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Abstract

The Standard Model of particle physics describes the interaction of elementary particles using
a local gauge symmetry. This symmetry prevents us from writing mass terms for fundamental
particles and we must rely on a mechanism to spontaneously break this symmetry to give mass
to elementary particles. The Higgs mechanism introduces a scalar field which takes up a finite
vacuum expectation value. After the spontaneous symmetry breaking, a spin-0 particle — the
Higgs boson — remains in the spectrum and has specific interactions with the other elementary
particles of the Standard Model.

After many years of searching for the Higgs boson, the ATLAS and CMS collaborations
at CERN announced the discovery of a new boson in July 2012. Their analyses were based
on diphoton and four-lepton events. These two clean decay channels of the Higgs boson are
signatures of the loop-induced decay to a photon pair and the direct decay to a pair of Z bosons,
respectively. So far, the measurements of the properties of this new boson coincide with the
expectations for the Standard-Model Higgs boson.

To assess its identity, we need to measure its coupling to other fundamental particles of the
Standard Model. At a collider such as the LHC the access to the couplings is challenging because
of the hadronic environment. Therefore, we need reliable theoretical predictions for signal and
background processes. To achieve this goal, we need to compute higher-order corrections in
quantum chromodynamics (QCD) for the processes of interest. In this thesis, we will present the
work done on two different processes.

After reviewing the theoretical framework, we present the phenomenological analysis we have
performed for the process in which a Higgs boson is produced along with a W boson, and decays
into a bottom-antibottom pair. We study the effect of next-to-leading order QCD corrections
to both initial- and final-state in the context of the “boosted regime”, which provides a way to
measure the coupling of the Higgs boson to bottom quarks at a hadron collider.

Then we turn to the production of two off-shell photons with different virtualities, which
represents a first step towards the diboson production process. We present the computation of the
QCD corrections up to next-to-next-to-leading order of the differential cross section for a gauge-
invariant subset of the full correction, namely by computing diagrams that are proportional to
the number of light quark flavors. There we focus on the treatment of virtual and real amplitudes
before showing differential distributions of interest.
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Zusammenfassung

Das Standardmodell der Teilchenphysik beschreibt die Wechselwirkung der Elementarteilchen auf-
grund einer lokalen Eichsymmetrie. Diese Symmetrie verbietet es fundamentale Teilchen mit ein
Massenterm auszustatten. Um das in der Natur vorgefundene Spektrum beschreiben zu koénnen,
ist es folglich notwendig einen Mechanismus einzufiihren, welcher erlaubt diese Symmetrie spon-
tan zu brechen. Der Higgs-Mechanismus erlaubt dies durch Einfiihrung eines skalaren Feldes,
welche einen endlichen Vakuumerwartungswert annimt. Nach der spontanen Symmetriebrechung
bleibt ein Spin 0 Teilchen — das Higgs-Boson — im Spektrum iibrig, welches spezifische Wechsel-
wirkungen mit den anderen Elementarteilchen des Standardmodells aufweist.

Nach einer vieljahrigen Suche nach dem Higgs-Boson haben die ATLAS und CMS Kollabo-
rationen am CERN im Juni 2012 die Entdeckung eines neuen Bosons verkiindet. Thre Analysen
basierten auf Streu-Ereignissen mit zwei Photonen und vier Leptonen. Diese zwei klar messbaren
Zerfallskanale fiir das Higgs-Boson sind die Signaturen des schleifen-induzierten Zerfalls zu einem
Photonen-Paar, sowie respektive des direkten Zerfalls in ein Z-Boson-Paar. Bis anhin stimmen
die gemessenen Eigenschaften des neuen Bosons mit den Vorhersagen des Standardmodells fiir
das Higgs-Boson iiberein.

Um die Identitat des neuen Bosons festzustellen, miissen wir seine Kopplungen mit anderen
fundamentale Teilchen des Standardmodells messen. An einem Speicherring wie dem LHC ist
der Zugang zu diesen Kopplungen wegen der hadronischen Umgebung eine Herausforderung. Wir
brauchen deswegen zuverléssige theoretische Vorhersagen, sowohl fiir Signal- als auch fiir Hin-
tergrundprozesse. Zu diesem Zweck miissen wir Storungsrechnungen zu hoheren Ordnungen in
Quantenchromodynamik (QCD) fiir die Prozesse von Interesse durchfithren. In dieser Doktorar-
beit werden wir die unternommene Arbeit an zwei verschiedene Prozesse prasentieren.

Nachdem wir den theoretischen Rahmen erortert haben, werden wir die phdnomenologische
Analyse prasentieren, welche wir fiir den Prozess, bei dem ein Higgs-Boson zusammen mit
einem W-Boson produziert wird und danach in ein Bottom-Antibottom Quark Paar zerfallt,
durchgefiihrt haben. Wir werden die Konsequenzen der QCD Korrekturen in néachst-zu-fithrender
Ordnung sowohl zu Anfangs- und Endzustand im Kontext des sogenannten “boosted Regime”
studieren, welches eine Moglichkeit darstellt, die Kopplung des Higgs-Bosons zum Bottom-Quark
an einem Hadron-Speicherring zu messen.

Danach werden wir die Produktion von Photonen mit nichtverschwindenden und unter-
schiedlichen Virtualitdten besprechen, welche ein erster Schritt in die Richtung des Diboson-
Prozess darstellt. Wir préasentieren die Rechnung der QCD Korrekturen bis zur néachst-zu-néachst-
zu-fiihrenden Ordnung fiir eine eichinvariante Teilmenge der vollen Korrekturen, ndmlich jene
proportional zur Anzahl der leichten Quark-Flavors. Wir werden uns auf die Behandlung der
virtuellen und reellen Amplituden fokusieren bevor wir einige Distributionen zeigen.
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Résumé

Le Modele Standard de la physique des particules décrit I'intéraction des particules élémentaires
au moyen d’une symétrie de jauge locale. Cette symétrie nous interdit d’introduire des termes de
masse pour les particules fondamentales et il nous faut utiliser un mécanisme pour briser cette
symétrie spontanément et donner une masse au particules élémentaires. Le mécanisme de Higgs
introduit un champ scalaire qui acquiert une valeur moyenne finie dans le vide. Apres la brisure
spontanée de symétrie, une particule de spin 0 — le boson de Higgs — reste dans le spectre et
possede des intéractions spécifiques avec les autres particules élémentaires du Modele Standard.

Apres de nombreuses années de recherche du boson de Higgs, les collaborations ATLAS et
CMS du CERN ont annoncé en juillet 2012 la découverte d’un nouveau boson. Leur analyse
était basée alors sur les évenements a deux photons et a quatre leptons. Ces deux modes de
désintégration propres du boson de Higgs sont les signatures respectives de la désintégration en
deux photons induite par une boucle et de la désintégration directe en une paire de bosons Z.
Jusqu’ici les mesures des propriétés de ce nouveau boson coincident avec celles qu’on attend du
boson de Higgs du Modele Standard.

Afin de confirmer son identité, il convient de mesurer ses constantes de couplage aux autres
particules fondamentales du Modele Standard. L’extraction de ces constantes de couplage avec un
collisionneur comme le LHC est rendue difficile en raison de I’environnement hadronique. Il nous
faut donc des prédictions théoriques fiables pour les processus signaux et de fond. A cette fin,
nous devons calculer les corrections d’ordres supérieurs en chromodynamique quantique (QCD)
pour les processus d’intérét. Cette these est dédiée a ’étude de deux processus différents.

Apres avoir passé en revue le cadre théorique, nous présenterons I’analyse phénoménologique
que nous avons faite pour le processus dans lequel un boson de Higgs est produit en association
avec un boson W, et se désintegre en une paire de quark-antiquark bottom. Nous étudierons
leffet des corrections QCD au premier ordre a I’état initial comme a 1’état final dans le contexte
du “régime boosté”, qui offre la possibilité de mesurer la constante de couplage du boson de Higgs
aux quarks bottom sur un collisionneur de hadrons.

Ensuite nous traiterons la production d’une paire de photons a virtualités non nulles et dis-
tinctes, ce qui représente un pas dans la direction du processus diboson. Nous présenterons le
calcul des corrections QCD au deuxieme ordre pour un sous-ensemble invariant de jauge de la
correction totale, a savoir celles proportionnelles au nombre de saveurs de quarks légers. Nous
nous concentrerons sur le traitement des amplitudes virtuelles et réelles avant de présenter des
distributions pertinentes.
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Introduction

The Standard Model of particle physics describes the electromagnetic, weak and strong in-
teractions between matter particles (fermions) through the exchange of messenger particles
(bosons). It is formulated as a gauge theory with gauge group SU(3). x SU(2), x U(1)y
with color, weak isospin and hypercharge as respective associated charges. It has been
progressively formulated in the second half of the 20th century and is up to now one of the
most precisely tested theories; its last missing piece having recently been discovered.

The strong part of the interaction is mediated by gluons which are colored and can
thus interact among themselves. This part of the gauge group is not spontaneously broken
and gluons are massless. Due to confinement, no colored particle is observed directly and
partons (quarks and gluons) always hadronize in mesons and baryons yielding a typical jet
structure in the detector. The strong interaction is not directly observable in our everyday
life but it is responsible for the existence of nucleons (protons and neutrons) and nuclei
(through residual nuclear interactions).

The electroweak part is spontaneously broken to U (1), which corresponds to the usual
electromagnetic interaction mediated by the massless photon and described by quantum
electrodynamics (QED). The broken degrees are observed as massive W and Z bosons ob-
served for the first time by the UA1 and UA2 experiments at the SPS collider (CERN).
The massive W bosons manifest themselves in particular through the phenomenon of ra-
dioactive decay.

Spontaneous symmetry breaking is achieved by a scalar (spin-0) field acquiring a non-
zero vacuum expectation value — measured to be approximately 246 GeV — which gen-
erates mass terms in the Lagrangian density. This is the essence of the Brout-Englert-
Higgs-Guralnik-Hagen-Kibble mechanism [3-8]. By introducing a Yukawa coupling of the
fermions to this scalar field, the vacuum expectation value also gives masses to quarks and
leptons. The excitations of this scalar field from its vacuum expectation value should also
be observable as a particle: the Higgs boson. In 2012, after many years of research, the
ATLAS and CMS collaborations announced that they had observed a new particle at a
mass around 125 GeV whose properties are consistent with those of the Higgs boson of
the Standard Model [9}/10]. Previously the experiments around the Tevatron at Fermilab
and around LEP and the Large Hadron Collider (LHC) at CERN had managed to exclude
various mass ranges.

The assessment of the Standard-Model-likeliness of the Higgs boson observed at the
LHC will rely on careful measurements of its properties, in particular of its coupling to the
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Figure 1: Branching ratios of the decay channels for the Standard-Model Higgs [11].

other elementary Standard Model particles. The branching ratios of the decay channels for
the Standard-Model Higgs are shown in figure [I} One sees that the branching ratio for a
decay into bottom quarks is very large in the case of a 125 GeV Higgs boson, but also that
many other decay channels are in principle accessible, allowing to measure the couplings
of the Higgs to these other particles. For example, we show in figure [2| the limits from
the CMS analysis of different channels in the (ky, xf)-plane assuming that all couplings to
vector bosons are scaled by ky and all couplings to fermions are scaled by &;.

In the meantime, some decay channels like H — vy or H — ZZ* — 4l have reached
sufficient statistics to allow a discovery claim from them alone [13,/14]. As a showcase
example we show the four-lepton mass distribution measured by ATLAS in figure [3] where
a clear mass peak over the background is visible around 125 GeV. The study of the chan-
nels where the Higgs boson decays to a pair of vector bosons, like H — WW* ZZ* Z~*,
have smaller branching ratios, but are in principle easier as one can require the presence
of leptons in the final state, which permits to reject unwanted backgrounds efficiently:;
furthermore the production cross sections partly compensate the lower branching ratios.
They require however the careful assessment of the underlying “non-Higgs” initiated dibo-
son production. The observation of the H — bb channel is however much more challenging,
as bottom quarks are produced abundantly at the LHC and overwhelm by many orders of
magnitude the tiny signal from Higgs-related physics. Using the so-called Higgsstrahlung
process, where the Higgs boson is produced in association with a vector boson, specific
observables and kinematical regions can however offer a window into this channel.

Significant progress assessing the properties of the new boson at a hadron collider
depends crucially on the capability to make precise predictions for the processes involved
in the signal (where the Higgs boson is involved) and the background (where the Higgs
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boson is absent). As was shown on multiple occasions in the last decades when higher-
order corrections from the strong interactions were computed, their size is not negligible and
taking them into account significantly improves the theoretical uncertainty. The first step
when moving one order higher in the perturbative expansion of a process is to compute the
inclusive cross section, i.e. in which we do not choose specific kinematics for the final state.
This allows us to make estimates on the number of events to be expected in an experimental
setup. In a second time, one usually wishes to perform the same computation differentially,
i.e. in which we are able to select at specific kinematics of the final state. It provides a
powerful way to select events that have the properties one is looking for, for example by
requiring certain cut criteria to be met. The computation of differential cross sections is
a highly non-trivial task as we need to consistently handle the divergences arising in the
perturbative expansion and ensure their cancellation order-by-order to yield a finite result.

Of course, the completion of the spectrum of the Standard Model is only one of the many
endeavors of high-energy physicists. It might be that experiments announce the observation
of a discrepancy between the measurement and the prediction from the Standard Model
tomorrow, but this is only possible if the theoretical predictions reach a high-enough level
of precision.

We will not touch upon the wealth of models beyond the Standard Model that are on
the market. In order to perform predictions that are experimentally testable one needs
to compute the Standard Model “background” to these processes, which is yet another
motivation to perform precise higher-order computations in particle physics.

This thesis is structured as follows: In part [[] we set up the framework of the Stan-
dard Model (chapter (1)) and present the methods of perturbation theory used in this thesis
(chapter . Part [l presents the phenomenological discussion of the decay H — bb for the
Higgsstrahlung process when next-to-leading order perturbative corrections from quantum
chromodynamics to decay (chapter {4)) as well as production (chapter [5)) are considered
at a fully differential level. The [third and last| part focuses on the computation of the
differential next-to-next-to-leading perturbative quantum chromodynamics corrections for
the production of a pair of off-shell photons with different virtualities. We first tackle
the double-virtual part (chapter [8)) in the general case before specializing to the part pro-
portional to the number of light quark flavors and handling the double-real contribution
(chapter @ and we present numerical distributions of interest obtained from their im-
plementation (chapter [10). Parts [l and [[I] have their own introduction and conclusion
chapters and we will present the outlook at the end of the thesis.
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Theory and methods






Chapter 1

Particle physics in a nutshell

In this chapter we shall review the relevant features of the Standard Model of particle
physics focusing on the elements that are of importance for the results presented in this
thesis. It is not meant to be self-contained, but rather is based on multiple sources, which
provide a more detailed treatment of the matter |15-21].

1.1 The Standard Model

As collision energies of nuclear physics grew and a zoo of particles started to appear,
physicists started to look for organizing patterns in the new particles in the spirit of
Mendeleev’s periodic organization of the elements with increasing atomic mass according
to their recurrent chemical properties. Soon, it became clear that protons and neutrons
are not the elementary building blocks of nature and modern particle physics was born.

Starting as an attempt to bring order in the chaos of the particle zoo, the quest for a
description of the fundamental constituents of matter and their interactions at the sub-
atomic scale during the second half of the 20th century — culminating with the discovery of
the Higgs boson in 2012 — has yielded a coherent description known as the Standard Model
of particle physics (SM): matter fields (fermions) interact through vector fields (bosons)
that are the expression of a local gauge-symmetry!f]

In this model, matter particles — excitations of fermion fields — are subdivided into
quarks and leptons, depending on whether or not they couple to the strong interaction
that we shall describe in the next section. They come in three families of increasing mass
with each family containing a quark doublet and a lepton doublet, see figure All
ordinary matter is made out of particles of the first family: as we learned in high school,
the proton is made up of two up and one down quarksf’] and the neutron is composed of
two down and one up quarks. The electrically charged particles from the second and third

!Note that gravity is not treated in the framework of the SM. There is in fact so far no consistent
quantum field theory of gravity.

2As we will see below, this is only part of the composition of the proton. The other components will
be relevant when we want to describe proton-(anti)protons collisions (see sections and .
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8 Chapter 1. Particle physics in a nutshell
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Figure 1.1: Fields of the SM with their respective masses and charges [22].

families decay through the weak interaction to particles of the first family.

While the SM is highly successful to describe most of the phenomenology of high-energy
physics, we should remember that it cannot accommodate all of the observed phenomena
and that it falls short of yielding a (satisfactory) explanation for some features of nature.
Neutrino oscillations, which were confirmed in 2001 [23] and solve the solar neutrino prob-
lem, are not possible in the SM strico sensu, where neutrinos are exactly massless. The
SM also does not explain why there are precisely three families or why the typical scale
of gravity lies many orders of magnitude away from the electroweak scale (the hierarchy
problem). And we are not even touching on the issue of dark matter and dark energy: ac-
cording to the interpretation within the standard model of cosmology of the measurement
of the homogeneity of the cosmic microwave background, ordinary matter makes up for
less than 5% [24}25] of the total amount of energy in the universe!

To tackle these issues one needs to go beyond the SM with typical examples being
supersymmetry and warped extra-dimensions. These models predict the existence of states
that can be looked for in collider experiments or that have an indirect effect on measured
quantities. It is therefore essential to make precise predictions within the standard model,
to be able to make out discrepancies, should there be any. As the saying goes: “Today’s
discovery is tomorrow’s background.”

We will now present the two complementary components of the SM: quantum chromo-
dynamics and the electroweak theory.

1.2 Quantum chromodynamics

The strong interaction affects only particles with a color charge: quarks and gluons. Quarks
were initially proposed independently by Gell-Mann [26] and Zweig [27,28] as an elegant



1.2. Quantum chromodynamics 9

way to classify the hadronic states. They were then included in the parton model of
the proton which was formulated by Feynman [29] based on the observation of Bjorken
scaling [30]. Measurements of the momentum carried by partons in deep-inelastic scattering
experiments (lepton-hadron collisions) showed that a substantial amount of momentum
was not accounted for and had to be carried by an extra particle that was not interacting
through the weak interaction. Gluons — discovered at the end of the 1970’s at DESY —
went in to complete the parton model and are none other than the gauge field associated
with the color symmetry.

The interaction is described by a Yang-Mills theory [31] for the non-abelian symmetry
group SU(N,), where N, denotes the number of colors. The coupling is denoted g;. Quarks
come in Ny flavors which are all equivalent for what concerns the strong interactionﬂ
They are described by spinor fields ¢;, where ¢ = 1,..., N, denotes the color index in
the fundamental representation. Gluons are described by vector fields Aj, where a =
1,...,N2 — 1 denotes the color index in the adjoint representationﬁ We define the field
strength tensor and the covariant derivative’]

Fo = 9,A% — 9,A% — g foeAb AC, D, = 8, +ig,T* A, (1.1)

where the f®¢’s are the (totally antisymmetric) structure constants.

The N2 — 1 generators of the fundamental representation of SU(N,) form the basis of
a Lie algebra and can be represented by N, x N, matriceéﬂ that satisfy the commutation
relations

[T, T"] = ifeeTe. (1.2)

The structure constants are common to all representations of SU(N,) and in particular
define the adjoint representation through the (N2—1) x (N2 —1) matrices defined entry-wise
through

(t)oe = i f . (1.3)

When computing colored amplitudes one will at some point need to compute the trace
of these color matrices. We shall use the most widely used normalization as well as the
Casimir invariants for the fundamental and adjoint representations of SU(N,):

1

Tr (T°T") = Trpo™, Ty = 5 (1.4a)
N2 _1

77 = C Cp=—2¢ 1.4b

F) F 2NC ( )

9% = Cly, Cy4 = N.. (1.4¢)

31t is common to designate the Ny flavors as massless, when dealing with QCD and to add the top as
an extra flavor, or to consider its effect only within loops. Note that the evolution of PDF to relatively
low energy where the mass of the bottom quark has to be taken into account, care needs to be taken as
to what “N;” represents.

4See reference [32] for a detailed discussion of group theory in the context of particle physics.

5As usual, repeated Lorentz and color indices are summed upon.

SFor N, = 3, the 8 generators are proportional to the Gell-Mann matrices.
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We will discuss practical tools for the computation of the color-part of a diagram in sec-
tion [[.2.2

Note that in an abelian theory (such as QED, which is the gauge theory of U(1)) the
field strength tensor does not involve the term which is quadratic in the fields. This implies
that the gauge field is not self-interacting, whereas it is in a Yang-Mills theory as we will
see below. Another way to see it is that the gluon fields themselves carry a color charge.

We would like to stress that we have allowed ourselves a small abuse of notation in
the definition of the covariant derivative: the derivatives are hiding an N, x N, identity
matrix, as do the definitions of the Casimir invariants.

With these notations, we can write down the classical Lagrangian density of the theory:

1
Lo = —ZFSVF“”‘” + Z @ (i) — my) ;. (1.5a)
q

Unfortunately, the theory is not quantizable in this form. We need to add a gauge-fixing
term and Fadeev-Popov ghosts x* described by the Lagrangian densities

1
Logauge-fixing = _E@MAZ)(aVAg) (1.5b)

Lahost = 0*X™* (0,6 + gsf“bCAZ) X’ (1.5¢)

In these terms, £ is the gauge parameter for the gauge fixing (we chose a covariant gauge
fixing) and specific values correspond to the choice of a gauge; this ensures that gluons
have only two polarizations, as they are massless spin-1 particles. The ghosts are complex
scalar fields that obey fermion statistics. They interact with gluons, but only appear as
internal particles (in loop diagrams) and are needed to maintain the gauge invariance.

The complete Lagrangian density Locp = L. + Lgauge-fixing + Lehost €A NOW be quan-
tized allowing us to extract the Feynman rules for QCD that we shall list in the following
next section.

To close this section, we would like to comment about confinement and asymptotic
freedom, two characteristic features of QCD. Confinement forbids free colored particles.
Qualitatively, it can be understood through the fact that the strong interaction grows with
distance. Trying to take apart a quark-antiquark pair will result in more and more energy
to be stored in the strong field, which at some point will be sufficient to create a quark-
antiquark pair from the vacuum and creating again two bound states. When computing
low-energy processes, the non-perturbative effects get more and more important, making a
perturbative treatment in QCD useless. Fortunately for us, as we will see in section [2.3.1
QCD also exhibits asymptotic freedom — as first pointed out by Gross, Wilczek and Politzer
in 1973 [33]34] — which means that in the high-energy limit the strong coupling becomes
vanishingly small. In terms of perturbation theory this means that the higher the energy
we work at, the more convergent the perturbative QCD series become.
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1.2.1 Feynman rules of quantum chromodynamics

In this section, we list the Feynman rules of QCD in a covariant gauge.

Propagators
“p _i(p+m)o
7 -t J p2 —m2+i0
- B iéab » p,upu
H,am\u,b_p2+io (—g +(1-¢) pe >
“p B Z‘éab
a - - b p2 +40

(1.6a)
(1.6b)

(1.6¢)

The +10 specifies which of the poles need to be taken. In the following chapters it will be

dropped when there is no doubt possible.
The polarization sum of the gluon is the expression in parenthesis.
The choice £ = 1 is known as Feynman-t Hooft gauge.

Vertices All momenta are ingoing.

f,a
f\ =il
i J
1, @
% = —gs [P
SN
. " ‘ t .
b . .
W, a
m | e —p)
= —gsf" | +9""(ph — %)
" +9™ (5 — PY)
p
v,b ’ P, c
n,a o,d
p1 > » +fabef;ie<g,upgl/a _ g/w'gl/p)
P =igs | TS99 = g ™)
o +fadefbce (g,u,l/gpa _ g,upgua)

v, b P, c

(1.7a)

(1.7b)

(1.7¢)

(1.7d)



12 Chapter 1. Particle physics in a nutshell

1.2.2 Computation of color factors

We present here a diagrammatic method that can be used to simplify or compute the
color-factor of a given amplitude in QCD (we will keep the number of colors general to
N.). In this we follow the presentation made in reference [35]. All computations of cross
sections involve squaring a given (sum of) matrix element(s). This will close in particular
the color indices so that we need to compute a trace of a product of color matrices, which
encodes the information about the color flows. This problem decouples from the rest of
the computation as color and Lorentz indices do not talk to each other. The amplitude
is then written as a color factor times a “color-free” amplitude. Note however, that this
method cannot be applied directly when 4-gluon vertices are present, but one needs to use
a trick [35]. This is however not needed for the computations we perform here.

We use the same diagrammatic representation as the one that we interpret with the
Feynman rules and use the following rules:

1. All colorless objects as well as the cut of the amplitude are irrelevant and can be
dropped.

2. Fundamental (quark) - ———— Adjoint (gluon, ghost) —

3. Simplify vertices:

ISP

4. Simplify propagators:

N = O )wvzéwvvvvw, g b= (O

5. Use:
QVW:O, Q:Nca O:Nf_l

6. Repeat 3 — 5 until it is no longer possible.

The proof of these steps is straightforward when looking at the color part of the Feynman
rules of section [L.2.1]
In the next series of equations we work out a simple example following the steps cited

above:
2
>ww = @ = CFO 2 N.Cp. (1.8)

L
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1.3 Electroweak theory

The formulation of quantum electrodynamics (QED) initiated by Dirac [36] and culmi-
nating in the formulation of a gauge theory of the electromagnetic interaction by Tomon-
aga 37,38, Schwinger [39], and Feynman [40-42] has had formidable successes in the
description of the related phenomenology: theoretical predictions including perturbative
corrections agree with experimental measurements to a level of thirteen significant digits!

On the other hand, the S-decay of nuclei, the decay of the muon, as well as the decay
of strange hadrons (i.e. hadrons containing strange quarks) were described through Fermi
theory [43,/44]. A posteriori, the 4-fermion interactions of this model can be seen as the
low energy limit of the electroweak (EW) interaction, where the W-boson exchange is not
“resolved”.

The EW theory is a Yang-Mills theory based on the gauge group SU(2)xU(1). Glashow
formulated the theory in 1961 [45]; while Salam [46] and Weinberg [47] independently
applied the idea of spontaneous symmetry breaking to it. Fermions have now two types
of charges: weak isospin, that couples to the gauge boson W;,i = 1,2,3 with coupling ¢
and hypercharge that couples to the gauge boson B, with coupling ¢’. Note that due to
the V-A structure of the weak interaction, only left-handed fermions couple to the W*’s,
while right-handed fermions only interact through B*. The covariant derivative is
%TZWL — ’ig/%Bﬂ,
where 7; denotes the Pauli matrices and Y is the hypercharge. We would like to stress
that we have allowed ourselves a small abuse of notation in the definition of the covariant
derivative: the derivatives and B, are hiding a 2 x 2 identity matrix.

The couplings g, ¢’ and e (from QED) are actually in relation to each other:

D, =0,—1g (1.9)

e = gsinfy = ¢ cos by, (1.10)

where Oy, is called the weak mixing angle. Any two of the parameters is sufficient to
parametrize the interaction, but the usual choice is e or g and the weak mixing angle Oy .
This relation shows that the weak interaction is not really weak, but has a coupling of the
same order as the electromagnetic interaction. What makes it “weak” is the mass of the
associated gauge bosons.

If it were to stick to this form, this model would have serious flaws to be phenomeno-
logically meaningful:

1. Due to the requirement of gauge invariance, we cannot write mass terms for the gauge
bosons.

2. Since left-handed fermions transform as a doublet under SU(2) whilst right-handed
fermions transform as two singlets it is also forbidden to write a mass term for them.

These problems are solved by the implementation of a mechanism that spontaneously
breaks the symmetry that we shall present in the next section.
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To conclude this section we would like to make a last remark which is of importance
when implementing event generators for electoweak processes (as we will do in chapter [5).
Mass eigenstates and weak eigenstates are not exactly aligned and are related through
the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It borrows its name from Cabibbo, who
formulated the idea for two families [48], as well as Kobayashi and Maskawa, who extended
the idea to three families [49]. An interesting fact is that with three families, there is room
for CP violation in the SM, which is not the case if only two families exist. The violation of
CP has been shown to happen experimentally. For our purposes however, the two-family
formulation is sufficient as the top quark is not present in the proton. One only needs to
remember that the process ud — W+ and ¢5 — W should come with a weighting factor
0.975 while the process u5 — W and c¢d — W+ with a weighting factor 0.222.

1.3.1 The Higgs mechanism

We will now present the mechanism that is used in the SM to break the SU(2) x U(1)
symmetry, the celebrated Higgs mechanism. The mechanism is also known under the
longer name Brout-Englert-Higgs-Guralnik-Hagen-Kibble mechanism, as all these authors
independently came to similar conclusions around the same time [3-§].

The field content (quarks, leptons and the four gauge bosons) are supplemented with
four real scalar fields in the form of an isospin doublet with hypercharge ¥ = +1,

_ (¢ 1 (901 + ig@z)
= = . ) 1.11
i <900> V2 \p3 +ipy ( )
with Lagrangian density
Litiggs = (iD"0)'(iDyp) — V(p), (1.12)

where V() is the Higgs potential,

V(p) = p*oTo + A(eTe)?. (1.13)

When p? > 0, the potential has a minimum in the origin and the symmetry is not
broken. However, if for some reason p? < 0 (while A > 0), the potential develops a
minimum at

2
1
Plo=—= (1.14)

and the field takes up a finite vacuum expectation value. Any choice of ¢ satisfying

equation (|1.14)) will break SU(2) x U(1), but since we want to keep the photon massless
the vacuum expectation value should have no electric charge, so we choose:

o = % (2) : (1.15)
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Inserting g in the covariant derivative of equation ((1.12)) and defining the fields
gWi —g'B, gW3 + 9B,

[171 I1f2
LL;F = Q ZM = AM =, (116&)
\/5 /g2 +gl2 /g2 +g/2

we can read out the masses of the fields:

1 1
my = 59, my = §vx/g2 + g7, ma = 0. (1.17)

We see that the photon remains massless while the other gauge bosons get a mass. It is
also possible to obtain the relation

W cos Oy . (1.18)
mz

As a last step, we reexpand the Higgs field around its vacuum expectation value via

o(a) = % (U N ?{(@) | (1.19)

This describes a scalar boson H with self interactions and a mass
mpg = vV 2\ (1.20)

Formally speaking, the breaking| of SU(2) x U(1) — U(1) generates four (massless)
Nambu-Goldstone bosons [50,51]. Three of these are absorbed in a redefinition of the
three massive vector fields — as their third polarization — while the last one remains free as
the photon stays massless, and remains in the spectrum as the Higgs boson. This observa-
tion was made by Higgs which lent his name to the postulated new particle and so began
the long quest for the Higgs boson. In July 2012 the ATLAS and CMS collaborations at
CERN announced the discovery of a new boson whose properties match those of the SM
Higgs boson. Following this discovery, Englert and Higgs were jointly awarded the physics
Nobel prize in 2013.

To end this section, we present how the Higgs field can be recycled to give a mass to
the fermions, thus solving the second problem cited above. In the following we denote the
component of a left-handed doublet with the highest (lowest) third component of the weak
isospin U (D). This can be repeated for each family of quarks and leptons. The Higgs field
is a isospin doublet and thus

U _ (U
‘C\D{'ukawa =YD [(Di) (JODR + DRSO (Di)

is an SU(2) singlet and can be added to the Lagrangian density. When substituting (1.19
will give a mass term and interactions only for the component with the lowest isospin.

(1.21)

"Note that the U(1) before the spontaneous symmetry breaking is associated to the hypercharge,
whereas the U(1) remainng afterwards is associated to the electric charge.
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In general, we would be forced to include another Higgs field to give mass to the other
fermions. In the case of SU(2) however this can be achieved with the charge conjugate of
the Higgs field:

0 = i’ (1.22)
using the term
U . - __ (U
L kawa = YU ( D, ) ¢“Up + Urig® (Di)] (1.23)
For a fermion f, we get the relation]
my = i@ (1.24)

V2

The expansion allows us to extract the coupling strengths of the Higgs boson to
the vector bosons (equation ([1.12))) and fermions (equations and (1.23))). We will
list them along with the other Feynman rules for the EW theory.

While the vacuum expectation value of the Higgs field allows us thus to give mass terms
to the quarks and leptons, besides the W and Z bosons, the Higgs boson fulfills another
important role within the SM. Should we compute the scattering amplitude of WTW ™~ —
WHW ™ in the absence of a Higgs boson, which would then consist of s- and ¢-channel
exchange of a photon or a Z boson as well as the 4-W boson vertex, we would find that
it grows indefinitely as we take the limit s — oo, thus destroying perturbative unitarity.
Adding the diagrams where a Higgs boson is exchanged, with the specific couplings dictated
by the EW theory, solves this problem and restores perturbative unitarity.

1.3.2 Feynman rules of the electroweak interaction

We will only state the Feynman rules that we will make use of in our computations. For
a complete list of the Feynman rules, see for instance reference [16].

Propagators

8Note that the normalization of the Yukawa coupling can be chosen differently!
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~.

_________ = m (1256)
The +i0 specifies which of the poles need to be taken. In the following chapters it will be
dropped when there is no doubt possible.

The polarization sum of each of the vector boson types are the parenthesis of the
respective propagator.

The choice £ = 1 is known as Feynman-t Hooft gauge.

Vertices

= —ieqy" (1.26a)
-__Y “1<f—f ) 1.26b
e (e~ el (1.26b)
L BVE TRV (1.26¢)
v2' 2
.My
— ) 1.26d
i (1.260)
WMz
— 4 1.26
cos@Wg ( )
= igmyg"”. (1.26f)

1 v

In the last couple of equations, we have flavor-dependent constants. For the photon and
the Z boson vertices, they are listed in table [1.1} For the W boson vertex, f and f’ must
have a charge difference of 1. Furthermore, if they are leptons V¢ = 1, while if they are
quarks, Vi is the corresponding CKM matrix element.
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f o ch

1 1
Ve, Vs Vo 0 +3 +5

1 1 .2
e, b, T -1 —35 —35+2sin"Oy
woc bt +2 45 +5—3sin’by
d,s, b —% —% —%—i—%sinzew

Table 1.1: Constants involved in the Feynman rules of the EW theory. Antiparticles have
the opposite values.

1.3.3 Treatment of 5

When dealing with the EW interaction, we will be confronted with the issue of using 75 in
a way which is consistent with dimensional regularization (DREG). We will present shortly
what options are available.

In four dimensions, we are used to 75 having two main properties:

1. Anticommutativity: {vys, "} = 7" + Y5 =0 for p =0,1,2, 3.

2. Trace property: Tr(v#4"~vPy7s) = 4iehP?  where #¥P7 is the totally antisymmetric
Levi-Civita tensor with %% = 41.

When going to d # 4 dimensions, using the cyclicity of the trace and property 1, we get
the equation

(d—4)Tr(v*v"v*7°75) = 0, (1.27)

which implies that the trace must vanish identically, contradicting property 2.
There are two options to solve it and they are equivalent in their results that we shall
now present briefly together with their advantages and caveats.

’t Hooft-Veltman prescription The most straightforward approach consists in giving
up completely the anticommutativity and keep instead the trace property. It was first
suggested by 't Hooft and Veltman [52], and equivalent to defining projectors to split the
space-time in 4 and (d — 4) parts [53].

First, we need to make sure that the Feynman rules are written in a form that is slightly
more symmetrical by replacing the axial-vector coupling

1
Vs 3 (V*v5 — 57" - (1.28)

Then, we replace each occurence of 75 through

Z’ Vpo
Y5 > Es“ PN Y Yo Yo (1.29)
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where the indices associated with the Levi-Civita tensor are then restricted to 4 dimensions.

This procedure is quite straightforward and easy to implement, but it involves the
computation of a lot of traces, and is not really practicable for processes that are not
particularly simple.

Larin prescription Another approch proposed by Larin [54] makes the computation
more efficient and allows to anticommute 5.

First, one anticommutes 75 and uses 72 = 1 until it occurs only once per trace.

Then, one uses the replacement

1

30 " PN, e (1.30)

Vs =
for the axial-vector coupling.

This leads to much less traces to be evaluated than with the 't Hooft-Veltman pre-
scription. The price to pay is that one needs to take into account a finite renormalization
constant Zy that depends on the exact vertex under consideration: pseudoscalar (that
we are not concerned with), axial-vector non-singlet (as in the case of W bosons which
is flavor-changing), or axial-vector singlet (as in the case of the Z boson, which is not
flavor-changing).
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Chapter 2

Calculation tools in perturbation
theory

In this chapter we summarize the main theoretical tools that will be used in this thesis
and give some examples when relevant.

2.1 Decay rates and scattering cross sections

The computation of decay rates and scattering cross sections in perturbation theory re-
quires the consideration of both the kinematics of the process under study as well as its
dynamics. The former is embodied in the phase-space d® of the process which parametrizes
the allowed configurations of the final state which be elaborated upon in section and
the flux factor from the initial state. The latter consists of the squared sum of the matrix
elements of all the subprocesses M; participating to the process at the perturbative order
under consideration that we will detail upon in section
For a A — 1+ --- + n differential decay rate, we have

1 e
dFA_)1+...+n - md@n(A — 1 + st + n)‘MA_)]_+...+n|2, (21)

where A denotes the initial state which consists of just the decaying particle with mass m 4
while 1 + - -+ 4+ n denotes the whole n-particle final state. The (semi-)inclusive decay rate
F'A14...4n is obtained by integrating the differential decay rate over (part of) the phase
space. The total decay rate of a particle is simply the sum of the inclusive partial rates:

Ta=Y Tasr, (2.2)
F

where the sum runs over all allowed final states (with any number of particles). A final
state is allowed if it has the same overall quantum numbers as A and it is kinematically
allowed. For example, the decay rate of the top quark contains the decay channel t — Wb

21
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whereas the decay rate of the W+ boson does not contain the channel W+ — tb because
my > My + My.

We will mostly consider A+ B — 1+ ---+n differential scattering cross sections which
take the form

1
dUA+Ba1+---+n = qu)ﬂ(A +B—=1+--+ n)|MA+B~>1+-"+ﬂ|27 (2'3)

where F' = 41/(pa - pp)? — m%4m% is the collinear flux factor. Again the (semi-)inclusive
cross section o 44 p_s14...1y is Obtained by integrating the differential cross section over (part
of) the phase space.

In both cases M| means that we have summed over the final-state spins/helicities
and colors and averaged over the initial-state spins/helicities and colors.

2.2 Phase space

The phase space constrains the final-state particles of a process to be on-shell with positive
energy, i.e. to fulfill p? = m?, and ensures the conservation of the overall momentum [55]:

n

A (1= 1+ +n) = |[] é%"d(?w)é(*)(p? - m?)] (2m)"3"Y (pf - Zp) (29

=1

where I denotes the total initial state and the ‘(+)’ superscript means that we only use
the positive-energy solution of p? = m?.

Note that we chose to directly work in d = 4 — 2¢ dimensions instead of 4 as we will
use dimensional regularization (see the next section).

2.2.1 Phase-space decomposition

Multi-particle phase-space integrals become increasingly difficult to parametrize as the
number of particle grows. Fortunately it is possible to organize the computation of the
phase space in such a way that a phase space is broken down as a product of phase spaces
with lower multiplicity [55].

This can be achieved in many different ways and they do not need to reflect the actual
kinematics of the internal particles. The most illuminating example is the decomposition
of the general n-particle phase space through

Q3
2
d(I)n(I—>1+---+n):/(12£d¢>n_1(1—>1+---+(n—2)+@)><
s

Q%
X dPy(Q — (n—1) +n), (2.5)
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where the integration limits Q% are obtained through the kinematics of the remaining pro-
cess, which can be thought of (up to the factor of 27) as a concatenation of the production
of n — 2 particles along with a particle of mass \/@ which subsequently ‘decays’ to two
particles.

Using this decomposition recursively together with the phase space volume for the decay
of a particle of mass M into 2 massive particles of mass m; and mo,

21074d(ﬁ)37d
P((d=1)/2)

where we defined 3; = /1 — 4m?/M?, it is in principle possible to compute the volume
of any n-particle phase space. This provides a way to check the implementation of a
parametrization of the phase space. In particular, the volume of the phase space for the
decay of a particle of mass M into n massless particles is [56]

, _ 2t (/m)PanT(d/2 — 1)" —d+(d—2)n
R RCIUEL L (7P ) (7N R

CI’2(]\4;771177”2) =

d—3
(Vor+atvsstess-2mm) 2o

2.3 Matrix elements

In this section, we shall take a closer look at the specific tools and techniques related to
matrix elements.

Matrix elements are expressed as Feynman diagrams [57], which stand for their math-
ematical expressions and are interpreted using the specific Feynman rulesﬂ of the process
(see sections |1.2.1f and [1.3.2)). Computations using Feynman diagrams are representing a
perturbative expansion in a small parameter. In the case of QED, the parameter is

2
e
=_— ~1072
@ 47 ’
while in QCD the parameter is
2
_ Y -1
s ==~ 107"
@ 47

Naively speaking, we expect perturbative corrections in QED to be much milder than in
QCD because each order added comes with a factor of & < «ay (at typical energies).

The computation starts with the leading-order (LO) diagram that is the basic process
under consideration. Then when one further power of the coupling constant is present, we
speak of a next-to-leading order (NLO) correction; and in general if k powers are present
we speak of a N*LO correction. When going one order higher in perturbation theory, two
kind of diagrams will appear: diagrams involving one more loop (virtual), and diagrams
involving one more external parton (real). For example, if studying the production of a Z

1See e.g. reference [58] on the derivation of the Feynman rules for a given Lagrangian density.
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%
o

) NLO QCD

P

) NLO QCD, NLO EW ) NNLO QCD

Figure 2.1: Examples of diagrams appearing at various perturbative orders in QCD and
EW theory for the process ete™ — Z — bb.

boson at an ete -collider and its subsequent decay to a bottom-antibottom pair the dia-
gram shown in figure 2.1a]is the LO diagram. When computing the NLO QCD correction
to this process, we encounter the real diagram shown in figure 2.1b] Mixed NLO QCD
and NLO EW corrections will contain diagrams like the double-virtual one of figure [2.1c
Finally figure showcases a typical real-virtual NNLO QCD diagram.

The number of diagrams that one has to evaluate grows very fast as we move to higher
orders (see e.g. chapter and one typically has to rely on an automated procedure
to generate them. For the computations we have performed we have used the program
QGRAF [59] which simply requires the external particles, propagators and vertices as input
and gives the diagram together with the momentum flows. It is then possible to turn these
into mathematical expressions and perform the usual algebraic manipulations like taking
traces of strings of y-matrices using e.g. FORM [60,61].

Unfortunately, starting already at NLO, the expressions are divergent. In the next
sections we shall illustrate how this arises and how these divergences are taken care of.

2.3.1 Ultraviolet divergences and renormalization

The first kind of divergences that we encounter are characteristic of loop integrals and
are called ultraviolet (UV) because they appear when the momentum in the loop becomes
large. Let us see it appear for a simple loop integral — the (massless) bubble shown in
figure 2.2] Performing a Wick rotation of the momenta to make them Euclidean

KO, = ik® = dk = id*kp, k* = — K2, (2.7)
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k+p
Figure 2.2: Massless scalar bubble.

and looking at the integrand in the limit |kg| — oo, which means we can ignore the external
momentum p, we get

/ ik 1 [ dlks| 2.4
i or ™) el '

which diverges. In order to quantify the divergence we need to introduce a regulator.
The most straightforward option is to introduce a cut-off A for the magnitude of the loop
momentum, i.e. integrate up to A. In the example above,

A
/dlkE| =InA, (2.9)
0

kgl

and we call the divergence logarithmic.

The main issue of the cutoff-regularization is that it violated the Lorentz invariance of
the integral and care has to be taken when interpreting the result. Fortunately, there are
other regularization schemes available that do not violate Lorentz invariance. One of them
is the Pauli-Villars regularization, where massive auxilliary fields are introduced to cancel
the divergence [62].

The modern method of predilection that we shall use in this thesis was introduced by
't Hooft and Veltman and is called dimensional regularization (DREG) [52]. In DREG,
the dimension of space-time is taken to be d = 4 — 2¢, which means that the contraction
of the metric tensor is now

g, =d. (2.10)

Using this, one is able to compute the modified traces of v-matrices. The divergences are
now appearing as poles in €. We shall stick to conventional DREG, where the trace of
the identity matrix is 4, the number of spin states of fermions is 2, massless gauge bosons
have d — 2 helicities, and massive ones have d — 1. Phase-spaces (section and external
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momenta are also taken in d dimensions. For the example cited abovd?]

/ (ir];d k:Q(lirp)? =T/, 2), (2.11)

where f(p? ¢) is finite at € = 0. The Laurent series of the I'-function shows a pole in €.

The modification of the dimension will affect the (mass) dimension of the fields as
we want to keep the action S = [dzL dimensionless. It is then easy to see from the
kinetic terms that fermions and vector bosons will have dimension (d —1)/2 and (d —2)/2
respectively. In order to keep the gauge coupling dimensionless we need to introduce a
scale via the substitution

g — gu’. (2.12)

This scale will be relevant when we perform renormalization [63].

We have now regularized our matrix elements dimensionally and we can proceed with
the renormalization program. For a thorough treatment of the renormalization, the reader
is invited to consult references [211|53].

The 1-loop bubble presented above will come multiplied by a coupling ¢?u* as an
(infinite) contribution to that of the normal propagatorﬁ All we need to do is to find
a consistent way to remove this infinity. This is achieved by adding a counterterm to
the Lagrangian density of the theory under consideration, which exhibits the same pole
structure as the dressed propagator with opposite sign when interpreted with the Feynman
rules, such that the addition of both of them will have no poles left. This needs to be
achieved for all the propagators and vertices of the theory that exhibit divergences.

The Lagrangian density £ — such as the QCD Lagrangian density — can then be
expressed via the bare fields,

=72, AL =NZaA, X =2, (2.13)
and the bare parameters,

mg = qumq> Sb = ZAf, gls) = ggs:us' (214)

In fact, each vertex, such as the gluon-ghost-ghost or the 4-gluon vertex could be
renormalized independently, this would spoil the gauge invariance and in turn destroy the
Slavnov-Taylor identities [64,65], the equivalent of the Ward identities for non-abelian
theories.

The pole structure of the renormalization constants Z; is dictated by the poles we need
to remove. The choice of the finite part is not crucially important (as long as it is done

2The steps of the calculation involve Feynman parameters which we will present in section and
properies listed in the appendix [A] This integral actually also contains an infrared divergence, but as we
will see in the next section, DREG can handle both.

3Both of them are combined to give by summing the geometric series of 1-particle irreducible diagrams
and give the dressed propagator at 1-loop [17,21,/53].
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in such a way that the Slavnov-Taylor identities are preserved). Putting no finite part in
the renormalization constant (i.e. keeping it to 1) is known as the minimal subtraction
(MS) scheme [63]. The most common scheme for massless theories nowadays is the modified
minimal subtraction (MS) scheme, where along with the pole a universal finite part coming
from the loop measure is also included. It consists in making the replacement [66]

2, €7 2 (2.15)

H . MR- :

When dealing with massive quarks (as we will do in chapter , another commonly used
renormalization scheme is the on-shell (OS) scheme, which ensures that the pole of the
propagator remains at the physical mass p?> = m? and has a unit residue.

We will perform the renormalization in detail for the case of the Higgs decay to massive
bottom quarks in chapter For the other processes presented in this thesis, we will
not present the renormalization explicitly.

A legitimate question is whether moving to more loops, the same procedure can be
applied. This will of course be dependent on the theory we use. For renormalizable
theories like the SM [67,/68], we can use the same renormalization constants and just
compute them to some higher order in the coupling. A non-renormalizable theory would
require the addition of genuinely new counterterms at every order, spoiling the predictive
power of the theory.

When dealing with a quantum field theory such as the SM, we are bound to make a
perturbative expansion up to some order in the coupling constant. At tree-level, we recover
the classic theory with no quantum effects. From 1-loop on, the quantum effects become
important. In a heuristic way, the virtual particles in the loop modify the classical behavior
to make it quantum. The truncation of the perturbative series has the effect that the
higher-order terms, that would be present if we were able to compute the non-perturbative
solution, are missing. The renormalization scale pg allows us in a way to quantify the
“error” that we make by truncating the series: in the later chapter, we will present plots
where we vary the renormalization scale around a central value. If the variation is large,
the perturbative series is still missing some significant pieces. Going one order higher will
in general make the dependence on pr milder (the envelope will shrink), showing that the
perturbative series is converging.

As the bare coupling does not depend on the renormalization scale, one can write a
renormalization group equation (RGE) for the strong coupling, which will describe how it
depends on pug:

—— = asf3(ay), as = (2.16)

where we have now taken the limit d — 4 as the [-function is finite. One usually needs
the first coefficient of its expansion in a,

Blas) = —4n i Brar T, (2.17)
k=0
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Figure 2.3: Typical presentation of an IR divergence.

As our tree-level diagrams in parts[[I|and [[TT shall not involve the strong coupling constant,
even at NNLO we shall only need the first coefficient

11N, — 2N

Bo 5

(2.18)

Before we close this discussion of renormalization we would like to make a last remark.
Retaining only the first term in the expansion of the [S-function, we can have the LO
running of the coupling between the scales Q3 and Q?

O‘S(Q%)
1 + 50043(@3) In 8—2 ‘

as(Q%) = (2.19)

In QCD, since Ny < 17 and thus 3y > 0, the coupling decreases with increasing energy: the
theory exhibits asymptotic freedom as first pointed out by Gross, Wilczek and Politzer [33,
34]. This conclusion is not altered by retaining higher-order terms as well. Performing the
same kind of analysis on the coupling of QED would show that « increases with energy.

2.3.2 Infrared divergences and subtraction

After renormalization has been performed UV divergences of loop amplitudes (arising
when the loop momentum becomes very large) have been taken care of. When the loop
momentum becomes very small, or in the case of real emission when a particle becomes
unresolvable another type of divergence can occur, which are logically called infrared (IR).
We used the word unresolvable for reasons that will become clear shortly.

Let us illustrate the typical IR divergence with the real emission diagram shown in
figure[2.3] A particle (unprimed) of mass m emits a massless particle (primed). The blobs
denote the rest of the diagram that we are not considering right now. Choosing some
reference frame, say the lab frame, this diagram will have a propagator of the formE]

(p+p)2—m?=2p-p =2EE' (1 — [Bcosh), (2.20)

4We are delibarately taking a scalar theory as it exposes the feature we want to illustrate. The gener-
alization to a realistic theory like QCD does not alter the feature.
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where 8 = |p]/F, and 0 denotes the opening angle between the momenta p and p’ in this
reference frame. The IR divergences appear whenever this propagator vanishes, which is
the motivation to write it in this factorized form. Since E? = p?+m?, when m > 0, we have
E > 0 and 8 < 1 and thus the only way for this propagator to vanish is if £’ = 0, i.e. the
emitted particle is actually “not there” any more. We say that it becomes soft and speak
of soft divergence. If m = 0, f = 1 and the propagator vanishes if either particles become
soft (F = 0 or E' = 0), or if they become collinear, i.e § = 0. This type of divergences
is called collinear divergence. We will come across these divergences at various places in
parts [[I] and

Once again, we need to introduce a regulator for these divergences. For loop diagrams
in the same spirit as in the UV case, we can introduce an infrared cutoff A\, or give massless
particles a small mass m’. The usual choice nowadays is however again to regularize using
the dimension of space-time d = 4 — 2¢ as for the UV case, and IR divergences appear once
again as poles in €.

Strictly speaking, we should introduce two different regulators ey > 0 and ;5 < 0.
All poles in ey are treated by renormalization, whilst the ;5 poles cancel between the real
and virtual contributions. In the following we will however not make a distinction between
both regulators. Loop integrals wil thus have both UV and IR divergences extracted
(section , and only the IR part will remain after renormalization.

We now turn to the treatment of the IR divergences. We will focus on the case of real
amplitudes but it can also be applied in the case of virtual amplitudes, see section
Over the years different approaches have been developped for the NLO case: the most
common being Catani-Seymour dipole subtraction [69], antenna subtraction [70}/71], and
Frixione-Kunszt-Signer subtraction |72]. The antenna approach has been extended to
NNLO [73] and can handle radiation off initial state particles too [74].

The approach we will use relies on parametrizing the phase space on the unit hypercube
and extract the singularities of factorized parameters with the help of the expansion in +-
distributions (see e.g. reference [75]) defined via

1 > In® 2
lernz-: B [ } (2:21)
k=0 +

where the +-distribution is defined via

]¢rﬁﬁﬂ+g@wzjdwﬂ9@uﬁ—am> (2.22)

T i

The critical point of this is choosing a parametrization which factorizes all the sigularities.
An integral such as

1

I'= [ dxd 2.23
[y 223
0
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has an overlapping one at y = « = 0 (i.e. the integrand is singular only when both variables
vanish) so equation cannot be used straightforwardly. One way to overcome this
difficulty is called sector decomposition [76-78]. We decompose the integration domain into
sectors: [ = I+ 15, such that for I; x > y and for I y > x and perform a reparametrization
in each integral:

1 T 1 1

TEE o ]}2828

0 0 0 0

The singularities being factorized, it is then possible to use equation ([2.21)), yielding the
result

1
1= ~2+0). (2.25)

The main drawback of this method is that when the decomposition has to be performed
with many variables, the number of integrals to evaluate explodes.

More recently, another method was developped, called non-linear mappings [79,80]. It
consists in making a non-linear mapping to factorize the singularities avoiding the split-
ting of the phase space into sectors. Taking the example above, we make the following
substitutions:

1 00
ye z \° 2

= d d N =

/y/ Z<z+<1+z>y)2(1+z) Tt

0

1 e’} .
v

d d Pz = 2.2
/y/w 1+w+wy) <1+vy> Y (2:20)
0 0

1
3
v v
= [d d Sw = ,
/y/v 1+ yv)? (1—v+yv) [
0

which has now a factorized singularity at y = 0 and of course yields the same result as
before, but avoiding creating more integrals. Unfortunately finding the “right” transforma-
tion is not easy (in this case there is no advantage from using non-linear mappings instead
of sector decomposition) and the method requires a significant amount of intuition. The
original publication [79] provides many examples worked out in detail.

Although we have presented the method of non-linear mappings in the context of in-
frared divergences, it can as well be applied in the case of loop integrals, when the integral is
represented using Feynman parameters (section as we will see explicitly in chapter

2.4 Hadronic cross sections

As we will compute cross sections for proton-proton collisions at the LHC, we review here
the main elements specific to the presence of hadrons in the initial state.
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2.4.1 Factorization and extraction of collinear counterterms

As the proton is not a point-like object but made of quarks, antiquarks, and gluons,
we need a way to describe the distribution of momentum among these. This is achieved
through parton density functions (PDFSs) f;(z, ur) which quantify the probability of finding
a parton ¢ (which can be a quark, an antiquark or a gluon) with a momentum fraction
x in the proton. The PDF depends on ug, the factorization scale, which is introduced
to separate the hard process (at small distances) from the soft-collinear process (at long
distance): the emission of an extra parton with small transverse momentum pr < pp is
described by the hadron structure and thus the PDF, while if pr > pupr the parton is taken
as part of the hard interaction and thus the partonic cross section.

Starting with the non-subtracted partonic cross section do(sis, pg), we introduce the
scale yup to bring the soft/collinear divergence into the bare PDFs f°(z) in a given fac-
torization scheme. As in the case of renormalization (section , the MS factorization
scheme, which we shall stick to, includes only the poles in € in the bare PDF. On the other
hand, the DIS factorization scheme takes also the finite part. The behavior of the cross
section in the collinear and soft limits is universal and we only need to compute the split-
ting kernels describing them once. The splitting process described by the Altarelli-Parisi
splitting kernels P;;(z) is the splitting of j in a parton ¢ which takes a momentum fraction
z of the momentum of j and a another parton (which is not denoted as it is unambiguous)
carrying the remaining fraction 1 — z. The MS-factorized PDFs can be written

fi(xuuF) = [FZJ ® fjb} (xHLLF)7 (227)

where the sum over j is implicit and we have used the definition of the convolution of two
functions (A.6). The function I';; is called collinear counter term and can be expanded in

[ (MR)

a perturbative series in a; = , up to order n,

Do) = 3 (“—R) () + () (2.28)

=0 Hr

The first three orders read (see e.g. reference [81]),

T (2) = 6;0(1 — 2) (2.29a)
M) = —PY) (2.20D)
106 =~ PO + 55 (PR R @+ 6P0 (), (22%)

where [y is the first coefficient of the expansion of the QCD S-function (see section m
and appendix we have used the coefficients of the perturbative expansion of the splitting
kernels defined through

=Y PP (2 (2.30)

k=0
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It is common to take the renormalization scale and the factorization scale to be identical.
Keeping them separate allows to derive the evolution of the PDF (see next section) and
make estimates for the uncertainty coming from the variation of up.

Note that it is costumary to invert equation to get the PDF countertems that
cancel with the remaining IR divergences of the cross section (see e.g. [82]),

fi(z) = [Ay ® f] (x). (2.31)
This is achieved by solving order-by-order in a
[Ay @ il (2) = 66 (1 — 2). (2.32)

Expanding A;; in a, (for pr = pr)

Aij(z) = Y ab AR (z) + O(al ™) (2.33)

k=0

the first three orders read
AD(2) = 6;6(1 - 2), (2.34a)
PY(2)
1) _

A (2) = j26 ; (2.34b)

1 1
AP () = PP(E) + 35 ([P @ BY] () = PP (). (2.34c)

The validity of the factorization of short- and long-distance effects has been proven for
deep-inelastic scattering (DIS) and the Drell-Yan processﬂ [83]. It turns out to be working
at a very good level of accuracy for other SM processes.

The hadronic cross section for a process after factorization takes the form

1

Ao, hy—x (S, LR, 1iF) = Z/dxldefi/hl(xhNF)fj/hg(x%MF)dUijﬁX(Sl%MR;MF)7 (2.35)
ij

where the sum indices 7,7 run over the flavors of the partons in each hadron. The hard
partonic cross section do;;_, x is evaluated at the center-of-mass energy sio = x1225, where
s = (pn, + pn,)? is the center of mass energy of the two protons. We can compute the
partonic process in its center of mass frame, but it is important to remember to boost the
momenta back in the lab frame, which moves with momentum x,pp,, + xopp,. At the LHC,
both hadrons are protons, while at the Tevatron one of them used to be an anti-proton.

5Hadron-hadron collision producing a lepton-antilepton pair through Z boson or an off-shell photon ~v*
exchange



2.5. Jets 33

2.4.2 Evolution and measurement of PDF's

We will now derive the differential equation describing the change of the PDFs depending
on the factorization scale in the same spirit as we presented the RGE for the strong coupling
constant. As bare PDFs do not depend on pup,

afib<x> -
8111/1% =0, (2.36)

inverting equation (2.27)) order by order, we can write the Dokhshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations, which were derived independently by these
authors from either side of the iron curtain [84-86]:

afi(a;:uF)

Dl [P @ fi] (z, ). (2.37)

The DGLAP evolution equations thus allow us to know how a change in scale affects the
PDF's using the splitting functions that can be computed perturbatively. Heuristically, one
can imagine that depending at what “resolution” one looks at the proton, the distribution
of momenta between the partons will vary and the proton will look different, and the
DGLAP evolution equations tells us how. The solution of this system of integro-differential
equations can be achieved order-by-order using Mellin transforms, see e.g. reference |20].

It is possible to extract the PDF's at a high enough scale by comparing cross sections
computed at this scale with the data as then we are in the perturbative regime, where
the proton can be seen as a bunch of partons that do not interact with each other. DIS
experiments on a fixed target or at a lepton-proton collider such as HERA at DESY were
the primary sources of data for PDF determination by measuring the scattering for various
values of the momentum transfer ()y. In order to pin down the gluon PDF, one needs to
consider as well processes with a jet in the final state and it is also possible to use hadron-
hadron data from e.g. the Tevatron and the LHC. Making a parametrization ansatz that is
fitted to a data set taken at a certain value Qg one gets the PDFs at this scale {f;(x, Qo) }
that we can then evolve using the DGLAP evolution equations to the scale of interest
to obtain {f;(z,Q)}.

The various collaborations fitting PDFs (MSTW, CTEQ, NNPDF,...) use different
parametrizations and different datasets and will thus yield different sets of PDFs. For
searches, like the search for the Higgs boson, it is essential to make predictions using
different sets in order to obtain a reliable error [87]. Fortunately, the library LHAPDF [8§]
provides a unified framework for the implementation of event generators involving hadron
collisions that can then be run with different sets at different scales.

2.5 Jets

In this section, we shall discuss the treatment of colored particles (partons) in the final
state. This applies both to ete~and hadronic initial states, although in the hadronic case



34 Chapter 2. Calculation tools in perturbation theory

we have the additional possibility of radiation off the initial state partons, and the handling
of this issue will thus be more critical. We will come back to this in the context of our
analysis of the QCD corrections to the Higgsstrahlung process in chapter [5

The presence of colored partong?| in the final state has two main consequences, which
makes crucially important the definition of an object that can be related to the partonic
process.

The first is due to the confinement of QCD. A typical final state will involve quarks,
leptons, gauge and Higgs bosons, see e.g. figure [2.1] just after the process at some high
scale. Going down to lower scales (larger distances) the partons will develop “strings” of
color field betwen them. At some point the energy stored in the field is large enough to
produce quark-antiquark pairs out of the vacuum. The confinement of QCD can then get
fulfilled as the color charges of the individual partons are cancelled out in the formation
of hadrons (mesons made out of a quark and an antiquark, and baryons, that consist of
three (anti)quarks). Thus, even a simple partonic process like ete™ — ¢g will produce a
multitude of tracks in a detector, because both quarks will produce a fair share of pions,
protons and neutrons. This process is called hadronization and is highly non-perturbative
in nature and there are different models for hadronization on the market.

The second is schematically speaking the reverse process of factorization, that we have
presented earlier in this section. Owing to their color charge, through which the coupling
is enhanced by the associated color factors, partons tend to radiate off other partons,
specifically at low relative transverse momentum, which is actually nothing else than the
expression of soft/collinear IR divergences we have discussed in section and lie at
the center of parton shower event generators. As the calculations presented in this thesis
are done at fixed-order, the main topic of concern is how to deal with the divergences.
Fortunately for us Kinoshita, Lee and Nauenberg showed that for observables that are
inclusive enough, the SM yields finite results [89,90]. We must thus be able to combine
the radiation off the parton at small angle with the corresponing virtual contributions, and
the IR divergences will cancel out.

The object which allows both experimentalists and theorists to deal with these features
is called a jet. The layman definition of a jet would be a collimated spray of particles in
a given direction. In practice, many definitions of a jet are available. They all rely on an
algorithm which decides how particles will be grouped together to eventually become a jet.
Some of these algorithms have only one step, while other recombine particles successively
until some criterion is met, but each of them are referred to as a jet algorithm.

The first definition of a jet was made by Sterman and Weinberg in 1977 [91]: they
defined a jet using two parameters describing the energy fraction deposited in a cone
of a given opening angle. In chapter , we will make use of the Cambridge/Aachen jet
algorithm [92,93], which needs one parameter R, which works as follows:

61n fact, leptons and photons exhibit the same behaviour, the only difference being the coupling strength
and the absence of enhancing color factor. The effects are however milder, and the implementation of
isolation cuts will take out the divergences.
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1. Compute the distance

ARy = /(i —1)? + (6 — 6,)% (2.38)

where y; and ¢; denote respectively the rapidity and the azimuthal angle of 4, for
each pair of partons (i, j) in the final state.

2. Find the pair (k,{) with the minimum ARy; of the set {AR;;}.

e Then: replace partons k and [ by a combination of both (adding their 4-
momenta) into one parton and go to step 1.

e Else: the algorithm terminates.

A jet algorithm needs to be IR safe to be useful for our purposes, i.e. the configuration
of jets is not changed by the addition of a soft or collinear parton to the final state.
Observables based on jets obtained from an IR-safe jet algorithm will fulfill the inclusivity
condition and thus yield finite results.

Reference [94] gives a nice and transparent review of the most used jet algorithms. The
library FastJet [95] contains many jet algorithms in a unified format which makes them
particularly easy to implement. We have used it in the study presented in chapter [5]

2.6 Loop integrals I: Reduction to master integrals

In section 2.3.2] we discussed the extraction and treatment of divergences from diagrams
that involve extra external partons. Once we have a suited parametrization for the di-
mensionally regularized phase space (section one generally generates these numrically
and implements the cuts that one wants. We will now turn to the other class of diagrams,
namely those involving particle loops.

In this section we will focus our attention on the general treatment of loop integrals
appearing in an amplitude and what methods and tools allow to reduce these to a signifi-
cantly smaller subset of integrals called master integrals. We shall illustrate the techniques
by taking the approaches presented in references [17,35,[83] The computational tools to
evaluate the master integrals will then be presented in the next section.

We deal at this level with loop amplitudes, i.e. squared sum of all the loop diagrams
that are of the perturbative order under consideration. At N™MLO, this will consist of the
interference of the Nj-loop diagrams with the tree-level diagrams, the interference of the
(N, — 1)-loop diagrams with the 1-loop diagrams, and so on. We will restrict ourselves to
the interference of the Ni-loop diagrams with the tree-level diagrams as the other involves
a product of expressions with less loops and are thus instrinsically simpler. Using the
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Feynman rules (sections|1.2.1{ and [1.3.2)) , we obtain a sum of terms of the form

N,
Nt Lk pits ...
p S ) I Pel{ki, pj}, mi)
where we denote the external momenta with p; while the loop momenta are written £;.
The denominator is split between a function f that involves only the external momenta,

and that does not play a role in the reduction, and a product of propagators that involves
loop momenta and the masses of the particles propagating:

)

2
Pk({ki7pj}, mk) = (Z akiki + Z bkjpj> — mz, Akiy bkj & {0, :|:1} (240)
J

On the other hand the numerator will in general be a tensor in all the momenta and
contains also the coupling constants, the color factors, the space-time dimension etc. We
will now show how to express them from scalar integrals.

2.6.1 Tensor integrals and Passarino-Veltman reduction

Depending on the process that one is computing it can be useful or necessary to keep indices
open, i.e. to have a rank-n tensor in the loop momenta in the numerator. Straightforward
examples are the electron self energy in QED,

dk K+
I ="y, v, I, I* = ¢? , 2.41
Y ﬁyufy e e /(271_)(1 k’2<k+p)2 ( )

where we have a rank 1 tensor, and the self energy of the photon again in QED,

o [ A% Tr [y (p+ k)]
b= | Gy (242

which will be of rank 2. We made use of the shorthand notation f = ~,k*.

The Passarino-Veltman reduction [96] consists in making an ansatz for the result with
the available Lorentz structures, i.e. 4-vectors and the metric tensor g"*. In both the cases
we just mentioned, there is only one vector available to construct the tensor structure: p*.
Hence we can make the ansatz:

I = A", (2.43)

I = A, g"" + B, p/'p”. (2.44)

We stress here that the coefficient functions are scalar functions, i.e. they can only depend
on invariant quantities, of which there is only one available here. The next step consists

in contracting on both sides with the same Lorentz structures to obtain scalar equations.
In the case of the electron we have one equation:

pull = Acp?, (2.45)
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while for the photon we have a system of two equations:

g1t = Ayd+ Bp? (2.46a)

pup It = Ap* + B, (p*)*. (2.46b)

In both cases, we can invert the system to express the coefficients expressed from the
contracted integral. The latter will not have any tensor anymore and can be expressed

from p? and the denominators k? and (k + p)2. The only scalar product is expressed from
the other invariants via

[(k+p)* — K —p?]. (2.47)

DN —

There only remains to evaluate the scalar integrals found.

We can thus reduce in principle any tensor integral into scalar integrals using the
Passarino-Veltman reduction. This becomes however increasingly difficult when many
vectors are available, as we need to build all the possible Lorentz structures.

We can apply the same method to integrals over the phase space of particles, instead
of over a loop momentum. We will make use of this in chapter

2.6.2 Scalar integrals and topologies

By applying the steps described above we are left with a large number of scalar integrals in
the loop momenta. We will now use a set of propagators {Di}f-v:pl to represent each scalar
integral through a monomial in these propagators. This is achieved by expressing the scalar
products in the numerator through some linear combination of the propagators, as we have
done during the step of Passarino-Veltman reduction. Beyond 1-loop, the set {Di}f\fl will
involve IV, propagators that do not appear in the denominator, but are necessary to express
all scalar products. A given set of propagators {Di}fv:”l defines a topology class T .

It is of course in principle possible to choose the set of propagators to accomodate all
scalar integrals we want to reduce into one topology class. This is however seldom a good
strategy as this will result into many possible “names” for the same integral. We prefer
on the other hand to have as few different propagators as possible and define multiple
topology classes. The 2-loop integrals that we will encounter in chapter [§| are a generic
example: there we define a planar topology class P and a crossed topology class X', which
share all but one propagator, which has the effect that only one of the scalar products is
decomposed in a different way:.

In practice, the diagrams are generated automatically and interpreted through the
Feynman rules to mathematical expressions. The generator will assign the loop momenta
of the diagrams, but we can remap them using transformations that do not alter the
measure of the loop momenta, i.e. for which the determinant of the Jacobian of the
transformation is 1. For example, (k,l) — (k+ p1,l +p1) or (k1) — (k+ 1,1+ py) are
allowed transformations whereas (k,1) — (k,[ 4 2k) is not.
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Each diagram from the topology class 7 can then be expressed as a sum

Z fillpi ) T(nags sy qus - -5 qN—1) (2.48)

where N is the number of external momenta p;, and we have defined

Ny Np
T(ny,....,nN,, q1,- - qN—-1) = / (H ddl@) HD;"i(ql, ce sy qN—1)- (2.49)
i=1 i=1

Note that ¢1,...,qy_1 may be any N — 1 independent of the NV external momenta p;. We
will make use of this fact to further organize the reduction.

2.6.3 Identities between integrals

In the previous section, we have brought scalar integrals in the form

T(nla <o N, Gty - - 7qN—1)

Due to their invariance under translations and boosts, integrals with different values of the
indices are related by identities. Integration-by-parts identities (IBPs) [97,98] are due to
the invariance of the integral under infinitesimal shifts of the loop momentum. They are
named this way because they take the form

of (k)
dk = 0. 2.50
[ (2.50)
In our notation we can write the N, x N; identities:
0
% [nfT(nl,...,an,ql,...,qN,l)} :0, (251)

fori =1,...,N,, j = 1,...,N; and where 7,,n = D;. Following the usual product
rule the derivative will act on 7} (provided that the latter contains the momentum k)
as well as on each of the propagators D; containing k;b . The scalar products are then
expressed through the propagators and the equations become a set of algebraic
relations between integrals of the same topology with shifted indices.

In the same spirit we can state 3(N — 1)(N — 2) Lorentz-invariance identities (LI) [99]
which come from the invariance of loop integrals under infinitesimal boosts of the loop
momentum:

0 0
(qﬁ*q,’; - q;-’qu) Z (qw/a_q” - Qi,ua_qy) T(ni,...,nn,, q1,- - qnv-1) = 0, (2.52)

2

for j,k = 1,...,N — 1,7 < k. Proceeding in the same fashion as for the IBPs, the
equations (2.52)) become a set of algebraic relations between integrals of the same topology
with shifted indices.
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2.6.4 Off-shell classes and zero topologies

At this stage it is in principle possible to move directly to the reduction of all scalar
integrals of the topology 7. For absolutely general choices of the momenta ¢, ..., qy_1,
i.e. assuming they are all massive ¢ # 0 and different, the reduction will turn out to be
computationally impossible.

Before proceeding to the reduction of each topology, we thus need to identify the (dis-
tinct) off-shell classes relevant to our process by deciding which momenta are massless.
This step is evidently going to depend on the process under study, and we shall elaborate
more on this in the computation of ¢§ — 7*v* in chapter [§] Each integral will then fall
into one of these off-shell classes, and this allows us to

1. Simplify the IBPs and LlIs, by setting the corresponding invariants to zero,

2. Identify the zero topologies, which are set of integrals that vanish because they are
scaleless.

Let us illustrate with an example: When treating the 2-scale 1-loop box (N =4, N, =
1, N, = 4) we can write the general scalar integral of the topology B

1
Dy Dy Dy D

B(nlv"'an47q1aq27q3) E/ddk DZE(k+q1++QZ—1)2 (253)

This topology can be divided in two off-shell classes that we shall denote suggestively by

G =0,¢=0,05 #0=B(...,q,%, ) € Bortho
¢ =0,45 #0,q5 =0=B(...,q1,¢ ) € Bpara

because the massive legs are next respectively opposite to each other. A topology from
the off-shell class B,,n, missing the propagators 3 and 4, i.e for which ng,ny <0, is a zero
topology. As n3 = ny = 0, the only external momentum involved is ¢;, which is light-like
(p? = 0) and the integral vanishes.

It suffices to check that the integral vanishes when the indices are set to zero. The
generalization of the statement to negative values is achieved through the use of Feynman
parametrization (section : We spell out the case for our example when n3 = 0 and
ng = —1, focusing on the relevant part,

k+aq+ q)? / k- qo

dk ( x [ d% =1,

/‘ (2] [(k 4 )% (R [(k + q1)?]"

where we expanded the Minkowski square and kept only the term that does not give back

the zero topology with ng = ny = 0. The Feynman parametrization combining the two
propagators reads,

1
[ _ F(nl + n2) /dq:(l _ x)nlfll_ngfl /ddk k ) q2 prope (254)
I'(n1)I(ny) / (k2 + 2ak - qu ]
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We shift the momentum by defining k£ +— k — xq; and hence
1

F(n1+n2)/ 1 _1/ i k@ —xq @
I =———-" [ de(l—z)" 2™ dk . 2.55
F(nl)F(nz) / ( ) [kg]nl-‘rnz ( )

The term linear in £ vanishes because it is antisymmetric. The remaining integral is
completely scaleless and hence I = 0. The essential feature is that the shift does not
generate a mass term in the denominator. The above can be generalized to include the
other numerator or any polynomial in the loop momentum straightforwardly.

When the loop momenta are not decoupled, one applies the same strategy in two steps:
one first combines the propagator associated to one loop momentum treating the other loop
momenta as if it were external, integrate it, and then combine the result (which this time
will involve a mass term containing the other loop momenta) using Feynman parameters
with the remaining propagators. This will again produce no mass term and the integral
vanishes.

Using the Heaviside function

1, >0
@(az)z{o <0

and defining the shorthand,
k

@(nl, e ,nk) = Z @(nk),
i=1
we can list the zero topologies in a compact way: For our example of the off-shell class
B,riho, the zero topologies can be found to be

Z[Bortho] = {@(’)’Ll, . ,n4) < 2,@(711,’[14) < 1, @(TLg,TM) < 1}, (256)

where a given integral vanishes as soon as one of the constraints is fulfilled. For the first
one we end up with a tadpole, where we can shift away any momentum; the other two can
only depend on a massless vector.

2.6.5 Reduction with AIR

We have now treated all the ingredients which enter in the reduction of scalar integrals to a
subset of master integrals as it can be performed with the program AIR [78] which is based
on an algorithm by Laporta [L00] and implemented in Maple [101]. The algorithm diago-
nalises and solves a large system of algebraic equations produced by applying integration
identities (IBPs and LIs) on selected ‘seed’ integrals.

Seeds Before starting with the reduction, AIR generates the list of seed integrals from
which the identities with numerical integer values of the indices will be generated and on
which Laporta’s algorithm will be applied. The set of seeds should contain all the scalar
integrals appearing in the process for this off-shell class.
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Iterative identification of the master integrals While it is in principle possible to
run AIR with the most general set of indices for each off-shell class, this is computationally
extremely demanding due to the extremely large number of identities generated. Instead,
we construct the basis of master integrals by successively allowing more propagators in
the integrals that we reduce. After each iteration, we identify which integrals AIR uses to
express all the generated seed integrals from. The identified potential master integrals from
the iteration with up to n propagators are declared as master integrals for the iteration
with up to n + 1 propagator. This allows AIR to recognize directly these master integrals
which it will not try to reduce further. All the combinations of declared master integrals
are saved in a cache and do not interfere with the rest of the reduction, which ensures that
the reduction deals with expressions as simple as possible, as only new master integrals
will appear explicitly.

Starting at two loops, it is not possible to express all integrals out of a set of master
integrals containing only simple propagators. The ordering criterion used by AIR makes it
favor integrals containing numerators (i.e. with negative indices) on the right-hand side
which we then choose as master integrals. It is however possible to choose a different base
by translating them into integrals containing dotted propagators (i.e. with a 2 as entry).

The details of the treatment will be illustrated in the reduction of the integrals involved
in the process q7 — 7*v* in chapter [§ Relevant information for the practical use of AIR
can be found in the original publication [78§].

We have compared the speed of the reduction when including or not the LIs and found
out that they do not lead to a speeding up of the reduction process. In intermediary steps,
however, they avoid taking up spurious “master” integrals that are actually reducible.

2.7 Loop integrals II: Computation of master inte-
grals

Once the set of master integrals of a given topology has been identified, we are left with the
task of evaluating them. Besides the direct integration with the use of Feynman parameters
that we will describe below, we can use the method of differential equations that we will
shortly present with an example computation now.

2.7.1 Differential equations

The usual way to evaluate such integrals is to write down and solve a system of differential
equations where the differentiation is done in the scales involved in the problem. We shall
now shortly illustrate following the presentation of reference [99] how this is performed by
computing the 2-scale 2-loop triangle integral that we will encounter in chapter [§f Other
pedagogical examples can be found in references [102,103].

The integral under consideration is shown in figure 2.4} As the integral is a scalar it
can only be a function of the external momenta squared. In the case under consideration,
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D1 b3

P24
Figure 2.4: 2-scale 2-loop triangle.

only ps and poy are non-light-like and independent (we have p; + p3 + pag = 0), and the
result will depend only on the independent variables s3 and so4.

In order to set up a differential equation, we need to know how derivatives act on the
integral. To achieve this, we note that the partial derivatives are given by

0 N 883 0 8824i

— =+ — 2.57
oply  Op Os3 * Oph Dsay (2:57a)
0 dsz 0O 0 0
=3 T O (2.57b)
Computing the partial derivatives and inverting the system (2.57b|), we get
0 0 0
(894 — 33)20—83 = —2894 (pgﬁ_p’g> + (s34 S24) (ﬁzﬁ%) (2.58a)
0 0 0
— 83)°=— = h— ) —2 bi—r | - 2.58b

The differential operators on the right hand side will act on the master integral by raising
the propagator containing the corresponding momentum. We then make use of the relevant
identities (section to come back to the master integrals and simpler integrals, i.e.
with fewer propagators — which we already computed, assuming we work our way up in
complexity. This yields a system of inhomogeneous coupled partial differential equations:

9 " P d—42s5— sy ZV 3d—8 1 )
- — - - 2.59

a P P3 d o 4 824 plvl’i} 3d - 8 1 m
- = —— P24 2.59b
o 3324 WK 2 83— So4 P * 2 53 — S24 \_/ ( )

This system is then solved using the standard methods for solving systems of differential
equations. In particular, we need to specify the boundary conditions for s3 = 0 and s15 = 0,
which are instances of the simpler 2-loop 1-scale triangle that we will compute in the next
section.

In the example that we just computed, the result reads [99]

P Ps _ —€ 2 _ 1-2¢
V I o) W T Sl SRR TIPSR W78 (2.60)
- (524 — 83)° -2 —s3 S3
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where we substituted ¢ = 4%”’. The computation of the constant A4 will be sketched in the
next section to illustrate the use of Feynman parameters. The constant A can be obtained
by computing the 2-loop sunset diagram. We refer the reader to [99] for the value.

In practical applications, the results are usually expanded in the dimension parame-
ter €. The expansion of the hypergeometric function o F} yields harmonic polylogarithms
(HPLs) [104]. This expansion can be performed using the Mathematica |105] package
HypExp [106,107]. HPLs on the other hand are implemented in the package HPL [108,109],
and their numerical evaluation can be achieved e.g. with the library CHAPLIN [110].

2.7.2 Feynman parameters

For simple loop integrals, it is sometimes more straightforward to compute them by intro-
ducing Feynman parameters. They permit to combine multiple denominators in a single
one at the expense of introducing an integration. The basic identity reads:

1

1 1
<5 = O/d:v AT DB (2.61)

while the most general version for arbitrary powers is given in appendix [A] and can be
proved recursively as an exercise in variable substitution.
We turn to the evaluation of the 1-scale 2-loop triangle

4ok ddl 1
b / 4k — p1)2(k + p2)22(1 — k)2 (2.62)

We will proceed as follows:

1. Introduce a Feynman parameter for the two propagators involving the loop momen-
tum [ according to the formula (2.61))

2. Integrate over the loop momentum [ using the standard formula ((A.4))

3. Introduce Feynman parameters for the propagators containing the loop momentum
k according to the formula (A.3)

4. Perform the integration over all the Feynman parameters introduced

In the case at hand we can readily identify the bubble integral and Feynman-parametrize

it:
1
dl 1 - dl 1
B(k? —/ = / / 2.63
(k) (2m)d12(1 — J — 2xk - |+ xk?])* (2.63)
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Performing the shift [ — [ + zk, and using formula (A.4) with n = 2 and d = 4 — 2¢, we
get

1

, d] 1 &1 i) - _ B
B / o [ Gy <47r>“0/ o rle =R = gy

We now plug this in

" ( > d?k 1
X Py = Ba/ (2m)¢ (k2)=(k — p1)2(k + p2)? (2.65)

2 dik (1—y—2)t
+8 /d dz / y=2) . (2.66)
k2 + 29k - py — 22k - o]

where we have already made use of the -function to eliminate one of the Feynman param-
eters. We now perform the shift k — k£ — yp1 + 2p2, and writing s34 = 2p; - po using again
formula (A.4) with n = 2 + ¢, we end up with

p1 1
—1)2*5i'(2¢ o e —2 .
Dm = BE((4’/T>)d/2 15(5))(—334) 2 /dydzy X1 -y —2)7 (2.67)
P2 0

Performing the integration over the Feynman parameters y and zﬂ the final result reads

p1
ﬂ>1)34 = A4(—334)_2€, (268)
p2

where A, is a ratio of products of I'-functions with different argument that originate from
the evaluation of the hypergeometric functions ,F, evaluated at argument 1. Its explicit
value can be found in reference [99].

2.7.3 Multiple polylogarithms

In practice, the brute force integration of integrals involving many Feynman parameters,
as in the case of multi-loop integrals with more than one external momentum, especially
when they are not massless, is a formidably difficult task. When many scales are involved
(be it kinematical invariants or masses) one will end up with complicated functions of a
myriad of ratios of these scales. However, performing the integration “one step at a time”
with recursively defined functions as those we will discuss in this section allows for a more
transparent and algorithmic method.

"This involves some tricks like inversion relations and change of variables that are not completely
straightforward.
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At 1-loop, logarithms and classical polylogarithms, defined recursively through

z

dt .
Li,(2) = 0/ ki (f) (2.69)

—In(l-2), n=1

suffice to express the results when only a few scales are involved. For instance, the 1-loop
H — bb amplitude involves only two scales (mpy and m;) and can be expressed with the
use of logarithms and dilogarithms up to the finite part (chapter [4)).

At higher-loop orders and in many-scale problems, new transcendental functions appear
such as multiple polylogarithms (MPLs) [111,112]. Although it is known that they do not
cover all cases [113], the latter are sufficient to cover a large number of the phenomenolog-
ically relevant ones. An MPL of weight n is defined recursively via

z

dt
G(ay, ..., an; 2) E/ G(ag,...,ant), n>1, (2.70)

t—a1

0

with G(;z) = 1 (i.e. when no coefficients are left), and a;, 2 € C. They contain the classical
(poly)logarithms:

1
G(0,...,0;2) = - In" 2 (2.71a)
_— n!
G(0,...,0,1;2) = —Lin(2) (2.71b)
21

Using this definition, the problem of computing integrals over Feynman parameters is
solved recursively. After the k-th integration yielding an MPL, one performs the variable
substitutions and partial fractions necessary to bring the integral in the form where equa-
tion (2.70]) can be used to perform the (k + 1)-th integration and so on. Most of the effort
is now shifted to finding the suited variable transformations of variables and bringing the
variable one wishes to integrate upon next in the last entry of the MPL. For a more detailed
presentation of the computational tools we refer the reader to reference [114].

This method has been applied for the computation of the 3-mass 2-loop triangle master
integrals in reference [115] and in the computation of the master integrals we will need in
chapter 8] [2].

MPLs exhibit a shuffle algebra [116]: the product of two MPLs of weight n; and ngy
with the same argument is the sum of the MPLs with coefficient obtained through all
shuffle combinations of the coefficients, which are the permutation of the coefficient list of
both functions that preserve the order of the elements of each list of coefficient separately.
Expressed in formula, this reads

G(ar, .y any52) G(Any 41y ooy Qpying; 2) = Z G(ao(1)s - - - o(nitna)i 2)s (2.72)

c€X(n1,n2)



46 Chapter 2. Calculation tools in perturbation theory

where ¥(n,ng) denotes the set of all shuffles of ny + ny elements, i.e. the subset of the
symmetric group Sy, +n, defined by

S(ni,ng) = {0 € Spm,l o (1) < ... <o (ny) & o7 (ni+1)<... <o (ng +n9)}.
(2.73)

For example, for a product of two weight 2 MPLs G(a,b;z) and G(c,d;z) we need to
consider all permutations of (a, b, ¢, d) which have a before b and ¢ before d:

G(a,b; 2)G(c,d; z) = G(a,b,c,d; 2) + G(a, ¢,b,d; 2)
+ Gl(c,a,b,d; z) + G(e,a,d, b; 2) + G(e,d, a, b; 2). (2.74)

2.7.4 Symbol and coproducts

We present here a very short introduction to the technology used to organize and simplify
the computation of multi-loop Feynman integrals following the presentation made in [117].

MPLs are not independent and exhibit many functional relations among themselves,
which can obscure the form of the results, for example by making cancellations not explicit.

The symbol method and its refined version, the coproduct method, allow to show equal-
ity of two functions up to some pieces without having to make explicit use of the functional
identities (which are not all known in the general case). Although the computation of the
symbol or coproduct of a given expression is algorithmic, the inverse problem —i.e. finding
a simpler function having the same symbol/coproduct — is highly non trivial and is still an
open problem. There are however some guidelines regarding what types of function can be
expected [118].

Leaving aside a completely rigourous treatment, we will now illustrate the main com-
putational steps needed to use the coproduct. First, the coproduct of a product of MPLs
is the product of the coproducts:

A(F(w)-G(2) = A(F(w)) - A(G(z)). (2.75)

Second, the coproduct can be written as sum,

A=Y Ay, (2.76)

p+q=n

where A, , maps MPLs of weight n to a tensor product of functions with weight p resp. g.
Third, the coproduct can be iterated on each component of the tensor separately and the
order in which this is achieved is not important. Finally, in order to account for the fact
that even zeta values (5, are proportional over the rational number to the n-th power of
(> = /6 the coproduct treats the real number 7 in a special way[f| (conjecture from [117])
by defining:

Alm)y=r® 1. (2.77)

8The symbol of any function proportional to im or {, will vanish, whereas the coproduct will retain
part of the information.
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The definition of the coproduct allows to show that for an MPL G(z) of weight n

S(G(2) = Ay, 1(G(z)) modm, (2.78)
N——

n

where mod 7 means that the coproducts of 7 are set to zero.
As an example of the application of the coproduct, we will ‘find’ the inversion relation
for Liz (in what follows z stands for z + 0 to avoid making the notation too cumbersome):
. ) 1.5 T w2
Liz(1/2) = Liz(2) + A In” 2 — ?ln z— Elnz (2.79)

We will use without proof, the formulae,

A(lnz)=1®nz+hz®1 (2.80)
. . . — 1. i
A(Lin(2)) = 1@ Lin(2) + Lin(z) @ 1+ ) 2iLink(2) @ In* 2 (2.81)
k=1 = ~ /

=An_ g,k (Lin(2))

We first compute

Ay (Lis(1/2)) = Lig(1/2) ® In(1/2) (2.82)
Aqo(Liz(1/2)) :% Liy(1/2) ®In?(1/z2). (2.83)
=—1In(1-1/z)

Then from either one of these, say the second one, we compute

A111(Lis(1/2)) = —In(1 = 1/2) ® In(1/z) @ In(1/z). (2.84)
We then use the fact that
~In(1-1/2)=—In 1__ S ln(l-2)+ln(—z)=—In(1—z)+Inz—ir, (2.85)
to rewrite as
Ap1a(Lig(l/2)) = —In(l —2)@nz@hz+hz@hz@hz—ir®hznz  (2.86)
= Ay (Lis(2)) + éAl,l,l(lrF' 2) + %ALM(W In? ), (2.87)

where in the last equation we identified each summand of (2.86)) (note that we kept 7 in
the coproduct, as it has weight 1E[). Before we continue, let us define

1 :
X = Li3(1/z) — |Lis(z) + G In® z 4 %T In®z| . (2.88)

9We would like to point out at this stage that with the symbol, the last term would be missing,
illustrating the bigger loss of information that symbol calculus bears with it.
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Once more we compute the coproducts
A5(X)=0 (2.89)
1 1
Aoy (X) = —§7r2 ®Inz = —§A271(7r2 In z) (2.90)

The first coproduct did not give us more information, whereas the second did catch a
missing piece of the identity . Now the only terms that can still be missing are real
numbers of weight 3: 73 and (5. By evaluating the both side of the identity at a given
point, say z = 1, we see that they do not appear.

The treatment we just presented shows the philosophy behind the coproduct calculus.
Let us stress that the gymnastics we just went through in this example is artificial, and
that the usual goal is to simplify expressions, for example by seeing how makes
various terms cancel each other, without having to explicitly use the identity.

For the renormalization of the parton density functions (PDFs), only a subclass of
the MPLs it needed (see e.g. [81]), called harmonic polylogarithms (HPLs), for which the
coefficients satisfy, a;, € {—1,0,1} and with a normalization that differs by a factor of
(—1)#@=*1} The technology of symbol and coproduct can of course be used on these
functions.
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Chapter 3

Introduction

Although the LHC has started its operation only a couple of years ago and at half the
design energy, it has already provided plenty of information on the existence of a Standard
Model (SM) Higgs boson. With the 5fb™" luminosity collected with /s = 7TeV at the
end of 2011, ATLAS was able to exclude the presence of a SM Higgs boson in the range
133GeV < mpyg < 230GeV and 260 GeV < mpy < 437GeV [9], and CMS in the range
129 GeV < mpy < 525GeV [10], in both cases at 99% confidence level. Furthermore,
adding 6fb~" of the 2012 run at /s = 8TeV, it has been possible to discover a new
boson with mass around 125 GeV [119,]120] which has then been corroborated in different
channels.

It remains in principle to establish whether this boson is indeed the SM Higgs by
studying in detail all its decay modes. A light Higgs boson decays predominantly into a
bb pair, see figure If it is directly produced in gluon-gluon fusion (the process giving
the largest cross section) this signal is overwhelmed by the huge QCD dijet background.
This is why the decay modes that have led to the discovery are those which do not involve
hadronic final states, like H — vy [121,/122], H — WW [123,|124] or H — ZZ [125H127].
Although they are suppressed with respect to the dominant bb mode, it is still possible to
extract a signal from the background.

There is however another possibility to study the bb decay of the Higgs boson, namely
when it is produced in association with a massive vector boson (W or Z boson): the
Higgsstrahlung process. In this case there are various possibilities to disentangle the signal
over the large Vbb background originating from other processes, some of which have been
already used at the LHC [128-130]. Among them, one of the most promising strategies
makes use of the fact that at the LHC, especially at /s = 14 TeV, it is possible to produce
particles with transverse momenta well above their masses, pr > m. This is the so-called
boosted regime, in which one can reconstruct heavy particles decaying hadronically, because
their decay products are likely to fall inside one jet with a large radius, a fat jet.

Recent proposals for finding a boosted Higgs boson decaying into a bb pair are based
on the investigation of the substructure of each fat jet [131,132]. Within these approaches
the Higgs boson candidate is a multi-jet system which should contain not only the Higgs
boson decay products, but also QCD radiation associated to them. It is therefore crucial
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to have predictions for the Higgsstrahlung process that implement gluon radiation, both
from the initial and final state which we will cover in the next chapters.

Higher-order corrections to the Higgsstrahlung process, where the Higgs boson decays
into a bb pair, have been known since a long time. NLO QCD corrections to Higgs boson
production in association with a vector boson have been computed in references [133H135]
and implemented in the program MCFM [136]. NLO EW corrections are available as well [137]
and implemented, together with NLO QCD corrections, in the program HAWK [138]. NNLO
results exist for the total cross section [139] for both WH and ZH processes, while a fully
differential code is available for WH up to NNLO QCD for the production only [140] and
including NNLO QCD corrections both to production and decay in the case of massless
bottom quarks [141]. In all but the last reference, the decay of the Higgs into a bb pair is
implemented at LO only. Concerning decay into a bb pair, NLO corrections for massive
bottom quarks have been computed in references [142,/143|, while for massless bottom
quarks a fully differential calculation is available at NNLO [144]. NLO corrections have
been interfaced to parton showers in the MC@NLO framework in reference [145]. Furthermore,
starting from version 2.5, Herwig++ [146] implements NLO corrections to Higgs boson
production [147] and decay, both matched independently to parton shower.

This part of the thesis will be dedicated to the study of the Higgstrahlung process at
NLO in QCD in the case where the Higgs boson decays to a pair of massive bottom quarks.
In chapter {4, we compute the fully differential decay rate of a Higgs boson to a pair of
massive bottom quarks at NLO in QCD. This decay rate is then implemented in our event
generator for Higgsstrahlung, which also takes into account the NLO QCD corrections
related to the initial state. This event generator is then used to study the impact of the
full NLO corrections on the fat-jet analysis in chapter



Chapter 4

Higgs decay to bottom quarks

In this chapter, we present the computation of the fully differential decay rate of a Higgs
boson to a pair of massive bottom quarks at NLO in QCD. Most computations of this
chapter were performed as part of the author’s Master’s thesis project and the relevant
pieces were taken from the Master’s thesis [14§].

Notations Throughout this chapter we work in DREG [52] with d = 4 — 2¢ and we will
use the following notations:

[ 4m?
M = my, m=my = mg, b= 1_W’ Y

where v = 246 GeV is the vacuum expectation value of the Higgs field.
In the parametrization of phase space integrals, we use the notational shortcut z = 1—=x
for parameters in the unit interval.

=3

, (4.1)

4.1 Leading order

The phase space of the LO decay rate (as well as the one of the NLO virtual, that has the
same kinematics) is the special case of equation (2.6]) for two equal masses:

Q3725

<D2(M;m,m)=m

B2 N2, (4.2)

There is only one diagram for H — bb at LO which is shown in figure Using the
corresponding Feynman rule (section [1.3.2)), we obtain directly

IMr|* = 2Ny > M? 32, (4.3)
and obtain readily:
(2.1) Ncy2
e 2 S, (4.4)

23
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Figure 4.1: LO diagram of H — bb.

4.2 Next-to-leading order

At NLO, we have to take into account the emission of an extra gluon, as well as the virtual
1-loop contribution. Furthermore the couplings need to be renormalized in order to absorb
the UV singularities that will appear (see section [2.3.1)).

4.2.1 Real

Phase space

We now need to consider the phase space for one massless particle (t}}e gluon, g) together
with two equal-mass particles (the bottom quark b and antiquark b). We work in the
center-of-mass frame of the Higgs. Using the factorization property (equation (2.5)), we
have,

Q2
d®3(M;0,m,m) = / ‘Z%Qc@z(M;o, VQ2)d®y(1/Q% m,m) (4.5)
Q%

The first term is easy to compute, since we are in the center of mass frame of the Higgs,
and we get,

2m)274Q)
avs (10, /) = BB (4.6)
where
M2 _ QZ
Po= "o

is the energy of the gluon in this frame. We remark on the way that this part of the phase
space vanishes in the soft limit[T}

E, = 0& Q* — M> (4.7)

I Actually, @Q? is nothing else than the invariant mass squared of the bb system.
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The other term is more involved since there is now an explicit dependence on an angle
as we are interested in the differential phase space. We choose this angle to be the angle
between the bottom quark and the gluon:

oDy = EvEy — \5|Egt, t =costy, € [—1,1] (4.8)
Changing the integration over ¢ to an integration over s,, = (p, + p,)? using the trick of
multiplying by,

+
sbg

1= /dsbg 0 (Sbg — ( +p9)2) )
sb_g
we get the relations,

o F 2B s sy mt — 2E,M (4.9)
218/, 2M

by solving the J-functions.
Focusing on the term (1 — *)7¢, we see a polynomial of the second degree in sy,

—Q%sp, + Q°(2m* + M? — Q%)spy — m*(M* + m*Q* — M*Q?). (4.10)

Since we want to have a real solution for s, we require the discriminant to be positive or
zero. This defines the limit of the integration over Q?:

Q? = 4m?, Q3 = M. (4.11)
We can then factorize the polynomial (4.10|) using its zeros in,
—Q* (309 — 54,5 (@) (509 — 55,(Q%))
Making a linear parametrization (which we will use for the matrix element later on),

Q1= Q@+ (@~ Q) = dm 4 (M — dm), (4.12a)
Sbg = Spy(T1) + xg(s;;(:vl) — Spg(71)) (4.12b)

and plugging it all in equation (4.5)) we obtain the final result,

9372592725

2107687-(-5748
X d.TleEQ 251/278373%_25(262572)_8(1 — Zi‘lﬁ2)_1/2. (413)

d®s(M;0,m,m) = [P0 24
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Figure 4.2: NLO diagrams of H — bbg.

Figure 4.3: NLO 1-loop diagram of H — bb.

Matrix elements

Two diagrams contribute to H — bbg at NLO. They are shown in figure Using the
corresponding Feynman rules (sections [1.3.2] and [1.2.1)), we obtain (s;; = (p; + p;)* and

Q2 = SbE)

IMg|* = 2°m* N.Cpy? g2 ' x (4.14)
(s — 8m®)syp + M* — e(M? = 55)>  2m*(M? — dm?)(M* — Sbb)T
(Sbg — m?)(spg — m?) (Sbg — m?)?(sp, — m?)?
1— 2,82 [2—2(1 ie)  2(1— B2) (1 — 3,3
= QSWQNCCFy2g§M4€ 2537125 Zi(1+ 21 + Z1¢) - ( B ( 25515 ) 7
B*xq K(T1, T2) K(T1, T2)

(4.15)
where we inserted the parametrization of the real emission phase space and defined
k(z1,22) =1 — (1 — day2075) 5. (4.16)

We expect the real emission to become singular when the gluon becomes soft, E,(s;;(x1)) =
0, equation , i.,e. at 1 = 1. We see that indeed the expression is singular for
Z1 = 0. This singularity is factorized and can thus be extracted with the method of
+-distributions (see section .

4.2.2 Virtual

The phase space of the NLO virtual process is the same as for the LO.
There is only one 1-loop diagram contributing to H — bb at NLO, see figure . This
time we need only the interference term between the LO and the NLO 1-loop:
Mz + My > = | Mz + MyMi + Me M+ | My ? (4.17)

-~

0(1)=LO O(as)—NLO 0(a2)—NNLO
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Again, using the Feynman rules (sections [1.3.2] and [1.2.1)) and performing the traces in
d dimensions using FORM [60,/61], we get,

My My = 225 22N CryP g2 1 [B2(1 + %)M I (0, py, —pp) (4.18)
—(1+ B)M? (150,(0,p) + 190, (0, —pp)) + 2(1 — B2 + ) MI5L (py, —15)] -

where we introduced the shorthand notation for the scalar loops,

n -1

I (py, L py) = / Ak [H((k )2 —m2+i0)%| . (4.19)

.....
i=1

At this stage, we need to make a remark concerning the +i0 prescription: it is taken
as an infinitesimal imaginary number in the upper complex plane. It allows to select the
poles within the integration contour unambiguously: we shift the pole over or under the
real axis in a consistent way by imposing m? — m? — i0. In our case it amounts to take
%2 — B2 +140. At the end of the calculation, when it is no longer needed, we can forget it.
The essential point is its sign, so we do not need to worry about the rest of the expression:

e.g. /P2 +i0 = /B2 +1i0 x (something positive) — /5% + 0.
This prescription also settles the issue of how to deal with a logarithm of a negative
number (branch choice):

a>0: In(—a=+1i0) =1In(a) £ ir. (4.20)
The other part is,
MMy = i2P 25 n 2PN Cpy? g2 1 [B2 (1 + B2 M* Iy (0, Py, —p5)” (4.21)
— (L4 B2)M? (1, (0.p6)" + Lo} (0, —p5)*) +2(1 = 5%+ eB%) ML (p, —p5) ]

With the above in mind it becomes clear that,

(Lo V5 = Tybvn (400 — —i0). (4.22)
Since,
MvM*T + MTM*V =2Re (MvM;v> , (4.23)

we finally obtain,
MRe (MyMi) = 2Re {12502 N, Cryg2u'® [5(1+ B2) MY L350, (0,7, —5)
— (14 8%)M? (19,0, py) + I}, (0, —p5)) (4.24)
+2(1 = 5%+ eB) M1, (pv, —pp) ] } -
We now turn to the evaluation of the scalar loops: To evaluate I&’iﬁm((), Do, —Dp), We
use an IBP, equation ([2.50|), coming from,
L
k)= ,
M0 = o R = )G~ R — )

(4.25)
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which leads to,
(d - 4)[(}:7%17,1771(0729177 _pE) - 21127£,1m(pba _pB) = 0. (426)

The evaluation of the three bubble integrals using Feynman parametrization (sec-

tion [2.7.2)), equations (A-3) and (A4), yields,[]

1

L (P, —p3) = —im*“D(1 + €)M 7% / do oK (x)™ (4.27a)
0

1
15/ (0, ) = I3 (0, —pg) = im* T (e)m™* —— (4.27)

1
Ly (Do, —p3) = in* T (e)M ™ [ dw K(z)~*, (4.27¢)

0
where,
1- B2

Kz)=x(x—1)+ — 0.

4

Putting everything together, equation (4.24])) becomes finally,

1
2Re (My M) = 22N, Cry? g2 p* M?~* (47)°T'(¢)Re —52(1jLBQ)/Olzzczch(:t)_l_‘E

0
1

+2(1 + %) (1 _452)_6 - _125 —2(1— B +¢eB?) /de(ac)_E (4.28)

4.2.3 Renormalization

Renormalization consists in absorbing the UV divergences arising from higher order cor-
rections into the physical parameters of the theory (section . We follow here a line
similar to reference [149).

The fermion propagator is modified to the dressed one (by resummation of the 1-
particle-irreducible diagrams) and finally to the field-strength renormalized propagator,

i i iZy

p—mo%p—mo—E(zp):p—m (4.29)

2The integral Igl’}m is actually still reducible to tadpole and bubble master integrals, but we computed
it directly.
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where Yi(p) is the self-energy of the quark , to be computed in section . From the last
term, we see that X(m) can be understood as the mass difference between the bare and
the physical masses, when the fermion is on-shell:

Y(m) =m —my. (4.30)
Expanding the self energy around p = m, we have,

dy
Z(p) ~ ¥ (m) + (p —m) — , (4.31)
dp p:m

which implies,
dx
p—mo — S(p) = p—mo — <m—mo+<p—m> WL_) (1.32)

=(p—m) <1—% ) (4.33)
p:m

which in turn implies, using equation (|4.29)),
Zl=1—- — (4.34)

The most often used renormalization scheme is the modified minimal substraction (MS)
scheme where only the %—pole and finite part of,

(47)T(e) = % g+ Indr 4 O(e), (4.35)

is substracted. This results in a pole of the propagator not lying at the physical mass
m and with residue different from 1, which makes the interpretation of the propagator
difficult. We decided to use the on-shell (OS) scheme instead, where the whole finite part
is taken. We now turn to the computation of the self-energy.

Bottom quark self-energy

The quark self-energy is described in QCD at O(c) by the diagram of figure [4.4] Using

I

Figure 4.4: Quark self-energy at O(as).
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the Feynman rules (section|1.2.1] there is no external propagator!), we obtain for a massive
quark,

o o [ d¥% (P E+m)yH
X(p) = —iCrg,p / 2ny ; [(éi e —Z?] (4.36a)

= mA(p®) + pB(p°)

1

A(p®) = C’F as 26(47?)5F(5)(4 — 2¢) /dx [mPz — p*x(1 —2)] (4.36b)
B(p?) = CF%M%(ZL )T (e) (=2 + 2¢) /d:c (1—z) [m*x —p*x(l—z)] ", (4.36¢)

where we used the basic properties of y-matrices [35].
We will need the derivative of X(p) for p = m:

d , _om d

e l—x
_p f— .
|, d(p?)

[m*z — p*z(1 — 2)]

=em ™ [m*2”] (4.37)

p2=m?2 x

Higgs boson wave function Since the Higgs has no color charge and thus cannot
couple directly to gluons, we can only have corrections through quark loops and these do
not appear at NLO. We can thus set

Zy =1 (4.38)

Gluon wave function The gluon wave function gets corrections through quark, gluon
and ghost loops.

Z,=1+0(g?). (4.39)

Since the presence of a gluon already implies a factor g2, the correction will be of O(g?)

and we can forget them at NLO. We shall set Z, = 1 throughout the computation.

Bottom quark wave function
We start with the evaluation of Z,. Equation (4.34) tells us that,

ax
apl,,

Zy =14+ — = B(m®) + 2m? [A(p®) + B(p*)] (4.40a)

d(p2) p2=m2

1
—2e
2
=1+2Crg? (%) (4m)°(e) / dx v~ [—1 +z+ (E +1-— 3:17) 5} +0O(gh)
0

(4.40D)
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Bottom quark mass and Yukawa coupling

We proceed by evaluating Z,, from equation (4.30)), which gives us,
mo =m — X(m) = [1 — A(m*) — B(m*)] m (4.41)

so that we can read out,

Zm =1 — A(m?®) — B(m?) (4.424a)
=1+ ZCFZ—; (%) : (4m)°T'(¢) /dx 7% =1 —x + e + O(g)). (4.42D)

As for the Yukawa coupling since y = m/v we expect that Z, = Z,,,.

At N*LO, diagrams of order g?* do not need to be renormalized since any corrections
would be of order ¢g?**2. For our NLO computation, we thus only need to renormalize the
tree-level amplitude.

4.2.4 Total decay rate

Putting all the pieces together, we obtain the differential decay rate for the H — bb at
NLO in QCD. The renormalization cancels the UV divergence of the virtual diagram.
Upon integration over the phase space of the real emission, the IR divergence of the real
is equal and opposite to the IR divergence of the virtual leaving only a finite decay rate,
that is independent of the renormalization scale u:

[NLO a r(xy, o) — (1, x2) 434
H—bb __ S 1,42 y &2

H—bb
2 26

1+p° [L? 2r” (=
23 {? +2L(2L +1InpB) + = + Lip (m) (4.43)

2B\ L (18
_L12(1+/3)+L12(1+6)”’

1+ 27 + 221 (1 = 225)° + 221 (1 — @1 (1 — 229)° + da{wo )
/€($1,$2)2

with

r(zy, x2) = 24/ 21 (1 — 71 52)

Y

(4.44)

and k as defined in equation (4.16)).

The total decay rate is found to be in excellent numerical agreement with the
result available in the literature [142,143] although the parametrization we have used makes
the integration somewhat cumbersome.
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Chapter 5

Higgsstrahlung at NLO

We present here our implementation of an event generator to investigate the effect of NLO
QCD corrections to both production and decay on present and future Higgs searches. The
corrections to production and decay are treated separately in the code: first a Higgs and
a vector boson (decaying to leptons) are produced, and then the Higgs boson decays to
bottom quarks. We lose no information about spin correlations as the Higgs boson is a
scalar particle. Having our own fully differential code give us the opportunity to study NLO
QCD corrections to production and decay separately and assess their relative importance.
We stick to a fixed-order calculation since its outcome can be interpreted more easily than
the corresponding one from Monte Carlo event generators.

5.1 Setup

The production process was computed up to NLO in the following fashion: we generated
the relevant matrix elements for the process depicted in figure with QGRAF [59] and
interpreted these with the Feynman rules (sections|1.3.2] and [1.2.1]) using a housemade set
of routines coded in FORM [60,/61]. The finite width of the vector boson has been taken
into account by allowing the mass of the decaying vector boson to follow a Breit-Wigner
distribution centered around my of width I'y,. These were checked against the results in the
literature. For the decay, we implemented the differential decay rate whose computation
has been detailed in chapter

For definiteness, we present the results in the case of Higgs boson production in asso-
ciation with a W boson. The adaptation to the production in association with a Z boson
is straightforward in that it just amounts to change some parameters like the vector bo-
son mass and couplings, as well as the PDFs that are needed as the initial state has two
identical quarks (section [1.3.2).

Denoting by do,,—,wn the differential cross section for WH production and by dI'z ;3
the differential decay rate for a Higgs boson decaying into a bb pair we have the perturbative
expansions

0 1 0 1
Aoy i = dol) sy +dol)yy AUy = U +d0y) o (5.)

63
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Figure 5.1: LO diagram for the Higgstrahlung process with the vector boson decaying
leptonically.

)

where da;; " wy is of relative order o, with respect to dag),LW 5 (and similarly drt!  with

H—bb
respect to dfg)_)bg). Using the narrow width approximation, which is reasonable for a light
SM Higgs, we can combine NLO corrections to production and decay as follows

drl - +dr') ar' _
0 1
Aoy s (Hth)W = (do-;x(;p)—>WH X Fféfbb F(ll){_)bb + daz(ap)—>WH X —g = | xBr(H — bb),
Hobb T4 Hob H—bb

(5.2)

where FngE is the LO total H — bb decay rate (equation (4.4)), T SLM—; the corresponding
NLO correction (equation (4.43)) and Br(H — bb) is the branching ratio for the decay
H — bb.

Before describing the phenomenology we briefly give some details of the calculation.
To handle IR divergences of the production we use a fully local subtraction method both
for production and decay. We first compute real and virtual matrix elements in d = 4 — 2¢
dimensions. We then suitably parametrize the phase space for the emission of a single real
gluon, expand each denominator occurring in the real matrix element in powers of € using
the expansion in +-distributions (section [2.3.2)), and cancel all the resulting 1/ and 1/e
poles point by point in phase space either against virtual corrections, or against the PDF
counterterm provided by the MS factorization scheme (section .

For the production process, we use, depending on the computation order, the LO or
NLO MSTW2008 PDFs [150] interfaced through the library LHAPDF [88], the latter cor-
responding to as(myz) = 0.120179, which is evolved up to the relevant scale for the NLO
corrections. We consider both W+ and W~ production, keeping the full spin correlations
when letting them decay into a lepton and a neutrino. Concerning the Higgs boson decay,
all matrix elements for H — bb are computed for massive bottom quarks, using the OS
renormalization scheme with a pole mass m;, = 4.24 GeV (the detailed treatment is pre-
sented in chapter . We have checked that our production code agrees with MCFM for both
total numbers and differential distributions. Furthermore, in the following we will consider
the production of a SM Higgs boson of mass my = 125GeV, with Br(H — bb) = 0.578
taken from references [11}/151] 152].[]

'In fact, since we will be concerned mainly on K-factors and shapes of distributions, the actual value
of Br(H — bb) will not be relevant for the main issues discussed here.
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5.2 Higgs searches with the fat-jet method

Proton-proton collisions at the LHC with /s = 14 TeV at high luminosity are a natural
place to look for a boosted Higgs boson: one has the possibility to cut on a high-transverse
momentum Higgs boson, and still have a number of events that makes it possible to sig-
nificantly distinguish the signal from the background. Therefore, we first give theoretical
predictions for observables that are of use at the LHC with /s = 14 TeV when searching
for a boosted Higgs boson associated to a W boson, using the strategy of reference [131].

In the following we describe the set of kinematical cuts we employ for this analysis.
First of all, we put some basic constraints on the decay products of the W boson, namely
that the charged lepton has a transverse momentum p}. > 30 GeV and a pseudorapidity
Im| < 2.5, and that the total missing transverse momentum fulfils p2'* > 30 GeV. We then
require that the reconstructed W boson have large transverse momentum pl! > 210 GeV.
This value is approximately equal to the minimum transverse momentum that a boosted
Higgs boson recoiling against a W boson must have, at tree level, so that the bb pair
resulting from its decay falls into a cone of radius R = 1.2. The latter is the value of jet
radius R considered in reference [131].

Specifically, a Higgs boson decaying into a bb pair is searched for by clustering each
event into fat jets using the Cambridge/Aachen algorithm [92,93] (section from the
software package FastJet |95] with R = 1.2, and examining the substructure of each jet
to see if it contains the Higgs boson decay products.

Once we have identified a fat jet j, in order to establish whether it can be considered
a Higgs candidate, we follow the procedure proposed in reference [131], which we briefly
recall:

1. Undo the last clustering inside the fat jet j, thus identifying two subjets j; and jo

ordered according to their invariant mass, m?l > m?Q;

2. Require a significant mass drop m?l < um? and impose max{p?pjl,p?pQ}ARJZ

Yeut m?, in order to suppress asymmetric splittings.

>

1,J2

If both conditions are fulfilled then j is a candidate Higgs jet and the procedure terminates.
Otherwise set 7 = j; and we go back to step 1. The fat jet is then kept as a Higgs candidate
only if both j; and j, have b-tags.

Finally, again following reference [131], one should apply a filtering procedure, which
consists in reclustering the candidate Higgs jet with a radius Rg < R, and then choosing
the candidate Higgs mass as the invariant mass of the hardest (i.e. with the highest pr)
nge subjets. Since our calculation is pure NLO for both production and decay, a fat jet
will contain at most three subjets. As suggested in reference [131], we choose ng; = 3, and
therefore we can skip the filtering step at this stage.

The first relevant observable we consider is the transverse momentum pr; of the can-
didate Higgs jet. In particular, we wish to perform an analogous study as the one done
in reference [140], including NLO corrections to both Higgs boson production and decay.
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As in reference [140], we require the candidate Higgs jet to be the one with the highest
transverse momentum and to be central, |n;| < 2.5.

In figure we show plots for the fat-jet pr-spectrum corresponding to two different
event selection procedures. In the first case no constraint is imposed on any extra jet, whilst
in the second case we impose a jet-veto condition, requiring that there are no further jets
with pr > pryeto = 30GeV and |n] < 7eto = 3 (again according to what is done in
reference |131]).

The perturbative stability of our predictions is investigated by simultaneous variation
of renormalization and factorization scales for the production process in the interval

Mg+ Mw e L )

5 Shr = pp S 2(ma o+ mw). (5.3)
Since we know from the study of reference [153] that, for the fat-jet analysis described
above, no infrared problems are expected from QCD corrections to the decay process, we
have decided to fix the renormalization scale for the decay at ,ug) =mgy.

At LO the distributions with and without an extra-jet veto obviously coincide. On
the contrary, as observed already in reference [140], there are substantial differences for
NLO distributions. Without a veto on an extra jet, if one excludes the lowest pr-bin,
NLO corrections to production are positive, giving roughly a constant K-factor of about
1.3 at large pr ;. The addition of NLO corrections to decay does not alter significantly this
K-factor, reducing it to 1.2 (see figure red and dark-blue bands). The fact that the
K-factor is only slightly decreased when adding NLO corrections to decay suggests that the
observable we consider is sufficiently inclusive with respect to extra gluon radiation from
the bb system. In other words, in the boosted regime we are considering, final-state QCD
radiation is well contained inside the fat jet, and therefore we observe no large virtual
corrections unbalanced by real radiation. After imposing the jet veto, NLO corrections
become negative, and increase in size when the jet transverse momentum increases. This
is due to virtual contributions that do not cancel fully against initial-state real radiation,
giving a (negative) logarithmic left-over as large as o In? (P1,j/PTveto). We observe that,
also in this case, the addition of NLO corrections to decay causes only a mild reduction
of the K-factor, around 10% and roughly constant over the whole fat-jet pr-range (see
figure 5.2 purple and light-blue bands).

A remark is in order concerning the behaviour of the fat-jet pp-spectrum in the low-
est pp-bin. There one notices a significant decrease in the cross section in going from
LO to NLO, as well as a larger variation when varying renormalization and factorization
scales. This bin corresponds in fact to the situation in which one imposes symmetric pr
cuts on both the Higgs boson and the W boson. As observed in references [154}/155] and
explained in reference [156], symmetric cuts can cause instabilities in the QCD perturba-
tive series. However, such instabilities could be removed by performing a resummation of
large logarithms appearing in the distribution in the transverse momentum of the HW sys-
tem [156]. The physics underlying such resummation is implemented in all parton shower
Monte Carlo’s, which should then be used for Higgs searches including the symmetric-cut
region. Performing such a resummation is beyond the scope of this work and we restrict our
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Figure 5.2: The transverse momentum distribution of the candidate Higgs fat jet at the
LHC with /s = 14 TeV, corresponding to the kinematical cuts described in the text.
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LO NLO (prod.) | NLO
Ome [fb] | 1.53%002 | 1.8713%% | 1.80%0%¢

00_jer [fD] | 1537992 | 1194000 | 1127508

Table 5.1: Cross section for Higgs boson production in association to a high-pr W boson
selected according to the cuts described in the main text, for 230 GeV < pr; < 500 GeV,
with (0g_j) and without (oi,) a veto on an extra jet.

subsequent analyses to the asymmetric-cut region pr; > 230 GeV, where our fixed-order
predictions seem to be reliable. Finally, table lists an example of the cross sections
we obtain for the integrated pr spectrum for up’ = ,ugj?) = mpy + my and of ,ugg) = myg,
together with the corresponding renormalization and factorization scale uncertainties.

From the plots in figure [5.2]it looks like the net effect of QCD corrections to Higgs boson
decay is just that of reducing the production rate of a candidate Higgs fat jet. However, the
fat jet considered there can have an arbitrary invariant mass, whilst in general one measures
the fat-jet invariant mass distribution, given a set of kinematical cuts, and looks for a mass
peak. Therefore, it is useful to investigate the impact of NLO corrections to Higgs boson
production and decay over the reconstruction of a mass peak based on the fat-jet analysis
described above. At NLO there are two effects that can potentially spoil this reconstruction.
The first is the emission of a parton from the initial state that is subsequently clustered
within the fat jet. The second is the loss of gluon radiation from the bb pair originating
from the decay of the Higgs boson that does not get caught in the fat jet. Both effects are
studied through the plots shown in figure where the differential distribution do/dm; in
the invariant mass of the fat jet is plotted. The renormalization and factorization scales
are fixed to their central value ug) = ug’) = my + my and ug) = my. The first NLO
curve in figure (green, dashed) corresponds to the fully inclusive situation in which the
only selection requirement is that there is a candidate Higgs jet, with no cut whatsoever
on the jet transverse momentum. This curve is shown to illustrate how the fat-jet selection
technique works in practice. We first observe that the fat-jet method is pretty robust under
radiative corrections, in that, even without requiring a high-pr W boson, only around 30%
of candidate Higgs events fall outside the mass window 110 GeV < m; < 140GeV (a
typical bin size for boosted Higgs searches at the LHC, see [128]). The region to the right
of the peak corresponds to situations in which initial-state radiation is clustered inside
the fat jet, thus artificially increasing the invariant mass of the latter. To the left of the
peak we see a long tail corresponding to events in which a gluon emitted from the bb
system originating from Higgs boson decay escapes the fat jet. This effect is entirely due
to NLO corrections to Higgs boson decay, and its contribution to degrading the resolution
of the mass peak is comparable to that coming from NLO corrections to the production
process. In fact, most events outside the mass window 110 GeV < m; < 140 GeV have
m; < 110 GeV. These events extend down to m; = 2m;, corresponding to the situation in
which the bb pair recoils against a hard gluon. The other two curves correspond to events
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Figure 5.3: The distribution in the invariant mass of the candidate Higgs jet, without
any kinematical cuts (green, dashed), fully inclusive with respect to all other jets (blue,
dashed), and with a jet-veto condition (red, solid).
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passing the same kinematical cuts as in figure[5.2] and with an additional cut on the fat-jet
transverse momentum pr; > 230 GeV. We first observe that this cut reduces considerably
the fraction of events with m; < 110 GeV which is around 10% both with and without
the jet veto. A further remark is in order concerning the curve (solid, red) obtained by
imposing the additional constraint of vetoing all extra jets with pr > 30 GeV and rapidity
In| < 3. In this case, as expected from the study of reference [140] and figure the
peak height is reduced because of the suppression of real emission and the dominance of
negative uncancelled virtual corrections. Among the effects of the jet veto there is also
that of eliminating events in which a gluon emitted by the bb system escapes the fat jet.
For the red solid curve this is visible in the figure for m; < 60 GeV and has a negligible
impact on the resolution of the mass peak. We finally remark that the fact that the mass
peak survives depends crucially on both the jet-veto condition and the procedure used to
identify a candidate Higgs jet. We have observed that decreasing pryeto can lower the
number of selected events in such a way that a peak is not visible any more. The same
remark holds for alternative procedures for defining a candidate Higgs jet, which need to
be tested against final-state QCD radiation as well. An example of how the latter can
affect significantly the outcome of a Higgs search analysis is discussed in the next section.

5.3 Higgs searches at the LHC with /s = 8 TeV

In this section we shall present our analysis on the impact of QCD radiative corrections
to production and decay for the search strategy described by CMS to look for a high-pr
Higgs radiated off a vector boson at the LHC with /s = 8 TeV.

Rather than performing a fat-jet analysis, CMS uses a simplified procedure aimed at
identifying a boosted hadronic system that could be considered as a Higgs candidate [128],
which we summarize shortly. First, they impose cuts on the decay products of the W boson.
For a W boson decaying into a muon and its associated neutrino (the case we consider in
the following), they require pl. > 20 GeV and || < 2.4, together with a constraint on the
missing transverse energy pss > 35 GeV. The Higgs candidate is a dijet system consisting
of two central (|n| < 2.5) b-tagged jets with pr > 30 GeV, reconstructed with the anti-k;
algorithm [157] with R = 0.5. Then, high-pr events are selected by imposing a cut both
on the transverse momentum of the reconstructed W boson p¥' > 160 GeV and on that
of the dijet system pr; > 165GeV, and requiring the latter to be central (|n;| < 2.5).
Finally, the W boson and the Higgs candidate are required to be almost back-to-back in
the transverse plane, by imposing A¢w ; = |pw — ¢;| > 3, where ¢; denotes the azimuthal

angle of 4, and no extra jets are allowed with pr > 20 GeV and |n| < 2.4.

Among these conditions, the requirement on A¢yy;, is particularly sensitive to initial-
state radiation, in particular soft and collinear gluon emissions along the beam. We wish
therefore to investigate if our predictions for the A¢y,; distribution are stable against
higher-order corrections. We do this via simultaneous variations of renormalization and
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Figure 5.4: The differential distribution in the azimuthal angle A¢gy; between the recon-
structed W boson and the candidate Higgs jet, corresponding to the selection cuts described
in the text.

factorization scales for the production process

mg + my
2

and independent variation of the renormalization scale for the decay

<) = pf) < 2Amu +mw), (5.4)

% < pg%d) < 2my. (5.5)

Figure shows the A¢yy; distribution, obtained after imposing the cuts described above.
First of all, one notices that most events are concentrated in the bin A¢y;; > 3, so that
we expect that bin to be wide enough to ensure a sufficiently inclusive cancellation of large
real and virtual corrections arising from the region close to A¢y,; = 7. This is confirmed
by the fact that, if one considers production only (the histogram labelled “NLO prod.”),
the K-factor we observe in that bin is moderate (around 0.8). Indeed, the cut on A¢yy,; is
only one of the effects that are responsible for this K-factor, the others being the cut on the
jet pr and the jet-veto condition, which can also put constraints on initial-state radiation.
We remark that, if the constraint on A¢y,; were moved closer to 7 while keeping all other
cuts fixed, one would expect large logarithmic contributions o In™ (7w — A¢yy,;) arising from
multiple initial-state soft-collinear emissions. These could be resummed, either analytically,
or using Monte Carlo event generators. When adding final-state radiation, one observes
that the height of the distribution in the rightmost bin is further depleted. However, due to
the fact that, for A¢y,; < 3 the NLO distributions for corrections to production only and
production and decay basically coincide, this depletion cannot be ascribed to a restriction
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on final-state radiation imposed indirectly through the cut on A¢y ;. The reduction of
the cross section is mainly due to the loss of QCD radiation from the bb system. Due to
the jet-veto condition, any gluon that is not clustered inside the two b-jets that constitute
the Higgs candidate is likely to be soft, and therefore A¢y; will be close to 7. It is
this restriction on final-state radiation that causes an imbalance between real and virtual
corrections, giving a large negative contribution.

A further source of large virtual corrections, which contribute significantly to the size
of the observed K-factor, is the presence of a term « In(m;,/my) in the virtual corrections,
coming from the OS renormalization of the coupling of the bottom quark to the Higgs.
To investigate the impact of this term, we use a different prescription to combine NLO
corrections to production and decay, by strictly expanding equation at order ay:

(0) (1) (1)
do™P =459 x dFH—>bB 1— FH—>bl§ + dFH—>bT>
pp—(H—bb)W — pp—WH F(0) 11(0)

, r ,
H—bb H—bb H—bb
@ ar®® i
+doy, sy X % x Br(H — bb). (5.6)
H—bb

We see that the curve corresponding to this last prescription (purple, labelled “NLO
exp.”) 1is significantly higher than the curve corresponding to equation (blue, la-
belled “NLO”). The difference between the two prescriptions can be understood as an
indication on the convergence of perturbation theory. In this respect, we have checked
that all the results we have obtained in the previous section using the fat-jet procedure
are, within scale uncertainties, insensitive to a change of prescription, thus indicating that
this procedure is inclusive enough with respect to final-state radiation to ensure good con-
vergence of the perturbative expansion. In the following, whenever relevant, we will use
both prescriptions.

We now present the distributions studied in the previous section, this time relative to the
candidate Higgs selected according to the CMS procedure, and for LHC at /s = 8TeVE|
For the mass distribution, we will also compare the mass spectrum corresponding to the
CMS analysis with that obtained with the fat-jet analysis described in section [5.2] In this
case m; will label the invariant mass of the fat jet.

Figure contains distributions in the transverse momentum pz; of the candidate
Higgs dijet system. Each band corresponds to a simultaneous variation of renormalization
and factorization scales for the production process

mg+m |
I <) = ) < 2Am ), (5.7)
while renormalization scale for the decay is kept fixed at ,ugl) = my. If one does not

include NLO corrections to the decay, one observes a 20% reduction in the cross section
with respect to LO. This reduction is driven mainly by the jet-veto condition, and as

2We have checked that our considerations do not change in the case of LHC at /s = 7 TeV.
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Figure 5.5: The distribution in the transverse momentum pr ; of the candidate Higgs dijet
system, corresponding to the selection cuts described in the text.



74 Chapter 5. Higgsstrahlung at NLO

expected gets mildly more pronounced as the dijet transverse momentum increases. The
inclusion of NLO corrections to Higgs boson decay causes a further decrease of the cross
section. We interpret this result as a sizable loss of QCD final-state radiation by the two
jets that constitute the Higgs candidate system, likely due to the fact that the b-jets have
a small radius and the typical perturbative jet pr-loss increases with decreasing radius, as
explained in reference [158], and the lost radiation undergoes a jet-veto constraint. This in
turns causes a poor convergence of the perturbative series, as one observes by comparing
the “NLO” (blue) and “NLO exp.” (purple) curves. We have checked that this does not
happen if one performs a fat-jet analysis with the same parameters as in section [5.2], where
one observes instead a K-factor of around 0.6 for pr; > 250 GeV, although in this case the
pr,; distribution drops abruptly, as expected, for pr; < 200GeV. We have also checked
that for larger pr values (pr; > 350 GeV) the CMS and fat-jet procedure give comparable
pr,; spectra. Another remark concerns the first bin (160 GeV < pr; < 165 GeV), where the
distribution is unstable against scale variations (it becomes even negative if one includes
corrections to Higgs boson decay), again due to the fact that this bin corresponds to
symmetric transverse momentum cuts, in which the W boson and the b-dijet system recoil
against a soft-collinear gluon. This bin is not included in the CMS analysis, and will not
be considered in all our subsequent studies.

We then present in figure the distribution in the invariant mass of the candidate
Higgs system do/dm;. We consider here four distributions, the first (solid, red) obtained
with the CMS selection procedure, the second (dashed, blue) corresponding to the fat-
jet selection procedure explained at the beginning of section [5.2] with the same selection
cuts as CMS for the leptons, the W boson and the candidate Higgs system, the third
(dashed, green) corresponding to the CMS procedure but where only NLO corrections to
the production process are considered, and the fourth (dotted, purple) again corresponding
to the CMS procedure and obtained using equation (}5.6)).

From the plots we see that the mass distribution resulting from the CMS procedure
(red, solid), catches more candidate Higgs events than the fat-jet one, as expected due to
the lower pp-cut on the selected b-jets. However, the mass distribution does not display
a mass peak in the expected position. In fact the value of the distribution at m; =
125 GeV is negative (see inset plot of figure if one uses equation , and only slightly
positive if one uses instead equation ([5.6)) (the purple dotted curve labelled “CMS exp.”).
Regardless of the actual value of the distribution at m; = 125 GeV, this clearly indicates
that radiation from the bb pair originating from Higgs boson decay is not naturally included
in the candidate Higgs system. On the contrary, the fat-jet procedure (blue, dashed) gives
correctly a peak at m; = 125 GeV, although with a reduced height with respect to that
of the shifted peak resulting from the CMS procedure. This result does not change if one
uses the alternative prescription of equation . The third curve (green, dashed) shows
the mass distribution obtained by considering NLO corrections to production only.

We notice that the peak is in the expected position, with a height that is roughly five
times larger than that of the peak corresponding to the fat-jet procedure. In this respect,
we remark that the parameters we have chosen for the fat-jet analysis are identical to
those of section [5.2] In principle one should redetermine their optimal value after a full
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Figure 5.6: The distribution in the invariant mass m; of the candidate Higgs jet obtained
with the procedure adopted by CMS, with and without NLO corrections to Higgs decay,

and with the fat-jet procedure described in section [5.2]

simulation of signal and background, including parton shower effects (for instance using

the recent developments of reference [147]).
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Chapter 6

Conclusion

We have implemented NLO corrections to Higgs boson production in association with a
leptonically decaying W boson and to its subsequent decay into a bottom quark-antiquark
pair, in a numerical code that returns weighted events, fully differential in the decay prod-
ucts of the Higgs boson and of the W boson. We have then looked at how NLO QCD
corrections to Higgs boson decay affect various observables that are relevant for Higgs
searches at the LHC. In particular, we have analyzed two different experimental setups,
one with /s = 14 TeV and the other with /s = 8 TeV.

In the first case, the Higgs boson is produced in a boosted regime, with its transverse
momentum larger than its mass, and detected using the fat-jet technique proposed in
reference [131]. With our study in section , we assess that the Higgs candidate obtained
with the fat-jet procedure is stable against radiative corrections. Its mass distribution is
peaked at the expected value of the Higgs boson mass and the resolution of the peak is
reasonably good (see figure . We remark that the height of the peak is sensitive to
the jet-veto condition that one imposes on any jet besides the candidate Higgs fat jet, the
stronger the veto the stronger the suppression of the peak. In our case the height of the
peak obtained after imposing a jet-veto condition is roughly a third of that we get if we
are fully inclusive with respect to all jets.

The second experimental setup we have considered corresponds to the event selection
done at that point by the CMS experiment, but for the LHC current energy /s = 8 TeV.
CMS chooses configurations in which both the Higgs boson and the W boson have high
transverse momentum. Then they do not perform a full fat-jet analysis, but rather consider
as a Higgs candidate a system of two b-jets satisfying a set of transverse momentum and
rapidity cuts. Again we have checked how relevant distributions are influenced by QCD
corrections to Higgs boson decay. We have found that such corrections have a big impact
both on the candidate Higgs transverse momentum spectrum and on its invariant mass
distribution. In particular, for the latter it turns out that the effect of an extra jet-veto
and the loss of QCD radiation from the bb system give a displacement of the mass peak
from its expected position, with a poor peak resolution. This suggests an instability of
the CMS procedure against radiative corrections from the final state, and reveals how
important it is to have NLO information on the Higgs boson decay as well. We remark
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that the use of a parton shower event generator will give a smoother mass distribution, but
will not significantly improve the mass resolution of the peak, which is mainly affected by
the large pr loss of the selected b-jets. For comparison we have also studied the jet-mass
distribution for a candidate Higgs jet obtained with the same fat-jet procedure considered
for the LHC at /s = 14 TeV. Also in this case the procedure seems stable under radiative
corrections, and we are able to reconstruct a mass peak in the expected position.

The study we have performed gives some new information on the impact of higher-order
corrections on the Higgsstrahlung process. An analogous study for the ZH production
process can be achieved by changing the couplings and PDFs used.

More studies are needed both to improve the accuracy of the calculation, including for
instance NNLO corrections to both production and decay, such as the one presented in
reference [141]. Furthermore, it is necessary to devise procedures to cure the instabilities
we have found in our analysis.
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Chapter 7

Introduction

In this part, we shall present the investigation performed on the QCD corrections to the
~v*v* production process. This is a first step towards the study of the general class of
diboson processes which, as the name suggests, involve two EW vector bosons in the
final state, that may be different. This process is interesting from the theoretical point
of view because it can involve multiple scales: besides the kinematical invariants, the
masses/virtualities of the final state bosons enter the game and make the treatment all
the more challenging. It is also particularly relevant from the experimental point of view
because it is a background process for Higgs searches for example in the “golden channel”
where the Higgs decays to a pair of Z bosons or when looking for a Higgs decaying to a pair
of W bosons as in both cases the vector bosons are kinematically driven to have different
virtualities (one being in general on-shell due to the resonance enhancement). Therefore
precise and reliable estimations of the contribution to the background of these processes
including perturbative corrections beyond the LO in QCD constitute a priority.

Currently, the computation of this process are known differentially up to NLO in
QCD [159-165]. The status of the NNLO corrections to diboson production is the fol-
lowing: The full result is known since a couple of years for vy production [166]. For the
equal-mass case, which is relevant for WW and ZZ production, the 2-loop master inte-
grals have been computed in references [167,/168], and the inclusive ZZ production has
just been published [169]. For unequal masses, which encompasses W~ , WW* W 7Z(),
Z~™), and ZZ* production, the 2-loop master integrals have been published [170,/171] while
this work was in progress, furthermore all the 2-loop QCD helicity amplitudes are also
available [172,]173].

In the following chapters, we will present the ingredients entering the computation of
the cross-section corrections at NNLO in QCD for a gauge invariant subset of the diagrams
involved in the process pp — 7*7*, namely those coming from Ny massless quark flavors.

In chapter (8, we concentrate on the 2-loop virtual amplitudes and express these in terms
of master integrals using established reduction methods. We shall present the organization
of the reduction in the general case and then spell out the result for the Ny piece which
consists of diagrams with a light quark loop. We evaluate the latter with direct integration
methods along the lines of reference [115]. We tackle the corresponding piece for the double-
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real radiation in chapter [9 where we shall present the implementation of a subtraction
method after we parametrize the phase-space hierarchically which makes all IR singularities
appear in a factorized form. Finally in chapter [10| we present some distributions obtained
when combining both virtual and real corrections in an in-house event generator.



Chapter 8

Virtual corrections

In this chapter we present the steps of the computation of the 1- and a gauge-invariant
subset of the full 2-loop correction to the q¢ — ~*v* process, where both photons are
off-shell with non-related virtualities. We will detail the treatment of the 2-loop case: the
one-loop computation goes along the same lines, but involves less subtleties.

We will focus on the computation of the unrenormalized 2-loop contribution. The
renormalized 2-loop virtual contribution that has been implemented for the numerical
results presented in chapter [10] can be written in terms of the bare one as

50|Nf

3

dol?, = dol/d? — asdald. (8.1)
After we present the generation and reduction framework in the general case, we will
restrict the discussion to a subset of the full amplitude in the last section.

8.1 Generation

The diagrams relevant to the 0-, 1- and 2-loop amplitudes are generated using QGRAF [59].
The 1-loop diagrams contain one more internal gluon propagator than the tree-level process.
Out of the 12 diagrams, 4 vanish due to color, leaving 8 diagrams. The 2-loop diagrams
have one more loop and can thus have an extra (heavy or massless) fermion, gluon, or
ghost loop. Out of the 198 diagrams, 54 vanish due to color (section [1.2.2)), leaving 144
diagrams.

At NLO, the amplitude is obtained by computing the interference of the 1-loop dia-
grams with the O-loop diagrams. At NNLO, the amplitude is obtained by computing the
interference of the 2-loop diagrams with the O-loop diagrams, and by the squared sum
of the 1-loop diagrams. We map these expressions to integrals within standard topologies
according to their propagator structure, we reduce each integral to a set of master integrals
using the Laporta algorithm [100] and we evaluate the master integrals analytically. In
what follows we describe these steps in more detail.
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.
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Figure 8.1: This diagram belongs to the X topology class.

8.2 Mapping to topologies

In what follows, we will detail the treatment of the 2-loop case: the 1-loop computation
goes along the same lines, but involves less subtleties.

The loop momenta k and [ are assigned by QGRAF but we are free to transform them
using transformations that do not alter the measure of the loop momenta, i.e. for which
the determinant of the Jacobian is unity.

The invariance under such transformations is used to organize the calculation and
classify the diagrams into topology classes that depend exclusively on the denominator
structure. For each diagram, we generate the image under all authorized transformations
and match the result with the standard form for each of the topology classes P of planar
diagrams or X of non-planar diagrams. In the implementation, a diagram from the X
class as the one shown in figure is characterized as follows: it is not possible to find a
transformation of the loop momenta which reduces the number of propagators containing
both k and [ to one.

At this stage each diagram is written as (section [2.0)):

N({kal»QhQ%%})
D?1<QI7qQ7 q3> e D39<q17QQ7 CB)

where for both classes (q1.., = ¢ + - + qn),

Dy = k2, Dy = (k+q)?, D3 = (k + q12)?, Dy = (k—1)%
D5 = 127 Dg = (I + CI1)27 D; = (1+ C]12)2, Dg = (I + Q123)2> (8.2)

while, depending on the topology class,
P Dy = (k+ qs), X:Dy=(-Fk+qa3) (8.3)

and N is a polynomial of all the possible scalar products of independent external[l] and
loop momenta which comes from the translation of the diagram with the Feynman rules of

'We stress that the momenta g1, ..., ¢3 can be any three of the four independent momenta.
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QED and QCD (sections [1.2.1/and [1.3.2]). We use the Feynman gauge £ = 1 for the gluon
propagator and the polarization sum for a photon with 4-momentum p reads

S @) == 9+ (8.4
A

where the second piece does not contribute because of the Ward identity for the off-shell
photon. We evaluate the chains of y-matrices in d = 4 — 2¢ dimensions using a housemade
set of routines coded in FORM [60,61]. All the scalar products in N are expressed in terms
of the denominators. The relation is obtained by inverting and . For the class-
independent products:

k* = Dy, 2 = Ds,
2k-q1:D2—D1—q%, 2l-q1:D6—D5—qf,
2k g2 = D5 — Dy + ¢} — g1, 20 g = D7 — Ds + 4 — iy,
2k -1 = Dy + D5 — Dy, 2l - q3 = Dg — D7 + @25 — @y,

while for class-dependent product:

P:2k'Q3:D4—D3+Q%2_q%237
X:2]{7-(]3:Dl—Dg—D4—D5+D8+D9+Q%2-

which allows to rewrite N as a polynomial in the denominators and the invariants s, ¢, u,
53, 4. Fach term can then be expressed as a sum

T : Z fi(87 t? u, s3, 84) T(nl,ia v 7n9,7§7 q1, 42, Q3) (85)

where for the topology class T € {P, X'} we have defined the topology T

9
T:Tn,...,n9,q1,q2,q3) = H D; " (q1, q2,q3)- (8.6)
i=1

We have now brought all terms into scalar integrals, which are characterized by integer
indices and three independent momenta.

Before moving to the presentation of the reduction, we would like to stress that there is
still in principle some level of arbitrariness with this setup due to the residual invariance of
the result under transformations of the loop momenta (in particular swapping): different
naming of the same inherent topology with different momenta can occur. For example,

P(nh ce 7n97p17p27p3) = P(nla Ny, N3, N2, N5, Ny, N7, Ng, n97p47p37p2)7

as can be seen by substituting p; = —ps — p3 — ps4 and applying the transformation (k, ) —
(—k,—1) in the left hand side expression. This has no influence on the final result, but can
impair computational efficiency as it would make us reduce two equivalent off-shell classes
(section . If two general off-shell classes are connected as in the example above,
we only need to perform the reduction on one of them and we can get the other one by
transformation.
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Figure 8.2: Mass classes of 2-loop 2-scale topologies. Thick external lines denote the
non-light-like momenta.

8.3 Reduction with AIR

The reduction of the integrals to master integrals is performed with AIR [78] which is
based on Laporta’s algorithm [100]. The description of the ingredients necessary is done
in section We list here the specific ingredients needed for the case under study.

Off-shell classes The integrals are assigned to one of five off-shell topology classes rel-
evant to our process:

G=0,¢6=0,¢3#0=P(...,q1,0,G) € Portho
G=0,¢56#0,¢3=0=P(...,q1,¢,8) € Ppara

qf = 0,q§ = 0,q§ #0=X(....q1,92,q3) € Xortho (8.7)
G#0,65#0,¢3=0=X(...,q1,0,6) € Xoptho
G=0,0#0,03=0=X(...,q,0,5) € Xpara

The off-shell classes are shown pictorially in figure [8.2] where the thick lines correspond to
non-light-like external momenta.

The reduction of each off-shell class is performed separately, with the IBPs (and LIs)
specific to this off-shell configuration.

Zero topologies Using the notation of section 2.6.4] a topology vanishes as soon as
one of the constraints is fulfilled (note that when we use O, the condition requires also
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©(ns,ng) = 0):
Z[Portho] = {O(n1,...,n9) < 3,0(nq,...,n4,n9) < 2,0(ns,...,n9) < 2, (8.8)
O(ny, ng,ng,n5,n6,n7) < 1,0(ng, n3, ny, ng, n7,ng) < 1,
O(ny,n4,n5,n8) < 1,0(n3, ny,ny,ng) < 1,
O(ny1,ng4,n9) < 1,0(n3,n4,n9) < 1,0(ns,ns,n9) < 1,0(n7,ng,ng) < 1},
Z[Ppara] = {O(n1,...,n9) < 3,0(n1,...,n4,n9) < 2,0(ns,...,n9) <2, (8.9)
O(ny, ng,ng,ng),ng,m) < 1,0(ng, n3, nyg, ng, n7,ng) < 1,
O(ny,ne,ns,ng) < 1,0(n3, ng,n7,ng) < 1,
O(ny,ng,ng) < 1,0(n3, ng,ng) < 1,0(nsz,ng, ng) < 1,0(n7,ng,ng) < 1},
Z[Xortno) = {O(n1,...,n9) < 3, (8.10)
O(n, .. n4,n9) < 2,0(n1,n9,n3,n5,...,n8) < 2,0(ny,...,ng) < 2,
O(ny, n5,n8,n9) < 1,0(ny,n7,ng,ng) < 1,

ni, Ny, Ng) < 1 @(nl,n7,ng) <1 ®(n3,n7,n8) <1 @(nd,n%ng) < 1},

(
(

Z[Xprino] = {O(n1, ..., ng) < 3, (8.11)
@(nl, n4,ng) < 2,0(n1,ng,n3,n5,...,n8) < 2,0(nyg,...,ng) <2,
O(ng, ng, n7,ng) < 1,0(ng, n7,ng,ng) < 1,
O(ny,no,ng,n7) < 1,0(ny,na,ng,ng) < 1,0(ng, n3, ng, ng) < 1,
O(ny,no,n3) < 1,0(ng,ng,ny) < 1,0(ng, nz,ng) < 1,0(ng, ng) < 1},
Xy = {001, 10) < 3, (812)

©

ny, . TL4,’TL9> <2 @(nl,ng,ng,ng,, . ,ng) < 2,@(714, R ,ng) < 2,

o)

ns n4,n7,n8) < 1,0(n3,ng,ng) < 1,

(

(

(n1,m2,n4,n7) < 1,0(n1, ng,n4,n8) < 1,0(ng, ng, ng, ng) < 1,
(n1,n9,m3) < 1,0(n1,n9,n4) < 1,0(ng,n3,n9) < 1,0(ny,ng) < 1}.

Seeds The set of seeds should contain all the scalar topologies appearing in the process
that have been obtained as discussed in the last section.

We find for the process at hand, that independently of the off-shell class, the maximum
number of propagators is 7, while the minimum number of propagators is 3. Furthermore
the sum of the absolute values of the negative indices ranges from 0 to 4 for all off-
shell classes. Some integrals of the off-shell classes P,.1ho and X, present one dotted
propagator, while the other classes only have simple propagators. Finally, no integrals of
the off-shell classes X410 OF Xperq have propagators in the fifth and sixth position. They
can however have negative indices at these positions.

Once the reduction is completed, the amplitude can be written as a sum of rational
coefficients of the invariants multiplying the master integrals.

In the next section, we present the results for a gauge-invariant subset of the full
amplitude.



88 Chapter 8. Virtual corrections

N
SN

Figure 8.3: Diagram contributing to the 2-loop Ny-piece of the process qg — y*v*.

N
auf

N

Figure 8.4: Diagram not contributing to the 2-loop Ns-piece of the process qg — v*v*.

8.4 Double-virtual N; amplitude

We present in this section the first results for a gauge-invariant subset of the diagrams
having an internal massless quark loop inserted, like the one shown in figure These
are in one-to-one correspondence with the 1-loop diagrams where the gluon propagator is
replaced by its one-loop self energy diagram, and they are multiplied by a factor Ny, which
denotes the number of massless quark flavors.

Note that diagrams involving a quark loop that is connected to one or both external
photons — like the one shown in figure — do not belong to the Ny-piece as they are
proportional to the electromagnetic charge of the individual quarks in the fermion loop.

For the process under study, it is possible to bring all diagrams to integrals of the form

P(”l?"'7n97p17p27p3)7 or P(”l?"'7n97p17p27p4)7

where the coefficients nq, nz and ny are negative or vanish. This defines a subclass of P,.4n0
which is faster to reduce as it involves less propagators.

After reduction, we find that we can express the 2-loop Ny-piece through twelve master
integrals. Six of them are:

P<071707070707071717p17p27p4) :Z)Zd@ (8138“)
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P
P(OJ170)071707170717p17p27p4) = §>Pm (813b)
p2

p1 p3
P(0,1,0,0,1,0,0,1,1,p1, p2, ps) = K (8.13c¢)
.
P(O,1,0,0,0,0,1,171,p1,p2,p4) = K (8.13d)
p2 Pa
p1 p3
P(0,1,0,0,1,0,1,1,1, p1, p2, pa) = (8.13e)
p2 Y2
p1 p3
P(0,1,0,0,1,0,1,1,2,p1,pa,ps) = (¢ (8.13f)
p2 P4

and the other six can be obtained by setting ps — p3 in the above.

The coefficients of the master integrals for the Ny-piece of the unrenormalized 2-loop
amplitude can be found in the appendix [B]

The integrals of interest depend on four scales, one of which can be factored out so that
we can work with the ratios u, v, w:

2 _ 2 _ 2 _ 2 2 _ 2
pi=0, p3=0, p3=m3, p;=my,

s=(p+p)? t=+n), (8.14)
2 2
t
’u,:]ﬁ, U:&7 w = —.
S S S

It can be convenient to write v and v in terms of two new variables z, z:

1
2,225 (1+u—vj:\/)\(u,v,1)),

u =2z, v=(1-2)(1-2),

(8.15)

where A(a, b, ¢) = a®+b*+c®—2ab—2ac—2bc is the Kéllén function. The same parametriza-
tion was used for the three-mass triangle integrals in ref. [115], except that now there is
one more scale (w). We work in the Euclidean region where p? < 0,7 =1,...,4, and thus
u, v, w are positive. Moreover, in analogy to the case of the three-mass triangles, we first
compute the integrals in the region where A(1,u,v) < 0 and thus z and z are complex
conjugate to each other. In this region the functions are well defined and have no branch
cuts in the complex z plane.

The analytic expressions contain the functions P, (2), QF (z) and Rz, besides ordinary
logarithms and classical polylogarithms. The full expressions of these functions and of the

master integrals needed are given in reference [2].
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8.4.1 Computation of the master integrals

In this section we describe briefly how we computed the master integrals using the tech-
niques presented in section and illustrate some of the steps with an example. From the
computation philosophy point of view, the approach is the same as in reference [115], also
known as symbolic integration. A more detailed treatment can be found in reference [114].

The general procedure is the following. We represent the integrals in the Feynman
parametrization (section and expand the integrand in the dimensional regulariza-
tion parameter €. Since the integrals diverge as ¢ — 0 and in addition some of the sin-
gularities overlap, we will factorize these singularities with the method of non-linear map-
pings [79] and perform the expansion in & with the help of +-distributions (section [2.3.2)).
We then perform the integration order by order working with multiple polylogarithms
G(ay,...,a,;t), which we have defined along with their main properties in section m
After the (trivial) integration over the first Feynman parameter, we write all the gained
(poly)logarithms in the integrand as (a sum of) multiple polylogarithms (MPLs) where
the Feynman parameter which we want to integrate next has to be in the last argument,
in order to be able to use the recursive definition ([2.70). Note that all the denominators
in the integral need to be linear, i.e. of the form ¢ & a, where a is a linear function of the
remaining integration variables. This is the case for the integrals we consider.Moreover,
the MPLs in the numerator have to be written as a sum without products of MPLs left.
This can be achieved using the shuffle algebra of MPLs [116].

Using partial fractioning and the shuffle algebra, we can express the MPLs in the form
where we can make use of equation . We then repeat these steps for each Feynman
parameter of the integral. The main challenge in the later steps consists in rewriting the
MPLs such that the next Feynman parameter we integrate is again the last argument. In
order to find the functional equations among MPLs which allow us to perform this task,
we make use of the Hopf algebra structure of these functions and its coproduct [117,(174].
An algorithm to obtain the right form is given in [175].

Let us illustrate the steps mentioned so far with one of the two boxes appearing in the
Ny part of the two-loop amplitude as an example:

P p3

By, = ® = eQ'YEE/ d’k d’l 1 (8 16)
2a n (i?Td/Q)Q (k + l>4(]€ —l—p1)2(k +p13)2(k + p134)212’ .

p2 P4
where p; ;= pi +---p;.

First we need to parametrize the integral and factorize the singularities. Note that the 2-
loop integrals relevant for the Ny piece of the NNLO correction to ¢g — v*y* are practically
1-loop boxes with inserted bubble integrals. We integrate the bubble sub-integral out using
the formula

ddl 1 o % 2 %7%7% F(Va + Vy — g)F(g — l/a)F(%l — Vb)
/ T e Ee YR T Do) D(d — va — 1)

which is obtained using equations (A.3) and (A.4)), and obtain one-loop boxes with one of
the propagators raised to an e-dependent power. More precisely, the 2-loop integrals can

(8.17)
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be written as

1
T(v, —Hrd (4 — 4
(_1)g627Ee (va+ v — 5)T(§ —va)T(§ Vb)/(Hd@) tp(vy, 1o, v3,14,d),  (8.18)
0

(v T ()T (d — va — v) palet

where v, and v, are the powers of the propagators of the bubble integral and fp(u4, v, v3, 14, d)
is the usual Feynman parametrization of the 1-loop box integral for arbitrary powers v; of
propagators in d dimensions

[T (v

—d 2 2
X (21 4+ 2o + w3 + 24)" (Sxomy + tr1T3 + M5T2T3 + MGT3T4)

d
—1)21 _d
fp(v1, 12, V3, 14,d) = (ZLT ) 2>5 (1 — le) gl s e (8.19)

d_
2

In the case of By,, the propagator between the legs p; and ps is raised to the power
1+ e:

fp(l+e,1,1,1,4 - 2¢) = U2+ 2) 5 (1 - chz) <Z xi>3€

Fi+e) (8.20)
X I’i (mix3x4 + m§x2x3 + x5t + $2$48)_2_2‘€_
Performing the following mapping,
L
S A (8.21)
PEIRY

where the A; are not specified for the moment, we obtain for the right hand side of
equation ([8.20)),

(—1)2_€F(2 + 28) (5 (1 — Z ZEZ> A%+€A2A3A4 (Z LUZ'A,L'>3€ I‘i

o= (8.22)
F(l + 5) (SA2A4$2$4 + tAlAg.’Elxg + m§A2A3132$3 + m2A3A4x3x4)

It is possible to remove all the kinematical dependencies from the denominator by solving
the system of equations [176]

AgAy=1/s, AjAs=1/t, AyAs=1/m3, A3A,=1/m]. (8.23)

We obtain the solution for s > 0:

[m3m3 m3 s m3
A = 34 A=, Ay= . ——, A= — 8.24
! stz 7 sm2 P mim2’ sm3’ (8:24)

and end up with

(—1)27511(2 + 28) ) (]_ — Z ZEZ) A%+€A2A3A4 (Z IL‘Z'AZ‘)SE l‘i
I'(1+e) (wowy + w3(x1 + 22 + $4))2+28

(8.25)
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The d-distribution can be solved choosing for example

r3=y1, To=(1—-y)ye, za=1-y)1—y)ys, 1= (1—wy1)(1—y2)(1—ys),
(8.26)

where the Jacobian of the transformation is (1 —y;)?(1 — ). Writing 7; = 1 —y; we arrive
at
(—1)27°T(2 + 2¢) AT A A3 Ay (3 2, A0)™ *—6y1+6y3

1 (8.27)
[(1+e¢) (Thyabys + 1)+

where for the moment we did not make the change of variables in the sum (3 x;4;)* for
better readability. We obtain overlapping singularities for y; = 0 and either yo =0, yo = 1
or y3 = 0. These can be factorized completely by the following non-linear mapping

Y1Y2Y2Y3 (8.28)

Y — — —.
Y1Y2Yols + 11

The Jacobian is cancelled entirely and we end up with an integral free of overlapping
singularities. Putting everything together using equation (8.18)) with v, = 2 and v, = 1,
we obtain:

['(1—2e)'(2 + 2¢) _ _
By, = — 1425% / dy; | gy "2y
2 (=1) e (1 —¢)T'(1+4¢)? H 4 (8.29)
0

X AT Ag A3 Ay U755 05 (Thya Az + y1eiayz As + 17243 As + §1372§3A1)3€ ,

where

T(1+&)l(1—¢)? (8.30)

cr = e

Substituting the expressions for the A;’s (8.24) and using the variables u, v, w we obtain
finally the following parametrization for Ba,:

AT
e I
1 (8.31)

X / (H dyz) b2a(y17 Yo, y3)y 283/3_1_257
0

1—2¢)'(2+ 2¢)
1—¢)2I'(1 4 ¢)?

By, = — v W

—_

(_ )—2—2au—a —€,,—1—4¢

where the function by, (y1, e, y3) is free of singularities and given by

baa (Y1, Y2, Y3) = Ty “Ts U5 (w(uih Joys + vi1ye + y1y2Pays) + uvliPalis) . (8.32)
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The two singularities are located in the variables y, and y3 in a factorized form as intended.
We now perform the expansion in ¢ with the help of the +-distribution, equation (|A.10)),
and our integral becomes a sum of four finite integrals

1
/(Hc&%) baa (s Y2, ya)yy s = Ig + Loy + I3y + I (8.33)
0 =1

with

1

baa(y1,0,0
]gg:/dl%,

b2a y17 0 Z/3> B b2a(y17 0 O)
2€y1+26 ’

Ly = dyld

(8.34)

I+5 / b2a yl Y2, ) an(ylaoaO)
0

)
2€y1+25

b (yh Y2, 2/3) B b2a(y17 0 3/3) B b2a(y17 Y2, O) + b2a(y17 07 O)

[;_a—i_ = /dylddey?) 1+2¢, 142¢ )

Y2 Y3
0
which can be integrated order by order in €.

Let us do some of the integrations explicitly to give a taste of the integration using
MPLs. The integral I3 is trivial and can be integrated directly without having to expand
the integrand in e. The integration over y; in IS can be performed without any trouble,
but let us illustrate the use of MPLs. Using equatlons (2.71a) and (2.70)), we find that the

finite (¢2) of ISF is given by

3In (—vys + wys +v) +In(1 —y3) — 3In (v)
Y3

‘[6+|€0 = dyS

3G (% y3) + G(1;
dys (s yzz Ligs) (8.35)

1
G (0, v . 1) — 5G(0,1:1).

v —w

All the other integrals can be performed in the same manner.
Note that at one point we will face a denominator of the form

ur —vr —1* —u+ 1w (8.36)
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whose roots are given by z and z defined by equation , allowing us to factorize them
and to perform partial fraction with these.

The result will be a quite lengthy expression with many MPLs which are not all inde-
pendent. With the help of the symbol or its enhanced extension, the coproduct , we can
map the expressions into a tensor algebra, where all the functional equations are just simple
algebraic identities, and simplify the expression significantly (section [2.7.4]). Afterwards,
we have to find an (simpler) expression with the same symbol. We will perform this step
by constructing a priori a basis of functions in each weight and use this basis as an ansatz
with arbitrary coefficients. By comparing the symbol of the integral with the symbol of
our basis, we can determine values of the coefficients and obtain a result expressed through
the functions of our basis.

The basis is not unique and we will use this freedom to construct the basis out of so-
called single-valued polylogarithms. These functions are combinations of MPLs where all
the individual discontinuities cancel. In reference [115] a single-valued basis was presented
for the three-mass triangle integrals and a general algorithm for its construction. These
functions will return as a subset of the basis functions for the integrals needed for this
work.

The construction of a single valued basis was carried out following the procedure pre-
sented in [115]. The details of the computation can be found in references [2,[114].

8.4.2 Catani poles

Inserting the expressions for the master integrals in the amplitude we checked that the poles
of the 1-loop (starting with £72) and 2-loop N;-piece (starting with £~?) amplitudes satisfy
the results given by Catani [177]. We review here shortly the steps of this verification.

The renormalization of the coupling (section consists only in replacing the bare
QCD coupling constant a, = %+ according to

5. = a,(0) (1= L) + O (3.37)

where

gy = 1104 I;TRNf S. = (4r)Fe~® (8.38)
are respectively the first coefficient of the QCD S-function (of which only the Ny-piece is
relevant to our study) and the typical phase-space volume factor in d = 4 — 2¢ dimensions
and g is the Euler-Masceroni constant. Corrections of higher order in the ag are not
needed for the 2-loop result as the underlying tree-level process does not involve QCD
vertices. The renormalization of the bare 2-loop amplitude yields terms of O(a?), that are
beyond the order needed. The renormalization of the bare 1-loop amplitude however will
contribute to O(a?):

M 2-loop — Mb 60

2-loop ?

MS (8.39)

1-loop
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After this renormalization, the poles of each order are described by the operators I
(for the O(as) and O(a?) coefficients) and Iy (for the O(a?)) for which explicit results are
given respectively in sections 3 and 5 of reference [177] for the problem at hand, of which
we only need the piece that is proportional to Ny.

At O(as) we should have for the poles of the 1-loop renormalized,

Ml—loop|poles = asIIMO—loop- (840)
with?]
1 3+4+2L
where

L= (”—2) . (8.42)

Picking the invariantsﬂ
t = —731.5762320546179,  u = —218.5257231465692, s3=1, s,=4, (8.43)
discarding the couplings, setting s 5= 3+ 84 —t —u = 955.1019552011871, N, = 3

and compting with 32-digits precision with Maple [101], we obtain for the difference of the
left- and right-hand side of equation (8.40))

<0.04 . 1.81 + 3.71i) 10-2"

g2 €

Repeating the same procedure at O(a?) with the same phase-space point for the Ny
part of the renormalized 2-loop matrix element, for which

M?—loop,Nf |poles - ag IQ|Nf M0—100p~ (844)

with

(8.45)

I2|Nf -

CFNf 1 +4—|—6L _ 65 + 972 4+ 60L
8 g3 Og? 54e ’

Using the same point and procedure as above the difference of the left- and right-hand side

of equation (8.44) reads

0.0009 1.357 — 0.157¢  5.460 — 0.2271 _96
_ + - 107",
g3 g2 €

The last numerical check shows that the numerical evaluation of complicated functions
such as the master integrals (8.13)) is not showing numerical instabilities.

2Note that Catani expands in 5= instead of a; = %=.

3We drop the units for this numerical check.
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Chapter 9

Real corrections

In this chapter we will concentrate on the real-emission contributions at NLO and NNLO
of the production of two off-shell photons with unrelated virtualities. The notations used
are detailed in appendix [A]

9.1 Single real amplitude

9.1.1 Quark-antiquark initial state channel

Let us now focus on the NLO real partonic cross section contribution from the sub-process
qq — gy*y*. Although it is not proportional to Ny, it will contribute to the N; part of
the NNLO correction via the renormalization of . The matrix element has IR singular-
ities when the extra (potentially unresolved) gluon, g, becomes soft or collinear to one of
the initial state partons pi,ps. These singularities translate into e-poles that have to be
extracted analytically in order to achieve their cancellation among the different pieces of
the computation.
The differential cross-section is given by

. 1
aq _ 2
dop = 2519 L I FAY ST

(9.1)

where | Mz g |? is the g7 — g7*7* matrix element squared, summed over spin and
colour and averaged over initial state quantum numbers. The phase space measure can be
decomposed as

Slzdz

dq)lg_mfy*,y* - dq)lg_thdq)Q_yy*,y*, (92)

™

where
Q =p1+p2 — Py (9.3)

97
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In order to control the collinear behavior of the gluon it is pertinent to parametrize its
momentum as

by = 25\ p1 + ZA P2 + zZ\/ Su)\j\ er, (94)
Q = (1 — 25\)]91 + (1 — 2)\)]?2 —ZV 812)\5\ er, (95)

where e is the unit vector transverse to p;, ps in d = 4 — 2¢ dimensions.
Using parametrization (9.4)) we obtain

1 dQq—o _

dq)lg_mQ 87T (27T)d 2Zd)\ (8122 )\)\) (96)

where we use d€24_» to denote the differential solid angle generating er. The collinear limits
of the matrix element squared are universal, in the sense that they are independent of the
process under consideration and can be computed for any parametrization [178|. Here,
the two collinear limits p, || p1 and p, || p» correspond to A — 0 and A — 1 respectively,
and in these limits the matrix element squared diverges and has the following asymptotic
behavior

293 qu(z)

L7205 Pul) o 0 .
Z  —S12ZA 1('2) + O<)‘ )’ as A — 0, (9 7)
—2¢> P,
Is qq(z) By ( ) + O()\O) as A — 1, (98)
V4 —5122)\

where the splitting kernel is given by

Po(z) = Cr (22 (1 —5)z), (9.9)

z

and

Bi(z) = B(zp1,p2),  Ba(z2) = B(p1, 2p2), (9.10)

are the shifted Born matrix element squared. The soft limit is also universal and commutes
trivially with the collinear limits. As can be checked explicitly, subtracting the soft limit
is not necessary in the present case, as the sum of and reproduces the universal
soft limit as z — 1.

We thus obtain a simple subtraction procedure at NLO which allows us to separate the
hard and collinear terms

dofl = doff + doll + dold (9.11a)
with
. 1 P, (z )Bl( ) P,,(z) Ba(z)

do¥! = —dd Sy — s e A A A 9.11b
OH 2812 12297y |: 9s 8122)\ Z s 8122)\ z ’ ( )

. 1 P, (2) B12(2)

doll = _—do oo |2 2249\%) 2121%) 9.11

01, Dspy 12T [ s SN 2 (9.11c)
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The integral over the hard differential cross section daf-_? is finite, and can therefore
be taken in d = 4 dimensions. Note that the massive phase space d®g_,,«+ implicitly
depends on A and z via the definition of (), see equation , and has also to be taken at
A = 0,1 in the counter-terms. It follows that the momenta of the off-shell photons entering
the subtraction terms are different from those entering the real matrix element squared.
Explicitly writing the full dependence on the photon momenta, we have

SlgdZ de 2

dq)12—>g7*7*B1(Z) = 16 (271‘)

—Zd\ (5122 )\)\) d(I)Q|)\=Q—>"/*"/*B(Zp17p27pV’f ) p’Y;)?

with pys 4+ pyy = Q|x=0. We will use this shorthand notation for all subsequent limits.

The integrals over the collinear counter terms dagjl and dag?; contain all the e-poles.
But since the shifted born matrix elements squared Bi(z) and Bs(z) and their respec-
tive massive phase spaces do not depend on A, the integration over A can be carried out
analytically, extracting the e-poles

1\, Bip(2) 2
/d 012 = —ECLS (3_12> O 22312 d@Q_yy ¥ dZZ qu< ) (912)
where
eEN(1 —¢)
= U=9) 1
¢ (1 —2e¢) (9-13)

However, the resulting integrated counter terms are still singular at the z — 1 (soft) limit,

see . In order to extract this last singularity we use an expansion in +-distributions
(section [2.3.2]), which leads to the result

2\ €
/dao1 , = Qs (5_) G(]]\(]]LO<Z)dO'BI’2(Z)dZ, (9.14)
12
where the shifted Born differential cross section is defined as
Bi(z)
ClUBi(Z) = 225 d(DQ%,Y L) (915)

and the integrated NLO splitting kernel is

13 PY(2)
NLO — _ _ _ qq
Gu (2) = C.Cp [(; + %) (2) +4D1(2) +z — 2(1 + 2) lnz} -
with qu (z) being the Altarelli-Parisi splitting kernel
3
PO (z) = Cr [21)0(2) —(1+2)+ 55(2)} : (9.16)

Note that this splitting kernel is related to P,(z) but not identical. This form makes
manifest the cancellation of the e-poles against the PDF counter term ([2.34b|) and the
1-loop virtual amplitude (section |8.4.2]).
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q v* q 7 q v*

Figure 9.1: Three of the six diagrams contributing to the double-real in the large N; limit.
The other three diagrams can be obtained by crossing the two photons.

9.1.2 Quark-gluon initial state channels

The sub-processes that contribute to the NLO real hadronic cross section qg — ¢v*v*,
99 — qY*Y*, q9 — @v*Y*, 9@ — YY", are treated in a similar fashion. For example,
looking at the sub-process qg — ¢v*7* we parametrize, as before,

Pqg = 25\ P1 + ZA D2 + 2\/ 812)\5\ er. (917)

The matrix element squared is finite at the soft limit (z — 1) and the limit p; || p, (A — 0).
It is only singular at A — 1, with the asymptotic behavior

—_— 2 =
2 o ﬁ—qu(z_) By(z) + O\, as A—1 (9.18)

zZ —8ZA

|M12ﬁq"/*“/*

where the corresponding splitting-kernel is

224722 —¢
P, =—\ 9.19
qg(Z) 4(1 o 8) ( )
This leads to an integrated collinear counter term
do?9 — 2\ vio
ofl =as | — | G~ (2)dop,(2)dz (9.20)
A S12
with
PY(2) _ P
GaFO(z) = —% —222 - 2(2*+ 7% In 2, (9.21)
where the Altarelli-Parisi splitting kernel is given by
1
PO(z) == (+ 7). (9.22)

4

For these channels, the cancellation of the e-poles only involves the PDF counter terms

(2.34b)), and not the virtual contributions.
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Figure 9.2: Example of a diagram that is not included for the double-real N; amplitude.

9.2 Double-real Ny amplitude

We now consider the double-real contributions to the total cross-section in the large Ny
limit. Among all the double-real corrections, only qG — v*v*¢'q’, with the ¢'¢’-pair being
attached to an intermediate gluon, is proportional to Ny, via explicit summation over the
flavor of the ¢'¢’-pair. In particular, all diagrams where the ¢'¢’-pair is attached to a v* will
not be proportional to Ny, because of the different charges of the different quark flavors.
The only matrix element squared we need to consider has a structure similar to the NLO
one, excepted that the gluon is now off-shell and attached to the current ¢* — ¢'q’, see
figure 0.1 In particular, we are not considering diagrams where quarks from the intial
state end up in the final state, such as the one depicted in figure 9.2,

First note that the NLO corrections described in the previous section will also contribute
to the double-real differential cross-section dogg, via the renormalization of the strong
coupling constant. Howerver, only the ¢g channel will contribute, as the renormalization
of a, cancels exactly the §y term of the PDF counter-terms in the case of the quark-gluon
channels.

The double-real differential cross section is then given by

Boln,

£

dorr = do%, — as (doff + doll + doll) (9.23)

where the unrenormalized double-real cross section is

(9.24)

dUgR = gmd‘bu—mmw* Mizqayey ?
and the NLO hard and collinear counter terms are defined in the previous section. We drop
the qq in the definition of NNLO quantities, since only this channel contributes in the large
Ny limit. Furthermore, we will also drop the primes from the final state quark-antiquark
pair.

In what follows, we will integrate over the phase space of the final state quarks. This
simplifies the extraction of limits, at the cost of losing differential information on the final
state quarks. In particular, the spin correlations in the final state collinear singularity will
be integrated out.

We factorize the phase space as follows:

S12 dzﬁdcb

o o 12—>9*qu)g*—>qqdq>62—w*v*' (9-25)

dq)l?—ﬂztﬁ*v* =



102 Chapter 9. Real corrections

Figure 9.3: Integration over the ¢g phase space.

with s, = pg being the 4-momentum squared of the parent off-shell gluon, p, = p, + ps,
and Q* = zsy5. Performing the d®, ,,; integration, hence losing differential information
on the final state quarks, we can write

/ dq)g* —qq | M 12—qqy*vy*

where Mg_, g«yx+ is the matrix element for the production of two off-shell photons and an
off-shell gluon, and A(e) is given by

2 Ale)
g

2 (9.26)

d—21 Qq,
d—12(4m)d-2

Note that the computation of A(e) goes along the same lines as the Passarino-Veltman
reduction of section [2.6.1} we make an ansatz from the Lorentz structure possible for the
integral shown in figure , with the metric g"” and the gluon momentum pip; and we
contract to find the coefficients, the only difference being that we are dealing this time
with a phase space integral, but this has no effect on the computation itself.

Hence in the following section we will consider

A(e) = 2¢2Ny

(9.27)

A(e)

1+4¢
89

1 s12dzdsg
dq) * d@ K K
2819 2w 27 12297 QTF A=y

2, (9.28)

do%, = [ Mizsgoyrys
9.2.1 Subtraction in the hierarchical parametrization

In this section, we present a subtraction procedure for do¥,. We parametrize the momen-
tum of the off-shell gluon hierarchically as

_ 1 — pz)\ -
Pg = ZAp1 + ZA 1 p_z}\ P2 + Z\/ S12pA\ er, (9.29)
—Z

where er is again the unit vector transverse to p; and ps in d = 4 — 2¢ dimensions. We
have the invariants

S19 = (p1 — pg)2 = —512Z\ (9.30a)
- ZA
S2g = (p2 — pg>2 = —8122)\ (1 — 1— [;\2) (930b)
Z2A\D
1—z2n

sg =1y = (pg +1g)* = 51 (9.30c)
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Using this parametrization, the phase space measure reads
e 1 s

8 (2m)d=2
where df2;_o denotes the integral over er, and becomes
1 s1p dzdsy Afe)

2519 2w 2w s;ﬁ

APy g0 = p zdA (s122°AN) (9.31)

dU%R = P A1 gQd Py [ Mz gropens ? (9.32)
The singular limits of the double real matrix element squared are once again universal
but are asymmetric as a consequence of the asymmetry of the hierarchical parametrization

under the exchage p; <> p2. We have to consider the following singular limits:

® p, = py + g || p1: This corresponds to A — 0, such that p, — Zp;, and the matrix
element squared has the asymptotic behavior

2 _493 Bl(z)

| Moy gemsnr < Pua(z,p) + O\, as A — 0, (9.33)
1g
with
2 _
Poga(z,p) = Cr s 24+ (1—¢)zp|, (9.34)
and
S51g = —S812ZA. (9.35)

® pg = pg + pg || p2: This corresponds to A — 1, such that p, — Zp,, and the matrix
element squared has the asymptotic behavior

2 —4g2 B(p1, 2p2)

| Mgy gy - . Pua(z,p) + O,  as A—1, (9.36)
29
with
2 B zp
Palin) = Cr |2~z -9 (1- 2. (9.37)
and
39y = —s122A(1 — p2). (9.38)

e p, || ps: This is the final state collinear singularity, when the gluon becomes on-shell
(s — 0), but remains in the hard region. It corresponds to p — 1 and the double
real matrix element trivially tends to the NLO matrix element

hm |M12—>9*’Y*’y* 2 — |M12_>g,y*,y* 2 (939)
p—1
The corresponding singularity does not come from the matrix element squared but

from the factor s, in (9.32).
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Note that both NNLO splitting kernels, and , tend smoothly to the NLO
splitting kernel as p — 1. It can be checked explicitly that no explicit subtraction of
the soft limit is necessary in the case at hand.

We can separate the singularities of do¥y from the hard part by writing

dopy = doyg + dogc + doce, + doce,, (9.40a)

where the double-hard contribution to the differential cross-section, the two collinear coun-
terterms and the remnant from the NLO renormalization are respectively

1 s12dzds, Ale)

donin = 2519 2w % 3}}—1—5 pisdq)m—WQd(I)Q—W*’Y*
4gs Bi(2)  4g: Bs(2)
- Pga(z,p) — —Pyga(2,p)
lg z —S2g z
4 Bi(z 4¢> Bs(z
- ’M12—>gv*v*|2 + ‘?i Py(2) 1(2) + % P(2) 2(2) ) (9.40D)
_Slg Z - 29 Z
1 sipdzds, A(e) _ 4g? Bi(z)
d = —4 p cdd dd R 9.40
gcc, 9515 21 21 Sgly—i_a 12—gQ Q—y*v* §1g qq,l(zup) P ( C)
1 sipdzds, Ale) _ 4g? Bs(2)
d = —4 “dd dPp_mim —P, . 9.40d
0CC, 9519 21 2m Sé—i-ap 1259QAF Q—y*y 52, 4a:2(%, P) > ( )
1 s12dzdsy, A(e) _
dop.o = —9 “dd APy
OR.C 2812 om O S;+E p 12—g@Q Q—y*y
4 Bi(z 4 Bs(z
+ giP()l()vL gsP()2(> (9.40¢)
For the dog,c we have also defined the limits of s1, and sy5 as p — 1 as
gig = —8122)\, g;g = —81225\. (941)

Note that the content of the bracket is identical to the subtracted single-real matrix element

squared (9.11b)).

9.2.2 Integrating the collinear counterterms

As for NLO, the shifted Born matrix elements squared Bj(z) do not depend on A and p
anymore, and hence those variables can be integrated over, giving rise to the e-poles.
Spelling out the triple collinear counterterms ) and m we get

2\F Ny (1 —e)e2e
4 (3—29)I'(2—2¢)

dO’CC = dZd)\d— 5(54/\25\2)_8(1 — ZX)Eai (

z Bi(z) ‘

X dq)Q—w*v*?qu;i(Z»P) >
ig

S12

(9.42)
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The integration over A and p is slightly more complicated than at NLO but the result can be
written in terms of hypergeometric functions o F}(a, b, ¢; Z), where a and b are e-dependent.
We have used the HypExp [106] package to expand them in e and then performed a +-
distribution expansion over z to extract the double soft singularity. We note here that
the part of docc,, that is singular at the soft (z — 1) limit is symmetric, such that the
asymmetry due to the parametrization between docc, and dogc, is limited to the regular
coefficients and doesn’t affect the 0- and +-distibution terms. As at NLO, we can write
the results as

2 2e
/ docc,, = a? (,u_) GngLO(z)daBl’Q(z)dz, (9.43)
Ap

S12

where the integrated splitting kernels are

CeNs [ 6(2) 1 I
0 r Ny
GINO() = = {— Tt [41?0(2)—55(2)—2(1“)}
1 201 N
+E {—162)1(2’) + gDo(z) - E(% —2177)6(2)
_%(1 +2)+8(1+2)Inz+2(1+ ZQ)IH?Z]
80,2 o o
+32D5(Z) — ng(Z) + 5(56 —217%)Dy(2)
1
—5—4(328 —1057% — 1116(3)5(2)
. — 2 =
Caa+ 28 60 om0+ AP g 4 pynEE
z z z
40 10 o In z
1
—5 (B8 Tz 4 (14 z)(—217r2))} +0(e), (9.44)
N Lo (s
GyNO(z) = GYNFO(2) + CZ—Sf (4(1 + z2)$ —4lnz — 4z> + Ofe). (9.45)

The poles of the integrated collinear counter-terms cancel against (i) those of the renor-
malized 2-loop virtual contribution (section [8.4.2)), (ii) those of the PDF counter-terms
and (iii) those of the NLO integrated counter-terms contributing to NNLO
due to renormalization, see equation (9.23). The Ny-part of the Altarelli-Parisi splitting
kernel is

1422

N;C 3
PV, = ——LF (5(5) <W2 + —) + 10Dy (%) + 31n(2)

—11 1 A4
18 1 z+ >, (9.46)

and enters together with the Ng-part of 5y to give the PDF counterterm we need, i.e.
Afﬁ])] N; given by equation ([2.34c).
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The single hard collinear counter term dog.c, equation (9.40¢), can be integrated over
p analytically to expose the final state singularity. Using

1 ng _ Nf 5 81222)\5\ 2
— — I hFAE) = —a, |1+ e —eln | @) , 9.47
o i+ (&) = —5¢ { tgemel (zﬂ(l - 2)\)) +0() (9.47)

it can be easily shown that the singularity arising from the integral over p cancels against
the renormalization of the strong coupling constant acting on the hard differential cross
section, leaving the finite contribution

. N Z2A\ -
dog = /daR;C — asB0|Nf doll = asff {—§ +1In <L>] dol. (9.48)
0
p

5 3 2(1 —z)\)
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Numerical results

The various contributions to the differential cross section for the Ny part of the process
pp — v*v* 4+ X up to the NNLO in the strong coupling expansion that we presented in
chapters [§ and [9] have been implemented in two different programs. The virtual contri-
butions are written in terms of master integrals (chapter [§) which in turn are evaluated
in terms of HPLs. In order to ensure the correct implementation of the master integrals
various analytic and numerical checks were performed against published results in the lit-
erature. We have used the program CHAPLIN [110]| for the numerical evaluation of the
necessary harmonic polylogarithms in the physical region. The poles of the 1- and 2-loop
virtual amplitudes, as predicted by [177] were checked both analytically and numerically,
at the implementation level (section [8.4.2). The NLO contribution was checked against
the MCFM [136] implementation[T]

The double real contributions were implemented in two different ways, according to
the hierarchical and the symmetric hierarchical parametrizations, see sections [9.2.1] and
reference [2] respectively. Due to the different double-real counter terms, the numerical
results for the double-hard, the single-hard and the integrated triple-collinear counterterm
cross sections are individually different. Only the sum of these contributions is physical,
which provides a strong numerical check of our two implementations.

In the following we present indicatively some differential distributions of interest, in-
cluding their factorization and renormalization scale dependence.

We use the central grid of the MSTWO08 PDFs [150] at the appropriate QCD order,
ignoring the uncertainties due to PDFs and the strong coupling constant. The strong
coupling constant is run at the appropriate QCD order (section while the electro-
magnetic coupling constant is kept fixed to its value at m.

107



108 Chapter 10. Numerical results

Mass variation
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Figure 10.1: Scale variation at LO, NLO and NNLO as a function of the photon virtualities,
here taken to be equal.

10.1 Equal virtualities

The total cross section obviously depends on the virtualities of the off-shell photons. As a
first study, we set the virtualities to be equal and study the scale uncertainty of the NLO
and NNLO K-factors as a function of the common photon virtuality, in figure [10.1] The
renormalization and factorization scales are set to be equal and varied in the interval

% < pp = pp < 2m (10.1)

where m = /s3 = \/s4. For photons that are widely off-shell, i.e. with /s34 > 10GeV,
the NNLO Ny cross section lies within a percent of the NLO cross section and the NNLO
Ny scale uncertainty is reduced, implying a satisfactory perturbative convergence for the
process. As the limit of on-shell photons m — 0 is approached the cross-section blows
up and so does its scale uncertainty, as expected since we do not impose any final state
cuts on the two photons. The result should not be taken seriously for low virtualities as
large cancellations are expected originating from the IBPs of the reduction that can yield
numerical instabilities, and the evolution of the PDFs and couplings at low energy takes
the finite bottom-quark mass into account.

'The pp — v*v* without photon decays is not an out-of-the-box process in MCFM, but it was possible
to compare our result with /s3 = \/s4 = my against MCFM’s pp — ZZ with modified couplings of the Z
boson to quarks.
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Figure 10.2: Rapidity distribution of the two off-shell photons with virtualities 30 GeV (a)
and 15 GeV (b). The bottom plots show the bin-by-bin ratio to the LO.
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Figure 10.3: Transverse momentum distribution of the two off-shell photons with virtu-

alities 30 GeV (a) and 15GeV (b).

LO.

The bottom plots show the bin-by-bin ratio to the
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10.2 Unequal virtualities
Next we turn to differential distributions for unequal photon virtualities. We set
V53 =15GeV, V51 = 30GeV. (10.2)

In figure we present the rapidity distributions of the two photons at each order in ay.
The transverse momentum distributions for the two photons are shown in figure [10.3] The
scale uncertainties are shown as shaded regions in the figures. The renormalization and
factorization scales are kept equal to each other and varied in the interval

10GeV < g = pp < 40 GeV. (10.3)

We note that the NNLO N; contribution does not alter the shape of the transverse mo-
mentum distribution apart from a small upward shift of the central value. The rapidity
distributions at NNLO follow the NLO pattern and again the central value is slightly shifted
upwards. Note that for both distributions, the scale variation of the NNLO is reduced and
for the most part completely contained within the NLO scale variation which shows the
improvement of the perturbative expansion. Table lists the inclusive cross sections
we obtain by varying the renormalization and factorization scales around the central val-
ues ([10.3). The number in parenthesis indicates the Monte-Carlo error on the last digit
after letting the program run for a couple of minutes on a standard personal computer.
These numbers can be recovered by summing the bins of the transverse-momentum or
rapidity distributions.

LO NLO NNLO N;
401.12(4)T5722 pb | 637.25(15) 3021 pb | 648.32(44)753% pb

Table 10.1: Inclusive cross sections for v*v* production with fixed virtualities 30 GeV and
15 GeV together with the effect of scale variations as described in the text.

Off-shell diphoton production contributes as a background, along with Z pair produc-
tion, to the Higgs boson measurements in the golden channel pp - H — ZZ* — 4[. In
that case the invariant mass of the photon pair must be in a window of several GeV around
the Higgs mass of 125 GeV. We therefore set the virtualities of the photons to

V55 =91.19GeV, /5, =27GeV, (10.4)

and obtain the invariant mass distribution of the photon pair shown in figure [10.4. The
renormalization and factorization scales are kept equal to each other and varied in the
interval

29.55 GeV < pip = pup < 118.19 GeV, (10.5)

around the central scale £(91.19 + 27) GeV.
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Figure 10.4: Invariant mass distribution of the photon pair with virtualities 91.19 GeV.
and 27 GeV.
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We note that the uncertainty that is given by scale variation shrinks as we go from NLO
to NNLO and lies within the NLO scale uncertainty, showing a better convergence behavior.
Although the process we compute is v*y* and not ZZ* direct production, our choice of
masses is motivated by the fact that the distribution of the invariant mass of the photon
pair varies sharply in the region where /s34 ~ 125 GeV and thus a reliable perturbative
computation needs to be precise enough not to be spoiled by the scale uncertainty, as is
the case for the NNLO N distribution.
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Chapter 11

Conclusion

We presented the computation of the NNLO QCD real and virtual corrections of a gauge-
invariant subset of the process pp — 7*7*, namely the contribution due to N; massless
quark loops. On the one hand, the relevant double-virtual diagrams were generated and
reduced to master integrals which were then computed and simplified using the modern
coproduct technique. On the other hand the double-real diagrams were computed, their
phase space parametrized and singularities extracted. The singularities from the virtual
and real diagrams and the PDF counterterms were computed independently and checked
to cancel each other, which gives us confidence in the computation. The implementation is
differential in the momentum of the off-shell photons and was performed in two independent
codes.

The preliminary study of the effect of this Ny piece on the differential distribution
is mostly the improvement of the behavior under scale variations. We do not observe a
significant alteration of the shape of distribution relative to the NLO result.

The next steps will consist in extending the result to the full NNLO QCD corrections
including gluon and ghost loops. The reduction to master integrals of the full 2-loop
amplitude is well under way and most necessary master integrals have been identified. The
remaining steps lie in the computation of the master integrals needed for this process using
the same techniques as those presented here.

Furthermore, the implementation of processes like direct production of WW, WZ, Z~*
that are genuinely interesting in their own right, but are also specifically directly relevant
for backgrounds to Higgs searches, can be achieved in this framework by taking into account
the different vector and axial couplings and combining them with the relevant PDFs.
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Outlook

Two years ago the history of high-energy physics came to a climax with the announce-
ment of the discovery of a new boson at CERN. We need to go back to 1983 and the
announcement of the discovery of the W and Z bosons to see such an electrifying event
happen.

There is a growing evidence that the boson is a Higgs boson, i.e. that it is related to
the mechanism of electroweak symmetry breaking. But the journey is far from over. The
study of the properties of this Higgs boson, to assess or discard its SM-like behavior will
require the comparison of experimental data with theoretical predictions. We can estimate
ourselves to be lucky, because the Higgs lies in a domain where many decay branching
ratios are in principle accessible (figure . As the time of a new high-energy lepton collider
still lies far in the future, the efforts are focused on extracting the most information in a
hadronic environment, which is a challenge both experimentally and theoretically. In this
context, the computation of cross sections for signal as well as background processes with
fully resolved kinematics to an order in QCD where the theoretical uncertainty can be
safely assumed under control is critical.

In this thesis we have focused on two different aspects that are of direct relevance for
the investigation of the properties of the Higgs boson observed at the LHC. In the case of
the Higgsstrahlung process, the straightforward outlook is the study of the effect at NNLO
in QCD and the implementation of a fat-jet strategy on the experimental analysis side. For
the v*v* production process, the extention to include the fully differential dependence on
the final state quarks is on the way, and the full NNLO computation should be possible in
a near future, with the evaluation of the necessary master integrals using modern refined
techniques like the coproduct. Adapting the couplings, the implementation of a fully
differential diboson production code with corrections up to NNLO QCD lies within reach.

So far, there has been no surprise discovery of new particles (like supersymmetric
partners, or a new vector boson) and the SM seems to provide an excellent description of
the phenomenology we observe at high-energy colliders. Even in the eventuality of nature
being “boring”, higher-order computations reveal very beautiful mathematical structures
that are not yet fully understood, which might hint that the language of Feynman diagrams
might hide superior principles and maybe some work needs to be done on the more formal
side.
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Appendix A

Notations and useful formulae

Units We work in the whole thesis in units where h = ¢ = 1. In these units we can
express cross sections through the conversion

1fb = 2,568 - 1072 GeV 2.

QCD The number of colors is N.. C'r and C'4 denote the color factor for the fundamental
and adjoint representation repsectively. We always use the normalization Tp = 1/2.
We define
1IN, — 2Ny o)

60_T7 as = T

(A.1)

DREG The metric tensor is denoted ¢"” and we use the most-plus sign convention
which is the common choice in high-energy physics. With this metric, the mass such that
p? = pupug™ = m*. When dealing with divergences in DREG [35,52,/53], the following

quantities are used:
d=4—-2 Q ——d/2 S— 47168 - A2
B - o I'(d/2)’ e = (4m)" exp(—rpe), (A.2)

where vp ~ 0.5772156649 is the Euler-Mascheroni constant.

Loop integrals In the evaluation of loop integrals with Feynman parameters, the fol-
lowing formulae are useful [17],

T e R LA

AV A T T[T () ) Al
dl 1L (=D)MT(n—=d/2) 4
I e T .
We note that,
['(e) = é —ve + O(e), [(1+4¢) =el'(e). (A.5)
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PDFs We define the convolution of two functions through

1

Foglz) = / dedy f(x)g(y)8(= — ), (A.6)

0
and we will make use of the following straightforward identity:

1 1

/ 02 [f ® gl (2)o(z) = / ddyf (2)g(y)o(zy). (A7)

0 0

For the extraction of singularities, we use +-distributions which are defined via

j dx [@Lgm - / 17 (4(z) — 9(0)). (A8)

and we introduce the shorthand notation

xz

D, (z) = an ﬂ R (A.9)

Using this notation we can write the following expansion in +-distributions:

1 5(2) = (-ne)k .
St = e + kz ] Dr(2). (A.10)
=0



Appendix B

Coefficients of the master integrals
for the N -piece of the 2-loop
amplitude of ¢ — ~v*~*

coefficients_masters_2LNf .mpl

This file contains the coefficient of each master integral for the
Nf-piece of the *unrenormalized* 2-loop amplitude.

The naming follows the notation from the publication, i.e. cpbox0011plp2p3
is the coefficient of the master Pbox(0,0,1,1,pl,p2,p3).

The functions are given as a rational function of the invartiants s, t, u,
s3 and s4, that are subject to the condition s + t + u = s3 + s4.

H OH HF H H HF H H H K HH

We have factored out Nf*CF*Nc*(asu*Sepsilon) "2

cpbox010000011p1p2p3 := 4x*(e-1)*(32*e"5xs3"5%s4 " 5*t+32*%e " 5*x5375*s4 " 5*u+32*e 5%
s37bxsd " 4xt*ut+32%e " b*s375*s4"4*xu"2-64%e " 5*s3 b*xs4 "3kt *xu"2-64%e " 5*s3 5*s4"3%u"3
+32%e " 5%5374*xs4 " bxtku+32%e " bxs374*s4"5*%u"2-16%e"5*%s374*54" 4%t~ 3-80*%e " 5*%s374*s4
T4xt T 2%u-192%e " b*s374*s4 T4kt xu"2-128%e " 5*s374%s474*xu"3-16*%e " bxs374*xs4d " 3*xt " 3%u

-80%e"bxs374*xs4" 3kt "2xu"2-144%e " 5%5374*s4 " 3xt*xu"3-80%e " 5*s374*s4 " 3*%u"4+32%e " 5%
S374%s47 2%t " 3%u"2+160%e " 5*xs374*s4 " 2%t " 2%u" 3+304*%e " 5xs374*s4 " 2%t *u"4+176%e " 5%s3
“4%8472%u"5-64*%e " bxs373xs4 " bxt*ku"2-64%e 5xs373%s4"5%u"3-16*%e " b*xs373*xs4"4xt " 3*%u
-80%e"bxs373%sd"4*xt " 2%xu"2-144%e " 5*s373%s4 " 4xt*xu”"3-80%e " 5*s373*s4"4*u"4+2%e " 5*

S373%847 3%t 5+26*%e " b*xs373%s4 " 3%t "4xu+124%e"5%s373*s4 " 3%t "3*ku"2+492%e " 5*s3"3*s4
"3%t72%u"3+866%e " bxs373%xs4 " 3%t ku"4+474%e " 5%s373*%s4 7 3%u"5+2%e " 5xs373%xs4 " 2%t "b*xu
+26*%e " 5*s373%s4 2%t "4*u"2+100%e " 5*s373*%s4 " 2%t " 3*u"3-60%e " 5*s373*s4" 2%t "2*%xu"4

-390%e " b*s373%s4 " 2%t *xu"5-254*%e " 5*s373*%s4"2*%xu"6-4*e " 5*xs37 3*%sd*t "b*xu"2-52%e"5*s3”
3xsdxt"4*xu”3-208%e " bxs3"3ksd*xt " 3%u"4-352%e"5*s37 3*ksd*t " 2*xu"5-268%e " 5*s3" 3%sd*t
*¥U"6-T76*%e " 5*s373%s4*u"T7+32%e " 5*s372%s4"4*xt " 3*%u"2+160%e " 5*xs372*xs4"4*t " 2*xu"3+304
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
124 amplitude of qq — v*v*

*e " bxs372%s4 74kt *u"4+176%e"5*%s372%s474*xu"5+2%e " bxs372*%s4 " 3%t "bku+26*e " 5*xs37 2%
S473xt"4*u"2+100%e " 5*s372%s4 " 3%t " 3*u"3-60%e " 5*s372%s4 " 3%t "2*%xu"4-390*%e " 5*s37 2%
S4"3xt*u"5-254%e " bxs372%s4"3*u"6-2%e " 5*s372%s4 2%t "6*u-17*e " 5*s372%s4 " 2%t "bxu”
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
126 amplitude of qq — v*v*
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
128 amplitude of qq — v*v*

*S47 2%t 74*%u"2-940*%e*s373%s4 " 2%t " 3*%u"3-3468*%e*s373*%s4 " 2%t " 2*u"4-4150*%e*s3"3*s4"
2%t kU~ 5-740*%e*s3"3%s4"2%u"6-16%e*s373%s4d*t " 5*u"2-128*e*s3"3*sd*t "4*u”3+76%e*s3
“3*ksdxt " 3%u"4+1248%e*s3"3ksd*xt " 2*xu"5+1720%e*s37 3*ksd*kt*u"6+644%e*xs37 3ksd*xu"7+22
*exs37 3%t "5*u"3+160%exs37 3%t "4*xu"4+404%e*xs37 3%t " 3*%u"5+476%e*xs3 "3kt " 2*xu"6+270%e
*¥5373%t*xu"7+60*%e*s373*xu"8-352*%e*xs372*%s476%u"3-320%e*xs372*%s4 "5t " 2%xu"2-248%e*s3
"2%8475%t*xu"3+1096*%e*s372%s4"5*%u"4-16%e*s372%s4 "4kt T4Akut72xe*s372%s4 74kt " 3*%u"2
+1462%e*s372%s4"4xt " 2%u"3+1660*%e*s372%s4 " 4xt*xu"4-818*e*s372%s4"4*xu"5-30*%e*s372
*S47 3%t 5*u-176%e*s372%s4" 3%t "4*u"2-940%e*s372%s4 " 3%t "3*u"3-3468*%e*s372%s4" 3%t
"2*%u”4-4150%e*s372%s4 " 3%tk u"5-740%e*s372*%s4 " 3%u"6-7T*e*xs3 " 2xs4" 2%t "6*u—18*e*xs3”
2%x847 2%t "Exu"2+190*%exs37 2% 847 2%t 4% 3+1280%e*s37 2% s4 " 2%t " 3%u"4+3453%e*s372%s4
2%t " 2%u"5+3834%exs372%xs4 " 2%t *u"6+1188*%e*s372%s4 " 2% 7+22%e*s3 7 2%sd*t T6*ku" 2+
186*e*xs372*%sd*t " 5xu"3+532%e*xs372*xsd*t "4*xu"4+588*%e*xs372*xs4*xt " 3*%u"5-118%e*xs37 2%
SA*t72*%Uu"6-622%e*s3 " 2xsd*xt*xu”7-284*%e*s372%s4*u"8-13*%e*s37 2%t "6*xu"3-122%e*s37 2%
t75*xu"4-452%e*xs37 2%t "4*xu"5-840%e*s37 2%t " 3*xu"6-835*%e*s37 2%t "2*%xu"7-426%e*s3 7 2%t *
U~ 8-88%e*xs372*%u"9+176*e*s3*s4 5%t " 2%u"3+332*%e*s3*s4 bk t*xu"4+140%e*xs3*xs4"5*u" b+
40*%e*s3*s4" 4%t "4*xu"2-32%exs3%s4"4xt " 3*%u"3-804*exs3%s4"4xt " 2*%u"4-1264*%e*s3*s4"4
*t*u"5-500*e*xs3*xs4d"4*u"6-16%e*xs3*s4" 3%t "5*u"2-128%e*xs3*s4" 3%t "4*u"3+76*e*s3*sd
3%t T3%u"4+1248%exs3%s4 " 3%t T2*%u"b+1720*%e*s3*s4 " 3kt *u"6+644*xe*xs3ksd " 3ku"T7T+22%e*
S3*s47 2%t "6*xu"2+186*%exs3*s4 " 2%t "b*xu"3+532*%exs3*s4 " 2%t "4*u"4+588*%exs3*s4 " 2%t " 3%
U"5-118*e*s3%s47 2%t " 2*%u"6-622%e*s3%s4 2%tk u"7-284*e*s3*s4"2*xu"8-60*e*xs3*xsd*xt "6
*¥u"3-396%e*s3%s4d*xt "bxu"4-1044*e*s3*xsd*t "4*u"5-1500*%exs3*s4*t"3*%u"6-1212%e*s3*
S4xt"2*%xu”7-480%e*s3*sd*t*u"8-60*%e*s3*sd*xu”9+34*exs3*xt " 6*u"4+206%exs3*t " 5*u"b+
B544%e*s3*xt"4*xu"6+796*%e*xs3*t " 3*u”T7+674*e*xs3*t " 2%u"8+310*e*s3*xt*xu~9+60*e*s3*xu”~10
—22%e*s4"4Axt " 4*xu"3-80*e*xsd"4*xt "3xu"4-110%e*sd "4kt " 2xu"5-68*e*sd " 4xt*xu”"6-16%ex*
S474xu"T+22%e*xs4 " 3xt " 5*u"3+160%exs4 " 3xt "4*u"4+404%exs4" 3%t " 3*%u"5+476%exs4d " 3%t "
2*U"6+270%e*xsd "3k t*xu"7T+60*%e*s4d ™ 3*%u"8-13*%e*s4d " 2%t "6*xu”3-122%e*s4 " 2%t "5ku"4-452%
exs4 " 2%t T 4*xu"5-840%e*xs4 2%t " 3%u"6-835%e*xsd 2%t " 2%xu"7-426%e*xs4 " 2*xt*u"8-88*%e*s4”
2%xU"9+34*kexsd*t "6*¥u"4+206%e*xsd* t " 5*¥u"5+b44*xe*xsd*tT4*u"6+796%e*s4*xt " 3xu"7+674*e
*¥s4*xt " 2%xu"8+310%e*xsdxt*xu”9+60*e*xsd*xu”10-19%e*t " 6*xu~5-98*e*t "5*xu"6-218*e*xt "4*u”
T-272%ext”~3%u"8-203*%e*t"2%u"9-86*e*t*u~10-16*e*xu”11+64*s3 " 6*s4"4*xu-128*s3"6%*s4
"3*U”2+64%s376%s4"2*%xu" 3-64%s3"5*s4 " bxt+128%s3"b*xs4 " bxu+64*s3"5*s4"4*xt*xu-512%s3
"b*s474%u"2-32%s375*s4 7 3%t " 2xu+608*s3 " 5*s4 " 3%u"3+64%s375%s4 7 2%t T 2%u" 2+64*%s3 7 b*
S472xt*u”3-192%s375%s4"2%u"4-32%s3 " 5*sdxt " 2%u"3-64*%s3 5*ksdkt*u"4-32%xs3 " bksdxu”
B5+64%s374*xs4"6xu+64*s374*s4 " 5xtxu-512%s374*xs4"5*xu"2+32%s374*s4 " 4xt " 3+32%s374*
S474xt " 2%u—-32%s374*xsd " 4xt*u"2+1152%s374*s474*xu"3-32%s374*s4 "3kt " 3*ku+128%s374*
S47 3%t 72%u"2+160%s374*xs4 " 3xt*u"3-896*5374*s4 " 3*xu"4+4%5374*xs4 " 2%t " 4*u-16%s374*
S472%xt " 3%u"2-328%s374*s4 " 2%t " 2%u"3-464%s374*s4 " 2%t *u"4+68%s3"4*xs4d " 2*%u"5-8%s374
*s4*xtT4xu"2+144%xs374xsdxt T 2%u"4+256%s3 74k sd*xtxu"5+120*%s374*xsdkxu"6+4xs37 4kt "4xu
"3+16%s374*t " 3%xu"4+24*%s37 4%t " 2*%u"5+16%s374*tku"6+4*s374*xu"7-128%s373%xs4"6*u" 2
-32%s8373%s4"bxt " 2*xu+608*%s373*%s4"5*%u"3-32%s373*s4 "4kt " 3ku+128%s3"3ksd "4kt T 2%xu" 2+
160%s373*%s4"4*xt*u"3-896*s373*%s474*u"4-4*s373*%s4 3%t "5-24%s5373*%s4" 3%t "4*u-56*s3
T3%s47 3%t "3%xu"2-528%s373%s4 " 3%t "2%xu"3-772%s3 7 3*s4 "3kt *u"4+296%s3 " 3*xs4d " 3ku"b+4x*
837 3%s47 2%t " h*u+16%s373*%s47 2%t "4*ku"2+120%s373%s4 7 2%t " 3*%u"3+688%s373%s4 7 2%t "2%u
T4+996%s37 3*xs4 " 2%t *u"5+288%s373%s4 " 2% u"6+4*s3 " 3ksd*xt "E*u"2+40%s3 " 3ksdxt " 4*xu” 3+
B6%s5373%s4*t " 3*%u"4-144%s37 3*s4*t " 2*xu"5-316*%s37 3*ksd*xt*u"6-152%s3"3*s4*u"7-4%s3"



129

3xt75*%u"3-32%s37 3%t "4*u"4-88*%s37 3kt "3*xu"5-112%s3" 3%t "2*%u"6-68*s3 " 3kt*u"7-16%*s3
"3*%u”8+64%s372%s476*u” 3+64%s372%s4 " bxt T 2*%u"2+64*s3 7 2%s4 bkt *u"3-192%s372%s4 " 5%
U 4+4%xs372*%s4 74kt T4xu-16*%s372*%s4 7 4%t " 3%xu"2-328%s372*%s4 7 4*t " 2%xu"3-464%s372*%s474
*t*U"4+68%5372%s474*u"5+4%s37 2% 54" 3%t Th*xu+16%s372%s4 73kt "4*u"2+120%s372%s4 " 3%t
"3%u"3+688*s372%84 " 3%t " 2+%u"4+996% 537 2% 84 " 3%t ku"5+288*s372*%s4 " 3*u"6+2*xs372%s4 "2
*t76*u+12%s372%s47 2%t "5ku"2+40% 837 2% 547 2%t 4% u"3-16%s37 2% s4 " 2%t " 3*xu"4-454%s372
*847 2%t 724U 5-748%8372%84 " 2%t *u"6-308*%s372%s4 " 2%xu"7-4%s372%s4*xt " 6*xu"2-36*s37 2%
s4xt " b*xu"3-144%s372%s4*t"4*u"4-264%s372%s4*xt " 3*xu"5-164*s37 2*ks4*kt"2%u"6+44%s372
*s4*xt*u"T+56%s372*%s4*u"8+2%xs37 2%t T6*xu"3+20*%s37 2%t "5k u"4+84%s37 2%t "4*u"5+176*s3
T2%t73%u"6+194%s37 2%t T 2% u"7+108% 837 2%tk u"8+24%s372%u"9-32%s3*s4 "5kt "2*%u"3-64%
s3%s4"bxt*xu"4-32%s3%s4 " b*xu"5-8%s3%s4 4%t "4xu"2+144*%s3*s4 "4kt " 2xu"4+256*%s3*xsd "4
*t*u"5+120%s3%s474*u"6+4%s3%s4 3%t "5*u"2+40%s3*%s4 " 3%t "4*u"3+56%s3*xs4"3xt " 3*%u"4
-144%s3%xs4" 3%t " 2%u"5-316%s3%s4 3%t *ku"6-152*%s3*s4"3*u"7-4*s3*s4 2%t " 6*xu"2-36*s3
*S47 2%t "b*u"3-144*%s3*s4 2%t T4*xu"4-264%s3*xs4 " 2%t " 3%u"5-164*s3%s4 " 2%t T 2%u"6+44 %
S3%s472xt*u"7+56%s3%s472%u"8+8%s3*sd*t " 6*xu”"3+60*s3*ksd*xt " 5*xu"4+200%s3*sd*kt "4*xu”
B+360*s3*s4*t " 3*xu"~6+344*%s3*s4*t " 2*xu"7+156*%s3*sd*t*u"8+24*s3*xsd*xu~9-4*xs3*t " 6*u”
4-28%s3*t"5%u"5-88*%s3*%t "4*u"6-152%s3*t " 3*xu"7-148*%s3*t " 2*%u"8-76*s3*t*u"9-16*s3*
U 10+4%s474xt " 4*xu"3+16%s4"4*xt " 3%u"4+24%xs4 "4kt " 2xu"5+16*s4 "4kt xu"6+4*s474*xu"T7-4
*847 3%t "5%u"3-32%s4 " 3%t "4*xu"4-88*s4" 3%t "3*ku"5-112%s47 3kt "2*%u"6-68*s4 " 3xt*ku"7
—16*%s473%u"8+2%s4 2%t "6*u"3+20%s4 " 2%t "5*xu"4+84*s4 " 2%t "4*u"5+176*s4 " 2%t " 3*ku"6+
194%s47 2%t " 2%u”"7+108%s4 ™ 2%t *xu"8+24*s4 " 2*%u"9-4*xsd*xt "6*u~4-28*sd*t " 5*u~5-88*sdx*t
T4xu”6-152%s4xt "3%u"7-148%sd*xt T 2*%u"8-76*sd*xt*xu"9-16%s4*u”10+2*xt "6*xu"5+12%t " 5*u
T6+32%t " 4ku”T+4A8%t " 3ku"8+42%t " 24u”9+20*t*u”"10+4*xu"11) / (u-s3) "2/ (u-s4) "2/u"3/t/
(-4%s3%s4+t"2+2%t*u+u~2) "2/ (-3+2%e) /e~ 2;

cpbox010000111p1p2p3 := -2x(e-1)*(192%e"5*s3"5x54"3*t+192%e " 5*s3 " 5*s4 "~ 3*xu-192%
e bxs374*s4 " 3*xt*xu—192%e " 5*xs374*s4"3*%u"2-96%e " 5*s374%s4" 2%t " 3-480*%e " 5*s374%s4"2
*t72%u-336*e"5*s374*s4 2%t *u"2+48%e " b*s374*s4 " 2xu"3+96*e " 5*s373*s4 " 2%t " 3*u+480
*e"Bbxs373%s4 2%t " 2% u"2+192%e " 5*s373%s4 " 2%t *ku"3-192%e " 5xs373*s4 " 2*%u"4+12%e"5*s3
"3%84*xt"b+156%e " b*s373ks4*t"4*u+336*%e " b*ks373ks4*kt " 3*%u"2+192%e " 5*s373%s4*xt " 2*xu”
3-60%e~5*s3"3*ksd*t*u"4-60%e"5*s373*s4*xu"5+144*%e " 5*xs372%xg4 " 2xt*u"4+144%e"5*s372
*¥s472%u"5-12%e " b*s3" 2xsd*xt "b*u-156%e " 5*s3 " 2xsd*xt "4*u"2-264%e " bkxs3 7 2*xsdxt " 3%u”"3
+24%e”"b*s372%s4*xt " 2%xu"4+276*%e " b*s3 7 2xs4*kt*xu"5+132*%e " b*s372*%s4*u"6-12%e " 5xs37 2%
t76xu-51*%e " b*s37 2%t "5*u"2-75%e " 5*s37 2%t "4*xu”~3-30%e " 5xs37 2%t "3*%u"4+30*%e " 5*xs37 2%
t72%xu"5+33*%e " bxs37 2%t *u"6+9%e " 5*xs372%xu"7-72%e " bkxs3*xs4*t"3*u"4-216%e " bks3*xsd*t”
2%u"5-216%e " b*s3*sdxt*u"6-72%e " b*s3*sd*u”7+12%e " 5*s3*t " 6*xu"2+42*%e " bxs3*%t"5*u"3
+30*%e " 5*s3%t "4*xu"4-60%e " 5xs3*xt " 3*%u"5-120%e " 5*s3*t " 2*%u"6-78*%e " 5*s3*t*xu~7-18*e"5
*83*%u"8+9%e " bxt " 5xu"4+45%e " bxt "4*xu"5+90%e " 5xt " 3*u"6+90%e " 5xt " 2*%u”"7+45%xe " 5xtxu”
8+9%e " 5*xu”~9+192%xe " 4*xs3"6xs4 " 2xu-544%e"4*s3"5*s4"3*t+32*%e"4*s3"b*s4"3*xu-288*e"4
*5375%s47 2%t *xu-480%e"4*s3 " 5%s4"2%xu"2-144%e"4*s3 " b*sd*t " 2%xu-216*%e"4*s3 " b*ksdkt*u
T2-T2%e " 4*xs3 " bxsdxu”"3+192%e " 4*s374*s4"4xut+736%e " 4*xs3 4xs4 "3kt xut224%e " 4xs3 4%
S473%u"2+272%e " 4*xs374*xs4 " 2%t " 3+880%e " 4*xs374*xs4 " 2%t T 2xu+672%e " 4*s374*ks4 72kt *xu" 2
+656%e"4*s374*s472%u"3+168%e"4*s3 7 4*sd*kt " 3kut+672%e " 4*s3 7 4*kshdkt T 2xu"2+696%e " 4%
837 4*sdxt*u"3+192%e " 4*s374*sd*xu"4+24*%e " 4*s37 4kt T4*kutT78*%e " 4*s374*xt " 3*ku"2+90%e"4
*¥53 4%t " 2*%u"3+42%e " 4*xs37 4kt *u"4+6%e " 4*xs374*xu"5-128*%e"4*xs3 " 3*xs4d"4*u"2-96%e"4*s3
"3*%s47 3%t "2%xu-632%e"4*s373%s4 " 3%t *xu"2-280*%e"4*s3"3%s4 " 3*xu"3-344%e " 4*s3"3%s4 " 2%



Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
136 amplitude of qq — v*v*
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s3%t75-30*%e*s3*t "4*xu+60*e*s3*t " 2*xu"3+60*%e*s3*kt*u"4+18*%e*s3*u"5+12%exsd 2%t "4+
24%exs4 " 2%t " 3kutbke*xsd T 2%t T2xu"2-12%exs4 "2kt ku"3-6%e*sd " 2*xu"4-12%e*xsdxt "5-30%e
*sd*xt 4xu+60*ke*xsdxt " 2xu”"3+60*e*sd*kt*xu"4+18*e*sd*u"5+13%e*xt " 6+46%ext " 5*ku+38*ext
T4xu”2-48%ext " 3%u"3-107*ext " 2*u"4-70*e*xt*u"b-16*e*xu”"6-64%s3"3%s4 " 2*xu-64*s37 2%
S473%u-32%s372%s47 2%t T2+64%s372%s4 " 2%tk ut+64*s372%s4 7 2% 0" 2+32% 837 2k sd*xt T 2ku+64*
S372%sdxt*xu"2+32%s3 7 2% s4* 1" 3+32*%s3*s4 " 2%t " 2xu+64*xs3ksd "2kt *u"2+32*%s3%s4 " 2%xu" 3+
16xs3*sd*xt"4-80%s3*sd*t " 2*xu"2-96%s3*sd*t*u”3-32*s3*sd*xu"4-4*xs3*t"4*u-16*s3*t"3
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*¥UT2-24*%s3*xt 7 2*%u"3-16*s3*xt*xu"4-4*xs3*xu"5-4*sd*t "4*xu-16*sd*xt " 3*xu"2-24*%sd*xt"2%u"3
—16*sd*xt*xu”4-4*sd*u"5-2%t " 6-4*xt " 5xu+B*xt "4*u"2+32%t " 3%u"3+38*%t "2*u"4+20*t*u"5+4
*u"6) /t/ (-4*s3*sd+t " 2+2*xt*xu+u~2) "2/ (3xe-2) / (-3+2*e) /e/u;

cpbox010010111p1p2p3 := 4x(e-1)*(-288*e " 5*s3"3*%s4"3xt-288%e " 5*s3"3*s4"3*u+144%
e"5%8372%s47 2%t " 3+576%e " 5%s372%s4 " 2%t " 2*%u+720*%e " b*s372%xs4 " 2xt*u"2+288%e " 5%s372
*s472%u"3-18%e " b*s3%s4*t"5-162%e " 5*xs3*sd*xt " 4*u-468*e " 5xs3*sd*t"3*u"2-612%e 5%
S3%s4*t"2*%xu"3-378*%e " bxs3*sd*t*xu"4-90%e " bks3*xsd*xu"5+9%e bkt " 6*xut+b4dxe 5k t " bxu"2+
135%e 5%t " 4*u"3+180%e " bxt " 3*xu~4+135*%e " bxt "2*%u"5+b4*e bkt u"6+9%e " 5*xu"7+192%e"4
*¥5374%s4" 2%t -96%e " 4*s374*s4 " 2%xu-192%e"4*s373*%s4 3%t -1056*%e"4*s3" 3*xs4 " 3*xu-192%e
T4%5373%s472%t"2-96%e " 4*xs37 3%s4 " 2%t kut96*ke "4*s3 7 3*s4 " 2%xu"2-48%e " 4*s37 3*%s4*t "3
-96%e"4xs3" 3ksdxt " 2%u-48%e 4*s37 3*kshkt*u"2+192%e 4*s372%s4 4%t -96%e"4*s372%s4"4
*¥UuU-192%e"4*xs372%xs4 3%t "2-96%e " 4*xs372*%s4 " 3kt *ut96*e"4*s372%s4 " 3*xu"2+336*%e"4*s3"
2%x847 2%t " 3+1248%e " 4*xs37 2% 847 2%t T 2% u+1632*%e " 4*s37 2% 547 2%t *u"2+720%e " 4*s372%s4 72
*¥U"3+48%e"4*s372%sd*t"4+144%e"4xs372*ksdkt " 3xut144*e"4xs372%s4*kt T 2xu"2+48*e " 4%
S372%sd*xt*u"3+6%e " 4*s37 2kt "4*kut24*xe " 4*s37 2%t "3ku"2+36%e"4*s37 2%t T 2%u" 3+24%e "4 *
S372%t*u"4+6%e " 4xs372xu"5-48*%e " 4*s3%s4 " 3%t " 3-96%e " 4*xs3*s4 3kt "2*u-48*e"4*s3*s4
T3%tku"2+48%e"4*s3%xs4 7 2%t "4+ 144%e " 4*s3%s4 7 2%t " 3*kut144*ke " 4*ks3%s47 2%t T 2%u" 2+48%e
T4xg3ks4T2%xt*u"3-108%e " 4*s3*ksdxt "5-b46*%e " 4dxs3*sd*t"4*xu-1176%e " 4*ks3ksdxt"3*%u"2
—-1332%e " 4*s3*s4*xt"2*%u"3-780%e " 4*s3*xsd*xt*u"4-186*%e " 4d*xs3*sd*u~5-6*%e " 4*s3*t " 5*xu-30
*e 4xs3*xtT4*u"2-60%e"4*s3*%t " 3*xu"3-60%e"4*xs3*xt " 2*xu"4-30%e"4*s3*xt*u"b-6*e " 4dxs3*u
T6+6ke 4*xs4T 2%t T4Akut24ke " 4ks4A T 2%t T3kuT2+36%e 4% s4 T 2%t T 2% " 3+24%e " 4*xs4 " 2kt ku" 4+
6xe"4*xs4"2%u"b-6%e " 4dxsdxt "b*u-30%e " 4*xsdxt"4*u"2-60%e " 4*sd*t " 3*xu"3-60%e " 4ksdxt”
2xu"4-30*%e " 4xsd*xt*xu"5-6%e " 4*sd*ku"6+9%e " 4*xt " T7+63*%e " 4*xt " 6xu+198*%e " 4*t " 5kxu"2+360%
e 4xt " 4%xu”"3+405%e"4xt " 3xu"4+279%e "4kt " 2xu"5+108*%e "4kt *xu"6+18*e " 4*xu”"7-400%e " 3%
s374*xs4" 2%t -208%e " 3*%s374*s4 " 2*xu+864*e " 3*s3"3*%s4 3%t +1536%e " 3*%s3"3*xs4 " 3*xu+528%e
"3%8373%s47 2%t "2+480%e " 3%s37 3%s4 " 2%t *xu+240%e " 3*%s373%s472%u"2+140%e " 3*xs3”" 3*xs4dx*t
"3+492%e”3xs37 3%s4x*xt " 2*xutdddxe” 3xs3" 3xsd*xt*ku"2+92%e " 3*s3"3*s4*u"3-400%e"3%s372
*8474%t-208%e " 3*%s372%xs4 " 4*xu+528%e " 3%s372%s4 " 3%t "2+480%e " 3*%s372%s4 " 3kt *xu+240%e”
3%x5372%xs47"3%u"2-1112%e"3%s372%s4 " 2%t " 3-2776%e " 3%s372%s4 " 2%t " 24%u-3176%e " 3*xs37 2%
S472%t*u"2-1512%e " 3*s372*%s4"2%xu"3-140%e " 3*s3"2*ks4*t"4-664%e” 3*%s372*sd*t " 3*%u
—960%e”3%s372%sd*t " 2*%xu"2-488*e " 3*%s3 " 2kxsd*xt*xu”3-52%e " 3*xs3 " 2*s4*u"4-18%e " 3*s372*t
"5-88%e " 3%xs37 2%t "4*u-174%e " 3%s37 2%t " 3%u"2-174*%e " 3%xs37 2%t " 2*xu"3-88*e " 3*s3"2*t*u
"4-18%e"3%s372%xu"5+140%e " 3%s3*s4 " 3%t "3+492%e " 3*s3*s4 "3kt " 2xu+d4d*e " 3*s3*xsd"3*t
*¥U"2+92%e " 3%s3%s473%u"3-140%e " 3*s3*%s4" 2%t "4-664*e " 3*xs3*xs4 " 2%t " 3*%u-960%e " 3xs3*
S4A72%xt T 2%u"2-488%e " 3*s3*s4 " 2*xt*u"3-52%e " 3%s3%s4"2%u"4+284%e " 3*s3*sd*xt "5+1386*e
"3*ks3*ksdxtT4*xu+2844%xe” 3*%s3*s4*t " 3*xu"2+3056%e " 3ks3ksdxt " 2%u"3+1704*%e " 3ks3*ksd*t*
U~ 4+390%e " 3*s3*s4*u"5+18%e " 3*%s3*xt "6+106*%e " 3*s3*t " 5*xu+258*e " 3*s3*xt"4*xu"2+332%e"
3xs3*t " 3*%u"3+238%e " 3*%s3*t "2*u"4+90%e " 3*xs3*xt*u"5+14*xe " 3*xs3*u"6-18%e"3*xs4" 2%t "5
-88%e " 3%xs4 2%t "4xu-174%e " 3%s4 7 2%t " 3%u"2-174%e " 3%xs4 " 2%t " 2*xu"3-88*%e " 3*s4 " 2*xt*xu"4
-18*e”3%s4"2xu"5+18*e " 3*s4*t"6+106*e”~3ksd*t " 5*ku+258%e " 3ksd*kt " 4*u"2+332%e " 3xsdx*t
"3%u”3+238%e " 3xsd*xt "2*%u"4+90%e " 3ksdkt*xu"b+14*%e " 3*ksd*u"6-27*e "3kt 7-178*%e"3*t"6
*¥u-524*%e 3%t "5*xu"2-895%e " 3xt "4*u"3-955%e 3%t "3*%u"4-632%e " 3%t "2*xu"5-238%e " 3*xt*u
"6-39%e"3*xu"7+304*%e " 2%s374*s4" 2%t +736%e " 2%xs374*s4 " 2%u-736%e " 2%s3" 3*%s4 " 3xt+352%
e"2%xs373*%s4 " 3*%u-368*%e " 2xs3"3*xs4 2%t "2-1008%e"2%s3"3%s4 " 2%t *u-1216%e " 2*s3"3*s4"
2x1"2-156%e " 2%s373%s4*t " 3-768%e"2*%s37 3*ksd*t " 2*xu-828%e " 2*%s37 3*ksd*kt*u"2-216%e 2%



Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
138 amplitude of qq — v*v*

s373xs4*xu"3+304*%e " 2%s372%s4 " 4xt+736%e"2*%s372%s4"4*u-368%e " 2*xs372*s4" 3%t "2-1008
*e"2%xs372%s4 "3kt *u—-1216%e " 2%s372%s4 " 3*xu"2+888*%e " 2%s372%xs4 2%t " 3+1248%e"2%*s37 2%
S47 2%t " 2%u+1352%e " 2%s372%s4 " 2%t ku"2+992*%e " 2xs372%xs4 " 2*%xu"3+108*e " 2*xs3 " 2k sd*xt "4+
996%e " 2%s37 2% s4*xt " 3*u+1964%e”2%s372%s4*t " 2xu"2+1372%e " 2*%s3 7 2*sd*xt*u"3+296%e " 2%
S372%xsd*xu"4+36%e " 2xs37 2%t "5+164*%e " 2%s37 2%t T4*u+300%e " 2%xs3 2%t " 3*%u"2+276%e " 2*s3
T2%tT2%u" 3+128%e " 2% 837 2%tk u"4+24%e " 2xs37 2% u"5-156%e " 2%xs3*s4 " 3%t "3-768*e " 2*s3*
S47 3%t " 2%u—-828%e " 2xs3*s4 3kt *u"2-216%e " 2%xs3*xs4 " 3*xu"3+108*%e " 2%s3%s4" 2%t "4+996*e
T2%83%xs47 2%t T 3%k ut+1964%e " 2%s3%s4 7 2%t 2% u" 2+1372%e " 2% s3*s4 " 2%t *u”" 3+296%e " 2*xs3*s4
T2*%u”4-196%e " 2xs3*s4*t "5-990%e " 2*%s3*ksdxt "4*xu—-2088*%e " 2%s3*sd*kt " 3*ku"2-2284%e " 2%
S3xsd*t"2%u"3-1284%e " 2%s3kxsd*t*u"4-294*%e " 2% s3*s4*u"5-36*%e " 2*%s3*%t"6-212%e " 2*xs3*
t7B*xu-518%e " 2*%s3*t "4*xu"2-672%e " 2*%s3*%t "3*xu"3-488%e"2*s3*t " 2*xu"4-188*%e " 2*s3* t*xu”
5-30%e72*s3*u"6+36%e"2*%s4" 2%t "5+164%e " 2%xs4 " 2%t "4*xu+300%e " 2*%s4 2%t " 3*xu"2+276%e”
2% s47 2%t T2%u " 3+128%e " 2%s4 T2kt *u"4+24%e " 2%s4 " 2% u"5-36%e " 2% sd*xt"6-212%e " 2*s4*t "5
*¥u-518*e " 2xsd*xt " 4*xu"2-672%e " 2xsd*xt " 3*%u"3-488*e " 2xsd*xt " 2*%u"4-188%e " 2*xsd*xt*u"5b
—30%e " 2%xsd*u”6+29%e 2%t " 7+181*%e 2%t "6*xu+500*e 2%t "5xu”"2+800%e " 2%t "4*u”~3+805*e "2
*t " 3%u"4+509%e " 2%t " 2*u"5+186*e " 2xt*xu"6+30%e " 2*xu"7-120*%e*s3"4*s4 " 2xt-552%e*xs374
*s472%u+240%exs3"3%s4 " 3%t -912%e*s373*s4 " 3*%u+96*e*xs3 " 3*s4 2%t "2+784*exs3"3%xs4 "2
*t*ut+1040*%e*s373%s4"2%xu"2+80*e*s3 " 3*xs4*t " 3+468*e*xs3" 3*ksd*xt " 2xut+bb2*exs3 " 3ksd*t
*u”2+164%exs3" 3*xsd*xu”"3-120*%e*s372%s4"4*t-552%e*s372%xs4 " 4*xu+96*e*s372%s4 " 3%t "2+
784*xe*s372%s4" 3%t *xu+1040%e*xs372%s4 " 3*xu"2-264*%e*s5372%s4 2%t " 3-56*e*s372%s4 " 2%t *
u"2-320%e*xs372%xs472%u" 3-36%e*s372%s4*xt "4-620*%e*s3 " 2*s4*xt " 3xu-1428*%e*xs372*sd*t "
2x1"2-1140%e*xs3" 2xsd*xt*xu”~3-296*e*s3"2%sd*u"4-22%e*s37 2%t "5-102%e*xs37 2%t "4%*u
-190*%e*s37 2%t " 3*xu"2-178*%e*s37 2%t "2*u"3-84*e*xs3 " 2*xt*u"4-16*e*xs372*u"5+80*e*xs3*s4
3%t "3+468*e*s3%s47 3%t T 2*xu+bb2%e*s3*s4 "3k t*ku"2+164*e*xs3*xs4d " 3*u"3-36%e*xs3*s4 " 2%
t74-620%e*s3%s47 2%t " 3*%u-1428%e*xs3*s4 2%t " 2%u"2-1140%e*s3*s4 2%t *xu"3-296*%e*s3*
S472%xu"4+46%exs3%s4%*t "5+300%e*xs3ksd*xt "4*u+768*ke*s3*ksdkt " 3xu"2+964*e*xs3ksdxt " 2%
u”3+594*e*xs3*sdxtxu”4+144%e*xs3*sd*xu~5+22%e*s3*xt " 6+138*exs3*t " 5*xu+360*e*xs3*t 4%
u”2+500%e*s3%t " 3*%u”3+390*%e*s3*t " 2*xu"4+162%e*s3*xt*u"5+28*%e*xs3*xu~6-22%exs4d"2%xt"5
-102%e*s4 2%t "4*xu-190*e*xsd " 2%t "3%xu"2-178%e*xs4d " 2%t " 2%xu"3-84*e*xs4 " 2xt*xu"4-16%ex*
S472%u"5+22%e*s4*xt " 6+138*%e*sd*xt " 5xu+360*e*xsd*kt"4*xu"2+500%e*sd*t " 3*%u"3+390*%e*s4
¥t 72%xu"4+162%e*xsdxt*u"b+28%e*xsd*xu”6-13%ext " 7-83*%e*t "6*xu-236*%e*xt " 5*xu"2-390*e*xt”
4xu”3-405*%e*t " 3%u"4-263%e*xt " 2*%u"5-98%e* t*xu"6-16*%exu"7+24*s374*s4 " 2xt+120%s374*
S472%xu-16*s373*%s4 " 3%t +240%s3 " 3%s4 " 3%u-16%s373*s4 " 2%t "2-192%s3 " 3%s4 " 2xt*xu-240%
S373%s472*%Uu"2-16%s3"3*xs4*xt " 3-96*%s37 3*ksd*t " 2*xu-120%s3" 3k sd*xt*xu"2-40%s3"3*s4*u"3
+24%xs5372%s47 4%t +120%s372%s4 7 4% u—-16%s3"2%s4 3%t "2-192%s372*s4 " 3%t *u-240%s3"2*s4
T3*%U”2+24%s37 2% sS4 2%t " 3-56%5372%s4 " 2%t T 2*%u-40%s372%s4 " 2%t *ku"2+40%s372%s4 " 2*%u" 3
+8%s5372%s4%t"4+136%s37 2% s4*t " 3*u+328*%s3 7 2*xsdkt " 2%u"2+280%s3 " 2*xsd*xt*u”~3+80%s372
*¥s4*u”4+4%s37 2%t "5+20%s37 2%t T4*xut+40*s3 2%t T 3*u"2+40%s37 2%t T 2%u"3+20%s372*xt*u"4
+4x8372%u"5-16%s3%s4" 3%t "3-96%s3*s4 " 3%t " 2xu-120%s3*s4 " 3*xt*u"2-40*s3*s4 " 3*xu"3+8
*¥53*%s47 2%t "4+136%s3%s47 2%t " 3ku+328*%s3*s4 2%t T 2%u"2+280%s3%s4 " 2xt*xu” 3+80%s3*s4”
2%xU"4-4*s53xs4*xt " 5-40%s3*xsd*t " 4*u-128*%s3*s4*xt " 3*xu"2-184*s3*s4d*xt " 2*xu"3-124*s3%*s4
*t*xu"4-32*%s3%xsd*xu"5-4*xs3%t"6-28*s3*t "E5*xu-80*s3*t "4*u"2-120%s3*t " 3*xu"3-100*%s3*t
T2%uT4-44%xg3*%t*xu"5-8%s3%xU"6+4%s47 2%t "5+20%s4 7 2%t T4*xu+40* 847 2%t " 3% u" 2+40*%s4 " 2%t
T2*xu”3+20%s4 7 2%t ku " 4+4xs4 " 2%u " b-4xsd*xt T6-28*s4xt "E5xu—80*sd*xt "4*u"2-120%s4*t " 3%
U~ 3-100%s4*t " 2%xu"4-44*sdxt*u"5-8*sd*u”6+2*xt " 7+14*t " 6*xu+44*xt " 5xu~2+80*t "4*u” 3+
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90*t " 3*%u"4+62%t " 2xu"5+24*xt*u"6+4*%u"7) /u/ (-3+2%e) / (3*e-2) / (-4*s3*s4+t " 2+2*txut+u
"2)72/t/(3%e-1);

cpbox010010112p1p2p3 := -4x(u-s3+t-s4)*(e-1)*(144%e"5*s3"2%s4 " 2xt*u"2+144*e"5*
s372%s472*%u"3-72%e " b*s3*sd*xt " 3*%u"2-216%e " 5*xs3*xsd*xt"2*u"3-216%e " 5xs3*sd*xt*u~4
-72xe " bxs3*s4*u”~5+9*e 5t "5*u~2+45%xe " bxt " 4*xu~3+90*e 5%t " 3*%u"4+90*%e " bxt " 2*u~5+45
*e " bxt*xu”6+9%e " b*xu"7-288%e"4*s373%s4" 3%t -288%e " 4*xs37 3*s4 " 3*ku-24%e " 4*s3" 3ksdkt*
uU"2-24%e"4*xs373*s4*u"3+144%e"4*xs372%s4 2%t "3+576%e " 4*xs3 2% s4 T 2%t T 2% ut+672%e "4 *
S372%s47 2%t *xu"2+384*%e " 4*s372%s472%u" 3+24%e 4% 537 2% s4*xt T 2xu" 2+48%e " 4*s3 7 2ksd*t*
U 3+24%e"4*s372*%s4*u"4+6*%e"4*xs3 2%t T 3*%u"2+18%e " 4*s37 2%t T 2*%u"3+18%e " 4*s37 2%t *xu”
4+6%e"4*s372*%u"5-24%e " 4*xs3*s4 3kt ku"2-24%e " 4*xs3*s4 " 3ku"3+24%e " 4*s3%s4 " 2%t T 2xu”
2+48%e"4*xs3*xs4 "2kt *ku"3+24%e " 4*s3*%s472%u"4-18%e " 4*s3*s4*t "5-162%e " 4*xs3ksdxt " 4*u
—456%e " 4*s3%s4*t " 3%xu"2-648%e " 4*s3*s4*t " 2%xu"3-486*%e " 4*s3*sd*kt*u"4-150%e"4*s3*sd
*¥U"b-6%e " 4dxs3%t4*u"2-24%e " 4*xs3%t " 3%u"3-36%e"4*s3%t " 2*%u"4-24%e " 4*xs3xt*xu"5-6%e”
4%s3%Uu"6+6*%e " 4*xs4 " 2%t " 3%u"2+18%e " 4*s4 2%t T 2*xu"3+18%e " 4*s4 " 2%tk u"4+6%e " 4*xs4 " 2%u
"5-6ke"4*ksd*tT4xu"2-24%e " 4*xs4*t T 3%u"3-36%e "4*ksd*ktT2%u"4-24*%e " d*xsd*ktxu"5-6%e 4%
S4*Uu”6+9%e 4xt " 6xu+bdxe ~4xt " bxu"2+144*%e"4*xt " 4*u"3+216%e"4*t " 3xu"4+189%e "4kt " 2%
u~5+90%e " 4xt*xu"6+18%e " 4xu"7-288*%e " 3*s374*xs4 " 2xu+864*e " 3*%s373%s4 " 3%t +288*%e " 3*s3
T3*%s47 2%t *xut+288%e " 3%xs373*%s472%u"2+144%e " 3k s37 3*ksdkt " 2xut+296%e " 3*s37 3ksdkt*xu"2+
128%e"3%s373*s4*u"3-288%e " 3*xs372%s4 " 4*u+288*e " 3*%s372*%s4 " 3kt *u+288*e " 3*%s372%s4”
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
140 amplitude of qq — v*v*
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
146 amplitude of qq — v*v*
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
148 amplitude of qq — v*v*
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
150 amplitude of qq — v*v*
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152 amplitude of qq — v*v*
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
154 amplitude of qq — v*v*
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Appendix B. Coefficients of the master integrals for the Ny -piece of the 2-loop
156 amplitude of qq — v*v*
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s4xt " 2*%u"3-24%s3*xsd*t*u"4-4*s3*%s4*xu"5-8%s3%t "6-36*s3*%t " 5*xu-64*s3*xt"4*u"2-56%s3
¥t 73%u"3-24%s3%t T2%xu"4-4xs3%tku"5+4* sS4 2%xt TE+16%s4 7 2%t T4Aku+24*%s4 7 2%t " 3ku"2+16%
S4A7 2%t T 2% 3+4*s4 72kt xu"4-8*s4*xt T6-36*ks4*t Th*u-64*sd*xt "4*xu"2-56*s4*t " 3%u"3-24%
S4xt 7 2*%u"4-4xsdxtxu”b5+4xt T T+20%t "6k u+42%t TEXxuT2+48*%t "T4Axu " 3+32*%t "3xuT4+12*%t " 2%u
“5+2*%t*xu”6)/ (-3+2*e) / (3xe-2) / (-4*s3*s4+t " 2+2*xt*xu+u~2) “2/t/u/ (3*xe-1) / (-1+2%*e) ;



Appendix B. Coefficients of the master integrals for the N¢-piece of the 2-loop amplitude
158 of qq — v*v*
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