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I. Introduction

The pheromenon of prominent intermediate-width resonances observed in the en-
ergy dependence of cross-sections of heavy-ion reactions at relatively higher energies
is at present a major line of development of nuclear physics. While the existence of
intermediate nonstatistical processes in the reactions is confirmed beyond reasonable
doubt, the problem of their nature is far from being resolved. The first models re-
lating the nature of these phenomena to molecule-like configurations in nuclei date
from 1960 [1,2]. The idea of a molecular configuration seemed very natural in de-
scribing a long-lived quasi-bound state created in the interaction of two heavy-ions.
The angular-momentum barrier and other effects prevent nuclei from coalescing im-
mediately, forcing them to spend all the excess energy on the rotational motion. Also
several new approaches have since then been developed, the image of two crbiting
clusters ferming a quasi-molecular configuration still represents the leading descrip-
tion of the phenomenon of intermediate-width resonances in heavy-ion reactions. The
revival of research has established the presence of intermediate-width resonances as
a rather general phenomenon in heavy-ion reactions and an impressive array of data
of resonances in heavy-ion reactions has been accumulated [3-5]. So, it is no longer
considered as isolated phenomena present in a few light nuclear systems but to be a

general feature of heavy-ion reactions.
~ In this paper, we investigate the possibility of quantum group H,(4) (the quantum
Heisenberg group) as dynamical symmetry of the quasi-molecular systems.

The progress of modern physics is accompanied by the studies of symmetries.
Recently, much attention has been directed to the investigations upon the quantum

groups and Yang-Baxter equations [5-12]. Quantum group U,() is the g-deformation
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of the universal enveloping algebra I/(a) of a finite-dimensional semi-simple Lie algebra
«, introduced by Drinfel'd {6] and Jimbo [7] in their studies of the quantum inverse
scattering method of the integrable models and Yang-Baxter equations. Quantum
group theory is becoming a popular topic in different fields of physics, due to its richer

structure than that of the Lie groups.

As 2 widely accepted opinion, the defermation parameter ¢ is a function of the
Planck constant , e.g., Ing o h. When i — 0, g — 1 and the quantum group
symmetries reduce to Lie group symmetries, while the quantum systems convert to
classical ones. As we poi_nted out [13-18], this viewpoint is not evident. In fact,
the g-deformation and canonical quantization can be two independent concepts. It is
possible to find the q-ceformed symmetries (with nontrivial Hopf aigebra structure 13-
18] in classical systems, 2nd when the systems are canonically quantized, one cbtains
Guantum group symmetries in Guantum systems. The quantum systems described by
quantum symmetries reduce to the quantum systems described by the ordinary Lie

symmetries, when the deformation parameters g's tend to one.

This new viewpoint brings new possibilities to the studies of quantum groups as
potential dynamicai symmetries in physical systems. As the quantum‘groups, with
respect to their Lie counterparts, introduce independent parameters ¢'s, the new (and
big) symmetries ailow violations of the Lie symmetries. When ¢'s 2re not unity, the new
symmetries are exact symmetries in the view of spectrum-generating Hepf algebras and
with well established theory of representations, but violations of the Lie symmetries
occur. The violations are small if the deviations of ¢'s from unity are small. If the
deviations get greater, the violations get greater. The most well known model possesses
quantum group symmetry is the Heisenberg spin chain of X X Z type [19,20], where the

differerice of Z from X induces the violation of SU(2) symmetry. But the violation
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therein does not bre:ak'tHe“big syﬁ]metfy S'Ud(Q)',”WHich'Esbne of the best studied
quantum groups. . ' o
in t‘hve atterﬁpfs to find other systérﬁs in which the quéﬁtum groups are bossible
dynamical symmetries, the authors looked into the é';ntury old pfoBlem of the rotaf-
ing and vibrating diatomic molecule. It is shown that the Dunham formulum [21] for
“the vibration-rotationa! energy spectrum of the diatomic molecule can be reproduced
from the Taylor expansion of the quantum group theoretic formulum [22-25]. The
specific character of this approach is that it does not deal with the explicit form of
the bonding potential, but demonstrates that the energy levels are ;ppropriate for any
diatomic-molecule-like systems that possess the Dunham-like energy spectrum and are
dominated by dipole degrees of freedom by using a spectrum generating aléebra focus-
ing on the elementary quantity involved in the interaction and not on the interaction
‘potential. D
The properties of the duantum group theoretic approaéhb‘to molecular spectra
122-25] hint us that the approach may be more suitable to the case of heavy-icn
resonances. As in nuclear physics, the quasi-molecular configurations are not stable
and primary bonding mechanisms have rot yet been unambiguously identified. We
can not calculate in principle the bonding potential V(r) of the anharmonic oscillator

from a knowledge cof relevant interactions.

This paper is organized as follows: In section 2, we briefly review the quasi-
rf_toleculér structures of heaQy—ion resonances, concentrating on the lachello’s method
and the alternative potential approach. Section 3 is Vdevoted to thev Hopf algeb;a
structures of quéntuﬁ\ Heisénbefg group H,(4) which we suggest as the possible dy-

namical symmetry of heavy-ion resonances. In section 4, the quantum group theoretic
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tum group theoretic approach with experimental data of 12C +!2 ¢! and 12C 4% 0

resonarices 2re provided. We conclude with some brief remarks in the last section.

II. The Quasi-molecular Models of Heavy-ion Resonance

The quasi-molecular modeis captured the fancy of many physicists by their sim-
plicity and shysical transparency. In [26,27] the mechanism of double excitation is
introduced as the principal cause of formation of quasi-molecular configurations. An-
other step forward was the introduction of the resonance-window concept [26,28] which
cerrelated the observabiiity of resonances to the level density of compcound system. Re-
cently, group theoretic [29] and anharmonic vibrator [30] approaches were used with
considerable success to explain resonance data, giving in both cases energy eigenvalue
expressions in the form of a trancated Dunham series. The first effort to organize
the resonance data was made by Erb and Bromley [31] under the influence of the
group-theorc{ic iesuits of lachello.

Ir the criginal papers of [29] [31], lachello and Erb and Bromley proposed that

‘resonances aie dominated by dipole rather than the quadrupole degrees of freedom
with the fundamental quantity E being the distance between two ions. Based on the

group-ineoretic considerstions, they gave the expression
, S A N . ;
E(n,L)= -+ a(n + 5) —b{n+ ) +cL(L +1) (3)

for the center-of-mass energies of the resonances. Where I, ¢, b and ¢ are parameters

to be determined phenomenclogically by fitting the experimental data.




To vobiairi the moleéﬁléf fotation-vibrational spectra, Jachello introduced a set of
four boson operators, divided irito & scalar (J = 0) operator, dencted by o;-and a
vector (J = 1) operator denoted by 7, (p = 0,%£1). They are assumed to have
parity (— ) The mtroductlon of the vector (7r) boson reﬂects the dipole nature of the
problem. Expands the Hamiltonian H in terms of boson operators and (for simplicity)
stops at quadratic terms, he has ..

H = €,(c%c)+e(nt &)

J (0
“ % [7 % Fr](J)]
J_Oz

+up [[ot % o+ x [a X a](")] + Uy [l’f+ x J+] x [ x 0](1)](0)

+ 3 507+ [[7’ X' ] i,

+us [[,.* X w’]‘o) X [a X cr]( ) + [lo* x cr”(o) '7r X T](O)](O)
Here %, = (=) ""7_4 and the square brackets denote tensor product. Energy spec-
‘tra _may be obtained by diagonalizing H in the space [N] of the totally symmetric
irreducible representations of the, group U(4) generated by the 16 bilinear products
Gow = Wby (@ =1,2,3,4ba =8 ,,)- Instead of going to the detail of the bondmg
potential, lachello demonstrated - that the enﬂrgy level obtamed from the spectrum
generating algebra U(4) D 0(4) D 0(3) is appropriate for any molecule-type Hamil-

tonian.

An alternative potential-well. approach was also made [32-34]. Satpathy et al

started with the Morse potential

V()= (exp[ 28 (R Rﬂ)];zexp [~ﬁ (R;%R"m - ©

The potontlal has a minimum of —~B.at R = = R and approaches zero asymptotlcally

for R — oo. The effective potential for J =0 (ion-ion potential Vv + Coulomb

potential V) giving the bound and resonance states can be well represented by the
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combination of the Morse potential and a constant,

v =18 (oo 23 (S5 2o [ (2]

The eigenvalue for the effective potential V. can be written as

E = A- B+2 R()(Zﬂ*y(n-!-l)—ﬂz(n-i-%) +J(J+1)

3(ﬂ 1) 9\ﬂﬁ4 2) J2(J+1)2)

(5)

(n+1)J(J +1)—
with v2 = 2uBR§/h2.

The solution to the Schrédinger equation for the radial motion of the effective
potential is of the form | |
by
Xng(B) =y P exp (—%) F(a,éy) (6)

where F(@,¢,y) is a confluent hypergeometric function,
y=prexp(—fz), p2=27/8,
a=3E=7/Br, a=4/f-6/P,
C2 = _l/ﬂ + 3/ﬁ2a

and
k2 =k + J(J + 1),

HN=7"—-3I(J+ e, - (8

7 =7+ J(J + 1)
By assuming that the collidiné dinuclear system. forms a diatomic-molecule-like
rotator and the shock of the collision leads to a surface vibration analogous to that
of a deformed system [35]. Neglecting the « vibration, in [30] Cindro and Greiner

postulated a Hamiltonian of the form

2
H= ZJk( V)+ B( +°a2)+ sz + Cat?, 9)
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to describe the resonant colliding system. Where M, and Ji(a,) are respectivély the
components of the angular momentum and the moments of inertié‘a!ong the three
axes of the rotating dinuclear system, the variables ao, dg and £ are same as defined in
[35]. The presence of a quadratic term in § introduces the anharmonicity. This leads

to an energy spectrum of the form (no ~-vibration)
1 1 1 3

Expression (1) and (10) are obviously equivalent. These treatments may be a general

feature of two-body motecular interactions.

111. Quantum Heisenberg Group H,(4)

A quantum group (or quantum enveloping algebra) is a Hopf algebra which is
neither commutative nor co-commutative. Given an associative algebra A with unity,
we say that A is Hopf algebra if we can define three operations A, S, € on A; the co-
multiplication A : A — A®A is algebra homomorphism, the antipodal map §: A — A
is algebra anti-homomorphism and the counit € : A — C is also homomorphism (C is
the field of complex numbers). The three operations satisfy the following axioms:

(Gd®A)A(a) = (A®id)A(a),
m(id ® S)A(a) m(S ® id)A(a) = ¢(a)l (11)
(e®id)A(a) = (1d®e)A(a) =a,

where @ and b are elements of the algebra, and m is the multiplication in the algebra:
m:AQA — A, or m(a®b) = ab. The first condition is the associativity of the
co-multiplication, the second condition is the definition of the antipode and the third

defines the co-unit. f o = AQ A — A®A s the permutation map o(a®b) = bQa, itis
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easy to check that A’ = ooA is another co-multiplication in A with antipode $' = §-1.

A Hopf algebra is a quasi-triangular Yang-Baxter algebra if the co-multiplications A,

A' are related by conjugation:
oA(a) = RA(a)R™! ReAQRA (12)

and the following conditions are satisfied:

(id®A)NR) = RiRi,
(A®id)(R) = RisRs (13)
(S®id)(R) = R-.

An immediate consequence of these axioms is the Yang-Baxter equation which reads

R-_—’Zai®bh (14)
R;i3Ra3 = Z a;Qa; @ bib;. ’ i (15)
i,j

The Yang-Baxter equation is the direct result of the following properties of the universal

R-matrix: ‘
(0-A®id)R = T;A(a;)® b = ¥ RiaMai)Ryy ® b
= RuYiA(a)@ bR = Ru(A@idB)R;  (16)
— RuRisRyR).
However

(6 - A®id)R = 013((A ® id)R) = 015(Ri3Ris) = RysRus (17

yields the Yang-Baxter equation,

’R12R13R23 = R23R13R12- (18)

For a quantum g-oscillator system, the Hamiltonian is [13,14]

1 )
H,; = 3 (a;aq + aqa;) hw ‘ (19)
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where a, al are annihilation and creation operators for this deformed system. These

operators are connected with the operators a,a of the simple harmonic oscillator in

@ = [N+1]qa af = af ,’[ﬁi_l]_q (20)
=V N 1 TV N

where N = a'q, [z], = 95_;:_::-. By the basic commutation relations

this way

[a,a']=1, [a,a]= [af,al] = 0, (21)

we have the commutation relations for the g-oscillator system

[a:0i] = IV +1),-1M,,

(22)
[V, a,) —ag, [N, a:‘]] =}

This is the g-deformed oscillator algebra H,{4}). The Hopf operations: coproduct,
antipode and counit can be defined for this algebra [36].
A(N) = N@1+1@N-2.181;
7
Adel) = (a; Q¢ 4ig N2 @ a,'g) e/,
Aa) = (aq ® qN/2 + iq—N/Z ® aq) el

S(N) = -N+i%&.y

S(at) = —q'*af; (23)
S(ag) = —qay;

eN) = g;

dal) = o)) =0;

1) = 1,

where a =2kr + 2, k€ Z and 7 = —iy = —ilng. These Hopf operations, together

with multi-plication m and identity mapping id satisfy the conditions in (13).

The R-matrix reads explicitly in the following

_a 214 ¢ )" _nten "

R = 1/2N@N "A(N) Zn( 4 af ® nN/2an, 24

q g Tl ()" ®4q 4 (24)
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where m, and m, are masses for the two nuclei, V is the effective potential between

them. The Schrddinger equation in the center of mass frame is

K2 , .
(-2 o +V(r)) (7) = BU), (27)
\ 2m
where m = mz is the reduced mass. As the variables can be separated, we have
my -+ My
o 1, . i
U(F) = R(r)Yimu(9,¢), R(r)= ;1/)(7'), (28)

where Y3/(6, ¢) are spheric harmonics. The tangent motion is rigid rotation described

by SU(2) group. While the radial motion satisfies the following equation,

R? 1 d e d J-}—l)h2
— V{r); R=ER 29
{ omridr dr 5 2mr? Vi) B=ER, (29)
or
R? J(J + 1R \ - o
{-Rm T T V("‘"} v =EP. (30)
Under the iowest order approximation, the second term in the above equation, e,
J(J + DR? - . . .
R can be neglected and the above equation is treated as the motion equa-

tion for simple harmonic oscillator. And therefore the relative otion of the nuciei can
be decomposed into rigid rotation and linear vibration. However this model can not

provide a correct picture of the fine structure of vibrations and rotations.

s remarked in the above phrases, gererally, cne can not ignore the influence of
the interaction among vibrations and rotstions. In a betier approximation, the term
proportional to J{J +1) in the equation of radial motion must be handled carefully. In
this paper, we propose that the ¢g-deformed oscillation model that possesses symmetry
of quantum group H,(4) to describe the radial vibration of he;vy—ion resonances.

The Hamiitonian of the quasi-molecular system may be of the fellowing form
H = Ho+ Huiy + Heor
o) (31)
ﬁ-‘;

]
L2 +
Hs + ;(ajaq + aqga) Yhw +

1™
(]
%)
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It is well known that the coordinate representation of ST/(2) are ¥Y;py, the spherical
harmonics, i.c.,

o = Yoar(8, ). (38)

The generators of SU(2) algebra are

JE = ihe*"‘f’(:!:z'—% + cot !9:6—),
R 03 9¢ (39)
3 = —ih—s.
J? = h@gp’
When the gensraters act on ¥, we have
Ty = BJ(JF MYJT £ M + Do, (40)

by = hMypg.

So the Casimir has eigenvalues J(J + 1)i%, i.z., the eigenvalues of rotational Hamil-

tonian are

of~

ot

2JI+ 1)

Erot = TI”—

(41)

Then we obtain the rotation-vibrational spectra of the heavy-icn resonances systems
as

2

1 B2 . ‘
E=E0+—2-([n+1]q+[n],,)hw -+ ﬁJ(J-!— 1). (42)

The corrasponding wavefunctions of the systems have the following form
. _x2 . \
¥ = Puthynr = NoHo{(X)e™ T V(8. 9). (43)

To fit expérimental data conveniently, we rewrite the spectrum (42} into the following

~ form

hw / 1\ R’
E=Fot—2 _n(3(n+2))+=J(J+1). 44
o LO+2$in(ﬁ/2)bm</knT2)> op/ (7 +1) (44)

The above equation is the general form of the rotaticn-vibrational spectrum for

heavy-ion rescnances obtained in the quantum group theoretic approach. The fitting
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of the data is made by firstly forming a dense of curves in the Egy against n spaces
using the above equation. in selecting the parameters the following procedure was
applied: First, the data were fitted at comparatively higher J values where there are
more known resonances; then using the so obtained parameters to form the mess, a
reasonable fit to all J values was assured. This fitting method is almost the same used

by other authors [31-34].

The vaiues of th fitting parameters are By = 0.3¢ (McV), 3y = 0.18, w =
1.20 (MeV/R), and I = 6.61 (h*/MeV) for C12+C2, and E; = —0.015 (MecV),
¥=0.19, w=1.98 (MeV/h), and T =7.14 (R*/MeV) for C12 + O'C.

In other words, the rotation-vibrational spectra of C'2 4+ C'% and C12 + O are of

‘ the form

E=034+6.7sin (018 (n+ 1)) + 007577 (J + 1), for C124C2,

(45)
)
E = ~0.015+10.45sin (0.19 (= + 1)) +0.077 (J +1), for C12 4 0.

Figures 1, 2 and 3 show the obtainad fits.

V. Discussions and Remarks

The quantum group as a beautiful mathematical structure has been investigated in
some particular quantum systems, such as exactly solved statistical model, integrable
quantum systems and conformal field theory [11,12,37]. More and more Physicists
pay attentions io possible applications of quantum groups in physics. In the acbve,
we found that the quantum group H,(4) may be possible dynamical symmetry of

heavy-ion resonance systems.

In this quantum group theoretic approach, if the deformation parameter g — 1,

harmonic cscillator plus rigid rotator model recovered. This differs from the usual
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quantum group models discussed by many other authors. In those well known systems
which possessing quantum group symmetries, when ¢ — 1, — 0, e, quantum sys-
“tems get to classical ones, but not quantum systems possessing Lie group symmetries.
Although thes;e group theoretic approaches do not care the detail of the interactions,
but go to the nature of the Hamiltonians and energy spectra, it is natural to raise the
question as wha;t kind of the effective potential the quantum group theoretic approach
imply. In the following, for completeness, we will give a discussion the correspondi‘ng
effective potential implied in the quantum group theoretic approach in some detail.
We choos to begin with the Taylor expansion of the analytic formula of the quantum

group theoretic approach for resonance spectrum

1 1\? 1\°
E,,,»bzhw(n-{-_—\—i—c]kw(n—i-—_-) +c2hw(n+-> +, (46)
2/ 2 2
where ¢y, ¢z, - ; are the coefficients of Taylor expansion. This is (a special case of)

Dunham formulum [21], which stimulates one to propose the following Hamiltonian

for the quasi-molecule in the obviously most direct way,
1 7/ Iz S A
Huo =t (N +3) +eiter (N4 5) +esho (¥+3) + @D

This Hamiltonian describes a system with nonlinear potential depending on the energy

level. If cne rewrites H,y into coordinates, one obtains

-h2 82 - .
Hyp = ~5 522 ) (48)
and
N 2 ) 133
V= lwzma:z + cyhw (N + 1 + cliw (N + :) +--, (49)
2 2) \ 2

which is a the pseudo-potential that depends on the energy eigenvalues. This point is

clear if we rewrites the Schrodinger equation into

E_ 8%y(z)

2m  Ox?

+ Veys(2)p(z) = E(2), (50)
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where Voep(x) = (f/z/)) ¥~ is the effective potential. The pseudo-potential is cur-
rently a common concept frequently applied in theories of nuclear physics, though its

dependencé on the states that the system sits is against intuition.

The conventional model of anharmonic vibrator applied to explain the Dunham

formula (46) introduces Io;al potentia! of the following type

U=-;-mw2x2+am3+bz4+'--, . (51)
where
U 1 (dU , :
=3(@) (5. L@

The energy eigenvalues are obtained by 2-nd order perturbation (to reproduce 1)
and 3—rd order perturbation (to reproduce c2), while the wavefunctlons of the linear
oscillator are medified by 1-st and 2-nd order perturbations. As we require that the
energy spéctra of the pseudo-potential model and the local potential model coincide,
these two models are essentially identically effective, if one ignores‘the differences
betweer: the wavefunctions of the pseudo-potential model (which are just those of the
linear oscillator) and those of the local potential model (which are ke wavefunctions
of the linear oscillator modified by i-st and/or 2-nd order perturbations).. Béqause the
sma!l differences between the wavefunctions yielded from the two models ate difficult
to detect exner.memally (lf not in principle), one has the freedom to favox.' eltner one
of these models. After all, i.he new Hamlltoman in {47) is the most dlrect cor'jecture
from the Dunham formula (46) and is therefore unreasonable to re‘use rf one is not

prejudiced against theories involving pseudo-potentials. ST

It should also be noted that the Yang-Baxter equation constructed.from the H;(4)
symmetry is apparently hidden symmetry, but the explicit interpretation remains to be

clarified. This is an interesting topic still in progress. e
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it is also WOl;th noting that the nuclear shell model of isotropic 3-dimensional
simple harmonic oscillator can also be extended by replacing some cr all of the three
components by the g-deformed harmonic oscillator(s), and the extended model wiil
certainly give exact descriptions to the violations of the spherical symmetry of the
spherically symmetric system and the equidistancy of the energy levels, and therefore
may be an ezactly solvable model suitable in dealing with the structures of some

nuclei.
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Figure captions

Figure 1. Plot of energy in MeV in center of mass frame against the
assumed vibrational quantum number (n) for resonance data of 12C+ 12C

system.

Figure 2. Plot of energy in MeV in center of mass frame against the
assuined vibrational quantum number (n) for resonance data of 12C+ €0

system with even spins.

Figure 3. Plot of energy in MeV in center of mass frame against the
assumed vibratioral quantum number (n) for resonance data of 12C'+ 160

system with odd spins.
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