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This article is an introduction to the Monte Carlo method as used in particle transport. After a description at an elementary
level of the mathematical basis of the method, the Boltzmann equation and its physical meaning are presented, followed
by Monte Carlo integration and random sampling, and by a general description of the main aspects and components of a
typical Monte Carlo particle transport code. In particular, the most common biasing techniques are described, as well as
the concepts of estimator and detector. After a discussion of the different types of errors, the issue of Quality Assurance is
briefly considered.

INTRODUCTION
The Monte Carlo method was invented by John von
Neumann, Stanislaw Ulam and Nicholas Metropolis
(who gave it its name), and independently by Enrico
Fermi. Originally it was not a simulation method, but
a device to solve a multidimensional integro-differential
equation by building a stochastic process such that some
parameters of the resulting distributions would satisfy
that equation. The equation itself did not necessarily
refer to a physical process, and if it did, that process
was not necessarily stochastic [1].

It was soon realized, however, that when the method
was applied to an equation describing a physical stocha-
stic process, such as neutron diffusion, the model (in
this case a random walk) could be identified with the
process itself. In these cases the method (analog Monte
Carlo) has become known as a simulation technique,
since every step of the model corresponds to an identical
step in the simulated process.

Particle transport is a typical physical process des-
cribed by probabilities (cross sections are interaction
probabilities per unit distance). Therefore it lends itself
naturally to be simulated by Monte Carlo. Many appli-
cations, especially in high energy physics and medicine,
are based on simulations where the history of each par-
ticle (trajectory, interactions) is reproduced in detail.
However in other types of application, typically shiel-
ding design, the user is interested only in the expectation
values of some quantities (fluence and dose) at some
space point or region, which are calculated as solutions
of a mathematical equation.

This equation (the Boltzmann equation), describes the
statistical distribution of particles in phase space and
therefore does indeed represent a physical stochastic
process. But in order to estimate the desired expectation
values it is not necessary that the Monte Carlo process
be identical to it.
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In many cases, it is more efficient to replace the actual
process by a different one resulting in the same average
values but built by sampling from modified distributi-
ons Such a biased process, if based on mathematically
correct variance reduction techniques, converges to the
same expectation values as the unbiased one, but it can-
not provide information about the higher moments of
statistical distributions (fluctuations and correlations). In
addition, the faster convergence in some user-privileged
regions of phase space is compensated by a slower
convergence elsewhere.

Complexity

In the past, when computers were still slow and expen-
sive, shielding design was based on analytical and
numerical techniques (point-kernel formulae based on
source terms, build-up factors and attenuation lengths).
Computers were used to run simple codes based on
those point-kernel formulae or early Monte Carlo codes
featuring simple geometries (R-Z) and many physics
approximations (e.g. no thermal neutrons, no multiple
scattering).

In recent years, thanks to the availability of faster and
cheaper computers, and of computer codes of improved
quality, an increasing number of particle transport cal-
culations in scientific and applied fields are carried out
by means of Monte Carlo programs. The main advan-
tage over the old techniques is mainly in the capability of
the most modern codes to handle problems of practically
any degree of complexity.

In the Monte Carlo programs before the ’90s the com-
mon approach was to simplify as much as possible, con-
verting complicated geometries to equivalent symmetri-
cal ones, neglecting the less important physical effects
and using various types of approximations to reduce the
problem to one in few dimensions, easily integrated by
analytical or numerical techniques. The modern Monte
Carlo codes, instead, require fewer approximations (an
exception are the condensed histories, described in a
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later section) and provide more accurate solutions. The
possibility to cope with problems which before could
not be solved at all has opened the way to a large number
of new applications, one of which are of course analog
simulations.

Time

Monte Carlo calculations require much more time than
the old analytical techniques: this includes preparation
time, time to set up biasing, CPU time and analysis
time. Preparation time is mainly devoted to describe and
debug the problem geometry.

A long time may be needed to set up biasing in order
to reduce CPU time: an efficient biasing scheme may
demand a lot of patience and testing. In many cases, the
speed and low cost of modern computers allow to work
with little or no biasing, especially if a computer cluster
is available for parallel computations. But still problems
exist where a strong biasing is needed.

It is extremely important to reserve time for a care-
ful analysis: the results must be checked for all kinds of
possible mistakes. In particular, the results must be con-
sistent with expectations based on physical judgment:
cross-checking with analytical formulae can help.

THE MATHEMATICAL BASIS OF MONTE CARLO
Most of the theoretical and mathematical foundations
of Monte Carlo, as well as most basic textbooks on
that technique [2, 3, 4, 5, 6] were historically centered
on low-energy neutron and photon transport. However,
several modern programs apply the same mathemati-
cal apparatus to the transport of charged particles and
to interactions at higher energies, with some neces-
sary additions which will be mentioned in later sections
(condensed histories, decay, transport in electric and
magnetic fields).

Mean of a distribution

In one dimension:

Given a variable x, distributed according to a function
f(x), the mean or average of another function of the
same variable A(x) over an interval [a,b] is given by:

Ā =

R b

a
A(x)f(x)dx
R b

a
f(x)dx

(1)

Or, introducing the normalized distribution f ′(x):

f ′(x) =
f(x)

R b

a
f(x)dx

(2)

Ā =

Z b

a

A(x)f ′(x)dx (3)

A special case is that of A(x) = x:

x̄ =

Z b

a

xf(x)dx (4)

In several dimensions:

Given n variables x, y,. . . , distributed according to the
(normalized) functions f ′(x), g′(y). . . , the mean or ave-
rage of a function of those variables A(x, y . . . ) over an
n-dimensional domain is given by:

Ā =

Z

x

Z

y

. . .

Z

A(x, y,. . . )f ′(x)g′(y). . . dxdy. . . (5)

An n-dimensional integral is often impossible to cal-
culate with traditional methods, but we can sample N
values of A with probability f ′g′h′. . . and divide the
sum of the sampled values by N :

SN =

N
X

1

A(x, y, z, . . . )f ′(x) g′(y)h′(z) . . .

N
(6)

Since each term of the sum is distributed like A, in this
case the integration is also a simulation (Analog Monte
Carlo).

Central Limit Theorem

The Central Limit Theorem [7] says that for large values
of N , the distribution of averages (normalized sums SN )
of N independent random variables identically distri-
buted (according to any distribution with mean Ā and
variance σ2 6= ∞) tends to a normal distribution with
mean Ā and variance σ2

A/N :

lim
N→∞

SN =

= lim
N→∞

N
X

1

A(x, y, . . . )f ′(x) g′(y) . . .

N
= Ā (7)

lim
N→∞

P (SN ) =
1

q

2π
N

σA

e
−

(SN−Ā)2

2σ2
A

/N (8)

The Central Limit Theorem is the mathematical foun-
dation of the Monte Carlo method. In words: “Given
any observable A, that can be expressed as the result
of a convolution of random processes, the average value
of A can be obtained by sampling many values of A
according to the probability distribution of the random
processes”.

The Monte Carlo method is indeed an integration
technique that allows to solve multi-dimensional inte-
grals by sampling from suitable stochastic distributions.
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The accuracy of MC estimator depends on the number
of samples:

σ ∝ 1√
N

(9)

Analog Monte Carlo

In an analog Monte Carlo calculation, not only the mean
of the contributions converges to the mean of the actual
distribution, but also the variance and all moments of
higher order:

lim
N→∞

2

6

6

6

6

4

N
X

1

(x − x̄)n

N

3

7

7

7

7

5

1
n

= σn (10)

Then, partial distributions, fluctuations and correlations
are all faithfully reproduced: in this case (and in this case
only!) we have a real simulation.

PHASE SPACE
Phase Space is a concept of classical Statistical Mecha-
nics. Each phase space dimension corresponds to a par-
ticle degree of freedom: three dimensions correspond to
position in (real) space: x, y, z, and three other dimen-
sions correspond to momentum: px, py, pz (or to energy
and direction: E, θ, φ). More dimensions may corre-
spond to other possible degrees of freedom: quantum
numbers (e.g. spin), particle type, etc. Each particle is
represented by a point in phase space. Time can also be
considered as a coordinate, or it can be considered as
an independent variable: the variation of the other phase
space coordinates as a function of time (the trajectory of
a phase space point) constitutes a particle “history”.

Phase space density

The phase space density Ψ (number of particles in an
infinitesimal volume of phase space) is the most general
radiometric quantity. It is defined as the derivative of
fluence Φ with respect to all phase space coordinates:
time, energy and direction vector:

Ψ =
∂Φ

∂t ∂E ∂~Ω
= Φ̇E~Ω (11)

Ψ is known as angular flux in transport theory and
cosmic ray physics. It is a fully differential quantity, but
most Monte Carlo solutions are integrals of Ψ over one
or more (or all) phase space dimensions: coordinates,
time, energy, angle. Fluence Φ, on the opposite, is the
most integral radiometric quantity:

Φ =

Z

E

Z

~Ω

Z

t

Φ̇E~ΩdEd~Ωdt (12)

The Boltzmann equation

The Boltzmann Equation is a balance equation in phase
space: at any phase space point, the increment of particle
phase space density Ψ in an infinitesimal phase space
volume is equal to the sum of all “production terms”
minus the sum of all “destruction terms”:

1

v

∂Ψ(x)

∂t
+ ~Ω · ∇Ψ(x) + ΣtΨ(x) − S(x) =

=

Z

Ω

Z

E

Ψ(x)Σs(x
′ → x)dx′ (13)

where x represents all phase space coordinates:
~r, ~Ω, E, t.
The various elements of the Boltzmann Equationhis
have the following physical meaning:

• The 1
v

∂Ψ(x)
∂t

term represents the time-dependent
density change, for instance due to particle decay

• ~Ω ·∇Ψ(x) is the density change due to translational
movement without change of energy and direction

• ΣtΨ(x), where Σt is the total macroscopic cross
section (inverse of the mean free path), is a term
representing absorption

• S(x) represents the particle sources
• the double integral, where Σs is the macroscopic

scattering cross section, refers to scattering: change
in density due to direction (and possibly energy)
change, without a change of particle position

All particle transport calculations are explicit or implicit
attempts to solve the Boltzmann Equation.

Sources and detectors

To solve the Boltzmann Equation, it is necessary to
define one or more sources and one or more detectors.

A source is a region of phase space. In the most gene-
ral definition, a source consists of one or more particle
types, a range of space coordinates and a distribution
in angle, energy and time. But in the simplest case a
source is simply a monoenergetic monodirectional point
source, i.e. a “pencil beam”.

A detector too is a region of phase space, in which the
user wants to find a solution of the Boltzmann equation.
Solutions can be of different type: at a number of (real or
phase) space points, averaged over (real or phase) space
regions, time-dependent or stationary, etc. More in gene-
ral, a detector is defined by distributions of Ψ in some of
the phase space coordinates and integrated over others.
It is interesting to notice the symmetry between sources
and detectors: and indeed in some low-energy Monte
Carlo codes they can be exchanged (adjoint mode).

The user must define a detector for each solution
requested.
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The integral form of the Boltzmann equation

The Boltzmann equation shown in Eq. (13) is in integro-
differential form. But for Monte Carlo calculations it
is more convenient to put it in integral form, carrying
out the integration over all possible particle histories. A
theorem of statistical mechanics, the Ergodic Theorem,
says that the average of a function along the trajecto-
ries is equal to the average over all phase space. The
trajectories “fill” all the available phase space.

We will change the coordinates along the line s in
direction ~Ω:

1

v

∂Ψ

∂t
+

dΨ

ds
+ ΣtΨ = S + q (14)

where q indicates the scattering integral of Eq. (13).
Now let’s consider only the fraction of particle phase

space density in the detector which is contributed by tra-
jectories going directly from the source to the detector
without any scattering (“uncollided term” Ψ0):

Ψ0 = S exp

„

−
Z s

0

Σtsds

«

= Se−β (15)

where the quantity β =
R s

0
Σtsds, which is called

the “optical thickness”, is the probability that a particle
emitted by the source will reach the detector without
absorption nor scattering.

The contribution by trajectories which reach the
detector after one scattering (“once-collided” term Ψ1)
can be derived from Ψ0:

Ψ1 =

Z

∞

0

e−β

»
Z

E

Z

~Ω

ΣsΨ0d~ΩdE

–

ds = KΨ0 (16)

where the integral is concisely represented by the K
operator.

In the same way, a twice-collided contribution Ψ2 is
obtained from Ψ1, and so on. Each term is derived from
the previous one, adding one scattering. The resulting
series, obtained by successive application of the operator
K:

Ψ0 = Se−β, Ψ1 = KΨ0, Ψ2 = KΨ1, . . . ,

. . . Ψn = KΨn−1 (17)

is called the Neumann series (from the mathematician
Carl Neumann).

The total angular flux Ψ, averaged over the detector,
is given by the sum of the terms of the Neumann series:
Ψ = Ψ0 + Ψ1 + Ψ2 + · · · + Ψn [8].

It can be noticed that analytical shielding formulae
for low energy photons and neutrons are written as:
D = D0Be−Σx, where D (dose) is assumed to be pro-
portional to Φ (fluence), D0e

−Σx is the uncollided term,
and B (build-up factor) is the sum of all collided terms.

INTEGRATION BY MONTE CARLO
Integration efficiency

Traditional numerical integration methods (e.g., the
Simpson rule) converge to the true value as N−1/n,
where N is the number of integration points or inter-
vals and n is the number of dimensions. Integration by
Monte Carlo converges as N−1/2 , independent of the
number of dimensions. Therefore:

• n = 1 : Monte Carlo is not convenient
• n = 2 : Monte Carlo is about equivalent to traditio-

nal methods
• n > 2 : Monte Carlo converges faster (and the more

so the greater the dimensions).

With the integro-differential Boltzmann equation (13)
the dimensions are the 7 of phase space, but using the
integral form (14) the dimensions over which the inte-
gral is calculated are those of the largest number of
“collisions” per history (the Neumann term of highest
order).

Note that the term “collision” is derived from low-
energy neutron/photon transport theory. Here it should
be understood in the extended meaning of “interaction
where the particle changes its direction and/or energy,
or produces new particles”.

Random sampling

The use of random sampling techniques is the distinc-
tive feature of Monte Carlo. The central problem of the
Monte Carlo technique is:

“Given a Probability Density Function (pdf) of the
x variable, f(x), generate a sample of x’s distributed
according to f(x)” (x can be multidimensional).

Solving the integral Boltzmann transport equation by
Monte Carlo consists of two essential parts: descri-
bing the geometry and materials of the problem, and
sampling randomly the outcome of physical events from
probability distributions.

Random and pseudorandom numbers

The basis of all Monte Carlo integrations are random
values of a variable distributed according to a pdf. In
the real physical world, an experiment samples a large
number of random outcomes of physical processes:
these correspond, in a computer calculation, to pseudo-
random numbers sampled from pdf distributions. The
basic pdf is the uniform distribution: f(ξ) = 1, with
0 ≤ ξ < 1.

Pseudo-random numbers (PRN) are sequences that
reproduce the uniform distribution, constructed from
mathematical algorithms (PRN generators). A PRN
sequence looks random but it is not: it can be suc-
cessfully tested for statistical randomness although it is
generated deterministically. A pseudo-random process
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is easier to produce than a really random one, and has
the advantage that it can be reproduced exactly.

PRN generators have a period, after which the
sequence is identically repeated. However, a repeated
number does not imply that the end of the period has
been reached. The period of the generator by Marsaglia
and Tsang [9] is > 1061 , and that of the “Mersenne Twi-
ster” by Matsumoto and Nishimura [10] is longer than
106000 .

Sampling from a discrete distribution

Consider a discrete random variable x, that can
assume values x1, x2, . . . , xn with respective probabi-
lities p1, p2, . . . , pn. Assume Σipi = 1, or normalize
it.

Let us divide the interval [0, 1) in n subintervals, with
limits y0 = 0, y1 = p1, y2 = p1 + p2, . . . , yn = Σn

1 yn

(note the use of the cumulative probabilities: this is a
typical feature of Monte Carlo sampling that we will
meet again when dealing with sampling from continuous
distributions).

Generate a uniform pseudo-random number ξ.
Find the ith y-interval such that yi−1 ≤ ξ < yi and

select X = xi as the sampled value. Let P (X) be the
correspondent probability.

Since ξ is uniformly random:

P (X) = P (yi−1 ≤ ξ < yi) = yi − yi−1 = pi (18)

Sampling from a generic continuous distribution

Consider a generic continuous pdf f(x).
Integrate the distribution function, f(x), analytically or
numerically, and normalize to 1 to obtain the normalized
cumulative distribution:

F (t) =

R t

xmin
f(x)dx

R xmax

xmin
f(x)dx

(19)

Generate a uniform pseudo-random number ξ.
Get a sample of f(x) by finding the inverse value
X = F−1(t), analytically or most often numerically
by table look-up and interpolation. Let P (X) be the
correspondent probability.

Since ξ is uniformly random:

P (a ≤ X < b) = P [F (a) ≤ ξ < F (b)] =

F (b) − F (a) =

Z b

a

f(x)dx (20)

The rejection technique

Some distributions cannot be easily sampled by integra-
tion and inversion.
Let f ′(x) be one such distribution (normalized) that we
want to sample.

Let g(x) be another distribution function, also normali-
zed, that can be sampled, such that Cg(x) ≥ f ′(x) for
all x ∈ [xmin, xmax].
Generate a uniform pseudo-random number ξ1 to sam-
ple X from g(x).
Generate a second pseudo-random number ξ2.
Accept X as a sample of f ′(x) if ξ2 > f ′(X)/[Cg(x)],
otherwise re-sample ξ1 and ξ2.
The probability of X to be sampled from g(x) is
g(X), while the probability that it passes the test is
f ′(X)/[Cg(X)]: therefore the probability to have X
sampled and accepted is the product of probabilities
g(X)f ′(X)/[Cg(X)] = f ′(X)/C.
Since f ′(x) is normalized, the overall efficiency (proba-
bility accepted/rejected) is given by

ε =

Z

f ′(x)

C
dx =

1

C
(21)

The g(x) distribution is generally chosen as a uni-
form (rectangular) distribution or as a normalized sum of
uniform distributions, i.e. a piecewise constant function.

Other sampling techniques

Most discrete distributions, for instance the Poisson dis-
tribution, cannot be expressed by a simple enumeration
of probabilities. In a similar way, many continuous dis-
tributions cannot be integrated and inverted analytically,
and cannot be sampled easily by a rejection technique.
Although inversion of the cumulative distribution (dis-
crete or continuous) and rejection are the two basic
sampling techniques, many other schemes have been
found. Others are sometimes preferred because they
are faster or easier to implement: for instance, a pdf
f(x) = xn can be easily sampled by taking the lar-
gest of n + 1 random numbers. A very comprehensive
collection of such “recipes” can be found in the “Monte
Carlo Sampler” by Everett and Cashwell [11].

PARTICLE TRANSPORT MONTE CARLO
A typical Monte Carlo particle transport code works as
follows: each particle is followed on its path through
matter. At each step the occurrence and outcome of
interactions are decided by random selection from the
appropriate probability distributions. All the seconda-
ries issued from the same primary are stored in a “stack”
or “bank” and are transported before a new history is
started.

Most Monte Carlo transport codes are based on a
number of assumptions, not always explicitely stated,
which may limit their field of application or require
some approximation.

Media and geometry are generally supposed to be
static, homogeneous, isotropic and amorphous. A sta-
tic geometry makes it difficult to handle problems with
moving targets, although some attempts have been made
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successfully [12, 13]. The FLUKA code [19] allows
to make calculations of dose rates due to induced acti-
vity simulating in a same run the prompt radiation field
and that of the radioactive decay, but often radioac-
tive decay may take place in a geometry different from
that in which the radionuclides were produced, so that
a two-step calculation is necessary with two different
geometries [14]. The important problem of transport of
cosmic rays in the atmosphere, which would require a
description of the variable density of the atmosphere,
is normally handled by approximating the continuous
density variation by many discrete layers of uniform
density [15].

Particle transport is handled as a Markovian process,
i.e. the fate of a particle depends only on its actual
present properties, and not on previous events or histo-
ries. This assumption does not seem to present particular
problems.

Particles do not interact with each other. This is a
reasonable assumption in normal situations, but not in
extremely intense radiation fields as could be met in
a plasma or inside a star. Also, some rare radiation
interactions occurring at very high energies cannot be
simulated, such as the Chudakov effect [16] (reduced
energy deposition by electron-positron pairs due to the
cancelling of opposite charges).

Particles interact with individual electrons, atoms,
nuclei and molecules. This limitation does not allow to
simulate effects such as X-ray mirror reflection, which
are important in synchrotron radiation optics.

Material properties are not affected by particle reac-
tions. Most Monte Carlo programs require a static mate-
rial definition: but of course in these conditions it is not
possible to handle problems such as burnup in nuclear
reactors, where an intense neutron field modifies the
isotope composition of a material. To simulate such a
situation, it must be pointed out that the usual norma-
lization per primary particle is not possible: burnup is
not linear with the number of primary particles, since
it depends on the source intensity. Approximations are
possible by splitting the calculation in several successive
steps [17].

The accuracy and reliability of a Monte Carlo depend
on the models or data on which the probability distribu-
tion functions are based. The statistical accuracy of the
results depends on the number of “histories”. Statistical
convergence can be accelerated by “biasing” techniques.

Different flavors of Monte Carlo

Microscopic analog Monte Carlo

This type of Monte Carlo uses theoretical models to des-
cribe physical processes whenever it is possible, samples
from actual physical phase space distributions and pre-
dicts average quantities and all statistical moments of
any order. Codes belonging to this family, preserving
correlations and reproducing fluctuations in the best

way allowed by the physics models used, can really
be considered simulation codes. They are reasonably
safe and generally do not require particular precauti-
ons by the user, but are often inefficient and converge
slowly. Since this type of Monte Carlon samples from
the actual modeled physical distributions, it can fail to
predict contributions due to rare but important events.

Macroscopic Monte Carlo

This type of particle transport, called also parametri-
zed Monte Carlo, instead of simulating interactions in
detail, uses parametrizations of the reaction product dis-
tributions, obtained from fits to data and extrapolations.
It is faster than analog microscopic simulations, especi-
ally when there are complex reactions, and can be more
accurate if the theory contains uncertainties or approxi-
mations. It reproduces the single probability distribution
functions, but not the correlations among the products
of the interactions. Of course, macroscopic Monte Carlo
cannot be extended outside the range of the data used for
the parametrizations.

Model-based and table-based codes

Originally, before 1980, there were three different types
of Monte Carlo radiation transport codes:

• low-energy neutron-photon codes, developed mainly
for nuclear reactor problems (criticality and shiel-
ding)

• high-energy hadron codes, designed for accelerator
shielding or for high-energy physics

• electron-photon codes

Presently, some codes in the first category (for instance
MCNP [18]) and some belonging to the second one
(e.g., FLUKA [19]) have been extended to cover the
whole energy range and to transport a large number of
particles, including electrons. However, in the process
of extension they have kept some aspects of the origi-
nal structure. While the cross sections in the low-energy
neutron transport codes were based on tabulations deri-
ved from evaluated nuclear data files, those used by the
high-energy codes were mainly calculated from physical
models. In all modern codes it has been necessary to rely
on a mixed system where both approaches are followed,
each in a different energy range: but while the MCNP
developers have made an effort to extend as much as
possible the tabulation approach, those of FLUKA have
preferred to keep it to a minimum. The advantage of
tabulation-based codes is mainly sampling speed, while
model-based codes can describe correlations between
secondary particles, and offer some predictivity even
when experimental data are lacking.
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Biased Monte Carlo

In biased Monte Carlo one can sample from artificial
distributions, applying a weight to the particles to cor-
rect for the bias. In a similar way, the differential is
modified when calculating an integral by a change of
variable. This form of Monte Carlo predicts average
quantities, but not the higher moments: on the con-
trary, its goal is to minimize the second moment. Indeed,
getting the same mean with smaller variance results
in a faster convergence. Biasing allows sometimes to
obtain acceptable statistics where an analog Monte
Carlo would take years of CPU time to converge, but
cannot reproduce correlations and fluctuations. It must
also be pointed out that biased Monte Carlo makes only
privileged observables converge faster (some regions of
phase space are sampled more than others).

GEOMETRY
The algorithms to build a geometry and to track partic-
les inside it differ from code to code. In some codes the
geometry is built from basic solids, in others from sur-
faces, and in some others from both. The user describes
the problem geometry by means of input “cards” (text
lines) or, in some codes, by user-written routines. In
some cases, it is possible to define repeated structures,
obtained by translations or rotations of basic prototy-
pes. Complex geometries such as that of a human body
can be described in some Monte Carlo codes by means
of “voxels” (small elementary parallelepipeds): this fea-
ture is typically used to import Computed Tomography
scans.

MONTE CARLO EVENTS
Particle histories are sequences of various events or pro-
cesses, physical (e.g. a particle interaction with an atom
or with a nucleus) or referring to transport through the
geometry, for instance crossing a boundary between
two materials. Events belong to two categories: dis-
crete (or point-like) and continuous. Actual physical
events are essentially discrete, but for convenience cer-
tain sequences of many similar, microscopic events are
described as a continuous macroscopic one, sampled
from a suitable distribution.

Discrete processes

Discrete physics processess include atomic interactions
by photons (Compton, photoelectric effect, pair pro-
duction, coherent scattering), and by charged particles
(bremsstrahlung, δ ray emission, large angle Coulomb
scattering). Each of these processes are sampled only
when the energy of a particle is higher than given thres-
holds, built-in or set by the user. Nuclear interactions
include absorption and nuclear scattering (elastic and

non-elastic). Decays are also a type of discrete physics
processes.

Point-like transport processes are boundary crossing
and escape from the problem geometry.

Continuous processes

Charged particles lose energy and change direction as
a result of thousands of discrete collisions with ato-
mic electrons. To simulate in detail each collision
would require prohibitive computer times, except at
very low particle energies. Therefore, generally many
discrete scatterings are replaced by a straight conti-
nuous step, and the corresponding energy losses and
changes of direction are “condensed” into a sum of los-
ses (stopping power) and an overall scattering angle.
This approach, common to most Monte Carlo particle
transport programs, is known as the condensed-history
technique [20]. Some programs, however, provide a user
option to simulate in detail the single scatterings in par-
ticular situations (very low energies, boundary crossing,
conditions required by a multiple scattering theory not
satisfied).

Ionization energy losses belong to this type of conti-
nuous physical processes: all losses lower than a preset
threshold are continuously distributed along a particle
step. Any loss larger than threshold is simulated as a
discrete energy imparted to an electron which is then
transported separately (δ ray). Energy loss fluctuations
can be simulated for the losses below threshold.

Multiple Coulomb Scattering is another aspect of the
same continuous process: a deflection angle, sampled
from a theoretical distribution, is applied to each par-
ticle step. Some corrections are needed, to account for
the ratio between the length of the straight step and the
actual path length (Path Length Correction, PLC), for
the lateral displacement, etc. [21]

Other continuous transport events are neutral particle
displacements between interactions or boundaries and
particle displacements in vacuum, also implemented as
“steps”. When magnetic or electric field are present,
charged particle steps must be subdivided into smaller
steps to follow the curvature of the trajectory while kee-
ping the dE/dx and multiple scattering approximations.

Thresholds and cut-offs

Transport and production thresholds are needed because
of the limits of validity of the physics models, and also
to reduce computer time.

Transport thresholds

When the energy of a particle becomes lower than a
specified transport threshold, transport of that particle
is terminated and its remaining energy is deposited at
that point, or better, in the case of a charged particle,
is distributed along its residual range. The user’s choice
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of a threshold will depend on the “granularity” of the
geometry or of the scoring mesh and on the interest
in a given region. To reproduce correctly electronic
equilibrium, neighboring regions should have the same
electron energy threshold, and not the same range thres-
hold. Because photons travel longer paths than electrons
of the same energy, photon thresholds should be lower
than electron thresholds.

Production thresholds

Energy thresholds need to be set also for explicit produc-
tion of secondaries by photons and electrons. A δ-ray
threshold sets the limit between discrete and continuous
ionization energy losses. In a similar way, an energy
threshold can be set for explicit production of brems-
strahlung photons: below that threshold, the electron
radiative energy loss will be included in dE/dx stopping
power.

BIASING
Biased sampling, namely sampling from non-natural
probability distributions, has the purpose to accelerate
statistical convergence. This goal can be pursued in two
different, and often complementary, ways: reducing the
variance of a detector score for a same computer time,
or reducing the computer time needed to attain the same
variance. To evaluate the effectiveness of a biasing tech-
nique, it is customary to define a figure of merit for an
estimator called “computer cost” [22]:

F = σ2t (22)

where σ2 is the variance of a detector score and t the
CPU time per primary particle.

Some biasing techniques are aiming at reducing σ2,
others at reducing t, but all of them are generally refer-
red to as variance reduction techniques. Often reducing
σ2 increases t and vice versa. The variance σ2 conver-
ges like 1/N (where N = number of particle histories),
while the computer time t is obviously proportional
to N : therefore minimizing σ2t means reducing σ2

at a faster rate than t increases or vice versa. The
choice depends on the problems, and sometimes the
combination of several techniques is the most effective.

Bad judgment, or excessive “forcing” on one of the
two variables, can have catastrophic consequences on
the other one, making computer cost “explode”.

The two basic rules of biasing

In the Boltzmann equation (eq. (13),(14),(15)), there are
two ingredients: the particle phase space density Ψ(x)
and various operators acting on Ψ(x) (where x stands
for all phase space coordinates). Some of the opera-
tors are based on probability distribution functions. Both

the phase space density and the pdf’s can be biased,
assigning to each particle a statistical weight.

The particle phase space density Ψ(x) can be repla-
ced by a fictitious density Ψ′(x). The particle weight
w(x) must be replaced by a new weight w′(x) such
that wΨ(x) = w′(x)Ψ′(x). For instance, one particle
can be replaced by two identical particles with half its
weight and with the same position, energy and direction.

First rule of biasing:

weight × particle density must be conserved

The pdf-based operators appearing in the Boltzmann
equation are:

• Source S: space-energy-angular probability distri-
bution

• e−β: probability distribution of distance to interac-
tion

• Scattering cross section Σs: double-differential pro-
bability distribution in energy and angle

A pdf P (x) can be replaced by a fictitious pdf P ′(x).
The particle weight w(x) must be replaced by a new
weight w′(x) such that w(x)P (x) = w′(x)P ′(x).

Second rule of biasing:

weight × probability must be conserved

Importance Biasing

Importance biasing acts on the particle density so that
the density sampled in a given phase space region is pro-
portional to its contribution to the score by a detector of
interest. The most common form of importance biasing
combines two techniques: Surface Splitting (also cal-
led Geometry Splitting), which reduces σ2 but increases
t, and Russian Roulette, which does the opposite. This
kind of importance biasing is the simplest and easiest to
use of all variance reduction techniques. If used alone,
it is also very safe, since it introduces only very small or
zero weight fluctuations in a same space region.

The user assigns a relative importance to each geo-
metry region or cell (the actual absolute value doesn’t
matter), based on one or both of the following criteria:

1. the expected fluence attenuation in that region with
respect to other regions

2. the expected probability of contribution to score by
particles entering that region

Importance biasing is commonly used to keep a con-
stant particle population, compensating for attenuation
due to absorption or distance (first criterium), or to
reduce sampling in space regions which are not likely
to contribute to result (second criterium).

8



CALCULATIONS AND SIMULATIONS

Surface Splitting

If a particle crosses a region boundary, coming from a
region of importance I1 and entering a region of higher
importance I2 > I1, the particle is replaced on ave-
rage by n = I2/I1 identical particles with the same
phase space coordinates (type, position, energy, direc-
tion). The weight of each “daughter” is multiplied by
1/n = I1/I2: as always in correct biasing, weight is
conserved. If I1/I2 is too large, excessive splitting may
occur with codes which do not provide an appropriate
protection.

Russian Roulette

Russian Roulette (RR) acts in the opposite direction of
splitting: if a particle crosses a boundary of importance
I1 to one of lower importance I2 < I1, the particle is
submitted to a random survival test: with a chance I2/I1

the particle survives with its weight increased by a factor
I1/I2, and with a chance (1 − I2/I1) the particle is
killed (its weight is set to zero). Again, the weight is
conserved (on average):

I2

I1
× I1

I2
+

„

1 − I2

I1

«

× 0 = 1 (23)

Weight Window

The Weight Window technique too is a combination of
splitting and Russian Roulette, but it is based on the
absolute value of the weight of each individual particle,
rather than on relative region importance. The user sets
an upper and a lower weight limit, generally as a func-
tion of region, energy and particle. Particles having a
weight larger than the upper limit are splitted so that the
weight of their daughters will get a value between the
limits (i.e., it will be brought “inside the window”). Par-
ticles having a weight smaller than the lower limit are
submitted to Russian Roulette: they are killed or have
their weight increased to bring them “inside the win-
dow”, depending on a random choice. The new weight
is calculated so that average weight is conserved. The
Weight Window is a more powerful biasing tool than
simple RR/splitting based on region importance, but
requires also more experience and patience to set up
correctly, since the expected absolute weights are not
known a priori. It has often been said that “it is more an
art than a science”, but a “weight window generator” has
been implemented in the MCNP program [18], which
helps the user in this task [23], although it requires some
experience to generate useful results and entails some
additional CPU cost.

A Weight Window, possibly energy dependent, is
essential when other biasing techniques generate exces-
sive weight fluctuations in a given phase space region,
since large weight fluctuations tend to generate large
variances.

The effect of a Weight Window can be understood as
follows. Killing a particle with a very low weight (with
respect to the average for a given phase space region),
decreases the computer time per history, but has very
little effect on the score (and therefore on the variance
of the score). On the other hand, splitting a particle
with a very large weight increases the computer time
per history, in proportion to the number of additional
particles to be tracked, but at the same time reduces the
variance by avoiding large fluctuations in the contributi-
ons to scoring. The global effect is to reduce the figure
of merit σ2t.

A too wide window is of course ineffective. But too
narrow windows should also be avoided, otherwise too
much CPU time would be spent in repeated applicati-
ons of splitting and Russian Roulette cancelling each
other. A typical ratio between the upper and the lower
edge of the window is about 10. It is also possible to
do Russian Roulette without splitting (setting the upper
window edge very high) or splitting without Russian
Roulette (setting the lower edge = 0).

Time reduction: Leading Particle Biasing

Leading Particle Biasing (LPB), available only for elec-
trons, positrons and photons, is used to avoid the geome-
trical increase with energy of the number of particles in
an electromagnetic shower [24]. In every electromagne-
tic interaction two particles are present in the final state
(at least in the approximations made by most Monte
Carlo codes). With LPB, only one of the two particles
is randomly kept, and its weight is adjusted to conserve
weight×probability. The most energetic particle is kept
with higher probability, proportional to its energy, as the
one which is more efficient in propagating the shower,
and its weight is adjusted to account for the bias.

Leading Particle Biasing is very effective at redu-
cing the CPU time per history t, but increases the score
variance σ2 by introducing large weight fluctuations,
since a few low energy particles end carrying a large
weight, while many energetic particles will have a small
weight.

In theory, therefore, LPB should be backed up by
a Weight Window. But experience has shown that the
variance increase with respect to a few time-consuming
showers is partially balanced by a better sampling of
phase space in the many biased showers, each with
its vertex at a different position, which are handled
within the same CPU time. LPB is essential for shiel-
ding calculations at high energy electron accelerators:
to simulate in analog mode a multi-GeV electromagne-
tic shower would take an extremely long computer time:
at the maximum of a shower produced by a single 20
GeV electron in iron, the number of particles to be
transported (photons, electrons and positrons) is about
1000! But LPB is important also for shielding calculati-
ons at proton accelerators, to avoid spending too much
time dealing with electromagnetic showers due to π0
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decay. It is also possible to activate LPB only when the
parent particle has an energy lower than a user-defined
threshold.

A warning is necessary: with LPB, as with many
biasing schemes, energy is conserved only on average.

Non-analog absorption

Non-analog absorption, also called survival biasing,
is applicable to low-energy neutron transport. There
are three possibilities to handle neutron scattering and
absorption (we will indicate with σs the scattering cross
section and with σt the total cross section):

1. Analog: at each collision scattering and absorption
are sampled with the actual physical probability:
σs/σt and (1 − σs/σt) respectively. If scattering is
selected, the weight is unchanged; if absorption, the
weight becomes zero:

2. Biased without absorption: systematic survival,
weight reduced by a factor σs/σt:

3. Biased with user-defined absorption probability u.
Scattering has probability 1 − u. The weight is redu-
ced by a factor σs

σt(1−u)
:

Option 2. is a special case of Option 3. with u = 0.
Option 3. is available in the FLUKA code [19]. Note the
exchanges between probabilities and weights, such that
the product Probability×weight will remain unchanged.

A small survival probability is often assigned to ther-
mal neutrons to limit the number of scatterings in non-
absorbing media; it can also be very useful in materials
with unusual scattering properties such as iron. On the
other hand, survival probabilities too small with respect
to the physical one σs/σt may introduce large weight
fluctuations due to the very different number of collisi-
ons suffered by each neutron: in these cases, a Weight
Window should be applied.

Biased survival without absorption makes a neutron
to remain alive forever, except for escaping from the
geometry. After many collisions the neutron will have
a very small weight. In codes where this option is cho-
sen, Russian Roulette or Weight Window are needed at
each collision to avoid tracking neutrons with a weight
too small to make a significant contribution to score.

Biasing mean free paths

Decay length

The mean life or the average decay length of unsta-
ble particles can be artificially shortened, to increase
the generation rate of decay products. This technique
is typically used to enhance statistics of muon or neu-
trino production. The kinematics of decay (decay angle)

can also be biased to enhance sampling in a preferred
direction.

Interaction length

In a similar way, the hadron or photon mean free path for
nuclear inelastic interactions can be artificially decrea-
sed by a predefined particle or material dependent factor.
This option is useful for instance to increase the proba-
bility of beam interaction in a very thin target or in a
material of very low density.

Interaction length biasing is also necessary to sample
photonuclear reactions with acceptable statistics, since
the photonuclear cross sections are much smaller than
those for electromagnetic processes.

Exponential transformation

The mean free path biasing for inelastic interactions
can also be biased in the opposite way, by increasing
it, possibly in a preferred direction (path-length stret-
ching). This can be useful in case of attenuation in a very
thick shield. The exponential transformation accelera-
tes convergence at large shielding depths, but slows it
down at small depths. In general, it should be accompa-
nied with a Weight Window, since it can generate large
weight fluctuations due to the different ways a particle
can reach a given depth. Experience shows that a similar
biasing efficiency can be obtained by geometry splitting,
without introducing fluctuations.

User-written biasing

Provided each particle within the program can be assi-
gned a weight, it is possible for users to write their own
biasing. The case most often encountered is that of a
biased source energy spectrum, in which some energies
are preferentially sampled, but it is also common to bias
the source spatial and/or angular distribution. Of course,
in such cases it is the user’s responsibility to ensure that
weights are adjusted in a statistically correct way.

Sampling from a biased distribution

The sampling technique based on the cumulative pdf
can be extended to modify the sampling probability in
different parts of the interval (importance sampling).

We replace f(x) by g(x) = f(x)h(x), where h(x)
is any appropriate weight function. We normalize f(x)
and g(x):

f ′(x) =
f(x)

R xmax

xmin
f(x)dx

=
f(x)

A
(24)

g′(x) =
g(x)

R xmax

xmin
g(x)dx

=
g(x)

B
(25)
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and consider the biased cumulative normalized distribu-
tion G(x):

G(x) =

R x

xmin
g(x)dx

B
(26)

Now let us sample from the biased cumulative normali-
zed distribution G instead of the original unbiased F : let
us take a uniform random number ξ, and get the sampled
value X by inverting G(x):

X = G−1(ξ) (27)
The particle weight must be multiplied by the ratio of
the unbiased to the biased normalized pdf at x = X:

w′ = w
f(X)

g(X)
= w

B

A

1

h(X)
(28)

A special case is that when the biasing function chosen
is the inverse of the unbiased pdf:

h(x) =
1

f(x)
g(x) = f(x)h(x) = 1 (29)

G(x) =

R x

xmin
g(x)dx

R xmax

xmin
g(x)dx

=
x − xmin

B
=

=
x − xmin

xmax − xmin
(30)

In this case, X = G−1(ξ) = xmin + ξ(xmax − xmin)
and the weight of the sampled particle is multiplied by

B

A

1

h(X)
=

xmax − xmin

A
f(X) (31)

Because X is sampled with the same probability over
all possible values of x, independently of the value
f(X) of the function, this technique is used to ensure
that sampling is done uniformly over the whole inter-
val, even though f(x) might have very small values
in some x range. For instance, it may be important to
avoid undersampling in the high-energy tail of a spec-
trum, steeply falling with energy but more penetrating at
high energies, such as that of cosmic rays or synchrotron
radiation.

RESULTS FROM A MONTE CARLO
CALCULATION
Estimators

It is often said that a Monte Carlo calculation is a
“mathematical experiment” [5, 25]. Each aspect of a real
experiment has indeed its Monte Carlo equivalent:
Experimental technique ⇒ Estimator
Instrument ⇒ Detector
Measurement ⇒ Score, or Tally
Result of an experiment ⇒ Monte Carlo result
Just as a real measurement, a score is obtained by samp-
ling from a statistical distribution. As an experimental

result consists in an average of measurement values, a
statistical error and a systematic error, a Monte Carlo
result is an average of scores, a statistical error, and
a systematic error generally unknown. There are often
several different techniques to measure the same physi-
cal quantity: in the same way the same quantity can be
calculated with different kinds of estimators.

Estimator types

There are various types of estimators, depending on the
quantity to be estimated and on its topology (phase space
region over which the quantity is integrated).

The Boundary Crossing estimator is used to estimate
the fluence or the current of particles at a physical boun-
dary between two space regions. Possible results are
mono or multi-differential fluence spectra, as a function
of energy, angle, particle type, etc.

The Track Length estimator calculates the fluence of
particles in a region of real space. The results are fluence
spectra as a function of particle energy and type, based
on their path lengths within the region volume.

A Pulse Height estimator is used to simulate the
response of a spectrometer (for instance a Ge detec-
tor). The quantity estimated is the energy deposited in
a region of real space, and the result is the spectrum of
deposited energy within the region volume.

Scalar integral estimators are used to predict scalar
quantities, or their densities, such as deposited energy,
inelastic interactions (“stars”), induced activity, etc. in a
region of real space .

A Mesh (or Binning) estimator is a special case of
Scalar estimator, providing a 2D or 3D space distribu-
tion of a scalar quantity (scalar fluence, energy deposi-
tion, star density) over a regular subdivision of a portion
of real space in sub-volumes, generally independent
from the tracking geometry.

Estimator extensions

Most Monte Carlo codes have built-in estimators, to be
activated and tailored by the user. The results are usually
averaged over one run and normalized to one primary
particle. Additional flexibility can be achieved by convo-
lution, off-line or on-line, with energy-dependent con-
version factors. For instance, differential fluence can be
convoluted with conversion coefficients to obtain effec-
tive dose or ambient dose equivalent. Other possible
extensions can be obtained by event-by-event estimators
for correlated data analysis, or by full or partial dumping
of events: steps, interactions, etc, for off-line analysis.

Detectors

While an estimator is a technique to “measure” a certain
quantity, a detector is an instantiation (a concrete app-
lication) of an estimator in a particular region of phase
space. For instance, a track-length estimator of fluence
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can be concretely applied as a particular detector con-
sisting in a sphere of given radius centered at specified
coordinates. Often a Monte Carlo user wants to get a
result at one or more detectors, and has no interest in
what happens elsewhere. In this case, biasing can be
used to accelerate convergence in the neighborhood of a
detector, at the expense of other parts of phase space (but
if biasing is done correctly, for N → ∞ the integration
will converge to the true value everywhere, although at
a different speed). Thanks to the modern fast computers,
however, it is often possible to obtain a good result with
a multiple detector (a mesh detector) covering a large
region of real space. This kind of detector can be very
useful to identify shielding weaknesses in unexpected
places, as revealed for instance by color plots.

Statistical errors

The variance of the mean of an estimated quantity x
(e.g., fluence), calculated in N batches, is given by:

σ2
<x> =

1

N − 1

"

PN
1 nix

2
i

n
−
 

PN
1 nixi

n

!2#

(32)

where ni = number of histories in the ith batch, n =
P

ni = total number of histories in the N batches, xi =
average of x in the ith batch.

The variance can be calculated for single histories
(in the limit N = n, ni = 1), or for batches of
several histories each (not necessarily the same identical
number).

The distribution of scoring contributions by single
histories can be very asymmetric, since many histories
contribute little or zero. Scoring distributions from bat-
ches tend to Gaussian for N → ∞, provided σ2 6= ∞
(Central Limit Theorem).

The standard deviation of an estimator calculated
from batches or from single histories is an estimate of
the standard deviation of the actual distribution (“error
of the mean”). How good such an estimate is, depends
on the type of estimator and on the particular problem,
but it converges to the true value for N → ∞.

Effect of sampling inefficiency on statistical errors

The following table, adapted from the MCNP
Manual [18], suggests that the actual meaning of a
calculated statistical error may be different in Monte
Carlo from that expected based on the statistics of
experiments.

Relative error Quality of tally

50 to 100% Garbage
20 to 50% Factor of a few
10 to 20% Questionable

< 10% Generally reliable

Why does a 30% calculated error mean in fact an uncer-
tainty of a “factor of a few”? Because the actual error
corresponds to the sum (in quadrature) of two uncer-
tainties: one due to the fraction of histories which give
a zero contribution, and one which reflects the spread
of the non-zero contributions. The MCNP guideline is
empirically based on experience, not on a mathematical
proof, but it has been generally confirmed also in other
codes.

Other errors

Just as in experimental measurements, in addition to sta-
tistical errors, Monte Carlo results can be affected by
systematic errors and in some unfortunate cases even by
mistakes.

Systematic errors due to code weaknesses

A frequent case of systematic error is due to code weak-
nesses. Different codes are based on different physics
models and some models are better than others, or are
better in a certain energy range. Common code weak-
nesses are the presence of artifacts due to imperfect
algorithms, e.g., energy deposited at a point in the
middle of a step, inaccurate path length correction for
multiple scattering, missing correction for cross section
and dE/dx change over a step, etc.

While model quality is best tested by experimental
benchmarks at the microscopic level (e.g. thin target
experiments), good tests of algorithm quality are gene-
rally provided by benchmarks at the macroscopic level
(thick targets, complex geometries).

Some uncertainty is also unavoidable concerning the
experimental data on which a Monte Carlo code is
based. An error of 1% in the absorption cross section
can lead to an error of nearly a factor 3 in the shiel-
ding attenuation of a thick wall (10 attenuation lengths).
Results can never be better than allowed by available
experimental data.

Systematic errors due to lack of information

Not all necessary information needed to describe the
problem is always available to the user: for instance
material composition is not always well known. In par-
ticular concrete and soil composition, important for
shielding asnd environmental calculations, are difficult
to obtain with good accuracy. The water content can
affect critically the effectiveness of concrete [26], but
it is generally unknown and changing with time. Beam
losses are one of the most important parameters in acce-
lerator shielding, but most of the time they can only be
guessed. Another source of uncertainty is the possible
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presence of additional not well defined material (cables,
supports. . . )

Systematic errors, due to simplification

Many geometries cannot be reproduced exactly or
would require too much effort, and therefore must be
necessarily simplified. Air contains humidity and pol-
lutants and has a density variable with atmospheric
pressure. In general, these details are neglected in most
calculations.

Mistakes and bugs

Code bugs

Unfortunately Monte Carlo codes can contain bugs.
Physics bugs, due to poor design, have been found in
some codes in the past, e.g. non-uniform azimuthal scat-
tering distributions, energy non-conservation, incorrect
extrapolation of cross section data, etc. Programming
bugs also may exist, as in any other software, but tend to
become less frequent as a code becomes more mature.

User mistakes

Of course, as in any other kind of calculation, the user
can make mistakes. But the preparation of the input for
a Monte Carlo calculation can be very complex, and the
probability of user errors is not negligible. This is even
more so in case the input includes the writing of user
code. Some frequent mistakes [27] are the following:
• mis-typing the input: some codes are more or less

good at checking, but the final responsibility is the
user’s

• error in user code: the built-in features should be
used as much as possible

• wrong units
• wrong normalization of the results
• unfair biasing: energy/space cuts cannot be avoided,

but must be done with much care
• forgetting to check if gamma production is available

in the neutron cross sections used

QUALITY ASSURANCE
Many enforcing authorities require that Quality Ass-
urance (QA) be applied to shielding design procedures.
But imposing it on Monte Carlo calculations can only be
done in a very limited way. Monte Carlo is not a “black
box”, and different users are likely to choose different
approaches, equally valid, to the same problem. Among
other difficulties, a strict QA would probably require
forbidding to write user code, and would be incompa-
tible with the use of most variance reduction techniques
(“they are more an art than a science”, as reminded
above). However, QA can be required on keeping pro-
per documentation about code version, input, outputs,

applied biasing, possible user code, assumptions, nor-
malization, etc. Other recommended QA features are
that critical calculations be submitted to peer reviews
and to audits made by independent experts.
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