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Elementary particles, the concept of mass, and

emergent spacetime

Piotr Żenczykowski

Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland

E-mail: piotr.zenczykowski@ifj.edu.pl

Abstract. It is argued that the problem of space quantization should be considered in
close connection with the problem of mass quantization. First, the nonlocality of quantum
physics suggests that if spacetime emerges from the underlying quantum layer, this emergence
should occur simultaneously at all distance and momentum scales, and not just at the Planck
scale. Second, the spectrum of elementary particles provides us with a lot of important
information, experimentally inaccessible at the Planck scale, that could be crucial in unravelling
the mechanism of emergence. Accordingly, we start with a brief review of some fundamental
issues appearing both in the spectroscopy of excited baryons and in connection with the concept
of quark mass. It is pointed out that experiment suggests the inadequacy of the description
of baryonic interior in terms of ordinary spacetime background. Thus, it is argued that one
should be able to learn about the emergence of space from the studies of the quark/hadron
transition. The problem of mass is then discussed from the point of view of nonrelativistic
phase space and its Clifford algebra, which proved promising in the past. Connection with
the Harari-Shupe explanation of the pattern of a single Standard Model generation is briefly
reviewed and a proposal for the reintroduction of relativistic covariance into the phase-space
scheme is presented.

1. Introduction

Since the time quantum theory was originally formulated there have been many attempts to
unite it with general relativity. As gravitational interactions are a consequence of malleable
spacetime, proposals were put forward that spacetime is a purely macroscopic concept that
somehow emerges from the underlying microscopic quantum degrees of freedom [1, 2, 3]. For
example, the spin network idea of Penrose [3] posits that the continuous array of directions in 3D
space emerges out of the quantum concept of spin in the limit of large quantum numbers. Since
elementary particles exhibit other quantized properties beside that of spin, a simple extension
of Penrose’s idea would be to take them into account as well. Thus, one might hope that the
inclusion of other spatial quantum numbers, internal quantum numbers and quantized particle
masses should somehow lead to the emergence of further features of classical spacetime [1].
In particular, with mass being the source of gravity-inducing space distortions, it seems quite
natural that the quantized mass should play an important role in the emergence of classical
spacetime out of the quantum layer. Since a successful theory of mass and space quantization
should express all particle masses in terms of one mass scale (say, Planck mass), elementary
particle masses give us important experimental clues on space quantization itself - clues that are
completely inaccessible at the minuscule Planck length scale. Consequently, an understanding of
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quantized particle masses, even if very limited, could be of great help in the construction of the
sought emergence scheme. In particular, the very concept of mass should be critically studied
as well. For this reason, we start with a brief description of some relevant problems associated
with the concept of mass, and quark mass in particular.

2. The problem of mass

After putting aside the propaganda, it should be clear that the Higgs mechanism does not solve
the problem of mass. In the author’s opinion this mechanism may be regarded only as a low-
energy field-theoretical approximative description of the problem of mass generation. Indeed,
there are many unanswered fundamental questions concerning the issue of mass in both the
lepton and quark sectors. First, there is the intriguing observation of Koide that relates the
e, µ, and τ masses in a formula involving two small integers only [4]. Putting in the central
values of experimentally measured masses, this constraint on the masses of the three charged
leptons works perfectly with the accuracy of five decimal digits (which is better than 1 standard
deviation). It does not seem to be an ‘accident’ and thus it strongly suggests an algebraic
origin of mass. While neutrino and quark masses are not known with sufficient precision to
test for the analogues of Koide’s charged lepton formula, the quark sector elicits important
conceptual questions related to the standard ‘unproblematic’ notion of quark mass. Specifically,
the macroscopic concept of mass, naturally applicable to leptons, cannot be extended to quarks
in a simpleminded way. Indeed, the masses of leptons are directly measurable from leptons’
free propagation over macroscopic distances. For quarks this route cannot be used since, due to
confinement, individual free quarks do not appear in the asymptotic states.

Given this qualitative difference between leptons and quarks, a question emerges what
meaning should be assigned to the concept of mass for a quark. In the Standard Model, quark
mass is a parameter in the QCD Lagrangian. A calculational technique to deal with the issue
of confinement is then offered by lattice QCD . Yet, one may ask questions that QCD (with or
without lattice) answers in a somewhat carefree way. Specifically:

Can one asssume the existence of the ordinary background spacetime within hadrons? After
all, no clocks and rods — needed in the operational Einsteinian definition of space distances and
time intervals — may be inserted into hadrons. In fact, as argued by Salecker and Wigner [5],
the concept of spacetime cannot be consistently attributed to individually observable elementary
particles at the strictly microscopic level. The situation with quarks is obviously worse since
they are not individually observable. Are we then right when we imagine quarks as moving
freely at small ‘distances within hadrons’? Can one meaningfully talk about the concept of
quark mass if the ordinary spacetime background within hadrons — in which quarks supposedly
propagate — may not exist?

If QCD worked perfectly everywhere, we would have to assume that the QCD assumption
of the underlying background spacetime corresponds well to reality. Yet, in spite of what one
hears around, we will argue on experimental grounds that quantum chromodynamics does not
work everywhere. In fact, we believe that QCD needs important modifications, at least at large
distances.

2.1. Hadron spectroscopy problems
Quark confinement leads to the appearance of quark conglomerates such as qq̄ (meson) or qqq
(baryon) states. Consequently, an acceptable theory of large-distance quark interactions should
describe the salient features of the observed meson and baryon spectra. It appears, however,
that there are serious difficulties with the description of the spectrum of baryons. The problem is
with the excited baryons. Within the standard SU(6) (flavor-spin) × O(3) (orbital) classification
of baryon states in the old constituent quark model, the first levels with the three smallest
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consecutive values of the principal quantum number N are decomposed as [6] 1:

N = 0 (56, 0+),

N = 1 (70, 1−),

N = 2 (56′, 0+), (70, 0+), (56, 2+), (70, 2+), (20, 1+). (1)

Now, while almost all the N = 0, 1 states are experimentally seen, a large proportion of the
N = 2 states is not observed. In particular there are no experimental candidates for the (20, 1+)
multiplet.

There are two possible explanations of this shortage of states. The first possibility is that
one of the two internal spatial degree of freedom is frozen (i.e. that, for unknown reasons, it
does not get excited). This is the resolution suggested e.g. by the diquark model. In this model
one accepts that from the two SU(6) multiplets, a priori possible for the diquark (on account of
6⊗6 = 21⊕15), only the symmetric 21-plet is for some reasons permitted. Since 21⊗6 = 70⊕56,
the absence of the 20-plet (and several other N = 2 states) is thus qualitatively explained. The
spectrum of the diquark model is definitely closer to the one we observe in experiments. The
second possible explanation is that many of the N = 2 baryons are not seen simply because they
do not decay to the experimentally accessible decay channels.

Although the above problem was originally identified in the old constituent quark model, it
reappears in essentially the same way in lattice QCD. In particular, lattice QCD does not exhibit
diquark clustering or freezing of one internal spatial degree of freedom [7]. Consequently, there
is no satisfactory agreement between the calculated and the observed spectra of the excited
baryons. 2 A possible way out would be to prove the unlikely decoupling of all (or most of)
the unseen states. Unfortunately, due to the enormous complexity of such calculations in lattice
QCD, they are not feasible now.

Given the questionability of the existence of the ordinary background space within hadrons,
our tentative conclusion is that the QCD description of excited baryons misses ‘the problem of
missing baryons’ and, consequently, is not fully adequate. The situation is so serious that in
their review on baryon spectroscopy Capstick and Roberts wrote [6]:

‘These questions about baryon physics are fundamental. If no new baryons are found,
both QCD and the quark model will have made incorrect predictions, and it would
be necessary to correct the misconceptions that led to these predictions. Current
understanding of QCD would have to be modified, and the dynamics within the quark
model would have to be changed.’

Accordingly, we view QCD as appropriate for the description of hadron scattering at large
momentum transfers, but deviating from reality for low momentum transfers and composite
states, i.e. beyond the region of original idealization. There is nothing wrong in accepting that
QCD is an idealization that works in a restricted range only. After all, all our theories are
idealizations and approximations with limited ranges of their applicability [8]. We should keep
this in mind and commit not the error of identifying an abstract description of certain aspects
of nature with nature itself.

With lattice QCD description of baryon spectroscopy judged as not fully adequate, the
detailed values of quark masses, as extracted via lattice QCD technique, cannot be trusted.
Furthermore, since the shortage of excited baryons constitutes a hint that the concept of

1 The notation is (dimension of SU(6) representation, LP ), where L,P are orbital angular momentum and parity.
2 QCD (either via one-gluon exchange models or in lattice calculations) does describe the spectrum of ground-
baryons successfully. Still, these baryons may be equally well described in approaches based on strictly hadron-
level dynamics (i.e. with pion and other meson exchanges or the related idea of meson cloud used in place of
quark-gluon interactions [9, 10, 11]. The real challenge lies in the description of excited baryons.
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background spacetime need not be fully applicable within hadrons, the concept of quark
propagation within hadrons is additionally questioned. Consequently, one has to inquire into
the very concept of quark mass itself.

2.2. Current quark masses
What can be therefore said about the concept of quark mass if we leave QCD considerations
aside? Can we conceive of quark masses and extract them from the hadron-level data with
reasonable accuracy and without using the uncertain QCD baggage, i.e. without adopting a
specific concept of quark motion ‘within’ hadrons? The answer to that question is positive.
There is a simple way in which the concept of mass was originally attributed to quarks. This
simple way does not utilize QCD at all. The idea is based on the 50 years old algebra of
hadronic currents (‘Current algebra’) that satisfy quark-level symmetries but do not treat quarks
as ordinary particles. In particular, current algebra uses global and spacetime concepts defined
at the hadron (not quark) level.

The current algebra way of extracting quark masses from experiment uses the Gell-Mann–
Oakes–Renner (GMOR) formula [12]:

m2
πδab = −

1

f2
π

〈0|[Qa
5, [Q

b
5, H(0)]]|0〉. (2)

Here mπ, fπ are pion mass and decay constant, a, b – isospin indices, Q5 is the axial charge, and
|0〉 is the hadronic vacuum. The contribution of the quark mass term mq q̄q in the Hamiltonian
H(0) is evaluated from:

[Qb
5, q̄q] = q̄τ bγ5q,

[Qa
5, q̄τ

bγ5q] = δabq̄q. (3)

Assuming that all other terms in H(0) commute with axial charges, one derives:

m2
π = −

1

f2
π

(mu〈0|ūu|0〉+md〈0|d̄d|0〉), (4)

where 〈0|q̄q|0〉 are expectation values of quark bilinears in the hadronic vacuum.
After extending isospin SU(2) to flavor SU(3) (for decay constants and vacuum expectation

values, but not for the masses 3), one can use Eq. (4) together with an analogous formula for
kaons to derive:

2ms

mu +md

=
m2(K0)−m2(K±) +m2(π±)

m2(π0)
= 25.9,

mu

md

=
2m2(π0)

m2(K0)−m2(K±) +m2(π±)
− 1 = 0.56. (5)

The ratios of quark masses are here extracted from the hadron-level data without any assumption
concerning the existence of spacetime background within hadrons. The absolute values of masses
are then approximately determined by accepting that the strangeness-induced splitting of ground-
state baryons requiresms−mu,d ≈ 140−150 MeV. This leads to quark mass valuesmu ≈ 4MeV ,
md ≈ 8 MeV , ms ≈ 150 MeV which are in half-quantitative agreement with those given in
Particle Data Group tables [13] 4.

3 Such a way of applying and breaking SU(3) has ample phenomenological support.
4 The values given in Ref. [13] are all smaller than our estimates by a single overall factor of around 1.5. The
reason is that they are defined in a different way. Specifically, the masses given in Ref. [13] are defined at the
field-theoretical mass scale of µ = 2 GeV2. On the other hand, within the field-theoretical language the larger
mass values extracted here are thought to correspond to µ ≈ 1 GeV2.
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The above-described way of an approximate extraction of quark mass does not use the Dirac
equation (/p − m)q = 0. This is highly welcome, as the use of the on-mass-shell formulas
for confined quarks is very questionable: these formulas and the standard propagator poles
correspond to spatial infinity which cannot be reached by confined quarks. In fact, one may
point out places, where the contribution from the on-mass-shell formulas and propagators leads
to artefacts that are in direct contradiction with experiment [14, 15].

The GMOR-based extraction of quark masses is based solely on the global chiral properties
of the fermion mass term. It does not use the classical relativistic connection between four-
momentum and mass. It does not use the concept of quark momentum at all. It does not
specify how quarks ‘propagate’ in spacetime. It does not use the concept of quark color 5. This
leaves a lot of freedom for the connection between the concept of quark mass and the concept
of macroscopic spacetime.

3. Spacetime, phase space, and quantum

3.1. Emergent spacetime
With gravity described as a consequence of spacetime distortion induced by the presence of
masses, i.e. with the reduction of gravitational interactions to geometry, the idea of emergent
spacetime is usually linked with general relativity. Since from the gravitational constant G,
Planck constant h, and the velocity of light c one can form an expression of the dimension of
length, it is at the resulting dimunitive Planck length scale that the quantum nature of space is
generally supposed to appear and spacetime is supposed to emerge.

Yet, the problems at the intersection of the quantum and the classical do not appear solely
when general relativity is considered. It is well known that a kind of tension exists also between
quantum physics and special relativity. This tension manifests itself as Bell’s nonlocality. It
indicates that the mismatch between quantum physics and the concept of classical space appears
at all distance scales, not just at the Planck length scale. Indeed, Norsen writes [16]:

A much higher-level inconsistency between quantum theory and (general) relativity
has been the impetus for enormous efforts (...) spent pursuing “presently fashionable
string theories of everything”. How might a resolution of the more basic inconsistency
identified by Bell shed light on (or radically alter the motivation and context for)
attempts to quantize gravity?

In fact, the problem shows up even earlier than the intersection of quantum physics and special
relativity. It appears also when nonrelativistic classical and quantum physics are juxtaposed.
The problem exists because the two approaches are formulated on two completely different
arenas: the ordinary 3D space and the Hilbert space. In addition, one is deterministic, the
other one — probabilistic. Consequently, the quantum-classical mismatch appears already at
the strictly nonrelativistic level and should be first attacked at this level. Indeed, this is the
level at which Penrose’s spin-network idea was originally formulated. There are therefore at
least two reasons for working with the nonrelativistic approach. First, one should always start
with the simplest things, and the interplay of quantum and classical physics is certainly simpler
at the nonrelativistic level. Second, the existence of spatial quantum numbers (spin, parity, C-
parity 6) may be deduced already at the nonrelativistic level. Thus, connecting particle masses
and internal quantum numbers with the emerging macroscopic classical arena of events should
be first attempted in the nonrelativistic scheme. Our insistence on the need to establish such a

5 If color is introduced, the GMOR extraction refers to color-blind expressions involving the sum over three
colors.
6 Charge conjugation parity. Although the existence of particles and antiparticles was originally predicted by the
relativistic Dirac equation, it may also be deduced without relativity via the linearization of the nonrelativistic
Schrödinger equation [17].
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connection need not be in disagreement with the expected space and time emergence at all the
distance and interval scales: the scale of particle masses may be just most useful for unraveling
the mechanism of this emergence.

3.2. From space and time to phase space
The discussion of the concept of emergence usually starts by challenging the statement that
the ordinary 3D space is a background canvas on which things move and interact. In fact,
this Democritean view was denied already by Aristotle who considered space ‘as an accident
of matter’. Many great physicists and philosophers, including Leibnitz, Mach and Einstein,
subscribed later to this Aristotelian ‘... old and great idea that space and time are, so to speak,
stretched out by matter...’ [18]. In other words, space and time should be considered as defined
by things. Yet, time is not defined by things in the same way space is. Speaking more precisely,
time is defined by the change of things. This is how (astronomical) time was originally introduced
by Ptolemy, and how it is understood by Mach and Barbour (see e.g. [19]).

Alternatively, one may say that space and time are defined by things and processes. One can
claim then on philosophical grounds that things and processes should be treated on the same
footing. This idea, when expressed in the language of physics, suggests a symmetric treatment of
positions (defined by things ) and momenta (defined by changes of things). Thus, one may argue
that one should replace the Democritean description in terms of the background space and time
by a more Heraclitean description in terms of the background position and momentum spaces,
i.e. in terms of the background phase space. The original argument against the treatment of
space and time as a background translates then into the argument against the treatment of
phase space as a background. Therefore, if space and time are both emergent, their emergence
may be regarded as a consequence of space and momentum space being emergent. The idea that
it is the phase space that actually emerges first from the quantum layer seems to be particularly
attractive as quantum mechanics ‘lives and works in phase space’ [20]. The known symmetries of
space and time must then originate from the properties of phase space. Accordingly, all spatial
quantum numbers must be interpretable in the phase-space language. Yet, as the number of
phase-space dimensions is larger than that of 3D space and time, the language of nonrelativistic
phase space may admit more symmetries than the language of space and time. While in the latter
language these ‘new’ symmetries and the related quantum numbers (if any) cannot manifest as
ordinary spatial ones, they might be still identifiable in experiments. Obviously, they would
have to appear to us as the non-spatial ones.

3.3. Born’s reciprocity
The idea that positions and momenta should be treated in a way more symmetric than the one
actually used in current standard approaches, was originally proposed by Max Born [21, 22].
He noticed that various physical formulas, such as the Hamilton’s equations of motion, the
position-momentum commutation relations, or the expression for the orbital angular momentum
are invariant under ‘reciprocity transformation’, i.e. under the interchange:

x→ p, p→ −x. (6)

At the same time, Born observed that the symmetry, expected on account of (6), between the
relativistic momentum space invariant P = E2−p2 and the relativistic position space invariant
R = t2 − x2, is completely broken by the concept of (quantized) mass. In his own words:

(...) the distance P in momentum space is capable of an infinite number of discrete
values (...) while the distance R in coordinate space is not an observable quantity at
all.
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In other words, quantized mass is always associated with momentum, never with position
coordinates. Deeply dissatisfied with this asymmetric state of affairs, Born concluded:

‘This lack of symmetry seems to me very strange and rather improbable’.

In fact, reciprocity transformation (6) suggests the existence of a new phase-space constant κ
of dimension [momentum/distance], which, when the quantum constant h and the velocity of
light c are added, defines the phase-space-related mass scale. With this scale being possibly very
different from the Planck mass scale, its appearance indicates that the problem of quantized mass
could be attacked in the language of phase-space, i.e. from an angle completely different from
the seemingly more adequate language of curved spacetime. It might appear that the violation
of the reciprocity symmetry by the concept of mass is an argument against the phase-space
route. Yet, the failure of the reciprocity idea does not mean that symmetry between momentum
and position could not be introduced in another way. Below we will argue that one can consider
a different x↔ p symmetry as more appropriate for the generalization of the concept of mass.

3.4. Mass and phase-space heuristic
We start by noting that of the six phase-space coordinates the unknown mass-defining
principle singles out the physical three-momentum as associated with the standard concept
of mass. Indeed, the energy of any individually observable free particle is expressed (whether
relativistically or nonrelativistically) in terms of a formula involving mass and three-momentum.
The position variables are absent (violation of translational invariance could be avoided by
admitting position differences only). We will call the ‘canonical momentum’ any three phase-
space variables appearing (without their canonical partners) alongside mass in such a dispersion
formula (i.e. in a Hamiltonian). The application of the reciprocity transformation (6) to such
an expression for a free particle changes the three-momentum into a position three-vector, thus
singling out the other three of the six phase-space coordinates as the possible coordinates of the
canonical momentum. As Born noted, this leads to a formula that does not seem to describe
any existing ‘particle’. Still, six different choices for the canonical momentum exist in addition
to the two just discussed. We list all eight of them below.

canonical canonical

position momentum position momentum

(x1, x2, x3) (p1, p2, p3) ← Born→ (p1, p2, p3) (x1, x2, x3)

(x1, p2, p3) (p1, x2, x3) (p1, x2, x3) (x1, p2, p3)

(p1, x2, p3) (x1, p2, x3) (x1, p2, x3) (p1, x2, p3)

(p1, p2, x3) (x1, x2, p3) (x1, x2, p3) (p1, p2, x3) (7)

even permutations odd permutations

The l.h.s (r.h.s.) pairs of entries in Eq. (7) constitute even (odd) permutations of the standard
(top-left) choice. As indicated, the left- and right-hand sides of the first line above are connected
(up to a sign) by Born’s reciprocity argument. It was noted above that no quantized mass is
associated with the top-right entry. We observe that this violation of reciprocity could actually
originate from the distinction between even and odd permutations. If this is so, one would
expect that quantized mass could also be associated with the second, third, and fourth canonical
momenta on the left hand side, but not with the corresponding ones on the right hand side.
Such a generalization of the concept of mass clearly violates its rotational invariance. Since
our classical experience requires rotational invariance to hold, the corresponding ‘particles’
certainly cannot exist as individual objects in the macroscopic world. However, we do not
see any reason why such ‘particles’ could not exist ‘inside’ conglomerates built of several such
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objects, provided these conglomerates exhibit all the macroscopically expected covariance and
invariance properties.

The appearance of new ‘particles’ which exist in triplicate and cannot be observed individually
bears such a striking resemblance to quarks of the Standard Model that we feel forced to put
forward a conjecture that the four options on the l.h.s of Eq. (7) actually correspond to a lepton
and three colored quarks. We have to stress that for the above conjecture to hold one does
not have to question the approximate adequacy of the field-theoretical description of quarks
by bispinor fields q(x). However, these fields are clearly not expected to satisfy the classically
motivated constraint (/p−m)q(x) = 0. In other words, it is solely the adequacy of the standard
concept of quark mass (and its connection to momentum) that is questioned here.

If the masses of the individual colored quarks are associated with the rotationally non-
covariant canonical momenta, there is obviously no rationale for the description of quark
behavior ‘inside’ hadrons with the help of standard fermion propagators. On the other hand, the
replacement of physical momenta by the canonical ones does not affect the GMOR extraction
of quark masses. As explained earlier at some length, the GMOR extraction is based on the
properties of the fermion mass term only. The concept of quark momentum is not used.

More specifically, the conjecture of Eq. (7) suggests how the lepton Hamiltonian, which in the
standard language is composed of two additive terms: the momentum term Hl(p1, p2, p3) = α ·p
and the mass term H0

l (m) = βm, should be transformed into the Hamiltonians for three colored
quarks. For example, for quark #1 it should be built as a sum of some canonical momentum
term Hq1(p1, x2, x3) and some mass term H0

q1(m). Since the mass term used by GMOR refers
to a sum over colors, the corresponding mass term of the phase-space language is expected to
be built as a sum over colors as well, i.e. H0

q1(m)+H0
q2(m)+H0

q3(m). It is this sum that should
exhibit all the necessary invariance properties. The actual construction and the explicit forms
of all the relevant terms will be discussed in the last Section.

4. Clifford algebra of nonrelativistic phase space

The quantum concept of spin may be arrived at from the classical level by the linearization of
the 3D space invariant p2. The most x↔ p symmetric extension of this procedure to the case of
the 6D classical phase space leads us to consider the linearization of the expression p2+x2 and,
consequently, to Clifford algebra Cl6,0 [23, 24, 25, 27]. Since position and momentum do not
commute in the quantum case, the relevant Clifford algebra calculations have to be supplemented
with the subsidiary condition [xj , pk] = iδjk (we choose units such that h̄ = 1). Then, with A

and B being six mutually anticommuting elements of Cl6,0, one derives

(A · p+B · x)(A · p+B · x) = p2 + x2 +R, (8)

where the R term (classically absent) appears because position and its conjugated momentum
do not commute. The elements A and B may be represented by eight-dimensional matrices:

Ak = σk ⊗ σ0 ⊗ σ1,

Bj = σ0 ⊗ σj ⊗ σ2. (9)

One calculates that

R = −
i

2

∑

k

[Ak, Bk] =
∑

k

σk ⊗ σk ⊗ σ3 ≡
∑

k

Rk. (10)

The 7-th anticommuting element of our Clifford algebra is:

B = iA1A2A3B1B2B3 = σ0 ⊗ σ0 ⊗ σ3. (11)
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4.1. Gell-Mann–Nishijima formula
From B and R we construct now the elements I3 and Y which, as it will turn out, have simple
physical interpretation:

I3 =
1

2
B, Y =

1

3
RB. (12)

It is straightforward to check that I3 and Y are invariant under 3D rotations and reflections
(generated respectively by Sk and P , which are defined by their actions on both A and B):

[Sk, I3] = [Sk, Y ] = 0,

[P, I3] = [P, Y ] = 0. (13)

Since in addition the commutator [I3, Y ] vanishes, and therefore the eigenvalues of I3 and Y
can be simultaneously specified, these elements constitute candidates for two internal quantum
numbers. In order to proceed, we rescale the expression in Eq. (8) and take the lowest (vacuum)
eigenvalue of p2 + x2:

Q ≡
1

6

[

(p2 + x2)vac +R
]

B = I3 +
Y

2
. (14)

With the eigenvalues of I3 and Y being

I3 = ±
1

2
(four times),

Y =
∑

k

Yk ≡
1

3

∑

k

RkB = −1,+
1

3
,+

1

3
,+

1

3
(twice), (15)

one naturally identifies Eq. (14) with the Gell-Mann–Nishijima formula for the electric charges
of the eight fermions from a single generation in the Standard Model. Elements I3 and Y denote,
respectively, (weak) isospin and (weak) hypercharge. For the Yk’s we introduce the name ‘partial
hypercharges’.

4.2. The Harari-Shupe model
The three partial hypercharges commute among themselves, i.e. [Yk, Ym] = 0 (k,m = 1, 2, 3).
Consequently, their eigenvalues may be simultaneously specified. It is then instructive to analyse
in detail the way in which the four eigenvalues of hypercharge Y are constructed out of the
eignenvalues of Yk’s. This is shown in Table 1.

Table 1. The structure of weak hypercharge in terms of its component partial hypercharges

Y1 Y2 Y3 Y

−1

3
+1

3
+1

3
+1

3

+1

3
−1

3
+1

3
+1

3

+1

3
+1

3
−1

3
+1

3

−1

3
−1

3
−1

3
−1

It appears that the pattern of Table 1 is in one-to-one correspondence with the charge
structure of the celebrated Harari-Shupe (HS) rishon model [28, 29], a model in which leptons
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Table 2. Rishon structure of the I3 = +1/2 members of a single SM generation in the Harari-
Shupe model

νe uR uG uB e+ d̄R d̄G d̄B

V V V TTV TV T V TT TTT V V T V TV TV V

and quarks are built of fermionic subcomponents (i.e. ‘rishons’ V and T of charges QV = 0 and
QT = +1/3) as specified in Table 2 [23, 24].

The correspondence in question is:

Yk = −1/3↔ V, Yk = +1/3↔ T, (16)

where k labels the position in the ordering of rishons in Table 2 (e.g. [(Y1, Y2, Y3) =
(−1/3,+1/3,+1/3)] ↔ V TT ). Thus, rishons may be roughly understood as partial
hypercharges. It has to be stressed that the correspondence between the HS model and the phase-
space scheme refers to the charge structure only. Consequently, the shortcomings of the HS model
(and there are many of them 7 ) are all absent in the phase-space scheme. The shortcomings of
the rishon model do not appear in the phase-space scheme because the partial hypercharges are
algebraic components of the hypercharge operator only and do not reside on any subparticles.
In other words, in the phase-space scheme we have symmetry-related sectors without symmetry-
‘explaining’ subparticles (‘preons’). Therefore, contrary to naive understanding, the phase-space
approach is not a preon model. It does not provide a theoretical justification for the introduction
of preons. Its success in the explanation of the working part of the HS model constitutes an
argument against preons.

4.3. Even subalgebra of Clifford alegbra
The even subalgebra of our Clifford algebra contains 32 elements, which may be divided into
two sets of 16 elements each, acting in sectors with I3 = ±1/2 [25, 26]. Within each such sector
the relevant 16-element set consists of a unit element and 15 generators of SO(6). The set of
15 generators decomposes further into SU(3) multiplets as 15 = 1 ⊕ 8 ⊕ 3 ⊕ 3∗. When looked
at from the point of view of the ordinary 3D rotations, the singlet is a scalar, while the octet
contains three familiar SO(3) generators. Multiplets 3 and 3∗ generate ‘genuine’ 6D rotations
in phase-space 8, and lead to lepton-quark transformations. For example, a rotation by π/2
induced by the generator F+2 ≡ −

i
4
ǫ2kl[Ak, Bl] permutes quark #2 with a lepton while leaving

quarks #1,3 unaffected [23, 24]. The corresponding transformation in phase space is

(p1, p2, p3)→ (−x1, p2, x3). (17)

Thus, Clifford algebra provides a highly non-trivial connection between the internal quantum
numbers (i.e. weak isospin and hypercharge, Eq. (15)) and the phase-space (and mass) heuristic
discussed in connection with Eq. (7). From our point of view, therefore, the three colored quarks
should be regarded as leptons with canonical momenta rotated in phase space in three possible
ways (cyclic counterparts of the r.h.s. of Eq. (17)).

7 The unwanted properties of the original HS model include: a problem with rishon statistics, the lack of
explanation why TTT states are free but TV V are confined, various predictions (of unobserved fundamental
spin-3/2 fermions, of unobserved TT T̄ states, of the violation of baryon number,...) etc.
8 By ‘genuine’ 6D rotations we mean in particular rotations that change some momenta coordinates into position
coordinates and vice versa.
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4.4. Odd part of Clifford algebra
The odd part of our Clifford algebra consists of 16+16=32 elements linking the sectors of opposite
values of I3. Each 16-element subset decomposes in SU(3) as 16 = 1 ⊕ 3 ⊕ 3 ⊕ 3∗ ⊕ 6 (or its
conjugate). The SU(3) singlet (and an SO(3) scalar) works in the lepton subspace Y = −1
only. Its explicit form is

G0 ∝ (1−
∑

k

σk ⊗ σk)⊗ (σ1 + iσ2). (18)

Element G0 and its hermitian conjugate (which belongs to the other 16-element subset)
constitute the only odd elements of Clifford algebra which (1) have Y = −1 and (2) are SO(3)-
scalars. Consequently, it is only from them that a candidate for an algebraic counterpart of the
lepton mass term may be formed.

Application of the previously discussed finite rotation generated by F+2 transforms G0 into

G22 ∝ (1 +
∑

k

σk ⊗ σk − 2σ2 ⊗ σ2)⊗ (σ1 + iσ2). (19)

It may be checked that G22 and its hermitian conjugate have Y = +1/3 and thus they both

operate in the quark subspace. Furthermore, as expected, G22 and G†
22 are not rotationally

invariant. It is only from them that a (rotationally still noninvariant) candidate for an algebraic
counterpart of the mass term may be formed for quark of color #2. Elements G22 and its two
analogues (G11 and G33) belong to the SU(3) sextet G{kl}. This sextet decomposes in SO(3)
into a scalar (the trace

∑

k Gkk) and a quintet. Thus, as originally anticipated, the summation
over the color degree of freedom would lead to the restoration of rotational invariance for the
algebraic counterpart of the effective quark mass term.

Although the basic element of the mechanism of quark conspiracy seems to work, one cannot
directly use G0 and Gkk (together with their hermitean conjugates) as the algebraic counterparts
of lepton and quark mass. Specifically, it turns out that the 64-element Clifford algebra of
nonrelativistic phase space is too small to reproduce the standard algebra leading to Dirac
equation for a lepton 9. In the next Section we will enlarge the algebra and show how the
problem could be solved.

5. Compositeness and additivity

If the phase-space approach is to constitute a successful idealization of certain aspects of
nature, there should be a way to apply it to the description of the emergence and spatial
behavior of colorless composite states (mesons and baryons). In the standard field-theoretical
language this behavior is described via hadron propagation in the underlying background space
of Democritus. On the other hand, within our Aristotelian philosophy of emergent phase space,
the actual relation between hadrons (or leptons) and the classical arena of events is inverted:
the macroscopic space is expected to be well defined only at the level of individually observable
(colorless) particles. If space emerges in full starting only at the hadronic level (recall the issue
of the frozen degree of freedom discussed in Section 2), the idea of space emergence should be
regarded as constituting an unorthodox point of view on the problem of confinement. In other
words, the emergence of the ‘background’ space (which space constitutes an input into QCD)
and the problem of confinement (the emergence of composite states) might be considered as
two faces of the same issue. Unfortunately, we have no detailed idea on how to construct the
classical space from the quantum layer of spins, internal quantum numbers, etc.; we have no
idea what are the rules that govern the emergence. Still, some expectations may be presented.
These expectations are based on the concept of additivity which constitutes a basic element
in the determination of the properties of composite systems of particles. Indeed, additivity is

9 The hypercharge projector in G0 conflicts with the algebraic counterparts of momentum.
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applied both to their quantum numbers (via the additivity of spins, flavors, etc.) and — in
the case of individually observable particles — to their physical momenta. For example, the
momentum of a system composed of leptons A and B is given as p = pA + pB. The same
formula is used for the determination of the momentum of a hadronic resonance formed when
two hadrons collide. Such additivity prescriptions must constitute important ingredients in the
way our classical world emerges out of its quantum components. Although they seem trivial
and are generally not given much thought, in the case of quarks we must be more careful.

5.1. Additivity of quark canonical momenta
The problem is with the transition from the hadron to the quark level. It seems that for quarks a
natural extension of the principle of the additivity of physical momenta consists in the additivity
of the canonical momenta 10. Now, the canonical momenta of red, green, and blue quarks are
(in order to distingush the positions of green and blue quarks, we renamed x1 in Eq. (17) into
y1, with similar cyclic changes in other places):

pR = (p1, x2,−y3),

pG = (−y1, p2, x3),

pB = (x1,−y2, p3). (20)

Addition of the canonical momenta of three quarks of different colors (the baryon case) leads to
a translationally invariant expression:

pR + pG + pB = (p1, p2, p3, x1 − y1, x2 − y2, x3 − y3). (21)

If different quarks conspire, the expression on the r.h.s. above can be made rotationally
covariant as well. The r.h.s. of Eq. (21) is then expected to contain the total physical
momentum p of the resulting baryon. This weird conspiration constitutes a glimpse into the
anticipated physics of space emergence which the phase-space approach suggests. The r.h.s. of
Eq. (21) contains also the expression ∆ = x−y formed out of selected components of interquark
displacements. Since p is a vector, ∆ is expected to be a vector as well. If quarks were located
in the 3D background space, there would be two independent displacements (spatial degrees of
freedom) in each spatial direction. In our case, however, the constraint that ∆ is built from three
particular perpendicular vectorial components leads to an unexpected conclusion. To see what
happens, one has to analyse the situation in the position representation. For example, one has
to think of the blue quark as located at (x1, y2, z3), with analogous expressions for the other two
quarks. Consider the three components of ∆ as fixed perpendicular vectors (straight ‘strings’)
connecting the relevant quarks. It turns then out that together they form an ‘impossible triangle’.
Therefore, the whole construction is noncontradictory only if this triangle converges to a point:
each one of the three components of ∆ must vanish. Thus, one of the two usually expected
internal spatial degrees of freedom (for each of the three spatial directions) is necessarily frozen.
We conclude that there appears an interesting analogy between our additivity-based reasoning
and the existence of a phenomenologically established spatial constraint ‘inside’ the excited
baryons.

The above argument is based on an attempt to extend the applicability of the macroscopic
classical concept of space into the ‘interior’ of baryons, an idea we already argued to be
wanting. The bizzare character of the obtained picture is assigned to the inapplicability of
this extension 11. In our view, therefore, the background space can be used ‘inside’ hadrons

10 Additivity of physical momenta of individual colored quarks cannot be experimentally tested, as all probes used
for our studies of quark behavior (photons, weak bosons) are necessarily color-blind.
11 We do not consider the seemingly crazy character of our construction to constitute sufficient grounds for its
rejection. After all, our assumptions (extension to phase space, connection with internal quantum numbers via
its Clifford algebra, extension of the additivity principle) look extremely solid.
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solely as a rough appproximation. It cannot be used as a visualisation of what ‘really’ happens
there. What is obviously badly needed is a more specific proposal for the mechanism of space
emergence. Unfortunately, such a proposal is currently lacking (our arguments here, based
on the additivity of canonical momenta, may be considered as hints only, indicative of the
direction in which one should actually proceed). Yet, given the conceptual problems with the
notion of quark mass and the phenomenological problems with the spectroscopy of excited
baryons, we believe that important information on the details of this mechanism is hidden in
the spectroscopy and properties of hadrons, i.e. in the emergence of hadrons out of quarks. In
other words we think that one can learn about space emergence from a deeper understanding of
the quark/hadron transition. After translating this idea into the standard language it means that
the quark-confining interactions should be understood in geometro-algebraic (or pregeometric)
terms. Embarking on such an ambitious agenda is clearly beyond our goal here.

In order to apply our additivity proposal to the discussion of mesons, we must interpret
charge conjugation (i.e. the existence of antiparticles) in phase space terms. The more familiar
operations of space inversion P and time reversal T are obviously represented as:

P : (p,x) → (−p,−x),

T : (p,x) → (−p,+x). (22)

If one looks at the quantum case, the invariance of [xm, pn] = iδmn requires that time reversal
be accompanied by complex conjugation i→ −i. The product of P and T is:

PT : (p,x)→ (p,−x), and i→ −i. (23)

Assuming that CPT = 1, the operation (23) is then identified with charge conjugation C.
Indeed, for an ordinary particle the transition to the corresponding antiparticle is achieved by
keeping the particle’s momentum unchanged but reversing its charge Q. 12

Adding the canonical momenta of a red quark (pR = (pR1 , x
R
2 ,−y

R
3 )) and its antiquark gives

then
pR + pR̄ = (pR1 + pR̄1 , x

R
2 − xR̄2 ,−y

R
3 + yR̄3 ). (24)

Thus, translationally invariant expressions are obtained also for quark-antiquark systems. 13 In
short, the requirement of translational invariance suggests the acceptability of qqq, qq̄, and q̄q̄q̄
systems as individually observable particles, and the nonacceptability of q, qq, qqq̄, etc. This
conclusion, which actually corroborates our assumption on the additivity of canonical momenta,
is very similar to the analogous one obtained via the color-singlet argument of the standard
quark model. Note that the requirement of translational invariance explains why in the HS
model the combination TV V is confined but TTT or TV V ⊗ V TV ⊗ V V T are not.

5.2. Additivity of colored quark Hamiltonians
We proceed now to the issue of the additivity of quark Hamiltonians. We postpone the discussion
of the mass terms for the moment and start from the momentum part of the lepton Hamiltonian,
i.e. from the (nonrelativistic) expression

HL = A · p. (25)

12 Since all our theories provide idealized descriptions of certain aspects of reality only and must not be identified
with nature, it should not be considered strange (or unacceptable) that antiparticles may be recognized and
described in a language different from that of the relativistic field theory.
13 Rotational covariance requires taking into account green and blue quarks as well.
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Genuine 6D rotations of A and p (see e.g. Eq.(17)), when combined with appropriate sign
changes in the matrix part, transform (25) into the following Hamiltonians for the three colored
quarks:

HR = A1p1 +B2x2 −B3y3,

HG = −B1y1 +A2p2 +B3x3,

HB = B1x1 −B2y2 +A3p3. (26)

While ordinary 6D rotations necessarily yield plus signs in the above formulas, we have used
here the possibility of redefining some of the elements Ak, Bk in a way that does not affect the
(even in Ak, Bk) operators of weak isospin and hypercharge. 14 Summation over quark colors
gives the total quark Hamiltonian:

HQ−total = A1p1 +A2p2 +A3p3 +B1(x1 − y1) +B2(x2 − y2) +B3(x3 − y3). (27)

If quarks of different colors are taken to be located at the same point, one obtains

HQ−total = A · p. (28)

This resembles the momentum part of the (nonrelativistic) lepton Hamiltonian (25) completely.
The difference is that here a sum over colors is taken and contributions from quarks of different
colors conspire to yield the momentum part of the total Hamiltonian as if of a lepton.

5.3. Special relativity
We are now in a position to discuss the issue of how to include mass terms and special relativity.
For leptons this means that we want to extend the nonrelativistic algebraic equality

(A · p)(A · p) = p2 (29)

to a relativistic form, i.e. to an expression in which the r.h.s. above would be replaced with
p2 + m2. In its essence, we face the Dirac’s problem. Indeed, as remarked earlier in Section

4.4, our tentative identification of a Hermitean combination of the Y = −1 elements G0 and G†
0

with the algebraic counterpart of the lepton mass term suffers from an incompatibility similar
to the one encountered by Dirac. Specifically, there is a problem with the product of elements

Ak and G0 (G†
0): the mixed mpk terms do not cancel.

The solution of the Dirac’s problem consisted in the extension of the nonrelativistic
Pauli algebra via a tensor product construction. We propose here a similar construction
that generalizes our nonrelativistic Clifford algebra to an algebra that admits a relativistic
generalization of (29). Specifically, we move the Y = −1 projector y−1 ≡

1

4
(14 −

∑

k σk ⊗ σk) in
Eq. (18) to a new tensor factor so that

G0 −G†
0 ∝M0 ≡ y−1 ⊗ σ2 → G′

0 −G′†
0 ∝M ′

0 ≡ 14 ⊗ σ2 ⊗ y−1, (30)

and accept the following generalization of A · p in the lepton sector:

pkAk → pkA
′
k ≡ pkAk ⊗ y−1. (31)

Since the Y = −1 projector in M ′
0 and σk ⊗ σ0 in A′

k work now in different tensor factors,
therefore upon squaring

A′ · p+M ′
0m, (32)

14 For example, for the red quark the redefinition consists in A3, B3 → −A3,−B3 while keeping the remaining Ak

and Bk unchanged.
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one readily reproduces the relativistic form p2 +m2.
In order to extend our discussion to quarks, we consider a fully symmetric counterpart of

(32) with the Y = −1 projector y−1 in the rightmost factor replaced by 14. We separate then
the color singlet and triplet (Y = −1 and Y = +1/3) subspaces via

pkAk ⊗ 14 +m14 ⊗ σ2 ⊗ 14

= (pkAk +m14 ⊗ σ2)⊗ y−1

+ (pkAk +m14 ⊗ σ2)⊗ y
+

1

3

(33)

where

y
+

1

3

=
1

4
(3 · 14 +

∑

m

σm ⊗ σm) (34)

is the projector onto the color triplet subspace. Finally, we decompose the second term on the
r.h.s. of Eq. (33) into contributions from quarks of definite color:

pkAk ⊗ y
+

1

3

+m14 ⊗ σ2 ⊗ y
+

1

3

= (p1A1 + x2B2 − x3B3)⊗ y
+

1

3

+m14 ⊗ σ2 ⊗ y
+

1

3
,1

+ (−x1B1 + p2A2 + x3B3)⊗ y
+

1

3

+m14 ⊗ σ2 ⊗ y
+

1

3
,2

+ (+x1B1 − x2B2 + p3A3)⊗ y
+

1

3

+m14 ⊗ σ2 ⊗ y
+

1

3
,3, (35)

where y
+

1

3
,k are projectors onto the subspaces of red, green and blue quarks (see also Eq. (19)):

y
+

1

3
,k =

1

4
(14 +

∑

m

σm ⊗ σm − 2σk ⊗ σk), (36)

that satisfy
∑

k y+ 1

3
,k = y

+
1

3

. Eq. (35) constitutes the proposed extension beyond the

nonrelativistic case discussed in Eqs. (27, 28). For the canonical momentum terms the
rotationally noninvariant distinction between quark colors resides only in the first factor of
the tensor product, while for the mass term this distinction resides only in the last factor. The
total quark Hamiltonian looks like a Hamiltonian for a free relativistic particle used in pre-
QCD current quark mass extraction procedures. According to our proposal the old (pre-QCD)
form should be viewed as involving an explicit summation over colors for both the canonical
momentum terms and the mass terms. As a result, translational, rotational and relativistic
invariances are restored and the standard relativistically invariant couplings to external colorless
objects may be introduced at the level of observable combinations of quark contributions. It
is only at this colorless level, the level at which special relativity has to be recovered, that the
concept of spacetime point becomes meaningful and the standard gauge interactions may be
introduced. Since the concept of spacetime point constitutes a prerequisite for any talk of local
gauge structure, it is the issue of spacetime emergence from the quantum layer that has to be
successfully addressed before any attempt to introduce interactions is made.

6. Concluding remarks

In various approaches to quantum gravity, macroscopic spacetime is often imagined as emerging
from the quantum layer at the minuscule Planck scale. The nonlocality of quantum physics
suggests, however, that this emergence occurs simultaneously at all distance scales, from the
Planck scale to the cosmological distances. The quantum-mechanically-related momentum scales
span a correspondingly enormous range. Since this range includes in particular the masses of
all elementary particles, their spectrum could provide us with important hints on the actual
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mechanism of spacetime emergence. This relevance of the problem of mass to the idea of space
quantisation was supported with a brief review of fundamental issues related to the concept of
particle masses, both at the hadron and quark levels. The encountered problems suggest that
important information on the idea of spacetime emergence could be accessed via the studies of
quark/hadron transition.

An attempt to address such ideas, based on the Clifford algebra of nonrelativistic phase space,
was briefly reviewed. It was recalled that the proposed scheme reproduces important features
of the observed spectrum of elementary particles, including the appearance of internal quantum
numbers of weak isospin and hypercharge that characterise leptons and quarks, and providing
an explanation of the Harari-Shupe model. A definite asset of this explanation is that it does not
assume the heavily criticized existence of fermionic ‘preons’ inside fundamental fermions of the
Standard Model. It was also pointed out that the scheme offers an unorthodox, alternative view
on the problems of quark and hadron masses and the issue of quark confinement. In particular,
possible connections of phase-space ideas to quark and hadron phenomenology were indicated. A
way to introduce relativistic covariance at the level of individually observable particles (leptons
and hadrons) was also proposed and discussed.
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[14] Żenczykowski P and Lach J 1995 Int. J. Mod. Phys. A 10 3817
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