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ABSTRACT 

A natural and selfconsistent method is given in the context of 

the ladder approximation of the Bethe-Salpeter equation for the 

construction of gauge invariant models for two-body scattering 

involving photons. The vertices in these models are assumed to 

have structure and to be described by Bethe-Salpeter equations. 

As examples, models for the following reactions are given: 

IL 
yN - yN, yN - TON, 

6 
YT -y?r, yn- p X. 
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I. INTRODUCTION 
4 

In order to explain particular experimentally observed properties of scat- 

tering amplitudes, such as the existence of fixed j-plane poles, scaling and 

forward peaks, ‘it is useful to have several possible models that describe the 

process, so that the observed property can be traced back to features inherent 

in a limited class of such models. For example, the peaking of differential 

cross sections near the forward direction is associated with models in which 

cross channel exchanges are important. For reactions involving the photon, 

the constraint that the models be gauge invariant makes it difficult to propose 

test models. Although it is usually possible to propose a set of Born diagrams 

whose sum is gauge-invariant, any attempt to introduce particle structure by 

the insertion of form factors in these diagrams invariably destroys the gauge- 

invariance. In order, then, to restore gauge-invariance, it becomes necessary 

to add contact terms or contributions unmotivated by basic diagrams. ’ The 

prescription for finding such gauge-invariance restoring terms is often 

nonunique. 

Within the framework of the Bethe-Salpeter equation in the ladder approxi- 

mation it is possible to propose gauge-invariant models in which all contributions 

are motivated by scattering diagrams. In this framework structure for the 

particles is introduced by assuming that vertex functions satisfy Bethe- 

Salpeter equations. The covariant potential responsible for the structure of 

the particles then naturally leads to a consideration of appropriate diagrams 

whose inclusion in the model ensures gauge-invariance. 

In the following we discuss several models beginning with the standard 

reaction yN- TN which illustrates this technique. Models of the type dis- 

cussed here are most appropriate for considering the existence of fixed 
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j-plane poles in Compton scattering’ and scaling of structure functions in deep 

inelastic scattering. In fact one of the models we discuss is that used by Drell 

and T. D. Lee. 3 

II. GAUGE-INVARIANT MODELS 

To illustrate the technique for constructing gauge-invariant models with 

the framework of the Bethe-Salpeter equation in the ladder approximation we 

consider first pion photoproduction of nucleons, y N - T N 
q P q’ P” 

where the 

indices represent the respective four-momenta. The normal gauge-invariant 

model for structureless particles is given by the sum of the Born diagrams 

in Fig. 1. Denoting the charge of the incoming and outgoing nucleons by Q 

and Q’, respectively, the gauge-invariant amplitude is just 

Tp = %O [ Qy,PO ycl + Q'y$'W-q) y5 

- (Q-Q’) r5 r&-q’) l-W’ + q)pjWp) 

where P(x) and r(x) are the nucleon and pion propagators given by 

(1) 

P-‘(x) = - (ix. y + m -ie) 

T-l(X) = X2+p2 -ic 

Using the relations 

P@+Q 4-y u(P) = i u(P) 
(2) 

ii q-y P(pl-q) = -i U(p’) 

and the fact that the external particles are on their mass shells, we obtain 

s’” Tp = i U(p’) y5 U(P) [Q -QI - (Q-at)] = 0 . 
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Structure can be introduced by assuming that the vertex functions describing 

the coupling of vector particles and pions to nucleons satisfy Bethe-Salpeter 

equations as illustrated in Fig. 2. The algebraic form of these equations is 

seen to be 

= zv yP -I- s d4xWN(x) P@+q+x) I’rN(p+x) P@+x) (3) 

and 

r’(P,q,pl-q) = r%) 

= 
s 

d4x WN(X) P(p+x) r T(p+x) P(p+q+x) (4) 

where W,(x) is a potential and Zy the NyN coupling constant. We assume 

that the potential is sufficiently well behaved so that the integrals (3) and 

(4) exist. In this model it is clear that the potential WN coupling the nucleons 

should be the same for both photons as for pions. We have made the tacit 

assumption that this potential describes the exchange of scalar mesons. This 

is, of course, not necessary, for Dirac matrices, i. e. , y5, y 
CL’ 

etc., could 

be inserted before the first propagator and after the last propagator to enable 

the potential to describe the exchange of other types of mesons, i. e. , pseudo- 

scalar, vector, etc. We have also made the physically reasonable assumption 

that the pion, nR , is a bound state of two nucleons (i. e. , of a NR pair) or two 

quarks and thus that it lies on a Regge trajectory. Since it is impossible to 

conceive of a Regge trajectory for photons, we have written an inhomogeneous 

Bethe-Salpeter equation for its vertex function. 

Clearly the potential WN, which couples nucleons to give structure to the 

vertices should also cause exchanges between the initial and final nucleons. 
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This leads us to consider the model shown in Fig. 3. Denoting the contribu- 

tions of the individual direct channel diagrams of Fig. 3a by q , DF, 

n= 1,2,3, . . . and those of the crossed channel diagrams of Fig. 3b by Ci, CF, 

n= 1,2,3, . . . , we write 

DP=$+ 5 D; , 
n=l 

(5) 

cp= c;+ 5 c; 
u=l 

The photoproduction amplitude TP is then given by 

Ty = QDP + Q’C 
P (6) 

It is interesting to notice that the assumption that the pion is a bound state of 

an NR pair means that the pion will appear as a bound state in the scattering 

process Nm -. Nm, and thus that the ladder diagrams shown in Fig. 3 simulate 

the exchange of a Reggeized pion as indicated in Fig. 4. This is not an 

unexpected feature since the exchange of an elementary pion was necessary to 

ensure gauge-invariance for structureless scattering as depicted in Fig. 1. 

With the help of the generalized Ward identity for I NYN , 

i qPrNyN cL (P,pF4,4) = P-b-4) - Pm’@) = iq.7 (7) 

and the Bethe-Salpeter equation for l? x it can be shown that the model given in 

Fig. 3 is gauge-invariant. In particular, the generalized Ward identity results 

in each diagram giving two terms, one containing no propagators involving q 

and the other’with just one propagator containing q. If the Bethe-Salpeter 

equation4 for rr is used to reexpress I* in the term whose propagators are 

independent of q, the resulting expression will just cancel the term having one 
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propagator containing q in the next higher diagram. As an illustration of this c, 
cancellation we consider Dp and D1. 

ZZ -i ii rQq P@+q) [P-‘(p+q) - P-l(p)] ucp) 

= i ii P(p) P(p+q) P-‘(p) u(p) 

-i U@‘) 
f 

d4X W,(X) P @‘+X) P~(p’+X) P@‘+q’+X) u(p) 

= 0 -i G(p’) 
s d4X WN(X) P(p’+X) Pr(p’+X) P@‘+q’+x) U(P) (8) 

Similarly 

q’D1 
P 

= ii@‘) 
s d4xl wN(Xl) P@‘+X,) PT(pl+Xl) P&-+4+X1) . 

- qprYwX P 1 ) m+x ) 4~) 1 

, 
= i G(p’) 

.f d4x WN(X) P(p’+x) rn(p+x) P(p+q+x) u(p) 

-i i$p’) 
f 

d4x WN(x) P@‘+x) r~(pl+x) P(p+q) u(p) . (9) 

Clearly, the term left over from qp$ just cancels the first term in qnD:, 

since q+p = q’+p’ . Similarly the second term in q’Di cancels the first term 

in q’D2 - This 
P 

again with the help of the Bethe-Salpeter equation for I’=. 

cancellation scheme is shown diagramatically in Table I. Since Dn and C 
P 

are separately gauge-invariant, the model described by Fig. 3 can be used 

to describe charged pion as well as neutral pion photoproduction. 

In the proof of gauge-invariance the fact that I” described the coupling of 

a bound state pion to the nucleons was not essential. In fact, IT could be 

replaced by any vertex function describing the coupling of some particle to 

the nucleons . V V For example, if I’* is replaced by Iv, where Iv describes 
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the coupling of a vector meson to the nucleons as illustrated in Fig. 2a, the * 
model is then a gauge-invariant description for reactions of the type 

YN --YN, 
‘08 

yN++.p N , etc. 

Since it is reasonable to consider the p-meson as a Regge pole and thus a 

bound state, Z ” for the p-meson would be zero. The appropriate primary 

diagrams and the cancellation scheme are given in Table I. The q-independent 

terms containing Zv which result from the replacement of l? F by its Bethe- 

‘Salpeter equation cancel between D” and Cn. 

It is also easy to include models where the incoming and outgoing nucleons 

are considered as bound states. For example, we can consider the nucleon 

as satisfying a homogeneous Bethe-Salpeter equation. The diagramatic form 

of this equation is given in Fig. 5. We then have the following equations 

- 
d4x’ V(x’) P&A-X+X’) 4,(x+x’) n(x+x’) 

d4x’ V(x’) n(x+x’) qp(x+x’) P&-t-x+x’) 
WY 

where r is the appropriate propagator of the bare meson x and P the propagator 

of the bare nucleon N. The potential V describes the coupling of the nonidentical 

particles x and N. We assume that the potential V is sufficiently well behaved 

so that the integrals (10) etist. Previously we assumed the existence of a 

potential WN between two bare nucleons N which gives structure to the nNN, 

VNN, etc., vertices. Similarly there should exist a potential Wx to describe 

structure at 7rxx, Vxx, etc., vertices. The potentials V and WN lead to basic 

or primary diagrams for the reactions 

YNR - TRNR 2 YNR - vzNR , YnR - vzTR 
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(nR a bound state of an Nm pair) as shown in Table I. We also show in Table I 

the ladder diagrams which have to be added in order to make the model gauge- 

invariant. The gauge-invariance cancellation scheme is again shown in the last 

n0 column. Here D is a diagram containing n horizontal lines each denoting the 

potential WN between bare nucleons; D On is a corresponding diagram containing 

n vertical lines with each denoting the potential V between a bare nucleon N and 

a bare mesonX. As an example we consider the cancellation of D 00 by con- 

tributions from D 10 and Dol. The contribution of the primary direct diagram 

Do0 multiplied by q’ is 

J d4x I,’ PcP’+x) r’(p*+x) P@+q+x) qp ry(p+q P(p+x) $J P (x) n(x) 

Replacing qFPNyN ~ (p+x) by iP-’ (p+x) - iP-’ (p+q+x) and using (4) and (lo), this 

expression may be written 

i f d4x 6,‘(X) P(p’+x) P(p*+X) P(p+q+x) j d4xlWl) P@+x+xl) $ptx+xl) @+x1) 1‘ a(x) 

-i 
f d4x 8,,(x) P(p’+x) If d4xlWN(Xl) P(p’+X+Xl) r”(p’+X+Xl) P(p’+@X+Xl) 

I 
p@+X) 

- + P (xl a) (11) 

The first of these two terms is cancelled by a contribution from D ‘? This 

diagram multiplied by qc” is seen to give on using (7) 

i 
s d4x d4xl $,,(x) P@‘+x) l?‘(p’+x) P(p+q+x) P(p+q+x+xi) @(x+x1) r(x+xl) a(x) V(x,) 

-i s d4x d4x, 4,,(x) P@‘+x) l?(p’+x) P(p+q+x) P(p+x+xl) $(x+x$ ‘$x+x1) n(x) V(x,) 
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Similarly D1’ yields on using (7) 4. 

i 
.I- 

d4xd4xI $p,(x) P(p’+x) P(p’+x+xI) PT@‘+x+xI) P@+q+x+xI) P(p+x) @p(x) n(x) WN(xI) 

-i s d4xd4xI $p,(x) P(p’+x) P(p’+x+x,,) r”(p’+x+xl) P@+x+x,) P(p+x) Gp(x) T(X) WN(xl) 

Clearly the first of these terms cancels the second term in (11). The cancella- 

tion of the remaining terms proceeds in the manner indicated in Table I, row 3. 

If we replace the pion vertex by a vector meson vertex we obtain -in an 

analogous manner -the gauge-invariance cancellation scheme shown in row 4 

of Table I. Unless the vector meson is composite, i.e., a p meson, the sum 

of the ‘ID” (direct) diagrams and the sum of the YY (crossed) diagrams are not 

individually gauge-invariant. The primary diagrams for reactions of the type 

we have just been considering are box diagrams. The additional diagrams 

necessary for gauge-invariance are all planar exchanges possible within the 

boxes, i.e., the sum of all diagrams with n horizontal exchanges WN and of all 

diagrams with n vertical exchanges VN for n=l to infinity. If we let W - 0 in the 

case of Compton scattering, the resulting model is that of Drell and Lee. 3 

As another example we can consider the case when the mesonX carries an 

electric charge and couples to the photon. In this case the structure of vertices 

of the form nXX,VXX is described by a potential Wx , and we can consider models 

for the reactions yNR -c rRNR and yNR -* VzNR where rR and V,(Z =0) would 

be considered as bound states of two X-particles. In the case of Compton 

scattering, in addition to the primary diagrams Dp and Cp a primary seagull 

diagram Sp must be added, and gauge-invariance requires the addition- to 

planar ladder diagrams obtained from Dp and Cp by inserting Wx and V rungs - 

of a corresponding ladder of seagull diagrams obtained by inserting any number 

of rings Wx between the meson lines. This model can describe the following 
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reactions in a gauge-invariant form: 
4 

z 
YNR - (p&Y) Ni , YN; - ,o;N;, YN; - p& (12) 

Since the. proof of the gauge-invariance of these models is not at all trivial, we 

indicate the main steps. Consider the diagram for D On (see Table I) multiplied 

by Its contribution to the amplitude may be written 

(13) 
= -vn 7r(yp) qp(en-P) + vn+l “(En+1 -P) 4 p n+l-*) (e 

where 

and 

n 
E n=x+ G xi 

i=l 

Pn = vn 
-/ 

1 dx;v(q pen) 7$il-P-9) 9 

v, = s -ii%p(x-p~) n(x-p’) $p,(x-p’) P(x) 
(14) 

In obtaining (13) we have used (10) and the generalized Ward identity 

a-%+4) - r ?P) (15) 

XYX where in the case of the bare point interaction 4%’ p (q,~) = q. (Q+q) . From 

(13) it follows that 

-J&+,(x-P’) 7$X-P’) +,,(x-P’) P(x) * 

* @ (X-P) P TN-P) (16) 

Proceeding in a similar manner we find for the contributions of the crossed 

terms 

~rp-p+s’) T(X-P) @p (X-P) p(x) +-P) +,, (X-P’) (17) 
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Next we consider the terms containing horizontalrungs Wx. The contribution -n 

of the direct channel diagram containing nrungs is 

nO D /-l XYX = _ pn n(En-pf) rp(En-py 7qEn-p) q rp 64, P-En) Q,-P-4) W P 
where 

vn=Tvn 1 -J ~~wcx,, +,-,-P) Qe,-1-P’) 9 
(19) 

w, = 
s 

dxSp(X-P) P(x) $pl(x-P’) 

Proceeding as before but using now the first of the vector vertex equations 

rp(x-p*) = 
/ 

dx;in(~*+~-p) n(x*+x-p-q) rp(xf+x-py w(xf) + z (2x-2pf-q*) 

rp-wit) = 
/ 

d~;l?r(~f+x-p) n(xvx-p+q*) rp(x’+x-ptq) W(X~ + z (2x-2~‘) 

(20) 

we find that (18) may be written 

DF” = wn ?@,-p’) r&En-p’) ?r(E,-P-cl) 

- z n( En-p’) VJn(2 En-2p’-q’)CL 71( en-p) 

-r (6 ~ n+l-P’) mn+J 7$r+l-P’) 4en+1-p-q) (21) 

The contribution of the corresponding crossed term is similarly found to be 

C n0 
P = -Vn n(en-~) r+en-p+q’) +,-p’+q) 

+ z .rr(e,-P) wn(2en-2P+q’)~ n(e,-P’) 

+r (E ~ ,p+q’) mn+l n&,-p’) ‘“(~n+l-P+q’) (22) 

The appropriate contribution of the seagull diagram containing-n horizontal 

rungs Wx is 

s; = -2qp WnZ7r(en-p) 7+,-p’) (23) 
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Using (19) and (20) one now finds that 
-h 

m 

=( 
D;‘+S;+C;’ = -So - Don+ Con 

n=l P P P 

which proves our claim. 

Finally it is also possible to replace the incoming and outgoing nucleons 

by pions. This results in gauge-invariant models for yn - Vzr (Table I, 

row 6) and yrR - VznR (Table I, row 7), where in the last reaction the vector 

particle if it is a p and the pion are considered as bound states of two nucleons. 

The vertex functions for the two external pions may be written 

l?&-tX) = 
J 

d4xlW(xl) P&+x+x1) l?(p+x+xl) P(x+xl) 

J (24) 
T(p+x) = d4xl W(x,) P(x+x,) r@tx+q P(p+x+x,) 

The vertex function for the external vector particleis, of course, given by (3). 

The model describes in a gauge-invariant manner the reactions 

Y& - 
z!r 0 

pR?rR ’ 
(25) 

Yr; - 

III. CONCLUSION 

It has been possible to construct within the framework of the Bethe- 

Salpeter equation in the ladder approximation gauge-invariant models containing 

structured vertices for reactions of the form yN - rRN, VZN where the nucleon 

N could be considered either elementary or as a bound state and yn - Vz 7r 

where the pion r could be considered either elementary or as a bound state. 

Clearly a bound state pion model will provide a gauge-invariant description of 

y=R - nR7rR. Thus we have presented a method of constructing gauge-invariant 
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models for an apparently unlimited variety of photonic two-body reactions that 

is natural and self-consistent. The models are useful for the investigation of 

numerous properties of photonic reactions such as, for instance, their 

behavior in the deep Regge region in analogy to the investigations of Blankenbecler 

et al. 4 
-- We remark finally that two special cases of the models discussed here 

are implicit in the work of Brodsky et al. 5 and Scott. 6 
-- 

We thank S. Brodsky for discussions. One of us (M-K) is indebted to 

Professor S. D. Drell for hospitality in the SLAC Theory Group. 

1. 

2. 

3. 

4. 

5. 

6. D. M. Scott, Nuovo Cimento s, 271 (1973). 

REFERENCES 

See for instance, R. B. Clerk, Phys. Rev. 187, 1993 (1969); 

also the example discussed in Section 1lI.B of Ref. 3. 

G. E. Hite and H. J.W. Miiller-Kirsten, Phys. Rev. D 2, 1074(1974). 

S. D. Drell and T. D. Lee, Phys. Rev. D 5, 1738 (1972). 

R. Blankenbecler, S. J. Brodsky and J. F. Gunion, Phys. Rev. D 8-, 

287 (1973). 

S. J. Brodsky, F. E. Close and J. F. Gunion, ‘*A gauge-invariant scaling 

model of current interactions with Regge behavior and finite fixed pole 

sum rules,” Report No. SLAC-PUB-1243, Stanford Linear Accelerator 

Center (1973). 

- 13 - 



4 TABLE CAPTION 

I. Gauge invariance cancellation schemes. 

FIGURE CAPTIONS 

1. Primary diagrams for yN -TN (structureless particles). 

2. Bethe-Salpeter equations for photon and pion vertices assuming the pion 

to be a bound state of two nucleons. 

3. Diagrams necessary to give a gauge-invariant model for yN -7rRN. 

4. Simulation of a Reggeized pion. 

5. Bethe-Salpeter equation for the nucleon NR considered as a bound state 

of elementary particles N and X. 
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REACTION PRIMARY DIAGRAMS LADDER TERMS 

DP CP SP 0” 

LADDER TERMS CANCELLATION SCHEME 

C” SQ 

DP 0’ D* D3 --e--.--e- 

0 ---etc. 

u--c_ 
cp c’ c* c3 

REACTION PRIMARY DIAGRAMS LADDER TERMS 

DP CP SP 0” 

(2) yN-VZN 

k----t H 
WN (X”) i’ 
WN (Xi) 

LADDER TERMS . CANCELLATION SCHEME 

C” SO 

REACTION PRIMARY DIAGRAMS LADDER TERMS 

LADDER TERMS CANCELLATION SCHEME 

Do’ DP D!O Dzo 
d---e----- 

etc.-- ---etc. 
-.-.--a 

CO’ cp C’O c*o 
2498D8 

e 
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I 

Table I (contvd) - 2 

REACTION PRIMARY DIAGRAMS LADDER TERMS 

DO” 

(4) yN~-V~N~ 

. 

LADDER TERMS CANCELLATION SCHEME 

CO” SQ 

Do’ Dp 0’0 
-9-----s-o------ 

+ 0 etc.- [p IzY Izv -etc. 
--c_- 

CO’ cp C’O 

REACTION PRIMARY DIAGRAMS LADDER TERMS 

(5) yN~-V,N, 

LADDER TERMS CANCELLATION SCHEME 

REACTION PRIMARY DIAGRAMS LADDER TERMS _ 

DP CP SP 

LADDER TERMS CANCELLATION SCHEME 

x ------ 
--- 

CP C’ C* 
2498D6 
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