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ABSTRACT 
We develop an analytical formalism for determining the errors committed in the entropy, free energy, pres- 

sure, and abundances of hot, dense matter in stellar collapse when it is assumed that all nuclei can be rep- 
resented by a single isotope. This single-nucleus approximation is the standard Ansatz. We compare the 
properties of a mixture that contains a realistic spread of nuclei with those that contain a single nucleus and 
show that despite the wide spread of nuclei possible, thermodynamic functions deviate little from their single- 
nucleus conterparts. Further, we show that a sensible comparison must account for the variations in the free- 
baryon abundances due to the added degrees of freedom of the ensemble approach. We find that the fractional 
deviations of the free-particle abundances never exceed about 12%, that the realistic entropy is only 4%-7% 
higher than that of the simple approach, and that pressures, in the density range we focus on, are accurate to 
better than 0.8%. The general results of this paper can be easily used to correct the single-nucleus approx- 
imation predictions. 
Subject headings: dense matter — equation of state — stars: collapsed 

I. INTRODUCTION 

The equation of state of matter at high densities and temperatures is of central importance to the study of the implosion and 
explosion of the cores of massive stars. In particular, the dependence of the pressure and adiabatic index on the density and entropy 
during collapse determines, in large measure, the outcome and energetics of the event (Lamb et al. 1978; Burrows and Lattimer 
1983; Lattimer et al. 1984). Matter in this thermodynamic regime is composed of free neutrons and protons, electrons, neutrinos, 
photons, a-particles, and heavy nuclei, in proportions that depend on the values of three independent thermodynamic variables such 
as T, p, and YL, the lepton fraction per baryon. At the densities and temperatures relevant to this problem, the baryonic components 
are in nuclear statistical equilibrium. The photodissociation and recombination time scales are sufficiently rapid that an ensemble of 
nuclei with a spectrum of charges (Z^) and atomic weights (A^) exists in Saha equilibrium, subject to baryon and charge conservation 
constraints. The center of the distribution of nuclei would most naturally be that nucleus at the peak of the binding energy per 
nucleon curve. At electron fractions above 0.45 and the lower baryon densities, this nucleus would be iron or near iron, but at the 
lower electron fractions and higher densities encountered during collapse, exotic species with values of A between 100 and 1000 are 
favored. To include all nuclei present in a calculation of the equation of state would require detailed knowledge of the nuclear 
physics of nuclei, both known and unknown, and computational power of unreasonable magnitude. Considerable effort has gone 
into network calculations of the nuclear specifics at a few selected points in T-p-YL space (El Eid and Hillebrandt 1980; Mazurek, 
Lattimer, and Brown 1979), but in these calculations a great deal of nuclear physics is ignored. Additionally, this approach cannot 
be used in collapse simulations, which, by their nature, demand speed. 

As a result, workers in the field have devised the so-called four-particle model for the equation of state (Epstein and Arnett 1975; 
Bethe et al. 1979). This approach restricts the baryons to reside in either free neutrons, free protons, a-particles, or a single 
representative heavy nucleus. Alpha-particles are included because, as a result of their high specific binding energy, their abundances 
generally dwarf those of other light (A < 12) nuclei and, in some instances, can exceed even those of nuclei near the nuclear peak. 
This method offers the tremendous advantage that realistic physical effects prevalent at high densities and temperatures, which can 
completely alter nuclear energies and partition functions, can be included (Lattimer 1981). Despite this simplification to a single 
heavy nucleus, the nuclear statistical equilibrium calculation for the abundances and other properties is still the choke point in any 
supernova hydrodynamical code. Nevertheless, with it, simulations can be performed (Burrows, Lattimer, and Yahil 1984; Van 
Riper 1982; Bowers and Wilson 1982; Hillebrandt 1982; Arnett 1977; Cooperstein 1983). 

By suppressing the ensemble degree of freedom, one constrains the free energy (F) of the system above its true minimum and, 
hence, introduces errors in the internal energy, entropy, pressure, and abundances of the mixture. The purpose of this paper is to 
calculate the errors of the single-nucleus approximation in each of these important thermodynamical variables. For simplicity, 
a-particles are ignored. We develop an analytical formalism by which the accuracy of the single-nucleus approximation is easily 
determined. The numbers we obtain indicate that this approximation is highly accurate despite the fact that the width of the nuclear 
peak can be large. 
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II. THE DEFINITION OF THE A’S 
For the purposes of this paper, we concern ourselves with two thermodynamic configurations, which we label the x- and 

y-systems. In the x-system, the baryonic component consists of free neutrons and protons and a distribution, or “ ensemble,” of 
nuclei clustered about some average atomic weight. In the y-system, only one representative nucleus is allowed, in addition to the 
free baryons. The atomic weight, A0, of this nucleus is determined by minimizing the nuclear free energy with respect to A in the 
standard manner (Lattimer 1981; Lattimer et al 1984, hereafter LLPR). The y-system embodies the standard simplifying assump- 
tions used in the collapse calculations mentioned above. The x-system, however, is more realistic, as the constraint of a represent- 
ative nucleus has been discarded and the system is allowed to relax to a lower free energy with more degrees of freedom. We are 
interested in determining the errors in the various thermodynamic functions and abundances committed by substituting the 
y-system for the x-system at a given temperature, density, and lepton fraction. 

In transforming from the y-system to the x-system, a certain fraction of the free nucleons will be absorbed into the then more 
favorable nuclei. We parameterize this fractional change in the free neutron and proton abundances by A„ and Ap, respectively, 
defined by 

^ = (1+A„K (la) 
and 

nJ = (l+A>£. (lb) 

In equations (1), n*,y and n*'* are the baryon densities of the free neutrons and protons. We also define a weighted average, A, by 

A = (1 - x0)A„ + x0Ap , (2) 

where x0 = Z0/A0. Note that all variables with subscript 0 refer to the y-system. The A’s are expected to be small and negative, since 
a larger fraction of matter is in nuclei in the x-system. It is a remarkable and useful fact that the difference between the x- and 
y-systems in all the thermodynamic functions can be written simply and succinctly in terms of the A’s. As a trivial illustration of this, 
we note that, as long as the free-nucleon density is not too large, 

Hn,P =T\n {annJ2), (3) 
where ^ stands for either the neutron or the proton chemical potential and a equals (h2/2nmn T)3/2 (we work in units such that 
kB = 1). This is the standard formula for the chemical potential of noninteracting, nondegenerate particles, and, since both neutrons 
and protons are in equilibrium with their bound conterparts, it represents the chemical potential of these bound nucleons as well. 
Using equations (1) and setting ln (1 + A„ p) æ An p, we obtain 

ôvn,P = tâ,p - Hip = TA, (4) 

where ônn p is the difference between the chemical potential of the subscripted species in the x- and y-systems. Henceforth, <5’s will 
denote such a difference between the two systems and will represent the “ error ” of making the single-nucleus approximation. 

Before proceeding to the calculation of these deviations in other functions, the formulae for baryon conservation and charge 
balance need to be stated. They are 

n = nx
n + nx

p + Snf A,. = ny
n + ny

p + n0 A0 

and 

(5) 

nx
p + = nYx + n0Z0 = nYy

e , (6) 

where rii is the number density of a nucleus in the x-system with atomic weight Ai and charge Zt, n0 is the number density in the 
y-system of the representative nucleus with atomic weight A0 and charge Z0,n is the total baryon density, which is the same in both 
systems, and Yx’y is the total charge per baryon in the x- or y-system. Yx does not, in general, equal Yy

e. We have elected to perform 
our calculations not for 0Ye = 0 but for 0YL = 0, i.e., by maintaining beta equilibrium at a fixed YL. The condition for beta 
equilibrium is that 

nn-nP = n = ne-(7) 
where v refers to the neutrinos (YL= Ye + Yv). Therefore, 

ôjj, = ÔHe - Sfiv , 

which implies, if An p 1, that 

(A„ - Ap) = {iie/Ye + fiJYv)ÔYJ2T = 9ÔYe . (8) 

We have ignored the neutron-proton mass difference. Thus, although beta equilibrium implies ôYe ^ 0, ôYe can be readily deter- 
mined from the A’s. 

Equation (5) can be arranged to read 

XniAi-n0A0= -nlAp-^A^ (9) 
or 

= 1 - (YnAn + YpAp)/XH > 1 , (10) 
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where XH = n0 A0/n is the mass fraction in nuclei (heavies) in the y-system and Yn p is the mass fraction in either free neutrons or 
protons in the y-system. The sign > in equation (10) is just a statement of the fact that the x-system keeps a few more of its nucleons 
in nuclei. 

Equation (6) can be combined to yield 

’LriiZt-n0Z0= -ny
pAp +nôYe , (11) 

which, with equation (9), tells that 

ÔYe = (l-x0)ApYp-x0AnYri + XHôx, (12) 

where x, = ZJAi and öx = Z^j T^Xf — x0)/nXH. The last term in equation (12) is a measure of the deviation of the average xt in the 
x-system from that in the y-system, x0. We will calculate this term in § IVc after more of the formalism is developed. Equations (12) 
and (8) can then be used to obtain a linear relation between A„ and Ap. Since we will show in § IV that the combination, A, can be 
derived using other arguments, we can obtain An and Ap individually for any thermodynamic state. 

In § III, we derive the errors in the total free energy, internal energy, pressure, and entropy as functions of the A’s. Section IV 
contains the full formalism of the ensemble and attendant considerations. Finally, in § V, we discuss the numerical results for a 
sequence of densities along s = 1 and s = 2 isentropes at Yl = 0.4 and draw some general conclusions. 

III. THE DEVIATIONS OF THE THERMODYNAMIC FUNCTION 

The change in the Gibbs free energy in the y —► x transformation is the sum of the individual changes in the neutron, proton, and 
lepton sectors. These are given by 

<5G = /^(l - Y*) + (nx
p + ^)7J + /¿i TJ - fiyn(l - Yy

e) - (fiyp + ny
e)Y

y
e - nl Yy

v 

= + tâYL- ny
n- iiyvYL, (13) 

where beta equilibrium (eq.[7]) was invoked. By using the definition of A (eq. [2]) and mass and charge conservation, equation (13) 
may be written 

« T(XhA + YpAp + A,) + £OTe/3 , (14) 

where jj,x was set equal to /F, since their difference introduces a term of second order in the A’s and can be ignored. 
The pressure deviation can be easily derived by noting that it results from changes in the ideal gas pressure of the baryons, the 

Coulomb lattice pressure Pc, and the degeneracy pressure of the leptons. We find 

ÖP = SPb + SPc + SPe+v, (15a) 

where 

ÔPb=nT(YpAp+Y„An)+T(Zni-n0), (15b) 

and 

ôPe + v = (peôYe + pvôYv)n/3 = jxynàYJ3 . (15c) 

The change in the lattice pressure, c)Pc, is the dominant term at high densities and will be discussed later. 
We now use the standard thermodynamic relation for the Helmholtz free energy per baryon, 

ôF = ôG — ÔP/n , (16) 

to obtain 

ÔF = TXh A - ÔPJn - TÇLrii - n0)/n . (17) 

This equation is, in fact, more general than the above derivation suggests. It can also be derived from equations (20), (24), (10), and 
(11). Note that the /F term has canceled. In general the first two terms on the right-hand side of equation (17) are the most important, 
and we combine them in the form 

ÔFxTXhA*, (18) 

where A* = A — ôPJnXH T. This is a surprisingly simple and powerful result, and it emphasizes the central role played by the 
quantity A* in these considerations. A* is a direct measure of the accuracy of the single-nucleus representation. Since the x-system 
allows more degrees of freedom, we expect that ÔF < 0 and, therefore, that A* < 0. We shall see below that this expectation is borne 
out. 

We may use the relation ÔS = —d(ÔF)/dT to find the entropy variation. We show in § IV that A* varies with T as Aq1 In 
(constant x T). Ignoring variations with T of XH and using equation (18), we therefore see that 

-Vh(A*-1M0). (19) 

Not only is A* a direct measure of the free-energy error, but it is also approximately equal to the entropy error. Since A* is negative, 
ÖS will be positive, as expected. 

We have seen in this section how the thermodynamic deviations between the x- and y-systems can be simply, and sometimes 
surprisingly, related to the A’s. We now proceed to the physics of the ensemble and the analytic formalism for the calculation of A*. 
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IV. THE PHYSICS OF THE ENSEMBLE 

a) The Saha Equation and the Expression for nJnQ 
The free energy per baryon of a nucleus in the x-system can be written as 

Ft =/>+/,, (20a) 

where 

fi = E0-aT T2 + SK(1 - 2xt)
2 + [as - Ss(l - Ix^Ar ^ + acxfAf13 (20b) 

and 

ft = (T/Aùlln (n, a/Af'2) -T] . ' (20c) 

In these equations,/f is simply one form of the standard semiempirical mass formula for nuclei, with the usual bulk, surface, 
Coulomb, and asymmetry terms. The term aTT

2 is included to account for the thermal excitation of nuclear levels, and/, is the 
translational free energy. (See Lattimer 1981 and LLPR for more details.) For the purposes of this work, the constants of equation 
(20b) are 

E0 = —16 , = 30 , Ss = 43.6 , aT = 1/8 , as = \9 , ac = 0.756(1 - 1.5u1/3 + u/2) , (20d) 

all in MeV. Here, the u in ac is the volume occupied by nuclei (u « nXH/0.155 F-3). The Coulomb energy in equation (20b) is not 
generally correct for a nucleus in a lattice comprised of an ensemble of nonidentical nuclei. It is a good approximation, however, if 
fluctuations in Z2/^1/3 dominate fluctuations in ac. It will be seen (cf. eqs. [10] and [35]) that Su/u = ôXH/XH öA/Aq. In the 
y-system, we have 

fo=/o+/f; /f = (TMo)[ln(noaM?/2)-1] • (20e) 

We expand/) in a Taylor series around A0 and x0, the weight and Z/A, respectively, for the representative nucleus in the y-system : 

fi=fo+ (dfJdx^Ax + MdA^AA + (d^dA^AA)2/! + (d^/ÔAÔx^AAAx + (32/¡/5x2)0(Ax)2/2 + {d'fJdA'UAAf¡6 + ... , 
(21) 

where AA = Ai — A0 and Ax = xf — x0. The value of A0 is determined by minimizing the total free energy in the y-system with 
respect to A, at fixed XH (LLPR), which in our case is the same as setting the derivative of F0 with respect to A, evaluated at fixed 
n0 A0, equal to zero. Note that f0 is not itself minimized, but the translational term, which is ^-dependent, must be included. Along 
the 5 = 1 isentrope, at densities in excess of 1011 g cm-3, it generally decreases the predicted A0 by 10-20 units. From this 
minimization condition we also obtain an expression for (df/dA)0 : 

(df/dA)0 « (dtf/dA)0 =fy/A0 + 5T/2A2 , (22) 

where we have neglected the variation of u in/. The first derivative with respect to x, (df/dx^, is simply — /F. 
The second derivatives can be obtained from equation (20b) : 

(d2fi/dA2)0 = 2acXo Aq 4/3/3 - 4(/,/T + 5/2A0)T/3A2 = 2TIQA - (pJT + 5¡2A0)IA2-] , (23a) 

(52/;./ax2)0 = 2ac A2'3 + 8(Sk - Ss A¿1/3) = 2TQX , (23b) 

and 

(d2fi/dAdx)0 = [4ac x0 - 8(0.5 - x0)5sM0]/3^¿/3 = TQAx . (23c) 

These equations define the Q’s. The definition of QA in equation (23a) will simplify some subsequent expressions. 
The Saha equation, which is a statement of the chemical equilibrium between a nucleus and free nucleons in the mixture, is written 

+ + (24a) 

which holds for each nucleus in the distribution in the x-system, and 

No tfh + Z0 py
p = F0 A0 ■+■ T + Py

c V0 (24b) 

in the y-system. Pc is the Coulomb lattice pressure, and in the y-system it is 

Pl = nX„u(df0/du) = -0.31SnXHu1/3(l - u2/3)xg A213 . (24c) 

In the x-system, as with the Coulomb energy, no such generalization exists, and we just write P* = Py
c + 0PC. The form of 0PC is 

considered in § YVd. The essential point is that PJ must be the same for all nuclei in the x-system, because of pressure equilibrium. 
is the nuclear cell size, and we assume it is proportional to the nuclear mass : 

Vi = AJUniAi ; V0 = A0/nXH ^ l/n0 . (24d) 

Note that kj ^ l/u Since the translational term in the free energy,/, contains nh we can employ the Saha equations to find the 
number density of a nucleus with a given (Ah x,) in the x-system or the number density, n0, of the representative nucleus in the 
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y-system. By normalizing rii with respect to n0, we can eliminate a variety of distracting parameters. After some tedious algebra, 
involving equations (20)-(24), we find 

n>0 = °(1 + A/0 exp (L — P — A0 ÔPJnXH T) 

ä (Ai/A0)3/2(1 + A*)"40 exp (L — P) . (25a) 

The last expression was obtained with the aid of equation (2) and the definition of A*. L and P, which are linear and quadratic terms, 
respectively, are given by 

L = aAA + ßAx , (25b) 

where 

a = A* - 1.5M0 , ß = A0(Ap - An), (25c) 

and 

P = QaA0(AA)2+ QAxA0AAAx + QxA0(Ax)2 . (25d) 

We have assumed that QAxA0 P Ap — A„. Note that we have dropped third- and higher-order terms. It can be shown that these 
terms have very small coefficients. However, the cross-term in equation (25d) must be retained. 

Interesting quantities are the widths of the distributions represented by equation (25a) at A0 and x0. Since equation (25a) is nearly 
a Gaussian, we easily find 

o2A = QA2A0diSQ)x(2QAA0)-1 (26a) 

and 

<*1 — Qa/(2A0 dis 0 ~ (2(2* Aq)-1 , (26b) 

where dis Q is the discriminant of Q (cf. eq. [A8]). The sign ä reflects the fact that, in practice, Qax/4 QA Qx. Straightforward 
manipulation yields the corresponding spreads in and Zf : 

= (1 - xo)2(7a + Ag + QAx(1 - x0)/(2 dis Q) (26c) 

and 

= xl <72a + Al a2 - QAxx0/(2 dis Q). (26d) 

Equation (25a) is a central expression of our investigation. It states, not unexpectedly, that the distribution of nuclei in the 
x-system is approximately Gaussian. The fact that it is written in terms of A* can be exploited to great advantage, as we now show. 

b) The Calculation of A* 
Since Yn and Yp are small, and both An and Ap will be shown to be small, we can use equation (10) to state that 

J = EWf AJuq Aq ä 1 . (27a) 

Since ttj/tto is given in equation (25a) as a function of the A’s equation (27a) can be used to find an additional relation between them. 
The sum in equation (27a), which is a sum over neutron and proton number in the x-system, can be approximated by a 2- 
dimensional integral over iVf and Z¿. We are led directly to the expression 

J = (1 + A*)a°K , (27b) 

where 

K = A0 j(Ai/Ao)112 exp (L - P)dAidxi. (27c) 

In equation (27c) we have used the fact that diV^Zf = At dAt dxi. The exponential can be transformed into a double Gaussian by 
rotating away the cross-term and shifting away the linear terms by completing the square. The rotation requires that we map (AA, 
Ax) onto (AA*, Ax*). The algebra of the rotation is set down in the Appendix. Since the x* integration is trivial, we obtain for K the 
result 

where 

K = A0G (AJAo)2'2 exp {-A0IQ*a(AA* - S$)2 + Q*x(Ax* - S*x)
2ydA*dx* 

= (nAo/Q^G (AMo)112 exp L-A0 Q*a(AA* - Stf^dA* , (28a) 

S$ * (a - ßQAx/2Qx)/2QA A0 * <x/2QA A0 , 

Six(ß + <xQAx/2Qx)/2QxA0, 

(28b) 

(28c) 
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and 

G = exp[X0(Q^2 + ß5S$2)]. (28d) 

25 and 2Î are related to QA and Qx through equations (A4) and (A5). It should be noted that 2* ~ Qa and 2* ~ ßx> because the 
rotation angle 0, defined by equation (A7), is generally small (<10-3). and S* are the shifts in AA* and Ax* obtained by 
completing the square in the exponent after the rotation and are not the physical shifts of the x-system averages from the A0 and x0 

of the y-system. We address the physical shifts, SA and a bit later. 
The integration over A* can be done numerically, or, to a very good approximation, analytically by the method of steepest 

descent. Equation (27b) can then be written 

1 = (1 + A*)AoA7r/(dis 2)1/2 , (29) 

where A, a weak function of A*, is a complicated numerical factor of order unity. Thus, equation (29) is an implicit equation for the 
combination A*, since no lone A„’s or Ap’s have survived. As we showed in § II, it is just A* that figures so prominently in ÖF and öS, 
not An or Ap individually. Solving equation (29) for A*, we have 

A* = Ai - (1/A0) In A « Ax , (30a) 

where 

A1 = In [(dis QŸ^M/Aq æ —ln (2nA0(jA(jx)/A0 . (30b) 

In practice, the value of A is always between j and 1, so the approximation in equation (30a) is a good one. We note here that 
equation (30a), when combined with equation (18), yields 3F % TA^ This result was found earlier by Mackie (1976), using a 
completely different technique. 

Equation (30a) is another central result of this paper. We see from it that A* is a simple function of A0 and the 2’s, which are 
y-system parameters. In principle, equation (24b), charge and baryon conservation, and beta equilibrium can be used in a 
Newton-Raphson procedure to solve for all the thermodynamic particulars of the y-system at any given combination of temperature 
or entropy, density, and lepton fraction. Specifically, x0, A0, Yn, Yp, XH, and u can be found. We have, instead, chosen to use the 
LLPR equation of state to obtain these y-system numbers. We continue to use equations (23) to evaluate the 2’s which are the only 
derived quantities we need. The accuracy of this scheme depends only slightly on the accuracy of equations (20b) and (20c), as well as 
equation (3), which can be viewed as approximations to the LLPR equation of state. Since the 2 S are second derivatives, this 
procedure is acceptable. Alternatively, one could difference the LLPR equation of state to find the 2’s, but this would perceptibly 
alter our results only at the highest densities (Appendix D of LLPR pursues this approach). 

Table 1 contains some of the relevant LLPR raw numbers for s = 1 and 2 isentropes for YL = 0.4, at four density points. Table 2 
contains the 2’s derived from equations (23) and the resulting widths (sigmas) of the distributions at the appropriate values of A0 
and x0. In Figure 1 we graph the x-system distributions in At (after integrating over xt) for the s = 1 isentrope. These curves are 
normalized to unit area. Finally, in Table 3, we present the corresponding values of A*, A, A„, Ap, the shift (SA) in the average of 
the x-system from A0, ôS, ôF, ôP/P, and the Coulomb pressure deviation ôPJnXH T. The values of A* in this table come from the 
numerical solution of equations (27a), (27b), and (28a), after the x* integration is first performed analytically. The analytical formula, 
equation (30a), is in excellent agreement with the numerical results even at the high-entropy, high-density point (s = 2, n = 0.01 
F-3), where deviations due to the significant breadth and distortion of the distribution might have been expected to introduce an 
appreciable error. In all cases, the analytical theory is good to better than 6%. The following subsection deals with the calculation of 
A„ and Ap. 

TABLE 1 
LLPR Raw Numbers of Relevance, for Yl = 0.4 

«(F'3) A0 x0 T (MeV) y„ ¥„ u 

a) s = 1 

HT5  60.16 0.4317 0.8564 0.0256 8.800(-6) 5.621(-5) 
10~4  65.87 0.4243 1.177 0.05277 2.314(-5) 5.454(-4) 
10“3  80.79 0.41 1.787 0.08432 6.213(-5) 5.281(-3) 
HT2  137.0 0.3868 3.28 0.08549 3.345(-4) 5.391(-2) 

b) s = 2 

10“5  54.69 0.4413 1.106 0.09479 9.537(-4) 4.667(-5) 
10'4.....  56.84 0.4361 1.61 0.1536 2.359(-3) 4.341(-4) 
10“3  60.39 0.4282 2.75 0.2118 7.363(-3) 3.997(-3) 
10“2  70.56 0.4081 5.747 0.2142 1.945(-2) 4.294<-2) 

TABLE 2 
Q and a Values for Yl = 0.4 

"(F 3) Qa Qx Qax °a 

a) s = 1 

10“5  2.02( — 4) 100.93 0.0838 6.4 0.009 
10“4  1.15( —4) 74.46 0.0509 8.1 0.010 
10“3  4.46( — 5) 50.44 0.0229 11.8 0.011 
10“2   6.30( — 6) 29.09 0.0049 24.0 0.011 

b) s = 2 

10“5  1.78(—4) 76.27 0.0705 7.2 0.011 
10“4  1.02(-4) 52.52 0.0418 9.3 0.013 
10“3  4.02( — 5) 30.70 0.0177 14.3 0.016 
10“2  4.50( —6) 14.65 0.0022 39.7 0.022 
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Fig. 1.—Distribution of nuclei for s = 1 and yL = 0.4 for baryon densities of 10 5,10 4,10 3, and 10 2 F 3 [1 F 3 æ 1.675(15) g cm 3] 

c) Formulae for An and Ap 

We are now in a position to calculate the last term of equation (12): 

ôx = Ax/n0 

fA0G/K) (AfM0)7/2Ax exp [-ß3(AX* - S3)2 - Q*(Ax* - S^dA'dx* (31) 

Taking Ax from equation (A 1) of the Appendix, we obtain 

ôx cos (f) & S* — sin (frXniAi A A/n0A0. (32) 

Using the fact that (j) < 1 and expanding the (AJAq) term in the integral, we have 

ôx ä S* - (S3 + 7/4QaAI)QAx/2Qx 

*íAp-An-a2
A(A*+ 2/A0)QAx]/2Qx. (33) 

Generally, <5x is positive. We can derive SA, the shift in the average A¡ from A0, by a similar procedure. The result is 

SA = Xn, AA/n0 * S* + 5/4QA A2
0 « ct2a(A* + \/A0) . (34) 

The S* term, which is multiplied by sin </;. has been dropped. For Sx, the shift in the average x¡ from x0, we find 

Sx = i:niAx/n0xtAp-Aa-<j2A(A* + l/A0)QAx]/2Qx. (35) 

In general, Sx is positive and ■4(tx. Using the approximation S* » (Ap - An)/2QX, we can substitute equation (33) in equation (12), 
and, using equations (2) and (8), we can find relations for A„ and A;, : 

A„ = {A[£ + (1 - Xo)yp] - xor}/K + (1 - x0)2Yp + x^y„] , (36) 

and 

Ap = [A(^ + x0 y„) + (1 - Xo)T]/K + (1 - x0)2Yp + x2
0Y„] , (37) 

TABLE 3 
A’s and Thermodynamic Deviations for Yl = 0.4 

n (F-3) -A* -A — A„ — Ap -SA ÔS -ÔF ÔP/P 6PJnXH T 

a) s = 1 

10"5  0.050 0.049 0.042 0.058 1.3 0.065 0.041 4.1(-4) 9.3(-4) 
10-4  0.052 0.050 0.034 0.071 2.3 0.064 0.057 8.2(-4) 2.1(-3) 
10“3  0.051 0.046 0.024 0.078 4.9 0.058 0.082 1.8(-3) 5.1(-3) 
10“2  0.040 0.028 0.012 0.054 16.7 0.043 0.117 3.7(-3) 1.3(-2) 

b) s = 2 

10"5   0.058 0.057 0.041 0.077 1.9 0.069 0.057 -1.4(-3) 1.0(-3) 
10“4  0.064 0.062 0.034 0.099 3.6 0.069 0.085 -3.7(-4) 2.4(-3) 
10“3  0.072 0.066 0.029 0.115 9.1 0.069 0.149 8.1(-4) 6.4<-3) 
10“2  0.083 0.061 0.037 0.096 31.6 0.074 0.338 7.8(-3) 2.3(-2) 
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where 
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£ = 1/0 + XH/2ßx (38) 

and 

T = sin Ai AA/n0 A0 ä Xh (T^(A* + 2/A0)QaJ2Qx . (39) 

To obtain the corresponding relation with the <5 Ye = 0 constraint, we merely set 0 = oo. However, the beta-equilibrium assumption 
made above is much more useful and illuminating. Up to densities of 10“3 F-3, the approximations of the sums in equations (34) 
and (39) are accurate to within 20%. The values of SA, A„, and Ap tabulated in Table 3, however, were computed by performing the 
summations Efy AA and Ettf A; AA numerically. 

d) Variations in the Coulomb Pressure 
In this subsection we evaluate, very approximately, the variation in the Coulomb lattice pressure. The thermodynamic relation 

ôP = n2[d(ôF)/dri] |r, when applied to equation (18), is 

d(ÔPc)/dn*nld(TXHA*)/dn]\T, (40) 

where we have retained only the Coulombic contribution to the pressure. This approximation is valid particularly at high densities, 
where ôPc P ôPb, <5Pe+v. The derivative of XH is small compared to that of A*, and we neglect it. Using equations (30), we derive 

dA*/dn æ ( — A*/A0 + 2/3Al)dA0/dn , (41) 

where we have assumed that dis Q oc Ao 4/3 (cf. eq. [23]). Neglecting translational terms, the minimization of the nuclear free energy 
gives a simple formula for A0 which can be used to obtain 

dA0/dn ä 0.378Ao w1/3(l — u2/3)/(nac) . (42) 

Using the fact that A* is approximately proportional to 1/A0, which is also proportional to ac, we can integrate equation (40). We 
find 

ÔPJnXH T - — (3/8)(A* - 2ßA0)u1/3(l - 2u2/3/3)/{l - 3u1/3/2 + u/2) . (43) 

This result is tabulated in Table 3. Note that 0PC is always positive. A qualitatively similar formula for 0PC can be found from the 
relation 

if use is made of equations (24c) and (34). 

ÔPC ~ (dPJÔA)ÔA * (2/3)(PI/A0)Sa , (44) 

V. DISCUSSION 

As Figure 1 and Table 2 indicate, the spread in A of a realistic distribution can be large. The value of (jA is a steadily increasing 
function of both density and entropy, becoming a significant fraction of the mean A at the higher densities. It is interesting that this 
width is roughly proportional to temperature along isentropes. The spread in x, ax, however, is small and relatively independent of 
density at the lower entropy and only a weakly increasing function of density at the higher, simply doubling between n = 10_5F_3 

and = 0.01 F-3. From equations (26c) and (26d), we note that crz ä x0 ga and <rN & (1 — x0)aA, since (ta A0ox. At all times, ox is 
significantly larger than the shift Sx. However, SA, the shift in A, can become large, and, as Table 3 shows, it is a sensitive function of 
both density and entropy. It should be noted that when | Sa/A0 \ becomes large, as it does for the highest density considered, the 
approximations we have used are not quantitatively accurate, although they are still qualitatively useful. Although we have not 
addressed in this paper the characteristics of matter at densities above 0.01 F-3, we have every reason to believe that, despite the 
increased complications of nuclear interaction and Coulomb lattice effects, not to mention the effects of nuclear asphericity, the 
general character of our results may be extrapolated fairly well as the phase transition to nuclear matter is approached (Bonche and 
Vautherin 1981). 

However, despite the large widths and shifts, as we can see in Table 3, all the A’s remain small. At s = 1, A* has a constant value of 
roughly —0.05. At s = 2, it varies weakly from —0.06 to —0.08 as n increases from 10-5 F-3 to 0.01 F-3. Similarly, A„ and Ap 
remain small. A„ is the smaller of the two (in absolute value), and Ap is a mildly increasing function of both density and entropy. It 
must be remembered, however, that Yp<^ Yn, so that, although Ap is greater than A„ in absolute value, the decrease in the 
free-neutron abundance is generally larger than that of the free protons. Some of the neutrons that are incorporated into the nuclei 
of the x-system change through ß-decay into bound protons to maintain beta equilibrium ; the nuclei are slightly less neutron-rich 
than the single-nucleus approximation predicts. Incidentally, equation (8) shows that <5 Ye/Ye is less than^% for the cases discussed in 
this paper. 

Using equation (19), we derive the values of öS shown in Table 3, which range between 0.04 and 0.07. Note that the fractional 
change in entropy decreases with increasing entropy. All in all, öS is comfortably small. 

With the aid of the relevant numbers in Tables 1 and 3, equation (15) can be used to show that the absolute value of ÔP/P varies 
from less than 0.1% at s = 1 and n = 10-5 F-3 to its largest value of about 0.8% at s = 2 and n = 0.01 F-3. Since pressure is the 
most hydr©dynamically relevant variable, this small variation is reassuring. In general, ÔP is positive because ôPc is the largest term, 
but at higher entropies when the density is small, öPb becomes more important, and there ôP is negative. The derived values of ÖP/P 
are included in Table 3. 
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Similarly, equation (17) can be used to show that ÔF is indeed negative and, for s = 1, varies between —0.041 MeV at n = 10-5 

F-3 and —0.12 MeV at n = 0.01 F-3 (see Table 3). For s = 2, the absolute value of ÔF is somewhat larger, and ÔF is —0.06 MeV 
and—0.34 MeV for these same two densities. 

We conclude, therefore, that relaxing the single-nucleus constraint changes the thermodynamical functions in ways that can be 
calculated and are found to be small, except possibly near the critical point. Obviously, as one approaches the critical point 
(according to LLPR, for YL = 0.4 it lies near n ~ 0.03 F-3 and T ~ 18 MeV) the effects of fluctuations become relatively large. 
Nevertheless, the ensemble corrections never dominate the thermodynamics of the system. However, the single-nucleus approx- 
imation may still lead to significant errors in other quantities of physical interest, such as the net electron capture rate during infall. 
Since electron capture strength functions vary from nucleus to nucleus, assuming the presence of a single nucleus instead of a 
distribution is likely to alter the rate. The electron capture rate is, in general, not a simple function of A and Z. Hence it is not 
possible to determine, a priori, from thermodynamic arguments the magnitude or sign of the effect. Attempts have been made to 
estimate the effective electron capture rate with an ensemble (Fuller 1982; Cooperstein and Wambach 1984). These preliminary 
studies indicate that the overall effect is small. 

J. M. L. would like to thank Professor Geoff Ravenhall for several helpful discussions and numerical comparisons. A. B. would 
like to acknowledge the generous honorarium provided by the Dudley Observatory. This research was supported in part by the U.S. 
Department of Energy under contract DOE-AC02-80ER-10712. 

APPENDIX 

In this appendix, we present some of the details of the rotation of the bilinear form in AA and Ax. Our purpose is to eliminate the 
cross-term and derive some useful consequences of the transformation. We set 

Ax = Ax* cos 0 — AA* sin </> (Al) 

and 

AA = AA* cos (j) + Ax* sin 0 , (A2) 

where 0 is the rotation angle and the asterisk refers to the transformed frame. Note that the Jacobian of this transformation is 1. 
Next, we demand 

ßJ(Ax*)2 + Q*(AA*)2 = ß^Ax)2 + Qa(AA)2 + QAxAAAx . (A3) 

Using equations (Al) and (A2) in equation (A3), we derive 

Qx = Q* cos2 </> + Q* sin2 </> , (A4) 

Ga = GÎ sin2 </> + Q3 cos2 </> , (A5) 

and 

Qax = (Q* - Qa) »in 2<t> . (A6) 

Combining the last three equations provides an equation for </> : 

tan 2(j) = QaxKQx ~ Qa) ■ (A7) 

With the help of equations (A4)-(A6), we arrive at the result 

disQ = Q*AQ* = QAQx-Q2
AJ4. (A8) 

Equation (A8) is simply a statement of the invariance of the discriminant. Since Qx > QÄ and QAx Qx (Table 2), we see that cf) is 
very small and is of the order 10“ 3-10~4. 

The linear term L (eq. [25b]) becomes, after the rotation, 

aAA + ßAx = AA*(a cos </> — ß sin (/>) + Ax*(ß cos </> + a sin </>) 

= a*AA* + /?*Ax* , (A9) 

which defines a* and ß*. From equations (27b), (28a), and (A9), it is easy to derive 

S5 = a*/2ß5A0 ; SJ =/¡*/2ßx*A0 . (A10) 

Since 0 is small, we obtain equations (28b) and (28c). 
It should be noted that terms such as (Aí/Aq)112 ä (1 + AA*/A0)7/2 in equation (27c) in the text are hardly affected by the rotation, 

but the rotation can appreciably mix A A* into Ax* in the expression for Ax. This fact is important when one is seeking the shifts in 
§ IVc. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
84

A
pJ

. 
. .

28
5.

 .
29

4B
 

ACCURACY OF SINGLE-NUCLEUS APPROXIMATION 303 No. 1, 1984 

REFERENCES 
Arnett, W. D. 1977, Ap. J., 218, 815. 
Bethe, H. A., Brown, G. E., Applegate, J., and Lattimer, J. M. 1979, Nucl. Phys., 

A324,487. 
Bonche, P., and Vautherin, D. 1981, Nucl. Phys., A372,496. 
Bowers, R. B., and Wilson, J. R. 1982, Ap. J., 263,366. 
Burrows, A., and Lattimer, J. M. 1983, Ap. J., 270,735. 
Burrows, A., Lattimer, J. M., and Yahil, A. 1984, Ap. J., submitted. 
Cooperstein, J. 1983, Ph.D. thesis, SUNY, Stony Brook. 
Cooperstein, J., and Wambach, J. 1984, preprint. 
El Eid, M. F., and Hillebrandt, W. 1980, Astr. Ap. Suppl, 42,215. 
Epstein, R. L, and Arnett, W. D. 1975, Ap. J., 201, 202. 

Fuller, G. 1982, Ap. J., 252,741. 
Hillebrandt, W. 1982, Astr. Ap., 110, L3. 
Lamb, D. Q., Lattimer, J. M., Pethick, C. J., and Ravenhall, D. G. 1978, Phys. 

Rev. Letters, 41,1623. 
Lattimer, J. M. 1981, Ann. Rev. Nucl. Part. Sei., 31, 337. 
Lattimer, J. M., Burrows, A., and Yahil, A. 1984, Ap. J., submitted. 
Lattimer, J. M., Pethick, C. J., Ravenhall, D. G., and Lamb, D. Q. 1984, Nucl. 

Phys., to be published (LLPR). 
Mackie, F. D. 1976, Ph.D. thesis, University of Illinois at Urbana-Champaign. 
Mazurek, T. J., Lattimer, J. M., and Brown, G. E. 1979, Ap. J., 229, 713. 
Van Riper, K. 1982, Ap. J., 257,793. 

Adam Burrows : Department of Physics, State University at New York at Stony Brook, Stony Brook, NY 11794 

James M. Lattimer: Department of Earth and Space Sciences, State University of New York at Stony Brook, Stony Brook, 
NY 11794 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

