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Abstract
As a non-expert on unfolding, I wanted to make a few ‘obvious’ non-
controversial remarks about unfolding. It turns out, however, that even such
innocuous comments can become the subject of heated debate.

1 The Problem

Given a one dimensional histogram for a particular variable x, obtained in a detector with known ex-
perimental resolution, can we estimate the histogram that we would have obtained had the detector not
introduced any smearing? We assume that the smearing is specified by a matrix M , whose (i, j)th ele-
ment is the probability that an event actually in bin j of the true histogram for x appears in bin i for the
smeared data. It may be that the matrix M is known exactly. More likely is that its elements have statis-
tical errors from its estimation via a simulation of detector effects; and/or it has systematic uncertainties
because it was derived from an approximate model.

Of course we will also need to provide a covariance matrix for our de-smeared histogram. There
are some obvious extensions of this example: the original distribution in x could be unbinned rather than
in a histogram; the problem could involve more than one dimension, etc.

Thus the High Energy Physics unfolding problem is different from the more common statistics
situation, where the issue is to remove the effects of smearing from an optical image in order to sharpen
it, and to decide, for example, whether the photograph is of a dog, a cat or a person. In that case, estimates
of uncertainties in pixel intensities, or in their correlations, are not of interest.

2 Why Unfold?

Because folding an assumed true distribution in x is simpler than unfolding an observed distribution
in an attempt to obtain the true one, it is in general preferable to avoid unfolding. Then a comparison
between a predicted theory and observed data is performed at the level of the smeared theory with the
actual data, rather than between the pure theory and the unfolded data. This can even be performed for
future theories, provided that the smearing matrix is published along with the data. The argument that a
theorist, say in 2051, will find it difficult to smear his/her theory is very weak, since multiplying a vector
by a matrix is computationally and conceptually no more difficult than comparing the original theory
with the unsmeared data, which involves a non-trivial error matrix.

This then raises the question of when it might be necessary to unfold. A few cases are listed:

a) Comparing or combining experimental distributions from experiments with different smearing
matrices M .

b) Tuning a Monte Carlo simulation, by fitting the parameters involved in the QCD theory to the
data. Apparently this proceeds too slowly if the theory has to be smeared at each step of the iterative
fitting.

c) Obtaining a plot for posterity that shows the estimate of the true distribution, rather than in-
cluding the non-fundamental effects of experimental resolution. However, the unfolded distribution can
contain strong bin-to-bin correlations, and physicists are accustomed to making eyeball judgements only
about histograms whose bin contents are uncorrelated.
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3 Matrix Method

Let di be the contents of the ith bin of the data histogram and tj that of the jth bin of the distribution
without smearing then,

di = ΣMijtj . (1)

Note that there can be fewer bins for the unfolded distribution than for the data.

The maximum likelihood solution for t can have large bin-to-bin oscillations, with estimated bin
contents actually being negative. These effects become less serious for wide bins when the off-diagonal
elements of the smearing matix are smaller. However, they then become more sensitive to the model
assumed for deriving the smearing matrix; any such systematic effect should be taken into account in
estimating the error matrix for the unsmeared distribution.

4 Bin-by-bin Correction Factors

This is an easy-to-use method, but unfortunately it has some serious drawbacks. Monte Carlo simulation
is used for an assumed true distribution with ai events in the true histogram, which after smearing be-
comes pi events in the pseudo-data histogram. (Note that pi in a given bin depends on all the a.) Then
the correction factor Ci for the ith bin is simply defined by

ai = Ci × pi, (2)

and depends on the assumed distribution. These factors are used to correct the observed data di to the
estimated truth ei by

ei = Ci × di. (3)

An example of this approach for a simple 2-bin distribution is shown in Table 2, for the smearing
matrix of Table 1. The numbers of true unsmeared events in bins 1 and 2 are 800 and 200, respectively.
With the smearing matrix of Table 1, this results in 760 and 240 expected events in the 2 bins of the
smeared distribution. We set the observed d1 and d2 equal to their expected values.

Each row of Table 2 corresponds to a different assumption about the ai. (a1 + a2 is always taken
as 1000, as in the assumed real data). The second row of numbers has them set at their true values,
800 and 200, respectively; then the estimates e1 and e2 are correct. For all other rows, the estimates are
biassed, even for the case where both correction factors are unity; and also when the assumed numbers
are set equal to the observed ones. Also their sum is not equal to the total number of observed events1.
Furthermore, the errors on the bin contents of the unfolded histogram are in general taken as uncorrelated.

Calculating the uncertainties on the unfolded bin contents is problematic. For example, with
di = 100 ± 10 and Ci = 0.1, it is tempting to write ei = 10 ± 1. This uncertainty is wrong (it is
even smaller than

√
di), as it is merely the uncertainty on the expected number, and does not include

the statistical fluctuation on the observed number. Perhaps more importantly, only diagonal errors are
obtained in this method.

Because of the sensitivity of the derived answers to the assumed unfolded distribution, which
is needed for calculating the Ci, and because of the problems with obtaining the error matrix for the
unfolded distribution, this method is not recommended2.

5 Questions to be Resolved

5.1 Bin size

If the bin size of the unfolded distribution is too narrow, the smearing matrix has large off-diagonal
elements. On the other hand, large bin width results in a loss of sensivity to high frequency components

1This contrasts with the matrix method.
2Though in some cases an iterative approach may work.
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Bin Truth 1 Truth 2
Observed 1 0.9 0.2
Observed 2 0.1 0.8

Table 1: The smearing matrix, whose elements Mij are the probabilities that, as a result of smearing, an event in
bin j of the true distribution appears in bin i of the distribution for the actual data.

a1 a2 p1 p2 C1 C2 e1 e2 Sum
1000 0 900 100 1.11 0 844 0 844
800 200 760 240 1.05 0.83 800 200 1000
760 240 732 268 1.04 0.90 789 215 1004
667 333 667 333 1.00 1 00 760 240 1000
500 500 550 450 0.91 1.11 691 267 958
200 800 340 660 0.59 1.21 447 291 738

0 1000 200 800 0 1.25 0 300 300

Table 2: Problems with correction factors. The correction factors Ci are calculated from assumed true numbers
ai and the corresponding smeared numbers pi in each bin. The estimated numbers ei are calculated as Ci times
the actual observed numbers 760 and 240, and are to be compared with the true numbers 800 and 200 respectively.
‘Sum’ is e1 + e2, and in general is not equal to the observed sum of 1000.

of the true distribution; and to uncertainties in the elements of the smearing matrix, caused by their
sensitivity to the distribution of the variable of interest across a bin. Some recommendation about the
choice of bin width would be useful.

5.2 Regularisation

Because the maximum likelihood solution to the unfolding problem can result in an unfolded distribution
with large bin-to-bin oscillations, some form of regularisation is generally employed to damp down
these oscillations and to produce a smoother solution. This is usually achieved by adding a term to
the likelihood which penalises large second derivatives; or by removing high frequency modes from the
solution. Alternatively, orthogonal decomposition with suppression of small components can work for
all distributions except those with sharp features.

A variety of regularisation methods is available, and again advice would be useful on the best form
and the optimal regularisation strength to use in a given problem.

5.3 Size of errors

As already mentioned, calculating the uncertainties in the estimated unfolded distribution is often not
trivial. (In cases of difficulty, a bootstrap method or some other method of varying the bin contents
may be useful.) In particular, the question arises as to whether the uncertainty on an unfolded number of
events ei can be smaller than

√
ei; that is, can the estimate in a situation with smearing in x have a smaller

uncertainty than if x had been determined precisely? The answer may be yes because regularisation
provides some form of local averaging, which can reduce the uncertainty on ei.

5.4 Assessing a solution

It is not obvious how to assess which solution is best out of a series of solutions to an unfolding problem.
Some of the problems are:
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– A criterion of the largest p-value would favour a solution with large errors.

– Taking an unweighted sum of squared deviations ignores the fact that some bins are determined
more precisely than others.

– Would we be satisfied if the minimum χ2 were for a solution with wild anti-correlated oscillations?

Issues such as these need to be resolved before an Unfolding Challenge, along the lines of Banff Chal-
lenges 1 (for intervals) and 2 (for discovery), can meaningfully be set.

Bob Cousins has suggested a test that should be satisfied by any method that is used to unsmear
two different data distributions, produced from two known ‘true’ distributions and specified detector
smearing. Then he would expect

∆χ2
s = ∆χ2

u (4)

where ∆χ2 is the difference in χ2 between models 1 and 2; and the subscript ‘s’ refers to the χ2 being
calculated by comparing smeared theory with the data, while ‘u’ refers to the comparison between the
de-smeared data and the original theory. The reason for using 2 theoretical models rather than just one is
that an unsmearing method could be tuned to work for a specific theory. Opinion is divided as to whether
all reasonable theories would pass the test; or whether it is obvious that regularisation would invalidate
it.

6 Today’s Talks

We are very fortunate to have with us Victor Panaretos, a statistician from Lausanne, who will give the
Statisticians’ view of our problem, and will be present throughout the day, to encourage us to use statisti-
cally acceptable methods, and at very least to prevent us from straying too far afield. The other speakers
before lunch (Blobel, Zech, Kartvelishvili and Bierwagen) will talk about the more common methods
developed by High Energy Physicists. The afternoon speakers will deal with other HEP methods; a
software framework for unfolding methods; and about the methods used in practice in 3 of the LHC
collaborations.

7 Postscript

It was hoped that as a result of the meeting we could produce a consensus of points on which the major
unfolding programme developers were in agreement. Perhaps as might have been predicted from the
particularly lively discussions before, during and after the sessions, this turned out not to be possible.
However, it is a goal worth striving for in the near future.

It is a pleasure to thank Volker Blobel for illuminating discussions.
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