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An analytical investigation of the closed-orbit distortions due to ground waves has been made for a
model periodic FODO lattice. The response of the closed orbit to a single plane wave and the rms
response to an ensemble of uncorrelated waves are expressed as a function of C/A (ring
circumference/wavelength). It is found that transverse focusing (represented by the tune Q) and
superperiodic lattice geometry (represented by the number of FODO cells N) can resonantly amplify
the closed-orbit response to certain frequencies. As a consequence, as CIA increases through some
values mN ± Q (m positive integer), the response function is expected to show a steplike behavior
followed by a slow fall off. The results are compared with models that have both continuous focusing
and uncorrelated quadrupole motion. Numerical examples are presented.

1. INTRODUCTION

In an ideal storage ring the periodic closed orbit is a smooth curve that is close to
the design orbit and that therefore passes through the centers of the guide-field
magnets and quadrupoles. This maximizes the aperture for the stored particle
beam and guarantees simple and predictable beam optics for particles close to the
closed orbit.

In an actual storage ring, however, the closed orbit differs considerably
(typically several millimeters) from the design orbit. This is due to additional
dipole kicks arising from field errors in the bending magnets and misalignments of
quadrupole magnets. The dipole components of field errors in the bending
magnets cause closed-orbit kicks that are typically, smaller than 0.1% of the
design deflection angle {fo. In practice, the horizontal (~x) and vertical (~z)

misalignments of quadrupole magnets can be easily controlled within a few tenths
of a millimeter. If I is the focal length of a quadrupole, this results in error kicks
~xII and ~z II, respectively. Taking into account that with increasing design
energy {fo falls much faster than III, one expects that for small storage rings the
dipole errors of bending magnets are the dominant source of closed-orbit
distortions, whereas for large storage rings the misalignments of quadrupoles
dominate. These closed-orbit errors can be detected and corrected with the aid of
many beam-position monitors and correction dipole magnets. Unfortunately, it
takes some time to evaluate the closed-orbit measurement and to apply the
appropriate set of dipole corrections. Therefore, it is of especial interest to
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(1)

investigate those types of errors that might vary quickly on the time scale needed
to make corrections.

This paper deals with the effect of ground vibrations on the closed orbit in a
storage ring. Estimates of ground-vibration amplitudesl and measurementsl

,2

show that in the frequency domain above 1 Hz, most of the disturbances are man
made (e.g. motor traffic, heavy machinery) with typical amplitudes of 10-7 m.t

At lower frequencies, i.e., with wavelengths larger than about one km, the
natural "microseismic noise" clearly dominates. Both classes of noise vary
considerably with respect to site and time and depend on traffic conditions, soil
properties, weather, seismic activity, and so on.

Although, with such small amplitudes, the quadrupole movement due to
ground vibration is small compared to the alignment tolerances, the distortion of
the closed orbit might still be troublesome or even intolerable, depending on
beam-stability requirements and the closed-orbit sensitivity. This problem is of
particular interest to

(a) very large colliders using two separate rings (HERA, LHC, SSC), because of
the large number of quadrupoles and strong nonlinearity of the beam-beam
interaction

(b) dedicated synchrotron radiation sources, because of the ambitious beam-
stability requirements of the users.

The effect of magnet imperfections on beam dynamics has been an important field
of investigation since the very introduction of alternating-gradient rings. For
uncqrrelated misalignment of quadrupoles in a periodic lattice, the rms closed­
orbit distortion aco(s) at an azimuthal position s has been shown3 to be

( ) = V7J[S) YV3> lIq ~ 'N
aco s 2 sin nQ III vrv

This formula is equally valid for horizontal and vertical misalignments once the
appropriate horizontal or vertical beta function f3, betatron tune Q, focal length
of quadrupoles I, and transverse rms quadrupole misalignment aq are inserted. N
is the number of identical FODO sections, whence the number of quadrupoles is
2N.:f: The average (f3) is taken at the quadrupoles. If correlated quadrupole
misalignments are involved, it is probably sufficient in many realistic cases to
assume that plane ground waves§ are traversing the storage ring. In a model with
continuous focusing [i.e. f3(s) = const =RIQ], with the design orbit taken as a
pure circle of radius R, it has been shown4 that the response of the closed orbit

t Normally vertical amplitudes are larger than the horizontal amplitudes, and they are more
harmful since the vertical emittance of the beam is smaller than the horizontal one.

:I: Equation (1) contains a factor 1/Vi as compared to the respective formula in Ref. 3, because here
we are discussing the rms closed-orbit deviation and not the rms emittance of the closed orbit. This
difference should be borne in mind in all that follows, but the reader is free to multiply by Vi to get
the results for the closed-orbit emittance if this is more appropriate to a particular problem.

§ To be precise, one should talk about straight waves being damped with increasing depth below
ground surface (e.g., Rayleigh waves), but for the movement of the quadrupoles mounted on the
ground surface there is no difference.
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exhibits resonancelike properties at A== AfJ = 21rR/Q. If the ground vibration
wavelength A is not much smaller than the betatron wavelength A{3' this model,
although crude, seems to be reasonable. There are, however, practical cases
where vibration contributions with A< A{3 are not at all negligible. Then it might
be instructive to use a more general analytical model that remains valid
quantitatively if A becomes equal or even smaller than the distance between
quadrupoles. We don't consider here any amplification or damping of the magnet
motion with respect to the ground that might result from resonances in the
supports.

2. CLOSED-ORBIT DISTORTION DUE TO A SINGLE PLANE
GROUND WAVE

2.1. The Model

We use a right-handed curvilinear coordinate system x, z, s attached to the design
orbit; s is the path length along this trajectory, and x is in the horizontal plane of
the design orbit, perpendicular to s. Let us consider the following model. The
storage ring consists of N identical FODO cells. Each FODO cell is composed of
one horizontally and one vertically focusing quadrupole and two identical bending
magnets located symmetrically between them (see Fig. 1). The focal lengths f of
both quadrupoles are assumed to be equal. This is not essential for the model but
simplifies the notation somewhat. The betatron phase advance per full FODO
cell ~s Ll(jJ; i.e., the betatron tune of the whole ring is Q = N · Llep /21r.
Quadrupoles are treated as thin lenses; i.e., the variations of f3 and if> within each
quadrupole are neglected. Within this model all quadrupole magnets lie on a
circle with radius R, which is (in close approximation) 1/21r of the design orbit
circumference C, if N > 2. In general, the direction of wave propagation and the
point where the orbit distortion is observed are arbitrary parameters. Without
severely restricting generality, however, we can assume that the observation point
is in the center of a focusing quadrupole located at s = 0,· per definition. The beta
value at the observation- point f30 can be regarded as variable, nevertheless. The
azimuthal angle (J and the betatron phase advance (jJ refer to the point s = 0 (see
Figure 2). Then the azimuthal position On of the nth quadrupole magnet and
betatron phase (jJn within this magnet are related by

(2)

1-- 1 1----1

====JOI DIPOLE~ DIPOLE IC)C=====
Foe DEFOe.

QUADRUPOLE

FIGURE 1 Sketch of a simple FODO cell as used in the model.
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FIGURE 2 Sketch of geometry as described by the model and nomenclature.

2. 2. Vertical

We are now able to describe the vertical closed-orbit distortion in response to a
single vertical plane wave (there is no horizontal response to a vertical magnet
displacement since there are no sextupoles or skew quadrupoles in our model).
Let z be the amplitude of the ground wave and CPo its phase with respect to the
center of the ring; ro/2n is the frequency of the wave, v its velocity of
propagation, and Ow its direction of incidence. Then, the vertical motion of the
nth quadrupole magnet is given by

.6.zn(t) = i Re exp {{wt + :R cos (On - Ow) + ({Jon.
roR / V may be replaced by C/ A. If we now consider the distortion Zc of the closed
orbit at s = ¢z = 0, we may use the fact that the frequency of the ground wave is
much smaller than the transverse betatron frequencies, so that the distortion is
adiabatic. Therefore, we may treat ~zn as a constant misalignment with t as a
parameter. The closed-orbit distortion due to ~zn is3

V130 ~ ro- ~zn
Zc = 2· Q v {3z,n -f, cos (lPn - nQz),

SIn 1C z n
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(4)

with f30 and l/Jn in the vertical plane. Since our model system is linear we may sum
up contributions from all misaligned quadrupoles. If we use

Vf3z n vp. ~ . d Vf3z n vp. d ~ .r = f 10 locus1Og an r = - f 10 elocus1Og

quadrupole magnets and use Eqs. (2) and (3), we get

Zc = Re { ~ ~ ei(wt+'PO) [ ~ ~ ei(C/A) cos (<P.IQz-Bw ) cos (QJn - JrQz)
2 SIn nQz f n=2

- 2%11 vIP ei(C/A) cos (<P.IQz-Bw ) cos (QJn - JrQz)n.
The sums over n can be executed analytically, if we use

because the Bessel function of the first kind Jp (f) no longer depends on n. Thus,

with the help of Eq. (2), we have to deal with

Here the abbreviation A =~1ei(aJt+'PO) has been introduced. The execution of

the sums over n is quite tedious but straightforward and results in

with

(5)

The real part yields

zc(t) = ~ JpC
p (iFA + (-i)PA *]

p=-oo 2

Yi30 z[ +00=2 f cos (rot + CPo) p~oo (J4p C4p -J4p-2C4P-2)

+ sin (rot + CPo) p~oo (J4P - 1C4p- 1 - J4p-3C4P-3)J. (7)



126 J. ROSSBACH

(9)

(10)

If we define the response R as the amplitude of the closed-orbit distortion Zc
divided by the amplitude of the ground wave Z, we get the final result

Zc Yi30 {[ +00 (C) (C)]2
Rz = z = 2[ p~oo J 4p "i C4p - J 4p - 2 "i C4p - 2

[
+00 (C) (C) ]2}1I2+ p~oo J 4p - 1 "i C4p - 1 - J4p~3 "i C4p - 3 • (8)

With this result; we have succeeded in replacing the finite sum over the error
kicks [see Eq. (4)] by an infinite sum. What do we win? The advantage becomes
clear if we realize that Cp becomes resonant for

P = mN + Qz with P, m integers,

that is to say, recalling that N > Qz; for

Ipi = Iml N± Qz·

For arbitrary Qz and m there is always some P such that

ISin (~ - iq»)r1

becomes very large. If we denote the distance of Qz from the closest integer [Qz]
with c5Qz, we may express the maxima of Eq. (10) as

1
----, occurring whenever Pres = mN + [Qz]'
sin ;(jQz

(11)

(12)

Due to this factor, all contributions with P =1= Pres in Eq. (8) are very effectively
suppressed.. As a result, ground waves with CIA above IPresl contribute much
more to the response function Rz than those with CIA <IPresl. According to Eqs.
(9) and (11), the lowest-order closed-orbit resonances occur for

IPreslt = [Qz],

IPresb = N - [Qz],

IPresh = N + [Qz], etc.

Consequently, with increasing CIA, the response function is expected to increase
in a steplike manner whenever CIA exceeds some resonance parameter IPresl;, as
illustrated in Figs. 3 and 4. This behavior has been expected qualitatively.4 Since
the continuous-focusing model predicts this behavior only for the case when
Pres = [Qz], the quantitative agreement is good for v ~ Q · vIC only. Eqs. (6-8)
now give an analytic framework for a quantitative understanding of the response
of a periodic FODO lattice for ground-wave frequencies up to

v < vllq (lq = length of quadrupole magnets).

The lower parts of Figs. 3 and 4 show that R depends markedly on the difference
between the angle of observation and the angle of wave propagation ewe
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FIGURE 3 As an example for the vertical response to ground waves, parameters of the European
Synchrotron Radiation Facility ESRF have been adopted: C = 850 m, Qz = 19.2, N = 80. The upper
plot shows Rz and R~ms as a function of CIA for Ow = o. It shows that the response increases whenever
CIA increases through the values Qz, N - Qz, N + Qz, ... , see Eq. (12). The lower plot shows that,
for CIA fixed, Rz depends on Ow in a complicated way. It is mainly characterized by the superposition
of all cos (IPresli Ow) terms, with IPresli = mN ± [Qz] smaller than CIA considered [see Eqs. (6) and
(12)]. For this example, CIA = 62 has been chosen arbitrarily. Due to averaging, R~ms does not
depend on Ow, of course. For ease of scaling, 130 = 1 m has been chosen for both plots.

2.3. Horizontal

Unlike vertical waves, horizontal waves also move quadrupole magnets lon­
gitudally (i.e. in the direction of the design orbit) by an amount which depends on
the difference between the azimuthal position On of the magnet and the direction
of incidence Ow. For example, if plane (again, more precisely, straight)
compressional waves are considered,t the magnet motion is purely transversal
only for On = Ow and On = Ow + Jr. The horizontal motion of the nth quadrupole
magnet is given in this case by

~xn(t) =x cos (0 - Ow) Re exp {i[ wt +I cos (0 - Ow) - cpo]} (13)

If we now use

. +00 dJ (x)
i cos Oe lX cos 8 = L iP _P_- cos pO,

p=-oo dx

we can express the horizontal closed orbit distortion xc(t) in analogy to Eq. (5)

t Treatment of horizontal shear waves requires evaluation of sums of the type !:;;=1 sin (On ­
Ow) cos p(On - Ow) cos (cf>n - nQx) and yields resonances- at P = mN + Qx ± 1 (p, m integer).
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FIGURE 4 Since in a small storage ring the tune Qz and the number of cells N are quite small
(Qz = 4.2, N = 12, C = 100 m in this example), the contributions of Bessel functions of resonant
orders p = mN ± [Qz] cannot be distinguished. It is clearly seen from the upper plot that the average
of Rr;'s equals the rms response to uncorrelated quadrupole motion (broken line). Note that the
maximum of CiA = 100 corresponds to a ground wavelength of A= 1 m in this plot. Since the length of
realistic quadrupoles would not be much shorter, this marks the limit of the thin-lens model.
However, amplitudes of those high-frequency waves will be negligible in most realistic cases. The
lower plot shows the angular dependence of Rz (8w ) at CIA =6 =canst.

(14)

with

V730x i( Jr)Ax =2f e rot + ({Jo-Z '

where (30 and all optics parameters in Cp (see Eq. (6)] refer to the horizontal
plane. For the response function we get

Rx =; =~{[p~oo J~p(i)c4P - J~P-2(*)C4P-2r
[

+00 (C) (C) ]2}1/2+ p~oo J~P-l I C4p - 1 - J~p-3 I C4p - 3 . (15)

In analogy with the vertical case, resonances occur for

p = mN + Qx with p, m integers.

I.e., with increasing CIA the response Rx behaves in a similar way to Rz , see
Fig. 5.
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FIGURE 5 The parameters for this example of horizontal response are similar to those of Fig. 3:
C = 850 m, Qx = 22.19, and N = 80, and the structure of the response is similar. Note that, with the
present definition of Rx and R~ms, the average R~ms differs from the rms response to uncorrelated
motion by a factor of \12, since each horizontal wave contains components that are longitudinal with
respect to the beam line, see Eq. (13).

3. CLOSED-ORBIT DISTORTION BY AN ENSEMBLE OF PLANE
GROUND WAVES

3.1. Vertical

As mentioned earlier, the response to a single wave depends sensitively on the
difference between the angle of observation and the angle of wave propagation.
In practice, however, it might be more appropriate to describe the ground-surface
motion by a large number M of plane ground waves coming from arbitrary
directions 8m , with phases qJm, and amplitudes zm. In this case, we are still far
from having uncorrelated motion of the magnets (see, e.g., Ref. 5 and the
considerations below). Let us assume that all waves of our ensemble have equal
(but variable, of course) frequency w/2n and wavelength A. Then, the vertical
motion of the nth quadrupole magnet is given by

L\zn(t) = m~l 2m Re exp {i[ lOt +~ cos (On - Om) + ({Jm ]}, (16)

and the closed-orbit distortion is [see Eq. (5)]

M +00 (C)
zc(t) = Re ~1 Am p~oo iP

Jp "i C;
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A = Y/3ozm ei(wt+f[Jm)

m 2 f

m (-l)P+l {" f?a [( N + 1 ) ~(j>] }C = vpcos p n---8 -- -y!pcosp(n-8)
P • (np ~(j» N m 2 m .

SIn --­
N 2

(18)

In reality, we don't know all zm, 8m, and rpm, but we may assume some statistical
properties if many different ensembles of waves are considered. Amplitudes,
directions, and phases of different partial waves are uncorrelated. All directions
and phases are random. If ( ) denotes averaging over all possible ensembles, we
find with these assumptions that (zc(t) = O. More relevant, however, is the rms
value of zc(t): rms - Zc = (z~) )1/2. It is determined by

M M +00 +00

(rms-zc )2= L L L L JpJq(C;C~)(Re(iPAm)·Re(iqAN). (19)
m=l n=lp=-oo q=-oo

In this formula we have been able to factorize the averages, since phases and
directions are uncorrelated. The most important step is now to realize from Eq.
(18) that (C;C~) vanishes if Ip 1=1-= Iql and if m =1-= n. It vanishes for m =1-= n since
directions 8m , 8n are random, leaving the self-correlation term m = n only if
ensemble averaging is performed. It vanishes for Ip I =1-= Iq I due to the or­
thogonality of cos Ipl 8m · cos Iql 8m and of sin Ipl 8m · sin Iql 8m in the interval
0< 8m < 2n. As a result, Eq. (19) becomes

M

(rms-zc )2= L J5«(ReAm)2)«(CO)2)
m=l

M 00

+ L LJ;([Re(iPAm)]2)«(C;+C~p)2). (20)
m=l p=l

Here, i-PJ_p = iPJp has been used, and it has been convenient to split the sum
over p, since the term with p = 0 behaves singularly with respect to averaging.
Since all phases are random, we may write

([R (·PA )]2) = f30 (Z~)
elm 4[2 2 .

The rms ground motion (with frequency w/2n) is, from Eq. (16),

rms - ~z = ([~zn(tW)1/2 =GL (2;")r12

•

m

(21)

(22)

Finally, averaging with respect to directions requires some trigonometrical
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gymnastics. Using Eqs. (20)-(22), we may express the rms response R~ms by

R~ms = (rms closed-orbit distortion)/(rms ground motion)

~¢ 2
~cos--Vfl

= v: J~(I) . 2~¢
sIn ­

2

ft+p- 2mCOS(p; - ~¢)

+p~/;(I) . 2 (JrP ~¢)
2sln N-T

ft+p-2mCOS(~+~¢)
+-----------

2 sin
2 (~ + ~¢)

131

ft cos ~¢ + {J - 2mcos ~¢ cos pJr
+2 2 N

2Jrp
cos N - cos ~1J

1/2

(23)

This result is exact within the model of a (linear) periodic FODO lattice with thin
lenses. The. resonance behaviour is obviously the same as in the single-wave case
[see Eq. (9)]. Due to averaging, however, the rms response no longer depends on
angles, and the dependence on C/A is smoother than for single waves, as seen
from Figs. 3 and 4. In the average over any frequency range ~(Q)R/v) =
~(C/A) » N one expects the rms response to equal the response to uncorrelated
quadrupole motion [see Eq. (1)]. The latter value is indicated in Figs. 3-5 to
show that this is indeed so.

3.2. Horizontal

It has been shown in section 2.3 that the response to a horizontal compressional
wave can be described by the same equations that ·are valid in the vertical case if
one just replaces Jp by J; and uses the appropriate horizontal values for the optics
parameters. Since Jp doesn't enter the averaging considerations in the previous
section, it follows that the same rule holds in the case of an ensemble of
horizontal compressional waves with amplitudes, phases, and directions randomly
distributed, so that Eq. (23) may be used correspondingly for the horizontal rms
response. In doing so, one must not forget to consider the additional factor V2
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[as compared to Eqs. (22) and (23)] arising from averaging cos2 (0 - Om) in

rms - ~ = ([~n(tW)1/2 =G~ (i;,)) 1/2.

Note that Rx for a single wave [Eq. (15)] refers the closed-orbit amplitude to the
ground-wave amplitude and not to the mean amplitude of the transverse
quadrupole motion which is smaller by Vi due to the factor cos (0 - ( 0 ) in Eq.
(13). Therefore, for the sake of coherency with the definition of Rx for a single
wave, this factor has been omitted in the example of R~ms in Fig. 5.

4. CONCLUSIONS

If the sensitivity of a storage ring to ground motion is considered, an exact
analytic analysis of a simple but realistic model is a valuable tool in the lattice
design and in the interpretation of both measurements and computer simulations.
In the model of a periodic FODO lattice with thin lenses, quite simple analytic
formulae can be given that describe the spectral response of the closed orbit to
horizontal and vertical plane waves and uncorrelated wave groups as a function of
CIA (ring circumference/wavelength). The final results, given for symmetric
FODO cells, may easi~ be generalized to asymmetric FODO cells: one simply
omits f and replaces V~ by .:;;p/hoc and vI"P by vI"P/fdefoc.

It is seen that transverse focusing (represented by the tune Q) and lattice
geometry (represented by the number of FODO cells N) resonantly amplify the
closed-orbit response to certain frequencies. The lowest lattice-driven resonance
frequency (C/A =N - Q) is somewhat higher than the lowest frequency that is
resonantly driven by the betatron tune (C/A= Q). However, since the lattice­
driven resonances are typically the stronger ones, the spectrum of potentially
disturbing sources of ground motion is quite large and must be specified in each
case individually.
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