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Introduction: 
 
In this note, we will investigate some of the physics processes taking place in an RF cavity that is filled 

with  high pressure H gas that has been cooled to LN2 temperature.  The measurements made by 

Muonsinc on the breakdown of such cavities [1] is shown in the Fig. [1] below. 

 
 Fig. 1 

 

The possibility of obtaining very high gradients is very attractive for muon cooling channels.  We will 

abstract from this data a single constant which is normally designated as E/P where E is the field 

gradient in V/cm and P is the pressure in millimeters of Hg.  If we take a straight line thru the origin 

and the point 60 MV/m and density of .005 grams/cm
3
, then one can calculate that E/P 13.2.  The units 

are Volts/cm and the pressure in torr that would give H gas a density of .005 grms/cm
3
 at T = 273 K.  A 

second and better variable is given by E/n where n is the number of molecules/cm3 and since n is 
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proportional to P, the behavior is the same, but makes clear that the only gas variable is the spacing 

between molecules. The RF breakdown measured at 800 MHz is about the same as the DC 

measurements  reported in the  literature and fits the behavior described by Paschen.   The limiting 

value for breakdown that corresponds to E/P = 13.2 is E/n  = 4 10-16   

 

Breakdown occurs on the linearly rising part of the curve when an avalanche forms.  This happens 

when the probability for a free electron in the gas to make a second electron is greater than one.  This 

can only take place when the mean free path of the electron is long enough so that its kinetic energy 

picked up from the field exceeds the ionization potential of the hydrogen molecule.   The threshold is 

15.37 eV and the cross section increases linearly after about 16 volts as shown in the Fig. [2] below 

from  [3]. 

 

  

                  
 

The actual cross section as measured by [3] is shown in the Fig. [3] on the following page.  The curve 

gives the probability per cm for ionization in Hydrogen gas at 1 mm pressure.  We are not directly 

interested in this data as the régime proposed for cavities in the cooling channel is such that secondary 

ionization processes do not occur.  It obviously does apply to the linear part of the Paschen curve 

where E/P is 14 or greater and where break down does occur.  The data collected in this note should be 

useful when we try to interpret future experiments. 
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 Fig. 3 

Let’s now consider the region where E/P <14 and we have a beam thru the cavity.  First of all it is 

worth noting that breakdown does occur on the plateau region where the gradient is high enough to 

inject a strong source of electrons pulled from the metal electrodes.  This swarm of electrons increases 

the local field and E/P is great enough to support an avalanche and the cavity breaks down. We need a 

picture of what happens when an intense beam of muons passes thru the cavity. 

 

Description of beam transit thru cavity 
 

We consider first a closed cell cavity with parallel plates and a uniform field and the beam goes thru at 

the peak of the RF cycle as a delta function.  We will pick dE/dx for hydrogen as 4 MeV/grm/cm
3
 and 

use the measured value of 35 eV/ion pair to calculate the ionization density.  A cartoon is shown on the 

next page, Fig. [4].  The green represents the region of ionization caused by the transition of the beam 

pulse and immediately after the electrons drift in the field toward the upper plate.  The positive ions are 

so massive that their mobility is very small and they essentially stay in place.  As the column of 

electrons drift upward, they leave a disc of positive ions near the lower plate.  They also collide with 

the gas ions and loose energy, making a random walk in the vertical direction.  The energy lost in the 

collision process takes energy out of the field in the cavity.  When the rf voltage crosses zero, we will 

have the situation shown in the next picture, Fig. [5].  Energy has been dissipated and there is a layer of 

positive charge near the bottom plate equal to the charge of electrons collected on the upper plate of the 

cavity.  During the next half cycle the electrons drift downward leaving an area of positive charge near 

the top plate and again loosing energy.  We should also note that there is an axial magnet field of the 
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order of 5 T that will confine the plasma in the radial direction.  We now need to get quantitative and 

calculate the magnitude of the ion densities and their mobilities. 

 

Beam passing thru cavity at voltage peak: 

 

 
   Fig. 4 

 

One quarter cycle later: 

 

 
 Fig. 5  

 

 

The table on the next page is representative of the environment that we must consider. 
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Example:   Table 1. 
 

P= 200 Bo=13.6` betaPerp= 0.0981

emit= 0.000422 minEmit= 0.000209

Nbeam= 1.×1011 rhoGas= 0.03`

RF Gradient Vêm =25.×106,Frf Hz= 400.× 106

___________________________________________

1. beamRadius, cm 0.643745

2. H molecule density 9.033×1021

3. av. molecule Spacing in microns 0.000480245

4. muonsêcm2 = 7.68108×1010

5. Averge µ spacing microns 0.0360819

6. Radius 2 eV electron, Bo T field, microns 0.350413

7. spacing between ions along track, microns 2.91667

8. electron path length to ionize, microns 0.6148

9. tforIonization ps 0.522413

10. positive ion densityêcm3 2.63351×1014

11. plasma Frequency 9.14864×1011

12. EoverP, KVêcmêtorr = 0.919481

13. Mobility= 0.0187169

14. electron velocity cmêsec= 1.0207×106

15. deltaZ, microns 9.77355

16. qêcm^2 cavity,No. electrons 1.38349×1011

17. plasma density x deltaZê2 1.28694×1011

18. plasma Chargeê Cavity Charge 0.930212

19. deltaWêcm3 ê cycle 0.00686796

20. Qeffective 2.53138

21. Eên HVêcm êMoleculesêcm3 2.78977×10−17

Null  
Description of the above parametrs: 

P=beam momentum MeV/c   Bo= axial field in T   betaPerp= focus from Bo 

Emit= actual beam emittance  minEmit = equilibrium emit Nbeam = # muons in pulse 

rhoGas = density in grms/c
3
 

The beam is assumed to be a simple cylinder of uniform density.  The tforIonization is the time it 

would take for a free electron to accelerate to 15.3 eV.  deltaZ is the distance an electron moves thru 

the gas in ½ cycle (not 1/4)!  In line 18, the charge in the volume deltaZ  is compared to the charge 

on 1 cm
2
 of the cavity electrode, ie 8.87 10

-12
 E /100. Finally in line 20 the effective Q of a unit 

volume of space is calculated. 
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Discussion of the example 
 

First of all it is crucial to understand how the mobility of the electrons is obtained.  The mobility µ 

is defined by the equation v = µ E.  It is measured by observing the drift velocity of electrons in a 

field E and is normalized to the value observed for a gas pressure of 1 Torr.  To see the physics, 

consider a swarm of electrons moving under the effect of E.  An electron will be doing random 

collisions with the molecules and changing direction.  However it will have a coherent drift given 

by: 

 

(1)   v = ½  a t  = ½  e/m E t  = ½ e/m E <λ / Vr> 

 

We start with an electron whose random velocity is Vr but is zero in the z direction.  It accelerates 

under the action of the field until it hits a molecule and is deflected by 90
o
 or more.   The distance it 

travels is λ and its velocity is Vr, the random velocity of the swarm.  The distance it travels is given 

by the total cross section and the gas density: 

(2)   λ  = 1 / N σ 

Combining with  (1) gives  

(3)   v = ½ e/m  < 1 / (N σ Vr) >  E   =  µ E    and is proportional to E /P or E/N. 

 

We note that E / P is only a good variable if Vr, the random velocity of electrons in the swarm , is a 

constant and not dependent on density.  In fact, Vr is not the kinetic velocity where the electrons are 

in equilibrium with the gas molecules with each degree of freedom having an energy of ½ kT.  In 

the case of high field, the swarm random velocity of the electrons is much above that of the 

molecules.  The energy from the coherent motion in the field is fed into random motion by 

scattering.  So the electron swarm has mean kinetic energy of several eV.  The following figures 

give the availale data on mobility of electrons in hydrogen. 

 

The first curve by  Bartels [4 ] discloses a big dependence on density for both He and H in the 

region covered.  Remember that the region of interest is for E/P considerably greater than 1.0 and 

this is off the curve.  I have extrapolated the limiting curves for He at low density and high density 

up to E/P = 1.0.  It is apparent that they are coming together.  The data for H is not as extensive and 

brings into question what the high pressure mobility for H really is.   The table at right converts the 

number density into gas density and to the equivalent P in Torr.  The gas density in this experiment 

reaches about .02 which is in the region of interest.  However, the important point is that the 

mobility is approaching the low density value,i.e. the topmost curve  The same effect is shown in 

the work of Bartels [5] for H but again for lower densities.  A number of effects come in at low 

values of E/P:  The electron swarm comes into equilibrium with the ambient gas and there are 

molecular states that can temporarily capture the electron and thus impede its motion. 

 

The result was finally explained by Braglia and Dallacasa[2 ].  When the mean energy of the 

electron becomes low enough the wavelength of of the electron becomes greater than the spacing 

between molecules and so one can no longer treat things on the basis of the electron colliding with 

one atom at a time.  The theory worked out fits the data well in the region of very small E/P where 

the electrons have come into equilibrium with the ambient environment.  I have not been able to 

find a treatment for “hot” electrons.   (the following two pages show data) 
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Bartels [4] 

 

 
Fig. 6 

 

Pack and Phelps [6]      Bartels [5]   

    

 
Fig. 7 

 

 

 

 

 

 

 

 

6.6×1019 0.00022044 1876.39

9.9×1020 0.0033066 28145.8

1.65×1021 0.005511 46909.6

2.48×1021 0.0082832 70506.6

3.3×1021 0.011022 93819.3

4.13×1021 0.0137942 117416.

4.95×1021 0.016533 140729.

5.78×1021 0.0193052 164326.

6.6×1021 0.022044 187639.

N/cm3     grms/cm3   E?P 
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Bradbury and Nielson  [7]  The large E/P is at low pressure and gives E/P with no density effect. 

 
Fig. 8 

Heylen [1] 

 

 
Fig. 9 

 

 



 9 

Heylen [1] has fit the data at low density with an empirical equation that is good to 16% in the 

region 0.1 < E/P < 100.   He gives two curves shown on the bottom of the last page.  One is for the 

mean random energy for an electron in a swarm and the other is for the mobility.  The fits are: 

 

                                                       Єm = 0.357 (E/P)0.71 
 

                                 µ = 1.72 10
-2
 [ 1 – 2.4  10

-2
 (E/P)

0.71
 ]
-1.75

 (E/P)
-.53
 

 

(There is an error in his eq[6]….it should be (E/P)
0.71
  not -0.71 ).  The fits to the data are shown in 

the last figure on the previous page.  These fits have been used in calculating the motion of the 

electrons for the example cavity.  The velocities at an E/P = 1 are 106 cm/sec. and the mean electron 

energy is several electron volts. 

 

We can use this data to investigate the questions raised by the observed density effect.  Using the 

first equation, we can compute the mean wavelength of the electrons as a function of E/P.  The 

figure below shows the results. 

 

 Fig. 10 

 

To calculate deltaZ, the length the electrons drift in ¼ cycle, we integrate the drift velocity over 

time 

 

deltaZ = ‡
0

Tê4
µ@E0  Cos@ω tDêPD E0 Cos@ω tD �t

 
Where the expression for the mobility is given above and deltaZ is shown in line 15 of the table.   

 

In a similar fashion we can calculate the energy loss in a cubic cm of the plasma and the answer is 

in line 19: 
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dW = ‡
0

T
velocity force �t = ‡

0

T
µ E e E �t

 
 

In addition to the energy loss/cycle, we can compute the electrostatic energy stored in a cubic cm of 

space and comparing this with the energy loss, we can compute an “effective Q”  of this volume.  

This is not the Q of the cavity because the cavity has energy stored outside the region of the plasma, 

but it does give and indication of the intensity of interaction between the beam and cavity. 

 
The plots below are for the conditions listed in figure [ ] except that the gas density is varied 

from .001 to .04.   Ignore the region below .004 because breakdown will occur at these low densities 

since Vrf is fixed at 25 10
6
 /cm. 
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Fig. 11 
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The drift velocity comes from the fit made by Heylen and is the velocity at the peak of the RF cycle. 

deltaZ is calculated by integrating the velocity over a half cycle.  The plasma charge over the cavity 

charge is an indication of the cavity loading by the beam.  The actual cavity loading is less than this 

by the ratio of the beam area to the effective high field area of the cavity.  Charge will flow in from 

the adjacent areas and the effect is to increase normal beam.  The best indication of this is the lower 

left hand plot shat shows the plasma charge over the beam charge.  In the useful region, this ratio is 

of the order of 1 and so the gas effectively doubles beam loading effect in this example.  The last 

curve shows the energy dissipation per cycle per cm
3
 and will cause damping in the cavity.  

 

    Recombination  

 
The question of recombination of the plasma has been raised.  If the recombination is extremely fast, 

the effects discussed above will be absent and if it is very slow, it can influence subsequent cycles.  

First of all, two body recombination with the emission of a photon is orders of magnitude too slow 

to be of any effect.  For a two body process, the recombination rate is defined by the equation 

 

   dn1 / dt = r n2 n1    

 

where n1 and n2 are the concentrations of the two species participating in the reaction.  The value of 

r has been measured and calculated for hydrogen and is between 10-11 and 10-12 cm3 sec-1.   For the 

example with the ion density = electron density = 2 10
14
 , the initial lifetime is of the order of 

milliseconds.  Note that if  n2  = n1  the equation can be integrated: 

 

n1(t) =  n1(0) / ( 1 + n1(0) r t)   

 

This is not exponential and ions can last for very long times.  The quantity 1 / n1  d n1 / dt  gives the 

fractional rate that n1 is disappearing and can be used for comparing various rates.  

 

The main process for recombination is a 3 body process where the electron is captured into an 

excited state of the molecule which is then de-excited through further collisions.  The process is 

complex and the numbers that exist are generally for plasma at low pressure.  The numbers give 

recombination rates that are maybe a factor of 10 faster than the direct recombination which place 

the initial time constant in the range of 100 µsec.  

 

A case where attachment to a heavy molecule could possibly help would be thru the introduction of 

something like SF6 which has a great affinity for electrons.  It also has a radiation length that is 

much shorter than H and so must be used sparingly!  The radiation length per molecule is about 1% 

that of H.  However, the introduction of this amount of material in H would only double the 

radiation length and one could expect a short capture time for the mixture.  The attachment rate of 

electrons to SF6 has been measured in a mixture of N2 and SF6 to be between 10
-8
 and 10

-7
  [8 ].  If it 

is the same in hydrogen then a 1% mix would lead to recombination rates of the order of 

picoseconds.  A drawback could be that under radiation, SF6 forms F
-
 and a whole string of other 

nasty ions which could combine with H into even nastier things.   It isn’t clear whether or not the 

vapor pressure is high enough at 77 K make an effective mixture.  Its vapor pressure at 160 K is .01 

bar.  I wasn’t able to find values at lower temperature.  One should search for more appropriate 

gasses. 
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Mathematica Program 

 

I have written a Mathematica program that calculates many of the numbers that will pertain in a 

cooling channel.  An example of its output is shown in Table 1.  It is available for asking.  It can be 

used as a tool to help explore where gas filled cavities might be used in a cooling channel. 

 

Experimental program  
 

There are many questions!  I list some of my comments here: 

 

1. The primary data will come from the first exposure of a gas filled cavity to beam.  At a gas 
density of .03, we will be at 6 times the Pashen limit observed at a density of .005.  

Measuring the Q at low beam intensity should reveal whether the loss factors calculated here 

agree with the observations.  At high intensity the charge calculations can be checked.  It 

will be important to have a fast scope coupled to the cavity to observe exactly how the cavity 

reacts to beam during the rf cycle.  We have a digitizer that was purchased for the Tevatron  
and has a BW of several GHz and enormous storage that would be ideal for these studies.  

Contact Bob Flora. 

2. Having clearing electrodes could be useful for measuring the clearing times of the ions.  
Note that these times are very sensitive to gas purity as small quantity of something like 

oxygen can have a large effect. 

3. A scintillation light fiber exposed to the hydrogen Balmer lines in the cavity  could be useful. 
4. Blasting the cavity with a 10 µSec dirty beam is a great first test, but dos not very accurately 

represent a small very highly cooled beam that will exist near the end of the channel.  So if 

this works in the initial test, some thought needs to be given to how we can generate a better 

beam.  10
12
 particles in  10 µSec  is very different than if they are in a single bunch. 

5. An open cell cavity must also be tested.  In this case the complications at the end are much 
harder to model and have not been considered here.  However the losses in the ionized 

region will still be there and will damp the cavity. 
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