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Thermal relics lighter than an MeV contribute to the energy density of the universe at the time of
nucleosynthesis and recombination. Constraints on extra radiation degrees of freedom typically exclude
even the simplest of such dark sectors. We explore the possibility that a sub-MeV dark sector entered
equilibrium with the Standard Model after neutrino-photon decoupling, which significantly weakens these
constraints and naturally arises in the context of neutrino mass generation through the spontaneous
breaking of the lepton number. Acquiring an adequate dark matter abundance independently motivates the
MeV scale in these models through the coincidence of gravitational, matter-radiation equality, and neutrino
mass scales, ðmPl=TMREÞ1=4mν ∼MeV. This class of scenarios will be decisively tested by future
measurements of the cosmic microwave background and matter structure of the universe. While the
dark sector dominantly interacts with Standard Model neutrinos, large couplings to nucleons are possible in
principle, leading to observable signals at proposed low-threshold direct detection experiments.
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I. INTRODUCTION

The mass of dark matter (DM) is relatively uncon-
strained. Demanding that its de Broglie wavelength is
smaller than the typical size of dwarf galaxies requires
mDM ≳ 10−22 eV, while microlensing searches for massive
composite objects imply that mDM ≲ 1058 GeV [1–3].
However, if DM acquired its abundance through thermal
contact with the StandardModel (SM) bath, the viable mass
range is significantly reduced and a much sharper picture
emerges. For concreteness, we define “thermal dark matter”
in this manner: thermal dark matter: dark matter that
acquired its cosmological abundance after entering thermal
equilibrium with the Standard Model bath at temperatures
much higher than the freeze-out temperature of number-
changing interactions.
The canonical example of this scenario is embodied by

the weakly interacting massive particle (WIMP) paradigm,
in which DM is assumed to be in thermal contact with the
SM bath while relativistic before chemically (and later
kinetically) decoupling from the SM while nonrelativistic.
For mDM ≳ keV, thermal DM is sufficiently cold such that
the free-streaming length in the early universe does not
suppress the growth of matter perturbations on scales larger
than the observed structures in intergalactic gas [4,5]. For
larger masses, perturbative unitarity requires mDM ≲

100 TeV under the assumption of a standard thermal
cosmological history [6]. Thus, the thermal DM paradigm
drastically restricts the possible mass range.
Although no theoretical inconsistencies arise for small

masses, mDM ≳MeV is often quoted as a robust lower
bound on the mass of any thermal relic [7–14]. Such limits
are usually derived from indirect measurements of the
expansion rate of the universe in the radiation-dominated
epoch, which can be parametrized in terms of the effective
number of neutrino species, Neff . Sub-MeV thermal DM is
relativistic at the time of nucleosynthesis and can modify
Neff . However, the successful predictions of standard big
bang nucleosynthesis (BBN) and observations of the
cosmic microwave background (CMB) constrain Neff to
lie near the SM expectation, Neff ≃ 3.045 [15–17].
As originally pointed out in Refs. [18–20] and recently

studied in the context of lightDM inRef. [21], constraints on
sub-MeV relics can be alleviated if equilibration between the
DM and SM sectors occurs after neutrinos have already
decoupled from the photon bath. As we will argue below,
this process of delayed equilibration is characteristic of
thermalDM that ismuch lighter than aGeV. In this work, we
investigate a concrete and predictive model in which this
scenario naturally arises for DM thermally coupled to SM
neutrinos. There has been a resurged interest in models of
light thermal DM that interacts with neutrinos [22–27],
which has largely been driven by the fact that such
interactions constitute a simple mechanism to evade strong
constraints from late-time distortions of the CMB [28].
Although our investigation is warranted solely as a proof

of concept for sub-MeV thermal relics, the consideration of
such models is timely. Various experimental technologies
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have recently been proposed for the direct detection of
thermal DM down to the keV scale [29–32]. However,
below an MeV, the landscape of cosmologically viable
models that will be tested by these experiments is rather
unclear and underexplored (see Refs. [13,33] for detailed
investigations of some simplified models). While the most
minimal versions of the models examined in this work do
not give rise to observable signals at these low-threshold
detectors, variations upon these scenarios yield detectable
rates. We will investigate this in more detail toward the end
of this work. Furthermore, as we will discuss below, our
setup will be definitively tested by upcoming cosmological
observations, such as CMB-S3/S4 (and to some degree
21 cm) experiments.
The remainder of this paper is structured as follows. In

Sec. II, we review the standard considerations of sub-MeV
thermal relics as studied in previous literature. We then
discuss in detail how the standard constraints can be
alleviated in a model-independent manner in Sec. III. In
Sec. IV, we introduce a simple concrete model motivated by
the observed masses and mixing angles of the SM
neutrinos. These models predict DM-neutrino couplings
of size Oð10−10Þ–Oð10−9Þ and independently motivate
thermal DM near the MeV scale through the coincidence
of gravitational, matter-radiation equality and neutrino
mass scales, i.e., mDM ∼ ðmPl=TMREÞ1=4mν ∼MeV. We
then turn to the cosmology and possible modes of detection
in Secs. V and VI. We briefly summarize our results and
conclusions in Sec. VII. A more detailed discussion on
some aspects of the model is presented in Appendix A.

II. REVIEW OF SUB-MeV THERMAL RELICS

In this section, we discuss the physics of light relics and
their effects on the measurements of primordial light
element abundances and the CMB. For the models con-
sidered in this work, the main impact of the new degrees of
freedom (d.o.f.) is through their contribution to the Hubble
expansion rate,

H ≃
�
8π

3

�
1=2 ρ1=2rad

mPl
; ð1Þ

where mPl ≃ 1.22 × 1019 GeV is the Planck mass and we
have assumed that the energy content of the universe is
dominated by the radiation component, ρrad. The radiation
energy density includes contributions from SM particles (γ,
e�, ν) and the dark sector. It is conveniently parametrized
by the effective number of neutrino species, Neff , such that

ρrad ≡ ργ½1þ ð7=8ÞðξSMν Þ4NeffðTÞ�; ð2Þ

where ξSMν ðTÞ ¼ TSM
ν =Tγ is the neutrino-to-photon temper-

ature ratio in the standard cosmology [see Eq. (8) below].
Thus, Neff is simply the neutrino and dark sector contri-
bution to the total radiation energy density, normalized to
the photon bath. In contrast to the common definition of
Neff as a late-time quantity (only to be evaluated at the time
of recombination), NeffðTÞ in Eq. (2) parametrizes the
expansion rate at temperatures below a few MeV. Neff can
be modified either by changing the actual number of d.o.f.
in the radiation bath or by altering Tν=Tγ. The notation for
these and other relevant temperature scales is compiled in
Table I for convenience.
Novel evolution of NeffðTÞ can modify the predictions of

primordial nucleosynthesis and recombination. The out-
comes of these cosmological epochs have been precisely
measured and therefore constrain nonstandard behavior of
Neff . Below, we summarize the effects of varying Neff on
aspects related to BBN and the CMB and then review how
light dark sectors can run afoul of the resulting constraints.

A. Big bang nucleosynthesis

Neff is constrained by observations of light nuclei
abundances, as reviewed in, e.g., Ref. [34]. The abundances
of helium-4, 4He, and deuterium, D, are measured with a
precision of a few percent and therefore provide the most
sensitive probes of the expansion rate during the epoch of
nucleosynthesis. We now discuss these elements in turn.
In the early universe, neutrons and protons interconvert

through weak processes such as neþ ↔ pν̄e. Once the
temperature of the photon bath drops below the neutron-
proton mass difference, ∼MeV, the neutron-proton ratio is
approximately fixed, n=p ∼ exp ½−ðmn −mpÞ=Tnp�, where
Tnp ∼ 0.8 MeV is the freeze-out temperature. Most of these

TABLE I. Notation and various temperature scales discussed throughout this work.

Notation Definition Value

Ti Temperature of species i ¼ X, ν, γ � � �
T Shorthand for the photon temperature (Tγ) � � �
ξi Temperature of species i normalized to the photon temperature Ti=T
Tν dec Photon temperature at ν-γ decoupling ∼OðMeVÞ
TXeq Photon temperature at X-ν equilibration ≫ mX (model input)
TXdec Photon temperature at X-ν chemical decoupling ∼mX (model input)
TBBN Photon temperature at the end of nucleosynthesis ∼Oð10Þ keV
TKD Photon temperature at which X kinetically decouples ≪ mX (model input)
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neutrons are eventually converted into 4He due to its large
binding energy per mass (the remainder decays or ends up
in deuterium or heavier nuclei). Hence, the 4He mass
fraction can be estimated by a simple counting argument,
Yp ≃ 2ðn=pÞ=ð1þ n=pÞ ∼ 1=4. Helium-4 is also produced
in stars, but its primordial abundance can be observatio-
nally inferred, for instance, from measurements of recom-
bination emission lines of ionized gas in low-metallicity
dwarf galaxies [35].
Primordial nucleosynthesis is the dominant source of

deuterium, since it is destroyed in stellar processes. Its
abundance provides an additional handle on constraining
the expansion rate at temperatures below an MeV.
Deuterium also plays a crucial role in the production of
4He through such reactions as DD → p3H followed by
3HD → n4He [36]. Due to the small values of the deuterium
binding energy (∼2 MeV) and the baryon-to-photon ratio
(∼10−10), the production of light nuclei is delayed until
T ∼ 100 keV, a phenomenon known as the “deuterium
bottleneck.” However, unlike 4He, once produced, deu-
terium is easily destroyed. Deuterium burning proceeds
through the same reactions as mentioned above until
T ∼ 50 keV. Its primordial abundance can be determined,
e.g., through observations of absorption spectra of distant
quasars [37].
Modifications to Neff correspond to changes in the

Hubble expansion rate. For Neff > 3, the expansion rate
is enhanced, so that weak processes that convert n ↔ p
freeze out earlier (at a larger temperature, Tnp). As a result,
the neutron-proton ratio, n=p, is increased, leading to a
larger primordial 4He abundance with ΔYp ≃ 0.013ΔNeff

for small ΔNeff [38,39]. Deviations in Neff also modify the
predicted abundance of deuterium. An increased cosmo-
logical expansion rate corresponds to a shorter timescale for
efficient deuterium burning during T ∼ 50 keV–100 keV.
Hence, for Neff > 3, the predicted deuterium abundance is
increased.
If the baryon density is fixed by the observed nuclear

abundances, recent detailed studies have determined
Neff ≃ 2.85� 0.28 [39] and Neff ≃ 2.87� 0.31 [40] within
1σ during nucleosynthesis. The spread in the inferred
value of Neff is largely determined by the uncertainty
in the primordial value of Yp. This can be seen using
ΔYp ≃ 0.004 [41] and the parametric relation ΔNeff ≃
ΔYp=0.013 ≃ 0.3 [38]. The best-fit central value of Neff

additionally depends on the inferred baryon-to-photon
ratio, which is largely driven by the observed deuterium
abundance.

B. Cosmic microwave background

Observations of the CMB power spectrum are also
sensitive to the total radiation energy density at the time
of recombination. Detailed analyses of this effect are
presented in Refs. [42,43]. We summarize their arguments

below. CMB temperature anisotropies on scales smaller
than the diffusion length of photons at recombination are
exponentially damped, a mechanism known as Silk or
diffusion damping [44]. On the microscopic level, this
corresponds to the stochastic process of photons Thomson
scattering with free electrons. Hence, the diffusion distance,
rd, can be written parametrically as rd ∼

ffiffiffiffi
N

p
λmfp, where N

is the number of scatters, λmfp ∼ 1=ðneσTÞ is the photon
mean free path, ne is the free electron number density, and
σT is the Thomson cross section. The diffusion length scale
is therefore rd ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðHλmfpÞ

p
λmfp ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðHneσTÞ

p
. A

larger Neff (and correspondingly larger H) decreases the
diffusion damping distance scale. As a result, photons
travel a shorter average distance out of overdensities.
However, observations of the CMB measure the angular
scale of diffusion, θd ¼ rd=DA, where DA is the angular
distance to the surface of last scattering. DA is not
independently determined, since it depends on the evolu-
tion of dark energy from recombination to present. The
dependence on DA can be eliminated by considering the
length scale of the sound horizon, rs ∼ 1=H, at the time of
recombination. The position of the first acoustic peak in the
CMB power spectrum is dictated by the corresponding
angular scale, θs ¼ rs=DA. Hence, the ratio of angular
scales θd=θs ¼ rd=rs ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H=ðneσTÞ

p
is independent of DA.

The position of the first peak has been measured to a
precision of 5 × 10−4 [28]. Thus, fixing θs to the observed
value, the scaling argument above implies that larger Neff
(and hence H) leads to a larger θd, thereby suppressing
power in the damping tail of the CMB. Note that the degree
of damping at small angular scales is increased for larger
Neff , even though the underlying physical diffusion length
is decreased. This behavior is seen explicitly in full
Boltzmann simulations [42,43]. The argument above also
makes explicit the degeneracy between Neff and Yp; since
ne ∝ 1 − Yp, the effect on rd=rs from decreasing Yp can be
compensated by increasing Neff . This degeneracy is broken
by considerations of BBN.
Measurements by the Planck satellite constrain the

effective number of neutrino species at the time of the
last scattering with unprecedented precision, Neff ≃
3.15� 0.23 at 68% confidence [28]. Although the inclu-
sion of different cosmological datasets modifies this result
slightly, we will take this value as a representative bench-
mark in our analysis. A recent direct measurement of the
local Hubble constant, H0, is in tension with the inferred
value from Planck data at the level of ∼3.4σ [45]. The
inclusion of additional relativistic species at the time of
recombination significantly alleviates the tension, favor-
ing ΔNeff ≃ 0.4 [45–48]. This is not the case when the
“preliminary” Planck measurements of high-l polariza-
tion are included, which favor a standard cosmology, but it
is possible that this dataset is plagued by low-level
systematics [28,49].
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C. Standard light relics

Neutrinos decouple from the photon bath at a temper-
ature of Tν dec ∼ 2 MeV [50]. A set of sub-MeV hidden
sector (HS) particles (collectively denoted as X) that is
equilibrated with the SM at temperatures below Tν dec can
lead to significant deviations in the observed value of Neff .
The lightest stable particle of this HS constitutes the DM of
the universe. For simplicity, we assume that X couples to
the SM neutrinos and that all such particles have a common
mass given by mX. We first consider the standard case
where X equilibrates with the SM neutrinos before the
point of neutrino-photon decoupling, as has been inves-
tigated in Refs. [7–14]. The temperature evolution of the
neutrino bath is then easily derived from the conservation
of comoving entropy density.
The effective number of relativistic d.o.f., gi�, in each

bath (i ¼ ν, X, γ) determines the entropy density,
si≡ð2π2=45Þgi�T3

i , and energy density, ρi≡ ðπ2=30Þgi�T4
i ,

where T ≡ Tγ is the temperature of γ and e� bath. For three
generations of left-handed SM neutrinos,

gν� ¼ ð7=8Þ × 3 × 2 ¼ 21=4: ð3Þ

At temperatures below Tν dec, the comoving entropy den-
sities in the ν − X and photon bath are separately con-
served. Using that sνþX ≡ sν þ sX and sγ separately scale
as a−3 (a is the scale factor), one finds

gν� þ gX�
gγ�

ξ3ν ¼ const; ð4Þ

where

ξi ≡ Ti=T ð5Þ

is the temperature of species i normalized to the photon
temperature [51]. We will assume for simplicity that X is
lighter than me. Treating electron-photon decoupling as
instantaneous, we can approximate the number of relativ-
istic d.o.f. coupled to the photon bath as gγ�ðT ≳meÞ ¼
2þ ð7=8Þ × 4 ¼ 11=2 and gγ�ðT ≲meÞ ¼ 2. Equating
Eq. (4) at temperatures above and below me, and using
that ξνðT ≳meÞ ¼ 1, one recovers the standard result

ξνðT ≲meÞ ≃
�
4

11

�
1=3

≃ 0.7: ð6Þ

We emphasize that this formula makes use of the instanta-
neous decoupling approximation and depends only on the
number of electromagnetically coupled d.o.f. (and not on
the content of the ν − X bath).
When X becomes nonrelativistic, it heats up the SM

neutrinos and negligibly contributes to the entropy density
of the ν − X bath. Again using Eq. (4), but for Tν ≳mX and
Tν ≲mX, we find that

ξνðTν ≲mXÞ ≃
�
4

11

�
1=3
�
1þ gX�

gν�

�
1=3

: ð7Þ

For later convenience, we define ξSMν as the value of ξν
assuming a standard cosmology (gX� ¼ 0) such that

ξSMν ≡
�
1; T ≳me;

ð4=11Þ1=3; T ≲me:
ð8Þ

Using the above results, the defining expression for Neff
in Eq. (2) can be rewritten as

NeffðTÞ ≃ 3

��
ξν
ξSMν

�
4

þ ΘðTX −mXÞ
gX�
gν�

�
ξX
ξSMν

�
4
�
: ð9Þ

In Eq. (9), we have assumed that X decouples instanta-
neously once its temperature drops below its mass
(TX ≲mX), which is encapsulated by the Heaviside step
function, Θ [51,52]. Note that Eq. (9) reduces to Neff ≃ 3

when gX� ¼ 0 and ξν ¼ ξSMν . In the SM, neutrino decoupling
is not instantaneous, and e� annihilations partially heat the
neutrino bath, resulting in Neff ≃ 3.045 [15–17]. In Eq. (9),
we have approximated 3.045 ≃ 3. Substituting Eqs. (7)
and (8) into Eq. (9), we find that

Neff ≃
�
3ð1þ gX� =gν�Þ; Tν ≳mX;

3ð1þ gX� =gν�Þ4=3; Tν ≲mX;
ð10Þ

if X equilibrates with the SM neutrinos at temperatures
above Tν dec. If eV ≪ mX ≪ MeV, then Eq. (10) gives
Neff ≳ 3.57 (Neff ≳ 3.79) at the time of nucleosynthesis
(recombination) for gX� ≳ 1. As discussed in Secs. II A
and II B, this is excluded from considerations of BBN and
Planck measurements of the CMB by more than 2σ.
Furthermore, realistic models of light thermal DM often
require gX� ≳ few, leading to even larger deviations in Neff .
It is this basic insight that has driven many studies to claim
that sub-MeV thermal DM is not cosmologically via-
ble [7–14].

III. DELAYED EQUILIBRATION

A. Temperature evolution and effective number
of neutrino species

In Sec. II, we noted that a single sub-MeV d.o.f. that is
equilibrated with the SM below the temperature of neu-
trino-photon decoupling, Tν dec ∼ 2 MeV, can lead to devi-
ations in Neff that are in conflict with considerations
of BBN and the CMB. In this section, we illustrate that
if light relics enter equilibrium with the SM at temperatures
below Tν dec, then such constraints are significantly relaxed
[18–21].
Let us assume that a similar collection of sub-MeV

particles (X) equilibrates with the SM neutrino bath while
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relativistic but after neutrino-photon decoupling. The
assumption of relativistic equilibration is not strictly neces-
sary, but simplifies the estimates below (see Sec. III C).
As summarized in Table I, we define TXeq ≫ mX and

TXdec ∼mX as the temperature of the photon bath at which
X enters and exits equilibrium with neutrinos, respectively,
and TBBN ∼ ð10–50Þ keV as the temperature at which
nucleosynthesis has effectively concluded. We will be
interested in the case where the HS is initially colder than
the SMbath.A schematic representation of the cosmological
evolution of the HS comoving number density is shown in
Fig. 1. Contrary to DM that is produced via freeze-in [53],
we assume that theHS is fully relativisticwhile equilibrating
with the SM, analogous to the thermal history of a
standard WIMP.
For concreteness, we assume that X equilibrates with the

SM neutrinos after neutrino-photon and electron-photon
decoupling, i.e., TXeq ≲ Tν dec, me ∼MeV. An example of
the temperature evolution of the neutrino and HS baths is
shown in Fig. 2. These results were obtained by numeri-
cally solving the Boltzmann equations for the X and ν
energy densities. Analytic approximations will be derived
below. If HS-SM equilibration occurs through decays and
inverse decays of a HS species into neutrinos (X ↔ νν),
then the relevant Boltzmann equations are

_ρeqX ðTXÞ þ 3HðρeqX ðTXÞ þ Peq
X ðTXÞÞ

≃ −ΓdecmXðneqX ðTXÞ − neqX ðTνÞÞ;
_ρeqν ðTνÞ þ 4Hρeqν ðTνÞ

≃þΓdecmXðneqX ðTXÞ − neqX ðTνÞÞ; ð11Þ

where Γdec is the decay rate for X → νν. We have assumed
that the number and energy densities and pressure have
equilibrium form (denoted by the superscript “eq”), com-
pletely characterized by the temperatures indicated. This is
approximately true of the neutrino bath, whose distribution

FIG. 1. The evolution of the dark matter comoving number
density (YDM) as a function of the photon temperature (T). In the
standard WIMP framework (red curve), dark matter is assumed to
be in equilibrium with the Standard Model bath long before
freeze-out. Dark matter produced through freeze-in (yellow
curve) is assumed to have a negligible abundance at early times
and never fully equilibrates with the Standard Model. We propose
a scenario (blue curve) that alleviates strong constraints from
measurements of the effective number of neutrino species and is
much more akin to the WIMP paradigm, in which an initially cold
(compared to the photon bath) population of sub-MeV particles
relativistically equilibrates with the Standard Model bath after
neutrino-photon decoupling and before freeze-out. Similar
behavior is also expected for standard WIMPs, although the
temperature at equilibration (TXeq) is typically much larger.

FIG. 2. (Left) Temperature evolution (normalized to the photon temperature) of the neutrino (red curve) and dark matter (blue curve)
sectors for an initial temperature ratio of ξ0X ¼ 0.3. Compared to standard cosmology, neutrino–dark matter equilibration and decoupling
cools and heats the neutrino population relative to its expected value in the Standard Model, respectively. The horizontal gray dashed
lines correspond to the approximate analytic estimates of Eqs. (16) and (19). (Right) Evolution of the effective number of neutrino
species in the case that dark matter equilibrates with neutrinos after (solid blue curve) or before (dotted blue curve) neutrino-photon
decoupling. The horizontal gray dashed lines correspond to the approximate analytic estimates given in Eqs. (17) and (20). For
concreteness, we have taken the hidden sector to be made up of a 10 keV Majorana fermion and a 5 keV real scalar.
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maintains a quasiequilibrium form even after weak inter-
actions have decoupled; in the dark sector this assumption
requires the presence of self-interactions that thermalize the
X d.o.f. In writing the above equations, we have also
neglected Bose-enhancement and Pauli-blocking factors.
Including these effects modifies the collision term by Oð1Þ
factors, but does not significantly change our results.
Equation (11) can be solved numerically for the evolution
of TX;ν as a function of the photon temperature, T. The time
variable can be traded for the photon temperature through
the relation [54]

_T ¼ −3H
�
dρtot
dT

�
−1
ðρtot þ PtotÞ; ð12Þ

where ρtot ≡ ργ þ ρν þ ρX and similarly for the pressure
density, Ptot. In Eq. (11), we have neglected chemical
potentials, assuming that the interactions between the HS
and neutrino baths enable each species to rapidly track
equilibrium distributions dictated by TX;ν. This is a good
approximation for the model described below in Sec. IV,
since chemical potentials are suppressed by number-
changing reactions involving a light spin-0 mediator. In
particular, for Oð1Þ couplings and keV-scale masses in the
HS scalar potential of Sec. IV C, 4 → 2 self-interactions
involving the spin-0 mediator decouple well after DM
freeze-out.
In the left panel of Fig. 2, we show the cosmological

evolution of the neutrino and HS temperatures normalized
to that of the photon bath as solid red and blue lines,
respectively, assuming that the HS consists of a 10 keV
Majorana fermion and a 5 keV real scalar. For comparison,
we also display the temperature evolution of the neutrino
bath in the SM (dotted red), assuming that no new light
thermal relics are present (gX� ¼ 0). The initial HS-SM
temperature ratio is fixed to ξX ¼ 0.3, such that the HS is
initially much colder than the SM neutrino and photon
populations. Energy conservation then implies that ν − X
equilibration cools (heats) the neutrino (X) bath at
T ∼ TXeq. If this occurs after neutrino-photon decoupling,
this leaves the photon bath unaffected. Later, when the
temperature drops below mX and the HS decouples, X
dumps its entropy back into the neutrinos, reheating them
to a temperature slightly above the SM expectation. These
two processes, equilibration (neutrino cooling) and decou-
pling (neutrino heating), have counteracting effects on the
neutrino temperature, which lead to a partial cancellation
and a significant reduction in modifications to Neff , whose
evolution is shown as the solid blue line in the right panel of
Fig. 2. If the HS is initially colder than the SM bath, this
cancellation is a direct consequence of thermodynamics
and does not constitute a tuning of the model. For
comparison, we also show the temperature evolution of
Neff , taking the standard assumption that equilibration
occurs before neutrino-photon decoupling (dotted blue

curve), as in Sec. II C and Refs. [7–14]. If equilibration
occurs after neutrino-photon decoupling, deviations in Neff
are significantly reduced. We now derive analytic approx-
imations for the asymptotic behavior of ξν;X and Neff ,
which are shown as the horizontal gray dashed lines
in Fig. 2.
As we will soon see, Neff is sensitive to the initial value

of ξX ≡ TX=T before X − ν equilibration or electron-
photon decoupling, but, similar to DM production via
freeze-in, it is insensitive to the particular value of ξX as
long as ξX ≪ 1 [53]. We define ξ0X ≡ ξXðT ≳ TXeq; meÞ as
this initial temperature ratio. As mentioned above, for
simplicity, we assume that electron decoupling occurs
before DM equilibration. Comoving entropy is conserved
as electrons decouple from the photon plasma. Electron
annihilations heat photons relative to the neutrino and X
baths. Hence, as in Sec. II C, for TXeq ≲ T ≲me, we have

ξνðTXeq ≲ T ≲meÞ ≃
�
4

11

�
1=3

;

ξXðTXeq ≲ T ≲meÞ ≃
�
4

11

�
1=3

ξ0X: ð13Þ

Along with Eq. (9), this implies that Neff is given by

NeffðT ≳ TXeqÞ ≃ 3

�
1þ gX�

gν�
ξ04X

�
: ð14Þ

This is the standard result for an uncoupled population of
dark radiation.
If the HS and neutrino baths equilibrate while X and ν

are relativistic, the sum of their comoving energy densities,
ρνþXa4, is approximately conserved. This can be seen
from Eq. (11), which implies that dðρνþXa4Þ=dt ¼
ρνþXa4Hð1 − 3wÞ, where w≡PνþX=ρνþX. When Tν≫mν

and TX ≫ mX, we have w ≃ 1=3 and dðρνþXa4Þ=dt ≃ 0.
Therefore,

gν�ξ4ν þ gX� ξ4X
ðgγ�Þ4=3

¼ const; ð15Þ

before and immediately after X − ν equilibration, where we
have used sγ ∝ a−3. Equating this expression at temper-
atures above and below TXeq, we find

ξνXðTXdec≲T≲TXeqÞ≃
�
4

11

�
1=3
�
gν� þgX� ξ04X
gν� þgX�

�
1=4

; ð16Þ

where ξνX ≡ ξν ¼ ξX is the temperature ratio when X is
equilibrated with the SM neutrino bath. Comparing the
above expression to the standard result of Eq. (8), we see
that for ξ0X ≪ 1, ν − X equilibration significantly lowers
the temperature of the neutrino bath, i.e., ξνX ≲ ξSMν .
Equations (9) and (16) then imply that
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NeffðTXdec ≲ T ≲ TXeqÞ ≃ 3

�
1þ gX�

gν�
ξ04X

�
; ð17Þ

during X − ν equilibration and before X becomes non-
relativistic. Note that Eq. (17) is identical to the expression
of Eq. (14). This is consistent with the fact that
dðρνþXa4Þ=dt ≃ 0 and that Neff is defined in terms of the
total radiation energy density.
We use conservation of entropy when X becomes non-

relativistic and decouples, since this process occurs in
equilibrium. Hence,

gν�ξ3ν þ gX� ξ3X
gγ�

¼ const; ð18Þ

just before and after X becomes nonrelativistic. Equating
this expression above and below TXdec ∼mX and using
Eqs. (16) and (9), we find

ξνðT≲TXdecÞ≃
�
4

11

�
1=3
�
1þgX�

gν�

�
1=12
�
1þgX�

gν�
ξ04X

�
1=4

ð19Þ

and

NeffðT ≲ TXdecÞ ≃ 3

�
1þ gX�

gν�

�
1=3
�
1þ gX�

gν�
ξ04X

�
: ð20Þ

Note that in the ξ0X ≪ 1 limit and taking TXdec ∼mX,
Eqs. (14), (17), and (20) reduce to

NeffðT ≳mXÞ ≃ 3 ð21Þ

and

NeffðT ≲mXÞ ≃ 3ð1þ gX� =gν�Þ1=3 ≳ 3.18; ð22Þ

where in the inequality we have imposed gX� ≳ 1 for any
light HS.
Compared to the standard result of Eq. (10), the

deviation in Neff away from its SM expectation is signifi-
cantly reduced in Eq. (20) for ξ0X ≪ 1. As mentioned
previously, if TXeq ≲ Tν dec, then ν − X equilibration drains
the neutrino bath of energy, lowering its temperature
compared to that of photons. Later, when X becomes
nonrelativistic and decouples, it reheats the neutrinos to a
temperature close to the SM expectation. These processes
have counteracting effects on ξν, such that the neutrino bath
is reheated to a smaller degree than if TXeq ≳ Tν dec.
However, as seen from Eq. (19), even for ξ0X ≃ 0, there
is an irreducible heating of the neutrino bath since
equilibration of two initially decoupled gases leads to an
overall increase in the comoving entropy of the ν − X
system. In the left (right) panels of Fig. 2, the horizontal

gray dashed lines correspond to the approximate values
given by Eqs. (16) and (19) [Eqs. (17) and (20)]. The
numerical solutions are in good agreement with these
approximate expressions, which warrants their use in the
remainder of this work. We also note that a similar
cancellation arises when a sub-MeV relic equilibrates
directly with the photon bath after neutrino-photon
decoupling, but we will not explore such models in
this work.
Equations (14), (17), and (20) imply that constraints

from nucleosynthesis and the CMB can be alleviated if
TXeq ≲ Tν dec and ξ0X ≪ 1. In Fig. 3, we highlight regions of
parameter space in the gX� − ξ0X plane that are compatible
with measurements of Neff . If TXeq ≲ Tν dec, then ξ0X ≠ 1 in
general and its value encapsulates the sensitivity of our
setup to physics in the ultraviolet. For instance, if X was
initially in thermal equilibrium with the SM but decoupled
at T ≳ ΛQCD before reentering equilibrium at T ≲ Tν dec,
then ξ0X ∼ ð10=100Þ1=3 ∼ 0.5. More generally, ξ0X ≠ 1 arises
in theories of asymmetric reheating of the DM and SM
sectors [55]. Throughout this work, we take ξ0X to be a free
parameter of the low-energy theory. Note that physics at
low energies is insensitive to this temperature ratio as long
as ξ0X ≪ 1. This is analogous to the level of ultraviolet

FIG. 3. Values of gX� (the effective number of sub-MeV dark
sector states that equilibrate with neutrinos) and ξ0X (the initial
dark sector-to-photon temperature ratio) compatible with the
effective number of neutrino species at the time of nucleosyn-
thesis (green) and recombination (blue). Regions compatible with
BBN are shown for scenarios in which dark matter decouples
from neutrinos before (TXdec ≳ TBBN) and after (TXdec ≲ TBBN)
the end of nucleosynthesis. We also highlight parameter space
that alleviates the tension between Planck and local measure-
ments of the Hubble parameter, H0. The representative model
space (red area) corresponds to a dark sector with a dark matter
scalar or Majorana fermion and a scalar mediator. The vertical
dashed gray line corresponds to the standard assumption that X
equilibrates with neutrinos before neutrino-photon decoupling
(ξ0X ≃ 1).
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sensitivity for DM produced from freeze-in processes,
where one typically assumes a negligible initial DM
abundance at early times [53].
For TXeq ≲ Tν dec, Neff transitions from Eq. (17) to

Eq. (20) near the decoupling temperature, TXdec ∼mX.
As a result, limits from nucleosynthesis depend on the
ordering of TXdec ∼mX and TBBN ∼ ð10–50Þ keV. Regions
compatible with BBN are shown in Fig. 3 for both of the
temperature orderings TXdec ≲ TBBN and TXdec ≳ TBBN.
For TXdec ≲ TBBN, Neff is static during BBN and is given
only by the expression in Eqs. (14) and (17). However, for
TXdec ≳ TBBN, Neff evolves from the form given in
Eqs. (14) and (17) to that of Eq. (20) during nucleosyn-
thesis. Detailed studies of BBN, which demand Neff ≃
2.85� 0.28 within 1σ, often assume a single fixed value of
Neff throughout the entire formation of light nuclei [34].
However, as we have seen, this is not generally the case for
a light HS that equilibrates and decouples from the SM
during nucleosynthesis [56]. In deriving a constraint, we
demand that Neff never deviates from the best-fit constant
value by more than 2σ, i.e., jNeffðTÞ − 2.85j ≤ 0.56 for
T ≳ TBBN. We note that this is most likely overly
conservative, since for ξ0X ≪ 1 and values of TXdec only
slightly greater than TBBN, significant deviations in the
expansion rate will only occur at the end of nucleosynthesis.
For instance, this could potentially lead to slight changes in
the deuterium or 7Li abundance without affecting the
production of 4He. It would be interesting to consider the
bounds from detailed investigations of BBN, while assum-
ing time variations of Neff in this manner. We leave such
considerations to future work [57].
Cold DM is necessarily nonrelativistic at the time of

recombination, i.e., eV ≪ TXdec ∼mX. To remain consis-
tent with Planck measurements of the CMB within 2σ, we
demand that jNeffðTÞ − 3.15j≲ 0.46 for T ≲mX, where we
take the form for Neff given in Eq. (20) [28]. Note that this
CMB bound on Neff assumes standard nucleosynthesis,
which is modified in the delayed equilibration scenario,
as described above. A more realistic approach would be
to fit both Yp and Neff to the CMB power spectrum. This
can significantly expand the allowed parameter space due
to the Yp-Neff degeneracy described in Sec. II B. Also
shown in Fig. 3 are regions of parameter space that
alleviate the tension between Planck and local measure-
ments of the Hubble parameter, H0. As a representative
favored range, we take Neff ≃ 3.4� 0.05 [45–48]. Models
of light thermal DM require a stable species and a light
mediator. We highlight regions of parameter space
corresponding to the presence of two real scalars in
the HS (gX� ¼ 2), or a light Majorana fermion and a real
scalar (gX� ¼ 2.75). The standard case of TXeq ≳ Tν dec

corresponds to the limit ξ0X ≃ 1, which is in strong tension
with measurements of both the CMB and primordial
nuclei abundances for gX� ≳ 1.

B. General model building

We have demonstrated that constraints on sub-MeV
thermal relics are weakened when the HS equilibrates
with the SM after neutrino-photon decoupling. We would
like to understand if this naturally occurs in models of
light thermal DM. It has long been appreciated that
thermal DM which couples to the SM solely through the
electroweak force must be heavier than the GeV scale.
The so-called Lee-Weinberg bound relates the mass of
thermal DM to the weak scale (mW), the temperature at
matter-radiation equality (TMRE ∼ 0.8 eV), and the Planck
mass (mPl), such that mDM ≳m2

W=ðTMREmPlÞ1=2 ∼ GeV
[58]. Equivalently, thermal DM that is lighter than a GeV
often requires the presence of new light mediators [59]. It
is therefore natural to expect that sub-MeV thermal DM,
denoted by χ, is accompanied by additional HS media-
tors, φ, that are nearby in mass. In this case, there are
two processes that can equilibrate the two sectors:
scattering between HS and SM states, and decays of φ
into the SM. As we will show, the temperature depend-
ence of either of these processes generically predicts that
a light HS enters thermal equilibrium with the SM while
relativistic. This is illustrated in Fig. 4. The equilibration
point is independent of HS mass scales for scattering, but
for decays, it occurs later as HS masses are lowered. If
this proceeds at temperatures below a few MeV, the
mechanism described in Sec. III A is realized and
modifications to Neff during nucleosynthesis and recom-
bination are reduced.
At temperatures much greater than mχ or mφ, we

parametrize the rate for scattering and decays/inverse-
decays as

FIG. 4. Γ=H as a function of decreasing temperature for dark
matter–Standard Model elastic scattering through the exchange of
either a light (blue curve) or heavy (red line) mediator, φ. For
Γ=H ≳ 1, the hidden sector is in thermal contact with the
Standard Model bath. Light mediators generically predict that
dark matter enters equilibrium with the Standard Model bath
before decoupling.
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Γscatt ∼ α2eqT ðscatteringÞ;
Γdec ∼ αeqm2

φ=T ðdecaysÞ; ð23Þ

where αeq is the effective coupling governing equilibration
and the factor of mφ=T in the decay rate is a time-dilation
factor. Comparing either process to the Hubble parameter,
H ∼ T2=mPl, demonstrates that the rate for equilibration
overcomes the expansion rate at temperatures below

TXeq ∼ α2eqmPl ðscatteringÞ;
TXeq ∼ ðαeqm2

φmPlÞ1=3 ðdecaysÞ ð24Þ

for scattering and decays, respectively, where TXeq denotes
the temperature at which the DM and SM sectors equili-
brate. The rate of DM annihilation into hidden sector
or SM particles during freeze-out can be parametrized as
σv ∼ α2FO=m

2
χ , where αFO is an effective coupling. χ then

acquires an abundance in agreement with the observed DM
energy density for

mχ ∼ αFOðTMREmPlÞ1=2: ð25Þ
In Sec. IV we will specialize to the case of “secluded” DM
annihilations into hidden sector particles. Using this rela-
tion in Eq. (24) allows us to write mχ in terms of TXeq,

mχ ∼

(
ðαFO=αeqÞðTMRETXeqÞ1=2 ðscatteringÞ;
ðαFO=αeqÞ1=3ðmχ=mφÞ2=3ðTMRE=mPlÞ1=6TXeq ðdecaysÞ: ð26Þ

Equation (26) implies that χ and φ equilibrate with the SM
after neutrino-photon decoupling (TXeq ≲ Tν dec ∼MeV) if

mχ ≲ keV ×

( ðαFO=αeqÞ ðscatteringÞ;
ðαFO=106αeqÞ1=3ðmχ=mφÞ2=3 ðdecaysÞ:

ð27Þ

Bounds on warm DM typically excludemχ ≲ few × keV
[4,5]. Therefore, mχ ≳ keV along with Eq. (27) motivates
αFO ≫ αeq. This can be accomplished if the processes
governing freeze-out are enhanced compared to those
governing equilibration. This is a natural hierarchy, for
instance, in models of secluded DM [60], those involving
freeze-out through resonant annihilations [61], or strongly
interacting hidden sectors [62]. Once χ and/or φ become
nonrelativistic, Γscatt and Γdec are either suppressed by
Boltzmann or T=mχ;φ factors. At this point, the equilibra-
tion rate quickly drops below Hubble expansion and the HS
decouples from the SM. This behavior can be contrasted
with equilibration through the exchange of a heavy
mediator, in which case the rate governing equilibration
always falls faster in temperature than H ∼ T2=mPl. This is
typical of the weak processes that maintain ν-e equilibrium
where Γscatt ∼G2

FT
5. Schematic examples of these scenar-

ios are shown in Fig. 4.
The presence of light mediators is strongly motivated for

sub-GeV thermal DM. Thermalization through these light
mediators generically predicts that DM enters equilibrium
with the SM while relativistic and before DM freeze-out, as
highlighted in Fig. 4. If DM is sufficiently light and there
exists a hierarchy between the couplings governing freeze-
out and those governing scattering/decays, then the HS
equilibrates with the SM after neutrino-photon decoupling,
alleviating constraints from measurements of Neff . In

Sec. IV, we turn our attention to a concrete model that
explicitly realizes this mechanism. However, as an aside,
we first briefly comment on scenarios in which the HS
instead does not equilibrate with the SM bath until it is
semi- or nonrelativistic.

C. Nonrelativistic equilibration

In the previous sections, we focused on a scenario that is
closely related to the standard WIMP paradigm: the HS and
SM baths are in equilibrium at temperatures much greater
than the DM mass, with chemical decoupling from the SM
occurring at temperatures much lower than the DM mass.
This is to be contrasted with freeze-in production, in which
case DM never fully equilibrates with the SM [53].
Although it is not the central focus of this work, an
interesting situation may arise between these two extremes,
where the HS fully equilibrates with the SM while the DM
is semi- or nonrelativistic, but before freeze-out of number-
changing interactions. We briefly comment on this pos-
sibility here.
A few of these cosmological scenarios are shown in

Fig. 5. The blue lines correspond to models in which DM
fully equilibrates with the SM neutrino bath after neutrino-
photon decoupling but well before thermal freeze-out. The
cosmology denoted by the solid blue line was already
discussed in detail in Sec. III A, in which the DM is
relativistic during HS-SM equilibration. This case is most
analogous to the WIMP paradigm, and simple analytic
approximations for the evolution of the HS/neutrino tem-
peratures and Neff were derived in Sec. III A. If the HS and
neutrino baths equilibrate while DM is semi- or non-
relativistic, ρνþXa4 is no longer conserved. Instead, the
system of Boltzmann equations in Eq. (11) must be solved
numerically. Such models are shown as the dashed and
dotted blue contours in Fig. 5.
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We show the temperature evolution of Neff for these
generalized scenarios in Fig. 6, analogous to the right panel
of Fig. 2. The various contours correspond to the examples
shown in Fig. 5. For each of these lines in Fig. 6, HS-SM
equilibration occurs after neutrino-photon decoupling. The
solid blue contour corresponds to HS-SM equilibration
while the DM is relativistic, as studied in Sec. III A. For

the dashed and dotted blue contours, equilibration occurs
instead when the DM is semi- or nonrelativistic, as illus-
trated in Fig. 5. In Sec. III A, we noted that the increase in
Neff at late times is due to an irreducible heating of the
neutrino bath since the equilibration of two initially
decoupled gases leads to an overall increase in the comoving
entropy of the ν − X system, i.e.,

dSνþX ¼ dQ

�
1

TX
−

1

Tν

�
> 0; ð28Þ

where Q is the heat exchanged between the two sectors.
If the HS is equilibrated to semi- or nonrelativistic temper-
atures, instead of relativistic ones, the overall heat transfer
and entropy increase are reduced, leading to a corresponding
decrease in the overall heating of the neutrino bath once the
HS becomes nonrelativistic. As a result, modifications to
Neff at late times are suppressed compared to relativistic
equilibration, as shown explicitly in Fig. 6. Although it is
beyond the scope of this study, such models constitute an
interesting possibility for light, predictive, thermal-like DM.
In the next section and the remainder of this work, we will
instead focus on an explicit realization of the cosmological
scenarios involving relativistic equilibration, as discussed in
Sec. III A.

IV. SUB-MeV DARK MATTER WITH A
MAJORON MEDIATOR

The measurement of neutrino oscillations has firmly
established the presence of neutrino masses and mixing
amongst the different flavor eigenstates. Along with the
gravitational observations of DM, the discovery of neutrino
masses strongly motivates the existence of physics beyond
the SM. We now outline a minimal model that realizes the
mechanism described in the previous sections. This model
generates the neutrino mass splittings and mixing angles,
along with the parameters of the DM sector, through the
spontaneous breaking of the lepton number. In Sec. IVA,
we discuss the basic framework that is needed to generate
the appropriate parameters in the neutrino sector. In
Sec. IV B, we extend the model to include a stable neutral
lepton, which will play the role of DM. We briefly discuss
the details of the Higgs sector in Sec. IV C. A more detailed
discussion concerning the explicit forms for the masses and
interactions of the HS particles is given in Appendix A.

A. Neutrino sector

The SM lacks the necessary ingredients to explain the
observed neutrino masses and mixing angles. A simple
solution is to include the dimension-five Weinberg oper-
ator, ðLHÞ2=Λuv [63]. Below the scale of electroweak
symmetry breaking, this operator generates neutrino
masses parametrically of the form mν ∼ v2=Λuv, where v ≃
246 GeV is the SM Higgs vacuum expectation value

FIG. 6. The evolution of the effective number of neutrino
species in the case that dark matter equilibrates with neutrinos
after neutrino-photon decoupling. The solid (dashed and dotted)
contour corresponds to the scenario shown in Fig. 5, where the
hidden sector equilibrates with the neutrino bath while the dark
matter is relativistic (semi- or nonrelativistic). The relativistic
case is identical to the one shown in the right panel of Fig. 2. For
concreteness, we have taken the hidden sector to be made up of a
10 keV Majorana fermion and a 5 keV real scalar.

FIG. 5. Schematic evolution of the dark matter comoving
number density (YDM) as a function of the photon temperature
(T). Compared to Fig. 1, we additionally include scenarios in
which dark matter equilibrates fully with the Standard Model
bath after neutrino-photon decoupling while semi- or nonrela-
tivistic (dashed and dotted blue curves). Such cosmologies
interpolate between the two extremes of WIMP-like freeze-out
and freeze-in.
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(VEV) and Λuv is the effective scale of new physics. A
natural microscopic realization of this operator is the so-
called seesaw mechanism, which introduces right-handed
neutrinos that are uncharged under the SM gauge group
[64–68]. If neutrinos are Majorana, then mν ≠ 0 breaks
lepton number Uð1ÞL. The global Uð1ÞL symmetry can be
broken explicitly, as in minimal seesaw models with an
explicit Majorana mass for the right-handed neutrinos, or
spontaneously when a Uð1ÞL-charged scalar acquires an
expectation value. In the latter case, right-handed neutrino
masses are generated dynamically, and the seesaw mecha-
nism can be implemented. Such models involve majorons,
the pseudo-Nambu-Goldstone bosons (pNGBs) of Uð1ÞL
[69–71]. This light pseudoscalar will play the role of the
mediator between the visible and dark sectors.
In writing down the model, we follow the notation and

conventions of Refs. [72,73]. We introduce a complex
scalar, σ, of lepton number L ¼ 2,

σ ¼ 1ffiffiffi
2

p ðf þ Sþ iJÞ; ð29Þ

where we have assumed that σ acquires a nonzero VEV,
hσi ¼ f=

ffiffiffi
2

p
. S and J are the real and imaginary excitations

of σ, where J (often dubbed the majoron) is the Goldstone
boson of spontaneous Uð1ÞL breaking. In the presence of
suppressed terms that softly break the lepton number, J is a
pseudo-Goldstone and acquires a small mass. Soft Uð1ÞL-
breaking terms can arise in the scalar potential, which is
examined in Sec. IV C and Appendix A 2. While we
naturally expect mJ ≪ f, we will not specify the exact
form of Uð1ÞL breaking and treat the majoron mass, mJ, as
a free parameter of the low-energy theory. A discussion of
how such masses may arise from gravitational effects in a
more complete theory is provided in Appendix (A3).
We introduce three generations of right-handed neutri-

nos, N, with lepton number L ¼ −1. The most general
renormalizable and Uð1ÞL-symmetric Lagrangian coupling
σ and N to the SM lepton sector is then given by

−L ⊃ yνLNH þ 1

2
yNσN2 þ H:c:; ð30Þ

where two-component spinor and flavor indices are
implied. Above, L and H are the SM lepton and Higgs
doublets, respectively. Below the scale of electroweak and
Uð1ÞL breaking, the interactions in Eq. (30) give rise to the
neutrino mass matrix in the (ν, N) basis,

MνN ¼
�

0 mD

mT
D MN

�
; ð31Þ

where mD ≡ yνv=
ffiffiffi
2

p
and MN ≡ yNf=

ffiffiffi
2

p
are 3 × 3 mass

matrices. DiagonalizingMνN gives rise to the neutrino mass
basis, ni (i ¼ 1; 2;…; 6), with masses mi. We define the

unitary matrix V that diagonalizes the full active-sterile
neutrino mass matrix by

V†MνNV� ¼ diagðm1;…; m6Þ; ð32Þ

where V relates the gauge and mass eigenstates.1

In the seesaw limit (mD=MN ≪ 1), n1;2;3 and n4;5;6 are
SM-like and sterilelike neutrino species, respectively, with
masses schematically of the form m1;2;3 ∼m2

D=MN and
m4;5;6 ∼MN ∼ f. The off-diagonal entries of V correspond
to active-sterile mixing and are suppressed by mD=MN ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1;2;3=m4;5;6

p
≪ 1. This is made explicit by the Casas-

Ibarra parametrization as discussed in Appendix A 1 [74].
The interactions of the neutrino mass eigenstates (ni) with
the scalar d.o.f. take the parametric form

−L ∼ ðmimjÞ1=2
�
Sþ iJ

f
þ h

v

�
ninj þ H:c:; ð33Þ

where h is the SM Higgs field. The explicit forms of these
couplings, along with ones involving SM gauge bosons, are
given in Appendix A 1. The most important feature of the
above interactions is their proportionality to the neutrino
masses, which is characteristic of the Higgs mechanism. In
general, there may be other contributions to the masses of
the sterile neutrinos, for instance originating from Dirac
masses with additional L ¼ þ1 sterile neutrinos. In this
case, the mass parameters m4;5;6 written in these inter-
actions are implicitly assumed to be the piece given by the
scale f, i.e., ∼f × ∂m4;5;6=∂f. However, it is important to
keep in mind that MN ≫ f is still possible in extended
models. We will return to this point later in Sec. VA.
Mass mixing in the neutrino sector also induces inter-

actions of the sterile states with electroweak currents and
generates couplings of S and J to charged leptons and
quarks via neutrino loops. These interactions are typically
too small to be phenomenologically relevant, but we
discuss them briefly in Secs. IV C and VI C as well as
in Appendix A.

B. Dark matter sector

The model described in the previous section involves
a viable mechanism for neutrino mass generation. The
new particles include a naturally light pseudo-Nambu-
Goldstone boson, J, that couples to neutrinos. This is
precisely the setup required to realize a viable cosmology
for sub-MeV DM as described in Secs. II and III. To
complete the model, we introduce an additional Weyl
fermion, χ, of lepton number L ¼ −1 and charged under
an additionalZ2. The Z2 prevents χ from mass mixing with

1We have chosen to work in the convention where the
complex conjugate of V relates the two bases of left-handed
Weyl spinors, in accordance with the four-component conven-
tions of Refs. [72,73].
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the active or sterile neutrinos and stabilizes χ, which will
serve as our DM candidate. The only renormalizable term
consistent with the above symmetries is

−L ⊃
1

2
λχσχ

2 þ H:c: ð34Þ

The phase of χ can be chosen such that the Yukawa
coupling, λχ , is purely real. Below the scale of Uð1ÞL
breaking, χ acquires a mass,

mχ ¼
λχfffiffiffi
2

p : ð35Þ

In four-component notation, the interactions of the
Majorana fermion, χ, with J and S are given by

L ⊃ λχSSχ̄χ þ λχJJχ̄iγ
5χ; ð36Þ

where the couplings are defined as

λχS ≡ −
λχ

2
ffiffiffi
2

p ¼ −
mχ

2f
;

λχJ ≡ λχ

2
ffiffiffi
2

p ¼ mχ

2f
: ð37Þ

C. Scalar sector

The Uð1ÞL-preserving renormalizable scalar potential is
given by

VLðH; σÞ ¼ −μ2HjHj2 þ λHjHj4 − μ2σjσj2 þ λσjσj4
þ λσHjσj2jHj2: ð38Þ

This potential does not generate a mass for the majoron, J.
However, soft Uð1ÞL-breaking terms such as

V=L ¼ −ðμ02σ σ2 þ aσσjHj2 þ H:c:Þ ð39Þ

can give rise to a radiatively stable mass for J. The full
potential is then given by

V ¼ VL þ V=L: ð40Þ

We fix the phase of σ such that its VEV, f, is real, leaving a
single physical phase in the couplings μ0σ and aσ. This
phase leads to CP-violating mixing of J with S and h. The
details of mass diagonalization and constraints on the scalar
potential parameters are discussed in Appendix A 2.
As we will illustrate in Sec. V, delayed equilibration of

the majoron sector is achieved formJ ≪ mS ≪ mh. Wewill
assume that the mixing angles in the scalar sector are small,
such that they do not significantly impact physics in the
DM sector. Indeed, we will show in Sec. VI C and in

Appendix A that the Higgs mixing with light states is
strongly constrained by stellar cooling, rare meson decays,
and Higgs decays, implying that the scalar mixing angles
are suppressed. In this hierarchical limit, the scalar mass
eigenstates (φ1;2;3) are nearly aligned with the gauge basis
(J, S, h), with masses

m2
1 ≃m2

J ≃ 4Reμ02σ þ Reaσv2ffiffiffi
2

p
f

;

m2
2 ≃m2

S ≃ 2λσf2 þ
Reaσv2ffiffiffi

2
p

f
;

m2
3 ≃m2

h ≃ 2λHv2: ð41Þ

This assumption will be relaxed in Sec. VI D when we
consider possible signals in futuristic low-threshold direct
detection experiments. For λσ ∼Oð1Þ, the mass of the CP-
even scalar, S, is near the scale of Uð1ÞL breaking, mS ∼ f.
For simplicity, we will fix mS ¼ f in estimates and
numerical results below.
We also note that tree-level mixing between J, S, and the

SM Higgs, h, is not solely responsible for interactions
between the HS and the electrically charged SM fermions.
Additional contributions arise from diagrams involving
loops of active/sterile neutrinos and electroweak gauge
bosons. We will not discuss these contributions in detail
and instead refer the interested reader to the relevant
sections of Refs. [72,73]. For instance, the radiatively
induced Yukawa couplings among J, S, and the SM quarks
and charged leptons are naturally of size

L ∼
mνmf

16π2v2
ðSf̄f þ Jf̄iγ5fÞ; ð42Þ

where f is a charged SM fermion. The effect of this
coupling is analogous to S − h and J − h mass mixing with
an effective angle, θeff , given by

sin θeff ∼
mν

16π2v
∼Oð10−15Þ; ð43Þ

where we have taken mν ∼ 0.1 eV. As a result, tree-level
contributions to J, S − h mixing are only phenomenologi-
cally relevant for sin θ ≳ 10−15. As we will discuss below,
the suppressed size of these radiative interactions makes
them irrelevant for the physics governing early universe
cosmology and the signals discussed in Secs. Vand VI. We
will come back to these couplings in Sec. VI C, where we
discuss effects of J and S on the physics of stellar cooling.

V. COSMOLOGY

A. Equilibration

In this section, we will discuss aspects related to the
equilibration of DM with the SM. DM, χ, is assumed to
equilibrate with the SM neutrinos, ν, while both sectors are
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relativistic. Since the majoron, J, is a pseudo-Goldstone
of Uð1ÞL, we naturally take mχ ∝ f ≳mJ. In this case, χ
freezes out through annihilations into pairs of on-shell
majorons, χχ → JJ, followed by J → νν, as shown in
Fig. 7. From the interactions given in Sec. IV B, the
nonrelativistic cross section for this process is

σvðχχ→ JJÞ≃v2
m2

χ

64πf4
ð1− r2JÞ1=2
ð1−r2J=2Þ4

×

�
1−2r2Jþ

4

3
r4J−

1

3
r6Jþ

1

32
r8J

�
; ð44Þ

where v (not to be confused with the SMHiggs VEV) is the
relative DM velocity, and we have defined the mass ratio
rJ ≡mJ=mχ < 1. In Eq. (44), we have also taken the limit
that mS ≃ f ≫ mχ ; mJ. This form suggests that χ acquires
an abundance in agreement with the observed DM energy
density for

mχ ∼Oð102Þ f2

ðTMREmPlÞ1=2
: ð45Þ

Hence, f ∼ 10 MeV–1 GeV for mχ ∼ keV–MeV. In the
minimal model described in Sec. IV, the masses of
the sterile neutrinos and HS scalars are also governed by
the Uð1ÞL scale, f, and therefore, we parametrically
expect MN ∼mS ∼ f ≲ GeV.
These parametric estimates for the relevant mass scales

suggest that processes involving N, J, and S are all
potentially relevant when considering equilibration
between the DM and SM sectors. We will assume that
rates for scattering processes in the HS, such as χχ ↔ JJ,
are large compared to reactions involving both HS and SM
species. Therefore, equilibration between the SM and a
single species in the HS rapidly equilibrates all of the
lightest particles in the HS, namely χ and J. As noted in
Sec. III, sub-MeV thermal relics are viable provided that
the HS equilibrates with the SM at temperatures below
Tν dec ∼ 2 MeV. Therefore, it is imperative that processes
involving SM neutrinos and N, J, and S do not equilibrate

before this point. We now proceed to discuss these various
processes in detail.
In the limit that mJ;S ≫ eV, the decay rates of J and S

into SM neutrinos are

ΓðJ → ννÞ ≃ mJ

16πf2
X
i¼1−3

m2
i ;

ΓðS → ννÞ ≃ mS

16πf2
X
i¼1−3

m2
i ; ð46Þ

where the sum is over the three active neutrino flavors.
From examining the Boltzmann equations in Eq. (11), the
effective energy transfer rates from decays and inverse
decays that can be compared to Hubble expansion are

ΓXeqðJ ↔ ννÞ ≃mJn
eq
J ðTνÞ

ρeqν ðTνÞ
ΓðJ → ννÞ;

ΓXeqðS ↔ ννÞ ≃mSn
eq
S ðTνÞ

ρeqν ðTνÞ
ΓðS → ννÞ; ð47Þ

where neqJ;S is the equilibrium number density of J and S,
respectively [55,75]. These processes are able to maintain
kinetic equilibrium between the HS and SM if
ΓXeqðJ; S ↔ ννÞ≳H. The ratio,

ΓXeqðJ; S ↔ ννÞ=H; ð48Þ

peaks at temperatures comparable to the mass of the
decaying particle, T ∼mJ;S. For concreteness, let us
assume that mS ≳mχ ≳mJ. We find that equilibration
occurs at temperatures Tν ≳mχ through J ↔ νν decays if

ΓXeqðJ↔ ννÞ
H

����
Tν∼mχ

∼Oð1Þ×
�

mχ

100 keV

�
−2
�
mχ

mJ

�
−2≳1;

ð49Þ

or through S ↔ νν decays if

FIG. 7. Representative Feynman diagrams responsible for dark matter freeze-out (left) and equilibration (right).
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ΓXeqðS ↔ ννÞ
H

����
Tν∼mS

∼Oð10−4Þ ×
�

mχ

100 keV

�
−3=2 ≳ 1:

ð50Þ

In the above estimates, we have set mν ∼ 0.1 eV, mS ∼ f,
and have fixed f to the thermally favored value in Eq. (45).
Equations (49) and (50) imply that formχ ∼ keV–MeV and
mJ ≳ 10−2mχ , equilibration through J ↔ νν dominates
over S ↔ νν.
Decays of the sterile neutrinos (N ↔ Jν) are also poten-

tially able to equilibrate the two sectors. For the simplest
choices of mixing parameters (R ¼ 1 in Appendix A 1),
each generation ofN couples to a single generation of ν. For
MN ≫ mJ, the corresponding decay rate is

ΓðN → JνÞ ≃mνM2
N

16πf2
: ð51Þ

ΓXeqðN ↔ JνÞ is given by the analogous form of Eq. (47).
We find that these decays efficiently equilibrate the DM and
SM sectors if

ΓXeqðN↔JνÞ
H

����
Tν∼MN

∼Oð105Þ×
�

mχ

100 keV

�
−1≳1; ð52Þ

where, once again, we have fixed f to the thermally
favored value in Eq. (45). If these processes equilibrate
the DM and SM sectors before neutrino-photon decoupling
(which is possible ifMN ≳ few × 100 MeV), then N ↔ Jν
decouples above the QCD phase transition, resulting in
ξ0X ∼ ð10=100Þ1=3 ∼ 0.5. From Fig. 3, such values of ξ0X still
significantly alleviate the bounds from measurements of
Neff . However, as wewill see below in a detailed calculation,
thermal freeze-out of χ often favors MN ∼ f ≲ few ×
Oð100Þ MeV and hence potentially larger values of ξ0X,
worsening this scenario to some degree. To summarize, in
the minimal models considered so far, sterile neutrino
decays (N ↔ Jν) often (but not always) prematurely equili-
brate the DM and SM sectors, spoiling the mechanism of
Sec. III.
These issues can be circumvented, for instance, if the

mass of N has contributions from additional heavier scales
(MN ≫ f) or if the postinflation reheat temperature of the
universe is comparatively small (MeV≲ TRH ≪ f). The
first case can be realized if the mass of N is lifted by an
additional right-handed neutrino, Nc, of opposite lepton
number, L ¼ þ1. This charge assignment allows for a
Dirac mass involving N and Nc which can be parametri-
cally larger than the scale f. The second possibility, which
involves a low reheat temperature, avoids premature
equilibration mediated by on-shell sterile neutrinos with
MN ∼ f. However, processes involving intermediate off-
shell sterile neutrinos can still potentially equilibrate the HS
and SM bath before neutrino-photon decoupling. Such

reactions include Jν ↔ Jν through an intermediate off-
shell N. In the limit that mJ ≪ T ≪ MN , the cross section
is parametrically of size

σvðJν → JνÞ ∼m2
ν

f4
: ð53Þ

After fixing f to the cosmologically favored value in
Eq. (45), this implies that Jν ↔ Jν never maintains
equilibrium between DM and the SM for TRH ≲ TeV×
ðmχ=100 keVÞ2.
Other scattering processes include χν ↔ χν through J

and S exchange, Jν ↔ Zν, and St ↔ ht, where t is the SM
top quark. We find that the rates of equilibration for these
reactions are subdominant compared to the ones considered
above since they are suppressed by additional small
couplings.2 The strength of St ↔ ht or Jt ↔ ht explicitly
depends on the scalar mixing angles defined in Eq. (A22).
For TRH ≳mh, demanding that these processes do not
equilibrate the DM and SM sectors at temperatures above a
few MeV requires scalar mixing angles smaller than
Oð10−8Þ. On the other hand, for TRH ∼ few × MeV, similar
processes, such as Je ↔ γe, do not equilibrate the two
sectors for mixing angles less than Oð10−1Þ.

B. Dark matter freeze-out

In Sec. VA, we demonstrated that various processes
can potentially equilibrate the DM and neutrino baths at
relativistic temperatures (T ≫ mχ ; mJ) and after neutrino-
photon decoupling (T ≲MeV). To acquire a relic abun-
dance that is in agreement with the observed DM
energy density, χ must remain in chemical equilibrium
until it is nonrelativistic, freezing out at temperatures
T ∼mχ=10. As mentioned in the beginning of Sec. VA,
DM freeze-out proceeds through annihilations into pairs of
on-shell majorons, i.e., χχ → JJ, followed by J → νν (see
Fig. 7). For convenience, we repeat the form for the
nonrelativistic cross section from Eq. (44),

σvðχχ→ JJÞ≃v2
m2

χ

64πf4
ð1− r2JÞ1=2
ð1−r2J=2Þ4

×

�
1−2r2Jþ

4

3
r4J−

1

3
r6Jþ

1

32
r8J

�
: ð54Þ

In calculating the relic abundance of χ, we follow the
semianalytic approach as detailed in Refs. [52,76],

2For mJ ≪ eV, χν ↔ χν through J exchange may dominate
over J ↔ νν. However, a simple estimate using Eq. (26) shows
that, in this case, equilibration for mχ ≳OðkeVÞ is only possible
for neutrino masses that are larger than what is experimentally
allowed, i.e., mν ≫ eV.
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Ωχh2 ≃ 8.5 × 10−11
xf

ffiffiffiffiffiffiffi
geff�

p
gγ�

�
3ξXb=xf
GeV−2

�
−1
; ð55Þ

where ξX is evaluated at freeze-out, b≡ σv=v2 as in
Eq. (54), and

geff� ≡ gγ� þ gν�ξ4ν þ gX� ξ4X: ð56Þ

As before, X collectively denotes the light species in the HS
(χ and J). xf is the value of x≡mχ=T at freeze-out and can
be solved numerically through the relation

xf≃ξX ln

�
cðcþ2Þ
4π3

ffiffiffiffiffi
45

2

r
2ffiffiffiffiffiffiffi
geff�

p mχmPl
ξ5=2X 6ξXb=xfffiffiffiffiffixfp ð1−3ξX=2xfÞ

�
;

ð57Þ

where c ∼Oð1Þ is a constant chosen by matching to
numerical solutions of the Boltzmann equation.
In Fig. 8, we show the value of f as a function of the DM

mass, mχ , that is needed for an adequate freeze-out abun-
dance of χ, assuming that the HS equilibrates with the SM
neutrinos at relativistic temperatures, i.e., T ≫ mχ ; mJ. We
have taken mχ > mJ, and the thickness of the contour in
Fig. 8 corresponds to varying the χ − J mass ratio between
mχ=mJ ¼ 1.01 and mχ=mJ ≫ 1. In calculating the thermal
values of f, we have utilized the semianalytic results in
Eqs. (55) and (57). Note that Fig. 8 is in agreement with the
parametric estimate of Eq. (45),

f ∼Oð10Þ−1m1=2
χ ðTMREmPlÞ1=4: ð58Þ

These cosmologically favored values of f imply the pres-
ence of new physics associated with the spontaneous
breaking of Uð1ÞL below the GeV scale.
Figure 9 shows the required DM-majoron mass ratio,

mχ=mJ, as a function ofmχ for various values of the lightest
neutrino mass, m1, such that χ acquires an adequate
cosmological abundance and that the HS relativistically
equilibrates with the neutrino bath. In doing so, we fix the
scale f as in Fig. 8 and assume that equilibration is
dominated by the process J ↔ νν. In this case, the HS
equilibrates relativistically with the SM neutrinos
(ξXTXeq ∼ few ×mχ) if Eq. (49) is fulfilled, which in turn
fixes themass of themajoron,mJ, as a function of f,m1, and
mχ . We are also interested in the generalized scenario of
Sec. III C, in which the HS equilibrates with the SMwhile χ
is semi- or nonrelativistic. The different colored regions in
Fig. 9 correspond to HS temperatures at HS-SM equilibra-
tion of ξXTXeq ¼ ð1; 3; 10Þ ×mχ . The width of each band is
given by varying the lightest neutrino mass within the
cosmological allowed range of m1 ¼ 0 eV–0.24 eV [28].
After fixing m1, the masses of the other SM neutrinos are
given by the observedmass splittings [77,78]. The regions in
Fig. 9 were obtained by solving the Boltzmann equations in
Eq. (11) to find TXeq. The qualitative behavior can also be
obtained by comparing the rate of J ↔ νν with the Hubble
expansion rate.
We conclude this section with a brief derivation of the

scaling in Fig. 9. In Sec. VA, we argued that if the decays
and inverse decays of sterile neutrinos (N ↔ Jν) are
suppressed either through low reheat temperatures or

FIG. 9. The approximate dark matter–majoron mass ratio that is
needed for the hidden sector to relativistically (red and purple) or
semirelativistically (blue) equilibrate with the Standard Model
neutrino bath. The different colored bands (bounded by solid and
dashed lines on top and bottom) correspond to hidden sector
temperatures at equilibration of ξXTXeq ¼ ð1; 3; 10Þ ×mχ . The
width of each band is given by varying the lightest Standard
Model neutrino mass, m1, within the cosmologically allowed
range of m1 ¼ 0 eV (dashed line) and m1 ¼ 0.24 eV (solid line).
The scale f is set to the thermal relic value computed in Fig. 8.

FIG. 8. Values of the scale f required for χ to freeze out with an
abundance that is in agreement with the observed dark matter
energy density, assuming that the hidden sector is able to
equilibrate with the Standard Model while relativistic. The
thickness of the band corresponds to varying the χ − J mass
ratio between mχ=mJ ¼ 1.01 and mχ=mJ ≫ 1. On the right axis,
we also show the ratio mν=f, fixing the neutrino masses to
mν ¼ 0.1 eV. This ratio is representative of the size of inter-
actions between the Standard Model neutrinos and the
majoron, J.
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additional contributions to MN , then majoron decays
(J ↔ νν) are dominantly responsible for equilibrating
the two sectors below the temperature of neutrino-photon
decoupling. Solving Eq. (49) for f at T ∼ TXeq, we find
f2 ∼m2

νm2
JmPl=ðTXeqÞ3. Substituting this into Eq. (45) and

solving for mχ gives

mχ ∼
�
mχ

mJ

�
−1
�
TXeq

mχ

�−3=2� mPl

TMRE

�
1=4

mν: ð59Þ

If we enforce that TXeq ≳mχ ≳mJ, then Eq. (59) reduces to

mχ ≲
�

mPl

TMRE

�
1=4

mν ∼MeV: ð60Þ

Equation (60) implies that the sub-MeV scale for thermal
DM is a natural consequence of the smallness of the
observed neutrino masses. This numerical coincidence is
surprising, since the MeV scale has been motivated here in
a completely independent manner, compared to the discus-
sion in the beginning of this work. Hence, the framework
and model described in the previous sections self-
consistently motivate thermal DM below the MeV scale.

VI. SIGNALS AND CONSTRAINTS

We now discuss signals and constraints for the model
outlined in Secs. IVand V. These include cosmological and
astrophysical considerations of the CMB, the small- and
large-scale structures of matter, neutrino scattering in the
early universe, DM self-interactions, and stellar cooling.
We also briefly explore the possibility of observing more
direct signals in terrestrial searches for light DM, sterile
neutrinos, or majorons. While many of the models are
already tightly constrained by existing measurements, there
remain viable regions of parameter space that will be
decisively tested in the near future. This is illustrated
explicitly in Fig. 10 as a function of the mass ratio,
mχ=mJ, and the DM mass, mχ . Throughout this parameter
space, we fix ξXTXeq ¼ ð1 − 3Þ ×mχ , so that the DM
sector equilibrates with the SM before χ is nonrelativistic
(well before freeze-out), analogous to the standard picture
for thermal WIMPs. We also fix the lightest SM neutrino
mass, m1, and the scale of Uð1ÞL breaking, f, as in Figs. 8
and 9 so that χ makes up the entire DM abundance at
late times.

A. CMB

The general framework discussed in Sec. III will be
decisively tested by observations of the CMB in various
ways. First, the light HS d.o.f. alter the radiation energy
density at the time of recombination; this modification is
encoded in the effective number of neutrinos, Neff . The
impact of Neff on the CMB sky is described in Sec. II B.
The near-future CMB-S3 and S4 experiments, consisting of

a collection of ground-based telescopes, will have unprec-
edented sensitivity to deviations of ΔNeff ≃ 0.06 and 0.027
within 1σ, respectively [79]. As noted in Eq. (22), the
presence of even a single sub-MeV d.o.f. in the HS that
relativistically equilibrates with the SM neutrinos below an
MeV implies that ΔNeff ≳ 0.18 at the time of recombina-
tion. Hence, CMB-S4 experiments will definitively test the
presence of such thermal relics, regardless of their con-
tribution to the abundance of cosmological DM.
The CMB also constrains these models through indirect

measurements of SM neutrino masses. Because the
majoron is the pseudo-Goldstone of the lepton number,
its interactions with neutrinos are set by mν=f, which in
turn determines the equilibration temperature, TXeq, as
described in Sec. V (see Fig. 9). For fixed mχ and mJ,
larger HS-SM equilibration temperatures require heavier
SM neutrinos. Thus, for certain choices of parameters,
relativistic equilibration of the HS can be in conflict with
upper bounds on neutrino masses. One such upper bound
comes from Planck measurements of the temperature
power spectrum (TT), which currently constrains the
sum of the SM neutrino masses such that

P
i¼1–3mi ≲

0.72 eV [28]. This corresponds to a bound on the lightest
neutrino mass of m1 ≲ 0.24 eV for the normal and inverted
mass orderings. Combinations of the Planck dataset with

FIG. 10. The viable dark matter parameter space for a sub-MeV
hidden sector coupled to Standard Model neutrinos. For every
value of the dark matter mass, mχ , and dark matter-majoron mass
ratio, mχ=mJ , the lepton number breaking scale, f, is fixed to
reproduce the correct relic abundance, as in Fig. 8. Requiring that
the hidden sector equilibrates with the neutrino bath at a given
temperature sets a lower bound on the neutrino masses; in the
blue shaded regions, this lower bound exceeds the upper limit onP

mν set by CMB measurements for ξXTXeq=mχ ¼ 1, 3. In the
red shaded regions, dark matter free-streaming or acoustic
oscillations in the hidden sector result in a cutoff in the matter
power spectrum that is inconsistent with the smallest observed
dark matter substructures. Since the smallest halo mass is subject
to uncertainty, we show the resulting constraint for Mcutoff ¼
109 M⊙ (solid red curve) and 108 M⊙ (dotted red curve).
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other cosmological observations further tighten this bound
as much as

P
i¼1–3mi ≲ 0.18 eV [28,80]. However, it has

been noted that uncertainties in the CMB lensing amplitude
can significantly weaken these cosmological limits [80].
Hence, for simplicity, we show only the Planck TT
constraint in Fig. 10, for various choices of the equilibra-
tion temperature.

B. Structure formation

1. Dark matter free-streaming and acoustic oscillations

The models considered throughout this work can lead to
observable deviations in the observed matter power spec-
trum. Light DM that remains coupled to HS or SM
radiation until late times can suppress power at small
scales via two distinct mechanisms: free-streaming and
acoustic oscillations. These processes wash out structure
below a characteristic comoving length scale, λcutoff , which
sets a lower bound on the present day mass of the smallest
gravitationally collapsed DM structures,

Mcutoff ¼
4π

3
ρDMλ

3
cutoff ≃ 1.4 × 108 M⊙ ×

�
λcutoff

0.1 Mpc

�
3

;

ð61Þ

where ρDM ¼ 1.26 × 10−6 GeV cm−3 is the present cos-
mological DM energy density [34]. The cutoff scale is
determined by solving Boltzmann equations describing the
coupled DM-radiation system during the epoch of DM
decoupling and free-streaming, which modifies the initial
primordialmatter power spectrum [81–83]. Here, wemerely
estimate the cutoff scales for the two effects following
Refs. [22,84,85]. The scale that enters Eq. (61) is then given
by the larger of the two lengths associated with free-
streaming (λFS) and acoustic oscillations (λAO),

λcutoff ≃max ðλFS; λAOÞ: ð62Þ

We now discuss each of these in turn.
Once χ kinetically decouples from the radiation bath

(either from HS majorons or SM neutrinos), it begins to
freely diffuse across the universe, suppressing matter
perturbations smaller than the free-streaming scale, λFS.
This length scale is defined as the comoving distance
traversed by DM from the time of decoupling (assumed to
occur during radiation domination) until matter-radiation
equality,

λFS ¼ cFS

Z
tMRE

tKD

dt
vχ
a
; ð63Þ

where a is the scale factor, vχ ¼ pχ=Eχ is the physical
velocity of χ, tKD and tMRE are the cosmological
times associated with DM kinetic decoupling and matter-
radiation equality, respectively, and cFS is an Oð1Þ number.

There is some ambiguity in cFS due to different conventions
and Oð1Þ factors that appear in the Boltzmann equation
treatment of free-streaming [83]. For example, in Ref. [85],
cFS ¼ 1=2, while Ref. [83] finds cFS ¼ π=ð2 ffiffiffi

6
p Þ ≃ 0.64.

In evaluating λFS, we take cFS ¼ 1=2. To simplify the
evaluation of Eq. (63), let us assume that χ kinetically
decouples while nonrelativistic at a photon temperature of
TKD ≪ OðMeVÞ. In this case, Eq. (63) can be simplified to

λFS ≃ cFS

�
4π3

135
geff�

TKDmχ

ξX

�−1=2mPl

T0

log
TKD

TMRE

≃ 0.13 Mpc × cFSξ
1=2
X

�
TKD

keV

�−1=2� mχ

100 keV

�
−1=2

×

�
1þ 0.14 log

TKD

keV

�
; ð64Þ

where geff� is defined as in Eq. (56), T0 ≃ 2.3 × 10−4 eV is
the present day photon temperature, TKD is the temperature
of the photon bath at DM kinetic decoupling, and ξX and
geff� are evaluated at TKD.
Density fluctuations of the DM fluid that enter the

horizon while DM is kinetically coupled to SM neutrinos
and/or relativistic majorons oscillate with the radiation
bath, similar to the baryonic acoustic oscillations in the
baryon-photon plasma. The amplitude of these modes is
damped due to their coupling to radiation. As a result, they
do not undergo the usual logarithmic growth during
radiation domination [83]. This results in suppressed power
on scales smaller than the comoving horizon at decoupling,

λAO ¼
Z

tKD

0

dt
1

a
¼ 1

aKDHKD
; ð65Þ

where aKD and HKD are the scale factor and Hubble
parameter at DM kinetic decoupling. Once again assuming
that DM kinetic decoupling occurs at temperatures
TKD ≪ mχ ;OðMeVÞ, Eq. (65) is approximately

λAO ≃
�
4π3

45
geff�

�−1=2 mPl

TKDT0

≃ 0.1 Mpc ×

�
TKD

keV

�−1
; ð66Þ

where geff� is evaluated at TKD, as in Eq. (64).
In order to evaluate Eqs. (64) and (66), we need to

determine the photon temperature at kinetic decoupling,
TKD. The DM, χ, chemically decouples when χχ ↔ JJ
freezes out (see Sec. V B), but remains in kinetic equilib-
rium with the SM bath directly through χν ↔ χν or
indirectly through χJ ↔ χJ (þJ ↔ νν). Since χJ ↔ χJ
is governed by the same couplings as χχ ↔ JJ, the fact that
χχ ↔ JJ freezes out at TX ∼mχ=10 implies that χJ ↔ χJ
decouples at TX ∼mJ=10. For TX ∼mJ=10 and mJ ∼mχ ,
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the rate for χJ ↔ χJ is enhanced over that of χν ↔ χν by
approximately

neqJ hσvðχJ→χJÞi
neqν hσvðχν→χνÞi∼Oð108Þ×

�
mχ

100keV

�
2
�
mν

eV

�
−2
: ð67Þ

Hence, χν ↔ χν decouples well before χJ ↔ χJ, and we
expect χJ↔χJ to dictate TKD. In the limit that mχ ≫
TX;mJ, the differential rate for this scattering process is
approximately

dσ
dt

ðχJ → χJÞ ≃ m2
χ

4πf4p2
J
; ð68Þ

where pJ is the momentum of J in the center of mass frame
and t is the usual Mandelstam variable.
We follow Refs. [22,85] in calculating the temperature at

kinetic decoupling, TKD. We estimate TKD by equating the
momentum relaxation rate for χJ ↔ χJ (denoted by γ) to
the Hubble expansion rate,

γðχJ ↔ χJÞðTKDÞ ¼ HðTKDÞ; ð69Þ

where γðχJ ↔ χJÞ is defined as

γðχJ ↔ χJÞ≡ 1

6mχTX

Z
∞

0

d3pJ

ð2πÞ3 fJð1þ fJÞ

×
pJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
J þm2

J

p Z
0

−4p2
J

dtð−tÞ dσ
dt

: ð70Þ

Above, fJ is the phase-space density of J, and dσ=dt is as
given in Eq. (68). In the nonrelativistic limit and taking
f ≫ mχ ; mJ, this becomes

γðχJ ↔ χJÞ ≃ 4ξ2X
3π3

mχm2
JT

2

f4
e−mJ=ξXT: ð71Þ

Equations (69) and (71) allow us to estimate the kinetic
decoupling temperature, TKD, through the relation

mJ

ξXTKD ≃ ln

��
20

π9geff�

�
1=2

ξ2X
mχm2

JmPl

f4

�

≃ 17þ ln

��
mχ

100 keV

��
mχ

mJ

�
−2
ξ2X

�
; ð72Þ

where geff� and ξX are evaluated at TKD, and in the second
equality we have fixed f to the thermally favored value, as
shown in Eq. (45) and Fig. 8.
The minimum halo mass, Mcutoff , can be calculated

using Eqs. (61), (62), (64), (66), and (72). Various
astrophysical observations, such as Milky Way satellite
counts and the Lyman-α absorption lines of distant
quasars, constrain Mcutoff≲ð107–109ÞM⊙, corresponding

to λcutoff≲ð0.05–0.2ÞMpc (see, e.g., Refs. [4,5,86–92]
and references within). Wewill conservatively demand that
Mcutoff ≲ 109 M⊙ as shown by the solid red line in Fig. 10,
although we additionally highlight regions of parameter
space in which Mcutoff ¼ 108 M⊙ as a dotted red line.
The minimum halo mass constraint sets a lower limit on

the DM mass of mχ ≳ ð10–50Þ keV, for the thermal relic
parameter space shown in Fig. 10. This is a stronger bound
compared to the often-quoted limit on warm DM [4], which
is usually assumed to have decoupled from the SM while
relativistic at large temperatures. In the present model, the
momentum of χ redshifts less between chemical decou-
pling and matter-radiation equality because χ remains
coupled to the radiation bath of J and ν until late times.
As seen in Fig. 10, the bound becomesmore severe for larger
values of mχ=mJ since χ decouples later [see Eq. (72)] as
mJ → 0. Furthermore, for mχ=mJ ≲ few, the cutoff in the
power spectrum (λcutoff ) is controlled by free-streaming,
while for larger values ofmχ=mJ, acoustic oscillations in the
HS dominate. This can be understood by taking the ratio of
Eqs. (64) and (66). For mχ ∼Oð10Þ keV, we find

λFS
λAO

∼Oð10Þ ×
�
mχ

TKD

�
−1=2

∼ few ×

�
mχ

mJ

�
−1=2

; ð73Þ

where in the second equality we have used Eq. (72). As a
result, acoustic oscillations dominate over free-streaming
in controlling the matter power spectrum cutoff for
mχ=mJ ≳ few. These limits will be improved in the near
future with, e.g., observations of the 21 cm hydrogen line in
the cosmic dark ages [93–95]. For instance, an order of
magnitude improvement in the sensitivity to λcutoff would
probe most of the remaining parameter space in Fig. 10.
Various studies have examined the effect of DM-neutrino

scattering (χν → χν) on the matter power spectrum [84,96–
102]. We previously showed in Eq. (67) that this process
decouples well before χJ ↔ χJ and therefore is not
relevant for structure formation. However, for completeness
we will compare the upper limits derived in the works listed
above to the scattering rate for χν ↔ χν in our model.
Majoron exchange dominates this process, sincemJ ≪ mS;
the low-energy cross section takes the parametric form

hσvðχν → χνÞi ∼ few ×
m2

νT4

f4m4
J
; ð74Þ

where the T4 temperature dependence arises from the CP-
odd nature of the interaction between the majoron and the
nonrelativistic χ. For sufficiently large scattering rates, DM
and neutrinos are tightly coupled in the early universe,
altering the observed matter power spectrum, for instance,
in large galaxy surveys. These effects constrain the size of
the DM-neutrino opacity, Q≡ hσvðχν → χνÞi=mχ , where
the temperature scaling of Q is parametrized as either
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constant, Q ∝ T0, or falling as the temperature squared,
Q ∝ T2. In the case of constant scaling, the strongest
bounds lead to the constraint Q≲ 10−33 cm2=GeV [100].
Since the predicted rate in Eq. (74) falls as T4, we
conservatively compare the upper bound from Ref. [100]
to the value predicted in our model at temperatures near
matter-radiation equality, T ∼ eV, which gives the strongest
possible constraint. We find that the predicted rate in our
model is many orders of magnitude below this observa-
tional limit throughout the relevant parameter space shown
in Fig. 10.

2. Dark matter and neutrino self-interactions

Nonstandard neutrino interactions mediated by new
forces (such as the majoron) can also alter the behavior
of fluctuations in the photon and baryon fluids during the
early universe. In the standard cosmology, neutrinos diffuse
freely after decoupling from the photon plasma at temper-
atures of a few MeV until they become nonrelativistic well
after recombination. Such free-streaming radiation creates
anisotropic shear stress, which, through gravity, suppresses
the amplitude and shifts the phase of acoustic modes in the
CMB that enter the horizon during this epoch [42,43,103].
However, if self-interactions (or interactions with another
species) allow neutrinos to form a tightly coupled fluid
before matter-radiation equality, the point at which they
begin free-streaming is delayed. As a result, the strength of
anisotropic stress is reduced compared to the SM expect-
ation, and the power in subhorizon fluctuations is corre-
spondingly increased and shifted in phase toward smaller
angular scales.
Recent studies have investigated the effects of neutrino

self-interactions (νν → νν) on the CMB, where the strength
of the neutrino opacity is parametrized in terms of the
dimensionful coefficient of a four-fermion operator, Geff

[48,104,105]. These analyses have found that Geff ≲
1=ð50 MeVÞ2 is consistent with data from Planck, the
Sloan Digital Sky Survey, and local measurements of the
Hubble parameter. In particular, for the models considered
in Sec. IV, elastic neutrino scattering proceeds through the
exchange of the light spin-0 mediators, J and S. In the limit
that mν ≪ eV ≪ mJ;S, the relevant cross section is para-
metrically

σvðνν → ννÞ ∼ G2
effT

5
ν; ð75Þ

where the effective coupling is given by

Geff ∼
m2

ν

f2m2
J;S

: ð76Þ

Since mJ ≪ mS, elastic neutrino scattering is dominantly
governed by majoron exchange, so that Geff ∼m2

ν=ðf2m2
JÞ.

From Figs. 8–10, the viable parameter space of our model is

given by mν ≲ 0.1 eV, f ≳ 10 MeV, and mJ ≳ 100 eV,
which implies that

Geff ≲ 1

ð104 MeVÞ2 : ð77Þ

This is orders of magnitude below the upper bound derived
in Refs. [48,104–106]. We note that the ν − J coupling in
the early universe also delays neutrino free-streaming
until J becomes nonrelativistic. The bound on delayed
free-streaming in Refs. [104,105] can be stated in terms of a
lower limit on the redshift at neutrino decoupling:
zν dec > 1.3 × 105. For the massesmJ ≳ keV, as considered
in this work, ν decouples from J well before this epoch.
J and S exchange also gives rise to DM self-scattering

(χχ → χχ). The self-scattering cross section per DM mass
is bounded from observations of the dynamics and struc-
tures of galaxy clusters to be σ=mχ ≲ cm2=g, where the
characteristic value of the relative DM velocity is v2 ∼ 10−5

[107–109]. We follow the discussion in Refs. [33,110,111]
to calculate the viscosity cross section for the self-scattering
of identical DM particles. For mS ∼ f ≳mχ and in the limit
that v ≪ mJ=mχ ≪ 1, DM self-scattering is dominated by
majoron exchange,

σðχχ → χχÞ
mχ

≃
mχ

192πf4
: ð78Þ

For mχ ≳ keV, this rate is maximized for mχ ∼ keV and
f ≃ 30 MeV, where f has been fixed to the thermally
favored value in Fig. 8. This gives σðχχ → χχÞ=mχ ≲
10−6 cm2=g, which is orders of magnitude below the
inferred upper bound.

C. Stellar cooling

New particles coupled to the SM can lead to additional
energy loss mechanisms in stellar systems, such as super-
novae, red giants, and horizontal branch stars. One of the
most powerful constraints on new light d.o.f. comes from
the observed cooling rate of SN1987A [112]. For
mJ ≲ 10 MeV, annihilations of SM neutrinos into a light
majoron (νν → J) can lead to qualitative changes in the
measured neutrino burst duration. Supernova bounds on
majorons have been studied in detail in Refs. [113–116].
Here we estimate an upper bound on the J − ν coupling as
follows. The energy loss rate per unit volume scales asQJ ∼
mJΓJnν [116], whereΓJ ∼m2

νmJ=f2 is the zero-temperature
majoron decay rate [see Eq. (46)] and nν is the neutrino
number density for a given ν flavor. It is important to
distinguish between electron and the heavy flavor neutrinos
in the core. The former have a large chemical potential,
μνe ≃ 200 MeV, with nνe ∼ μ3νe , while the latter have a
thermal population, such that nνμ;τ ∼ T3

SN, where TSN ∼
30 MeV is the core temperature. The larger electron
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neutrino density leads to a stronger constraint on model
parameters (unless the electron-neutrino-like mass eigen-
state is massless). A conservative bound on the anomalous
cooling rate is obtained by requiring that the instantaneous
majoron-luminosity, LJ, does not exceed the total neutrino-
luminosity of Lν ¼ 3 × 1052 erg=s [112],

LJ ≃QJ

�
4π

3
R3
c

�
≤ Lν ⇒ f ≳MeV × ðmJ=keVÞ; ð79Þ

where Rc ≃ 10 km is the core radius and we have taken
mν ¼ 0.1 eV tomaximize the energy loss. Our estimate is in
good agreement with the dedicated analyses performed in
Refs. [113–116]. The lower bound on f in Eq. (79) is orders
of magnitude below the thermally favored values in Fig. 8.
Other relevant processes involving neutrinos include neu-
trino annihilation into pairs of majorons, i.e., νν → JJ.
However, compared to single majoron production, this rate
is suppressed by an additional factor of ðmν=fÞ2 ≪ 1.
Finally, we note that right-handed neutrinos with a mass
ofMN ∼ 200 MeV can help restart stalled shock fronts and
facilitate supernovae explosions [117]. This is precisely in
the cosmologically motivated region in Fig. 8 for MN ∼ f.
As discussed in Sec. IV C, interactions of J with SM

leptons also arise from loops of intermediate sterile and
active neutrinos. For instance, loop-induced electron
Yukawas are parametrically of size mνme=16π2v2∼10−20.
These are well below the upper bounds derived from
anomalous cooling of red giants and horizontal branch stars
in Ref. [118].

D. Direct searches

Another avenue in exploring these models consists
of direct searches for the light HS mediators (J, S, N)
and/or DM (χ). As discussed in detail in Ref. [73],
limits on majoron-SM couplings are obtained from
searches for flavor-violating processes, such as neutrinoless
double beta decay, K → πJ, and μ → eJ, which constrain
mν=f ≲ 10−5–10−2, corresponding to f ≳ 10 eV–10 keV
[72,119–122]. Furthermore, for sterile neutrinos near the
Uð1ÞL-breaking scale, f ∼ 100 MeV, measurements of
meson decays, such as π; K → lν are also potentially
relevant and are sensitive to active-sterile mixing at the
level of mν=MN ≲ few × 10−9–10−8. See Ref. [123] for a
comprehensive review of such searches. While these limits
are not sensitive to the natural parameter space of these
models, they exclude nontrivial forms of the active-sterile
mixing matrix, R [see Eq. (A8)], that lead to enhanced
mixing in the neutrino sector.
Recent years have seen an increased focus on new

experimental technologies to explore the sub-GeV DM
frontier [124]. Of particular interest in this work are
futuristic detectors proposed to detect elastic recoils of
nucleons or electrons from DM as light as ∼OðkeVÞ,
corresponding to ∼OðmeVÞ energy depositions [29–32]. In

this section, we investigate the potential sensitivity of these
experiments to the classes of models discussed throughout
this work.
The strength of χ − SM elastic scattering is controlled by

the size of the S − h and J − h mixing angles, α and β,
respectively (defined in Appendix A 2). For the cosmologi-
cally favored parameter space in Fig. 8, Eq. (A27) suggests
that for mχ ∼ ð1 − 100Þ keV, β ≲ 10−16–10−12 is needed to
avoid tachyonic states in the HS scalar spectrum. The
prospects for such couplings to yield detectable rates is
minuscule, and hence, J-mediated interactions with charged
SM fermions are negligible within the context of direct
detection experiments. In contrast, the S − h mixing angle,
α, is not as constrained, so we focus on S-mediated
interactions. The Yukawa coupling of the SM fermions to
S is given by

L ⊃ −
αmf

v
Sf̄f: ð80Þ

This can be matched onto a low-energy theory involving
nucleons (n) and pions (π�) [125],

L ≃ −
α

v
S

�
4

29
mnn̄nþ 2

9

�
m2

S þ
11

2
m2

π

�
πþπ−

�
: ð81Þ

FormS ∼ 10–100 MeV, the most stringent limits on α arise
from considerations of anomalous cooling of SN1987A
from the emission of S [126,127]. Such production is
strongly suppressed when mS ≳ 200 MeV, and we instead
bound α by demanding that the processes Sπ ↔ γπ,
Sp ↔ γp, Se ↔ γe, and S ↔ eþe− do not prematurely
equilibrate the HS and SM at temperatures below the
QCD phase transition. For reheat temperatures at the level
of TRH ∼ 5 MeV and mS ∼ 10–100 MeV, equilibration
through S − h mixing does not occur for α≲ 10−5–10−3,
respectively. In this mass range, considerations of SN1987A
constrain mixing angles larger than α ∼ 10−6. If α is set to its
maximally allowed value and f is fixed to the thermal
line in Fig. 8, we find that the DM-nucleon elastic scattering
rate is well below the irreducible neutrino background,
σp ≪ 10−50 cm2, while the electron scattering rate is many
orders of magnitude below the sensitivities of futuristic
proposed technologies [124].
We now consider variations upon these minimal models.

We will first propose a modification in which the scalar
mediator S is lighter than χ and the scale f and possesses
additional couplings to the SM. As in Ref. [33], we assume
that S also couples directly to SM QCD, through an
interaction of the form

L ∼
1

Λ
SGa

μνGaμν; ð82Þ

where Λ is the cutoff of the effective theory. This
interaction could be generated, for instance, from direct
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couplings to a vectorlike generation of heavy quarks. As
before, this can be mapped onto a theory involving
nucleons and pions at low energies. Parametrically, this
is of the form

L ∼ ynSn̄nþ yn
mn

S∂μπ
†∂μπ: ð83Þ

As shown explicitly in Ref. [33], these couplings can
lead to detectable rates in proposed low-threshold detectors
for mχ ∼mS ∼ 100 keV, without conflicting with cosmo-
logical, astrophysical, or terrestrial constraints. In order to
enlarge the viable parameter space, we propose a slight
modification of the model in Ref. [33], which we now
outline.
Compared to canonical WIMPs, physics at temperatures

much greater than ∼MeV is not directly important for
models of sub-MeV thermal relics. In light of this, we will
consider a low reheat temperature of the universe following
inflation, TRH. The requirement of radiation domination
during BBN implies that TRH ≳ few MeV [128,129]. We
will take

TRH ∼ 5–10 MeV ð84Þ

for concreteness. This is also motivated in models involv-
ing gravitinos and/or moduli [130–132]. We now ask: what
are the maximum allowed values of the nucleon coupling,
yn, such that the DM and visible sectors do not equilibrate
before neutrino-photon decoupling? The decays and
inverse decays, J ↔ νν, are still assumed to equilibrate
the two sectors below a few MeV. We find that processes
involving protons, p, and pions, π, such as Sp ↔ γp
and Sπ ↔ γπ do not equilibrate the two sectors before
neutrino-photon decoupling provided that yn ≲ 10−5–10−3,
where the lower (upper) part of the range corresponds to
TRH ∼ 10ð5Þ MeV, respectively. By closing a loop of
charged nucleons or pions, these couplings also generate
an interaction with photons, which (modulo tuning) is
naturally of size

L ∼
αemyn
4πmn

SFμνFμν: ð85Þ

We demand that the processes S ↔ γγ also do not prema-
turely equilibrate the DM and visible sectors. This leads to
the additional upper bound yn ≲ 10−4ðmS=100 keVÞ−1=2.
Hence, in order for equilibration to occur below the temper-
ature of neutrino-photon decoupling, wewill conservatively
require that yn ≲ 10−5.
An exhaustive study of the constraints on DM-nucleon

couplings in the context of MeV-scale particles has recently
been presented in Ref. [33]. Here, we summarize the most
relevant bounds. Considerations of cooling of horizontal
branch stars constrain yn ≪ 10−10. However, this limit
rapidly diminishes for mS ≳ 100 keV. For masses above

∼200 keV, the dominant constraints are from measure-
ments of the meson decays, K → πS, leading to yn ≲ 10−5.
For yn ≳ 10−7, S is produced but trapped in supernova, and
bounds from anomalous cooling are evaded. Therefore,
limits from meson decays and stellar/supernovae cooling
restrict the nucleon coupling to be in the range

10−7 ≲ yn ≲ 10−5 ðviable rangeÞ; ð86Þ

for mS ≳ 100 keV. As argued above, for couplings of this
size, DM-SM equilibration in the early universe is still
driven by the neutrino-majoron coupling, as in our minimal
scenario of Sec. VA. The DM-proton elastic scattering
cross section is roughly

σðχp → χpÞ ∼ y2n
4π

m4
χ

f2m4
S
: ð87Þ

For mS ≳ 100 keV, and taking yn ∼ 10−6, we have

σðχp→ χpÞ∼10−40 cm2×

�
mχ

mS

�
4
�

mχ

200 keV

�
−1
; ð88Þ

where we have fixed f to the thermally favored value in
Fig. 8. Proposed experiments, such as superfluid helium
targets, are projected to be sensitive to cross sections as
small as σpDD ∼ 10−42 cm2 in this mass range [124].

VII. SUMMARY AND CONCLUSIONS

In recent years, there has been growing interest in
exploring new cosmological paradigms and modes of detec-
tion for particle dark matter in the keV–GeVmass range. For
such light masses, dark matter that is of a thermal origin is
strongly constrained from a plethora of cosmological and
astrophysical considerations, including nucleosynthesis, the
cosmic microwave background, structure formation, and
stellar cooling. In particular, sub-MeV thermal relics that
were in equilibriumwith the StandardModel bath at temper-
atures below an MeV necessarily contribute to deviations in
the expansion rate of the universe at the time of nucleosyn-
thesis and/or recombination relative to the standard cosmol-
ogy. As a result, models of sub-MeV thermal dark matter are
usually thought to be either excluded or require involved
model building to evade these constraints.
We have focused on a class of models that naturally evade

such claims. For instance, if a cold hidden sector equilibrates
with the Standard Model after neutrino-photon decoupling,
deviations in the expansion rate of the universe are strongly
suppressed, alleviating the corresponding bounds from
measurements of the effective number of neutrino species.
Although this statement applies to dark matter that equil-
ibrates either with neutrinos or photons, we have focused on
interactions with the StandardModel neutrino sector. This is
motivated, in part, by the fact that constraints derived from
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stellar cooling are much stronger for new light forces that
couple directly to electromagnetism.
We studied concrete realizations of the above scenario

where the dark sector masses and interactions, as well as
the observed neutrino masses and mixing angles, are
generated at a single scale corresponding to the sponta-
neous breaking of the lepton number in the Standard
Model. The pseudo-Goldstone boson associated with this
breaking is the majoron, which is the mediator responsible
for equilibrating the dark matter and Standard Model
sectors in the early universe. These models independently
motivate the sub-MeV scale; demanding that thermal dark
matter freezes out with an adequate abundance implies that
its mass is parametrically related to the Planck mass, the
temperature at matter-radiation equality, and the measured
neutrino masses by mDM ∼ ðmPl=TMREÞ1=4mν ∼MeV.
Along with considerations of structure formation, this
restricts the viable mass range to mDM ∼ 10 keV–MeV
and the majoron-neutrino interaction strength to be at the
10−10 to 10−9 level.
Despite the suppressed size of such interactions, this

class of models will be decisively tested in the near future.
For instance, thermal relics that relativistically equilibrate
with any Standard Model species after neutrino-photon
decoupling lead to an irreducible deviation in the effective
number of neutrino species above the projected sensitivity
of future CMB-S4 experiments. Improved measurements of
the small- and large-scale structure of the universe will also
probe these models, potentially testing most of the remain-
ing parameter space. Furthermore, it is possible to intro-
duce a large coupling of the majoron to nucleons which
preserves the viability of the cosmology provided that the
reheat temperature of the universe is small (∼10 MeV). In
this case, dark matter detection is possible at recently
proposed low-threshold direct detection experiments aimed
at exploring the sub-GeV dark matter frontier.
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APPENDIX: MODEL DETAILS

1. Fermion masses and interactions

In this appendix we summarize our conventions and
present majoron and neutrino interactions in the mass basis.
Our conventions mostly follow those of Refs. [72,73]. First,

we obtain a useful parametrization of the neutrino mixing
matrix, V [see Eq. (32)], and the associated interactions in
the seesaw limit (mD=MN ≪ 1) where the active neutrino
mass matrix reduces to

Mν ¼ −mDM−1
N mT

D ðA1Þ
after integrating out the right-handed neutrinos.
Diagonalizing Mν gives the 3 × 3 matrix,

dl ¼ diagðm1; m2; m3Þ; ðA2Þ

where m1;2;3 are the masses of the SM neutrinos. In
general, the phases of N can be chosen such that MN is
purely diagonal, MN ¼ dh. In the seesaw limit,

dh ≃ diagðm4; m5; m6Þ; ðA3Þ

where m4;5;6 (≫ m1;2;3) are the masses of the sterile
neutrinos. The Dirac matrix, mD, can generally be
decomposed in the Casas-Ibarra form [74]

mD ¼ iU
ffiffiffiffiffi
dl

p
RT

ffiffiffiffiffi
dh

p
; ðA4Þ

where R is a complex orthogonal 3 × 3 matrix that
parametrizes mixing between the active-sterile species.
For simplicity, we will set R ¼ 1. As noted in Ref. [74],
this choice of R corresponds to the special case in which
yν and MN are simultaneously diagonalizable, while the
charged lepton sector is not. This corresponds to a model
in which all of the lepton flavor violation originates from
the charged lepton sector. U is the standard Pontecorvo-
Maki-Nakagawa-Sakata matrix, whose entries are fixed
by the known neutrino mixing angles. Equation (A4) can
be proved by the following argument. We define the
unitary Pontecorvo-Maki-Nakagawa-Sakata matrix such
that it diagonalizes Mν,

U†MνU� ¼ dl: ðA5Þ

Using Eq. (A1), we can rewrite Eq. (A5) as

−U†mDd−1h mT
DU

�

¼ dl ⇒

� ffiffiffiffiffiffiffi
d−1l

q
U†mD

ffiffiffiffiffiffiffi
d−1h

q �

×

� ffiffiffiffiffiffiffi
d−1l

q
U†mD

ffiffiffiffiffiffiffi
d−1h

q �
T
¼ −1; ðA6Þ

which implies that

ffiffiffiffiffiffiffi
d−1l

q
U†mD

ffiffiffiffiffiffiffi
d−1h

q
¼ iRT; ðA7Þ

where R is any complex matrix such that RRT ¼ 1.
Solving for mD gives Eq. (A4). As stated in Ref. [74],
continuous forms of R (not including reflections) can be
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parametrized in terms of three complex angles. In the
seesaw limit, V takes the form

V ≃

 
U� −iU� ffiffiffiffiffi

dl
p

R†
ffiffiffiffiffiffiffi
d−1h

p
−i

ffiffiffiffiffiffiffi
d−1h

p
R
ffiffiffiffiffi
dl

p
1

!
: ðA8Þ

It is straightforward to check that Eqs. (32) and (A8) hold
to leading order in dl=dh. The off-diagonal entries in
Eq. (A8) parametrize the active-sterile neutrino mixing.
Electroweak and Uð1ÞL breaking leads to mixing

amongst the neutrino states. We now switch to four-
component notation and denote the Majorana neutrino
mass eigenstates as ni, i ¼ 1; 2;…; 6, with mass mi, such
that n1;2;3 are SM-like and n4;5;6 are sterilelike. We para-
metrize the couplings of these states to the scalar sector as

L ⊃ Jn̄iðλðijÞJs þ iγ5λðijÞJp Þnj þ Sn̄iðλðijÞSs þ iγ5λðijÞSp Þnj
þ hn̄iðλðijÞhs þ iγ5λðijÞhp Þnj; ðA9Þ

where h is the physical SM Higgs field. As shown in
Ref. [72], the effective couplings are

λðijÞJs ≡ 1

2f
ðmj −miÞImCij;

λðijÞJp ≡ 1

2f
ðmi þmjÞ

�
1

2
δij − ReCij

�
;

λðijÞSs ≡ 1

2f
ðmi þmjÞ

�
ReCij −

1

2
δij

�
;

λðijÞSp ≡ 1

2f
ðmj −miÞImCij;

λðijÞhs ≡ −
1

2v
ðmi þmjÞReCij;

λðijÞhp ≡ 1

2v
ðmi −mjÞImCij; ðA10Þ

where following Ref. [72], we define

Cij ≡
X3
k¼1

VkiV�
kj: ðA11Þ

In general, there may be other contributions to the masses
of the sterile neutrinos. In this case, the mass parameters
m4;5;6 written in Eq. (A10) are interpreted as the piece given
by the scale f, i.e., ∼f × ∂m=∂f. The interactions of the
electroweak gauge bosons with the neutrinos are given by

L ⊃ Zμn̄iγμðigðijÞZv þ gðijÞZa γ
5Þnj

þ ½gðijÞW W−
μ l̄iγ

μð1 − γ5Þnj þ H:c:�; ðA12Þ

where the couplings are defined as

gðijÞZv ≡ −
g2
4cw

ImCij;

gðijÞZa ≡ g2
4cw

ReCij;

gðijÞW ≡ −
g2
2
ffiffiffi
2

p Bij; ðA13Þ

and

Bij ≡
X3
k¼1

δikV�
kj: ðA14Þ

Note that V is a 6 × 6 matrix, but the sum above is only
over the first three indices, i.e., the activelike states. Using
the seesaw expression for V in Eq. (A8), C and B can be
written as

C ≃

 
1 i

ffiffiffiffiffi
dl

p
RT

ffiffiffiffiffiffiffi
d−1h

p
−i

ffiffiffiffiffiffiffi
d−1h

p
R� ffiffiffiffiffi

dl
p

0

!
;

B ≃
�
U iU

ffiffiffiffiffi
dl

p
RT

ffiffiffiffiffiffiffi
d−1h

p
0 0

�
: ðA15Þ

2. Scalar masses

The most general renormalizable potential with soft
Uð1ÞL breaking is given by

V ¼ −μ2HjHj2 þ λHjHj4 − μ2σjσj2 þ λσjσj4
þ λσHjσj2jHj2 − ðμ02σ σ2 þ aσσjHj2Þ: ðA16Þ

We fix the phase of σ such that its VEV is real; the phases
of the Yukawa couplings λχ and yν defined in Eqs. (30)
and (34) are fixed such that the resulting fermion
mass contributions are real. This leaves a single physical
phase in the model shared between the parameters μ0σ
and aσ . The potential minimization conditions, ∂V=∂v ¼
∂V=∂f ¼ ∂V=∂J ¼ 0, can be solved for μ2H;σ and the
imaginary parts of the soft terms,

μ2H ¼ λHv2 þ
�
1

2
λσH −

ffiffiffi
2

p
Reaσ
f

�
f2;

μ2σ ¼ λσf2 þ
�
1

2
λσH −

Reaσffiffiffi
2

p
f

�
v2 − 2Reμ02σ ;

Imμ02σ ¼ −
Imaσv2

2
ffiffiffi
2

p
f

: ðA17Þ

Imposing these conditions, the scalar mass matrix in the (J,
S, h) basis simplifies to
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M2
φ ¼

0
BBBB@

m2
J − Imaσffiffi

2
p

f
v2

ffiffiffi
2

p
Imaσv

− Imaσffiffi
2

p
f
v2 m2

S ðλσH −
ffiffi
2

p
Reaσ
f Þvfffiffiffi

2
p

Imaσv ðλσH −
ffiffi
2

p
Reaσ
f Þvf m2

h

1
CCCCA;

ðA18Þ

where the diagonal entries correspond to the masses of the
unmixed fields,

m2
J ¼ 4Reμ02σ þ Reaσv2ffiffiffi

2
p

f
; ðA19Þ

m2
S ¼ 2λσf2 þ

Reaσv2ffiffiffi
2

p
f

; ðA20Þ

m2
h ¼ 2λhv2: ðA21Þ

The mass matrixM2
φ is diagonalized in the mass eigenstate

basis, given by φ1;2;3. In the limit of small mixing the flavor
eigenstates are related to φ1;2;3 via

0
B@

J

S

h

1
CA ¼

0
B@

1 −γ β

γ 1 −α
−β α 1

1
CA
0
B@

φ1

φ2

φ3

1
CA; ðA22Þ

where the small angles α, β, and γ are defined by

α ¼ −
ðλσh −

ffiffi
2

p
Reaσ
f Þvf

ðm2
h −m2

SÞ
; ðA23Þ

β ¼
ffiffiffi
2

p
Imaσv

ðm2
h −m2

JÞ
; ðA24Þ

γ ¼ Imaσv2ffiffiffi
2

p
fðm2

S −m2
JÞ
: ðA25Þ

Large mixing in the scalar sector can lead to tachyonic
masses. The most stringent constraint is obtained in the
S − J sector (since J is the lightest state and mixing with h
is suppressed by the large Higgs mass). Requiring that
the S − J eigenstates have positive masses bounds the
mixing as

γ <
mSmJ

m2
S −m2

J
: ðA26Þ

This constraint can also be translated into a bound on β,

β <
2fmJmS

vm2
h

; ðA27Þ

which limits the size of tree-level interactions of the
majoron with charged SM fermions (see Appendix A 4).

3. Scale of lepton-number breaking
and Planckian effects

In this appendix, we briefly comment on two theoretical
aspects of the majoron construction described above. We
have introduced two new energy scales associated with
spontaneous and explicit Uð1ÞL breaking, f and mJ,
respectively, with f ≫ mJ. As we saw in Sec. V, consid-
erations of DM-SM equilibration require f to be much
smaller than the electroweak scale, i.e., f ≪ v ≃ 246 GeV.
The first issue associated with these new energy scales is

the radiative stability of f. Quantum corrections will
generically shift the mass term (and the resulting VEV)
of the Uð1ÞL-breaking field, σ, to the UV cutoff of the
theory, i.e., Λ ≫ v. As with the SM Higgs hierarchy
problem, supersymmetry can be used to regulate the
sensitivity to UV physics. If the HS (including σ) is
sequestered from the supersymmetry-breaking sector, a
naturally small f can be radiatively induced through
interactions with the SM via the right-handed (s)neutrino
[19]. However, a small supersymmetry-breaking scale in
the HS also implies the presence of new light d.o.f. (e.g.,
the superpartners of χ and φ) that can play an important role
in cosmology. A detailed investigation of this scenario is
beyond the scope of this work.
The second puzzling feature of the majoron construction

is the origin of the scale mJ. If Uð1ÞL was an exact
symmetry (at least classically), the majoron would be
massless, so mJ > 0 requires an explicit breaking of
Uð1ÞL. While the hierarchy mJ ≪ f is protected by the
fact that J is a pNGB, it is interesting to ask whymJ < f in
the first place if they are completely unrelated. Global
symmetries are expected to be absent in theories of
quantum gravity. A simplified argument is that a scattering
process with a global charge in the initial state can destroy
the charge in an intermediate black hole state. The black
hole cannot carry global charge, so it decays democratically
via Hawking radiation [133,134]. This means that the low-
energy effective field theories should have Planck-scale
violations of global symmetries. This is a well-known
problem in axion models with a global Peccei-Quinn Uð1Þ
[135–137]. Thus Uð1ÞL-breaking effects should also
appear in the low-energy description [138,139].
If the Planck-scale effects are unsuppressed, then one

expects mass terms ∼m2
Plσ

2 to appear, which would remove
any pNGB from the spectrum. Thus, if we want a light
majoron, Planck effects should enter through marginal or
irrelevant operators ∼1=mn

Pl, n ≥ 0. The standard way to
ensure this is to engineer Uð1ÞL to be an accidental
symmetry, i.e., one that is a consequence of gauge charge
assignments as in Ref. [139]. This can be accomplished,
e.g., using a gaugedUð1ÞB−L with an additional scalar field
φ, such that the leading Uð1ÞL-breaking term is
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L ⊃
σn1φn2

mn1þn2−4
Pl

þ H:c:; ðA28Þ

where the integer powers n1;2 are determined by the
charge assignments QB−L½σ� and QB−L½φ�.3 For example,
if QB−L½σ� ¼ −2 and QB−L½φ� ¼ f1=2; 4=3; 3; 8g, the
lowest-dimensional L-breaking operators are dimension
five [139],

1

mPl
fσφ4; σ2φ3; σ3φ2; σ4φg: ðA29Þ

When φ gets a VEV, these operators can be mapped onto
the L-breaking terms in the σ potential in Eq. (40). Note
that for a given charge assignment with this minimal field
content, only one of the potential terms is generated at
dimension five. This means that it is a reasonable approxi-
mation to turn them on one at a time in this minimal
framework.
Is there a mass scale that is singled out by the Planck-

suppressed operators? The answer depends on what the
natural scale for spontaneous B − L breaking is. At the very
least, one needs to account for existing bounds on the
B − L gauge boson, a type of Z0 which has been
extensively studied; see, e.g., Refs. [140–142]. The LHC
constrains mZ0=gZ0 > 6–100 TeV through dilepton
resonance searches and bounds on four-fermion contact
interactions [143,144]. Letting hφi ¼ vB−L=

ffiffiffi
2

p
and mZ0 ¼

qφgZ0vB−L, the above experimental bound implies

qφvB−L ≳ 6–100 TeV; ðA30Þ
where the range depends on the mass of the Z0. In the
minimal scenario with qφ ¼ QB−L½φ� ¼ 4=3, the μ02σ σ2 term
is generated from a dimension-five operator

1

mPl
σ2φ3 →

�
v3B−L

2
ffiffiffi
2

p
mPl

�
σ2: ðA31Þ

The experimental bound then suggests a very rough lower
limit on the majoron mass

m2
J ∼ μ02σ ∼

v3B−L
mPl

≳ ð100 keVÞ2: ðA32Þ

This bound can be much weaker if the mass is generated by
an operator with a higher dimension or if its Wilson
coefficient is notOð1Þ. It can be larger ifUð1ÞL is explicitly
broken at a scale Λ < mPl, e.g., the grand unified theory
scale. Thus, the natural size for the majoron mass (if B − L
is broken near the weak scale and the scale of explicit
breaking is mPl) is near the keV scale under the above
assumptions. This was also noted in Ref. [138]. While this

link is tenuous at best, it is reassuring that an internally
consistent picture for the scales f and mJ seems attainable.

4. Interactions with charged fermions

The mixing of the dark sector scalars with the SM Higgs
gives rise to S and J coupling to SM fermions. These
interactions can be summarized by

L ⊃
mf

v
½βJ − αS − ð1 − α2=2 − β2=2Þh�f̄f; ðA33Þ

where we approximated φ1 ≃ J, φ2 ≃ S, and φ3 ≃ h. Note
that the interactions of the 125 GeV Higgs-like state are
suppressed relative to the SM expectation by an effective
mixing

cos θeff ≃ 1 − α2=2 − β2=2: ðA34Þ
The strongest constraints on the scalar potential param-

eters come from rare meson and invisible Higgs decays.
These were recently analyzed in Ref. [127] in the context of
Higgs-portal coupled dark sectors. A detailed discussion of
flavor physics constraints is presented in Ref. [145]. An
invisibly decaying light scalar, φ, that mixes with the SM
Higgs contributes to the invisible decay modes B� → K�φ
and K� → π�φ, whenever kinematically allowed. We are
interested in J and S that are much lighter than mB −mK
and mK −mπ , so that the observed limits on these rare
decay modes constrain the effective mixing

sin2θeff < 9 × 10−6ðB� → K� þ invÞ; ðA35Þ
sin2θeff < 3 × 10−8ðK� → π� þ invÞ: ðA36Þ

Measurements of the Higgs properties at the LHC also
constrain the parameters of the scalar potential. For
example, since χ, N, S, and J are much lighter than h,
there are new invisible decay modes. The invisible branch-
ing fraction of the Higgs is constrained to be less than 0.23
at 95% confidence level [146,147], leading to the bound

�
mχ

2f

�
2

sin2θeff þ λ2σh

�
v2

2m2
h

�

þ
X
i;j

½ðλðijÞhs Þ2 þ ðλðijÞhp Þ2� < 2 × 10−4; ðA37Þ

where the terms correspond to h → χχ, h → SS; JJ, and
h → ninj, respectively.
Interactions of S and J with the charged SM fermions are

also generated by loops of neutrinos via couplings in
Eqs. (A9) and (A12) [72,73]. Their characteristic size
[see Eq. (42)] corresponds to a tiny effective mixing of
∼10−15. Thus, even with the stringent constraints on the
mixing angles, the tree-level interactions of S and J with
charged SM fermions can bemuch larger than those induced
by loops.

3B − L is only anomaly-free after including 3 RH neutrinos
[140]. When we include DM, it must also be charged under B − L
(since it couples to σ), so the anomaly must be canceled again by
some additional states.
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