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Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech
Technical University, Trojanova 13, 120 00 Prague 2, The Czech Republic

E-mail: michal.stepanek@fjfi.cvut.cz, francji@fnal.gov, vaclav.kus@fjfi.cvut.cz

Abstract. Analysis of experimental data has one of the most important roles in High Energy
Physics. Commonly used multivariate techniques such as Boosted Decision Trees or Bayesian
Neural Networks are based on learning algorithms using Monte Carlo generated samples. We
implemented a new Model Based Clustering method using Bayesian statistics and a modified
iterative Expectation-Maximization algorithm for weighted data that have never been applied
in this area. This greatly promising method was developed especially for the data collected from
the DØ experiment, which was one of two large particle physics experiments at the Tevatron
proton-antiproton collider at Fermilab. We optimized and tested the proposed method in the
single top search using a data sample of 9.7 fb−1 of integrated luminosity, which corresponds to
the entire Run II DØ dataset.

1. Introduction
In this paper we describe a new multivariate analysis method for separations using modified
Model Based Clustering (MBC) techniques and an Expectation-Maximization (EM) algorithm.
The MBC is an analysis method which is well known in the area of acoustic emission and image
reconstruction. This is the first attempt to apply this method in experimental particle physics.
The MBC method separates the data into groups by creating a statistical model. We focused
on the Gaussian Mixture Model (GMM), whose parameters can be relatively easily obtained
by an iterative EM algorithm, which has been modified for weighted events. MBC allows us to
separate given data sets without training, but we took the advantage of the available training
Monte Carlo (MC) samples and applied the Bayes’ rule to compute the a posteriori probability
of membership of the observation to each data class. The method was tested on the full DØ Run
II dataset of 9.7 fb−1 of integrated luminosity with corresponding signal and background Monte
Carlo. Event selection and background modeling are described in [1]. We used the combination
of variables for Bayesian Neural Networks (BNN) and Boosted Decision Trees (BDT) analysis
that are presented in [2].

2. Model Based Clustering method
Let S = (ω1, . . . , ωK) denote a finite set of disjoint classes with P (

⋃K
k=1 ωk) = 1, where P (ωk) > 0

is the prior probability of the k-th class. Assume that x = (x1, . . . , xD) is the observation of
a D-dimensional continuous random variable X. According to Bayes’ theorem, the posterior
probability of the k-th class, i.e. the probability that observation x belongs to the k-th class,
can be expressed as
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P (ωk |x) =
p(x |ωk)P (ωk)

K∑
k=1

p(x |ωk)P (ωk)

, (1)

where P (· | ·) denotes a conditional probability and p(· | ·) is a conditional probability density
function. In this study, set S will be represented as a set of two classes, namely signal and
background. We now elaborate on how the a priori probabilities P (ωk) and the shape of the
distribution p(x |ωk) for each data class can be obtained. Training MC samples from the DØ
experiment are weighted, i.e. each MC event xi is associated with a weight γ(xi), and the sum
of weights in each class provides an estimate of the expected fraction of events in that class in
the real data from detectors. Thus, we can express the a priori probability of each class as

P (ωk) =

∑
ωk

γ(xi)

K∑
k=1

∑
ωk

γ(xi)

.

Let x ∈ RD×N represent a set of data of dimension D with N independent and identically
distributed (i.i.d.) observations. Let p1(x|θ1), . . . , pM (x|θM ) be parametric probability density
functions (pdf) of the same type, θl ∈ Θ, l ∈ {1, . . . ,M}, where M denotes the number of
mixture components, M ∈ N, M ≤ N , and where Θ ⊂ Rs is a parameter space. Then the
distribution mixture is any convex combination in the form of

p(x |θ) =

M∑
l=1

αlpl(x |θl),
M∑
l=1

αl = 1, αl ≥ 0,

where αl denotes the weight of the l-th component. The parameters of the distribution mixture
can be estimated using the Maximum Likelihood Estimation (MLE) method. In the case of i.i.d.
random variables, the logarithmic likelihood function has this form

l(θ |x)
i.i.d.
= ln

N∏
i=1

p(xi |θ) =
N∑
i=1

ln
M∑
l=1

αlpl(xi |θl),

where

θ = (α1, . . . , αM , θ1, . . . , θM ) ⊂ RM× Rs×M .

We will maximize the conditional expected value of the so-called complete data

z = (xT ,yT )T ,

which consists of the observable data, x, and of the missing data y denoting membership of the
data x to the l-th component, i.e.

(yi)l =

{
1, if xi belongs to the l-th component,

0, otherwise,

i ∈ {1, . . . , N}, l ∈ {1, . . . ,M},y ∈ RM×N ,x ∈ RD×N . For this purpose, the complete
logarithmic likelihood function is defined as the logarithm of the probability of the complete
data,

lc(θ |z) = ln p(z |θ).
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2.1. EM algorithm for weighted Gaussian Mixture Model
We will define an auxiliary function Q(θ, ϑ) as the conditional expected value of the complete
data,

Q(θ, ϑ) = IE[lc(θ |z) |x, ϑ],

where θ denotes a new (unknown) value of the parameter of the distribution mixture and ϑ
denotes an old (known) parameter. This function is maximized using the EM algorithm (see [3]),
whose k-th iteration (k ∈ N0) consists of two steps:

(i) E-step: Calculate the auxiliary function Q(θ, θk).

(ii) M-step: Find θk+1 ∈ Θ, which maximizes Q(θ, θk), i.e. Q(θk+1, θk) ≥ Q(θ, θk), ∀θ ∈ Θ.

It can be proved that in the case of a finite mixture model for weighted data [4, 5], the E-step
has the form of

Q(θ, θk) =
M∑
l=1

N∑
i=1

ln [αl]p(l |xi, θk)γ(xi) +
M∑
l=1

N∑
i=1

ln [pl(xi |θl)]p(l |xi, θk)γ(xi),

p(l |xi, θk) =
pl(xi |θkl )αk

l
M∑
l=1

pl(xi |θkl )αk
l

,

where pl(xi |θkl ) denotes the probability that event xi ∈ RD×1 belongs to the l-th component.
In the case of GMM, i.e. considering the pdf of the l-th component in the form of

pl(xi |θl) =
1

(
√

2π)D
√
|Cl|

e
−1

2
(xi − µl)TC−1l (xi − µl)

,

with the vector of expected values µ ∈ RD×1 and the covariance matrix C ∈ RD×D, then the
M-step can be expressed as

αk+1
l =

1
N∑
i=1

γ(xi)

N∑
i=1

p(l |xi, θk)γ(xi), µk+1
l =

N∑
i=1

p(l |xi, θk)γ(xi)xi

N∑
i=1

p(l |xi, θk)γ(xi)

,

Ck+1
l =

N∑
i=1

p(l |xi, θk)γ(xi)(xi − µk+1
l )(xi − µk+1

l )T

N∑
i=1

p(l |xi, θk)γ(xi)

.

2.2. Computational aspects of the EM algorithm
In general, the classification accuracy on the training data set can be improved by increasing the
number of components, but this does not guarantee a corresponding improvement on test data.
This reflects a feature of many supervised classification methods whereby the training data can
be overfitted, i.e. the classifier can be overtrained.

In addition, it is crucial to choose appropriate initialization parameters. Convergence of the
EM algorithm to a local optimum may produce different results for different runs. We set the
initial weight of each component to α0

l = 1
M , while the initial expected values µ0l are set equal to

the sample means, and the initial covariance matrices C0
l are diagonal matrices containing the

sample variance on the diagonal. This choice makes it more likely for the algorithm to converge
to a better local maximum.
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Furthermore, it has been observed that, when the size of the data set is too small, the
variances can become close to zero, which corresponds to subpopulation distributions given by
Dirac delta functions. It should also be mentioned that our choice of using diagonal covariance
matrices has improved the stability of the algorithm, in addition to simplifying the calculation of
the matrix determinant and of the inverse matrix. However, our studies suggest that the choice
of the number of components generally has a stronger impact on the results than the form of
the covariance matrix.

3. Analysis of single top channel Monte Carlo from the DØ experiment
The top quark, which is the most massive elementary particle (mt = 173.5 ± 0.6 ± 0.8 GeV),
was discovered at the Tevatron proton-antiproton collider by the DØ and CDF collaborations in
1995 [6, 7]. The top quark can be produced in pairs via the strong interaction, or individually, i.e.
without the corresponding anti-particle, via the electroweak interaction (“single top channel”).
Single top production was discovered at DØ and CDF in 2009 [8, 9]. There are three modes
of single top quark production: s-channel, t-channel, and associated tW production. The tW
channel is highly suppressed (i.e. the predicted cross section is very small) at the Tevatron due to
the presence of two massive particles in the final state, namely the top quark and the W boson,
and is omitted in the most of the studies. The process qq̄ −→ tb+X is referred to as “s-channel”
single top production, or tb, and the processes q′b −→ tq +X and q′g −→ tqb̄+X are referred
to as “t-channel” single top production, or tqb. In this study, the event selection required either
two or three jets, and the electron and muon channels were merged. In order to improve the
signal purity, only events containing either one or two b-tags were used in the analysis. Since
the kinematic properties of single top events are not very different from those of background
(i.e. no individual variable provides enough discrimination between signal and background), the
use of multivariate analysis (MVA) techniques is expected to improve the results.

Table 1. Results of the separation: signal tb vs. all background in 2-bTag 2-Jets. NcS – the
number of signal components, NcB – the number of background components, ErrS-* – the error
in the signal set, Err∗ – the error in the whole set.

NcS NcB AUCROC-TS AUCROC-STS AUCROC-YS ErrTS ErrSTS ErrYS ErrS-TS ErrS-STS ErrS-YS
1 350 61.622 67.355 58.788 5.539 5.398 6.934 99.876 99.877 99.893

350 350 70.589 80.319 66.596 19.420 14.359 23.709 59.872 50.340 59.146
20 110 65.946 68.895 62.498 8.844 8.228 10.758 89.829 89.218 89.598

290 110 71.384 76.938 67.086 25.166 22.675 30.199 47.783 41.123 47.231
350 110 71.339 78.143 67.412 27.462 25.075 32.946 44.185 34.771 42.952
20 80 62.563 63.998 59.420 5.710 5.734 7.178 99.592 99.654 99.666

290 80 71.065 76.800 67.083 29.017 26.652 34.336 42.577 35.555 41.885
170 20 69.699 73.134 65.759 43.201 42.165 49.338 26.716 22.829 26.256

1 1 70.694 70.984 66.917 11.902 11.774 14.503 80.507 80.683 80.207

The MBC method was tested on single top Monte Carlo data, corresponding to the full DØ
Run II data set. Details about the Monte Carlo data sets and the official DØ analysis using
BDT, BNN, and the Matrix Element (ME) method are given in [10, 11]. The MBC method
was applied to 12 sub-tasks {signal : tb, tqb, tb+ tqbg}×{1-bTag, 2-bTag}×{2-Jets, 3-Jets}, each
corresponding to a subset containing a number of variables between 20 and 39. We focused on
the 2-bTag 2-Jets channel, which is the most sensitive to s-channel single top production with
the a priori signal to background ratio 1:18. All Monte Carlo events were divided into three
samples: a “small training sample” (STS) containing 1

4 of all MC events, a “testing sample”

(TS) containing 1
4 of all MC events, and a “yield sample” (YS) containing the remaining 1

2 of all
MC events, which is used for the final comparison with the real data. The area under the ROC
curve (AUC) varied between 0.65 and 0.8 depending on the analysis channel. More detailed
results are given in table 1 with regard to the tb 2-bTag 2-Jets channel.

Figure 1 shows that the number of events with a high probability of being classified as signal
increases with the number of components. This suggests that better results can possibly be
obtained for signal as opposed to background when a higher number of components is used.
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Figure 1. ROC curves and histograms of component weights for signal tb vs. all background
in 2-bTag 2-Jets with two different settings of the number of components.

4. Discussion
Our results show that MBC makes it possible to separate signal from background in high energy
physics applications. We typically doubled the signal to background ratio for all sub-tasks. Using
290 signal and 110 background components of the distribution mixture, we obtained the best
AUC value on the testing sample of∼ 71.4, thereby improving the signal tb to background ratio in
the 2-bTag 2-Jets from 1:18 to 1:8 with the a posteriori probability threshold Pt(signal |x) = 0.5
in (1). As expected, the MBC method provides better results when the difference between
the signal and the background distribution is more pronounced. Unfortunately, in single top
channels the patterns of signal and background are nearly the same. In order to improve the
results, we plan to implement a transformation of the input variables using a combination of
φ-divergences (see [12]) with principal component analysis. Further studies are necessary in
order to identify the optimal number of components in each channel.
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[6] Abe F 1995 et al Observation of top quark production in pp̄ collisions with the collider detector at Fermilab

Phys. Rev. 74, No. 14, pp. 2626-31
[7] Abachi S 1995 et al Search for High mass top quark production in pp̄ collisions at

√
s = 1.8 TeV Phys. Rev.

74, No. 13, pp. 2422-26
[8] Abazov V M 2009 et al Observation of single top-quark production Phys. Rev. 103, No. 9, pp. 092001-7
[9] Aaltonen T 2009 et al Observation of electroweak single top-quark production Phys. Rev. 103, No. 9, pp.

092002
[10] DØ Collaboration 2013 Evidence for s-channel single top quark production in pp̄ collisions at

√
s = 1.96 TeV

Preprint arXiv:1308.6690
[11] Tsai Y T 2013 Measurement of electroweak top quark production at DØ (University of Rochester)
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