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The recent realization that the processes y - 3~ and 2y - 3n will provide 

basic informationI about the PCAC triangle anomaly2 has provoked new interest 

in this subject. If the anomaly is to provide a test of the relevance of the re- 

normalized perturbation series to hadron physics, it is clearly essential that 

the value of the anomaly remains the same up to any finite order in perturbation 
n 

theory. ’ Let us elaborate. Consider a perturbative calculation of the amplitude 

RDpv (k, q) = i$d4x d4y ei(kx+qy) <O ITaA(0) V;(x) Vz (Y) IO> 

(1) 

in any renormalizable quantum field theory with fermions and a partially con- 

served axial-current. This theory may be, for example, quantum electro- 

dynamics, or the a-model, or a quark-gluon model. (In what follows the 

discussion is given for QED. It is straightforward to modify the discussion to 

a form appropriate for other theories. ) The notation VG indicates that when 

calculating R Dpv we omit those diagrams in which the vector current VP= $oyp~o 

hooks eventually onto a photon propagator. 4 

The theorem alluded to above then states the following: to any finite 

order in perturbation theory f(0, 0,O) is given by the basic fermion triangle 

graph. This is an extraordinary assertion for it tells us that PCAC and gauge 

invariance imply the existence of a spectacular cancellation among the infinite5 

collection of Feynman diagrams, thus providing a unique opportunity to confront 

renormalized perturbation theory with data. 6 Moreover, this theorem provides 

a springboard for several other deductions on the behavior of field theories. 7 

A proof of this important theorem was given by Adler and Bardeen. 899 In 

this paper we propose an alternative proof. Our proof avoids the formal 
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interchanges which appeared in Ref. 8 and which have caused some uneasiness. 

This paper also serves to illustrate the Callan-Symanzik 10 equation at work. 

So let us begin by writing down the version of this equation appropriate for 

current correlation functions: 

+ Pt@& RDpv ‘1 1 
k9) = - ZRSDpv @,k s) + RDpv 4,q) (2) 

El * /d4z d4x d4y ei@z+kx+w) <0 ITS(z) dA(0) V;(x) V; (y) IO> (3) 

and S = 2imo$,$,. (All unrenormalized quantities are denoted with the sub- 

script 0.) 

We now sketch the derivation of Eq. (2). Let R” 0 
WV and RSD~v be the un- 

renormalized counterparts of R 
WV 

andR SD/N l 

Then by definition 

m LR” 1 0 
OdmO D,uv (k,q) = - zRSDpv (0, k, 4) + RDpv O (k,a (4) 

The partial differentiation in Eq. (4) is performedwith the bare coupling constant 

and the cutoff held fixed. The term R” 
WV 

appears in Eq. (4) since 8A explicitly 

depends on mo. We now recall that the operators 8A, S, and Vi are in fact 

cutoff independent, thanks to the PCAC and CVC Ward identities. 4y ” Thus 

R0 Dpv tk s) = RDpv 0~ s) and RiD,, @,k, s) = RSDpV @, k 4). Introducing the 

definitions h(a) E ma/m (am/amd and P(a) = m. (&/dmo) we obtain Eq. (2). 

h(a) and P(a) are clearly cutoff independent and depend only on (Y. 

We next expand f(k2, q2, kq) in powers of momenta: 

k2 2 f(k2,q2,kq) = c+d-+ e9_+ f kq 
m2 m2 m2 

+ terms higher order in k2, q2, and kq 

(5) 

-3- 



Simple dimension counting shows that c, d, e, f, etc. are functions of a! only. 

Such an expansion certainly exists with some nonzero radius of convergence 

since our fermion mass m does not vanish. Now R SDpv satisfies a Ward 

identity: 

A 
ifP+k+ti RSlpv fP,k, s) = RsDpv bk,@ - 2RDpv 4,s) (6) 

where 

RSAPv (p, k, q) = isd4z d4x d4y ei@z+kx+qy) <O ITS(z) Ah(O) V;(x) Vt (y) IO> 

(7) 

We now argue that the Ward identity in Eq. (6) is free from anomalies. As a 

consequence of crossing symmetry and gauge invariance, any anomalous term 

in Eq. (6) must have the form aE pv Al$s”- Since absorptive parts satisfy 

normal Ward identities2 a is a polynomial in the momenta. Weinberg’s theorem 12 

then shows that a=0 to any finite order in renormalized perturbation theory. 

One is happy to note that the same expression appears on the right-hand 

side of Eq. (2) and Eq. (6). This enables the proof to proceed as follows. 

Crossing symmetry implies that R shpv (0, k, s) = cpv ,O+-~~ 44 + terms 

higher order in momenta as k, q + 0. Gauge invariance, however, forces A(Q) 

to vanish. The Ward identity in Eq. (6) now tells us that in the momentum 

expansion 

RSDhv tO,kQ - 2R,,pv (k,q) = EPvAokhqflB(oJ -t . . . 

the coefficient of expansion B(o) = A(Q) = 0. l3 Referring to Eq. (2) we learn 

that 

P(a)F=-$B@)=O 03) 

Hence c(a) is independent of a. This completes the proof. 14 
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I/ 

The proof just given holds for theories with only one nonvanishing mass 

such as QED. It is easily generalized, however, to theories with several 

nonvanishing masses, the reason being that the number of Callan-Symanzik 

equations is equal to the number of masses in theory. For example, in a theory 

with a fermion mass m and a boson mass p we would have two equations of the 

type 

A ac ac - 0 
dz+@ag 

and 

(94 

Here z = p2/m2 and c(z) q) is defined by the expansion R khs” 
2 

D/U - ;vM c %,g 

as k, q - 0. h, h’, p, 6’ are functions of p2/m2 as well as g. 
c) 

Clearly, we reach 

the same conclusion as before, namely that c AL 1 

( > 

\ m’ 
,g does not depend on g. 

It then follows that c -!& 
m’ 

,g does not depend on p2/m2 either. 

In applications l5 so far, the right-hand side of the Callan-Symanzik equation 

is usually eliminated by appealing to Weinberg’s theorem and going into the deep 

Euclidean region. In this paper, we observe that the right-hand side of the 

Callan-Symanzik equation for R Dpv (Eq. (2)) appears also in a PCAC Ward 

identity (Eq. (6)). This information turns out to suffice for our purposes. We 

note here that this feature is quite general, 
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