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Tel.: +420-266-173-286

Academic Editor: Blas Manuel Rodríguez-Lara
Received: 16 May 2016; Accepted: 12 June 2016; Published: 20 June 2016

Abstract: For a given operator D(t) of an observable in theoretical parity-time symmetric quantum
physics (or for its evolution-generator analogues in the experimental gain-loss classical optics, etc.)
the instant tcritical of a spontaneous breakdown of the parity-time alias gain-loss symmetry should
be given, in the rigorous language of mathematics, the Kato’s name of an “exceptional point”,
tcritical = t(EP). In the majority of conventional applications the exceptional point (EP) values
are not real. In our paper, we pay attention to several exactly tractable toy-model evolutions for
which at least some of the values of t(EP) become real. These values are interpreted as “instants of
a catastrophe”, be it classical or quantum. In the classical optical setting the discrete nature of our
toy models might make them amenable to simulations. In the latter context the instant of Big Bang
is mentioned as an illustrative sample of possible physical meaning of such an EP catastrophe in
quantum cosmology.

Keywords: parity-time symmetry; Schrödinger equation; physical Hilbert space; inner-product
metric operator; real exceptional points; solvable models; quantum Big Bang; quantum
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1. Introduction

In a historical perspective, the recent enormous growth of interest in the experimental as
well as theoretical aspects of optical systems exhibiting various anomalous (typically, complex and
space-dependent) forms of refraction index n(~x) /∈ R (mostly in two dimensions, with ~x ∈ R2)
may be traced back to the influential theoretical letter [1] in which Carl Bender with his student
Stefan Boettcher recalled the traditional parity-time symmetry alias PT symmetry and transferred
its use from relativistic quantum field physics (e.g., [2]) to the Krein-space-related spectral-theory
mathematics [3,4]. In this manner Bender with Boettcher opened the Pandora’s box of possible
applications of the concept of PT symmetry

HPT = PT H (1)

of Hamiltonians H in non-relativistic quantum mechanics [5]. In parallel, their study inspired also
generalizations of mathematically similar theories in several other branches of physics including
even the classical mechanics and, first of all, classical optics (also [6]; updated historical and
contextual remarks and also many related fresh as well as older references may be found, e.g., in
the physics-reviewing chapter [7] and/or in the more mathematics-oriented rest of monograph [8]).

The combination of the PT −symmetric quantum theory with the predominantly experimental
nature of the study of gain-loss systems in classical optics proved unexpectedly fortunate and
productive. In the past, the collaboration between the two communities of researchers materialized,
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i.a., during the series of dedicated international conferences [9]. There also seem to be no reasons for
a decrease of intensity of this mutual inspiration in the future. In what follows, the latter optimistic
expectation is to be supported constructively, via a toy-model study of the systems and instants at
which, in the language of quantum physicists, the PT −symmetry becomes spontaneously broken.

We intend to present here several new ideas in the field, with emphasis upon their
possible experimental testability in classical optics as well as upon their potentially deep
impact during the future development of quantum theory and of its various less standard
phenomenological applications.

2. The Context of Quantum Mechanics

Our basic methodical idea is that it makes sense to develop further the recently revealed intimate
formal relationship between the theoretically appealing quantum theories exhibiting PT −symmetry
(typically, in the Schrödinger equation) and the experimentally realizable classical optical systems
built, basically, on the solutions of the formally similar Maxwell equations in paraxial approximation.
Briefly, all of these systems may be characterized by the various specific forms of the balance between
the sinks and sources, causing the gain and loss in the electromagnetic radiation in general and in the
intensity of the light in optical settings in particular.

On the less pragmatic level of theoretical speculations we would like to point out here that in
both the classical and quantum contexts of propagation dynamics the most interesting phenomena
may be expected to occur, in the language of optics, in the domains of a “deeply complex”
refraction. In the parallel language of abstract quantum theory, one should speak about the
anomalously-looking dynamical regime of an apparently “deeply non-unitary” evolution, i.e., with
reference to the famous Stone’s theorem [10], about the regime in which the quantum Hamiltonian
appears “deeply non-self-adjoint”.

Once we recall the unifying terminology of mathematics we reveal that a common background
of study may be found in the classical Kato’s book on linear operators [11]. The author explained
there the necessary mathematical concepts via a methodically extremely efficient replacement of
complicated differential generators of evolution by the mere N−dimensional matrices D(N), mostly
of the first nontrivial dimension N = 2. In this manner, Kato was able to circumvent virtually all of the
inessential technical complications which mar, typically, the wider acceptance of the mathematically
very complicated differential-operator quantum Hamiltonians of Bender and Boettcher [12]. At the
same time, the use of the matrix models with N < ∞ may be also expected to facilitate the building of
bridges between the simplified matrix forms of toy-model PT −symmetric quantum Hamiltonians
H = D(N) and their optical analogs which would be much more accessible to the experimental testing.

The above-mentioned ambiguous concepts of the “deeply complex” refraction and/or of the
“deeply non-self-adjoint” operators of observables lose immediately their misleading flavor after one
recalls the Kato’s terminology. Indeed, one immediately imagines that the qualitative features of the
generic evolution law

i∂t|ψ〉 = H |ψ〉 (2)

(i.e., of quantum Schrödinger equation or of its formally equivalent paraxial-approximation analogue
in classical optics) are really best understood when the complicated differential operators H
(i.e., typically, the Bender’s and Boettcher’s PT −symmetric Hamiltonians H = −d2/dx2 + V(x)
with complex potentials V(x) such that HPT = PT H [1]) are approximated or entirely replaced
by the suitable toy-model matrices D(N) for which T performs Hermitian conjugation while
the parity-simulating P may be virtually arbitrary invertible matrix, exhibiting usually just the
involution-representation property P2 = I.

A particularly friendly class of time-dependent (and, incidentally, real) N by N matrices D(N)(t)
representing a quantum observable (i.e., admissibly but not necessarily just the evolution operators H
entering Equation (2)) was constructed and studied in [13]. Speaking, for the sake of brevity, just the
language of quantum theory from now on, the concept of the “deeply non-self-adjoint” dynamical
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regime was given there an entirely rigorous mathematical meaning. Moreover, the very first element
of the family

D(2)(t) =

[
−1

√
1− t2

−
√

1− t2 1

]
, t ∈ (−∞, ∞) (3)

(where t may denote either time or another variable parameter) was chosen equivalent to one of the
Kato’s illustrative examples.

Due to the latter incidental coincidence of toy models we imagined, later, that the
physics-inspired “deeply non-self-adjoint” operators are strictly those in which the parameter
(i.e., in our model (3), time t) lies sufficiently close to its so called “exceptional point”
value t(EP) at which, by definition [11], the matrix in question acquires a non-diagonalizable,
Jordan-block-equivalent form. For our most elementary toy model (3) there exists strictly one EP
value which is real, t(EP) = 0 [14].

After the toy-model specification of H = D(2)(t), the “physical” solutions of Schrödinger
Equation (2) would cease to be acceptable at the EP value of time. This immediately leads to the
interesting questions of what can happen and what happens under which circumstances (i.e., what is
the physical meaning and dynamics of the system) in the EP vicinity, at the small and positive
differences t− t(EP). The latter problem will be addressed in what follows.

3. The Context of the Theory of Catastrophes

3.1. A Remark on Terminology

Long before the ultimate formulation of the PT −symmetric quantum theory between years
2002 and 2004 (cf., e.g., its most compact summary in [6]) many EP-related paradoxes found already
comparatively straightforward clarifications in the context of physics [15] as well as in the context
of mathematics [16]. The message provided by the recent return ad fontes is that what is usually
called an unbroken PT −symmetry dynamical regime in physics should have better been called
a quasi-Hermitian dynamical regime.

Let us add that the latter, much less confusing term was proposed, in the framework of nuclear
physics, in the older and, alas, a much less known review paper [17]. After the attention of
international community returned to this review and after the applications of the quasi-Hermitian
representations of observables were transferred to the other branches of physics, the above-mentioned
family of toy models D(N)(t) sampled by Equation (3) has been extended, in [13,18,19], to all matrix
dimensions N < ∞. Subsequently, an interesting phenomenological application of the model was
proposed in [20]. Matrices D(N)(t) were reinterpreted there as Hamiltonians H = H0 + V of the
usual perturbation-theory form containing a - presumably small - variable component V. The key
physical message as delivered by [20] was a warning that due to the manifest non-Hermiticity of
H 6= H† in the conventional, “first” Hilbert space RN = H(F) the impact of a small change of V may
happen to be abrupt and non-perturbative.

The latter result was interpreted as a certain quantum analogue of the classical Thom’s
catastrophic scenario called “cusp” [21,22]. The argument proceeded via a reinterpretation of
perturbation V, the strength of which was not measured by t but rather by a small coupling constant
λ such that t = ±

√
λ. Such a change of perspective implied that at the small negative couplings λ < 0

the spectra of energies became purely imaginary and, hence, unphysical. The EP values λ(EP) = 0
themselves acquired, at any dimension N, the status of the points of an abrupt loss of stability alias
of the points of a quantum catastrophe. Needless to add that precisely such a loss of stability seems
amenable to the experimental simulations also in the framework of classical optics (also [23]).

3.2. The Dyson’s Maps in Quantum Theory

The main mathematical result of [20] was that before an onset of the catastrophe, i.e., under
the real-energy constraint λ = λ(t) > 0 the evolution controlled by the toy-model Hamiltonians
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H = D(N)(t) may be kept unitary, provided only that one replaces the above-selected false
Hilbert space H(F) = RN (in which H was PT −symmetric but non-Hermitian) by its “second”,
standard physical alternative H(S) in which H would be selfadjoint. In the manner recalling
the older idea of Dyson [15] the goal has been achieved by the ad hoc amendment of the
Hermitian-conjugation operation,

T (S) : H → H‡ = Θ−1H†Θ

Although, as we already indicated, the trick itself was already well known in mathematics [8,16]
as well as in physics [5–7,17], the key innovation was that the operator Θ playing the role of an
inner-product metric has been shown obtainable, in closed form, for all of the tridiagonal toy-model
matrices D(N)(t) of the family [20].

The EP-possessing toy-model Hamiltonians H(λ) = D(N)(t) with non-negative couplings
were mathematically well defined and self-adjoint in the reconstructed physical Hilbert space H(S).
The accompanying exact, closed-form knowledge of the necessary operator Θ yielding H = H‡

allowed one to perform all of the calculations in the unphysical but certainly friendlier auxiliary
Hilbert spaceH(F).

In principle (though hardly in practice) the reconstructed physical Hilbert spaceH(S) may be also
replaced by its unitarily equivalent “third space” partner H(T). [17,24,25] may be consulted for all of
the technical details of the latter equivalence transformation. For our present purposes it suffices to
mention that the mapping Ω which connects the latter two vector spacesH(S) andH(T) also appears
in definition Θ = Ω†Ω of the Hilbert-space metric.

In H(T) the role of the isospectral partner of a generic observable D(N)(t) is played by operator
d(N)(t) such that

D(N)(t) = Ω−1(t)d(N)(t)Ω(t) , Ω†(t)Ω(t) = Θ(t) 6= I (4)

In the traditional applications of the formalism, operator d(N)(t) is always more complicated and
much less user-friendly than its partner even in the simplified, finite-dimensional models. Otherwise,
people feel that one would not have had any reason for changing the representation.

3.3. Special Models with Real Exceptional Points

In a mathematically oriented monograph [11] Kato studied certain parameter-dependent
families of operators D̂(t) or, in a simplified setting, of N by N matrices D(N)(t) in the framework of
perturbation theory. He introduced the formal concept of the so called exceptional point t(EP) as such
(in general, complex) value of parameter t at which, roughly speaking, there emerges the so called
Jordan block structure in the canonical form of D̂(t).

In the monograph, the introduction of the concept was illustrated by several two-by-two
examples. Thus, one can pick up matrix (3) with two real t−dependent eigenvalues d±(t) = ±t.
In this example it is easy to see that the two eigenvectors as well as the two eigenvalues are well
separated at t 6= 0 but coincide at t = t(EP) = 0. In other words, the EP matrix D(2)(0) ceases to be
diagonalizable. It becomes merely unitarily equivalent to a non-diagonal Jordan-block matrix,

− 1
2 D(2)(0) ∼

[
0 1
0 0

]
(5)

In the same mathematical context of perturbation theory the exact solvability and the real-EP
property (5) of the N = 2 toy model was also shown to hold, in [13], for certain less trivial
three-by-three toy-model matrices, for the sequence of four-by-four matrices as well as for the whole
family of subsequent N by N tridiagonal-matrix descendants D(N)(t) of these models at any higher
matrix dimension N (also [18]).
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4. The Context of Classical Optics

4.1. Solvable Quantum Models

By the, up to now, more or less purely formal change of representation (4), the main problem of
the phenomenological acceptability of the family of quantum toy models of [13] becomes transferred
from the description of the spectrum of D(N)(t) (which has been shown trivial in [19]) to the
construction of the mapping Ω(t) (which is, usually, enormously difficult in practice [7]). In this
sense, a decisive merit of working with toy models of [13] may be seen in the feasibility of
such a construction, i.e., of the construction of the related metric Θ(t) and/or of the mappings
Ω(t) themselves.

In applications, the knowledge of the latter operators could immediately lead, in principle at
least, not only to the backward reconstruction D(N)(t) → d(N)(t) but also to the analogues of the
mapping (4) for multiple other observables (including the Hamiltonian), the operator representations
of which are usually much better known inH(T), mainly due to the principle of correspondence [26].

4.2. Paraxial Approximation and Anomalous Diffusion Phenomena

During the early discussions of the concept of the parity times time-reversal symmetry alias
PT −symmetry in 2001 it was, among others, Alexandr Turbiner who expressed his opinion that in
the context of quantum theory there must exist a certain form of equivalence between its Hermitian
and PT −symmetric representations [27]. Later on, his intuitive expectations have been confirmed in
constructive manner (cf., e.g., [6]).

At the same time, paradoxically, what also survived, until now, was the present author’s reply,
counterargument and prediction saying, basically, that from the point of view of phenomenology the
crucial differences between the textbook and PT −symmetric quantum theories will emerge in the
dynamical regime in which the PT −symmetry gets lost during a new form of a phase transition
(cf., e.g., [28]). In the context of abstract quantum theory we already mentioned above, that and
how one of the productive confirmations of the latter prediction emerged, later on, in the context of
the quantum theory of catastrophes in which the Kato’s purely mathematical concept of exceptional
points was put in direct contact with the phenomenologically crucial instant of the spontaneous
breakdown of PT −symmetry.

Unexpectedly enough, several years later, the latter prediction of the relevance of EPs also
found an independent and, perhaps, even more persuasive confirmation in the context of classical
optics (for details see, in particular, a historically oriented Section 1.7.3 of the multi-authored
monograph [8]). In this setting, serendipitously, the correspondence was established via a
discovery [29–31] of the strict mathematical equivalence between certain quantum Schrödinger
equations and their classical Maxwell-equation partners in their so called paraxial-approximation
versions which describe the classical optical diffraction.

In spite of the apparent marginality of the latter classical-quantum correspondence, its
consequences proved extremely important, for several reasons. The first reason was that in the
quantum context the generic non-Hermiticity of Hamiltonians and/or of the further operators of
observable quantities made the immediate experimental verifications or even tests of the theory and
of its various toy models extremely difficult. In contrast, the facilitated feasibility of the analogous
experiments in classical optics profited from an enormous speed of progress in contemporary
nanotechnologies and, in particular, in the recently opening possibilities of manufacture of various
synthetic materials exhibiting precisely the required PT −symmetry-guaranteeing properties of the
necessary anomalous optical systems.

The second comparative advantage of performing experiments in classical optics reflected the
mathematical complexity of the analogous quantum models in which only the accessibility of the
“realistic” Dyson’s maps Ω and/or of their probability-determining metric-operator products (4)
enables one to quantify all of the required experimental predictions [17].
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There exist several other arguments which act in favor of working with the classical-optics
representations. On the level of mathematics it is encouraging to see that, in optics, many
interesting, PT −symmetry-related phenomena are already observable via the most elementary,
discrete, finite-element toy models [29,31]. Secondly, on the level of phenomenology let us recall
numerous conceptual and/or technical difficulties emerging in the PT −symmetric models of the
standard unitary quantum scattering [32]. The complexity of these obstacles is in a huge contrast with
the simplicity of the experimental realizations of multiple simulations of various analogous dispersive
phenomena in classical optics (one can even take there certain nonlinearities into account [33]).

5. The Context of Quantum Cosmology

We have to admit that the most extreme contrast between the expected feasibility of an
experimental optical simulation and an absolute inaccessibility of any experimental study in an
analogous quantum setting may and should be sought in the framework of quantum cosmology.
The existence of such a challenge has already been noticed in a conference contribution [34].
Its mathematically highly challenging nature was emphasized there, together with its deep relevance
for several characteristic quantum cosmology scenarios. At the same time we were only able to work
there, non-numerically, with the two by two matrix observables. Still we believe that before a transfer
of the quantum-evolution problems from the speculative cosmology to the experimental domain of
classical optics one should succeed in moving from the two by two toy-model matrices to the higher
matrix dimensions N = 3, . . ..

5.1. Problems with Quantization

In the recent literature devoted to cosmology the singularities predicted by classical theory are
widely believed to be smeared out after quantization. In particular, the spatial degeneracy at Big Bang
is often replaced by its Big-Bounce alternative [35,36]. We propose that such a strong belief should
be weakened. Constructively, we intend to show that the survival of the singularities sampled by
Big Bang could find one of its possible explanations in the exceptional-point (EP, [11]) interpretation
of the Big-Bang time t = 0.

We shall describe an elementary, very schematic family of non-covariant toy-model realization
of such a possibility. We will work with a schematic, empty Universe which is quantized in
a non-covariant version of Heisenberg picture [37]. In such a setting the classical Big Bang singularity
may survive the quantization.

In the model the mechanism of the unfolding of the singularity after Big Bang will be shown to
carry certain, not fully clarified features including, e.g., a strong initial anisotropy of Hilbert space
which weakens and isotropizes in finite time. We believe that such a result could offer also a hint
or nonstandard key to the existence and/or quantum-theoretical origin of the Inflation period in the
evolution of the Universe.

5.2. The Consistent Quantum Singularity at Big Bang

Let us now return to the question of the most interesting physical interpretations of operator
D(N)(t). Basically, the answer lies in the possibility of treating this operator as the distance between
two observers in an empty space (Universe). In a cosmology-oriented Gedankenexperiment, such
a pair of observers (let us call them, say, Alice and Bob—they may be perceived as attached, say,
to different Galaxies) are assumed to measure their (classical) distance d = d(t) (cf. Figure 1). Once
they extrapolate their data to remote past, they may reveal the existence of the Big Bang singularity,

lim
t→tc=0

d(t) = 0 (6)



Symmetry 2016, 8, 52 7 of 14

0

1

2

0 1 2 3 time t {arb. units}
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Figure 1. The Alice-Bob distances d(t): (1) measured by the methods of classical physics (large dots),
(2) measured, in a Gedankenexperiment, by quantum-theory methods (including, perhaps, also the
hypothetical “superluminal-velocity” Inflation period, small dots), (3) extrapolated down to t = 0
(smooth curve, quantum Big-Bang-singularity hypothesis).

Hypothetically, Alice and Bob may have started their experiment very early after the Big Bang.
In such a case one should recall the principle of classical-quantum correspondence and replace the
real curve d(t) by the pencil d(t) of self-adjoint operators defined in the above-mentioned alternative
physical Hilbert space H(T). In Heisenberg picture (and, say, in pure state), the wave function
|ψ〉 of the Alice’s and Bob’s Universe will be time-independent while, under adiabatic hypothesis,
their measured distance will smoothly continue the classical curve and, moreover, it will coincide,
in the case of a luckily chosen quantum theory, with one of the eigenvalues of the toy-model
operator d(t).

A decisive weakness of the whole argument has already been noticed by Ashtekar et al. [35,38,39].
The essence of the problem may be seen in the incompatibility of the quantized version of the
degeneracy of eigenvalues (6) with the self-adjoint nature of the underlying operator. Indeed, from
the purely mathematical point of view the eigenvalues of d(tc) may degenerate either at a complex
value of the EP Big Bang time tc or after an emergence of some mysterious ad hoc symmetry at some
real value of tc. Both of these possibilities look, clearly, unacceptable.

In the manner which was already proposed in the not too successful illustrative construction [34],
the escape out of such an apparent no-go theorem may be provided by the time-dependent
generalization (cf. [24,40]) of the Dyson’s [15] non-unitary isospectral change of representation.
As long as we realize all of our constructions solely in the auxiliary Hilbert space H(F),
the mapping (4) leads to the manifestly non-Hermitian operator representation D(N)(t) of the
observable Alice-Bob distance. Hence, there are no formal objections against the critical EP time
of the Big Bang being real (and, for simplicity, shifted to the origin, t = tc = 0).

6. Toy Models

In the language of mathematics, the problem we intend to discuss here is the problem of the
behavior of a quantum/classical system near its multiple, degenerate exceptional-point singularity.
We believe that a particularly suitable class of models suitable for such a study are the discrete,
N by N matrix models. Their purely formally motivated but remarkably transparent class was
proposed in Refs. [13,18,19]. In what follows, the low-dimensional toy models of this class will be
explored as most suitable candidates for bridging the existing gaps between the formulation of certain
quantum-cosmological hypotheses and some future experimental optical simulations and tests of
structures and stability of their descriptive properties.

6.1. Toy Model Matrices with N = 2

For times t > 1 (i.e., long after the passage of the system through its exceptional point—in a way
inspired by cosmology [41,42] let us call this passage, briefly, “Big Bang”) our N = 2 toy-model
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operator (3) (representing any generic observable quantity—in the light of our forthcoming,
phenomenology-oriented applications of the formalism let us call this observable, for the sake of
brevity, “distance”) is self-adjoint even in the friendly Hilbert space H(F) = R2. Due to the extreme
simplicity of such an illustrative model we may recall constraint d = d† (inH(T) = R2) alias

D†(t)Θ(t) = Θ(t)D(t) , t 6= 0 (7)

(inH(F) = R2) and construct all of the Hermitizing inner-product metrics Θ(t), i.e., all of the eligible,
manifestly time-dependent physical Hilbert spaces H(S) [43,44]. The exhaustive, complete menu of
our Hilbert space metrics (HSMs) at N = 2,

Θ = Θ(2)
[α]

(t) =

[
1 + t sin α −

√
1− t2

−
√

1− t2 1− t sin α

]
(8)

is defined in terms of a single [25] free real parameter α such that −π/2 < α < π/2. Both of the
eigenvalues of the metric are positive,

θ± = 1±
√

1− t2 cos2 α > 0 (9)

At any time t 6= tBB = 0 each choice of α specifies a different inner product, i.e., a different,
potentially physical Hilbert spaceH(S) = H(S)

[α]
(t). This means that the physical contents of the model

described by operator (3) and by the related HSM Θ[α](t) will vary with α.
One of the most successful strategies of removal of such an unpleasant ambiguity was proposed

by Bender et al. [45]. They recommended the use of ansatz Θ = PC where P (in the diagonal matrix
form where Pnn = (−1)n) mimics parity and where C (such that C2 = e2 I) mimics charge. In our
case this conjecture leads to formula

C(2)
[α]

(t) =

[
1 + t sin α −

√
1− t2

√
1− t2 −1 + t sin α

]
(10)

and to constraint α = αoptimal = 0, with several remarkable consequences. Firstly, the choice of

αoptimal minimizes the anisotropy δ
(2)
[α]

= |θ+ − θ−| = 2
√

1− t2 cos2 α of the Hilbert-space geometry

at all t ∈ (0, 1). Secondly, as long as we have δ
(2)
optimal = δ

(2)
[0] = 2

√
1− t2, the anisotropy will vanish

yielding the trivial, isotropic-metric limit Θoptimal(t) = I at t = 1.
As long as the smooth continuation of Equation (3) to the larger times t > 1 would make our only

observable D(2)(t) manifestly Hermitian, the related physical HSM matrix could be kept trivial as
well, Θoptimal(t) = I at t > 1. In this case the interval of times in which the HSM matrix Θoptimal(t) 6= I
is anomalous will be finite, yieldingH(S)(t) = H(F) at all t ∈ (1, ∞).

Obviously, our N = 2 model with “Big Bang” at t = 0 reminds us of the elementary cosmological
model of [23]. Once we accept such a cosmological interpretation of our present quantum evolution
model, the finite interval of times t ∈ (0, 1) could be, in the same spirit, tentatively identified with
the Inflation period, or with its initial quantized-evolution phase at least. The same terminological
convention will be accepted to hold for the whole N < ∞ family of hiddenly Hermitian N by N
matrices of [13,18] involving Equation (3) as its most elementary special case.



Symmetry 2016, 8, 52 9 of 14

6.2. Toy-Model Matrices with N = 3

The first nontrivial, three-by-three candidate for the crypto-Hermitian distance operator has the
non-Hermitian real matrix form

D(3)(t) =

 −2
√

2 τ(t) 0
−
√

2 τ(t) 0
√

2 τ(t)
0 −

√
2 τ(t) 2

 (11)

with τ(t) =
√

1− t2 , with the real spectrum {d(3)n (t)} = {−2 t, 0, 2 t} and with the triple EP
value t(EP) = 0.

The construction of the corresponding general two-parametric Hermitizing metrics Θ[α,β](t)
(we skip its presentation) as well as of its specific and unique product form Θ[0,0](t) = PC(t)
remains routine. In terms of antidigonal unit matrix J with Kronecker-delta elements Jij = δi+j,N+1,
i, j = 1, 2, . . . , N we get the following result.

Lemma 1. For the crypto-Hermitian distance operator of the N = 3 form (11) at times t ∈ (0, 1) the
requirement Θ(t) = PC(t) makes the Hermitizing HSM unique,

Θ(3)
[0,0](t) = I − τ(t)

 0
√

2 0√
2 0

√
2

0
√

2 0

+ τ2(t)J (12)

Although one of the eigenvalues loses its positivity beyond the Big Bang boundary,
i.e., at τ > τBB = 1, the effect is spurious because it occurs at unphysical, purely imaginary times t.
The behavior of the eigenvalues near t = 1 alias τ(t) = 0 is more important because it shows that the
end-of-Inflation limit of the conventional Dirac’s metric Θ(3)

[0,0](1) = I is reached in a finite time after
the Big Bang.

What remains to be proved or disproved is the minimal-anisotropy property of the physical and
unique Hilbert spaceH(S)(t) with metric (12). In order to shorten the analysis let us skip the detailed
description of the fully general case and let us merely consider the following one-parametric subset
of all of the solutions of Equation (7),

Θ(3)(g, t) =


1 −

√
2gτ(t) gτ2(t)

−
√

2gτ(t) 2 g− 1 + gτ2(t) −
√

2gτ(t)

gτ2(t) −
√

2gτ(t) 1

 (13)

For all of these HSM candidates guaranteeing the Hermiticity of operator D(3)(t) in H(S)(t) we
may evaluate the eigenvalues,

θ1,3(g, t) = gτ2(t) + g∓
√

4 g2τ2(t) + g2 − 2 g + 1 , θ2(t) = 1− gτ2(t) (14)

and demonstrate that the choice of the free parameter g which would guarantee the minimal
anisotropy of the geometry of Hilbert space H(S)(t) is unique and equal to g = 1. Such a result
may be given the form of the following two lemmas.

Lemma 2. Whenever g 6= 1 there exists a real τ(delayed) < τBB = 1 such that the HSM candidate (13) is
positive definite if and only if |τ(t)| < τ(delayed).

Proof. The use of ansatz g = 1 + ε in Equation (14) (with, say, |ε| < 1) converts the inequality θ1 < 0
into relation

4 (1− t2/2)2 < 4 (1− t2) + ε2/(1 + ε)2
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i.e.,

t2 <

∣∣∣∣ ε

1 + ε

∣∣∣∣
Thus, at each choice of ε 6= 0 the inequality will hold in a non-empty interval of small t.

Lemma 3. Whenever g 6= 1, metric (13) is not isotropic at the “end-of-Inflation” time t = 1.

Proof. follows from an immediate inspection of formula (13).

The single requirement of minimal anisotropy makes the metric optimal at t = 0 and t = 1,
i.e., at both of the ends of the Inflation-resembling interval. The deviations of the roots (14) from
their minimal-anisotropy extreme at goptimal = 1 are easily described. The middle root (forming an
inverted parabola in τ) remains positive for g < 1/τ2. The change of the sign of the smaller θ1

(which is positive for all τ2 6= 1 at g = 1) may take place at the curves g = 1/τ2 (= the shared upper
boundary of the domain of positivity for τ ∈ (0, 1)) and g = 1/(2− τ2) (= the lower boundary) in
the g− τ plane. Whenever g 6= 1, the Inflation-resembling evolution has no natural end because the
time-dependent Hilbert-space geometry remains anisotropic at t = 1 alias τ = 0.

6.3. Toy-Model Matrices with N = 4

The latter two Lemmas offer a hint for an extrapolation of the pattern to the larger Hilbert-space
dimensions N > 3. With the next operator

D(4)(t) =


−3

√
3τ(t) 0 0

−
√

3τ(t) −1 2τ(t) 0
0 −2τ(t) 1

√
3τ(t)

0 0 −
√

3τ(t) 3

 (15)

(with the real spectrum {d(4)n (t)} = {−3 t,−t, t, 3 t} and with the quadruple EP value t(EP) = 0),
we get beyond the scope of the general analytic metric-operator results of [19]. Fortunately, even our
N = 4 example still admits a non-numerical treatment.

Lemma 4. Manifestly time-dependent matrix (15) is Hermitian with respect to the manifestly time-dependent
HSM matrix

Θ(4)(t) =


1 −

√
3τ(t)

√
3τ2(t) −τ3(t)

−
√

3τ(t) 1 + 2 τ2(t) −2 τ(t)− τ3(t)
√

3τ2(t)√
3τ2(t) −2 τ(t)− τ3(t) 1 + 2 τ2(t) −

√
3τ(t)

− τ3(t)
√

3τ2(t) −
√

3τ(t) 1

 (16)

The eigenvalues {θ1, . . . , θ4} of the latter matrix form the ordered set{
1− 3 τ + 3 τ2 − τ3, 1− τ − τ2 + τ3, 1 + τ − τ2 − τ3, 1 + 3 τ + 3 τ2 + τ3

}
(17)

and satisfy the positivity requirements during all Inflation, i.e., at all times t ∈ (0, 1).

Proof. The verification of the hidden Hermiticity (7) of operator (15) was performed using the
routine, computer-assisted linear algebra. At N = 4 these manipulations are still feasible and provide,
as a byproduct, the closed-form eigenvalues of the physical Hilbert-space metric.

Figure 2 offers the graphical illustration of the latter observation. The time-variation of the
eigenvalues is shown to start from the absence of any isotropy of Hilbert space H(S)(t) at Big
Bang instant t = 0. Immediately after the Big Bang the degenerate (N − 1)−plet of the vanishing
eigenvalues of the metric is seen to unfold in a hierarchical, ordered manner. The smooth increase
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of the isotropy during Inflation ends, at t = 1, by the ultimate disappearance of the anisotropy.
This marks the end of the Inflation at finite time.

0

1 

2

0 0.2 0.4 0.6 0.8 1

θ

τ

Figure 2. The quadruplet of eigenvalues (17) of the minimally anisotropic N = 4 metric (16).
The uppermost curve moves up and reaches its maximum θmax = 8 in the Big Bang limit of τ(tBB) = 1.

7. Discussion

It is important to keep in mind that our present matrix models still represent just a very schematic
realization of the underlying idea of the quantization of the measurable distance between Alice and
Bob. Naturally, in the context of a not yet existing full fledged quantum cosmology we are still far
from any truly realistic picture. At the same time it is quite plausible that that the basic features our
elementary toy models may be rather realistic even under our drastic simplifications.

First of all we believe that our present purely pedagogical restriction of attention to the smallest
dimensions N of the spatial grid is not too relevant and that the underlying background-independent
quantum dynamics of the expanding Universe at short times will remain qualitatively unchanged at
all of the finite matrix dimensions N.

It is possible to claim that on the purely mathematical side our present results clearly support
the idea of the feasibility of quantization in which several traditional “no-go” expectations are
circumvented via the identification of the spatiotemporal coordinates of quantum catastrophes like
Big Bang with the Kato’s exceptional-point parameters of the theory.

On the purely formal level we connected here the implementation of this idea with an active
use of the manifestly time-dependent forms of quantum theory in which the observables exhibit a
hidden Hermiticity, i.e., in which the (perhaps, necessarily needed) new physical degrees of freedom
emerge as rrepresented by the Hilbert-space inner-product metric Θ. Then, in a way paralleling the
phenomenological quantum-catastrophe perspective of [20] the initial choice of the cryptohermitian
operators of observables (i.e., in our simplified models, of the “quantized distance” matrices D(N)(t))
represents one of the most efficient strategies in model-building.

Via a detailed analysis of our models we showed that even when any form of the dynamical input
information is allowed to be manifestly time-dependent, the technical manipulations (and, first of all,
the constructions of physical metric) remain—at least conceptually - feasible. Thus, in methodical
sense we may be quite assertive, opposing, e.g., the scepticism [6,46–48], and joining opinions [49,50],
the authors of which managed to clarify several comparatively widespread though just more or less
purely terminological misunderstandings.

Naturally, also our present constructions combine the clarification of the innovative
methodology with a concrete sample of its possible immediate impact upon the predictions to
be made by any realistic theory in quantum cosmology. In such an applied-theory context we
are persuaded that especially the present, virtually serendipitous discovery of possible connection
between the process of quantization and the emergence of the Inflation-resembling short time-period
after the Big Bang sounds quite inspiring.
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The generalization of the formalism in which the coupling λ in Hamiltonians H(λ) would vary
with time appeared to require a thorough change of the formalism [24,40]. Moreover, it also proved
accompanied by a perceivable loss of its simplicity [34,51–55]. Fortunately, the major part of these
discouraging shortcomings disappears after one disconnects the toy-model matrices from their early
role of Hamiltonians (i.e., roughly speaking, of the energy operators). Such a change of interpretation
formed in fact the core of our present message. Marginally, let us add that the methodical relevance
of the time-dependent observables (sampled by (3), (11) and (15), etc.) in quantum cosmology was
preliminarily communicated also in a recent conference [56]. The videorecorded form [57] of the talk
on the webpage of the conference might be also recalled as a predecessor and/or complement of the
present text.

8. Summary

Via toy-model examples we managed here to demonstrate that the spatial Big Bang singularity of
classical cosmology need not necessarily be replaced by a regularized Big Bounce after quantization.
Our demonstration proceeded, constructively, via a non-covariant, highly schematic model of an
empty one-dimensional Universe in which a pair of experimentalists (Alice and Bob) measure
their distance.

As an unpredicted byproduct of the study of toy models we revealed that in their cosmological
phenomenological implementations the Big Bang appears followed by a finite anomalous evolution
period carrying multiple features of a hypothetical “Inflation”. Thus, the period of Inflation
appears naturally identified with the period of an anisotropy of the “physical” Hilbert space
of the hypothetical (i.e., “multiverse”) quantum states of the non-stationary, evolving Universe.
In other words, during the evolutionary stage which mimics (explains?) Inflation one encounters
a step-by-step weakening of the anisotropy of the Hilbert space of states of the Universe.

Thus, with the Big Bang singularity identified with the Kato’s exceptional point, the Inflation
period is explained as a purely quantum phenomenon. In this sense our present results may be
directly related to our older quantum-cosmology-related conjecture [34] where we already tried to
work, constructively, with a doublet of the non-Hermitian operators of observables. Unfortunately,
the latter conjecture was based on an inefficient strategy as long as we kept the Hamiltonian
H 6= H† maximally elementary (i.e., constant and parameter-independent) while having started our
constructions from the time-dependent set of eligible Hermitizing metrics Θ(t). This made the older
construction of the present spatial-geometry observable D(t) (which would characterize the Big Bang
or Big Crunch in the respective limits t → tcritical) prohibitively complicated. Due to the emergent
technical complications we only managed to construct the relevant resulting D(t) = D(N)(t) at N = 2.

In the present paper we made use of a much more efficient strategy. It was based, in essence,
just on a reversal of the flow of the construction. Thus, we started now directly from a suitable
initial choice of the time-dependent candidates D(N)(t)) for the “geometry” observable (viz., the
Alice-Bob distance). Having made use of the discretization philosophy as advocated and tested
in [58], manifestly non-Hermitian matrices D(N)(t) were chosen also here, playing the role of the
operators of an observable distance. Thus, the time-dependent eigenvalues of D(N)(t) were assumed
to be measured and given the cosmological toy-model geometrical meaning.
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