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The sign of the dipole–dipole potential by axion exchange
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We calculate a dipole–dipole potential between fermions mediated by a light pseudoscalar, axion, paying 
a particular attention to the overall sign. While the sign of the potential is physical and important for 
experiments to discover or constrain the axion coupling to fermions, there is often a sign error in the 
literature. The purpose of this short note is to clarify the sign issue of the axion-mediated dipole–dipole 
potential. As a by-product, we find a sign change of the dipole–dipole potenital due to the different spin 
of the mediating particle.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The exchange of a light particle gives rise to a force between 
other particles. One of such light particles is a pseudo Nambu–
Goldstone boson, an axion, which appears in the Peccei–Quinn 
solution to the strong CP problem [1–4]. The axion and axion-
like particles have been searched for in many experiments (see e.g. 
Refs. [5–9] for recent reviews).

The axion or axion-like particle is generically coupled to nucle-
ons and leptons, and the axion exchange induces a spin-dependent 
force between them, which has been constrained by many exper-
iments [10]. Furthermore, there have been proposed many axion 
search experiments, some of which aim to measure the spin-
dependent force due to axion exchange (e.g. [11]). Therefore, it is 
important to unambiguously understand the relation between the 
axion coupling and the observables.

In this short note we calculate a dipole–dipole potential be-
tween fermions mediated by an axion, paying a particular atten-
tion to the overall sign. The sign of the potential is physical and 
therefore important for experiments to discover or constrain the 
axion coupling to fermions. In particular, the most challenging 
part of experiments searching for such axion-mediated dipole–
dipole potential is to shield the standard magnetic dipole–dipole 
interaction to an extremely high degree. The experimental limits 
are therefore sensitive to the sign of the potential as well as the 
residual magnetic dipole–dipole interaction. We note however that 
there is often a sign error in the literature, including the semi-
nal paper [12] on the axion-exchange potentials between fermions. 
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Also, some of the experiments seem to use the potential with a 
wrong sign (e.g. [13–15]). The sign issue may not affect the experi-
mental limits on the spin-dependent force as long as the estimated 
limit is symmetric about zero. However, as a matter of fact, the 
sign is essential to claim a discovery of such a new force in future 
experiments.

The purpose of this short note is to clarify the sign issue of the 
dipole–dipole potential induced by axion exchange, and to elimi-
nate the possibility that the sign error mediates to future experi-
ments searching for such an anomalous force.

2. Scalar exchange potential

As an exercise, let us first consider a case where both fermions 
ψ1 and ψ2 interact with a real scalar φ through Yukawa interac-
tions. The Lagrangian is given by

L = 1

2
∂μφ∂μφ − 1

2
m2

φφ2

+
∑
j=1,2

(
ψ̄ j(iγ μ∂μ − M j)ψ j − gS jφ ψ̄ jψ j

)
, (1)

where mφ and M j are the mass of φ and ψ j , respectively, and 
gS j is a Yukawa coupling between φ and ψ j . Here and in what 
follows we adopt the convention and notation used in the textbook 
by Peskin and Schroeder [16], except for the representation of the 
gamma matrices and the normalization of the spinors. We adopt 
the Dirac representation of the gamma matrices,

γ 0 =
(

1 0
0 −1

)
, γ i =

(
0 σ i

−σ i 0

)
, and γ5 =

(
0 1
1 0

)
, (2)

where σ i are the Pauli matrices.
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Fig. 1. Feynman diagrams for fermion scattering mediated by (a) scalar and (b) pseudo scalar, respectively.
The vertex factor of the Yukawa interaction is then given by

(−i)gS j . (3)

The scattering amplitude for ψ1(p1)ψ2(p2) → ψ1(p′
1)ψ2(p′

2) me-
diated by the scalar φ (see Fig. 1a) is expressed as

iM = ū
s′1
1 (p′

1)(−igS1)us1
1 (p1)

i

q2 − m2
φ

ū
s′2
2 (p′

2)(−igS2)us2
2 (p2).

(4)

Here q ≡ p′
1 − p1 = −(p′

2 − p2) is the momentum transfer be-
tween the two fermions, and the superscripts s1, s′

1, s2 and s′
2

denote the spin of each fermion. We adopt the non-relativistic 
normalization condition us′

j
†
(p)us

j(p) = δs,s′ (no summation over 
j), which is different from the usual relativistic normalization, 
us′

j
†
(p)us

j(p) = 2E δs,s′ , where p = (E, �p). With the non-relativistic 
normalization, the plane wave solution is given by

us
j(p) =

√
E + M j

2E

(
χs,

�σ · �p
E + M j

χs

)T

�
(
χs,

�σ · �p
2M j

χs

)T

, (5)

where χs is a two component spinor satisfying χ †
s′χs = δs,s′ , and 

we have taken the non-relativistic limit, E ≈ M j , in the second 
equality. Substituting this solution into (4), one obtains

iM � −i
gS1 gS2

(q0)2 − |�q|2 − m2
φ

δs1,s′1δs2,s′2 � i
gS1 gS2

|�q|2 + m2
φ

δs1,s′1δs2,s′2 ,

(6)

where we have used, |q0| 	 |�q|, in the non-relativistic limit in the 
second equality.

In general, the position–space potential can be obtained by tak-
ing the Fourier transform of the momentum–space amplitude with 
respect to the momentum transfer �q. In the case at hand, it is given 
by

V (�r) = −
∫

d3q

(2π)3
ei�q·�r

(
gS1 gS2

|�q|2 + m2
φ

)
(7)

= − gS1 gS2

4πr
e−mφr (8)

This result is of course consistent with Refs. [12] and [17] and 
many other literatures.

3. Pseudoscalar exchange potential

Next, let us go on to another type of interaction involving a 
pseudoscalar φ. The Lagrangian is given by

L = 1

2
∂μφ∂μφ − 1

2
m2

φφ2

+
∑
j=1,2

(
ψ̄ j(iγ μ∂μ − M j)ψ j − igP jφ ψ̄ jγ5ψ j

)
, (9)
where gP j is a real coupling constant between φ and ψ j . Note that 
the imaginary unity i is included in the last term to make gP j real. 
The vertex factor of the above interaction is

(−i)igP jγ5 = gP jγ5. (10)

Then the scattering amplitude for ψ1(p1)ψ2(p2) → ψ1(p′
1)ψ2(p′

2)

mediated by the pseudoscalar (see Fig. 1b) is given by

iM = ū
s′1
1 (p′

1)gP 1γ5us1
1 (p1)

i

q2 − m2
φ

ū
s′2
2 (p′

2)gP 2γ5us2
2 (p2). (11)

Using the plane wave solution (5), we can calculate the matrix el-
ement

ū
s′1
1 (p′

1)γ5us1
1 (p1) � χ

†
s′1

( �σ
2M1

· ( �p1 − �p1
′
)

)
χs1 , (12)

ū
s′2
2 (p′

2)γ5us2
2 (p2) � χ

†
s′2

( �σ
2M2

· ( �p2 − �p2
′
)

)
χs2 , (13)

and the amplitude becomes

iM � i
gP 1 gP 2

q2 − m2
φ

(
χ

†
s′1

(�σ · (−�q))χs1

)(
χ

†
s′2

(�σ · �q)χs2

)
4M1M2

, (14)

� i
gP 1 gP 2

|�q|2 + m2
φ

(
χ

†
s′1

(�σ · �q)χs1

)(
χ

†
s′2

(�σ · �q)χs2

)
4M1M2

, (15)

where we have taken the nonrelativistic limit in the second equal-
ity. Then, by taking the Fourier transform of the amplitude, we 
obtain

V (�r) = −
∫

d3q

(2π)3
ei�q·�r

[
gP 1 gP 2

|�q|2 + m2
φ

(�S1 · �q)(�S2 · �q)

M1M2

]
, (16)

= gP 1 gP 2

M1M2
(�S1 · �∇)(�S2 · �∇)

∫
d3q

(2π)3

1

|�q|2 + m2
φ

ei�q·�r, (17)

= gP 1 gP 2

M1M2
(�S1 · �∇)(�S2 · �∇)

(
e−mφr

4πr

)
, (18)

where �S1 and �S2 are the spin operators of the fermions ψ1 and 
ψ2, respectively. In the literature, the spin operators are often rep-
resented by �σ1 and �σ2, and they are related as �S1 = �σ1/2 and 
�S2 = �σ2/2. Finally, using the formula

∇i∇ j

(
e−mφr

r

)
= −e−mφr

[
δi j

(
mφ

r2
+ 1

r3
+ 4π

3
δ3(r)

)

− r̂i r̂ j

(
m2

φ

r
+ 3mφ

r2
+ 3

r3

)]
, (19)
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we arrive at the dipole–dipole potential induced by axion ex-
change,

V (�r) = − gP 1 gP 2 exp(−mφr)

4π M1M2

[
(�S1 · �S2)

(
mφ

r2
+ 1

r3
+ 4π

3
δ3(r)

)

− (�S1 · r̂)(�S2 · r̂)

(
m2

φ

r
+ 3mφ

r2
+ 3

r3

)]
,

(20)

where r̂ ≡ �r/r is the unit vector. In the massless limit, we obtain

V (�r) → − gP 1 gP 2

4π M1M2r3

[�S1 · �S2 − 3(�S1 · r̂)(�S2 · r̂)
]
, (mφ → 0)

(21)

where we have dropped the contact term. The form of the poten-
tial in the massless limit should be compared with the standard 
magnetic dipole–dipole interaction,

Hμμ = −3( �μ1 · r̂)( �μ2 · r̂) − �μ1 · �μ2

4πr3
, (22)

where �μ1 and �μ2 are the magnetic moments and we have omitted 
the Fermi contact term. The magnetic moment for an elementary 
Dirac particle is related to its spin as

�μ = g
e

2m
�S, (23)

where m and g are the mass and g-factor of the particle, respec-
tively. Notice the overall sign difference between (22) and (21)
when gP 1 = gP 2.1

The above result (20) (and (21)) is consistent with Ref. [17], and 
with Ref. [19] in the limit of mφ → 0. It is also consistent with the 
one (neutral) pion exchange potential between nucleons [20]. On 
the other hand, the results in e.g. Refs. [21,12] have an opposite 
sign.

The sign of the potential is physical, therefore it is important 
for experiments to discover or constrain the axion couplings to 
fermions. Unfortunately, there is often the sign error in the litera-
ture (including the equation in the header of the limit on invisible 
axion electron coupling in PDG [10]). So far, the axion-mediated 
dipole–dipole potential is only limited by experiments, and the 
sign error does not change the results unless the estimated er-
ror is antisymmetric about the sign of the potential. However, as 
a matter of fact, the sign is essential to claim a discovery of such 
potential in future experiments.
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force (cf. Eq. (8)), of a spin 1 particle (e.g. photon) a repulsive force between likes, 
and of a spin 2 particle (graviton) an attractive force. We find that a similar sign 
change of the potential due to the different spin of the mediating particle arises 
also for the spin-dependent force: the sign of the dipole-dipole potential mediated 
by the graviton is same as (21) [18]. We thank Georg Raffelt for pointing out this 
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Appendix A. Monopole–dipole potential by axion exchange

Here we give a monopole–dipole potential by the axion ex-
change for completeness. Assuming a scalar coupling to ψ1 and 
a pseudoscalar coupling to ψ2, we obtain after a similar calcula-
tion,

V (�r) = −
∫

d3q

(2π)3
ei�q·�r

[
igS1 gP 2

|�q|2 + m2
φ

(�S2 · �q)

M2

]
(A.1)

= − gS1 gP 2

M2
(�S2 · �∇)

∫
d3q

(2π)3

1

|�q|2 + m2
φ

ei�q·�r (A.2)

= gS1 gP 2

4π M2
(�S2 · r̂)

(
mφ

r
+ 1

r2

)
e−mφr, (A.3)

which agrees with the result in Ref. [12].
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