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The known results about unitarity violation in QED are revised. Taking into
account the peripheral processes in high energy ions collisions with production
of arbitrary number of pairs of charged leptons and pions, we confirm the known
result about violation of unitarity in frames of QED. Namely the total cross section
of production of an arbitrary number of pairs of charged particles grow more
rapidly than any power of logarithm of the center-of-mass energy. Contribution
from production of a single neutral meson (scalar and pseudo-scalar) is discussed.

An interpretation of this fact is expected to have the similar base as the QED
problem — the absence of the total cross section in scattering of a charged particle
on the Coulomb centrum. The relevant conditions cannot be realized in the Nature.

Explicit expressions for production of a finite number of pairs cross sections
are presented.

The decays τ → ππ(π′)ν and τ → ωπν were calculated in the framework of
the extended NJL model. The intermediate vector ρ(770) and ρ′(1450) mesons
are taken into account. The radial excited states of mesons are described by the
second-order polynomial form factor.

The decays τ → η(η′)πν allowed due to quark mass differences are also
described. In these decays the scalar mesons a0(980) and a0(1450) are also taken
into account.

In contrast to other works the calculations of τ lepton decays in the framework
of the NJL model do not require attraction of any arbitrary parameters.

1. INTRODUCTION

We consider cross sections of production of pairs of charged fermions
and pions in high energy collisions of two charged fermions. The problem
of violation of unitarity arises for an object which is the sum of arbitrary
number of pairs. Namely it turns out that this “generalize” cross section
grows with center-of-mass energy

√
s faster than any power of the

logarithm of energy L = log(s/m2).
Dynamics of inelastic processes in peripheral collisions consisted in

creation of set of hadrons with small invariant mass, separated by rapidity
gaps. Description of subprocess can be performed in terms of realistic
models of strong interactions such us bag model, CHPT, Nambu–Jona-
Lasinio model.
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The NJL model allows us to describe the processes of the τ lepton
decays without introduction of any arbitrary parameters. Firstly, such
calculations were fulfilled in the works [11] where decays τ → 3πν
and τ → πγν were described. Here we consider in the framework
of the extended NJL decays τ → ππ(π′)ν and τ → πη(η′)ν taking
into account intermediate vector mesons ρ(770), ρ(1450) and scalar
mesons a0(980), a0(1450). For description of first radial-excited state
the polynomial form-factor of second order over transversal momentum
is used.

2. GENERAL FORMALISM

Consider first the two-photon mechanism of fermion pair creation at
charged ions collision

Y1(Z1,P1) + Y2(Z2,P2) → Y1(Z1,P ′
1) + Y2(Z2,P ′

2) + μ+(q+) + μ−(q−),

s = (P1 + P2)
2 >> M 2

1,2, (1)

where M1,2 are the ions masses.
Phase volume in the final state (one pair is created):

dΓ1 =
(2π)4

(2π)12
d3p′1
2E′

1

d3p′2
2E′

2

d3q−
2E−

d3q+
2E+

δ4(p1 + p2 − p′1 − p′2 − q+ − q−), (2)

with Sudakov parametrization of 4-momenta [1]

q1,2 = α1,2p2 + β1,2p1 + q⊥1,2, q± = α±p2 + β±p1 + q±⊥, (3)

takes the form

dΓ1 =
1

(2π)8
1
4s
dβ1

β1
d2q1d

2q2
dx

xx̄
d2q−, (4)

with x = β−/β1. Here and further we imply p1, p2 to be light-like 4-vectors
constructed from the 4-momenta P1,P2 of the initial ions.

The matrix element is

M =
(4πα)2

q2
1q

2
2

(
2
s

)2

(sN1) (sN2) (sφ) , (5)

where q1 = p1 − p′1, q2 = p2 − p′2 and

N1 =
1
s
ū (p′1) p̂2u (p1) ,

N2 =
1
s
ū (p′2) p̂1u (p2) ,

φ =
1
s
ū (q−)Oμνv (q+) p

μ
1 p
ν
2 ,
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O ≡ Oμνp
μ
1 p
ν
2 = p̂1

q̂− − q̂1 +m

d1
p̂2 + p̂2

q̂− − q̂2 +m

d2
p̂1, (6)

d1,2 = (q− − q1,2)
2 −m2. (7)

Quantities N1,2 describe the subprocesses Y1,2 → Y1,2γ
∗. Quantity Φ

describe the subprocess γ∗ + γ∗ → μμ̄.
The sums on spin states of module squared of these quantities are∑

|N1|2 =
∑

|N2|2 = 2,
∑

|φ|2 = 2xx̄Z = Φμμ, (8)

with

Z =
1
D2−

[m2 + (�q 2 − �q +)
2][m2 + �q 2

−]+

+
1
D2

+

[m2 + (�q 1 − �q +)
2][m2 + �q 2

+] +
2

D−D+
[−(m2 + �q 2

−)(m
2 + �q 2

+)+

+m2(�q −�q +) + (�q 2�q +)(�q 1�q −) + (�q 1�q +)(�q 2�q −)− (�q −�q +)(�q 1�q 2)]. (9)

Here we use d1 = −1
x
D−, d2 = −1

x̄
D+ with

D− = x[(�q 2 − �q +)
2 +m2] + x̄[�q 2

− +m2],
(10)

D+ = x̄[(�q 2 − �q −)
2 +m2] + x[�q 2

+ +m2].

It is useful to note that the quantity Z can be written in a more elegant
equivalent form

Z =
�q 2

1�q
2
2

D−D+
− xx̄

(D−D+)2
R2,

(11)

R(�q 1, �q 2; �q −, �q +) = (�q 2
1 − 2�q 1�q −)(�q

2
2 − 2�q 2�q −)− 2(�q 1�q 2)[m

2 + �q 2
−].

The quantity R possesses the Bose symmetry:

R = R(�q 1, �q 2; �q −, �q +) = R(�q 2, �q 1; �q −, �q +) = R(�q 1, �q 2; �q +, �q −). (12)

Consider now the subprocess of charged pions pair creation γ∗ + γ∗ →
→ π+π−. Corresponding quantity φπ has a form

φπ =
1
s

[
s2α−β+x
D−

+
s2α+β−x̄
D+

− s

]
. (13)

After some algebra we find

φπ = − xx̄R

D+D−
,

φπ =
(xx̄)2R2

(D+D−)2
.

(14)
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3. ONE PAIR CREATION CROSS SECTION

Fig. 1.

Differential cross section has a form
(Fig. 1)

dσ =
1
8s

∑
|M |2dΓ4. (15)

Using the expressions for the phase volume
of the final state and matrix element we
obtain

dσa =
α4(Z1Z2)

2

π

dβ1

β1

d�q 2
1 d�q

2
2

�q 2
1�q

2
2

F a, (16)

with

F a =

1∫

0

dx

xx̄

d2�q −
π

Φa, a = μμ̄,π,

Φμμ̄ = 2xx̄[
�q 2

1�q
2
2

D−D+
− xx̄

(D−D+)2
R2], (17)

Φπ =
(xx̄)2R2

(D+D−)2
.

For the case of very small values of �q 2
1,2 the replacement [1]

�q 2
1 → �q 2

1 +M 2
1β

2
1 , �q 2

2 → �q 2
2 +M 2

2α
2
2 (18)

must be done. Further we restrict ourselves to the case �q 2
1,2 ∼M 2

1,2.
To perform the integration over the transverse component of pair

momenta d2�q − we apply the Feynman trick of joining the denominators

∫
d2�q −

πD+D−
=

1∫

0

dyd2�q −
π[D−y +D+ȳ]2

=

1∫

0

dy

D
,

∫
d2�q −

π(D+D−)2
= 2

1∫

0

yȳdy

D3 , (19)

D = m2 + �q 2
1xx̄+ �q 2

2yȳ.

Here we use D−y+D+ȳ = �q 2 +D with �q = �q − − x�q 1 − y�q 2. Performing
the shift of variables and averaging on the azimuthal angles we obtain

Fμμ̄ = �q 2
1�q

2
2φ
μ,

(20)
Fπ = �q 2

1�q
2
2φ
π ,
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with

φμ = 2

1∫

0

dx

1∫

0

dy

[
1
D

− XY

D3 K

]
,

φπ =

1∫

0

dx

1∫

0

dy
XY

D3 K;

K = 8D2 + 2D[�q 2
2(1 − 4Y ) + �q 2

1(1 − 4X)] + 2�q 2
1�q

2
2(1 − 4X)(1 − 4Y ),

(21)
X = x(1 − x), Y = y(1 − y).

For the cross section of one pair production we obtain

�q 2
1�q

2
2

dσa1
d�q 2

1d�q
2
2

=
(Z1Z2)

2α4

π
Lφa(�q 2

1, �q
2
2), (22)

where we insert the boost integral L = ln
s

m2 =

∫
dβ1/β1. Here with the

logarithmic accuracy we can put the value of m of order of mass of the
particle of some pair.

4. MANY PAIRS CREATION CROSS SECTION

By analogy to the case of one pair production we have for phase
volume of 2 pairs production (Fig. 2, a)

dΓ2 =
π5

s(2π)1425

dβ1

β1

dβ′

β′
d2�q 1

π

d2�q 2

π

d2�q ′

π
dγ1dγ2,

dγi =
d2�ri
π

dxi
xi(1 − xi)

,
m2

s
� β′ � β1 � 1.

(23)

Here xi are the energy fractions of the negative charged particle from
the created pairs and �ri are the corresponding transverse momenta.

Matrix element of two pair production process is

M2 =
8s(4πα)3

�q 2
1�q

2
2(�q

′)2
Φ(1)Φ(2). (24)

The relevant cross section

�q 2
1�q

2
2

dσ2

d�q 2
1d�q

2
2

=
(Z1Z2)

2α6

4π3

(
L2

2

)
φ(1) × φ(2)(�q 2

1, �q
2
2), (25)
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Fig. 2.

with

φ(1) × φ(2)(�q 2
1, �q

2
2) =

∞∫

0

d(�q ′)2φ(�q 2
1, (�q

′)2)φ((�q ′)2, �q 2
2). (26)

For n pairs production (Fig. 2, b) we will obtain the enhancement
factor Ln/n!. Let us write it in the form

Ln

n!
=

∫

C

dj

2πijn+1

( s

m2

)j
, (27)

where contour C is the line in the j plane Re j = σ, 0 < σ < 1, −∞ <
< Im j <∞. We obtain for the cross section of n pair production

�q 2
1�q

2
2
dσn

d�q 2
1d�q

2
2

=
(Z1Z2α

2)2

π

∫

C

dj

2πij2

( s

m2

)j ( α2

4π2j

)n
×

× φ(�q 2
1, (�q

′
1)

2)d(�q ′
1)

2...d(�q ′
n−1)

2φ((�q ′
n−1)

2, �q 2
2). (28)

5. SUM ON PAIRS NUMBER

Let us introduce the function Ψj(1, 2) = Ψj(�q
2
1, �q

2
2) defined as

Ψj(1, 2) = φ(1, 2) +
(

α2

4π2j

)
φ(1, 1′)× φ(1′, 2) +

(
α2

4π2j

)2

φ(1, 1′)×
× φ(1′, 2′)× φ(2′, 2) + ... , (29)
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where we imply φ(1, 1′) × φ(1′, 2) =
∞∫
0
φ(�q 2

1, (�q
′
1)

2)φ((�q ′
1)

2, �q 2
2)d(�q

′)2.

This function obeys the integral equation

Ψj(1, 2) = φ(1, 2) +
α2

4π2j
φ(1, 1′)×Ψj(1′, 2). (30)

It was shown ([2, 3]) that this function has a cut in j-plane which starts
in some point j0 on the real axis. For the case j0 > 0 it results in violation
of unitarity in QED. Really the “generalized” cross section Σ(1, 2) — sum
of cross sections of production of any number of pairs:

Σ(1, 2) =
(Z1Z2α

2)2

π

∫

C

dj

2πij2

( s

m2

)j
Ψj(1, 2), (31)

will grow with center-of-mass energy
√
s as

Σ(1, 2)(s) ∼ Σ0(1, 2)
(
s

s0

)j0
. (32)

The cross section obtained grows with energy 2E =
√
s more rapidly

than any power of L = ln(s/m2) and is the consequence of long-range
behavior of the Coulomb field. We remind that in the theory of strong
interaction the total cross section growth is restricted by Froissart
boundary σ(s) ∼ σ0L

2 which is the consequence of the short like character
of the strong interaction forces [5]. The “remedy” from this “disease” of
QED is in fact the absence in the nature of the kinematical situations with
the arbitrary large impact parameters d and the related orbital quantum
number l related by lh = dE.

To find the start point of a cut in the j-plane we may consider the
homogeneous integral equation for the discontinuity of function Ψj i.e. its
difference from the value on the opposite branch of the cut ΔΨj

ΔΨj(x1,x2) =
1
h
φ(x1,x)×ΔΨj(x,x2),

1
h
=

α2

4π2j
,

(33)
xi = �q 2

i .

This equation can be solved for the case xi 
 m2. Really [3] one can look
for the solution in the form

ΔΨj(x1,x2) = c(h)
1√
x1x2

(
x1

x2

)λ
(34)

with pure imaginary value of λ. Using this anzatz and the explicit form
of φμ,φπ we obtain after some algebra

hi =
π2 sin(πλ)

32 cos2(πλ)
P i(λ)

λ(1 − λ2)
, i = π,μ,
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P π =
1
2
(5 − 4λ2),Pμ = 11 − 12λ2. (35)

For completeness we give a rough estimate of the order of total cross
sections of some processes in γγ collisions with bound state production
by photon exchange mechanism:

σγγ→PsPs =
πα8

96
r2
e(1 + 2 cos2 φ0), σγγ→AπAπ = (

re
4rπ

)2σγγ→PsPs,

σγγ→PsAπ =
πα8

64
r2
π(3 − 2 cos2 φ0), σγγ→π0Ps =

α7

32π2f 2
π

(1 + 2 cos2 φ0),

(36)

re =
α

me
, rπ =

α

mπ
.

They are really very small quantities of order 10−8 nb.

6. DISCUSSION

The quantities h = 2α2/π2, φ(�q 2
1, �q

2
2) obtained in [2, 3]

φ(�q 2
1, �q

2
2) =

1∫

0

dx

1∫

0

dy
X + Y − 5XY

X�q 2
1 + Y �q 2

2 +m2
, (37)

differ from our results h = α2/(4π2) and φ(�q 2
1, �q

2
2) given in (21).

In paper [3] the short explanations of manipulations with one-loop
expression of light-light scattering tensor was done to arrive at the form
cited above. We underline, nevertheless, that the result (21) can be used
in the problem of fitting the experimental data directly.

Similar phenomena take place as well in process of production of
an arbitrary number of gluon jets in high energy hadron collisions. It
was shown in frames of Quantum Chromodynamics (QCD) [6] that the
violation of unitarity result is

Σ(s) ∼
(
s

s0

)jBFKL

, jBFKL = Nc
αs
π

4 ln 2 ≈ 0.5. (38)

For the case of production of a single pseudoscalar particle by two
virtual photons the eigenvalue equation has a form

ΔΨπj (x1,x2) =
1
hπ
F (x1,x) ×ΔΨπj (x,x2), (39)

with xi = �q 2
i/m

2
q, mq is the constituent quark mass in the triangle fermion

loop, describing the decay π0 → γ∗γ∗ calculated in NJL frame and

F (x1,x) =
1

x1 − x
[ln2 x1 − ln2 x]. (40)
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Unfortunately, the conform-invariance induced anzatz used above cannot
be applied here. A similar problem arises in the case of production of
a single scalar meson, such as σ, a0, f0 in frames of NJL model. We
hope to return to this problem in future. We note in conclusion that
eigenvalue problem can be solved in the separable approximation for
function F (x, y) = φ(x)ψ(y). In any case the unitarity violation problem
remains as well in this case.

7. THE PROCESSES τ → ππν AND τ → ωπν

Lagrangians

For the description of the processes with intermediate W− and ρ,
and ω mesons in the ground state we need the part of the standard NJL
Lagrangian [7] which describes interactions of mesons and gauge bosons
with quarks

ΔL1 = q̄
[
i∂̂ −m+

gEW

2
τ±Ŵ± + gσIa

±
0 + igπγ5τ±π± +

gρ
2
τ±ρ̂±

]
q,

(41)

where q̄ = (ū, d̄) with u and d quark fields; m = diag (mu,md), mu =
= 280 MeV is the constituent quark mass, md − mu ≈ 3.7 MeV 1;
gEW is the electroweak constant; W , a±0 , π±, and ρ± are the electroweak,
scalamp, pion, and ρ meson fields, respectively; gπ is the pion coupling
constant, gπ = mu/fπ, where fπ = 93 MeV is the pion decay constant;
gρ is the vector meson coupling constant, gρ ≈ 6.14 corresponds to the
standard relation g2

ρ/(4π) ≈ 3; gσ = gρ/
√

6 is the scalar meson coupling
constant; τ± = (τ1 ∓ iτ2)/

√
2 , I = diag (1, 1) and τ1,2,3 are Pauli matrices.

The integrals through the quark loops take the form

I1(m) = −i Nc
(2π)4

Λ4∫
d4k

(m2 − k2)
=

Nc
(4π)2

[
Λ2

4 −m2 log

(
Λ2

4

m2 + 1
)]

, (42)

I2(m) = −i Nc
(2π)4

Λ4∫
d4k

(m2 − k2)2
=

=
Nc

(4π)2

[
log

(
Λ2

4

m2 + 1
)
−
(

1 +
m2

Λ2
4

)−1
]

, (43)

where Nc = 3 is a number of quark colors and Λ4 ≈ 1250 MeV is a
4-dimensional cut-off parameter in the standard NJL model [7].

1 We take into account the quark mass difference only in calculation of τ →
→ η(η′)πν decays.
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For description of the radial excited mesons interactions we use the
extended version of the NJL Lagrangian [8, 9]

ΔLint
2 = q̄(k′)

{
Aπτ±γ5π(p)−Aπ′γ5τ±π′(p)+

+Aρτ±ρ̂±(p)−Aρ′τ±ρ̂′±(p)
}
q(k), p = k − k′, (44)

Aπ = gπ1

sin (α+ α0)

sin (2α0)
+ gπ2f

(
k⊥

2
) sin (α− α0)

sin (2α0)
,

Aπ′ = gπ1

cos (α+ α0)

sin (2α0)
+ gπ2f

(
k⊥

2
) cos (α− α0)

sin (2α0)
,

Aρ = gρ1

sin (β + β0)

sin (2β0)
+ gρ2f

(
k⊥

2
) sin (β − β0)

sin (2β0)
,

Aρ′ = gρ1

cos (β + β0)

sin (2β0)
+ gρ2f

(
k⊥

2
) cos (β − β0)

sin (2β0)
.

The radially excited states were introduced in the NJL model with the
help of the form factor in the quark-meson interaction:

f
(
k⊥

2
)
=
(
1 − d|k⊥2|

)
Θ
(
Λ2 − |k⊥2|

)
,

(45)
k⊥ = k − (kp)p

p2 , d = 1.788 GeV−2,

where k and p are the quark and meson momenta, respectively. The cut-off
parameter Λ3 = 1.03 GeV. Thus, the divergent integrals have the form

If...fm = −iNc
Λ3∫

d4k

(2π)4

(
f(k⊥2

)
)n

(m2 − k2)m
, (46)

where n is a number of vertexes with form-factor, d = 1.788 is the slope
parameter.

The coupling constants gρ1 = gρ and gπ1 = gπ are the same as in the
standard NJL version. The constants gρ2 = 10.56 and gπ2 = gρ2/

√
6 , and

the mixing angles α0 = 58.39◦, α = 58.70◦, β0 = 61.44◦, and β = 79.85◦
were defined in [10].

8. THE PROCESSES τ → ππν AND τ → ωπν

The amplitude of the τ → π−π0ντ decay is described in the NJL model
by the Feynman diagrams given in Fig. 3

T = GF |Vud|fa1(p
2)m2

ρ

(
1 − i

√
q2 Γρ(p

2)/m2
ρ

m2
ρ − p2 − i

√
p2 Γρ(p2)

+

+
eiπCWρ′Cρ′ππ(1/gρ)p2/m2

ρ

m2
ρ′ − p2 − i

√
p2 Γρ′(p2)

)
(pμπ− − pμ

π0)lμπ
−π0, (47)
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where

fa1(p
2) = Z + (1 − Z) +

(
p2 −m2

π

(gρFπ)2

)(
1 − 1

Z

)
=

= 1 +

(
p2 −m2

π

(gρFπ)2

)(
1 − 1

Z

)
, (48)

where Z = (1 − 6m2
u/m

2
a1
)−1 is the additional renormalizing factor pion

fields that appeared after the inclusion of a1–π transitions. This function
describes the creation of pions at the ends of the triangle quark diagram
with taking into account the possibility of creation of these pions through
the intermediate axial-vector a1(1260) meson. The first term of this
amplitude corresponds to the triangle diagram without a1–π transitions,
the second term corresponds to diagram with a1–π transition on the one
of the pion lines and the third term corresponds to the diagram with
transitions on both pion lines.

The NJL model allows us to describe the processes of the τ lepton
decays without introduction of arbitrary parameters. Firstly, such
calculations were fulfilled in the work [11, 12] where decays τ → 3πν
and τ → πγν were described. Here we consider in the framework of
the extended NJL decays τ → ππ(π′)ν, τ → πων, τ → πη(η′)ν taking
into account intermediate vector mesons ρ(770), ρ(1450) and scalar
mesons a0(980), a0(1450). For description of first radial-excited state the
polynomial form-factor of second order over transversal momentum is
used.

The W− → ρ− transition was defined in [13]

CWρ′
GF |Vud|
gρ

(gμνp2 − pμpν), (49)

CWρ′ = −
(
cos (β + β0)

sin (2β0)
+ Γ

cos (β − β0)

sin (2β0)

)
, (50)

where Γ = 0.54. The vertex ρ′ππ is described by the term

Cρ′ππ = −
(
cos (β + β0)

sin (2β0)
gρ1 +

cos (β − β0)

sin (2β0)

If2
I2
gρ2

)
= 1.68. (51)

After using the expression for the decay width we get B(τ− →
→ π−π0ντ ) = 24.76%, when the world average found in PDG [14] is
(25.51 ± 0.09)%. With the help of the method used here we can obtain
also a qualitative prediction for branching of the process τ → ππ′(1300)ν.
This value approximately equals 0.2%, which does not contradict modern
experimental data regarding the decays τ → 4πν. This prediction can be
useful result for future experimental measurement.
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9. THE DECAY τ → ππν

Fig. 3. The diagrams describing the decay τ → ππν

Table 1

CLEO ALEPH BELLE NJL

B, % 25.32 ± 0.15 25.471 ± 0.097 ± 0.085 25.24 ± 0.01 ± 0.39 24.76

10. THE DECAY τ → ωπν

The expression for the amplitude describing the decay τ → πων
(see Fig. 4):

T = GF |Vud|ν̄(1 − γ5)γμτ(TWρ + Tρ′)εμνρσp
ρ
ωp

σ
πω

νπ. (52)

The TWρ term corresponds to the contribution given by the contact
diagram and the diagram with an intermediate ρ(770) meson. Using the
factor for W − ρ transition, we can get the expression that coincides with
one given by the vector meson dominance model:

TWρ =
Cρ
gρ1

1 − iΓρ/mρ

m2
ρ − p2 − imρΓρ

m2
ρ. (53)

The contribution of the amplitude with an intermediate ρ(1450) meson
reads

Tρ′ = Cρ′CWρ′
p2

m2
ρ′ − p2 − i

√
p2 Γρ′(p2)

. (54)

Fig. 4. The diagrams describing the decay τ → ωπν
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The vertex constants Cρ and Cρ′ are defined from the extended NJL model
Lagrangian

Cρ
gπ1

=

(
gρ1

sin (β + β0)

sin (2β0)

)2

I3 +

(
gρ2

sin (β − β0)

sin (2β0)

)2

Iff3 +

+ 2gρ1gρ2

sin (β + β0)

sin (2β0)

sin (β − β0)

sin (β0)
If3 , (55)

− Cρ′

gπ1

= gρ1

sin (β + β0)

sin (2β0)
gρ1

cos (β + β0)

sin (2β0)
I3+

+ gρ2

sin (β − β0)

sin (2β0)
gρ2

cos (β − β0)

sin (2β0)
Iff3 +

+ gρ1

sin (β + β0)

sin (2β0)
gρ2

cos (β − β0)

sin (2β0)
If3 +

+ gρ2

cos (β + β0)

sin (2β0)
gρ1

sin (β − β0)

sin (2β0)
If3 , (56)

Using these formulas we get values for the branching BNJL(τ →
→ πων) = 1.85%. The CLEO [15] measurement equals (1.95 ± 0.08)%
and the ALEPH [16] is (1.91 ± 0.13)%.

11. THE DECAY τ− → η(η′)π−ν

At present, the decays τ− → η(η′)π−ν are not well studied in
experiments [14]. The experiment gives us only upper limit. The processes
τ− → η(η′)π−ν are the second class decays. These decays are going due
to quark mass differences. For calculation of these decays we should first
calculate two non-diagonal transitions π0 → η and W− → a−0 within the

Fig. 5. The diagrams describing the decay τ− → η(η′)π−ν

Table 2

CLEO ALEPH NJL

B, % 1.95±0.08 1.91±0.13 1.85
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Table 3

Bπη
V · 10−6 Bπη

S · 10−6 Bπη
tot · 10−6

NJL 4.35 0.38 4.72

PR 1.58−5.70 10.7−65.9 � 26

NS 3.6 ∼ 10 3−10

EXP — — < 99

Table 4

Bπη′
V · 10−8 Bπη′

S · 10−8 Bπη′
tot · 10−8

NJL 1.11 1.98 3.09

PR 0.14−3.4 6−18 —

NS < 2 + 8 < 10 + (20−120) < 140

EXP — — < 72

NJL model. These transitions go through quark loops containing u and d
quarks (see Fig. 5).

We use the amplitude for τ → ππν with the π0 → η(η′)

TV = επη(η′)m
2
ρ

((
1 − i

√
q2 Γρ(p

2)

m2
ρ

)
BWρ(p

2) + βρ
p2

m2
ρ

BWρ′(p
2)

)
×

× (pμπ− − pμη(η′))lμπ
−η(η′), (57)

For the processes with the intermediate vector meson we get contributions
to branching fractions

BV (τ → ηπν) = 4.35 · 10−6, (58)

BV (τ → η′πν) = 1.11 · 10−8. (59)

The W− → a−0 transition takes the form
√

3
4gρ

gEW|Vud|(md −mu)p
μW−

μ a
−
0 , (60)

The amplitude with the intermediate scalar meson (see Fig. 5) takes
the form

TS = 2Zmu(md −mu)εη(η′)(BWa0(p
2) + βa0η(η′)πBWa′0(p

2))pμlμπ
−η(η′),

(61)
where BWa0(a′0)(p

2) is the Breit–Wigner formula for the a0(a
′
0) meson

with ma0 = 980 MeV, ma′0 = 1474 MeV, Γa′0(ma′0) = 265 MeV taken
from PDG [14] and Γa0(ma0) = 100 MeV calculated in the NJL model
which coincides with the upper PDG limit [14]. For the estimation of the
contribution of the radial-excited a−0 (1450) to the τ decays we should use
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the extended NJL model [8–10]. The amplitudes Aa′0→η(η′)π can be found
in [17, 18]. The transition W− → a−(1450) takes the form

CWa′0 =

√
3

4gρ
gEW|Vud|(md −mu)×

×
(
cos (φ+ φ0)

sin (2φ0)
+ Γ

cos (φ − φ0)

sin (2φ0)

)
pμW−

μ a
−
0 , (62)

where φ0 = 65.5◦ and φ = 72.0◦ are the mixing angles.
Thus, we get the βa0η(η′)π parameter:

βa0η(η′)π = eiπCWa′0

√
6

4Z

Aa′0→η(η′)π

mu
. (63)

The values βa0ηπ = −0.24 and βa0η′π = −0.26 do not contradict the ones
given in [19, 20]. The contributions to the branching fractions from the
amplitude (61) are

BS(τ → ηπν) = 0.37 · 10−6, (64)

BS(τ → η′πν) = 2.63 · 10−8. (65)

The expression for the total width is

Γ =
G2
f |Vud|2

384πm2
τ

m2
τ∫

m2
η(η′)+m

2
π

ŝ

s3λ
1/2(s,m2

η(η′),m
2
π)(m

2
τ − s)2×

×
(
|TV |2(2s+m2

τ )λ(s,m
2
η(η′),m

2
π) + |TS|23m2

τ (m
2
η(η′) −m2

π)
2
)
. (66)

Note that there is no interference between the vector and scalar
intermediate state contributions. Thus, for branchings we get

B(τ− → ηπ−ν) = 4.72 · 10−6, (67)

B(τ− → η′π−ν) = 3.74 · 10−8. (68)

Let us note that our estimations for scalar contributions are much less
than ones in previous works. One can see comparison in Tables 1, 2
and 3, 4.
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