
ATL-DAQ-2000-019
31/03/2000

T
h
e
A
tla

s
L
e
v
e
l
2
R
e
fe
re
n
c
e
S
o
ftw

a
re

R
ein

er
H
au

ser
(rh

au
ser@

fn
al.gov

)

M
arch

30,
2000

1
In
tr
o
d
u
c
tio

n

T
h
e
A
tla

s
L
ev
el2

R
eferen

ce
so
ftw

a
re
h
a
s
b
een

d
ev
elo

p
ed

a
s
p
a
rt
o
f
th
e
A
tla

s
S
eco

n
d
-

L
ev
el
T
rig

g
er

P
ilo
t
P
ro
ject

[1].
Its

g
o
a
l
w
a
s
to

h
av
e
a
sin

g
le
co
m
m
o
n
so
u
rce

co
d
e

b
a
se

fo
r
th
e
va
rio

u
s
a
ctiv

ities
in

th
e
P
ilo
t
P
ro
ject

to
av
o
id

u
n
n
ecessa

ry
d
u
p
lica

tio
n

o
f
e�
o
rt.

T
h
e
m
o
st
im
p
o
rta

n
t
req

u
irem

en
ts
w
ere

in
d
ep
en
d
en
ce

fro
m
th
e
o
p
era

tin
g
sy
stem

a
n
d
a
m
o
d
u
la
r
d
esig

n
,
w
h
ich

w
o
u
ld

a
llow

to
m
o
d
ify

a
n
d
o
p
tim

ize
th
e
so
ftw

a
re

fo
r

d
i�
eren

t
p
u
rp
o
ses.

T
h
is

in
clu

d
es

th
e
n
etw

o
rk

tech
n
o
lo
g
y
stu

d
ies

in
th
e
va
rio

u
s

h
a
rd
w
a
re

testb
ed
s,
b
u
t
a
lso

th
e
p
h
y
sics

a
lg
o
rith

m
d
ev
elo

p
em

en
t
a
n
d
b
en
ch
m
a
rk
s.

T
o
m
a
k
e
it

ea
sier

fo
r
in
terested

in
stitu

tes
to

ta
k
e
p
a
rt

in
th
e
d
ev
elo

p
em

en
t,

th
e
so
ftw

a
re

sh
o
u
ld

ru
n
o
n
co
m
m
o
d
ity

P
C
s
w
ith

o
�
-th

e-sh
elf

o
p
era

tin
g
sy
stem

s
(in

clu
d
in
g
W
in
d
ow

s
N
T

a
n
d
L
in
u
x
).

T
h
e
so
ftw

a
re

itself
d
o
es

n
o
t
d
ep
en
d
o
n
a
n
y

o
th
er

p
a
cka

g
es

o
r
in
fra

stru
ctu

re
(a
lth

o
u
g
h
e.g

.
A
F
S
is
req

u
ired

to
a
ccess

th
e
co
d
e

rep
o
sito

ry
).

E
m
u
la
to
rs

a
re

ava
ila
b
le
fo
r
ea
ch

co
m
p
o
n
en
t
in

th
e
�
n
a
l
sy
stem

w
h
ich

m
ig
h
t
b
e
im
p
lem

en
ted

in
sp
ecia

l
h
a
rd
w
a
re

(lik
e
th
e
su
p
erv

iso
r
a
n
d
th
e
R
O
B
s).

A
n

em
u
la
to
r
ca
n
b
e
rep

la
ced

b
y
th
e
rea

l
h
a
rd
w
a
re

if
it
is
ava

ila
b
le.

A
h
ig
h
-lev

el
v
iew

o
f
th
e
ov
era

ll
d
a
ta

ow

is
sh
ow

n
in

F
ig
.
1
.
T
h
e
va
rio

u
s
p
a
rts

o
f
th
e
sy
stem

ca
n
b
e
ex
ecu

ted
in

o
n
e
o
r
m
u
ltip

le
p
ro
cesses.

T
h
e
fo
llow

in
g
scen

a
rio

s
w
ere

fo
reseen

fo
r
th
e
referen

ce
so
ftw

a
re:

�
S
in
g
le
fea

tu
re
ex
tra

ctio
n
a
lg
o
rith

m
.
A
u
ser

sh
o
u
ld
b
e
a
b
le
to

w
rite

a
n
iso

la
ted

fex
a
lg
o
rith

m
a
n
d
ru
n
it
in

a
sim

p
le

fra
m
ew

o
rk

ov
er

a
seq

u
en
ce

o
f
ev
en
ts,

p
ro
d
u
cin

g
o
u
tp
u
t
in

a
n
y
fo
rm

a
t
h
e
lik
es.

T
h
e
a
lg
o
rith

m
s
ca
n
b
e
u
sed

w
ith

o
u
t

ch
a
n
g
e
in

a
fu
ll
sy
stem

,
if
th
ey

a
re

w
ritten

a
cco

rd
in
g
to

so
m
e
sim

p
le
ru
les.

�
S
in
g
le
n
o
d
e
trig

g
er

p
ro
cessin

g
.
T
h
is
m
o
d
e
a
llow

s
a
fu
ll
m
en
u
b
a
sed

ex
ecu

tio
n

o
f
m
u
ltip

le
fex

a
lg
o
rith

m
s
in

a
co
m
m
o
n
fra

m
ew

o
rk
.
T
h
e
d
a
ta

is
rea

d
fro

m
a

�
le
a
n
d
a
g
a
in

th
e
o
u
tp
u
t
is
u
ser

d
e�
n
ed
.
T
h
is
m
o
d
e
is
a
fu
ll
fu
n
ctio

n
a
l
test

o
f
th
e
trig

g
er

a
lg
o
rith

m
s
a
n
d
th
e
steerin

g
co
d
e.

�
M
u
lti

n
o
d
e
sy
stem

w
ith

sk
eleto

n
a
p
p
lica

tio
n
s.

T
h
is
scen

a
rio

im
p
lem

en
ts

th
e

fu
ll
d
a
ta

ow

o
f
th
e
trig

g
er

sy
stem

,
b
u
t
w
ith

o
u
t
ex
ecu

tin
g
a
n
y
a
lg
o
rith

m
s

a
n
d
u
sin

g
o
n
ly

d
u
m
m
y
d
a
ta
.
T
h
e
m
a
in

a
p
p
lica

tio
n
is
in

n
etw

o
rk

tech
n
o
lo
g
y

stu
d
ies.

S
im
p
li�
ed

v
ersio

n
s
o
f
a
ll
m
a
jo
r
co
m
p
o
n
en
ts

(S
u
p
erv

iso
r,

S
teerin

g
,

R
o
b
)
a
re

ava
ila
b
le.

�
M
u
lti

n
o
d
e
sy
stem

w
ith

a
lg
o
rith

m
s.
In

th
is
m
o
d
e
th
e
sy
stem

is
ru
n
n
in
g
w
ith

em
u
la
to
rs

fo
r
b
o
th

th
e
su
p
erv

iso
r
a
n
d
th
e
R
O
B
s
(o
r
th
e
rea

l
h
a
rd
w
a
re,

if
ava

ila
b
le)

a
n
d
th
e
steerin

g
p
ro
cesso

rs
a
re

ex
ecu

tin
g
th
e
m
en
u
g
u
id
ed

L
ev
el
2

a
lg
o
rith

m
s.
T
h
is
co
rresp

o
n
d
s
a
s
m
u
ch

to
th
e
'rea

l'
sy
stem

a
s
ca
n
b
e
a
ch
iev

ed
o
n
a
testb

ed
w
ith

restricted
size.

1

:Supervisor

 :Steering

:Feature Extraction

 :Rob

1: process event

2: execute fex

3: request data

4 : return data

5 : return features

6 : return decision

: Level 1

: Detector

:DAQ/EB

7 : clear

Figure 1: Overall System Data Flow

After about 18 months of developement (including requirements collection and
design), the reference software consists of about 100k lines of C++ code. About
20 developers from 10 institutes contributed to the code, with many others taking
part in the discussions.

2 Overall Structure

Managing a large piece of software, which is developed by many people who are
geographically distributed, requires that the software itself is properly structured.
It is essential than programmers can work in parallel on di�erent parts and extend
it in the future to accomodate new needs.

The LVL2 Reference Software is modular in the sense that it is divided into
many packages. Each package corresponds to a well-de�ned domain and there is
usually one person responsible for a package. People can work in parallel, e.g. on
two di�erent algorithms for two di�erent subdetectors without major interference.

In many cases there are dependencies between packages, which make it neces-
sary that some parts are available before others can be written. This is re
ected
in the layering of the Reference Software, where lower level packages were available
�rst and are supposed to be used by all other packages. Examples are the operat-
ing system layer and the con�guration or the error reporting package. It seemed
desirable to de�ne this basic functionality �rst, to make sure that there is a single
way to perform a given task.

Usually lower level libraries can be de�ned in suÆcient detail to implement
them completely. This is often not possible for the higher layers. Here the system
is supposed to be open in the sense that di�erent people may want to change parts
of the software to adapt it for their needs or to optimize it for a certain hardware
technology.

2

OS Interface

Configuration

Error Reporting and
Logging

MonitoringMessage Passing
Interface

Pthread
OS Implementation

Windows NT
OS Implementation

Mesh
OS Implementatiton

Application Framework

Supervisor SteeringRob

Physics

TCP/UDP

ATM

Ethernet

SCI

Figure 2: Layered structure of Reference Software

Using an object oriented design and language makes it possible to de�ne in-

terfaces for various domains, which can then be implemented in di�erent ways.
There are two major areas where interfaces have been been used in this way in the
Reference Software: the message passing layer and the application framework.

The message passing layer is responsible for transporting a message from one
node in the system to another. Di�erent testbeds implemented this interface using
their preferred network technology, e.g. ATM, Fast/Gigabit Ethernet, SCI, MPI.
To make the system usable without any special hardware, a default implementation
using either UDP or TCP was provided as well.

The application framework de�nes interfaces for the 'high level' objects, corre-
sponding to the supervisor, ROB and steering processors. Again there are various
implementations for each interface, ranging from very simple skeleton applications
to emulators and systems using the 'real' hardware.

The other important task of the application framework is to achieve transparency
regarding the distributed nature of the system for the applications themselves. E.g.
the steering processing code is not aware of the fact that it may run in either a single-
node or a multi-node system. In the latter version the data is provided by ROBs
via the network instead of coming directly from a �le. Furthermore the framework
is able to run multiple copies of each application in a multi-threaded mode and to
distribute the workload among them. This is important both for hiding the latency
between the time events are requested from a ROB and the data is �nally returned,
and for making eÆcient use of multiprocessor systems.

3 Basic Libraries

The packages described in the following sections are the basic libaries in the sense
that they are directly or indirectly used by all other packages. In many cases the

3

need for a certain package was based on the idea that there should be only one way
to do a certain task. This means, that every time a programmer needs e.g. access
to con�guration information he should use the Configuration package instead of
inventing his own �le format. If he wants to output debug information or issue an
error message, he should use the ERL (Error Reporting and Logging) package etc.

3.1 Operating System

The operating system package is supposed to shield the rest of the application from
any OS speci�c issues. It provides interfaces for all services we expect to need from
the underlying OS. This does not include interfaces which are already de�ned to be
OS independent in various other standards, e.g. input/output operations.

By choosing both Windows NT and Linux from the outset, we hoped to make
sure we could catch most non-portable parts of our code on the �rst try. This
proved to be mostly correct and the OS dependent part has been ported to other
in-house developed thread libraries in the meantime.

The non-portable aspects which were needed in the Reference Software were
identi�ed to be the thread interface together with its associated synchronization
mechanisms, and an API to access the server and client parts of the TCP/IP pro-
tocol suite. In both cases the interface was de�ned as a set of C++ classes.

For the thread interface we tried to stay as close as possible to the POSIX thread
interface. Parts which were missing in either operating system (e.g. Windows
NT has no condition variables) were implemented in terms of other primitives.
However, our interface does not claim strict conformance to POSIX semantics.
In most cases we give even less guarantees than either POSIX or Windows NT.
This avoids spending a lot of e�ort in trying to get either one or the other of the
underlying paradigms to be emulated completely on the other system.

In all cases we de�ned only the basic functionality. E.g there are no recursive
mutexes or read-only locks as can be found in newer X/Open Unix standards ([2]).

The thread interface de�nes the following basic objects: Thread, Mutex, Semaphore
and Condition. Users can inherit from Thread and override the execute()method.
This is all that is required to de�ne a new thread of control from the user's point
of view.

The implementation takes great care not to make any implementation details
visible to the rest of the software. Apart from avoiding global namespace pollution,
this allows to simply exchange the underlying shared library to switch to a di�erent
implementation (see Fig. 3.1)

The thread interface has been implemented on top of the following systems/libraries:

POSIX Thread (Pthread) This is the standard thread interface in the Unix
world. It is available on all modern Unix versions.

Windows NT Microsoft's thread interface is available on NT only and di�erent
from anything else.

MESH A non-preemptive thread and communication library developed as part of
the Ethernet testbed activities.

GNU Pth A non-preemptive and portable user-level thread implementation from
the GNU project.

The TCP/IP interface is implemented using the BSD socket interface. This is
available on every Unix system and in a slightly modi�ed form on Windows in the
form of the winsock library. The C++ implementation de�nes classes for client
and server connection endpoints and hides the small di�erences between Unix and

4

Thread
+start(): void
+cancel(): void
+priority(): Priority
+priority(prio:Priority): void
+execute(): void

«<<interface>>»
ThreadImplementation

+start(): void
+cancel(): void
+priority(): Priority
+priority(prio:Priority): void

PthreadThread
 m_thread: pthread_t
+start(): void
+cancel(): void
+priority(): Priority
+priority(prio:Priority): void

WinThread
 m_thread: HANDLE = 0
+start(): void
+cancel(): void
+priority(): Priority
+priority(prio:Priority): void

MeshThread
 m_thread: Mesh_Thread*
+start(): void
+cancel(): void
+priority(): Priority
+priority(prio:Priority): void

m_impl implements

UserThread
+execute(): void

The Thread implementation uses
the Bridge pattern to hide the
OS specific parts.

Figure 3: Thread implementation using Bridge pattern

NT. While the original socket interface is supporting multiple protocols, our version
is simply providing access to TCP and UDP. The main goal here was to make it
simple to write an Internet based server or client application.

The TCP/IP interface is used in two di�erent ways: as communication channel
for various run control and monitoring related tasks, and as an implementation of
the message passing interface.

3.2 Con�guration

The con�guration package provides access to read-only con�guration information. It
seemed preferrable to have a single way of access than de�ning multiple incompatible
con�guration �le formats for the di�erent parts of the software.

To achieve this goal, the con�guration mechanism must be
exible enough to
accomodate for all types of information. It allows you to de�ne integers, real num-
bers, strings and arrays of these objects and access them easily from inside the
application.

Every con�guration item has a name and a value. The value can be any of the
types mentioned before. The name is used to uniquely identify each value. Every
programmer can de�ne his own set of parametes. To avoid name clashes the name
space is hierachical: name/value pairs can be nested into so-called contexts. A name
has to be unique only inside of its immediately surrounding context. In addition
a value can be a reference to another parameter in the con�guration �le or to an
environment variable.

The format is closely modelled after C-like initialization statements. The fol-
lowing example shows the format without going into the details:

everything after the hash sign is a comment

AnInteger = 4;

AReal = 3.141;

AString = "Hello world";

AnArray = [3, 1, 10];

arrays can be nested

AnotherArray = [10, [1, 2, 3], 20, 30];

AContext = {

this is different from the parameter above

5

Configuration
+Configuration(url:string)
+Configuration(url:URL)
+url(): URL
+root(): ConfigItem*
+find(path:ConfigItem*): ConfigItem*

ConfigItem
+type(): ConfigType
+integer(): int
+real(): double
+string(): string
+find(name:string): ConfigItem*
+operator[](index:int): ConfigItem*
+operator[](name:string): ConfigItem*

items 0..*

URL
+URL(url:string)
+protocol(): string
+hostname(): string
+port(): int
+stream(): URLStream*

uses

«<<interface>>»
URLStream

+get(): int

FileURLStream

+get(): int

HttpURLStream

+get(): int

<<creates>>

Figure 4: Con�guration classes

AnInteger = 5;

contexts can be nested, too

NestedContext = {

AnInteger = 6;

};

};

AReference = $AContext/AnInteger;

From the point of view of the program, all con�guration information seems to
come from a single �le. Since many di�erent people have to contribute these param-
eters, there is an include facility to make these task more managable. Parameters
can be de�ned in many di�erent physical �les, which are then pulled together by a
master con�guration �le via include statements:

include "network.conf"

include "menu.conf"

Con�guration �les are speci�ed via URLs. Both the file and the http proto-
col are supported. Names in include statements can be URLs again, or they are
interpreted as a relative URL, just as in a web browser. This allows you to make
the con�guration information available either via a common �le system or a web
server. The location of the con�guration �le is de�ned in an environment variable
T2CONFIG.

Inside the application the parameters can be accessed by their full name. While
more elaborated access mechanisms are available, they are not used by most appli-
cations.

The way of accessing the data is independent from the underlying format as
ASCII data �les. That format can be changed in the future, e.g. to some kind of
database. However, ASCII �les are easy to understand and can be modi�ed with a
simple text editor.

6

Figure 5: ERL Graphical Display

3.3 Error Reporting and Logging

The ERL (Error Reporting and Logging) package provides a way to issue status
and error messages from inside the application. By using this mechanism, the user
doesn't have to care if the application is running as a single program (in which
case the output goes to the screen) or as part of a distributed system (in which
case the output of all programs is collected at a central place). ERL is based on a
client/server architecture. The ERL server is responsible for receiving messages from
the various ERL senders (i.e. the applications) and forwarding them to multiple
ERL receivers. In addition the ERL server can keep track of a global log �le and
implement several �ltering options for the receivers, who might be only interested
in part of the information provided.

An overview of the architecture can be seen in Fig. xx.
From the programmer's point of view, all one has to do is to declare an object

of type ERLStreamOut and output error messages to it. Messages are distinguished
by their severity, which can be one of Fatal, Error, Warning, Info, Debug. In
addition they can contain arbitray text and multiple parameters.

The application uses the ERL library to communicate with the ERL server.
Alternatively, it can run without a server and output everything to a local log�le.
The ERL server receives messages from all applications and forwards them to all
interested receivers. An ERL receiver is simply another application which is inter-
ested in the messages. Examples are a graphical display, which allows the user to
monitor error messages based on some criteria (see Fig. 5)

The run control system of the reference software uses ERL messages to inform
anybody who is interested about changes in the internal state of the application.
These messages are intercepted by a run control application and used to update its
internal information about the current system state.

Most programmers never use the ERL interface directly. Instead they use a
set of convenience macros de�ned mostly for debugging purposes. The macros will
only output an ERL message, if the current global debug level of the program is
high enough. This allows the programmer to augment his code with debug macros
corresponding to di�erent severity levels, but switch them o� at run time when they
are no longer needed.

7

3.4 Monitoring

The monitoring package provides run-time access to data which is explicitly made
available by the application. This is typically statistics information about various
internal values, but it is also used in the run control system to get access to the
current 'run state' of a node.

From the programmer's point of view, this package provides an easy interface
to make any internal data accessible to the outside. The programmer only has to
inherit from a base clase Resource and implement the get resource()method. In
addition it is possible to provide a reset() method which is supposed to 'clear' the
values in the resource.

Finally, the set() method can be used to change the resource to a new value.
However, it is completely up to the programmer as to how he wants to interpret the
new values. The run control system makes use of this property and uses the set()
method to issue commands to the application.

The programmer has no restriction as to what the resource represents. Typical
examples are counters and histograms.

In contrast to the ERL package, which sends error messages to the server as
soon as they are available, the monitoring package is based on a 'pull' paradigm,
i.e. the data has to be explicitly requested from every node. This makes sure
that the package will not introduce any unwanted overhead if the features are not
used. Counters and histograms are updated only locally with no network traÆc.
Accessing the data is under user control and happens only very infrequently.

The monitoring package uses UDP instead of TCP, again to avoid the overhead
of a permanent TCP connection. Furthermore this avoids the need of a well-known
'server' somewhere in the system. Any client who wants information from a node
can simply send a request and ask for it.

Applications making use of the monitoring protocol are a graphical resource
display written in Java and the run control system. A command line based program
is also available to access an arbitrary named resource in the system.

4 Message Passing

The message passing layer provides the basic mechanism of data
ow between the
nodes in the system. By data
ow we mean all exchanges involving real event data
as well as the request and reply control messages. Note that this is di�erent from the
communication with the error reporting, monitoring and run control subsystems.

The message passing layer has its own interface, since this is the place where
di�erent network technologies want to provide their own optimized implementations.
However, some parts are shared by all implementations, like the byte-swapping code
needed in a heterogenous environment.

The interface de�nes the following abstract objects:

Bu�er Represents a piece of memory which can be sent or received from the net-
work. The underlying memory area doesn't have to be contigouneous. Access
functions are de�ned to read from or write into such an area. Byte-swapping
is handled automatically, if the pre-de�ned network byte order di�ers from
the host byte order. The main reason for a network speci�c implementation
of the bu�er interface is that the underlying technology may require the area
to be locked in memory, so that physical addresses are immediately available.
In the reference software a message is always completely contained in a single
bu�er.

Node Represents one machine in the system, although in some cases one can run
more than one 'logical' node on the same hardware, if the network technology

8

allows it. Each node is uniquely identi�ed by a numerical 'node ID'. By
convention each node also has a 'type'. In the case of the trigger software
this corresponds to one of Supervisor, Steering or Rob. Nodes have both a
send and receive method, the �rst taking a bu�er as an argument and the
latter returning a bu�er as result. These two operations are abstract and
implemented for each network technology. A node can therefore be considered
to be the basic communication endpoint in the system.

Group Represents a group of nodes. Calling the send method of a group will
send the bu�er to all nodes in the group. Calling the receive method will
return the next received bu�er from any of the nodes in the group. There are
two types of groups: dynamic and static. A dynamic group is one to which
nodes can be added to or removed from at run-time. They are mainly used
as a convenient way to send the same message to a number of nodes. Static
groups are set up at initialization time and never changed. They correspond
to a �xed set of nodes over the whole life-time of the program. Examples are
e.g. all ROBs. If the underlying network supports multicast operations, it
will typically implement the send operation of static groups with that opti-
mization.

NodeFactory Since all objects described above are only de�ned in the form of
abstract base classes, there must be a way to instantiate the correct version
at run-time. This is done via the factory pattern ([3]). The NodeFactory is a
singleton object, whose sole instance can be accessed via its static instance()
method. The object itself provides methods to create bu�ers, nodes and
groups.

In the following we describe the available implementations of the message passing
interface.

4.1 UDP/TCP

The UDP and TCP versions of the message passing interface provide a 'portable'
implementations which can be used on any machine. They also support more than
one logical node on the same physical machine, making it easy to debug a multi-node
system on a single PC.

The implementation is based on the OS interface layer and is therefore indepen-
dent from the underlying operating system. The existing limits are mainly due to
limits inherent in the protocols themselves:

� UDP has a maximum message size of 64 kB. The actual message size used
in the implementation can be speci�ed from the con�guration �le. Message
delivery is not guaranteed and has the same characteristics as for UDP data-
grams.

� TCP has an unlimited message size. It implements a special subclass of Bu�er,
which adds an additional 'length' word to each message. This is used on the
receiving side to allocate enough bu�er space.

None of these protocols impose any other restrictions. E.g. data can be trans-
fered from and to any memory location. Due to the kernel based implementation of
the protocols the latency is much higher than for the other implementations. Both
Unix and Windows NT will copy the data at least once, making a zero-copy version
impossible.

Port numbers are chosen internally according to some algorithm. This avoids
that the user has to choose some port number which might possible con
ict with

9

«<<interface>>»
Node

+send(buf:Buffer*): void
+receive(): Buffer*

TCPNode
+send(buf:Buffer*): void
+receive(): Buffer*

ATMNode
+send(buf:Buffer*): void
+receive(): Buffer*

MeshNode
+send(buf:Buffer*): void
+receive(): Buffer*

SCINode
+send(buf:Buffer*): void
+receive(): Buffer*

UDPNode
+send(buf:Buffer*): void
+receive(): Buffer*

«<<interface>>»
Group

#Group(name:string)
+name(): string
+size(): size_t
+send(data:Buffer*): void
+receive(): Buffer*

«<<interface>>»
DynamicGroup

+add(node:Node*): void
+remove(node:Node*): void

IPGroup
+add(node:Node*): void
+remove(node:Node*): void
+send(data:Buffer*): void
+receive(): Buffer*

SCIGroup
+add(node:Node*): void
+remove(node:Node*): void
+send(data:Buffer*): void
+receive(): Buffer*

MeshGroup
+add(node:Node*): void
+remove(node:Node*): void
+send(data:Buffer*): void
+receive(): Buffer*

members0.*

Figure 6: Message Passing classes and their relationship

other subsystems. At the moment there is an upper limit on the maximum number
of nodes (100) in the sytem. This is a compile-time parameter which can be easily
changed.

4.2 ATM

The ATM [4] version is described in detail in ref Saclay. It exists both in a library
and a driver version. It is based on the ATM Adaption Layer 5 (AAL5), allowing
a maximum message size of 64 kB. For connection setup PVCs (permanent virtual
connections) are used, which requires a 'static' setup but avoids the overhead and
complexity of SVCs.

The ATM implementation is available both for Windows NT and Linux as well
as LynxOS. It supports multicast operations in hardware and can therefore take
advantage of the static group interface. The underlying network bu�ers are actually
implemented as a chained list of bu�ers, enabling any size message to be sent with
little overhead.

4.3 Ethernet

The 'raw' ethernet implementation of the message passing layer is based on a user
level library named MESH, which bypasses the kernel completely. It supports both
Fast and Gigabit Ethernet and also includes a fast user-level thread switching library
(see the information on the OS interface layer). Only Linux is currently supported.

To provide for messages larger than an Ethernet frame (1.5 kB) an additional
protocol has been implemented which allows to transmit up to 64 kB as a single
'logical' message. Multicast is supported but has so far not been used in the testbed
operations.

4.4 SCI

The SCI [5], [6] implementation uses a commercial driver from Dolphin [7] to setup
the interface cards and create connections. Since SCI is used in shared memory
mode, there is no more interaction with the driver required afterwards. The message
passing interface is implemented as shared memory operations over SCI.

The software is available both for Linux and Windows NT. The maximum mes-
sage size is a run-time parameter which can be changed in the con�guration �le

10

and is only limited by the address translation hardware. No hardware multicast
is supported, instead a multicast is implemented as multiple writes to di�erent
destinations.

4.5 MPI

The MPI [8] version is running over any implementation of the MPI standard. It
has been developed using the MPICH package from Argonne on a normal Unix
cluster and then run in production mode on a 96 node system at the University
of Paderborn [15]. This cluster implements MPI on top of SCI and is running the
Solaris operating system.

5 Application Framework

The application framework is a set of interacting classes which provide a common
environment for all 'real' applications. It takes care of tasks which are needed
across all the di�erent programs. This includes the setup of the error reporting and
monitoring systems, the creation of multiple threads and all input handling and
despatching. Furthermore the framework makes it transparent to the applications
if they are running in a single or a multi-node environment. The latter is achieved
by the consequent use of interfaces and so-called proxy objects. In a distributed
environment, the proxy objects provide the same interface as a local object to the
caller, but actually forward the arguments to a process on a remote machine.

5.1 Interfaces

Basic interfaces have been de�ned for the supervisor, steering and rob applications.
The latency for a single event is typically much longer than the time the supervisor
has to handle two consecutive events. Therefore the interaction between the super-
visor and the rest of the sytem is of an asynchronous nature. The supervisor will
request that a certain event is processed and then go on to the next event. When
the event is �nished the steering will execute a callback routine in the supervisor
to inform it about the Level 2 result.

The basic interface of the steering consists therefore of a simple request()

method with no return value, while the supervisor has an accept() method which
is called back from the steering.

The interaction between steering and Robs on the other hand is of a synchronous
nature. When the steering (or, to be more precise, a feature extraction algorithm)
requires data, it will ask the Robs and then wait for the reply. There is nothing it
can do in the meantime. It is the responsibity of the framework to make sure that
another thread will be made active at that point, typically working on a di�erent
event. When the data has arrived, the original thread will be woken up and continue
where it was suspended. The interface in the Rob consists therefore of a single
request() method with the Rob data as return value.

The supervisor has to call the Robs, when a certain number of events have been
accepted or rejected, so that the Robs can clear their memory bu�ers. Since this is
a broadcast like operation with no feedback to the supervisor, it is represented as
a simple method call with no return value.

All implementations need a way to be informed about the other objects in the
systems, be it the 'real' ones or the corresponding proxies. Therefore each interface
has one or more inform() methods which are typically called only once at setup
time.

11

«<<interface>>»
Steering

+request(req:LVL1Result*): void
+inform(super:Supervisor*): void
+inform(rob:Rob*): void

SteeringProxy
+request(req:LVL1Result*): void
+inform(super:Supervisor*): void
+inform(rob:Rob*): void

SteeringReal
+request(req:LVL1Result*): void
+inform(super:Supervisor*): void
+inform(rob:Rob*): void

«<<interface>>»
Rob

+request(req:RobRequest*): RobData*
+inform(super:Supervisor*): void
+inform(steer:Steering*): void

RobProxy
+request(req:RobRequest*): RobData*
+inform(super:Supervisor*): void
+inform(steer:Steering*): void

RobReal
+request(req:RobRequest*): RobData*
+inform(super:Supervisor*): void
+inform(steer:Steering*): void

Figure 7: Interfaces for the major components

The class diagrams can be seen in Fig. 5.1. The typical sequence of calls can be
seen in the interaction diagram Fig. 8

5.2 Proxies

Since the major parts of the reference software communicate only via their public
interfaces with each other, it is possible to have multiple implementations for each.
E.g. the 'Steering' can be implemented using all the physics algorithms or just a
simple skeleton version.

The Proxy design pattern [3] takes this idea a step further and provides an
implementation which actually represents an object on another physical machine.
This makes it possible to have distributed system without the participants being
aware of it.

Basically a proxy object implements a given interface, but instead of having code
for a given method it will use the message passing interface 4 to send all parameters
to a remote machine. A reply received will be returned as a normal function return
value.

This design pattern is essentially an object-oriented version of the remote pro-
cedure calls which are used e.g. for Sun's NFS and other common Unix network
services [9]. CORBA [10] is an industry standard for such an architecture, providing
in addition interoperability and many common services, e.g. looking up objects by
name etc.

CORBA and especially one implementation, ILU [11], were considered at the
beginning of the design phase as a potential candidate to be used for the networking
part. We �nally decided against using them for the following reasons:

� CORBA normally runs over TCP/IP, imposing a very large overhead.

12

Supervisor LVL1_Source

result_available

get_result

Steering

request

ROB

request_data

reply data

accept

Figure 8: Processing of an Event

13

Caller

:SteeringProxy :Node:Buffer :InputHandler :SupervisorRequestHandler :ProtectedQueue :WorkerSteering

request
put

send

<<network>>

receiveInput

put

get

: SteeringReal

request

Figure 9: Calling sequence when using proxies
.

� It is a non-trivial task to port the networking layer of an existing CORBA
implementation to our message passing interface (or have all network tech-
nologies implement the functionality required by CORBA).

� To achieve interoperability, CORBA has rules to de�ne the format and byte-
ordering of all exchanged messages. The marshalling and unmarshalling of
parameters can be mostly avoided in closed system like the reference soft-
ware. Again, it was not trivial to bypass that part of an existing CORBA
implementation.

However, it still looks attractive to use the CORBA interface de�nition language
(IDL) in the future and maybe generate customized code for the reference software
framework. This is made easier with the availability of some useful building blocks
like IDL compiler front-ends which have a backend that can be customized by the
user.

A typical calling sequence in a distributed system can be seen in Fig. 9 using
some of the classes from 5.1.

5.3 Input Thread and Input Handler

All network input is handled by the framework �rst and then dispatched to an
appropriate handler. A separate input thread is waiting for incoming data from all
other nodes. Clients can register an InputHandler object with the input thread.
Despatching can be based on one of three criteria:

� the message type. This is used when the same handler is called for all messages
of a given type. An example is the handler in the steering processor which
receives requests from the supervisor and passes it on to a worker thread.

� transaction ID. Each request message contains a unique transaction identi�er.
This is used to associate incoming replies with the original requests, e.g. when
Rob data is requested.

� �nally there is a default handler which catches all other messages. This han-
dler will typically just submit an error message.

5.4 Threads

The framework is responsible for the creation of multiple threads in the system.
Examples are the input, the monitoring and the run control threads as well as the
so-called worker threads.

14

Thread
+execute(): void

InputDespatcher
+registerHandler(type:MessageType,handler:InputHandler): void
+registerHandler(id:Xid,handler:InputHandler): void
+registerHandler(handler:InputHandler): void

«<<interface>>»
InputHandler

+receiveInput(data:Buffer*): void

LVL2ResultHandler
+receiveInput(data:Buffer*): void

SupervisorRequestHandler
+receiveInput(data:Buffer*): void

RobRequestHandler
+receiveInput(data:Buffer*): void

RobDataHandler
+receiveInput(data:Buffer*): void

RobClearHandler
+receiveInput(data:Buffer*): void

handlers

0..*

Figure 10: Input despatcher

Multi-threading in the application framework is based on a thread pool model.
The con�guration �le allows to specify the number of worker threads which should
be created. All these worker threads execute identical code. Typically this is an
endless loop, with their �rst action being a request for new work to do.

The reference software uses a so-called ProtectedQueue object to synchronize
the di�erent worker threads. A ProtectedQueue is a �xed-size queue with get()

and put() methods. Calling get() on an empty queue will suspend the calling
thread, as well as a put() on a full queue. All worker threads will call the get()

method of a single queue. Another thread will put new requests into that queue as
they arrive. If there are worker threads waiting which are not busy, each put() will
wake up exactly one thread.

An example is shown in Fig. XX. On receiving a new LVL1Result message, the
input thread will call the SupervisorRequestHandler. This one will in turn put
the new request on a queue. The next worker thread to �nish its current work will
pick it up and start to work on the new event.

The framework assumes that a single event will be handled by one thread only.
This simpli�es the code for the rest of the processing, since no more synchronization
is needed. A thread will still be suspended when it is asking for ROB data and is
waiting for the reply. However, from the point of view of the programmer this looks
like a synchronous operation. He is not aware of the fact that other threads are
running in the meantime.

5.5 Applications

An application is an executable providing a certain functionality in the LVL2 trigger
system. Since applications share a lot of code a T2Application base class exists,
which performs common initialization tasks. It is also the basic interface to the
external run control. Applications simply inherit from the base class and provide

15

T2Application
+initialize()
+configure()
+run()
+finish()
+exit()
+run_app()

T2Supervisor
+initialize()
+configure()
+run()
+finish()
+exit()

T2Steering
+initialize()
+configure()
+run()
+finish()
+exit()

T2Rob
+initialize()
+configure()
+run()
+finish()
+exit()

Figure 11: T2Application and subclasses

implementations e.g. of their speci�c con�guration tasks.
The T2Application base class initializes the application framework. Depending

on information from the con�guration �le it starts the monitoring and run control
threads. It always creates the input thread. The creation of the worker threads is
done in the derived class, since it depends on the type of application.

Furthermore the T2Application class provides several virtual methods which
can be overridden by a subclass. These methods are called by the run control when
an external command is given by the user.

initialize() this method is called unconditionally at program startup. The ap-
plication cannot assume that any other nodes in the system are running. Local
initialization can be done here.

configure() this method is called when all nodes are running. Therefore e.g. the
network setup can now be completed. Worker threads are typically started
here.

run() this method is called to actually run the current application.

finish() this method is called when the end of the current run has been reached.
Results can be written out at this stage if desired.

exit() this method is called before the application is going to exit. Any resources
should be freed here.

At every point in time the application is in one of �ve states. The interaction
of the run control and the internal states are shown in Fig. 5.5. Note that the
current implementation of most applications is not prepared for the transition from
Finished to Configured, although this would be very desirable for measurement
runs with varying parameters.

5.6 Skeletons

The so-called skeleton applications are essentially stripped down version of the real
programs. They don't include any real algorithms, but are used to test and debug

16

Figure 12: Internal States of T2Application

the application framework itself. They can be also used for basic network perfor-
mance measurements, since they include the full message exchange like in a real
system.

The skeletons can be parameterized to emulate the behaviour of the real appli-
cations. E.g. the steering skeleton has parameters for the execution times of the
di�erent algorithm steps. At the appropriate point the skeleton will simply burn
CPU time by executing dummy
oating point operations.

6 Supervisor

The supervisor application is able to emulate the real supervisor by either generating
Level 1 ROIs according to a given distribution or reading event data from a �le. It
can also be connected to the real ROIBuilder hardware, therefore becoming a full
supervisor system.

The supervisor consists of several classes shown in Fig. 6. The main class
is the SupervisorEmulator which implements the Supervisor interface from the
application framework. This object is responsible for preparing a new LVL1Result

and sending it to one of the steering processors. The selection of an appropriate
steering processor is the task of the scheduler. It also accepts the results of the
Level 2 trigger via its accept() method.

The input part for Level 1 ROIs is separate and hidden behind the LVL1Source
interface. This makes it possible to provide di�erent implementations for Level 1
input without changing the rest of the system.

6.1 LVL1 Input

The LVL1Source class is the interface to the �rst level trigger. After initialization
it provides essentially one method get result() which returns a new LVL1Result.
The result available() method returns true if more results can be read.

There are three implementations of this interface and one can select them from
the con�guration �le:

LVL1 FileSource will read event data from a �le. The same data �le can be used
by the steering and the Robs to have consistent event data throughout the
whole system. LVL1 PreloadFileSource is a variation of this class to load
the whole �le into memory at startup time.

17

Supervisor Emulator Application

: LVL1_FileSource

: SupervisorEmulator

: RobProxy

: SteeringProxy

LVL1_Source

Steering

Supervisor

Rob

Figure 13: Supervisor

LVL1 GeneratedSource will generate random level 1 ROIs according to a distribu-
tion speci�ed in the con�guration �le. Since there is no corresponding event
data available, this option only makes sense for the skeleton applications.

LVL1 SlinkSource will read the level 1 ROIs from the real ROIBuilder. Again
there is will be no corresponding event data. This option is mainly useful for
a 'component test' of the full supervisor in a real system.

6.2 Scheduling

While in practice the scheduling code is part of the application framework and
completely hidden from the supervisor itself, it logically belongs to this application.

The scheduler interface is de�ned in class Scheduler. After initialization the
only method used is nextProcessor(). A future version of the scheduler will in-
clude additional interfaces, e.g. to inform it about dead nodes or nodes which have
come back into the system after an external intervention.

Several implementation are available:

ScheduleRoundRobin does a simple round-robin scheduling of available nodes.

ScheduleRandom selects an available node randomly.

ScheduleWeighted schedules nodes according to their relative performance. Nodes
with a higher performance will be scheduled more often than slower nodes.

7 Readout Bu�er

At the moment only a ROB emulator application is available as part of the Reference
Software, although it is intended to have a version with real hardware running at a
later stage.

The ROB emulator reads its data from an external �le and stores all events in
memory. It implements all operations described in the ROB interface class. The
ROB is actually used by multiple components in the system, typical use cases can
be seen in Fig. 7.

18

«<<interface>>»
Scheduler

+nextProcessor(): Processor*

ScheduleRoundRobin
+nextProcessor(): Processor*

ScheduleRandom
+nextProcessor(): Processor*

ScheduleWeighted
+nextProcessor(): Processor*

Figure 14: Scheduler

Trigger Processor

EventBuilder

Supervisor

Get Event Data

Clear Events

ROB Complex

Figure 15: ROB use cases

19

7.1 Data

8 Trigger Processor

The trigger processor is the place where the actual second level algorithms are
running. The steering is the menu-guided process by which the level 2 decision
is made. It is embedded in the usual application framework and makes use of its
services.

Typically there will be multiple steering worker threads to either make use of
the processor when another thread is waiting for event data, or to take advantage
of multiple CPUs in the system. As already mentioned the processing of a single
event is always handled by a single thread.

8.1 Steering

The steering itself is guided by trigger menus and algorithm tables. Menus specify
the physics signatures for which the event will pass the level 2 trigger. Every
physics signature consists of one or more elements, like electrons, photons, jets,
missing energy or invariant mass elements. In the reference software these elements
are of type RequestedElement and its subclasses. The PhysicsSignature class
represents one line in a menu.

On the other hand each event will have a number of trigger objects, called
TriggerElements which are created during the execution of the various algorithms
(starting with the level 1 ROIs).

To check if an event passes a given line in the menu, the steering has to match the
existing physics objects against the physics signatures. In each step the algorithm

table speci�es one or more feature extraction algorithms and one hypothesis routine
which are run for each trigger object. Typically the feature extraction routines
will create clusters, tracks etc. The task of the hypothesis routine is to use these
features and con�rm or reject the current trigger object, e.g. by applying cuts or
other criteria.

The remaining TriggerElementswill then be matched against the PhysicsSignatures
of the current menu. If the event passes this step the whole procedure is repeated
in the next step, with a di�erent algorithm table. This allows to start with rather
simple algorithms in the �rst steps and add more complex algorithms only later.

After each step the event can be rejected, which means the rest of the processing
can be aborted. This sequential processing reduces the overall computing capacity
required since no unnecessary calculations are performed.

Menus and algorithm tables are speci�ed in the con�guration �le, an example
is given in the following:

MenuStep1 = [

["e(p,15)"],

["e(p,10)", "e(p,10)"],

["j(p,100)"],

["j(p,40)", "j(p,30)"]

];

MenuStep2 = [

["e(p,15)"],

["e(p,10)", "e(p,10)"],

["j(p,100)"],

["j(p,40)", "j(p,30)"]

20

];

Menu = [

an array of Menus, one for each Step

$MenuStep1,

$MenuStep2

];

#

algorithm table for steering

#

Builder1 = [

["e(p)", ["calo_e_fex"], "e_calo"],

["j(p)", ["calo_j_fex"], "j_calo"]

];

Builder2 = [

["e(p)", ["trt_fex"], "e_trt"],

["j(p)", ["trt_fex"], "j_trt"]

];

full list of builders

Builders = [

$Builder1,

$Builder2

];

The T2SingleNode class provides a framework to run a full steering plus fea-
ture extraction algorithm application on a single node. This is a single-threaded
non-networked version which is mainly used for functional tests. The t2single

executable includes all available algorithms and can be completely con�gured by
the user.

8.2 Feature Extraction Algorithms

Feature extraction algorithms are routines which take raw event data and produce
'physics' features like clusters and tracks. They are called when needed from the
steering layer. Their task is well-de�ned and they never make directly any decision
about an event. This is always left to the hypothesis routines.

The reference software provides a simple framework in the form of the T2SingleFex
base class to run and debug a single fex algorithm. Data is read from �le and each
ROI is passed to the algorithm if it's type is acceptable. Output can be generated
any way the user likes, including calls to third-party libraries like cernlib (which are
normally forbidden inside the reference software).

The following algorithms are currently available as part of the reference software:

� EM, Jet and � calorimeter algorithms, generating clusters of an appropriate
type as output [12].

� TRT algorithms for both ROI guided and low-luminosity operation (fullscan),
generating a list of tracks [13].

21

� LUT based precision detector for both pixel and SCT detectors [14].

� Kalman �lter based algorithm for the precision detector.

All algorithms inherit from a templated base class BaseAlgorithm. The tem-
plate parameters are the type of event data the algorithm expects as input and the
result type of the algorithm. In addition some arbitrary user de�ned data can be
passed to the extract() method of the class, which does the actual work. This
is used when an algorithm requires e.g. data from a previous processing step, like
the track �nding in the inner detector which is seeded from the TRT in the low
luminosity case.

8.3 Data

When feature extraction algorithms require event data, they use the DataCollector
interface to request it. There are two implementations for this interface, the FileCollector
and the RobCollector. As their names imply, the �rst one uses a �le to read the
event data, while the second one issues a request to a ROB. The FileCollector is
used in stand-alone and single-node mode, while the latter is used in a distributed
system. However, since these objects are setup at initialization time, their use is
transparent to the algorithms themselves.

All data requests are actually handled outside the algorithm itself, only the
appropriately formatted data is then passed down to the extract() method. This
makes the algorithm code completely independent from the rest of the system, and
allows the insertion of arbitrary reformatting code just before its execution.

9 Program Manager

The program manager package is responsible for starting all the necessary processes
on a distributed system. Since it never interacts directly with the application soft-
ware itself, it can be considered an external utility. In fact, on systems where there
are other mechanism available or required (e.g. the MPI based Paderborn cluster),
the program manager functionality is replaced by some native tool.

The design of the program manager is modelled after the corresponding backend
software design, so that in a later tigher integration with the DAQ/BE in can be
replaced by the respective components without major changes. It is based on an
agent helper process which is running on each machine in the system. The program
manager client will contact the local agents and instruct them to do certain actions,
which can't be done remotely, like starting a process, killing it, checking if it still
alive etc.

In addition to the basic functionality of starting and stopping processes, it also
keeps a process database, which can be queried about the current status of each
process.

10 Run Control

The run control system makes it possible to control a distributed system from a
single place. It can issue commands to the applications in the system and query
their state (as described in 5.5). It is responsible for ensuring that all applications
execute their internal steps in the correct order.

The run control makes use of existing protocols instead of inventing a new one.
All information is already available either through the ERL or the monitoring sub-
system. ERL is used to inform the run control of any internal state changes (e.g.

22

MonitorReply
 reply: string
+field(name:string): string

NodeList
 node_list: NodeDescList
+node_by_id(id:int): NodeDesc*
+node_by_name(name:string): NodeDesc*
+node_by_type(type:string): NodeDescList*

NodeDesc

+id(): int
+host(): string
+type(): string
+config(): ConfigItem*

MonitorClient

+MonitorClient(nodes:NodeList*=NULL)
+get_resource(name:string): MonitorReply*

0..*

Figure 16: Monitor client classes

from Running to Finished). The monitoring system is used to query the states
explicitly or to issue commands (via the set() method of an appropriate resource).

Although there is a single application t2rcwhich provides a command-line based
user interface for the run control, all the necessary elements are also available in the
form of reusable C++ classes. This makes it possible to implement the run control
interface in a di�erent form, e.g. as a graphics based one, without reinventing most
of the functionality. These classes are known as the client interfaces to the ERL
and monitoring package.

10.1 Client Interfaces

The monitoring client interface consists of the MonitorClient and the MonitorReply
classes. There is an additional helper class NodeList which is also used by the ERL
client classes.

The NodeList class simply represents all nodes in the system. A NodeDesc

(for node descriptor) can be obtained for each node, containing all the information
from the con�guration �le. One can query for single nodes or lists of nodes by ID,
hostname, type etc.

The MonitorClient class provides the basic interface to request resources. It
has methods to request, reset or set a resource on a speci�ed node. In the case of a
request, a MonitorReply object is returned. This object gives access either to the
original message text or to speci�c �elds inside the message. In short, it helps in
parsing the reply from the monitoring system.

The ERL client interface consists of three classes: ERLMessage, ERLCallback
and ERLReceiver. ERLMessage represents a message which has been received from
an ERL server. Like MonitorReply it is essentially a helper class to access the �elds
in the message in a more convenient way. Queries for certain �elds are possible, as
well as accessing the (optional) parameters in the message by name.

The ERLCallback class is an interface that interested receivers have to imple-
mented to be informed about incoming ERL messages. There is only one (pure
virtual) method here: receive(const ERLMessage& msg). An ERLCallback ob-
ject can be registered with the ERLReceiver class and will then be called for every
new message.

The ERLReceiver class implements the communication with the ERL server.
Apart from the methods to register or unregister an ERLCallback object, the class

23

ERLMessage
 message: string
+get_field(name:string): string
+get_param(name:string): string

«<<Interface>>»
ERLReceiver

+message_arrived(msg:ERLMessage*): void

ERLClient

+ERLClient(hostname:string,port:int)
+add_receiver(rcv:ERLReceiver*): void

listeners

Figure 17: ERL client classes

has only a run() method. This will enter an endless loop, where the object will
wait for incoming messages and then despatch them to any listeners. Therefore
ERLReceiver will be typically used in a separate thread, so that it doesn't interfere
with the rest of the application.

10.2 Run Control Clients

The RCClient class pulls together all the pieces mentioned so far, and provides an
easy interface to all the run control functionality. It mostly hides the underlying
implementation in terms of ERL and monitoring protocols. Instead there are meth-
ods to issue the available run control commands, either to a single node or a group
of nodes, and virtual methods which are called in case of an event (like a state
change) and which can be overridden by a subclass.

RCClient provides no user interface in itself, instead a full 'run control applica-
tion' can be built on top of it by implementing the interaction with the user. An
example is the T2RC class, which is a command-line based user interface. The user
can type commands which are interpreted and forwarded to RCClient. Changes of
the state of an application are reported to user by printing a message on the screen
etc. Commands can also be read from an external �le, therefore making it possible
to write simple scripts to control the overall execution of the system from beginning
to end.

References

[1] The Atlas Level 2 Pilot Project, http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/L2PILOT/l2pilot.html

[2] X/Open http://www.xopen.org

[3] Gamma et. al, Design Patterns, Addison Wesley, 1994.

[4] An integrated system for the ATLAS High Level Triggers:Concept, General
Conclusions on Architecture Studies,Final Results of Prototyping with ATM,
ATL-COM-DAQ-2000-016, 2000.

[5] Implementation of the Message Passing Layer over SCI for the ATLAS Second
Level Trigger Testbed, ATLAS internal note, ATL-COM-DAQ-2000-026, 2000.

[6] Evaluation of SCI components for the ATLAS Second Level Trigger, ATL-
COM-DAQ-2000-030, 2000.

24

[7] Dolphin http://www.dolphinics.no

[8] Message Passing Interface Forum http://www.mpi-forum.org

[9] Srinivasan, R., RPC: Remote Procedure Call Protocol Spec-
i�cation Version 2, RFC1831, Sun Microsystems, Inc., 1995.
http://www.ietf.org/rfc/rfc1831.txt

[10] Object Management Group, http://www.omg.org

[11] Inter Language Uni�cation ftp://ftp.parc.xerox.com/pub/ilu/ilu.html

[12] First Implementation of Calorimeter FEX Algorithms in the LVL2 Reference
Software, ATLAS internal note, ATL-COM-DAQ-2000-013, 2000

[13] Global Pattern Recognition in the TRT for the ATLAS LVL2 Trigger, ATLAS
internal note, ATL-DAQ-98-120, 1998.

[14] Performance of a LVL2 Trigger Feature Extraction Algorithm for the Precision
Tracker, ATLAS internal note, ATL-DAQ-99-013, 1999

[15] Running the ATLAS Second Level Trigger Software on a large commercial
cluster, ATLAS internal note, ATL-COM-DAQ-2000-027, 2000.

25

