depend in a non-polynomial way on the ratio ξ. We have explained the origin of this
effect and demonstrated how the scale dependence is cancelled in the effective theory.
The SCETBSM framework allows one to resum large Sudakov logarithms affecting the
decay rates of S into SM particles. We have explicitly performed the resummation at
leading logarithmic order for the decays S → 2 jets, S → tt̄, S → γγ and S → hh, finding
that in all cases the decay rates are significantly reduced. It is important to take these
resummation effects into account when placing bounds on the masses and couplings of
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Figure 4.6: One-loop diagrams contributing to the parameter δκ1 . The graphs in the last
two lines show the matching corrections to the wave-function renormalisation
constants of the heavy resonance S and the Higgs scalar φ.

hypothetical new heavy particles. Possible avenues worthy to pursue in the future include
extensions of our work to resonances of non-zero spin as well as particles that are not
singlets under the SM gauge group. In this way, the SCETBSM approach can be applied
to collider searches for heavy particles proposed in many extensions of the SM.

4.8 Appendix I: Calculation of the Quantity δκ1

Here we report our result for the one-loop coefficient δκ1 in (4.21). It receives contributions
from the vertex-correction diagrams shown in the first line of Figure 4.6 as well as from
hard matching corrections to the wave-function renormalisation constants of the scalar
fields. We find

δκ1 = 3λH
8π2 (LS − 2)− 3g2 + g′2

64π2

(
L2
S − LS + 2− π2

6

)

+ κ2
1

16π2M2
S

(
1
2 + π2

12 + iπ ln 2
)

+ κ1λ3
16π2M2

S

π2

9

− λ2
3

64π2M2
S

( 2π
3
√

3
− 1

)
+ Nc

8π2 Tr
(
V †QVQ

) [
LM − 1− 1

ξ
− 1− ξ2

ξ2 ln(1− ξ)
]

(4.53)

+ Nc

8π2 Tr
(
X2) [LM − 1− 4

ξ
+ 2(2 + ξ)

ξ

√
4− ξ
ξ

g(ξ)
]

+ Nc

8π2 Tr
(
X̃2) [LM − 1 + 2(2− ξ)√

ξ(4− ξ)
g(ξ)

]

+ Nc

8π2 Tr
(
G†uGu +G†dGd

) (
LM −

1
2

)
,

where LM = ln(M2/µ2) and LS = ln(M2
S/µ

2)− iπ, and the function g(ξ) has been given
in (4.19).
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4.9 Appendix II: Coefficient Functions fi(ξ)

The explicit expressions for the functions fi(ξ) entering the result for C̃φφφφ in (4.25) are

f1(ξ) = ξ − (1− ξ) ln2(1− ξ)− (1− ξ) Li2(ξ) + 4ξ g2(ξ),

f2(ξ) = −ξ + (1− ξ) Li2(ξ) + 2ξ g2(ξ) ,

f3(ξ) = −5− ξ
4 − 3− 4ξ + ξ2

4ξ ln(1− ξ) + 1
2ξ Li2(ξ) + 1

2

√
ξ(4− ξ) g(ξ)− g2(ξ) ,

f4(ξ) = −2 + ξ − 2(1− ξ)2

ξ
ln(1− ξ) + 4

√
ξ(4− ξ) g(ξ)− 8g2(ξ) ,

f5(ξ) = ξ − (1 + ξ) ln2(1− ξ)− (1 + ξ) Li2(ξ)− ξ π
2

12 , (4.54)

f6(ξ) = −ξ + ξ Li2(−ξ) + (1 + ξ) Li2(ξ) ,

f7(ξ) = −5− ξ
4 − 3− 2ξ − ξ2

4ξ ln(1− ξ)− 4− 3ξ
4ξ ln2(1− ξ) + 2 + 5ξ

4ξ Li2(ξ) ,

f8(ξ) = −2 + ξ − 2(1− ξ2)
ξ

ln(1− ξ) + 2 ln2(1− ξ) + 2 Li2(ξ) ,

f9(ξ) = 1− ξ
ξ

ln2(1− ξ)− Li2(ξ) ,

f10(ξ) = 3− 2ξ
ξ

ln2(1− ξ)− 3 Li2(ξ) .
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5 Constraints on the Standard-Model Effective
Theory

In this chapter we develop and apply a framework to derive bounds on the parameters of
the SMEFT by comparing theoretical predictions with experimental data. Our approach
addresses inconsistencies in current state-of-the-art collider analyses of this type. We
discuss the three main inconsistencies and present our approach in Section 5.1. The
application to different processes gives rise to bounds on a variety of SMEFT parameters.
Concretely, we apply our approach to dijet production in Section 5.2 and to dilepton
production in Section 5.3. The results presented in this chapter are published in [10]
and [16].

5.1 Consistency Requirements for the Analyses
The first consistency requirement concerns the question whether to perform the SMEFT
expansion in inverse powers of the NP scaleM at the level of the amplitude or the squared
amplitude. In this work we focus on processes where the leading order (LO) contribution
arises from the SM piece LSM. We furthermore assume both baryon- and lepton-number
conservation. It follows that contributions to the amplitude beyond the LO arise from
operators with even mass dimension [235]. Thus, a generic amplitude including the NLO
piece in the SMEFT expansion exhibits the form

A = ASM + 1
M2 Adim6 + . . . , (5.1)

where the terms ASM and Adim6 are the LO and NLO pieces in the series expansion
and the dots represent the terms of higher order which are not included. Squaring this
expression we find

|A|2 = |ASM|2 + 1
M2 2Re [A∗SMAdim6] + 1

M4 |Adim6|2 + . . . . (5.2)

Including the NNLO contribution from dimension-eight operators the amplitude is

A = ASM + 1
M2 Adim6 + 1

M4 Adim8 + . . . , (5.3)

where Adim8 denotes the NNLO contribution which is suppressed by four powers of the
NP scale. Squaring this expression we find

|A|2 = |ASM|2 + 1
M2 2Re [A∗SMAdim6] + 1

M4

(
|Adim6|2 + 2Re [A∗SMAdim8]

)
+ . . . .

(5.4)
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Comparing this square of the NNLO amplitude with the square of the NLO amplitude
from equation (5.2) we observe that they differ by the interference piece of the NNLO
amplitude with the LO amplitude, namely the term ∼ 2Re [A∗SMAdim8] at order 1/M4.
However, it is crucial to expand the squared amplitude rather than the amplitude to the
desired order in power counting since the squared amplitude enters physical quantities
such as cross sections and decay rates. This procedure is completely familiar from the
treatment of other power series in perturbative QFT calculations. In a one-loop calcu-
lation in Quantum Electrodynamics (QED) divergencies at order α2 emerge which are
cancelled by the interference of the two-loop amplitude with the SM amplitude. A trun-
cation at order α of the amplitude rather than the squared amplitude thus gives rise to
divergent cross sections in this case. In the context of the SMEFT power series one prob-
lematic aspect of expanding the amplitude as in (5.1) and using equation (5.2) for the
squared amplitude is that transformations between different bases of the dimension-six
Lagrangian L(6) in general induce changes in the pieces of the Lagrangian beyond the
dimension-six level as discussed in Section 2.3. Including the term ∼ |Adim6|2 while ne-
glecting the term ∼ 2Re [A∗SMAdim8] in the squared amplitude (5.4) at order 1/M4 may
- depending on the considered process - thus result in a dependence of physical quantities
on the choice of the operator basis for the Lagrangian piece L(6).
Considering the squared amplitude in equation (5.4) there are two options for a con-
sistent expansion of physical quantities. The first option is to work at the level of the
dimension-six Lagrangian L(6) truncating the squared amplitudes after the second term
in equation (5.4). The alternative is to include contributions from both L(6) and L(8) and
thus to truncate the expansion in equation (5.4) after the third term. In either approach
it is crucial to take into account effects of higher-order in the expansion by introducing
an appropriate theory uncertainty. The second approach exhibits two main disadvan-
tages with respect to collider analyses. In a collider study the goal is to derive bounds
on the Wilson coefficients and the scale M by fitting experimental data with theoretical
predictions which include the SMEFT effects. In general, the number of contributing
operators grows with the order in the expansion of LSMEFT. Thus, adding effects from
L(8) on top of the effects from L(6) increases the number of degrees of freedom in the fits.
Furthermore, the theory predictions for cross sections contain both linear and quadratic
terms in the dimension-six Wilson coefficients and terms linear in the Wilson coefficients
of dimension-eight operators when effects of L(8) are included. In contrast to that the
theory predictions depend only linearly on the dimension-six Wilson coefficients when
only the effect of L(6) is included. These disadvantages make it much more challenging to
constrain the parameter space in the approach where SMEFT effects up to and including
dimension-eight operators are taken into account. Therefore, we truncate the series ex-
pansion in equation (5.4) after the second term for our signal prediction. We introduce a
theory uncertainty scaling as 1/M4 to account for the third term. We provide the details
about this theory uncertainty in the collider analyses in Sections 5.2 and 5.3.
The second consistency requirement concerns the main assumption about the SMEFT
expansion, namely that contributions from higher-dimensional operators are suppressed
with respect to contributions from operators of lower mass dimension. In this work we
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consider processes at tree level where both Feynman diagrams with only SM vertices and
Feynman diagrams with exactly one vertex arising from L(6) contribute. It follows from
a dimensional analysis that the diagrams with one vertex from L(6) are suppressed by
a factor s/M2 relative to the diagrams with only SM vertices, where we assume four
spacetime dimensions. The energy scale

√
s represents the typical energy scale of the

process such as the centre-of-mass energy. At the level of the squared amplitude the
second term in equation (5.4) is suppressed by a factor s/M2 with respect to the first
term. Since the characteristic energy scale - the partonic centre-of-mass energy

√
s - is

not fixed at a hadron collider it is crucial to restrict any analysis to the regime where
the SMEFT expansion is valid. This implies that for a particular collision event the
criterion s/M2 � 1 must hold. Established methods in practice are to remove events
where s > M2 from the analysis by hand [61–64]. While the implementation of this
procedure in the analysis is straightforward, it corresponds to a physically not motivated
theory uncertainty which is zero below the scale M and infinity above. In particular,
there exists no measure of how reliable the influence of an event with an energy below
but very close toM is in the analysis. As a major improvement of this method the theory
uncertainty we introduce to the fit naturally removes the influence of the events where
the condition is not fulfilled on the fit. The reason is that for increasing s the theory
uncertainty grows as s2/M4 compared to the signal which only grows as s/M2.
The third consistency requirement adresses the number of operators considered in an
analysis. Deriving bounds on single Wilson coefficients while all other Wilson coefficients
are set to zero is problematic because of two reasons. First, it is only possible in special
cases to generate a single operator in a tree-level matching of a UV-complete model onto
the SMEFT [236]. Second, one does not allow for cancellations between contributions
from different operators. Hence, the bounds obtained with only one operator considered
are artificially stringent. In our analysis we thus include all the operators which contribute
under the specified assumptions and derive bounds on linear combinations of Wilson
coefficients contributing to different observables.

5.2 Constraints From Dijet Production

Our focus in this analysis is the process of dijet production at the LHC. In dijet pro-
duction, a partonic hard-scattering event produces energetic quarks or gluons. These
quarks or gluons hadronise and form two energetic particle jets which are observed in
the detectors. Extensive studies to constrain SMEFT parameters in dijet events ex-
ist [58,59,237–240]. In this work we focus on an analysis by the CMS collaboration [59].

5.2.1 Partonic Dijet Production in the Standard-Model Effective Theory

In our analysis we work at tree level and focus on QCD contributions in the SM piece.
We collect a selection of tree-level diagrams for partonic processes relevant for dijet pro-
duction in Figure 5.1. The first three diagrams are SM contributions, namely t-channel
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Figure 5.1: Partonic Feynman diagrams contributing to dijet production at tree level.
The first three diagrams are SM contributions: t-channel quark scattering,
u-channel gluon annihilation into quarks and s-channel gluon scattering. The
fourth diagram represents a SMEFT contribution from a four-quark operator.
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Table 5.1: Dimension-six four-fermion operators from the Warsaw basis contributing to
dijet production at tree level under the assumption that the operators conserve
baryon number, lepton number and CP.

quark scattering, u-channel gluon annihilation into quarks and s-channel gluon scatter-
ing. The fourth diagram is a SMEFT contribution arising from a four-quark operator.
The Feynman diagrams for the partonic processes contributing to dijet production can
be grouped into three categories: diagrams containing only quarks, diagrams containing
both quarks and gluons and diagrams containing only gluons.
We assume that the contributing dimension-six operators conserve baryon number, lep-
ton number and CP. From the 25 dimension-six four-fermion operators in Table 2.2 the
ten operators collected in Table 5.1 contribute at the amplitude level under these as-
sumptions. These operators are Quu, Qdd, Q

(1)
ud and Q(8)

ud from the (R̄R)(R̄R) class, Q(1)
Qu,

Q
(8)
Qu, Q

(1)
Qd and Q(8)

Qd from the (L̄L)(R̄R) class and Q(1)
QQ, Q

(3)
QQ from the (L̄L)(L̄L) class.

For our analysis we assume that the Wilson coefficients of these operators exhibit the
flavour structure δprδst. A much more general flavour structure would introduce many
more parameters to the fit and many of these parameters would be in conflict with bounds
from flavour-physics analyses. A vast amount of studies translating experimental results
from flavour physics into bounds on SMEFT parameters exist (see, e.g. [241] and refer-
ences therein). Compared to the concept of minimal flavour violation (MFV) [242] our
assumption about the flavour structure is slightly more stringent.
Calculating the squared partonic amplitude for dijet production at tree level we observe
that the amplitude arising from the operators Q(1)

ud , Q
(1)
Qu and Q(1)

Qd does not interfere with
the SM amplitude. These operators contain quark fields with distinct weak charges but
the same colour charges. However, in the Feynman diagrams for the SM amplitude the
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external quarks couple to gluons. The non-interference of the three operators arises from
the fact that gluons couple quarks with the same weak charge but distinct colour charge.
Thus, there are seven four-quark operators contributing to the cross section at NLO in
the SMEFT expansion, namely Quu, Qdd, Q

(8)
ud , Q

(8)
Qu, Q

(8)
Qd, Q

(1)
QQ and Q(3)

QQ.
Except for the four-fermion operators the following operator from the Warsaw basis
contributes to the dijet amplitude by gluon scattering:

QG = fabcGa,νµ Gb,ρν Gc,µρ . (5.5)

At the level of the squared amplitude the contribution from this operator does not in-
terfere with the SM contribution since the helicity structure of the gluon fields differs
between the two amplitudes [243,244]. In more general terms the question wether a cer-
tain SMEFT operator gives rise to interference pieces with tree-level SM amplitudes is
studied in [245] based on helicity arguments. For an analysis of the effects of the operator
QG in three-jet events we refer the reader to [246].
We focus on the seven interfering four-quark operators in the following. To distinguish
the SMEFT contribution from the SM contribution it is necessary to define suitable
kinematic variables. Considering the partonic Feynman diagrams in Figure 5.1 we coun-
terclockwise assign the two ingoing four-momenta p1 and p2 to the incoming partons and
the two outgoing four-momenta p3 and p4 to the outgoing partons. We discussed in Sec-
tion 5.1 that the effects of four-fermion operators in general grow with energy. Thus, it
is reasonable to use the dijet invariant mass mjj as one kinematic variable. Furthermore,
we follow the CMS analysis in defining an angular variable χ. We demonstrate below the
ability to distinguish SMEFT contributions from the SM in angular spectra. Concretely,
the variables mjj and χ are defined as

mjj =
√

(p3 + p4)2 , χ = e|y3−y4| . (5.6)

The pseudorapidities of the final-state partons are yi = − ln [tan (θi/2)], where i ∈ {3, 4}.
The angles θi are the scattering angles with respect to the axis defined by the three-
momentum piece of p1. Defined as a difference of pseudorapidities the quantity χ is
invariant with respect to boosts along this axis. It follows from four-momentum conser-
vation that χ = e2|y3| = e2|y4| in the partonic analysis. We note that the value of χ ranges
from χ = 1 corresponding to the final-state parton being emitted at an angle of θ3 = π/2
to χ→∞ in the limit of θ3 → 0 or θ3 → π.
To illustrate the discrimination power of distributions in the kinematic variables we con-
sider the partonic process u(p1) d(p2)→ u(p3) d(p4). The partonic cross section is shown
in Figure 5.2 as a function of mjj (left) and differential in χ (right). The distribution in
mjj is plotted in arbitrary units and the differential cross section in χ is normalised to
the cross section in the range χ ∈ [1, 16]. We show the SM cross section (blue, solid) and
the interference contribution at order 1/M2 arising from the operators Q(3)

QQ (red, dashed)
and Q

(8)
Qu (black, dot-dashed). The interference distributions in the left panel coincide.

We observe in the left panel that the relative importance of the interference cross section
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Figure 5.2: Cross section for the partonic process u(p1) d(p2)→ u(p3) d(p4) as a function
of mjj in arbitrary units (left panel) and differential in the angular variable
χ (right panel). The distributions in the right panel are normalised to the
total cross section in the range χ ∈ [1, 16]. Shown are the distributions for
the SM (blue, solid) and the interference pieces arising from the operators
Q

(3)
QQ (red, dashed) and Q

(8)
Qu (black, dot-dashed). The distributions for the

two interference pieces in the left panel coincide.

compared with the SM cross section grows with the dijet invariant mass. Concerning the
angular behaviour in the right panel we note that the SM distribution is flat with values
between 0.05 for χ = 1 and 0.07 for χ = 16. Furthermore, the angular distribution of
the interference piece from the operator Q(3)

QQ peaks at low values of χ reaching a value
of 0.23 at χ = 1 compared to the distribution from the operator Q(8)

Qu which is rather
flat with values between 0.11 for χ = 2 and 0.04 for χ = 16. The two operators Q(3)

QQ

and Q(8)
Qu are representatives for two classes of operators with distinct angular behaviour.

The interference piece from operators in the first class peaks at small values of χ. These
operators are Q(1)

QQ, Q
(3)
QQ, Quu, Qdd and Q(8)

ud . The interference piece from operators in
the second class exhibits a rather flat distribution in χ. The operators in this class are
Q

(8)
Qu and Q(8)

Qd.

5.2.2 Analyses at the Detector Level
At the detector level the kinematic variables mjj and χ are defined as in equation (5.6)
with p3 and p4 now being the four-momenta of the two jets in the event which have the
largest transverse momenta. These jets are referred to as the two hardest jets in the
following.
The data taken by the CMS collaboration [59] corresponds to a centre-of-mass energy of
13 TeV and an integrated luminosity of 2.6 fb−1. The data is reported binned in both
the dijet invariant mass mjj and the angular variable χ. The bin borders in mjj are

mjj ∈ {1.9, 2.4, 3.0, 3.6, 4.2, 4.8, 13.0} TeV . (5.7)

Events selected for the analysis furthermore fulfill χ ∈ [1, 16]. The concrete binning in χ
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differs between the mjj bins. A cut |yboost| < 1.11 on the boost of the partonic centre-of-
mass frame is applied, where yboost = (1/2)(y3 + y4). These criteria select events where
the pseudorapitities and transverse momenta of the two hardest jets fulfill |y3,4| < 2.5
and pT3,4 > 200 GeV, respectively. Employing a modified-frequentist approach [247,248],
the CMS collaboration derives bounds on the parameters of the SMEFT by comparing
the data with Monte-Carlo (MC) pseudodata. The pseudodata includes both QCD and
electroweak corrections at the NLO. The factorisation and the renormalisation scales are
set on an event-by-event basis to the average transverse momentum of the two hardest
jets.
In our analysis we employ a chi-squared test to obtain bounds at the 95% confidence level
(CL) by comparing the CMS data with MC pseudodata. For the generation of the pseu-
dodata we implement the contributing SMEFT operators using FeynRules [11] (version
2.0). Working at the LO in QCD we generate partonic pseudodata using MadGraph5 [12]
(version 2.5.3) and employ the program PYTHIA [13] (version 6.4) for showering. As a
detector simulation we use DELPHES [14] (version 3.4.0) with a default CMS detector
setting. In our analysis we fix the factorisation and the renormalisation scale such that
for partonic MC data the total cross section in one mjj bin agrees with the cross section
obtained when the scales are set on an event-by-event basis as in the CMS analysis. With
this treatment we find better agreement of our LO simulation with the NLO pseudodata
used by CMS.

5.2.3 Linear Combinations of Wilson Coefficients in Angular Spectra
Using our detector-level pseudodata we focus on the two linear combinations of Wilson
coefficients in angular spectra discussed at the parton level in Section 5.2.1. For the
interference cross section differential in the variable χ we find approximately the following
linear combination with an angular spectrum peaking at small values of χ:

dσ

dχ

∣∣∣∣
central

∝−
(
C

(1)
QQ + 0.61C(3)

QQ + 0.85Cuu + 0.15Cdd + 0.20C(8)
ud

)
. (5.8)

Analogously, we obtain the following dependence of the interference piece for the linear
combination with a rather flat distribution in χ:

dσ

dχ

∣∣∣∣
flat
∝ −

(
C

(8)
Qu + 0.45C(8)

Qd

)
. (5.9)

We normalised both linear combinations (5.8) and (5.9) to the dominant contribution
which arises from the operators Q(1)

QQ in equation (5.8) and Q
(8)
Qu in equation (5.9), re-

spectively. The minus signs indicate that a positive Wilson coefficient corresponds to
destructive interference whereas a negative Wilson coefficient corresponds to constructive
interference with the SM contribution. The coefficients in front of the Wilson coefficients
are approximate since they vary between the mjj bins. This effect is caused by the dif-
ferent relative behaviour of the up- and down-type quark parton distribution functions
(PDFs) under variation of the momentum fraction which corresponds to a variation of
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C
(3)
QQ Cuu Cdd C

(8)
ud C

(8)
Qd

Prefactor range [0.54, 0.67] [0.78, 0.91] [0.09, 0.22] [0.14, 0.26] [0.28, 0.64]

Table 5.2: Range of the prefactor of the Wilson coefficients in the interference cross sec-
tion for the “central” linear combination (5.8) and the “flat” linear combina-
tion (5.9). The linear combinations are normalised to the prefactor of C(1)

QQ

in (5.8) and to the prefactor of C(8)
Qu in (5.9).

mjj . To quantify this variation we show the range of the prefactors in Table 5.2. We note
that the values quoted in equations (5.8) and (5.9) correspond to the mean of the lower
and the upper border of these ranges. The operators Qdd, Q

(8)
ud and Q(8)

Qd exhibit the most
pronounced differences in the prefactors between different mjj bins. For these operators,
the prefactors vary approximately by a factor two. In principle, these differences can be
exploited to distinguish the contributions from different operators. We leave a detailed
study of these effects for future work and derive bounds on the “central” linear combi-
nation of Wilson coefficients from (5.8) and the “flat” linear combination (5.9) in this
work. Concretely, we use the operators with the dominant contributions, namely Q(1)

QQ

and Q(8)
Qu, as representatives of the linear combinations and switch off the other Wilson

coefficients.

5.2.4 Reproduction of the CMS Analysis

Before we derive bounds employing our framework we first reproduce the analysis per-
formed by the CMS collaboration. This comparison serves as an important validation
step of our method.
In the CMS analysis the Wilson coefficients are fixed and bounds on the scale M are
derived. One Wilson coefficient at a time is considered while the other Wilson coefficients
are set to zero. The contributing operators are assumed to exhibit the diagonal flavour
structure δprδrsδst in the notation used in Section 5.2.1. Concerning the series expansion
of the signal cross section in powers of 1/M2 the squared dimension-six piece is taken
into account. This corresponds to truncating the expansion of the squared amplitude as
in equation (5.2). The bounds are obtained by comparing the theory predictions with the
data in angular distributions in χ in the three highest bins in the dijet invariant massmjj .
The angular distributions are normalised to the total cross section in the corresponding
mjj bin.
Only in this reproduction step our procedure differs in a few aspects from the one dis-
cussed in Sections 5.2.1, 5.2.2 and 5.2.3 to adjust to the CMS analysis. We address these
points in the following. We generate a separate set of pseudodata where the Wilson co-
efficients exhibit the flavour structure used by CMS. Moreover, we include the squared
dimension-six piece in the signal cross section. Thus, the signal cross section exhibits the
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Figure 5.3: Dijet cross section differential in the angular variable χ normalised to the total
cross section in the respective mjj bin. We show the following predictions for
the choice M = 11 TeV and C(1)

QQ = +2π : the SM (black, dot-dashed), the
signal including the dimension-six squared piece for K = 1.0 (blue, solid)
and K = 1.6 (red, dashed) and the CMS signal prediction (green, dotted).
The grey dots and uncertainty bars represent the data with statistical and
systematic uncertainties added in quadrature.

form

σ|signal = σSM + 1
M2 σint + 1

M4 σBSM , (5.10)

where the different pieces arise from the three terms in the squared amplitude (5.2). As a
validation we focus on the operator Q(1)

QQ for the two cases C(1)
QQ = ±2π and set the other

Wilson coefficients to zero. To compare our LO prediction with the NLO prediction of
CMS we introduce a rescaling factor K ∈ [1.0, 1.6] for the SM cross section in every mjj

bin.
We present the normalised angular distributions in the three highest bins in mjj in Fig-
ure 5.3, where we set M = 11 TeV and C(1)

QQ = +2π. We show our SM prediction (black,
dot-dashed), our signal predictions for K = 1.0 (blue, solid) and K = 1.6 (red, dashed)
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Wilson coefficient C
(1)
QQ = +2π C

(1)
QQ = −2π

CMS 11.5 14.7
K = 1.0 12.1 15.2
K = 1.3 11.4 14.0
K = 1.6 11.0 13.2

Table 5.3: Lower bounds for the scaleM in TeV obtained from normalised angular spectra
in the three highest mjj bins. The contribution of the operator Q(1)

QQ with
Wilson coefficients C(1)

QQ = +2π (destructive interference, second column) and
C

(1)
QQ = −2π (constructive interference, third column) is considered. We show

the bounds obtained by CMS (second row) and the bounds we find for three
different choices for the K factors which rescale the SM distribution to account
for higher-order effects (third - fifth row).

and the signal prediction from CMS (green, dotted). The CMS data with statistical and
systematic uncertainties added in quadrature are represented by the grey dots and un-
certainty bars. The bins in mjj correspond to 3600 GeV < mjj < 4200 GeV (upper left
plot), 4200 GeV < mjj < 4800 GeV (upper right plot) and 4800 GeV < mjj (lower plot).
We note that in all three mjj bins the deviation of the signal from the SM prediction is
most pronounced in the lowest bin in χ. For example, for 4800 GeV < mjj and K = 1.0
(K = 1.6) the signal distribution is larger by approximately a factor of 2.1 (1.8) compared
to the SM distribution in the lowest bin in χ. Although the case C(1)

QQ = +2π corresponds
to destructive interference the signal prediction is larger in the lowest bin in χ compared to
the SM distribution. This behaviour arises from the squared dimension-six contribution
to the cross section.
Employing a chi-squared test by comparing our signal prediction with the data in the
three highest mjj bins we obtain the lower bounds for the scale M in TeV collected in
Table 5.3. In the test the statistical and systematic uncertainties quoted by CMS are
added in quadrature. We show the bounds for destructive interference with C(1)

QQ = +2π
(second column) and for constructive interference with C(1)

QQ = −2π (third column) from
CMS (second row) and for fixed K factors in the three mjj bins of K = 1.0 (third
row), K = 1.3 (fourth row) and K = 1.6 (fifth row). In general the lower bounds on
M are larger for the case C(1)

QQ = −2π since the constructive interference causes the
signal prediction to be pulled further away from the data compared to the destructive-
interference case. For destructive interference the effect of the interference piece and
the dimension-six squared piece cancel out at least to some extend. As an example we
find the bound 12.1 TeV < M for destructive interference and K = 1.0 compared to the
bound 15.2 TeV < M for constructive interference. Our bounds agree with the results
from CMS at the level of approximately 5% for the case where we fix K = 1.0 in all
three mjj bins. Independently varying the values for K between the three mjj bins we
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find bounds differing from the CMS bounds by not more than approximately 10%. These
differences most likely are caused by our different test procedure, by not including NLO
predictions in our test, by the different treatment of both the renormalisation and the
factorisation scale and by the different detector simulation.

5.2.5 Implementation of the Consistent Expansion
After the reproduction of the CMS analysis in the last section we apply the consistent
SMEFT expansion as described in detail in Section 5.1 in this section and the follow-
ing parts of the dijet analysis. Concretely, we truncate the signal prediction after the
interference term such that the signal cross section exhibits the form

σ|signal = σSM + 1
M2 σint , (5.11)

in contrast to the signal cross section (5.10) used in the last section. To account for the
contribution of the dimension-six squared piece we introduce a theory uncertainty ∆σtheo
defined as

∆σtheo = 1
M4 σBSM . (5.12)

We show the normalised angular distributions in Figure 5.4 for 4200 GeV < mjj <
4800 GeV (left) and 4800 GeV < mjj (right). The grey dots with uncertainty bars are the
CMS data with statistical and systematic uncertainties added in quadrature and the blue
solid line is the signal cross section as defined in (5.11). The blue shaded areas represent
the uncertainties arising from the theory uncertainty (5.12). For this illustration we
consider only the contribution from the operator Q(1)

QQ and use the parameters K = 1.0,
C

(1)
QQ = +2π and M = 15 TeV.

We note that the theory uncertainties in particular in the two lowest χ bins are sizeable.
For 4200 GeV < mjj < 4800 GeV and 1 < χ < 2 the relative theory uncertainty amounts
to approximately 60%. As discussed in the last section the lowest χ bins are the ones
where the difference between the signal and the SM background is most pronounced when
including the dimension-six squared piece in the signal. The distributions in Figure 5.4
show that the power to discriminate signal and background arising from these lowest χ
bins is lost when excluding the squared-dimension six piece from the signal and including
it as a theory uncertainty. In fact, the blue-shaded area indicating the theory uncertainty
overlaps with the central values of the data in the two lowest χ bins for both mjj bins. As
a consequence, the ability to place a bound on the scale M by employing a chi-squared
test it lost completey when including the theory uncertainty. Thus, it is necessary to
design a new search in order to derive bounds on the SMEFT parameters.

5.2.6 Constraints from Unnormalised Angular Distributions
The analysis of normalised angular distributions exhibits the advantage that uncertainties
cancel out to some extend in the normalisation. However, also the information about the

93



5 Constraints on the Standard-Model Effective Theory

Figure 5.4: Dijet cross section differential in the angular variable χ normalised to the total
cross section in the respective mjj bin for 4200 GeV < mjj < 4800 GeV (left)
and 4800 GeV < mjj (right). The signal prediction (blue solid line) arising
from the operator Q(1)

QQ is truncated at the level of dimension-six interference.
The parameters are fixed as K = 1.0, C(1)

QQ = +2π andM = 15 TeV. The blue
shaded areas indicate the uncertainties arising from the dimension-six squared
cross section. The grey dots with uncertainty bars represent the CMS data
where the statistical and systematic uncertainties are added in quadrature.

total number of events is lost. Therefore, we study unnormalised angular distributions
at different integrated luminosities in this section.
Compared to the previous two sections we do not only consider the contribution from the
operator Q(1)

QQ but also take the operator Q(8)
Qu into account. We discussed in Section 5.2.3

that these two operators represent the two linear combinations of operators giving rise
to distributions with distinct angular behaviour. The error budget in our analysis con-
tains the statistical, the systematic and the theory error motivated in Section 5.1. We
assume a Poisson uncertainty for the event number in every bin in χ as a statistical er-
ror. We rescale the systematic uncertainties reported by the CMS collaboration for the
normalised distributions with the total number of events from our pseudodata to obtain
the systematic error for our analysis. Since this assumption for the systematic error
might underestimate the actual uncertainty we introduce an additional factor Rsyst ≥ 1
to rescale the systematic error. In our analysis we study how a variation of this factor
effects the bounds. However, we note that by construction we do not assume any im-
provement of the the relative systematic error with increasing luminosity. Thus, even for
the case Rsyst = 1 our estimate for the systematic uncertainties is rather conservative.
For the theory error we use the angular distributions of the squared dimension-six cross
sections arising from the operators Q(1)

QQ and Q(8)
Qu. These distributions correspond to the

first term in the bracket in the squared amplitude (5.4). At this order the contributions
of both operators do not interfere with each other. We do not work with a basis of
dimension-eight operators but need to model the effect of the interference term between
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the dimension-eight amplitude and the SM amplitude, i.e. the effect of the second term
in the bracket in equation (5.4). We proceed as follows to capture both contributions at
order 1/M4 in the cross section: first, we take the distributions for the operators Q(1)

QQ

and Q(8)
Qu from the squared dimension-six term from our pseudodata. These distributions

contain the square of the Wilson coefficients C(1)
QQ and C(8)

Qu. We replace the squared Wil-
son coefficients by our model for the theory uncertainty according to C2

k → ∆theo,i(Ck),
where k ∈ {1, 2} and i ∈ {1, 2}. The index k = 1 is a short-hand notation for C(1)

QQ

and the index k = 2 represents C(8)
Qu. The index i indicates the model for the theory

uncertainty we consider. Our first model is1

∆theo,1(Ck) = max
{
C2
k , g

2
S C8

√
N8
}
. (5.13)

The two arguments of the maximum function represent the first and the second term
in the bracket in the squared amplitude (5.4). In particular, the second term models
the interference of the amplitude arising from dimension-eight operators with the SM
amplitude. The quantity N8 parameterises the number of operators contributing at
dimension eight with Wilson coefficients of typical size C8. Moreover, we assume that
the number of interfering dimension-eight operators grows as

√
N8. The interference

piece contains two powers of the strong coupling from the SM amplitude. In the theory
uncertainty ∆theo,1 we assume that one of the two contributions dominates in size and
neglect the other one. In our second model we add both contributions in quadrature.
This second model is2

∆theo,2(Ck) =
√
C4
k +

(
g2
S C8

√
N8
)2
. (5.14)

In our analysis we fix the value for the size of the dimension-eight Wilson coefficients to
C8 = 1/2

∑
k |Ck|. This choice prevents the dimension-eight Wilson coefficients to deviate

sizably from the dimension-six Wilson coefficients. We do not fix the parameter N8 but
vary it in our analysis.
In Figure 5.5 we show the distribution of the event numbers differential in χ for the
integrated luminosities Lint = 2.6 fb−1 (left) and Lint = 50.0 fb−1 (right) for 4.2 TeV <
mjj < 4.8 TeV. The SM prediction is shown by the black dot-dashed line and the signal
for C(1)

QQ = −2π, C(8)
Qu = 0 and M = 11 TeV is represented by the blue line. The blue-

shaded region indicates the uncertainty where we added the statistical uncertainty, the
systematic uncertainty with Rsyst = 1 and the theory uncertainty in quadrature. For the
illustration in Figure 5.5 and in general from here on we fix the K factors introduced
to compare our LO result with the NLO results obtained from CMS to K = 1.0 in all
bins in mjj . In Figure 5.5 we observe that the statistical uncertainty plays an important

1Note that the factor g2
S differs from the published version [10] where gS without a square is used. The

square should be included since the SM amplitude contains g2
S . This difference gives rise to small

changes in the results since gS ≈ 1 in our application.
2See footnote 1.
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Figure 5.5: Event numbers differential in the angular variable χ for 4.2 TeV < mjj <

4.8 TeV for the integrated luminosities Lint = 2.6 fb−1 (left) and Lint =
50.0 fb−1 (right). We show the SM prediction (black, dot-dashed) and the
signal (blue) for C(1)

QQ = −2π, C(8)
Qu = 0 and M = 11 TeV. The statisti-

cal, the systematic and the theory uncertainty are added in quadrature and
represented by the blue-shaded area for Rsyst = 1.

role for the analysis. While in the lowest bin in χ the relative uncertainty amounts
to approximately 90% for both luminosities, it decreases for larger values of χ when
increasing the luminosity. For example, the relative uncertainty in the fifth bin in χ
decreases from approximately 30% for Lint = 2.6 fb−1 to approximately 20% for Lint =
50 fb−1.
We derive the projections of bounds to different values of the integrated luminosity by
employing our test on the angular spectra in the three highest mjj bins. In our test we
assume that the data exactly corresponds to the SM prediction. Omitting the renormal-
isation of the Wilson coefficients, the SMEFT effects enter our signal prediction by the
ratios Ck/M2. However, the dependence of the theory uncertainty on the parameters Ck
and M as specified in equations (5.13) and (5.14) is more complicated. We distinguish
two different cases in our analysis. In the first case - the “fixed-Wilson-coefficient case”
- we fix the Wilson coefficient and derive bounds for the scale. In the second case - the
“fixed-scale case” - we fix the scale and obtain bounds for the Wilson coefficients.
We present our results for the fixed-Wilson-coefficient case in the following. We fix the pa-
rameter Rsyst = 1 and consider the Wilson coefficients C(1)

QQ, C
(8)
Qu ∈ {0,±1,±2π,±16π2}.

The exclusion plots for the case where only one of the two Wilson coefficients is non-
zero are collected in Figure 5.6. The four plots show the cases C(1)

QQ = 1 and C
(8)
Qu = 0

(upper left), C(1)
QQ = 0 and C(8)

Qu = 1 (upper right), C(1)
QQ = 2π and C(8)

Qu = 0 (lower left)
and C

(1)
QQ = 0 and C

(8)
Qu = 2π (lower right). The excluded regions for the scale M are

projected to different integrated luminosities. The regions bounded by the solid (dashed)
lines arise when the theory uncertainty ∆theo,1 (∆theo,2) is used. For the blue regions we
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Figure 5.6: Excluded regions for the scale M in the fixed-Wilson-coefficient case for dif-
ferent values of C(1)

QQ and C(8)
Qu, where only one Wilson coefficient is assumed

to be non-zero. The bounded regions are projections to different integrated
luminosities. The solid (dashed) lines indicate the excluded regions when the
theory uncertainty ∆theo,1 (∆theo,2) is used. The parameter N8 is fixed to
N8 = 1 for the blue regions, to N8 = 10 for the red regions in the upper left
plot and to N8 = 25 for the red regions in both lower plots. Note that no
excluded region exists for N8 = 10 in the upper right plot. Moreover, both
blue lines coincide with the red solid line in the lower left plot and both blue
and both red lines coincide in the lower right plot.
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fix N8 = 1 and for the red regions we use N8 = 10 (upper left) or N8 = 25 (lower left and
lower right). As a general feature of all four considered cases we observe that a certain
minimum integrated luminosity is necessary to obtain a bound at all. For example, a
minimum integrated luminosity of approximately 1500 fb−1 is needed to obtain bounds
on M for C(1)

QQ = 0, C(8)
Qu = 1 and N8 = 1. This feature reflects the importance of the

statistical uncertainty in our analysis. A second general feature of the four exlusion plots
is that for a fixed integrated luminosity we do not only find a lower bound for M but
rather an excluded region. For example, approximately the region 5 TeV < M < 15 TeV
is excluded at an integrated luminosity Lint = 1500 fb−1 for C(1)

QQ = 1 and C(8)
Qu = 0 for

N8 = 1. Finding an excluded region rather than one lower bound on M is a difference to
the state-of-the art analyses such as the one performed by the CMS collaboration. Our
analysis does not exclude scales below some value since the SMEFT expansion breaks
down at some scale for a fixed Wilson coefficient and decreasing values ofM . In this limit
the theory uncertainty grows as 1/M4 compared to the signal only growing as 1/M2. As
a third general feature of the four cases shown in Figure 5.6 we observe that the excluded
region shrinks both when using the theory uncertainty ∆theo,2 instead of ∆theo,1 and when
increasing the parameter N8. In both cases the theory uncertainty increases resulting in
less stringent bounds on the scale M .
Comparing the case C(1)

QQ = 1 and C
(8)
Qu = 0 with the case C(1)

QQ = 0 and C
(8)
Qu = 1 we

observe that the excluded region in the second case is much smaller. While bounds on
M can be placed with integrated luminosities above approximately 100 fb−1 in the first
case integrated luminosities above approximately 1500 fb−1 are necessary in the second
case. The reason for the difference between these two cases is that the contribution from
the operator Q(1)

QQ to the signal is larger than the one from the operator Q(8)
Qu. For the

cases where the absolute value of the Wilson coefficient is 2π the excluded region is larger
compared to the case where the absolute value is 1. For example, for the case C(1)

QQ = 2π
and C(8)

Qu = 0 it is possible to exclude the approximate region 12 TeV < M < 38 TeV for
Lint = 1500 fb−1 andN8 = 25 whereas only the approximate region 9 TeV < M < 13 TeV
is excluded for the same integrated luminosity and the same value for N8 in the case
C

(1)
QQ = 1 and C(8)

Qu = 0 (not shown in the plot).
We show our exclusion plots for the cases where both Wilson coefficients are non-zero
in Figure 5.7. The cases we consider are C(1)

QQ = 1 and C(8)
Qu = 1 (upper left), C(1)

QQ = 1
and C

(8)
Qu = −1 (upper right), C(1)

QQ = 2π and C
(8)
Qu = −2π (lower left) and C

(1)
QQ = 2π

and C
(8)
Qu = −2π (lower right). The differently marked regions are to be interpreted as

in Figure 5.6 above. We first observe that the relative sign of both Wilson coefficients is
important. For example, in the case N8 = 10 there exists an excluded region for C(1)

QQ = 1
and C

(8)
Qu = 1 whereas no bounds on M are obtained for C(1)

QQ = 1 and C
(8)
Qu = −1.

This difference is caused by cancellations in the signal between contributions from both
operators for the case where the Wilson coefficients have opposite signs. While the relative
sign between the two Wilson coefficients is important the absolute sign does not cause
large differences in the bounds since we assume in the projections to higher integrated
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Figure 5.7: Excluded regions for the scale M in the fixed-Wilson-coefficient case for dif-
ferent values of C(1)

QQ and C
(8)
Qu, where both Wilson coefficients are assumed

to be non-zero. The bounded regions are projections to different integrated
luminosities. The solid (dashed) lines indicate the excluded regions when the
theory uncertainty ∆theo,1 (∆theo,2) is used. The parameter N8 is fixed to
N8 = 1 for the blue regions, to N8 = 10 for the red regions in the upper left
plot and to N8 = 25 for the red regions in both lower plots. Note that in the
upper right plot no excluded regions exist for the theory uncertainty ∆theo,1
with N8 = 10 and for the theory uncertainty ∆theo,2 for both N8 = 1 and
N8 = 10. Moreover, both blue lines coincide with the red solid line in the
lower left plot and both solid lines coincide in the lower right plot.
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luminosities that the data is exactly our SM prediction. A different overall sign of the
Wilson coefficients effects the bounds only due to small differences in the systematic
uncertainties between the upper and the lower side of the data. The largest difference
for the cases considered in Figure 5.6 and Figure 5.7 is less than 0.3 TeV in the bound
on M for an integrated luminosity Lint = 3000 fb−1 between switching the overall signs.
We discuss the strongly-coupled case where we assume absolute values for the Wilson
coefficients up to 16π2 next, focussing on an integrated luminosity of Lint = 1000 fb−1,
the theory uncertainty ∆theo,1 and N8 = 1 for illustration. For the case C(1)

QQ = 16π2 and
C

(8)
Qu = 0 our analysis yields approximately the excluded region 60 TeV < M < 180 TeV.

Analogously, we find the excluded regions 15 TeV < M < 110 TeV for the case C(1)
QQ = 0

and C
(8)
Qu = 16π2 and the excluded region 50 TeV < M < 210 TeV for C(1)

QQ = 16π2

and C
(8)
Qu = 16π2. Comparing these three results we observe that the lower boundary

of the excluded region for C(1)
QQ = 0 and C

(8)
Qu = 16π2 is much lower compared to the

other two cases. The reason is that the contribution of the operator Q(1)
QQ to the theory

uncertainty is larger compared to the one arising from Q
(8)
Qu. For the case C(1)

QQ = 0 and
C

(8)
Qu = 16π2 the Wilson coefficient with value 16π2 enters the dominant contribution to

the theory uncertainty only linearly through the variable C8 defined below equation (5.14)
in contrast to the other two cases where the Wilson coefficient of absolute value 16π2

enters quadratically.

In the discussion of the fixed-Wilson-coefficient case it remains to study the effect of the
parameter Rsyst rescaling the systematic uncertainty. We focus on the case C(8)

Qu = 0 using
the theory uncertainty ∆theo,2 and the parameters N8 = 10 and Lint = 3000 fb−1. We
determine the largest integer value of Rsyst where it is still possible to find an excluded
region for M . For the Wilson coefficients C(1)

QQ = 1, 2π, 16π2 we find that these values
are Rsyst = 3, 7, 7. Thus, it is still possible to derive a bound on M when the systematic
uncertainties are assumed to be seven times larger than our estimate for the case C(1)

QQ =
2π.

We consider the fixed-scale case in the following. The projected exclusion regions are
shown in Figure 5.8 for the scale M = 10 TeV and Rsyst = 1. In the left plot we consider
the integrated luminosity Lint = 300 fb−1. The regions bounded by the solid lines arise
when the theory uncertainty ∆theo,1 is used whereas the dashed lines bound the exclusion
regions for the uncertainty ∆theo,2. We distinguish the cases N8 = 1 (blue regions) and
N8 = 10 (red regions). As a general feature we observe that two excluded regions exist
which both exhibit a shape similar to an ellipse. In the limit of large absolute values
for the Wilson coefficients no bounds are obtained since the theory uncertainty grows
with the square of the Wilson coefficients compared to the signal which grows linear
with the Wilson coefficients. The characteristic kinks arise for the case where the theory
uncertainty ∆theo,1 is used and are caused by the maximum function in equation (5.13).
In analogy to the fixed-Wilson-coefficient case the excluded area decreases when either
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Figure 5.8: Excluded regions for the Wilson coefficients C(1)
QQ and C

(8)
Qu for a fixed scale

M = 10 TeV. In the left panel we consider the projection to the integrated
luminosity Lint = 300 fb−1. The solid (dashed) line indicates the excluded
region when the theory uncertainty ∆theo,1 (∆theo,2) is used. We fix N8 = 1
for the blue regions and N8 = 10 for the red regions. In the right panel we use
the theory uncertainty ∆theo,1, fix N8 = 1 and bound the excluded regions for
integrated luminosities Lint = 150, 300, 3000 fb−1 by the black-dotted, the
red-dashed and the blue line.
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N8 is increased or when the theory uncertainty ∆theo,2 is used instead of ∆theo,1.
The right plot in Figure 5.8 shows the projected bounds using the theory uncertainty
∆theo,1 and fixing N8 = 1 for three different integrated luminosities. We consider the
cases Lint = 150, 300, 3000 fb−1 indicated by the black-dotted, the red-dashed and the
blue line, respectively. These values correspond to the integrated luminosity by the end of
Run 2, the integrated luminosity by the end of Run 3 and the integrated luminosity by the
end of the high-luminosity run (see, e.g [249]). We observe that for fixed C(1)

QQ = −1 the
allowed range for C(8)

Qu shrinks from approximately −0.2 < C
(8)
Qu < 7.5 to approximately

1.1 < C
(8)
Qu < 4.7 when increasing the luminosity from Lint = 150 fb−1 to Lint = 3000 fb−1.

5.2.7 Constraints from Unnormalised Invariant-Mass Spectra

In the searches in the previous section we employed a two-dimensional binning in both the
dijet invariant massmjj and the angular variable χ. In many of the considered scenarios a
minimum amount of integrated luminosity is necessary to obtain bounds on the SMEFT
parameters. As an alternative we perform searches where the data is binned in the
dijet invariant mass mjj only in this section. Concretely, we employ the binning from
the CMS analysis specified in equation (5.7). Since we do not distinguish the different
angular shapes we consider the contribution from the dominant operator Q(1)

QQ only and
set C8 =

∣∣∣C(1)
QQ

∣∣∣ in the theory uncertainty. We add the systematic uncertainties reported
by the CMS collaboration in the different χ bins in quadrature and rescale the results
to the corresponding luminosity to obtain the systematic uncertainties for our analysis.
We explicitly check the effect of adding the systematic uncertainties linearly. While the
bounds weaken the analysis can still provide constraints on the SMEFT parameters. For
the theory uncertainty ∆theo,1 and the parameters C(1)

QQ = 1, N8 = 1 and Lint = 1000 fb−1

the excluded region for M is 7 TeV < M < 12 TeV for linearly added uncertainties
compared to 5 TeV < M < 18 TeV for the uncertainties added in quadrature.
Our projections for the bounds in the fixed-Wilson-coefficient case are collected in Fig-
ure 5.9. We use the theory uncertainty ∆theo,1 and consider the cases C(1)

QQ = 1 with
N8 = 1 in the left plot and C

(1)
QQ = 2π with N8 = 25 in the right plot. The blue re-

gions arise from the searches in the dijet invariant mass spectrum. As a reference we
include the bounds from the searches in angular spectra discussed in the last section by
the black-dashed lines. It is important to note that compared to the searches in the
angular spectra discussed in the last section less integrated luminosity is necessary to
obtain bounds. Moreover, the region excluded at the same amount of luminosity extends
to larger values of M . For example, for an integrated luminosity of 1000 fb−1 the largest
scales excluded are approximately 18 TeV for C(1)

QQ = 1 and 45 TeV for C(1)
QQ = 2π com-

pared to 14 TeV and 36 TeV obtained from the searches in the angular spectra. At the
lower boundary of the excluded region the searches in the angular spectra yield more
stringent bounds compared to the searches in the dijet invariant mass spectrum. These
differences are less than 1 TeV in both cases considered in Figure 5.9. In this regime
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Figure 5.9: Excluded regions for the scale M in the fixed-Wilson-coefficient case for
C

(1)
QQ = 1 (left) and C(1)

QQ = 2π (right). The bounded regions are projections to
different integrated luminosities. We use the theory uncertainty ∆theo,1 and
fix N8 = 1 in the left plot and N8 = 25 in the right plot. The blue regions
arise from the searches in the invariant mass spectra. For comparison we in-
clude the bounded regions obtained for the same parameters when applying
the searches in the unnormalised angular spectra. These regions are indicated
by the black-dashed lines.
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Figure 5.10: Excluded regions for the Wilson coefficient C(1)
QQ in the fixed-scale case for

M = 10 TeV (left) and M = 15 TeV (right). The bounded regions are pro-
jections to different integrated luminosities. We use the theory uncertainty
∆theo,1 and fix N8 = 1. The blue regions arise from the searches in the invari-
ant mass spectra. For comparison we include the excluded regions obtained
for the same parameters when applying the searches in the unnormalised
angular spectra. These regions are indicated by the black-dashed lines.

the theory uncertainty dominates compared to the statistical uncertainty. The theory
uncertainty is reduced when considering dijet-invariant-mass spectra instead of angular
spectra since the impact of the lowest bins in χ, where this uncertainty exhibits the largest
values, is smeared out over all angular bins. However, along the same lines of reasoning
the ability to distinguish signal and background is reduced. The behaviour we observe
in Figure 5.9 arises from the interplay of these two effects. In an analysis where the full
details about the experimental uncertainties are known one would design a combination
of both searches to maximise the excluded region.
Our exclusion plots for the fixed-scale case are shown in Figure 5.10. Using the theory
uncertainty ∆theo,1 and the parameter N8 = 1 we consider the cases M = 10 TeV (left)
and M = 15 TeV (right). As in the discussion of the fixed-Wilson-coefficient case we
include the bounds obtained from the searches in the angular spectra. The corresponding
exclusion regions are indicated by the black-dashed lines. In analogy to the fixed-Wilson-
coefficient case the bounded region extends to smaller absolute values of the Wilson
coefficient for the searches in the dijet invariant mass spectrum compared to the case
where the search is performed in the angular spectra. Moreover, the behaviour at the
upper boundary of the excluded region, where the search in the angular spectra yields
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more stringent bounds, corresponds to the behaviour at low scales in the fixed-Wilson
coefficient case.
Finally, we comment on the sensitivity of our bounds to a rescaling of the systematic
uncertainties with a factor Rsyst. For both the fixed-Wilson-coefficient case and the
fixed-scale case the bounds are quite sensitive to this parameter. For the fixed-Wilson-
coefficient case with the parameters Lint = 1000 fb−1, C(1)

QQ = 1, N8 = 1 and the theory
uncertainty ∆theo,1 the excluded region is 7 TeV < M < 11 TeV for Rsyst = 3 compared to
5 TeV < M < 18 TeV for Rsyst = 1. Increasing the systematic uncertainties to Rsyst = 4
causes the excluded region to vanish completely.

5.3 Constraints From Dilepton Production
In this analysis we consider the process of dilepton production employing the framework
developed in our study of dijet production in the last section. One main feature of the
bounds we obtained in the dijet analysis is that in the fixed-Wilson-coefficient case scales
smaller than a certain value are not excluded. Correspondingly, Wilson coefficients with
an absolute value above a certain boundary are not excluded in the fixed-scale case.
In this region of parameter space the SMEFT expansion breaks down which is taken
into account by an appropriate theory uncertainty in our approach. We discussed in
Section 5.1 that signal and theory uncertainty scale as s/M2 and s2/M4, respectively.
Thus, to derive bounds on the SMEFT for small values of M or large Wilson coefficients
data obtained at lower centre-of-mass energies can be exploited. We do not only perform
a study based on LHC results reported by the ATLAS collaboration [60] but also use
results from the Tevatron reported by the CDF collaboration [250].

5.3.1 Partonic Dilepton Production in the Standard-Model Effective Theory
In our analysis we focus on tree-level Drell-Yan production [251] and in particular we
consider the production of an electron and a positron. In the SM this process corresponds
to the annihilation of a quark and an antiquark into an electron and a positron via the
exchange of a photon or Z boson. Two classes of dimension-six SMEFT operators with
different behaviour contribute. An example for an operator in the first class is

Q
(1)
φL =

(
φ† i
↔
Dµ φ

)(
L̄p γ

µ Lr
)
. (5.15)

In the process of EWSB the terms where both Higgs doublets are replaced by the VEV
and gauge fields are taken from the covariant derivative modify the couplings of the Z
boson to the leptons. The contribution of this operator to the dilepton cross section scales
as v2/M2. Analyses of operators shifting the SM couplings exist from measurements
at the Large Electron-Positron Collider (LEP) and further experiments [252–257]. The
second class of operators are four-fermion operators familiar from the dijet analysis where
we discussed in detail that the effect of these operators grows with energy. In this
thesis we focus on the effect of four-fermion operators and leave a study of the operators
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Q
(1)
LQ

(
L̄pγµLr

) (
Q̄sγ

µQt
)

QLu
(
L̄pγµLr

)
(ūsγµut)

Q
(3)
LQ

(
L̄pγµτ

iLr
) (
Q̄sγ

µτ iQt
)

QLd
(
L̄pγµLr

) (
d̄sγ

µdt
)

Qeu (ēpγµer) (ūsγµut) QQe
(
Q̄pγµQr

)
(ēsγµet)

Qed (ēpγµer)
(
d̄sγ

µdt
)

Table 5.4: Dimension-six four-fermion operators from the Warsaw basis contributing to
dilepton production at tree level under the assumption that the operators
conserve baryon number, lepton number and CP.

Figure 5.11: Cross section for the partonic process uū → e+e− at order 1/M2 in the
SMEFT expansion as a function of the partonic scattering angle θ. The
distributions are normalised to the total cross section in the range θ ∈ [0, π].
Shown are the distributions arising from the operators Q(3)

LQ (blue, solid) and
QLu (red, dashed).

shifting the SM couplings for future work. We collect the contributing four-fermion
operators conserving baryon number, lepton number and CP in Table 5.4. We assume
an unbroken flavour-symmetric U(3)5 limit for the Lagrangian which corresponds to the
flavour structure δprδst for the Wilson coefficients of the operators from Table 5.4 as
explained for example in [17].
In analogy to our dijet study we exploit angular distributions to distinguish two different
linear combinations of operators. The angular behaviour is defined by the scattering
angle θ between the three-momentum of the electron and the three-momentum of the
quark in the partonic centre-of-mass frame. As an illustration we consider the partonic
cross section for the process uū → e+e− at centre-of-mass energies much larger than
the mass of the Z boson. We show the cross section differential in θ at order 1/M2

in the SMEFT expansion in Figure 5.11, where we consider the contribution from the
operator Q(3)

LQ (blue, solid) and the operator QLu (red, dashed). Both cross sections
are normalised to the total cross section in the interval θ ∈ [0, π]. We observe that
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the distribution for the operator Q(3)
LQ peaks approximately at θ ≈ π/4 corresponding to

forward scattering whereas the distribution for the operator QLu peaks approximately
at θ ≈ 3π/4 corresponding to backward scattering. In our searches we consider only
the contributions from the operators Q(3)

LQ and QLu which are both representatives for a
class of operators with the same angular behaviour. The class of operators giving rise
to forward scattering consists of Q(3)

LQ, Qeu, Q
(1)
LQ and Qed and the class of operators for

backward scattering contains QLu, QQe and QLd.
At hadron colliders the direction of the incoming quark is not fixed since both the quark
and the antiquark in the initial state exist as sea quarks in protons and antiprotons. How-
ever, the distribution of the momentum fractions as described by the PDFs is such that
on average valence quarks carry a larger fraction of the hadron’s momentum compared
to sea quarks. At a proton-antiproton collider like the Tevatron it is thus reasonable to
use the direction of the incoming proton as a reference for the direction of the incom-
ing quark in a process at high energies. At the Tevatron we refer to an event where
the electron has a pseudorapidity fulfilling ye− > 0 (ye− < 0) as forward (backward),
where we assume that the beam axis is defined by the three-momentum of the proton.
At a proton-proton collider like the LHC the situation is more subtle. On average the
quark carries a larger fraction of the proton’s momentum compared to the antiquark.
Thus, the partonic centre-of-mass frame is on average boosted in the direction of the
incoming quark. Therefore, an electron which is emitted in the forward direction in the
partonic frame exhibits a larger absolute pseudorapidity in the laboratory frame. Hence,
it is reasonable to define a forward (backward) event at the LHC to produce an electron
and a positron where the pseudorapidities in the laboratory frame fulfill |ye− | > |ye+ |
(|ye− | < |ye+ |).

5.3.2 Strategy for the Searches and Technical Details
Similar to the dijet study we perform the searches in the total number of events and an
angular variable both binned in the dilepton invariant mass mll. For the angular variable
we use the asymmetry of the forward and backward events. Concretely, the total number
of events Ntot and the asymmetry AFB are defined as

Ntot = NF +NB , AFB = NF −NB
NF +NB

, (5.16)

where NF and NB are the number of forward and backward events, respectively. As
specified in the last section, the definition of a forward and a backward event depends
on the collider which is considered. The analyses by ATLAS [60] and CDF [250] do not
report the quantity AFB for the whole range of dilepton invariant masses considered in our
study. Thus, we perform the search inNtot for recasts at the current integrated luminosity
and include the searches in AFB in projections to higher integrated luminosities.
In complete analogy to the dijet study we expand Ntot and AFB in 1/M2, include the
terms up to the order 1/M2 in the signal prediction and use the term at order 1/M4

to model the theory uncertainty. To obtain the theory uncertainty we sum the squared
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dimension-six piece and two pieces - one for the forward bin and one for the backward
bin - for the interference of the dimension-eight amplitude with the SM amplitude in
quadrature. We use MC pseudodata simulated as specified below in the forward and the
backward bin for the squared dimension-six piece. As a model for the dimension-eight
interference pieces we symmetrise the results from the MC simulation for the squared
dimension-six piece over the forward and the backward bin. In the result we substitute
the squared Wilson coefficients according to

C2
k → g2C8

√
N8 , (5.17)

where k ∈ {1, 2} with k = 1 being a short-hand notation for C(3)
LQ and k = 2 being a

short-hand notation for CLu. Furthermore,
√
N8 parameterises the number of dimension-

eight operators giving rise to interference with the SM amplitude and we assume C8 =
max (1, |Ck|) to represent the size of the Wilson coefficients at dimension eight. Our model
for the theory uncertainty takes account of the fact that the unkown interference pieces
in the forward and the backward bin are independent. To obtain the total uncertainty
we add the theory uncertainty, a Poisson uncertainty and a systematic uncertainty in
quadrature. We provide details about the systematic uncertainty in the discussion of the
corresponding analyses in Sections 5.3.3 and 5.3.4.
For our analysis we employ the SMEFTsim package [17, 18] for the contribution of the
SMEFT operators. We generate MC pseudodata at LO using MadGraph5 [12], where we
fix the renormalisation and factorisation scales on an event-by-event basis to the sum
of the transverse energies of the electron and the positron. As in the dijet analysis our
bounds are derived at the 95% CL using a chi-squared test.

5.3.3 Searches at the Large Hadron Collider
The basis for our search are results reported by the ATLAS collaboration [60]. The data
is taken at a centre-of-mass energy of 13 TeV and corresponds to an integrated luminosity
of 36.1 fb−1. We generate the MC pseudodata using the CT10 PDF [258] binned in seven
bins in the dilepton invariant mass mll and in ten bins in the rapidities of the leptons.
The bin borders are

mll ∈ {0.4, 0.5, 0.7, 0.9, 1.2, 1.8, 3.0, 6.0} TeV , (5.18)
ye− , ye+ ∈ {−2.5,−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5} . (5.19)

The applied cuts select events where both pseudorapidities fulfill 2.47 > |ye−,e+ | > 1.52 or
1.37 > |ye−,e+ | and where both transverse momenta are larger than 30 GeV. We assume
that the systematic uncertainty on the asymmetry AFB is negligible due to cancellations in
the normalisation. For the total number of events Ntot we use the systematic uncertainty
reported by ATLAS at an integrated luminosity of 36.1 fb−1. For our projections to
higher integrated luminosities we assume that these uncertainties decrease proportional
to the square root of the integrated luminosity down to a minimum relative uncertainty
of 2 %. To validate our procedure we compare our results for the SM pseudodata with
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5.3 Constraints From Dilepton Production

Figure 5.12: Cross section at order 1/M2 for 1200 GeV < mll < 1800 GeV differential in
the pseudorapidity ye− of the electron. Shown are the distributions arising
from the operators QLu (blue, solid) and Q(3)

LQ (red, dashed). Both distribu-
tions are normalised to the total cross section in the interval ye− ∈ [−2.5, 2.5].

the corresponding predictions by the ATLAS collaboration from table 3 in [60]. The
comparison yields a chi-squared value of 0.52.
To illustrate how the distinct angular behaviour discussed at the parton level in Sec-
tion 5.3.1 is manifest in the pseudodata we show the two angular distributions of the
cross section at order 1/M2 differential in the pseudorapidity of the electron in Fig-
ure 5.12. Shown is the cross section in the bin 1200 GeV < mll < 1800 GeV normalised
to the total cross section in the range ye− ∈ [−2.5, 2.5] for the operator QLu (blue, solid)
and for the operator Q(3)

LQ (red, dashed). We note that the dips in the distribution for
Q

(3)
LQ in the two bins where 1.0 < |ye− | < 1.5 originate from the cut specified above. As

expected from the partonic discussion in Section 5.3.1 the electrons in the distribution
for QLu on average have pseudorapidities with smaller absolute values compared to the
electrons in the distribution for the operator Q(3)

LQ. The two linear combinations of Wilson
coefficients represented by the distributions from Q

(3)
LQ and QLu in Figure 5.12 are

dσ

dye−

∣∣∣∣
forward

∝ C(3)
LQ − 0.48Ceu − 0.32C(1)

LQ + 0.15Ced , (5.20)

dσ

dye−

∣∣∣∣
backward

∝ − (CLu + 0.81CQe − 0.33CLd) , (5.21)

where we normalised both linear combinations to the dominant Wilson coefficient and
averaged the prefactors over all the mll bins. The overall signs in the linear combinations
indicate that the case C(3)

LQ > 0 corresponds to constructive interference and the case
CLu > 0 corresponds to destructive interference. As in our dijet study the prefactors of
the Wilson coefficients in equation (5.20) and (5.21) vary due to the different PDFs of
up- and down-type quarks. We leave a detailed analysis of these effects for future work.
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5 Constraints on the Standard-Model Effective Theory

Figure 5.13: Excluded regions arising from the LHC searches for the scale M in the
fixed-Wilson-coefficient case (left) and for the Wilson coefficients in the
fixed-scale case (right). In the left plot projections to different integrated
luminosities are shown for the Wilson coefficients (C(3)

LQ, CLu) = (1, 0) (blue,
solid), (C(3)

LQ, CLu) = (1, 1) (blue, dashed) and (C(3)
LQ, CLu) = (0, 3) (red,

dot-dashed). In the right plot we fix M = 10 TeV and show the excluded
regions for the integrated luminosities Lint = 36.1 fb−1 (red, dot-dashed),
Lint = 300 fb−1 (blue, dashed) and Lint = 3000 fb−1 (blue, solid). We fix
N8 = 20 in both plots.

We show the exclusion plots in Figure 5.13 for the fixed-Wilson-coefficient case (left)
and the fixed-scale case (right). In the left plot we consider projections for the bounds
to different integrated luminosities for the Wilson coefficients (C(3)

LQ, CLu) = (1, 0) (blue,
solid), (C(3)

LQ, CLu) = (1, 1) (blue, dashed) and (C(3)
LQ, CLu) = (0, 3) (red, dot-dashed).

In the right plot we show the excluded regions for the integrated luminosities Lint =
36.1 fb−1 (red, dot-dashed), Lint = 300 fb−1 (blue, dashed) and Lint = 3000 fb−1 (blue,
solid) for the fixed scale M = 10 TeV. For both plots we fix the parameter N8 = 20.
In the fixed-Wilson-coefficient case in the left plot in Figure 5.13 we observe the same
characteristic shape of the excluded regions as in our dijet study. At an integrated lumi-
nosity of Lint = 3000 fb−1 the excluded region is approximately 3 TeV < M < 17 TeV in
the case (C(3)

LQ, CLu) = (1, 0) and 6 TeV < M < 19 TeV in the case (C(3)
LQ, CLu) = (0, 3).

In the fixed-scale case in the right plot in Figure 5.13 we observe that a large fraction
of the parameter space where C(3)

LQ > 0 and CLu < 0 is excluded at the luminosity
Lint = 36.1 fb−1. As an example, for CLu = −1.5 the region C(3)

LQ > 0.3 in the plotted do-
main is excluded and analogously for C(3)

LQ = 1.5 all negative values of CLu in the plotted
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domain are excluded. The region where C(3)
LQ > 0 and CLu < 0 is the domain where the

total number of signal events is enhanced. We remind the reader that at this luminosity
we only include the total number of events in the search since data for the asymmetry is
not reported by the ATLAS collaboration in the full range of dilepton invariant masses
mll. A further interesting feature of the exclusion plot for Lint = 36.1 fb−1 is the flat
direction in parameter space. In this region the effect of the two linear combinations
cancels out in the total number of events. As a final remark concerning the excluded
region for Lint = 36.1 fb−1 we note that there exists a deficit of the data compared to
the predicted number of events in the SM in the high mll bins. It is this deficit which
causes that the excluded region is not symmetric under a change of signs in both Wilson
coefficients. For the projections to higher integrated luminosities we assume that the data
matches the SM exactly and include the asymmetry in the search. While the flat direction
still exists at Lint = 300 fb−1 due to the statistical uncertainty it vanishes approximately
at Lint = 400 fb−1 - a case which is not shown. Beyond this integrated luminosity the
exluded region forms an approximate ellipse with the major axis being aligned along the
direction of the cancellation between the two linear combinations in the total number of
events. It is the inclusion of the asymmetry which provides the constraining power in this
region of parameter space. In analogy to our dijet study we do not only find an upper
boundary for the Wilson coefficients but also a lower one. For Wilson coefficients larger
than this lower boundary the theory uncertainty is too large and no bounds are obtained
in the search. Along the major axis of the ellipse this lower boundary is approximately
(C(3)

LQ, CLu) ≈ (±2,±11) at an integrated luminosity Lint = 3000 fb−1.

5.3.4 Searches at the Tevatron

Our searches at the Tevatron are based on data reported by the CDF collaboration [250].
The data corresponds to a centre-of-mass energy of 1.96 TeV and an integrated luminosity
of Lint = 9.4 fb−1. We generate the MC pseudodata using the CTEQ5L PDF [259]. We
consider the two different acceptance regions referred to as the “central-central” (CC)
region and the “central-plug” region by the CDF collaboration. For our analysis we
combine several of the mll bins used by CDF. Our bin borders for the binning in the
dilepton invariant mass mll in the two regions are

CC region: mll ∈ {130, 162, 203, 255, 320, 400} GeV , (5.22)
CP region: mll ∈ {130, 163, 205, 256, 321, 402} GeV . (5.23)

Concerning the binning in the pseudorapidity we use the same bin borders as specified
in equation (5.19) for the LHC study in the last section. The cuts applied in the CC
region select events where one of the two transverse energies of the electron and the
positron is larger than 15 GeV, one transverse energy is larger than 25 GeV and both
pseudorapidities fulfill 0.05 < |ye−,e+ | < 1.05. The cuts in the CP region select events
where both transverse energies are larger than 20 GeV, one pseudorapidity fulfills 0.05 <
|ye−,e+ | < 1.05 and the other pseudorapidity fulfills 1.2 < |ye−,e+ | < 2.8.
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5 Constraints on the Standard-Model Effective Theory

Figure 5.14: Excluded regions arising from the Tevatron searches. In the left plot we
fix the Wilson coefficients to C(3)

LQ = −CLu with N8 = 1 (red, dotted) and
N8 = 20 (red, dot-dashed) and to C(3)

LQ = +CLu withN8 = 1 (blue, solid) and
N8 = 20 (blue, dashed). In the right plot we show the excluded regions in
the fixed-scale case with N8 = 10 forM = 1 TeV (blue, dashed),M = 2 TeV
(blue, solid) and M = 5 TeV (red, dot-dashed). We normalise the Wilson
coefficients in both plots to the square of the scale M .

To account for the misidentification of electrons in the detector we determine one cor-
rection factor for all the mll bins in each region by fitting our SM pseudodata to the
SM prediction of the CDF collaboration. After the application of these efficiency factors
we compare our SM pseudodata with the prediction of CDF as a validation. We find
chi-squared values χ2 ≈ 5 in the CC region and χ2 ≈ 2 in the CP region. We apply
the correction factors to the distributions of the signal and the theory uncertainty and
perform the search by comparing our prediction to the data obtained by CDF. The asym-
metry values are not reported over the full range of dilepton invariant masses and thus our
search is based on the data binned in mll only. Concerning the systematic uncertainties
we assume a relative uncertainty of 5% in our analysis.
We show our exclusion plots in Figure 5.14. In both plots we normalise the Wilson coef-
ficients to the square of the scale M . Therefore, differences between curves for different
values of M arise from an independent sensitivity of the search to the scale and the Wil-
son coefficients. In the left plot in Figure 5.14 we consider the cases C(3)

LQ = −CLu with
N8 = 1 (red, dotted) and N8 = 20 (red, dot-dashed) and C

(3)
LQ = +CLu with N8 = 1

(blue, solid) and N8 = 20 (blue, dashed). We observe that the lower boundary of the
excluded region for scales above a certain value is independent of the scale. These scales
are approximately 2.0 TeV for N8 = 1 and 3.5 TeV for N8 = 20. Below these scales
the effects of dimension-eight interference in the theory uncertainty cause the search to
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Figure 5.15: Excluded regions for N8 = 20 and C(3)
LQ = −CLu from searches at the Teva-

tron (red, solid), the LHC with Lint = 36.1 fb−1 (blue, dot-dashed) and
the LHC with Lint = 300 fb−1 (blue, dashed). The dotted black lines are
parabolas CLu = M2/M ′

2 , where the mass scale M ′ arises from fitting the
boundaries of the excluded regions for the Tevatron analysis in the interval
2 TeV < M < 5 TeV and for the LHC analysis with Lint = 300 fb−1 in the
interval 15 TeV < M < 25 TeV. The black curves illustrate the case where
the analysis does not contain an appropriate theory uncertainty and hence
depends only on the ratio CLu/M2.

be separately sensitive to the Wilson coefficient and the scale. In the right plot in Fig-
ure 5.14 we fix N8 = 10 and consider the fixed-scale case for M = 1 TeV (blue, dashed),
M = 2 TeV (blue, solid) and M = 5 TeV (red, dot-dashed). We note the flat direction in
parameter space familiar from the LHC study in the last section. In the projections to
higher integrated luminosities in the LHC analysis the inclusion of the asymmetry causes
the flat direction to vanish. It is therefore interesting to study the effect of including the
asymmetry in the search at the Tevatron and we strongly advocate to report the asym-
metry over the full range of mll values. Concerning the excluded region outside the flat
direction we find for CLu = 0 that values fulfilling approximately |C(3)

LQ| > 5.7M2/TeV2

are not excluded due to the invalidity of the SMEFT expansion in this regime.
It is interesting to study the complimentarity of the two analyses we performed with data
from different colliders. In Figure 5.15 we show a combination of excluded regions arising
from our searches at the LHC and the Tevatron. We fix N8 = 20, choose C(3)

LQ = −CLu
and show the excluded region from the searches using Tevatron data (red, solid), the
searches at the LHC for Lint = 36.1 fb−1 (blue, dot-dashed) and the extrapolation of
the LHC search to an integrated luminosity Lint = 300 fb−1 (blue, dashed). For better
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comparison we included the asymmetry in the search at the LHC for the integrated
luminosity Lint = 36.1 fb−1 and assume that the data matches the SM prediction. To
illustrate the complimentarity of these searches we consider the Wilson coefficient CLu =
2.0 where the Tevatron search exludes approximately the scales 0.8 TeV < M < 3.9 TeV,
the LHC search with Lint = 36.1 fb−1 excludes approximately the regime 3.6 TeV <
M < 8.0 TeV and the LHC extrapolation to Lint = 300 fb−1 excludes 3.3 TeV < M <
17.8 TeV. These values illustrate that the analysis at the Tevatron probes a different
region of the SMEFT parameter space at lower scales due to the lower centre-of-mass
energy. An interesting future project is to study the bounds arising from LHC data taken
at lower mll values compared to the dilepton invariant masses of the data used in our
analysis. The dotted black lines in Figure 5.15 are fits to the boundaries of the excluded
region for the Tevatron in the interval 2 TeV < M < 5 TeV and for the LHC analysis
with Lint = 300 fb−1 in the interval 15 TeV < M < 25 TeV. The fit parameter is the
mass scale M ′ in the parabola CLu = M2/M ′

2 . These curves represent a hypothetical
analysis where no theory uncertainty is included. The bounds in this case are functions
of the ratio CLu/M2. We find the mass scales M ′ ≈ 3 TeV for the Tevatron analysis and
M ′ ≈ 13 TeV for the LHC analysis. The differences between the areas bounded by the
black dotted lines and the red solid or the blue dashed lines clearly indicate that it is not
reasonable to claim a single lower boundary for the scaleM in a SMEFT collider analysis
of this type.
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In this thesis we have developed a broad set of EFT tools for the generic description of
BSM physics. Under the assumption that the mass scale M of the BSM model is far
above the electroweak scale v, i.e. v � M , we covered the two relevant cases that the
BSM states can or can not be produced on shell at the LHC or a future collider.
In the first scenario we considered the case where a heavy, scalar resonance S with mass
MS and width ΓS �MS is discovered at the LHC or a future collider via its decays into
SM particles. We constructed an EFT - the SCETBSM - under the assumption that S
is only the first member of a whole BSM sector of particles with masses M ∼ MS and
demonstrated that it is straightforward to apply our theory also in the case of the double
hierarchy v � MS � M . We discussed the relevant RG evolution equations necessary
for the resummation of large single and double logarithms of the scale ratios. As an
illustration of our approach we performed the matching of a UV-complete model featuring
the SM, the scalar S, and additional heavy, vector-like fermions to the SCETBSM. In this
context we computed the rates for the decays of S into SM particles and studied the
impact of resummation on these rates.
The key results obtained in this work are the SCETBSM Lagrangians at the LO, the NLO
and partially the NNLO order in the power-counting parameter λ ∼ v/M for two-body
decays of S in Section 3.3, and the LO Lagrangian relevant for three-body decays of S
in Section 3.4. If particle physics faces a situation similar to the diphoton resonance in
the future, the SCETBSM Lagrangian allows a consistent description of the experimental
observations in terms of an EFT. Concerning the behaviour of the SCETBSM operators
under renormalisation, the mixing of the subleading two-jet operators in equations (3.79),
(3.80) and (3.82) is a further main result. The cusp anomalous dimension γqq̄cusp contribut-
ing to this mixing arises from Feynman diagrams where an ultra-soft gluon is exchanged
between two collinear quarks in different sectors. We expect γqq̄cusp to be a generic quan-
tity playing an important role in future applications of SCET beyond the leading power
- a rather new field (see, e.g. [197, 208–216]). As a major result from our illustrative
analysis, which features a UV-complete model with heavy, vector-like fermions, we high-
light that the Wilson coefficients are, in general, complicated functions of the scale ratio
ξ = M2

S/M
2. A prominent example is the Wilson coefficient C̃φφφφ in equation (4.25).

We demonstrated in equation (4.20) that the dependence of the Wilson coefficients on
ξ in the limit ξ � 1 corresponds to the contribution from an infinite tower of local op-
erators. This result confirms the intuition built up in the introduction of this thesis,
namely that the SCETBSM approach captures the contribution from an infinite number
of higher-dimensional local operators. Concerning phenomenological studies, one of our
major results are the sizeable resummation effects in the rates for the decays S → 2 jets,
S → tt̄, S → γγ and S → hh discussed in Section 4.6. In fact, the decay rates in our
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scenario are suppressed by factors down to approximately 0.15 for the decay S → 2 jets.
There exist many avenues for future work concerning both the phenomenologically rele-
vant aspects and the questions regarding the SCETBSM as a theory itself. It is interesting
to construct the relevant Lagrangian for resonances apart from a scalar SM gauge singlet
such as Z ′ bosons or heavy leptoquarks. Once these Lagrangians are build, it will be
possible - just as we did in our illustrative model - to match corresponding UV-complete
models to the Lagrangian and to study the effects of resummation in this context. For
all these steps our work may serve as a guideline. On the more theoretical side it is
interesting to calculate the matrix elements of the SCET operators at the one-loop level.
Depite being low-energy matrix elements in the EFT, logarithms of the scale ratio MS/v
contribute. In our case the hard scale MS enters via the mass of the decaying resonance.
It is important to show that this dependence does not spoil factorisation. Furthermore,
it will be useful to include electroweak corrections in the one-loop anomalous dimensions
and to compute the generic cusp anomalous dimension γqq̄cusp at two-loop order.
In the second scenario we focused on the case where the mass scale M of the BSM model
is too large for the on-shell production of the BSM states at a collider. In this scenario the
SMEFT provides a suitable way to study BSM effects independent from a UV-complete
model. The bounds obtained on SMEFT parameters in collider analyses can directly be
translated into bounds on particular models via matching calculations. We discussed in
detail why it is necessary to truncate the signal prediction in these SMEFT analyses at
order 1/M2 in the power-counting and introduced a theory uncertainty taking account
of the neglected terms at order 1/M4. We applied our method to dijet production at the
LHC and to dilepton production at the LHC and the Tevatron. In our collider studies
we derived bounds on the linear combinations of contributing Wilson coefficients and on
the scale M .
The key result of our work is the framework described in Section 5.1, which allows a
study of SMEFT effects in collider studies employing a consistent expansion in the EFT
power series. Our approach is a major improvement of current state-of-the-art analyses,
which are missing a reliable estimate of the size of power corrections in the EFT series.
The bounds we derived differ in two main aspects from the results quoted by previous
analyses: First, we find excluded regions for both the Wilson coefficients and the scale
M rather than a single upper bound for the Wilson coefficient or a single lower bound
for the scale M , respectively. The exclusion plots shown in Figure 5.6 and 5.10 are rep-
resentative examples of these findings. In this regard our results agree with the intuition
that an analysis at a fixed collision energy should not exclude very small scales or very
large Wilson coefficients since the SMEFT expansion breaks down in this regime. Second,
our bounds are considerably weaker compared to the ones obtained by state-of-the-art
analyses where no theoretical uncertainty for higher-power EFT corrections is included.
The most striking example in this context is our dijet study where we demonstrated in
Section 5.2.5 that no bounds on the SMEFT parameters arise from established searches
in normalised angular distributions when our consistent treatment of the EFT expan-
sion is employed. As a solution to this problem we designed and performed searches
in unnormalised distributions in Sections 5.2.6 and 5.2.7, and showed that the addi-
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tional knowledge about the absolute number of events gives rise to bounds from these
searches. Dijet production is among the most challenging processes for an EFT analysis
at a hadron collider since dijet events naturally exhibit very high energies. Thus, our
dijet study should be viewed as a proof of concept and we strongly advocate to employ
our framework in future SMEFT collider studies. We considered dilepton production as a
first application beyond dijet production. As a highlight of this analysis we demonstrated
in Section 5.3.4 that data obtained at lower collision energies - in our case at the Tevatron
- provide important exclusion limits in the regime where the scale M is small. A major
result from both analyses are the linear combinations of Wilson coefficients contributing
to the observables presented in equations (5.8), (5.9), (5.20) and (5.21).
The development of our framework and the first two applications in collider studies
are at the starting point of a full program to bound SMEFT parameters employing
a consistent EFT expansion. We leave it for future work to include NLO QCD and
electroweak corrections in our analysis and to study the systematic uncertainties in full
detail. Concerning the dilepton study an interesting future project is the analysis of the
operators contributing via shifts of SM couplings. The application of our approach to
further processes, such as top-quark production for example, will give rise to bounds on
further parameters. The ultimate goal is a global picture of the parameter landscape of
the SMEFT.
In conclusion, we developed and applied powerful EFTs tools tailored for the generic
description of BSM physics in the two relevant cases where the BSM states are within or
above the energy reach of the LHC or a future collider. We saw that EFTs are fascinating
as theoretical models on their own, provide a parameterisation of BSM physics with a
minimum amount of assumptions and can be applied in collider studies to translate
experimental data into bounds on various BSM scenarios. While we do not know the
nature of BSM physics, yet, we know that it is hidden somewhere out there. The tools
discussed in this thesis provide a possible way to find it. It is high time for evidence of
BSM physics to show up in experiments.

117





Bibliography

[1] S. Alte, M. König and M. Neubert, Effective Field Theory after a New-Physics
Discovery, JHEP 08 (2018) 095 [1806.01278].

[2] R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic
calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345.

[3] V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0,
Comput. Phys. Commun. 207 (2016) 432 [1601.01167].

[4] K. G. Chetyrkin, J. H. Kühn and M. Steinhauser, RunDec: A Mathematica
package for running and decoupling of the strong coupling and quark masses,
Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189].

[5] T. Huber and D. Maitre, HypExp: A Mathematica package for expanding
hypergeometric functions around integer-valued parameters, Comput. Phys.
Commun. 175 (2006) 122 [hep-ph/0507094].

[6] T. Huber and D. Maitre, HypExp 2, Expanding Hypergeometric Functions about
Half-Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [0708.2443].

[7] D. Binosi and L. Theussl, JaxoDraw: A Graphical user interface for drawing
Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015].

[8] D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user
interface for drawing Feynman diagrams. Version 2.0 release notes, Comput.
Phys. Commun. 180 (2009) 1709 [0811.4113].

[9] S. Alte, M. König and M. Neubert, Effective Theory for a Heavy Scalar Coupled
to the SM via Vector-Like Quarks, Eur. Phys. J. C79 (2019) 352 [1902.04593].

[10] S. Alte, M. König and W. Shepherd, Consistent Searches for SMEFT Effects in
Non-Resonant Dijet Events, JHEP 01 (2018) 094 [1711.07484].

[11] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 -
A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185
(2014) 2250 [1310.1921].

[12] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The
automated computation of tree-level and next-to-leading order differential cross
sections, and their matching to parton shower simulations, JHEP 07 (2014) 079
[1405.0301].

119

https://doi.org/10.1007/JHEP08(2018)095
https://arxiv.org/abs/1806.01278
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
https://doi.org/10.1016/S0010-4655(00)00155-7
https://arxiv.org/abs/hep-ph/0004189
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2006.01.007
https://arxiv.org/abs/hep-ph/0507094
https://doi.org/10.1016/j.cpc.2007.12.008
https://arxiv.org/abs/0708.2443
https://doi.org/10.1016/j.cpc.2004.05.001
https://arxiv.org/abs/hep-ph/0309015
https://doi.org/10.1016/j.cpc.2009.02.020
https://doi.org/10.1016/j.cpc.2009.02.020
https://arxiv.org/abs/0811.4113
https://doi.org/10.1140/epjc/s10052-019-6867-4
https://arxiv.org/abs/1902.04593
https://doi.org/10.1007/JHEP01(2018)094
https://arxiv.org/abs/1711.07484
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301


Bibliography

[13] T. Sjostrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual,
JHEP 05 (2006) 026 [hep-ph/0603175].

[14] DELPHES 3 collaboration, DELPHES 3, A modular framework for fast
simulation of a generic collider experiment, JHEP 02 (2014) 057 [1307.6346].

[15] D. B. Clark, E. Godat and F. I. Olness, ManeParse : A Mathematica reader for
Parton Distribution Functions, Comput. Phys. Commun. 216 (2017) 126
[1605.08012].

[16] S. Alte, M. König and W. Shepherd, Consistent Searches for SMEFT Effects in
Non-Resonant Dilepton Events, accepted for publication in JHEP (2019)
[1812.07575].

[17] I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools,
JHEP 12 (2017) 070 [1709.06492].

[18] J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the
Standard Model, Comput. Phys. Commun. 232 (2018) 71 [1712.05298].

[19] T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput.
Phys. Commun. 168 (2005) 78 [hep-ph/0404043].

[20] S. Alte, Y. Grossman, M. König and M. Neubert, Exclusive Radiative Decays of Z
Bosons in QCD Factorization, PoS ICHEP2016 (2016) 618 [1703.07242].

[21] S. Alte, M. König and M. Neubert, Exclusive Weak Radiative Higgs Decays in the
Standard Model and Beyond, JHEP 12 (2016) 037 [1609.06310].

[22] ATLAS collaboration, Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.
B716 (2012) 1 [1207.7214].

[23] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC, Phys. Lett. B716 (2012) 30 [1207.7235].

[24] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.
12 (1964) 132.

[25] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev.
Lett. 13 (1964) 508.

[26] P. W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys.
Rev. 145 (1966) 1156.

[27] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Global Conservation Laws and
Massless Particles, Phys. Rev. Lett. 13 (1964) 585.

120

https://doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/hep-ph/0603175
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://doi.org/10.1016/j.cpc.2017.03.004
https://arxiv.org/abs/1605.08012
https://arxiv.org/abs/1812.07575
https://arxiv.org/abs/1709.06492
https://doi.org/10.1016/j.cpc.2018.05.022
https://arxiv.org/abs/1712.05298
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010
https://arxiv.org/abs/hep-ph/0404043
https://doi.org/10.22323/1.282.0618
https://arxiv.org/abs/1703.07242
https://doi.org/10.1007/JHEP12(2016)037
https://arxiv.org/abs/1609.06310
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1103/PhysRevLett.13.585


Bibliography

[28] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector
Mesons, Phys. Rev. Lett. 13 (1964) 321.

[29] P. W. Anderson, Plasmons, Gauge Invariance, and Mass, Phys. Rev. 130 (1963)
439.

[30] ATLAS collaboration, Search for resonances in diphoton events at
√
s=13 TeV

with the ATLAS detector, JHEP 09 (2016) 001 [1606.03833].

[31] CMS collaboration, Search for Resonant Production of High-Mass Photon Pairs
in Proton-Proton Collisions at

√
s =8 and 13 TeV, Phys. Rev. Lett. 117 (2016)

051802 [1606.04093].

[32] BaBar collaboration, Measurement of an Excess of B̄ → D(∗)τ−ν̄τ Decays and
Implications for Charged Higgs Bosons, Phys. Rev. D88 (2013) 072012
[1303.0571].

[33] LHCb collaboration, Measurement of the ratio of branching fractions
B(B̄0 → D∗+τ−ν̄τ )/B(B̄0 → D∗+µ−ν̄µ), Phys. Rev. Lett. 115 (2015) 111803
[1506.08614].

[34] Belle collaboration, Measurement of the τ lepton polarization and R(D∗) in the
decay B̄ → D∗τ−ν̄τ , Phys. Rev. Lett. 118 (2017) 211801 [1612.00529].

[35] LHCb collaboration, Test of lepton universality using B+ → K+`+`− decays,
Phys. Rev. Lett. 113 (2014) 151601 [1406.6482].

[36] LHCb collaboration, Test of lepton universality with B0 → K∗0`+`− decays,
JHEP 08 (2017) 055 [1705.05802].

[37] ATLAS collaboration, Search for new phenomena in high-mass diphoton final
states using 37 fb−1 of proton–proton collisions collected at

√
s = 13 TeV with the

ATLAS detector, Phys. Lett. B775 (2017) 105 [1707.04147].

[38] CMS collaboration, Search for high-mass diphoton resonances in proton–proton
collisions at 13 TeV and combination with 8 TeV search, Phys. Lett. B767 (2017)
147 [1609.02507].

[39] C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, An Effective field theory
for collinear and soft gluons: Heavy to light decays, Phys. Rev. D63 (2001)
114020 [hep-ph/0011336].

[40] C. W. Bauer and I. W. Stewart, Invariant operators in collinear effective theory,
Phys. Lett. B516 (2001) 134 [hep-ph/0107001].

[41] C. W. Bauer, D. Pirjol and I. W. Stewart, Soft collinear factorization in effective
field theory, Phys. Rev. D65 (2002) 054022 [hep-ph/0109045].

121

https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1007/JHEP09(2016)001
https://arxiv.org/abs/1606.03833
https://doi.org/10.1103/PhysRevLett.117.051802
https://doi.org/10.1103/PhysRevLett.117.051802
https://arxiv.org/abs/1606.04093
https://doi.org/10.1103/PhysRevD.88.072012
https://arxiv.org/abs/1303.0571
https://doi.org/10.1103/PhysRevLett.115.159901, 10.1103/PhysRevLett.115.111803
https://arxiv.org/abs/1506.08614
https://doi.org/10.1103/PhysRevLett.118.211801
https://arxiv.org/abs/1612.00529
https://doi.org/10.1103/PhysRevLett.113.151601
https://arxiv.org/abs/1406.6482
https://doi.org/10.1007/JHEP08(2017)055
https://arxiv.org/abs/1705.05802
https://doi.org/10.1016/j.physletb.2017.10.039
https://arxiv.org/abs/1707.04147
https://doi.org/10.1016/j.physletb.2017.01.027
https://doi.org/10.1016/j.physletb.2017.01.027
https://arxiv.org/abs/1609.02507
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.1103/PhysRevD.63.114020
https://arxiv.org/abs/hep-ph/0011336
https://doi.org/10.1016/S0370-2693(01)00902-9
https://arxiv.org/abs/hep-ph/0107001
https://doi.org/10.1103/PhysRevD.65.054022
https://arxiv.org/abs/hep-ph/0109045


Bibliography

[42] M. Beneke, A. P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective
theory and heavy to light currents beyond leading power, Nucl. Phys. B643 (2002)
431 [hep-ph/0206152].

[43] F. Wilczek and A. Zee, Operator Analysis of Nucleon Decay, Phys. Rev. Lett. 43
(1979) 1571.

[44] L. F. Abbott and M. B. Wise, The Effective Hamiltonian for Nucleon Decay,
Phys. Rev. D22 (1980) 2208.

[45] C. N. Leung, S. T. Love and S. Rao, Low-Energy Manifestations of a New
Interaction Scale: Operator Analysis, Z. Phys. C31 (1986) 433.

[46] W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions
and Flavor Conservation, Nucl. Phys. B268 (1986) 621.

[47] K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of
new interactions in the electroweak boson sector, Phys. Rev. D48 (1993) 2182.

[48] C. Arzt, M. B. Einhorn and J. Wudka, Patterns of deviation from the standard
model, Nucl. Phys. B433 (1995) 41 [hep-ph/9405214].

[49] G. J. Gounaris, J. Layssac and F. M. Renard, Testing the Higgs boson gluonic
couplings at CERN LHC, Phys. Rev. D58 (1998) 075006 [hep-ph/9803422].

[50] V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine
dimension-six Higgs operators, Phys. Rev. D67 (2003) 115001 [hep-ph/0301097].

[51] A. V. Manohar and M. B. Wise, Modifications to the properties of the Higgs
boson, Phys. Lett. B636 (2006) 107 [hep-ph/0601212].

[52] A. V. Manohar and M. B. Wise, Flavor changing neutral currents, an extended
scalar sector, and the Higgs production rate at the CERN LHC, Phys. Rev. D74
(2006) 035009 [hep-ph/0606172].

[53] G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting
Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164].

[54] B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a
TeV, Phys. Rev. D76 (2007) 073002 [0704.1505].

[55] J. A. Aguilar-Saavedra, Effective four-fermion operators in top physics: A
Roadmap, Nucl. Phys. B843 (2011) 638 [1008.3562].

[56] J. Elias-Miró, C. Grojean, R. S. Gupta and D. Marzocca, Scaling and tuning of
EW and Higgs observables, JHEP 05 (2014) 019 [1312.2928].

[57] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in
the Standard Model Lagrangian, JHEP 10 (2010) 085 [1008.4884].

122

https://doi.org/10.1016/S0550-3213(02)00687-9
https://doi.org/10.1016/S0550-3213(02)00687-9
https://arxiv.org/abs/hep-ph/0206152
https://doi.org/10.1103/PhysRevLett.43.1571
https://doi.org/10.1103/PhysRevLett.43.1571
https://doi.org/10.1103/PhysRevD.22.2208
https://doi.org/10.1007/BF01588041
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1103/PhysRevD.48.2182
https://doi.org/10.1016/0550-3213(94)00336-D
https://arxiv.org/abs/hep-ph/9405214
https://doi.org/10.1103/PhysRevD.58.075006
https://arxiv.org/abs/hep-ph/9803422
https://doi.org/10.1103/PhysRevD.67.115001
https://arxiv.org/abs/hep-ph/0301097
https://doi.org/10.1016/j.physletb.2006.03.030
https://arxiv.org/abs/hep-ph/0601212
https://doi.org/10.1103/PhysRevD.74.035009
https://doi.org/10.1103/PhysRevD.74.035009
https://arxiv.org/abs/hep-ph/0606172
https://doi.org/10.1088/1126-6708/2007/06/045
https://arxiv.org/abs/hep-ph/0703164
https://doi.org/10.1103/PhysRevD.76.073002
https://arxiv.org/abs/0704.1505
https://doi.org/10.1016/j.nuclphysb.2011.06.003, 10.1016/j.nuclphysb.2010.10.015
https://arxiv.org/abs/1008.3562
https://doi.org/10.1007/JHEP05(2014)019
https://arxiv.org/abs/1312.2928
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884


Bibliography

[58] ATLAS collaboration, Search for new phenomena in dijet mass and angular
distributions from pp collisions at

√
s = 13 TeV with the ATLAS detector, Phys.

Lett. B754 (2016) 302 [1512.01530].

[59] CMS collaboration, Search for new physics with dijet angular distributions in
proton-proton collisions at

√
s = 13 TeV, JHEP 07 (2017) 013 [1703.09986].

[60] ATLAS collaboration, Search for new high-mass phenomena in the dilepton final
state using 36 fb−1 of proton-proton collision data at

√
s = 13 TeV with the

ATLAS detector, JHEP 10 (2017) 182 [1707.02424].

[61] C. Englert and M. Spannowsky, Effective Theories and Measurements at
Colliders, Phys. Lett. B740 (2015) 8 [1408.5147].

[62] R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the Validity of
the Effective Field Theory Approach to SM Precision Tests, JHEP 07 (2016) 144
[1604.06444].

[63] M. Farina, G. Panico, D. Pappadopulo, J. T. Ruderman, R. Torre and A. Wulzer,
Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett.
B772 (2017) 210 [1609.08157].

[64] S. Alioli, M. Farina, D. Pappadopulo and J. T. Ruderman, Precision Probes of
QCD at High Energies, JHEP 07 (2017) 097 [1706.03068].

[65] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics. McGraw-Hill,
1965.

[66] T. Cheng and L. Li, Gauge theory of elementary particle physics. Clarendon
Press, 1984.

[67] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory.
Westview Press, 1995.

[68] L. H. Ryder, Quantum Field Theory. Cambridge University Press, 1996.

[69] S. Weinberg, The Quantum Theory of Fields. Cambridge University Press, 2005.

[70] M. A. Srednicki, Quantum Field Theory. Cambridge University Press, 2007.

[71] M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge
University Press, 2014.

[72] S. Weinberg, The Making of the standard model, Eur. Phys. J. C34 (2004) 5
[hep-ph/0401010].

[73] J. C. Romao and J. P. Silva, A resource for signs and Feynman diagrams of the
Standard Model, Int. J. Mod. Phys. A27 (2012) 1230025 [1209.6213].

123

https://doi.org/10.1016/j.physletb.2016.01.032
https://doi.org/10.1016/j.physletb.2016.01.032
https://arxiv.org/abs/1512.01530
https://doi.org/10.1007/JHEP07(2017)013
https://arxiv.org/abs/1703.09986
https://doi.org/10.1007/JHEP10(2017)182
https://arxiv.org/abs/1707.02424
https://doi.org/10.1016/j.physletb.2014.11.035
https://arxiv.org/abs/1408.5147
https://doi.org/10.1007/JHEP07(2016)144
https://arxiv.org/abs/1604.06444
https://doi.org/10.1016/j.physletb.2017.06.043
https://doi.org/10.1016/j.physletb.2017.06.043
https://arxiv.org/abs/1609.08157
https://doi.org/10.1007/JHEP07(2017)097
https://arxiv.org/abs/1706.03068
https://doi.org/10.1142/9789812567147_0005, 10.1140/epjc/s2004-01761-1
https://arxiv.org/abs/hep-ph/0401010
https://doi.org/10.1142/S0217751X12300256
https://arxiv.org/abs/1209.6213


Bibliography

[74] I. Brivio and M. Trott, The Standard Model as an Effective Field Theory,
1706.08945.

[75] H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209.

[76] G. Ecker, The Standard model at low-energies, Czech. J. Phys. 44 (1995) 405
[hep-ph/9309268].

[77] M. Neubert, Effective field theory and heavy quark physics, in Physics in D ≥ 4.
Proceedings, Theoretical Advanced Study Institute in elementary particle physics,
TASI 2004, Boulder, USA, June 6-July 2, 2004, pp. 149–194, 2005,
hep-ph/0512222.

[78] A. V. Manohar, Introduction to Effective Field Theories, in Les Houches summer
school: EFT in Particle Physics and Cosmology Les Houches, Chamonix Valley,
France, July 3-28, 2017, 2018, 1804.05863.

[79] T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective
Theory, Lect. Notes Phys. 896 (2015) pp.1 [1410.1892].

[80] T. Becher, Les Houches Lectures on Soft-Collinear Effective Theory, in Les
Houches summer school: EFT in Particle Physics and Cosmology Les Houches,
Chamonix Valley, France, July 3-28, 2017, 2018, 1803.04310.

[81] C.-N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge
Invariance, Phys. Rev. 96 (1954) 191.

[82] J. Goldstone, Field Theories with Superconductor Solutions, Nuovo Cim. 19
(1961) 154.

[83] J. Goldstone, A. Salam and S. Weinberg, Broken Symmetries, Phys. Rev. 127
(1962) 965.

[84] M. Gell-Mann, A Schematic Model of Baryons and Mesons, Phys. Lett. 8 (1964)
214.

[85] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories,
Phys. Rev. Lett. 30 (1973) 1343.

[86] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev.
Lett. 30 (1973) 1346.

[87] G. ’t Hooft and M. J. G. Veltman, Regularization and Renormalization of Gauge
Fields, Nucl. Phys. B44 (1972) 189.

[88] G. ’t Hooft and M. J. G. Veltman, Combinatorics of gauge fields, Nucl. Phys.
B50 (1972) 318.

124

https://arxiv.org/abs/1706.08945
https://doi.org/10.1146/annurev.ns.43.120193.001233
https://doi.org/10.1007/BF01689769
https://arxiv.org/abs/hep-ph/9309268
https://arxiv.org/abs/hep-ph/0512222
https://arxiv.org/abs/1804.05863
https://doi.org/10.1007/978-3-319-14848-9
https://arxiv.org/abs/1410.1892
https://arxiv.org/abs/1803.04310
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1007/BF02812722
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/S0550-3213(72)80021-X
https://doi.org/10.1016/S0550-3213(72)80021-X


Bibliography

[89] L. D. Faddeev and V. N. Popov, Feynman Diagrams for the Yang-Mills Field,
Phys. Lett. B25 (1967) 29.

[90] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta 6
(1933) 110.

[91] V. C. Rubin and W. K. Ford, Jr., Rotation of the Andromeda Nebula from a
Spectroscopic Survey of Emission Regions, Astrophys. J. 159 (1970) 379.

[92] Planck collaboration, Planck 2015 results. XIII. Cosmological parameters,
Astron. Astrophys. 594 (2016) A13 [1502.01589].

[93] J. N. Bahcall, Solar neutrinos. I: Theoretical, Phys. Rev. Lett. 12 (1964) 300.

[94] R. Davis, Solar neutrinos. II: Experimental, Phys. Rev. Lett. 12 (1964) 303.

[95] Super-Kamiokande collaboration, Evidence for oscillation of atmospheric
neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003].

[96] SNO collaboration, Measurement of the rate of νe + d→ p+ p+ e− interactions
produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev.
Lett. 87 (2001) 071301 [nucl-ex/0106015].

[97] SNO collaboration, Direct evidence for neutrino flavor transformation from
neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev.
Lett. 89 (2002) 011301 [nucl-ex/0204008].

[98] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, On the Anomalous
Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett.
155B (1985) 36.

[99] A. D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon
asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.

[100] J. Polchinski, Effective field theory and the Fermi surface, in Proceedings,
Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to
Particles: Boulder, USA, June 1-26, 1992, pp. 235–276, 1992, hep-th/9210046.

[101] A. J. Buras, Weak Hamiltonian, CP violation and rare decays, in Probing the
standard model of particle interactions. Proceedings, Summer School in
Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches,
France, July 28-September 5, 1997. Pt. 1, 2, pp. 281–539, 1998, hep-ph/9806471.

[102] A. Pich, Effective field theory: Course, in Probing the standard model of particle
interactions. Proceedings, Summer School in Theoretical Physics, NATO
Advanced Study Institute, 68th session, Les Houches, France, July 28-September
5, 1997. Pt. 1, 2, pp. 949–1049, 1998, hep-ph/9806303.

125

https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1086/150317
https://doi.org/10.1051/0004-6361/201525830
https://arxiv.org/abs/1502.01589
https://doi.org/10.1103/PhysRevLett.12.300
https://doi.org/10.1103/PhysRevLett.12.303
https://doi.org/10.1103/PhysRevLett.81.1562
https://arxiv.org/abs/hep-ex/9807003
https://doi.org/10.1103/PhysRevLett.87.071301
https://doi.org/10.1103/PhysRevLett.87.071301
https://arxiv.org/abs/nucl-ex/0106015
https://doi.org/10.1103/PhysRevLett.89.011301
https://doi.org/10.1103/PhysRevLett.89.011301
https://arxiv.org/abs/nucl-ex/0204008
https://doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://arxiv.org/abs/hep-th/9210046
https://arxiv.org/abs/hep-ph/9806471
https://arxiv.org/abs/hep-ph/9806303


Bibliography

[103] I. Z. Rothstein, TASI lectures on effective field theories, 2003, hep-ph/0308266.

[104] D. B. Kaplan, Five lectures on effective field theory, 2005, nucl-th/0510023.

[105] C. P. Burgess, Introduction to Effective Field Theory, Ann. Rev. Nucl. Part. Sci.
57 (2007) 329 [hep-th/0701053].

[106] W. Skiba, Effective Field Theory and Precision Electroweak Measurements, in
Physics of the large and the small, TASI 09, proceedings of the Theoretical
Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado,
USA, 1-26 June 2009, pp. 5–70, 2011, 1006.2142.

[107] T. Cohen, As Scales Become Separated: Lectures on Effective Field Theory,
1903.03622.

[108] Particle Data Group collaboration, Review of particle physics, Phys. Rev. D
98 (2018) 030001.

[109] I. Newton, Philosophiæ Naturalis Principia Mathematica. 1687.

[110] A. Einstein, On the electrodynamics of moving bodies, Annalen Phys. 17 (1905)
891.

[111] T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys.
Rev. D11 (1975) 2856.

[112] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry
breaking, NATO Sci. Ser. B 59 (1980) 135.

[113] G. F. Giudice, Naturally Speaking: The Naturalness Criterion and Physics at the
LHC, 0801.2562.

[114] W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des
Positrons, Z. Phys. 98 (1936) 714 [physics/0605038].

[115] E. Fermi, An attempt of a theory of beta radiation. 1., Z. Phys. 88 (1934) 161.

[116] M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259
[hep-ph/9306320].

[117] W. E. Caswell and G. P. Lepage, Effective Lagrangians for Bound State Problems
in QED, QCD, and Other Field Theories, Phys. Lett. 167B (1986) 437.

[118] G. T. Bodwin, E. Braaten and G. P. Lepage, Rigorous QCD analysis of inclusive
annihilation and production of heavy quarkonium, Phys. Rev. D51 (1995) 1125
[hep-ph/9407339].

[119] G. Ecker, Chiral perturbation theory, Prog. Part. Nucl. Phys. 35 (1995) 1
[hep-ph/9501357].

126

https://arxiv.org/abs/hep-ph/0308266
https://arxiv.org/abs/nucl-th/0510023
https://doi.org/10.1146/annurev.nucl.56.080805.140508
https://doi.org/10.1146/annurev.nucl.56.080805.140508
https://arxiv.org/abs/hep-th/0701053
https://arxiv.org/abs/1006.2142
https://arxiv.org/abs/1903.03622
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1002/andp.200590006
https://doi.org/10.1002/andp.200590006
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1007/978-1-4684-7571-5_9
https://arxiv.org/abs/0801.2562
https://doi.org/10.1007/BF01343663
https://arxiv.org/abs/physics/0605038
https://doi.org/10.1007/BF01351864
https://doi.org/10.1016/0370-1573(94)90091-4
https://arxiv.org/abs/hep-ph/9306320
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1103/PhysRevD.55.5853, 10.1103/PhysRevD.51.1125
https://arxiv.org/abs/hep-ph/9407339
https://doi.org/10.1016/0146-6410(95)00041-G
https://arxiv.org/abs/hep-ph/9501357


Bibliography

[120] S. Scherer, Introduction to chiral perturbation theory, Adv. Nucl. Phys. 27 (2003)
277 [hep-ph/0210398].

[121] F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod.
Phys. A8 (1993) 4937 [hep-ph/9301281].

[122] G. Buchalla and O. Catà, Effective Theory of a Dynamically Broken Electroweak
Standard Model at NLO, JHEP 07 (2012) 101 [1203.6510].

[123] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral
Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett. B722 (2013) 330
[1212.3305].

[124] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin and J. Yepes, Flavor with a light
dynamical “Higgs particle”, Phys. Rev. D87 (2013) 055019 [1212.3307].

[125] G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian
with a Light Higgs at NLO, Nucl. Phys. B880 (2014) 552 [1307.5017].

[126] G. Buchalla, O. Catà and G. D’Ambrosio, Nonstandard Higgs couplings from
angular distributions in h→ Z`+`−, Eur. Phys. J. C74 (2014) 2798 [1310.2574].

[127] I. Brivio, T. Corbett, O. J. P. Éboli, M. B. Gavela, J. Gonzalez-Fraile, M. C.
Gonzalez-Garcia et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024
[1311.1823].

[128] I. Brivio, O. J. P. Éboli, M. B. Gavela, M. C. Gonzalez-Garcia, L. Merlo and
S. Rigolin, Higgs ultraviolet softening, JHEP 12 (2014) 004 [1405.5412].

[129] M. B. Gavela, J. Gonzalez-Fraile, M. C. Gonzalez-Garcia, L. Merlo, S. Rigolin and
J. Yepes, CP violation with a dynamical Higgs, JHEP 10 (2014) 044 [1406.6367].

[130] M. B. Gavela, K. Kanshin, P. A. N. Machado and S. Saa, On the renormalization
of the electroweak chiral Lagrangian with a Higgs, JHEP 03 (2015) 043
[1409.1571].

[131] R. Alonso, I. Brivio, B. Gavela, L. Merlo and S. Rigolin, Sigma Decomposition,
JHEP 12 (2014) 034 [1409.1589].

[132] G. Buchalla, O. Catà, A. Celis and C. Krause, Note on Anomalous Higgs-Boson
Couplings in Effective Field Theory, Phys. Lett. B750 (2015) 298 [1504.01707].

[133] I. M. Hierro, L. Merlo and S. Rigolin, Sigma Decomposition: The CP-Odd
Lagrangian, JHEP 04 (2016) 016 [1510.07899].

[134] G. Buchalla, O. Catà, A. Celis and C. Krause, Fitting Higgs Data with Nonlinear
Effective Theory, Eur. Phys. J. C76 (2016) 233 [1511.00988].

127

https://arxiv.org/abs/hep-ph/0210398
https://doi.org/10.1142/S0217751X93001946
https://doi.org/10.1142/S0217751X93001946
https://arxiv.org/abs/hep-ph/9301281
https://doi.org/10.1007/JHEP07(2012)101
https://arxiv.org/abs/1203.6510
https://doi.org/10.1016/j.physletb.2013.04.037, 10.1016/j.physletb.2013.09.028
https://arxiv.org/abs/1212.3305
https://doi.org/10.1103/PhysRevD.87.055019
https://arxiv.org/abs/1212.3307
https://doi.org/10.1016/j.nuclphysb.2016.09.010, 10.1016/j.nuclphysb.2014.01.018
https://arxiv.org/abs/1307.5017
https://doi.org/10.1140/epjc/s10052-014-2798-2
https://arxiv.org/abs/1310.2574
https://doi.org/10.1007/JHEP03(2014)024
https://arxiv.org/abs/1311.1823
https://doi.org/10.1007/JHEP12(2014)004
https://arxiv.org/abs/1405.5412
https://doi.org/10.1007/JHEP10(2014)044
https://arxiv.org/abs/1406.6367
https://doi.org/10.1007/JHEP03(2015)043
https://arxiv.org/abs/1409.1571
https://doi.org/10.1007/JHEP12(2014)034
https://arxiv.org/abs/1409.1589
https://doi.org/10.1016/j.physletb.2015.09.027
https://arxiv.org/abs/1504.01707
https://doi.org/10.1007/JHEP04(2016)016
https://arxiv.org/abs/1510.07899
https://doi.org/10.1140/epjc/s10052-016-4086-9
https://arxiv.org/abs/1511.00988


Bibliography

[135] I. Brivio, J. Gonzalez-Fraile, M. C. Gonzalez-Garcia and L. Merlo, The complete
HEFT Lagrangian after the LHC Run I, Eur. Phys. J. C76 (2016) 416
[1604.06801].

[136] M. B. Gavela, K. Kanshin, P. A. N. Machado and S. Saa, The linear–non-linear
frontier for the Goldstone Higgs, Eur. Phys. J. C76 (2016) 690 [1610.08083].

[137] L. Merlo, S. Saa and M. Sacristán-Barbero, Baryon Non-Invariant Couplings in
Higgs Effective Field Theory, Eur. Phys. J. C77 (2017) 185 [1612.04832].

[138] P. Hernandez-Leon and L. Merlo, Distinguishing A Higgs-Like Dilaton Scenario
With A Complete Bosonic Effective Field Theory Basis, Phys. Rev. D96 (2017)
075008 [1703.02064].

[139] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43
(1979) 1566.

[140] E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group Evolution of
the Standard Model Dimension Six Operators I: Formalism and λ Dependence,
JHEP 10 (2013) 087 [1308.2627].

[141] E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group Evolution of
the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01
(2014) 035 [1310.4838].

[142] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization Group
Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling
Dependence and Phenomenology, JHEP 04 (2014) 159 [1312.2014].

[143] L. Lehman, Extending the Standard Model Effective Field Theory with the
Complete Set of Dimension-7 Operators, Phys. Rev. D90 (2014) 125023
[1410.4193].

[144] Y. Liao and X.-D. Ma, Renormalization Group Evolution of Dimension-seven
Baryon- and Lepton-number-violating Operators, JHEP 11 (2016) 043
[1607.07309].

[145] L. Lehman and A. Martin, Low-derivative operators of the Standard Model
effective field theory via Hilbert series methods, JHEP 02 (2016) 081
[1510.00372].

[146] B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456,
11962, 261485, ...: Higher dimension operators in the SM EFT, JHEP 08 (2017)
016 [1512.03433].

[147] L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding
the phenomenologist’s toolbox, Phys. Rev. D91 (2015) 105014 [1503.07537].

128

https://doi.org/10.1140/epjc/s10052-016-4211-9
https://arxiv.org/abs/1604.06801
https://doi.org/10.1140/epjc/s10052-016-4541-7
https://arxiv.org/abs/1610.08083
https://doi.org/10.1140/epjc/s10052-017-4753-5
https://arxiv.org/abs/1612.04832
https://doi.org/10.1103/PhysRevD.96.075008
https://doi.org/10.1103/PhysRevD.96.075008
https://arxiv.org/abs/1703.02064
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1007/JHEP10(2013)087
https://arxiv.org/abs/1308.2627
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP01(2014)035
https://arxiv.org/abs/1310.4838
https://doi.org/10.1007/JHEP04(2014)159
https://arxiv.org/abs/1312.2014
https://doi.org/10.1103/PhysRevD.90.125023
https://arxiv.org/abs/1410.4193
https://doi.org/10.1007/JHEP11(2016)043
https://arxiv.org/abs/1607.07309
https://doi.org/10.1007/JHEP02(2016)081
https://arxiv.org/abs/1510.00372
https://doi.org/10.1007/JHEP08(2017)016
https://doi.org/10.1007/JHEP08(2017)016
https://arxiv.org/abs/1512.03433
https://doi.org/10.1103/PhysRevD.91.105014
https://arxiv.org/abs/1503.07537


Bibliography

[148] B. Henning, X. Lu, T. Melia and H. Murayama, Hilbert series and operator bases
with derivatives in effective field theories, Commun. Math. Phys. 347 (2016) 363
[1507.07240].

[149] B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices, and
their partition functions, JHEP 10 (2017) 199 [1706.08520].

[150] C. W. Bauer, S. Fleming and M. E. Luke, Summing Sudakov logarithms in
B → Xsγ in effective field theory, Phys. Rev. D63 (2000) 014006
[hep-ph/0005275].

[151] R. J. Hill and M. Neubert, Spectator interactions in soft collinear effective theory,
Nucl. Phys. B657 (2003) 229 [hep-ph/0211018].

[152] J.-y. Chiu, F. Golf, R. Kelley and A. V. Manohar, Electroweak Sudakov corrections
using effective field theory, Phys. Rev. Lett. 100 (2008) 021802 [0709.2377].

[153] J.-y. Chiu, F. Golf, R. Kelley and A. V. Manohar, Electroweak Corrections in
High Energy Processes using Effective Field Theory, Phys. Rev. D77 (2008)
053004 [0712.0396].

[154] J.-y. Chiu, R. Kelley and A. V. Manohar, Electroweak Corrections using Effective
Field Theory: Applications to the LHC, Phys. Rev. D78 (2008) 073006
[0806.1240].

[155] M. D. Schwartz, K. Yan and H. X. Zhu, Collinear factorization violation and
effective field theory, Phys. Rev. D96 (2017) 056005 [1703.08572].

[156] M. D. Schwartz, K. Yan and H. X. Zhu, Factorization Violation and Scale
Invariance, Phys. Rev. D97 (2018) 096017 [1801.01138].

[157] I. Z. Rothstein and I. W. Stewart, An Effective Field Theory for Forward
Scattering and Factorization Violation, JHEP 08 (2016) 025 [1601.04695].

[158] M. Beneke and V. A. Smirnov, Asymptotic expansion of Feynman integrals near
threshold, Nucl. Phys. B522 (1998) 321 [hep-ph/9711391].

[159] V. A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer
Tracts Mod. Phys. 177 (2002) 1.

[160] CMS collaboration, Projected Performance of an Upgraded CMS Detector at the
LHC and HL-LHC: Contribution to the Snowmass Process, in Proceedings, 2013
Community Summer Study on the Future of U.S. Particle Physics: Snowmass on
the Mississippi (CSS2013): Minneapolis, MN, USA, July 29-August 6, 2013, 2013,
1307.7135.

129

https://doi.org/10.1007/s00220-015-2518-2
https://arxiv.org/abs/1507.07240
https://doi.org/10.1007/JHEP10(2017)199
https://arxiv.org/abs/1706.08520
https://doi.org/10.1103/PhysRevD.63.014006
https://arxiv.org/abs/hep-ph/0005275
https://doi.org/10.1016/S0550-3213(03)00116-0
https://arxiv.org/abs/hep-ph/0211018
https://doi.org/10.1103/PhysRevLett.100.021802
https://arxiv.org/abs/0709.2377
https://doi.org/10.1103/PhysRevD.77.053004
https://doi.org/10.1103/PhysRevD.77.053004
https://arxiv.org/abs/0712.0396
https://doi.org/10.1103/PhysRevD.78.073006
https://arxiv.org/abs/0806.1240
https://doi.org/10.1103/PhysRevD.96.056005
https://arxiv.org/abs/1703.08572
https://doi.org/10.1103/PhysRevD.97.096017
https://arxiv.org/abs/1801.01138
https://doi.org/10.1007/JHEP08(2016)025
https://arxiv.org/abs/1601.04695
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://arxiv.org/abs/1307.7135


Bibliography

[161] ATLAS collaboration, Physics at a High-Luminosity LHC with ATLAS, in
Proceedings, 2013 Community Summer Study on the Future of U.S. Particle
Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July
29-August 6, 2013, 2013, 1307.7292.

[162] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, QCD factorization for
B → ππ decays: Strong phases and CP violation in the heavy quark limit, Phys.
Rev. Lett. 83 (1999) 1914 [hep-ph/9905312].

[163] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, QCD factorization for
exclusive, nonleptonic B meson decays: General arguments and the case of heavy
light final states, Nucl. Phys. B591 (2000) 313 [hep-ph/0006124].

[164] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, QCD factorization in
B → πK, ππ decays and extraction of Wolfenstein parameters, Nucl. Phys. B606
(2001) 245 [hep-ph/0104110].

[165] R. Franceschini, G. F. Giudice, J. F. Kamenik, M. McCullough, A. Pomarol,
R. Rattazzi et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144
[1512.04933].

[166] M. Bauer, M. Neubert and A. Thamm, Analyzing the CP Nature of a New Scalar
Particle via S → Zh Decay, Phys. Rev. Lett. 117 (2016) 181801 [1610.00009].

[167] C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein and I. W. Stewart, Hard
scattering factorization from effective field theory, Phys. Rev. D66 (2002) 014017
[hep-ph/0202088].

[168] E. Eichten and B. R. Hill, An Effective Field Theory for the Calculation of Matrix
Elements Involving Heavy Quarks, Phys. Lett. B234 (1990) 511.

[169] H. Georgi, An Effective Field Theory for Heavy Quarks at Low-energies, Phys.
Lett. B240 (1990) 447.

[170] E. Eichten and B. R. Hill, Static Effective Field Theory: 1/m Corrections, Phys.
Lett. B243 (1990) 427.

[171] A. F. Falk, H. Georgi, B. Grinstein and M. B. Wise, Heavy Meson Form-factors
From QCD, Nucl. Phys. B343 (1990) 1.

[172] A. F. Falk, B. Grinstein and M. E. Luke, Leading mass corrections to the heavy
quark effective theory, Nucl. Phys. B357 (1991) 185.

[173] S. Fleming, A. H. Hoang, S. Mantry and I. W. Stewart, Jets from massive
unstable particles: Top-mass determination, Phys. Rev. D77 (2008) 074010
[hep-ph/0703207].

130

https://arxiv.org/abs/1307.7292
https://doi.org/10.1103/PhysRevLett.83.1914
https://doi.org/10.1103/PhysRevLett.83.1914
https://arxiv.org/abs/hep-ph/9905312
https://doi.org/10.1016/S0550-3213(00)00559-9
https://arxiv.org/abs/hep-ph/0006124
https://doi.org/10.1016/S0550-3213(01)00251-6
https://doi.org/10.1016/S0550-3213(01)00251-6
https://arxiv.org/abs/hep-ph/0104110
https://doi.org/10.1007/JHEP03(2016)144
https://arxiv.org/abs/1512.04933
https://doi.org/10.1103/PhysRevLett.117.181801
https://arxiv.org/abs/1610.00009
https://doi.org/10.1103/PhysRevD.66.014017
https://arxiv.org/abs/hep-ph/0202088
https://doi.org/10.1016/0370-2693(90)92049-O
https://doi.org/10.1016/0370-2693(90)91128-X
https://doi.org/10.1016/0370-2693(90)91128-X
https://doi.org/10.1016/0370-2693(90)91408-4
https://doi.org/10.1016/0370-2693(90)91408-4
https://doi.org/10.1016/0550-3213(90)90591-Z
https://doi.org/10.1016/0550-3213(91)90464-9
https://doi.org/10.1103/PhysRevD.77.074010
https://arxiv.org/abs/hep-ph/0703207


Bibliography

[174] S. Fleming, A. H. Hoang, S. Mantry and I. W. Stewart, Top Jets in the Peak
Region: Factorization Analysis with NLL Resummation, Phys. Rev. D77 (2008)
114003 [0711.2079].

[175] J.-y. Chiu, A. Fuhrer, A. H. Hoang, R. Kelley and A. V. Manohar, Soft-Collinear
Factorization and Zero-Bin Subtractions, Phys. Rev. D79 (2009) 053007
[0901.1332].

[176] T. Becher and M. Neubert, Drell-Yan Production at Small qT , Transverse Parton
Distributions and the Collinear Anomaly, Eur. Phys. J. C71 (2011) 1665
[1007.4005].

[177] J.-y. Chiu, A. Jain, D. Neill and I. Z. Rothstein, The Rapidity Renormalization
Group, Phys. Rev. Lett. 108 (2012) 151601 [1104.0881].

[178] A. V. Manohar, T. Mehen, D. Pirjol and I. W. Stewart, Reparameterization
invariance for collinear operators, Phys. Lett. B539 (2002) 59 [hep-ph/0204229].

[179] J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance
from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D10 (1974) 1145.

[180] C. E. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian
Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383.

[181] M. S. Chanowitz and M. K. Gaillard, The TeV Physics of Strongly Interacting
W’s and Z’s, Nucl. Phys. B261 (1985) 379.

[182] R. J. Hill, T. Becher, S. J. Lee and M. Neubert, Sudakov resummation for
subleading SCET currents and heavy-to-light form-factors, JHEP 07 (2004) 081
[hep-ph/0404217].

[183] A. J. Buras and P. H. Weisz, QCD Nonleading Corrections to Weak Decays in
Dimensional Regularization and ’t Hooft-Veltman Schemes, Nucl. Phys. B333
(1990) 66.

[184] M. J. Dugan and B. Grinstein, On the vanishing of evanescent operators, Phys.
Lett. B256 (1991) 239.

[185] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in
perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [0901.0722].

[186] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions
in QCD scattering amplitudes, JHEP 03 (2009) 079 [0901.1091].

[187] T. Becher and M. Neubert, On the Structure of Infrared Singularities of
Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [0903.1126].

131

https://doi.org/10.1103/PhysRevD.77.114003
https://doi.org/10.1103/PhysRevD.77.114003
https://arxiv.org/abs/0711.2079
https://doi.org/10.1103/PhysRevD.79.053007
https://arxiv.org/abs/0901.1332
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://arxiv.org/abs/1007.4005
https://doi.org/10.1103/PhysRevLett.108.151601
https://arxiv.org/abs/1104.0881
https://doi.org/10.1016/S0370-2693(02)02029-4
https://arxiv.org/abs/hep-ph/0204229
https://doi.org/10.1103/PhysRevD.10.1145, 10.1103/PhysRevD.11.972
https://doi.org/10.1007/BF02746538
https://doi.org/10.1016/0550-3213(85)90580-2
https://doi.org/10.1088/1126-6708/2004/07/081
https://arxiv.org/abs/hep-ph/0404217
https://doi.org/10.1016/0550-3213(90)90223-Z
https://doi.org/10.1016/0550-3213(90)90223-Z
https://doi.org/10.1016/0370-2693(91)90680-O
https://doi.org/10.1016/0370-2693(91)90680-O
https://doi.org/10.1103/PhysRevLett.102.162001, 10.1103/PhysRevLett.111.199905
https://arxiv.org/abs/0901.0722
https://doi.org/10.1088/1126-6708/2009/03/079
https://arxiv.org/abs/0901.1091
https://doi.org/10.1088/1126-6708/2009/06/081, 10.1007/JHEP11(2013)024
https://arxiv.org/abs/0903.1126


Bibliography

[188] L. J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and
beyond, JHEP 02 (2010) 081 [0910.3653].

[189] G. P. Korchemsky and A. V. Radyushkin, Renormalization of the Wilson Loops
Beyond the Leading Order, Nucl. Phys. B283 (1987) 342.

[190] I. A. Korchemskaya and G. P. Korchemsky, On lightlike Wilson loops, Phys. Lett.
B287 (1992) 169.

[191] B. Jantzen, J. H. Kuhn, A. A. Penin and V. A. Smirnov, Two-loop electroweak
logarithms in four-fermion processes at high energy, Nucl. Phys. B731 (2005) 188
[hep-ph/0509157].

[192] D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories - I, Phys. Rev.
D8 (1973) 3633.

[193] S. Moch, J. A. M. Vermaseren and A. Vogt, The Three loop splitting functions in
QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192].

[194] S. Moch, J. A. M. Vermaseren and A. Vogt, The Quark form-factor at higher
orders, JHEP 08 (2005) 049 [hep-ph/0507039].

[195] T. Becher, M. Neubert and B. D. Pecjak, Factorization and Momentum-Space
Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076
[hep-ph/0607228].

[196] M. Beneke and D. Yang, Heavy-to-light B meson form-factors at large recoil
energy: Spectator-scattering corrections, Nucl. Phys. B736 (2006) 34
[hep-ph/0508250].

[197] M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of
subleading-power N-jet operators, JHEP 03 (2018) 001 [1712.04416].

[198] L. F. Abbott, The Background Field Method Beyond One Loop, Nucl. Phys. B185
(1981) 189.

[199] T. Becher and M. Neubert, Threshold resummation in momentum space from
effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050].

[200] T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and
Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [0710.0680].

[201] B. Gripaios and D. Sutherland, An operator basis for the Standard Model with an
added scalar singlet, JHEP 08 (2016) 103 [1604.07365].

[202] R. Franceschini, G. F. Giudice, J. F. Kamenik, M. McCullough, F. Riva,
A. Strumia et al., Digamma, what next?, JHEP 07 (2016) 150 [1604.06446].

132

https://doi.org/10.1007/JHEP02(2010)081
https://arxiv.org/abs/0910.3653
https://doi.org/10.1016/0550-3213(87)90277-X
https://doi.org/10.1016/0370-2693(92)91895-G
https://doi.org/10.1016/0370-2693(92)91895-G
https://doi.org/10.1016/j.nuclphysb.2005.10.010, 10.1016/j.nuclphysb.2006.07.004
https://arxiv.org/abs/hep-ph/0509157
https://doi.org/10.1103/PhysRevD.8.3633
https://doi.org/10.1103/PhysRevD.8.3633
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://arxiv.org/abs/hep-ph/0403192
https://doi.org/10.1088/1126-6708/2005/08/049
https://arxiv.org/abs/hep-ph/0507039
https://doi.org/10.1088/1126-6708/2007/01/076
https://arxiv.org/abs/hep-ph/0607228
https://doi.org/10.1016/j.nuclphysb.2005.11.027
https://arxiv.org/abs/hep-ph/0508250
https://doi.org/10.1007/JHEP03(2018)001
https://arxiv.org/abs/1712.04416
https://doi.org/10.1016/0550-3213(81)90371-0
https://doi.org/10.1016/0550-3213(81)90371-0
https://doi.org/10.1103/PhysRevLett.97.082001
https://arxiv.org/abs/hep-ph/0605050
https://doi.org/10.1088/1126-6708/2008/07/030
https://arxiv.org/abs/0710.0680
https://doi.org/10.1007/JHEP08(2016)103
https://arxiv.org/abs/1604.07365
https://doi.org/10.1007/JHEP07(2016)150
https://arxiv.org/abs/1604.06446


Bibliography

[203] T. Inami, T. Kubota and Y. Okada, Effective Gauge Theory and the Effect of
Heavy Quarks in Higgs Boson Decays, Z. Phys. C18 (1983) 69.

[204] B. Grinstein and L. Randall, The Renormalization of g2, Phys. Lett. B217 (1989)
335.

[205] S. A. Larin, The Renormalization of the axial anomaly in dimensional
regularization, Phys. Lett. B303 (1993) 113 [hep-ph/9302240].

[206] J. C. Collins, A. Duncan and S. D. Joglekar, Trace and Dilatation Anomalies in
Gauge Theories, Phys. Rev. D16 (1977) 438.

[207] R. Tarrach, The Pole Mass in Perturbative QCD, Nucl. Phys. B183 (1981) 384.

[208] D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C. D. White, The method of
regions and next-to-soft corrections in Drell–Yan production, Phys. Lett. B742
(2015) 375 [1410.6406].

[209] D. Bonocore, E. Laenen, L. Magnea, S. Melville, L. Vernazza and C. D. White, A
factorization approach to next-to-leading-power threshold logarithms, JHEP 06
(2015) 008 [1503.05156].

[210] D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C. D. White, Non-abelian
factorisation for next-to-leading-power threshold logarithms, JHEP 12 (2016) 121
[1610.06842].

[211] V. Del Duca, E. Laenen, L. Magnea, L. Vernazza and C. D. White, Universality
of next-to-leading power threshold effects for colourless final states in hadronic
collisions, JHEP 11 (2017) 057 [1706.04018].

[212] A. A. Penin, High-Energy Limit of Quantum Electrodynamics beyond Sudakov
Approximation, Phys. Lett. B745 (2015) 69 [1412.0671].

[213] T. Liu and A. A. Penin, High-Energy Limit of QCD beyond the Sudakov
Approximation, Phys. Rev. Lett. 119 (2017) 262001 [1709.01092].

[214] I. Moult, L. Rothen, I. W. Stewart, F. J. Tackmann and H. X. Zhu, Subleading
Power Corrections for N-Jettiness Subtractions, Phys. Rev. D95 (2017) 074023
[1612.00450].

[215] R. Boughezal, X. Liu and F. Petriello, Power Corrections in the N-jettiness
Subtraction Scheme, JHEP 03 (2017) 160 [1612.02911].

[216] I. Moult, I. W. Stewart, G. Vita and H. X. Zhu, First Subleading Power
Resummation for Event Shapes, JHEP 08 (2018) 013 [1804.04665].

[217] W. Altmannshofer and D. M. Straub, New Physics in B → K∗µµ?, Eur. Phys. J.
C73 (2013) 2646 [1308.1501].

133

https://doi.org/10.1007/BF01571710
https://doi.org/10.1016/0370-2693(89)90877-0
https://doi.org/10.1016/0370-2693(89)90877-0
https://doi.org/10.1016/0370-2693(93)90053-K
https://arxiv.org/abs/hep-ph/9302240
https://doi.org/10.1103/PhysRevD.16.438
https://doi.org/10.1016/0550-3213(81)90140-1
https://doi.org/10.1016/j.physletb.2015.02.008
https://doi.org/10.1016/j.physletb.2015.02.008
https://arxiv.org/abs/1410.6406
https://doi.org/10.1007/JHEP06(2015)008
https://doi.org/10.1007/JHEP06(2015)008
https://arxiv.org/abs/1503.05156
https://doi.org/10.1007/JHEP12(2016)121
https://arxiv.org/abs/1610.06842
https://doi.org/10.1007/JHEP11(2017)057
https://arxiv.org/abs/1706.04018
https://doi.org/10.1016/j.physletb.2015.04.036, 10.1016/j.physletb.2017.05.069, 10.1016/j.physletb.2015.10.035
https://arxiv.org/abs/1412.0671
https://doi.org/10.1103/PhysRevLett.119.262001
https://arxiv.org/abs/1709.01092
https://doi.org/10.1103/PhysRevD.95.074023
https://arxiv.org/abs/1612.00450
https://doi.org/10.1007/JHEP03(2017)160
https://arxiv.org/abs/1612.02911
https://doi.org/10.1007/JHEP08(2018)013
https://arxiv.org/abs/1804.04665
https://doi.org/10.1140/epjc/s10052-013-2646-9
https://doi.org/10.1140/epjc/s10052-013-2646-9
https://arxiv.org/abs/1308.1501


Bibliography

[218] G. Hiller and M. Schmaltz, RK and future b→ s`` physics beyond the standard
model opportunities, Phys. Rev. D90 (2014) 054014 [1408.1627].

[219] R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and
lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [1505.05164].

[220] M. Freytsis, Z. Ligeti and J. T. Ruderman, Flavor models for B̄ → D(∗)τ ν̄, Phys.
Rev. D92 (2015) 054018 [1506.08896].

[221] M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the RD(∗) , RK ,
and (g − 2)g Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [1511.01900].

[222] R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2)
flavour symmetry, Eur. Phys. J. C76 (2016) 67 [1512.01560].

[223] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik and N. Košnik, Physics of
leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641
(2016) 1 [1603.04993].

[224] T. Alanne and F. Goertz, Extended Dark Matter EFT, 1712.07626.

[225] D. B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically
generated fermion masses, Nucl. Phys. B365 (1991) 259.

[226] M. J. Dugan, H. Georgi and D. B. Kaplan, Anatomy of a Composite Higgs Model,
Nucl. Phys. B254 (1985) 299.

[227] K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model,
Nucl. Phys. B719 (2005) 165 [hep-ph/0412089].

[228] R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Physics of the
large and the small, TASI 09, proceedings of the Theoretical Advanced Study
Institute in Elementary Particle Physics, Boulder, Colorado, USA, 1-26 June
2009, pp. 235–306, 2011, 1005.4269.

[229] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra
dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221].

[230] Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable
geometry, Phys. Lett. B474 (2000) 361 [hep-ph/9912408].

[231] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS,
Nucl. Phys. B586 (2000) 141 [hep-ph/0003129].

[232] M. R. Buckley, D. Feld and D. Goncalves, Scalar Simplified Models for Dark
Matter, Phys. Rev. D91 (2015) 015017 [1410.6497].

134

https://doi.org/10.1103/PhysRevD.90.054014
https://arxiv.org/abs/1408.1627
https://doi.org/10.1007/JHEP10(2015)184
https://arxiv.org/abs/1505.05164
https://doi.org/10.1103/PhysRevD.92.054018
https://doi.org/10.1103/PhysRevD.92.054018
https://arxiv.org/abs/1506.08896
https://doi.org/10.1103/PhysRevLett.116.141802
https://arxiv.org/abs/1511.01900
https://doi.org/10.1140/epjc/s10052-016-3905-3
https://arxiv.org/abs/1512.01560
https://doi.org/10.1016/j.physrep.2016.06.001
https://doi.org/10.1016/j.physrep.2016.06.001
https://arxiv.org/abs/1603.04993
https://arxiv.org/abs/1712.07626
https://doi.org/10.1016/S0550-3213(05)80021-5
https://doi.org/10.1016/0550-3213(85)90221-4
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://arxiv.org/abs/hep-ph/0412089
https://arxiv.org/abs/1005.4269
https://doi.org/10.1103/PhysRevLett.83.3370
https://arxiv.org/abs/hep-ph/9905221
https://doi.org/10.1016/S0370-2693(00)00054-X
https://arxiv.org/abs/hep-ph/9912408
https://doi.org/10.1016/S0550-3213(00)00392-8
https://arxiv.org/abs/hep-ph/0003129
https://doi.org/10.1103/PhysRevD.91.015017
https://arxiv.org/abs/1410.6497


Bibliography

[233] P. Harris, V. V. Khoze, M. Spannowsky and C. Williams, Constraining Dark
Sectors at Colliders: Beyond the Effective Theory Approach, Phys. Rev. D91
(2015) 055009 [1411.0535].

[234] M. Bauer, M. Neubert and A. Thamm, The “forgotten” decay S → Z + h as a CP
analyzer, 1607.01016.

[235] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer et al.,
Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals
Phys. 335 (2013) 21 [1205.4231].

[236] Y. Jiang and M. Trott, On the non-minimal character of the SMEFT, Phys. Lett.
B770 (2017) 108 [1612.02040].

[237] ATLAS collaboration, ATLAS search for new phenomena in dijet mass and
angular distributions using pp collisions at

√
s = 7 TeV, JHEP 01 (2013) 029

[1210.1718].

[238] ATLAS collaboration, Search for New Phenomena in Dijet Angular Distributions
in Proton-Proton Collisions at

√
s = 8 TeV Measured with the ATLAS Detector,

Phys. Rev. Lett. 114 (2015) 221802 [1504.00357].

[239] CMS collaboration, Search for quark compositeness in dijet angular distributions
from pp collisions at

√
s = 7 TeV, JHEP 05 (2012) 055 [1202.5535].

[240] CMS collaboration, Search for quark contact interactions and extra spatial
dimensions using dijet angular distributions in proton–proton collisions at

√
s = 8

TeV, Phys. Lett. B746 (2015) 79 [1411.2646].

[241] T. Hurth, S. Renner and W. Shepherd, Matching for FCNC effects in the
flavour-symmetric SMEFT, JHEP 06 (2019) 029 [1903.00500].

[242] G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Minimal flavor
violation: An Effective field theory approach, Nucl. Phys. B645 (2002) 155
[hep-ph/0207036].

[243] E. H. Simmons, Dimension-six Gluon Operators as Probes of New Physics, Phys.
Lett. B226 (1989) 132.

[244] E. H. Simmons, Higher dimension gluon operators and hadronic scattering, Phys.
Lett. B246 (1990) 471.

[245] A. Azatov, R. Contino, C. S. Machado and F. Riva, Helicity selection rules and
noninterference for BSM amplitudes, Phys. Rev. D95 (2017) 065014
[1607.05236].

[246] L. J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at
hadron colliders, Nucl. Phys. B423 (1994) 3 [hep-ph/9312363].

135

https://doi.org/10.1103/PhysRevD.91.055009
https://doi.org/10.1103/PhysRevD.91.055009
https://arxiv.org/abs/1411.0535
https://arxiv.org/abs/1607.01016
https://doi.org/10.1016/j.aop.2013.04.016
https://doi.org/10.1016/j.aop.2013.04.016
https://arxiv.org/abs/1205.4231
https://doi.org/10.1016/j.physletb.2017.04.053
https://doi.org/10.1016/j.physletb.2017.04.053
https://arxiv.org/abs/1612.02040
https://doi.org/10.1007/JHEP01(2013)029
https://arxiv.org/abs/1210.1718
https://doi.org/10.1103/PhysRevLett.114.221802
https://arxiv.org/abs/1504.00357
https://doi.org/10.1007/JHEP05(2012)055
https://arxiv.org/abs/1202.5535
https://doi.org/10.1016/j.physletb.2015.04.042
https://arxiv.org/abs/1411.2646
https://doi.org/10.1007/JHEP06(2019)029
https://arxiv.org/abs/1903.00500
https://doi.org/10.1016/S0550-3213(02)00836-2
https://arxiv.org/abs/hep-ph/0207036
https://doi.org/10.1016/0370-2693(89)90301-8
https://doi.org/10.1016/0370-2693(89)90301-8
https://doi.org/10.1016/0370-2693(90)90632-G
https://doi.org/10.1016/0370-2693(90)90632-G
https://doi.org/10.1103/PhysRevD.95.065014
https://arxiv.org/abs/1607.05236
https://doi.org/10.1016/0550-3213(94)90563-0, 10.1016/0550-3213(95)00450-7
https://arxiv.org/abs/hep-ph/9312363


Bibliography

[247] T. Junk, Confidence level computation for combining searches with small
statistics, Nucl. Instrum. Meth. A434 (1999) 435 [hep-ex/9902006].

[248] A. L. Read, Presentation of search results: The CLs technique, J. Phys. G28
(2002) 2693.

[249] ATLAS collaboration, Future Plans of the ATLAS Collaboration for the
HL-LHC, Tech. Rep. ATL-PHYS-PROC-2018-015, CERN, Geneva, March, 2018.

[250] CDF collaboration, Measurement of sin2 θlepteff using e+e− pairs from γ∗/Z bosons
produced in pp̄ collisions at a center-of-momentum energy of 1.96 TeV, Phys. Rev.
D93 (2016) 112016 [1605.02719].

[251] S. D. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron
Collisions at High-Energies, Phys. Rev. Lett. 25 (1970) 316.

[252] L. Berthier and M. Trott, Towards consistent Electroweak Precision Data
constraints in the SMEFT, JHEP 05 (2015) 024 [1502.02570].

[253] L. Berthier and M. Trott, Consistent constraints on the Standard Model Effective
Field Theory, JHEP 02 (2016) 069 [1508.05060].

[254] M. Bjørn and M. Trott, Interpreting W mass measurements in the SMEFT, Phys.
Lett. B762 (2016) 426 [1606.06502].

[255] L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W± data in a
global fit of SMEFT parameters to lift flat directions, JHEP 09 (2016) 157
[1606.06693].

[256] J. Ellis, C. W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to
Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [1803.03252].

[257] E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O. J. P. Éboli and M. C.
Gonzalez–Garcia, Electroweak Sector Under Scrutiny: A Combined Analysis of
LHC and Electroweak Precision Data, Phys. Rev. D99 (2019) 033001
[1812.01009].

[258] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin et al., New
parton distributions for collider physics, Phys. Rev. D82 (2010) 074024
[1007.2241].

[259] CTEQ collaboration, Global QCD analysis of parton structure of the nucleon:
CTEQ5 parton distributions, Eur. Phys. J. C12 (2000) 375 [hep-ph/9903282].

136

https://doi.org/10.1016/S0168-9002(99)00498-2
https://arxiv.org/abs/hep-ex/9902006
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.1103/PhysRevD.93.112016, 10.1103/PhysRevD.95.119901
https://doi.org/10.1103/PhysRevD.93.112016, 10.1103/PhysRevD.95.119901
https://arxiv.org/abs/1605.02719
https://doi.org/10.1103/PhysRevLett.25.316, 10.1103/PhysRevLett.25.902.2
https://doi.org/10.1007/JHEP05(2015)024
https://arxiv.org/abs/1502.02570
https://doi.org/10.1007/JHEP02(2016)069
https://arxiv.org/abs/1508.05060
https://doi.org/10.1016/j.physletb.2016.10.003
https://doi.org/10.1016/j.physletb.2016.10.003
https://arxiv.org/abs/1606.06502
https://doi.org/10.1007/JHEP09(2016)157
https://arxiv.org/abs/1606.06693
https://doi.org/10.1007/JHEP06(2018)146
https://arxiv.org/abs/1803.03252
https://doi.org/10.1103/PhysRevD.99.033001
https://arxiv.org/abs/1812.01009
https://doi.org/10.1103/PhysRevD.82.074024
https://arxiv.org/abs/1007.2241
https://doi.org/10.1007/s100529900196
https://arxiv.org/abs/hep-ph/9903282


Colophon

This thesis was typeset with LaTeX2e using BibTeX with the style file from the Jour-
nal of High Energy Physics. The Feynman diagrams created by the author were drawn
in JaxoDraw [7, 8]. The plots in Chapter 5 were created with Mathematica using the
package MaTeX.


	Introduction
	Theoretical Foundations
	The Standard Model
	Effective Field Theories
	The Standard-Model Effective Theory
	The Soft-Collinear Effective Theory

	Effective Field Theory After a New-Physics Discovery
	Introduction
	Basic Elements of SCET
	SCETBSM for Two-Body Decays of S
	Effective Lagrangian at Order lambda**2
	Effective Lagrangian at Order lambda**3
	Effective Lagrangian at Order lambda**4

	SCETBSM for Three-Body Decays of S
	Evolution Equations for the Wilson Coefficients
	Operators Containing a Single Field in Each Collinear Direction
	Two-Jet Operators at Order lambda**3
	Resummation of Large Logarithms

	SCETBSM for the Scale Hierarchy M >> MS >> v
	Effective Lagrangian Below the New-Physics Scale M
	RG Evolution From the New-Physics Scale to the Scale MS
	Matching to SCETBSM at the Scale mu of order MS

	Conclusions
	Appendix: Derivation of the Evolution Equation (3.82)

	Effective Theory for a Heavy Scalar Coupled to the SM via Vector-Like Quarks
	Introduction
	High-Energy Extension of the Standard Model
	Tree-level Matching Onto SCETBSM
	Integrating out the Vector-Like Quarks
	Integrating out Off-Shell Fluctuations
	Wilson Coefficients

	One-Loop Matching
	One-Loop Matching for S -> Zh
	Resummation of Large Logarithms
	S -> jj Decay
	S -> ttbar Decay
	S -> gamma gamma Decay
	S -> hh Decay

	Conclusions
	Appendix I: Calculation of the Quantity deltakappa1
	Appendix II: Coefficient Functions fi(xi)

	Constraints on the Standard-Model Effective Theory
	Consistency Requirements for the Analyses
	Constraints From Dijet Production
	Partonic Dijet Production in the Standard-Model Effective Theory
	Analyses at the Detector Level
	Linear Combinations of Wilson Coefficients in Angular Spectra
	Reproduction of the CMS Analysis
	Implementation of the Consistent Expansion
	Constraints from Unnormalised Angular Distributions
	Constraints from Unnormalised Invariant-Mass Spectra

	Constraints From Dilepton Production
	Partonic Dilepton Production in the Standard-Model Effective Theory
	Strategy for the Searches and Technical Details
	Searches at the Large Hadron Collider
	Searches at the Tevatron


	Conclusions
	Bibliography

