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Abstract. ALICE (A Large Heavy Ion Experiment) is one of the four major experiments at
the Large Hadron Collider (LHC) at CERN. The High Level Trigger (HLT) is an online compute
farm which reconstructs events measured by the ALICE detector in real-time. The most
compute-intensive part is the reconstruction of particle trajectories called tracking and the most
important detector for tracking is the Time Projection Chamber (TPC). The HLT uses a GPU-
accelerated algorithm for TPC tracking that is based on the Cellular Automaton principle and
on the Kalman filter. The GPU tracking has been running in 24/7 operation since 2012 in LHC
Run 1 and 2. In order to better leverage the potential of the GPUs, and speed up the overall HLT
reconstruction, we plan to bring more reconstruction steps (e.g. the tracking for other detectors)
onto the GPUs. There are several tasks running so far on the CPU that could benefit from
cooperation with the tracking, which is hardly feasible at the moment due to the delay of the PCI
Express transfers. Moving more steps onto the GPU, and processing them on the GPU at once,
will reduce PCI Express transfers and free up CPU resources. On top of that, modern GPUs and
GPU programming APIs provide new features which are not yet exploited by the TPC tracking.
We present our new developments for GPU reconstruction, both with a focus on the online
reconstruction on GPU for the online offline computing upgrade in ALICE during LHC Run 3,
and also taking into account how the current HLT in Run 2 can profit from these improvements.

1. Introduction
ALICE (A Large Ion Collider Experiment [1], see Figure 1) is one of four large-scale experiments
at the LHC (Large Hadron Collider, see Figure 2) at CERN in Geneva. It is designed primarily
to record heavy ion collisions. Compared to proton-proton collisions, which are the focus of
the other LHC experiments, heavy ion collisions produce many more particles but occur at a
lower rate. The ALICE High Level Trigger (HLT) is an online compute farm that processes
the data recorded by the ALICE detectors in real time. Reconstructing the particle trajectories
(tracking) is the most compute intense task of event processing. ALICE’s primary detector for
tracking is the TPC (Time Projection Chamber). This drift chamber records up to 159 hits
per trajectory traversing its volume, which are significantly more data points compared to the
silicon detectors used in the ALICE Inner Tracking System (ITS) and by the other LHC exper-
iments. Consequently, Pb-Pb events recorded by ALICE are larger by more than one order of
magnitude compared to pp events. In contrast, ALICE records heavy ion collisions at a much
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Figure 1. The ALICE apparatus and its
various detector components.

Figure 2. The Large Hadron Collider be-
neath Geneva and its four major experi-
ments.

lower rate of up to 1 kHz. This has an impact on the tracking algorithm. The ALICE HLT
employs GPU-accelerated tracking which enables it to reconstruct all events in real time [2].

The HLT GPU tracking was originally developed for NVIDIA GPUs in the HLT farm for
LHC Run 1. Utilization of GPUs accelerated the track reconstruction by around a factor
of 10 compared to a CPU solution running on four CPU cores [3]. We note that the CPU
version does not use explicit vectorization, because attempts to do so yielded only a speedup
of up to 1.25 for central Pb-Pb collisions due to varying track length [4]. This aspect also
significantly reduces GPU utilization [5]. Overall, the GPU approach could essentially halve
the number of required HLT compute nodes compared to a CPU-only solution. Consequently,
power consumption goes down significantly, but we did not conduct precise power efficiency
measurements yet. For the HLT Run 2 farm the GPU tracking algorithm was ported to support
OpenCL, CUDA, and OpenMP for CPUs to become vendor independent. The GPU tracker is
currently running on AMD S9000 GPU since 2015 [6]. New CPU and GPUmodels have improved
their performance similarly, such that also for the Run 2 farm the GPU tracking halves the
number of compute nodes. The total cost saving of the GPU tracking compared to a CPU-only
cluster has accumulated to more than 1.5 million Swiss francs. In order to better understand
the new optimizations we are working on, we give an overview of the tracking algorithm.

2. Tracking algorithm
The tracking is organized in two phases: the first phase searches only for track segments inside
TPC sectors. The TPC cylinder is divided into two halves which are further subdivided into 18
trapezoidal sectors each as shown in Figure 3 a). Within the sector, primary trajectories are
assumed to have at least a part of the trajectory oriented in x-direction (see Figure 3 b)). The
second phase merges track segments, first within sectors and then at sector borders, and finally
performs the full track fit. Both phases have many sub-steps. We list only the important and
compute-intense steps (Table 1 gives an overview).

(i) Seeding (Phase I): Finds short track candidates of usually 3 to about 10 clusters using a
heuristics in a cellular automaton. It finds only seeds oriented along the x-axis, but due to
the large amount of hits per track in the TPC, this is no limitation. In addition, there are
so many seeds that it is not necessary to follow multiple track hypotheses per seed, which
reduces the combinatorics significantly. Figure 3 c) illustrates the process.

(ii) Track following (Phase I): Fits parameters to the track candidate and extrapolates the
track through the TPC sector volume to find all hits of the track segment. The track
parameters are regularly refined by fitting the new hits added to the track. A simplified
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Table 1. Steps of the ALICE HLT TPC GPU tracking. Tracking runs in two phases. Both
phases have several steps. The table shows only steps with significant contribution to CPU time.
The time is measured with the CPU-only version single-threaded. GPU processing of step 4 is
currently not used.

# Phase Task Method Locality Time Device

1 I Seeding Cellular Automaton Very local 30% CPU & GPU
2 Track following Simple Kalman filter Sector-local 60% CPU & GPU

3 II Track Merging Matching Covariance Global 2% CPU
4 Final Fit Kalman filter Global 8% CPU (or GPU)

Kalman filter is used which assumes uncorelated errors for coordinates and a constant
magnetic field to speed up this process. This step only finds the tracks, the final fit is done
at a later stage. In case multiple seeds were found and processed for the same track segment,
the best instance is selected and others are removed. Figure 3 d) illustrates the process.

(iii) Track merging (Phase II): This step creates the final tracks by merging track segments.
First, the tracker merges track segments inside the sector for the case that there is a gap
which the track following did not cover. Finally, track parameters at the border of the
sectors are compared and matching tracks are merged.

(iv) Track fit: In the end, the full track is refit using the full Kalman filter. A polynomial
approximation of the magnetic field avoids the slow memory access to a field map.

The first phase has been completely ported to GPUs and is running in 24/7 operation in
the HLT since the end of 2012. From the second phase, only the compute intense track fit
part has been ported as proof of concept, which is well suited employing a full compute-intense
Kalman filter. Even though the GPU speeds up this step by an order of magnitude, it yields no
significant gain in reality because the additional data transfer takes much longer than the actual

a) b)

c) d)

Figure 3. Overview of the ALICE HLT TPC GPU tracking algorithm: a) Separation of the
TPC into sectors. b) Cross section of a TPC sector. c) Cellular automaton heuristic to construct
initial track seeds. d) Track following and fitting using the Kalman filter in radial TPC pad-row
direction, adding the closest cluster in each two-dimensional (pad and time) row.
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Figure 4. Visualization of the parallel processing of phase I on CPU and GPU of the ALICE
track reconstruction during Run 1 and beginning of Run 2. Times measured on NVIDIA GTX
480 GPU. Three CPU cores are used for the preprocessing and postprocessing steps in a round
robin fashion since one core is too slow.

processing. If the remaining steps were to be ported on the GPU, the GPU track fit could speed
up the processing (compare Figure 6 in the next section).

A great advantage of the tracking approach is the fact that only one track hypothesis at
max is followed per hit. Consequently, we could show that the tracking time depends almost
completely linearly on the input data size [2]. This is very different to tracking algorithms
for other detector types and the other LHC experiments, which face super-linear dependencies.
However, with the data sizes of ALICE Pb-Pb events, a quadratic dependency on the input data
size would be an immediate show-stopper for online track reconstruction.

3. GPU tracking optimizations
The current HLT farm provides sufficient GPU resources to perform the online tracking for any
scenario during run 2. We have tested the farm with data replay of pp and Pb-Pb TPC input
at the maximum possible link speed from the detector [7]. Therefore, no further optimization
particularly for the Run 2 hardware is needed. Instead, we focus on improving the tracking in
the face of the upcoming ALICE online offline computing upgrade for LHC Run 3.

In order to achieve good GPU utilization, the tracker overlaps computation on the GPU, DMA
transfer to and from the GPU, as well as preprocessing and postprocessing on the host. Figure 4
shows the time and overlap for all tasks on an NVIDIA GTX 480 GPU. The old GPUs could
not run two different kernels concurrently, therefore two CUDA streams or OpenCL command
queues respectively are used for computation and for DMA transfer. Every box in the plot
corresponds to a kernel execution. It starts with the initialization on the host with one box per
TPC sector, followed by the neighbor finding (part of the cellular automaton) on the GPU, also
with one kernel per sector. Processing of the sectors is arranged in a pipeline, such that after
the preprocessing on the host and the transfer of the first sector to the GPU, the graphics card
is constantly loaded. However, this only shows that the GPU is loaded during 100% of the time,
but it does not guarantee that each kernel individually uses the GPU to the full extent. The
cellular automaton runs one GPU thread per hit in the TPC, therefore one sector offers sufficient
parallelism to fully load the GPU. This is not the case during the tracklet construction, which
performs the track following inside a sector. With one thread per track candidate, there are
insufficient tracks per sector to use the GPU efficiently. Therefore, only one instance of the kernel
runs (one box) processing all sectors. Processing the tracklet selection is similar to the cellular
automaton, however, few sectors are combined into one kernel to improve GPU utilization.

This approach was optimal for older GPU models but it is no longer sufficient to utilize
modern graphics cards at maximum. A single sector is lacking parallelism for the cellular
automaton, and a single event cannot load the GPU at maximum during track following.
Parallelization is insufficient even for the most central Pb-Pb events. Therefore, it is desirable
to execute multiple kernels concurrently, which is supported by all recent GPUs. We can realize
this in two ways, which are described in the following.
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Figure 5. Illustration of the alternate scheduling scheme for the GPU processing. Multiple
command queues are used in parallel. The GPU scheduler creates parallelism by running
multiple smaller kernels in parallel, compared to fewer large kernels in Figure 4. Tasks for
one TPC sector are sent to the same command queue, different TPC sectors are distributed
into the queues in a round robin fashion. The number of command queues is an optimization
parameter, e. g. eight queues is suited for the S9000 GPUs of the current HLT matching the
number of the hardware queues in the GPU.

3.1. Parallelization inside an event
The opportunity to have multiple kernels executed from multiple event queues in the same time
enables additional parallelism inside an event. The order of the kernel execution within a sector
must be maintained, but different sectors are completely independent. It is therefore possible to
have multiple queues, and queue all kernels for one sector at once in one queue, but distribute the
different sectors among multiple queues. This works up to as many queues as there are sectors,
although it is principally better to match the number of queues to the hardware constraints.
Figure 5 illustrates the processing.

This approach leaves the parallelization to the GPU scheduler, and allows executing multiple
of the cellular automaton kernels concurrently, or also parallelize the cellular automaton and
the track following. The data transfer from host to GPU is queued just before the kernels for
a sector. The transfer back to the host is a bit more complicated, because it is not known
beforehand how many tracks are found. There are two possible solutions: utilization of modern
APIs where the GPU kernel itself can queue other GPU tasks: in this case a DMA transfer. Or,
the tracker can estimate a buffer that is large enough to store all tracks and queue the transfer of
this buffer immediately after the last kernel. In case the estimation was too small, the remaining
tracks can be fetched afterwards. We have not fully implemented this approach yet, but in a
first stage we have implemented it for the first cellular automaton step which already reduces
the required time on the HLT GPUs by approximately 20%.

3.2. Parallelize multiple events
A totally different and simpler approach is the execution of kernels for multiple events
concurrently. The HLT GPU framework allows to start independent processing components,
both performing track reconstruction on the same GPU, as long the GPU memory suffices for
all of them. This approach can also load the GPU well, but multiplies the memory requirement
with the number of concurrent queues.

In the HLT, two instances of the GPU tracker running on the same GPU in parallel need in
average 220ms to process a reference central heavy ion event, while a single exclusive instance
finishes after 145ms (measured on the S9000 GPU [6]). Hence, the parallel approach needs
only 110ms per event reducing the overall processing time by 24%. The speedup is even larger
for smaller events because they have even less parallelism. This approach has been running in
the HLT since the middle of 2016. The aggregate reconstruction performance of the HLT cluster
with 180 compute nodes enables the full reconstruction and fit of 40.000.000 tracks per second.
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Table 2. Maximum processing rate achieved in the HLT farm with data replay in several
scenarios (see [7]).

Scenario Rate Limitation

pp (Pb-Pb Reference run, Run 244364, TPC, ITS, EMCAL, V0, ZDC) 4.5 kHz CPU
pp (13TeV, 25 ns, Run 239401, TPC, ITS, EMCAL, V0, ZDC) 2.4 kHz DDL1

Pb-Pb (Max. Luminosity, Run 245683, TPC, ITS, EMCAL, V0,
ZDC)

950Hz DDL

Pb-Pb (Run 245683, TPC only, no data transport) 2.5 kHz GPU

4. Outlook for LHC Run 3
Table 2 gives an overview over the maximum processing rate achieved in the HLT in data replay
tests [7]. The second scenario processes pp events at maximum luminosity, the third one the
largest Pb-Pb events with maximum pile-up. Both run at the maximum rate the DDL1 can de-
liver. The fourth scenario uses the same events as the third one, but it skips all network transfer
and all processing besides the TPC. It runs only the TPC GPU tracking locally. The comparison
of the third to the forth shows the remaining GPU resources, which are still available under max-
imum load. Leaving some margin, this means that the GPUs are used to roughly half capacity.

The current HLT setup can fulfill all requirements for Run 2 and has currently around 50%
of GPU spare capacity available. No additional improvement is required for Run 2, but the
available resources can be used as test ground for new features needed for Run 3. These new
features can be tested already during Run 2 operation, and we will obviously use them already
now if they improve the tracking results.

4.1. Run 3 conditions
For Run 3, the TPC tracking will face additional challenges:

(i) The TPC will be upgraded, Multi Wire Proportional Chambers (MWPC) will be replaced by
Gas Electron Multipliers (GEM), and the readout will be continuous instead of triggered [8].

(ii) The ALICE online system will not process individual events anymore but time-frames
consisting of many interactions of accordingly larger data size.

(iii) A time-frame contains information from many collisions. With respect to the TPC as a
drift detector, the z-coordinate of a hit can only be obtained from the drift time when the
interaction time is known. It is thus not possible to transform all hits to spatial coordinates
beforehand, but the vertex of the track needs to be identified first. Therefore, transformation
and tracking can not run separatedly but are coupled.

We do not see a significant problem in the larger data size of the time-frames compared to
current event processing. The size of a time-frame will be few gigabytes which already fits in
the memory of state of the art GPUs, and this constraint will only relax with newer models and
larger memory. The additional memory the tracker needs for internal buffers is roughly three
times the input data size. If GPU memory would become insufficient, we can easily employ
a slicing approach, processing parts of the time-frame one after another in a similar fashion
as we currently process the TPC sectors. Since the GPU tracking time goes linearly with the
input data size, processing all events jointly in a time-frame should not take significantly longer
than processing them individually. To the contrary, the size of the time-frame offers much

1 The DDL is the Detector Data Link that transfers incoming data in the HLT. This means the HLT is able to
process data at the absolute maximum rate the experiment can deliver.
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more parallelism than single events, which will help us use GPUs efficiently. This is important,
because it is unlikely that several time-frames will fit in GPU memory at the same time.

Currently, the transformation and tracking steps are completely isolated and run one after
another. Even further, the transformation runs on the host while the GPU performs the tracking.
This approach might be infeasible for Run 3 when they will be coupled, because it is prohibitively
expensive to transfer data for the coordinate transformation during the tracking. Figure 6
visualizes the current situation.

The current HLT TPC tracking consists of four HLT components performing the
transformation, the two phases of the actual TPC tracking, and finally the TPC / ITS
propagation and refit. Out of these four components, only one runs on the GPU: the track finding
component (seeding and track following). Since the track finding has by far the largest CPU load
(see Table 1), the GPU adaptation of other components will speed up the processing moderately,
but it will free significant CPU resources for other tasks. The track fit step inside the merger
could optionally run on GPU, but this is currently inefficient due to the additional data transfer.
For efficient processing, this means that the first three components must be moved fully to the
GPU to avoid any intermediate date transfer. In this endeavor, it makes sense to move adjacent
(data-dependency-wise) compute intense steps to the GPU as well, as the TPC / ITS tracking.

Starting with the Run 2 software as basis, the first step is to move all components to the GPU,
but leave the separation as is. The integration of transformation and track finding will be handled
in a later effort. The HLT component structure has the advantage that all components can be
tested individually, which simplifies debugging and improves maintainability. Therefore, we do
not want to change this approach. We plan to replace the shared memory buffers on the host,
which currently enable the data transfer between the components, by shared memory buffers on
the GPU. We will use a shared common source code supporting CPU and GPU as we do for the
tracking already now [6]. This gives us great flexibility. For debugging purposes, we can still
run any of the steps on the CPU, or compare CPU and GPU results of all steps individually.

TPC Cluster 

Transformation

TPC Global 

Merger

In-Sector 

Merging

Between-Sector 

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track 

Finder

CA Track 

Seeding

Kalman Track 

Following

GPU Buffer Management

GPU

Tracker

Buffer

Fit

Buffer

Shared 

Buffer

TPC/ITS Tracker Component

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Input

Output

For Run 3, we want to merge
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Figure 6. Illustration of all current HLT components related to TPC reconstruction. The TPC
cluster transformation applies the calibration and transforms the hits from TPC local coordinates
into x, y, z coordinates for tracking. The TPC CA Tracker Component and TPC CA Global
Merger Component perform the two phases of the track reconstruction. The TPC/ITS Tracker
Component prolongs the TPC track into the ITS detector and improves the fit. Components
pass the data via shared memory buffers. The TPC CA Tracker Component runs fully on the
GPU. The final track fit step of the TPC CA Global Merger Component can optionally run on
the GPU, but this is currently not used due to the penalty of the additional data transfer.



8

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032030  doi :10.1088/1742-6596/898/3/032030

TPC Cluster 

Transformation

TPC Global 

Merger

In-Sector 

Merging

Between-Sector 

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track 

Finder

CA Track 

Seeding

Kalman Track 

Following

GPU Buffer Management

Shared 

Buffer

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

GPU Tracking Super-Component

TPC/ITS Tracker Component

TPC / TRD 

Matching

TPC/TRD Tracker Component

Shared 

Buffer

Shared 

Buffer
Final TPC / TRD / ITS Track Fit & dE/dx

Shared 

Buffer

Output
Shared 

Buffer

Input

Figure 7. Illustration of a possible future TPC GPU reconstruction scheme. More components
are ported to the GPU, still communicating over shared buffers but inside GPU memory. The
component structure is maintained for better modularity, flexibility, and maintainability. To the
host, everything looks like a super-component performing all the steps at once. Communication
with other host components still happens via shared host buffers. Data transfer to the GPU
and from the GPU happens only once.

For the final operation, everything will run on the GPU with only a single data transfer at
the very beginning and the very end. To the outside, this looks like a super-component that
performs all steps at once. Figure 7 illustrates the new scheme. Finally, we can add additional
reconstruction components and features not yet available in the HLT in Run 2 like the TPC /
TRD track prolongation and the dE/dx computation indicated in the figure.

5. Conclusions
We have shown that the ALICE HLT TPC GPU tracking is fast enough to cover all conceivable
data taking scenarios for ALICE during HLT Run 2. By improving the parallelization using
new GPU features, we have already improved the tracking performance by 24% and we expect
a larger improvement for Run 3. We have presented an approach to handle the TPC tracking
in Run 3 on the GPU and how we want to extent the GPU reconstruction to other detectors
and features. The GPU tracking is running stable in 24/7 operation in the HLT. For Run 2,
no further improvements are necessary, but we will use the current HLT as test ground to
commission new features for Run 3.
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