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Abstract

This thesis presents a calibration study of the ATLAS Tile Calorimeter’s gap/crack cells,
using isolated muons from pp collisions at a center of mass energy of

√
s = 7 TeV and

an integrated luminosity of 1 fb−1. Muons, as minimum ionising particles, deposit a well-
described amount of energy in the calorimeter. Therefore, they can be used to study
the agreement between the measured and expected response. The W → µν events are
selected using high level triggering, after which pion decay remains the main background.
Dedicated studies on the TileCal calibration systems have shown that the response of the
channels is time-dependent and therefore needs to be monitored. A method is proposed
to determine detector modules that are miscalibrated, allowing no more than 3σ deviation
from the Monte Carlo predictions. The so-called TileCal Unified Calibration Software has
been improved to monitor the calibration status of the detector over time, incorporating
the different calibration systems. Miscalibrations should be corrected for.

1



This thesis is dedicated to my family,
whom I love and cherish.

2



Contents

1 Introduction 5
1.1 Particle physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Calorimetry 15
2.1 Passage of particles through matter . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Energy resolution in ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Muon detection and momentum resolution 17
3.1 Experimental configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Track extrapolation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 ATLAS Tile Calorimeter 19
4.1 Scintillating tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Overall structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Read-out electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Trigger system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Data taking performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Fake transverse energy Efake

T . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Calibration 28
5.1 Optimal filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Calibration of the ATLAS TileCal detector . . . . . . . . . . . . . . . . . . 29
5.3 Calibration systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 TUCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 TileCal response using isolated muons from collisions 35
6.1 Calibration of the Intermediate Tile Calorimeter in context . . . . . . . . . 35
6.2 Event selection W → µνµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Collision muons data and Monte Carlo samples . . . . . . . . . . . . . . . . 39
6.4 Path length reconstruction ∆x . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 Double ratio dEdata/dx

dEMonte Carlo/dx
. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.6 Constant fit method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7 Gaussian fit method for cell calibration . . . . . . . . . . . . . . . . . . . . . 44
6.8 Intercalibration for cells of different type . . . . . . . . . . . . . . . . . . . . 48
6.9 Method validation by layer intercalibration . . . . . . . . . . . . . . . . . . 48
6.10 Maximum likelihood method . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.11 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



7 Effects of miscalibration on jet physics 51
7.1 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Two jet production at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 Jet algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4 Sequential Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 54
7.5 Cone algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.6 Jets and calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Results 58
8.1 Energy depositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.2 φ-uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Calibration tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 Conclusions and outlook 69



1 Introduction

Little did Marie Curie know, when she described the faint light originating from her ura-
nium salts. Her 1890 papers are still too radioactive to handle, the same radioactivity that
eventually caused her death in 1934. Her studies led to a new understanding of matter and
a reconsideration of known physics, as it seemed at the time that radioactivity violated
conservation of energy. Later, radioactivity was incorporated into a new theory in physics
that explained how energy could still be conserved by radioactive atoms.

Curie’s story exemplifies one out of many experiments that physicists have done over
the centuries, intended to establish new physics, as new phenomena were observed that
required an explanation. Any new theory must still be consistent with older established
results. In modern experiments one must first be able to reproduce the already established
results to be convinced that new physics can even be found, as the experiments have
increased in complexity.

This thesis was written during a one-year Technical Studentship at CERN. The
project concerned the calibration of ATLAS’s Tile Calorimeter. Only when we under-
stand our detectors, we can trust what we measure and use our experiments to understand
nature. This requires a great effort of experimentalists into understanding, optimising, fine-
tuning and calibrating the detectors. It was my job to determine the calibration constants
in a special region of the Tile Calorimeter, as will be explained.

In this introductory chapter, some terminology is introduced and the experimental
conditions are described. It can be skipped by any reader already involved in the ATLAS
experiment at CERN. As we are concerned with the hadronic calorimeter, the principles of
calorimetry are briefly revisited in chapter 2. Chapter 3 explains how muons are detected
in ATLAS. Indeed, our first job will be to reconstruct the energies of isolated muons from
proton-proton collisions.

The ATLAS Tile Calorimeter encompasses three main calibration systems to fa-
cilitate the calibration of its hardware. As the condition of the hardware chain is time
dependent, it is safe to say that one is never done with calibrating the detector. It needs
continuous monitoring and correction. In chapter 4, the Tile Calorimeter is discussed in
greater detail, which allows us to clarify the undertaking of calibrating such a device in
chapter 5.

In chapter 6, we propose a method to study and improve upon the calibration, which
is then further motivated in chapter 7 by describing how miscalibrations in the energy
measurements affect ATLAS’s ability to measure jets properly. An relevant quantity will
be the response: the amount of energy E that particles deposit within a certain pathlength
x in calorimeter material. It is the goal of this thesis to increase the understanding of
the response of TileCal’s gap/crack cells, which have up to now been left out of the
analyses.

Chapter 8 is a display of the results, on which we finally base our conclusions and
outlook in chapter 9.
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1.1 Particle physics

What phenomena belong to the terrain of particle physics? Although this question
remains a tedious matter within the community of philosophers of science - may we include
the discovery of the electron by J.J. Thomson (1897) or did the concept ’electron’ perhaps
change over time? - the physics community has formulated a remarkably consistent answer.
In Nature we distinguish four types of fundamental interactions. The Standard
Model describes these weak, electromagnetic and strong interactions between leptons and
quarks, and from this follows the prediction that all we find around us consists of these
few building blocks. The constituents of matter. It is the experimental study of these
constituents and the theoretical implications that make up the field we call particle physics.

What are we made of? A question that has occupied human thinking since the
beginning of time. Ever since the discovery of the electron [2], the idea that one might
have interacting particles1 found great support in the modern scientific community. A
mathematical model has become the Standard Model of particle physics, as its predictions
on the allowed interactions and their coupling strengths agree well with what is observed
in nature by various collider experiments at LEP2 and at the Tevatron3. But also many
deficiencies were found in this theory, rendering it under intense scrutiny; a rather nice
overview of the physics that lies Beyond the Standard Model is given in Ref. [5].
Even today, the existence of dark matter, dark energy, the origin of mass, oscillating
neutrinos and CP violation are not completely understood. It is clear that the Standard
Model is not the theory of everything and that new physics is needed. It is the common
aim of the particle physics community to discover the processes that will explain these
new phenomena. The LHC4 at CERN is currently in operation and more proton-proton
collisions than ever have already been recorded by the four main experiments ATLAS,
CMS, ALICE and LHCb.

1.2 Standard Model

The Standard Model can be expressed in covariant form, which means one can very well
conceive a model on a curved manifold. However, when this curvature becomes sizeable
with respect to the scales at which other interactions take place, the interaction amplitudes
diverge and the theory becomes non-renormalizable. The electroweak and strong interac-
tions are deemed the dominant driving forces for the behaviour of elementary particles.

The fundamental forces that have been found in nature are the electromagnetic, strong

1Here, one might ask what we actually mean with the word particle. In general, it is often stated that
such a question can only be answered in the context of experimental feasibility. Recommended literature
is to be found in Ref. [3, 4].

2Large Electron-Positron Collider, CERN, Geneva (Switzerand)
3Fermilab, Chicago (United States)
4Large Hadron Collider
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and weak force, and gravity5. The Standard Model comprises the first three, by unifying
the quantum field theories that describe them. This requires the introduction a higher
symmetry. The Standard Model is based on the SU(3)× SU(2)× U(1) gauge group.

The Standard Model constituents of matter are the fundamental spin-1
2 particles6:

quarks and leptons. These are arranged in three families. They interact through media-
tors, which are spin-1 particles. They are tabulated in Table 1.

fermions 1 2 3 mediating vector boson

quarks
u c t

strong (g), weak (W±, Z), EM (γ)
d s b

leptons
νe νµ ντ weak
e µ τ weak, EM

Table 1: The Standard Model fermion families and corresponding mediating vector bosons.

The electromagnetic force is classically described as the force that is exerted by
one charged particle on another charged particle. In the context of the Standard Model,
photons mediate this force between leptons and quarks, but leave the chargeless neutri-
nos untouched. The weak force, mediated by the W±, Z bosons, is often associated to
particle decay, as it is responsible for the β decay of atomic nuclei and it is involved in
CP violating decay processes. A weak decay that may serve as a background to many
interesting physics signal in experimental high energy physics is π± → µ± + νµ. Here, νµ
stands for the anti-muon-neutrino in case of a negatively charged pion. The strong force
is the short ranged force that bonds neutrons and protons in atomic nuclei, mediated by
gluons. In effect, it is the force that is mediated between all coloured particles, namely
quarks, which come in three flavours f , and three colours c, and gluons. In the colour
classification scheme, there exist eight different gluons. Its quantum field theory, called
quantum chromodynamics (QCD), is especially of interest at hadron colliders, as the hard
scattering process that follows a collision is governed by the strong force. Moreover, ex-
perimentalists will be confronted with jets. These arise naturally in hadron colliders and
electron-positron colliders, due to the presence of a high flux of hadrons coming from the
interaction point, moving in similar directions. They are produced by strongly interacting
particles which radiate quark pairs and gluons.

5Gravity is not described by the Standard Model, but by general relativity, which provides a classical
picture of the universe. At the reduced Planck scale mP =

√
h̄c/8πG ≈ 2.4 · 1018 GeV, these two theories

are expected to merge. See Ref. [6].
6All matter in the Standard Model is fermionic by construction. In the 80’s, the theory of supersymmetry

(SUSY) was suggested as a solution to various theoretical problems: most notably to finally resolve the issue
of the huge differences in coupling strengths amongst the fundamental forces of nature. The new fermions
introduced by SUSY have not been observed to date. It remains the theorist’s freedom to postulate new
theories that encompass new (non-Standard Model) spin- 1

2
particles. The interested reader is referred to [7].
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The Standard Model theory is formulated in terms of a scalar Lagrangian on which
one applies the action principle to obtain the Lorentz invariant equations of motion
for the fermion fields. In other words, the same description of the dynamics still applies
when moving to a different reference frame by means of a Lorentz transformation. In flat
spacetime, one can always find a tensor representation Γµ

′
ν to transport a quantity xµ

′

from S to S′ by xµ
′

= δµ
′
µ (Γµνx

ν + aµ). In general, the identity transformation, boosts and
spacial translations and rotations are Lorentz transformations.

Conservation laws require the theory to be local gauge invariant under SU(3)C ×
SU(2)L×U(1)Y transformations. Generators of the associated symmetry group are called
gauge fields to stress that there is redundancy in the Standard Model. By fixing the
gauge, one fixes the number and nature of the degrees of freedom. The predictions based
on the Standard Model should remain invariant under local gauge transformations. This
gauge invariance implies that all particles in the model are massless. The quanta associated
to these gauge fields are interpreted as the force mediating gauge bosons.

Spontaneous symmetry breaking is introduced to generate some mass, by allowing a
scalar (spin-0) field φ with potential V (φ) to interact with other gauge fields. The quantum
related to this additional field is named after professor Peter Higgs, who came up with this
so-called Higgs mechanism. [83–86] Through this mechanism, one also assigns mass to
the heavy W and Z bosons for example, which is deemed so important that the search
for the Higgs boson now serves as one of the leading justifications used to advocate for the
construction of the LHC.

The Lagrangian that governs the electroweak part of the model is nicely revisited in
Ref. [8]. An extensive overview of how the dynamics are described in terms of these
Lagrangians is given in Ref. [9,10]. In the scope of this study, it suffices to trace down the
term that describes the charged current interactions, which includes the coupling of the
W± bosons to leptons l and νl and the u and d quarks.

Lcc = g

2
√

2
W †µ (ūγµ(1− γ5)d)

+ g

2
√

2
W †µ (ν̄lγ

µ(1− γ5)l) + h.c. (1)

Fermionic (spin-1
2) fields ψ are described by the Dirac equation.

(−iγµ∂µ +m)ψ = 0 (2)

Here, the mass of the fermion m and gamma matrices γµ are expressed in natural units,
h̄ = c = 1, often used for convenience in high energy particle physics.

1.3 LHC

CERN, Organisation Européenne pour la Recherche Nucléare (European Organization for
Nuclear Research) was founded to facilitate the research on the properties of the smallest
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constituents of matter by colliding high energetic particles. In November 2009, the LHC
colliding proton beams were running at

√
s = 900 GeV. At the time, ATLAS published its

first physics results on charged particle multiplicities in proton-proton collisions. Ref. [11].
As of March 2010, its Large Hadron Collider (LHC) has reached center-of-mass energies
up to

√
s = 7 TeV and will be ramped up to 14 TeV in the coming years.

Protons are freed from a bottle of hydrogen gas in a system commonly referred to as
the duoplasmatron ion source, at the very beginning of CERN’s second linear accelerator,
the LINAC-2. The first 50 MeV proton beams were produced in 1978 and since then they
have served as injection beams for the Proton Synchroton (PS) via the PS Booster (PSB).
At the time, the PS had already been in operation for almost twenty years. It functioned as
direct feeder for experiments, as well as for the larger 400 GeV Super Proton Synchroton
(SPS), which was completed in 1979. Some overview of the injector complex for the
recently constructed LHC (2008) is given in figure 25.

Figure 1: Schematic of the CERN accelerators and the pathways for different types of par-
ticles. The new linear accelerator (Linac4), depicted in bright blue, is yet to be completed.

The beam injection scheme for the LHC is rather complicated, as the proton bunches
are also used to feed various other non-LHC experiments in different stages of the acceler-
ation process. For example, the On-Line Isotope Mass Separator (ISOLDE) experiment is
provided with beam by the proton-synchroton, as explained on their official web page [12].

9



In January 2011, the beam energy was still 3.5 TeV instead of the nominal 7 TeV as
more dipole safety was required before going to higher energies. Operating at lower energies
also has consequences for the operation safety of the quadrupole magnets used to squeeze
the beam. Squeezing is necessary to obtain high collision rate. The quantity7 that measures
how much the beam is squeezed at the interaction point under optimal conditions is denoted
as β∗. The nominal energy has not been implemented to date, despite the planning, as
can be found in Ref. [13]. The time interval between each interval ∆tbunches ≥ 150 ns has
been used during the 2010 runs. While the bunch crossing time is decreased to 75 ns with
a total number injected bunches of 950, the ”refresh time” needed between each injection
has increased to ensure optimal vacuum conditions have been reached. From table 2 we
may conclude that the LHC beam parameters have yet to reach their nominal values.

parameter value at injection value at collision

proton energy (GeV) 450 7000

relativistic γ1 479.6 7461

number of particles/bunch 1.15× 1011 1.15× 1011

number of bunces 2808 2808

longitudinal emittance2 (eVs) 1.0 2.5

circulating beam current (A) 0.582 0.582

stored energy per beam (MJ) 23.3 362

peak luminosity in ATLAS (cm−2s−1) 1.0× 1034

peak luminosity per bunch crossing in ATLAS (cm−2s−1) 3.56× 1030

events per bunch crossing 19.02

inelastic cross section (mb) 100.0 100.0

total cross section (mb) 60.0 60.0

beam current lifetime due to beam-beam interaction (h) 44.86

luminosity lifetime due to beam-beam interaction (h) 29.1

beam lifetime due to rest-gas scattering (h) 100 100

beam current lifetime (h) 18.4

luminosity lifetime (h) 14.9

synchroton power loss per proton (W) 3.15× 10−16 1.84× 10−11

synchroton power loss per meter of main bending (W/m) 0.0 0.206

energy loss per turn (eV) 1.15× 10−1 6.71× 103

Table 2: LHC nominal beam parameters, as defined in Ref. [14].

As of June 2011, an integrated luminosity of about 1 fm−1 has been recorded by ATLAS
(and CMS), as displayed in figure 2.

7One may write the actual beam size as σ(s) =
√
β(s)ε, where β(s) is the optical lattice function,

obtained from solving the Hills equation, and ε is the beam emittance.
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Figure 2: Integrated luminosity recorded by ATLAS as a function of time, as calculated
from the values stored in the COOL database for each lumiblock. A lumiblock represents
approximately 30 seconds of data-taking.

1.4 ATLAS

The ATLAS8 detector is a multi-purpose detector operated at the Large Hadron Collider
at CERN, which utilises over 60 million electronic channels to record the signals of particles
produced in proton-proton collisions. ATLAS’s dimensions are 25× 46 meters, having an
overall weight of 7000 tonnes it is the largest of the four experiments built for the LHC.
Detecting the large numbers of particles passing through is a huge experimental challenge,
as the equipment is required to be able to withstand the high dosage of radiation that it
receives during its operation. Moreover, the time scales at which the readout electronics
operate are small, in the order of 40 MHz. An important feature is the magnetic field
generated by the inner solenoid that surrounds the inner detectors and the outer toroidal
magnets that are located beyond the calorimeters.

A new cavern was excavated at point 1. The main construction reached its completion
in 2004. A schematic overview of the experimental site is provided by figure 3.

8The acronym stands for A Toroidal LHC Apparatus. Ref. [15].
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Figure 3: Point 1, the experimental grounds and cavern for ATLAS, the only detector that
was built on Swiss soil in close vicinity to the SPS. Protons injected into the LHC will
reach the ATLAS detector only after traversing the full collider ring.

The ATLAS coordinate system (x, y, z) that is most used is defined with x pointing
towards the center of the LHC ring and the y axis pointing vertically upwards, slightly tilted
with respect to the overall normal vector that defines the LHC plane. The z coordinate
points in the direction of the beam pipe and distinguishes the A-side (z > 0) from the C-
side (z < 0). In addition, the cylindrical symmetries of the detector sometimes lead us to
use the cylindrical coordinate system (r, φ, z) = (

√
x2 + y2, arcsin y/

√
x2 + y2, z) (x ≥ 0).

The origin of the coordinate system is the interaction point.
Moving outwards from the interaction point, a particle passes the pixel detector, the in-

ner detector, the electromagnetic liquid argon calorimeter (LAr), the hadronic tile calorime-
ter (TileCal) and the muon chambers. Each system is dedicated to a different measurement
that contributes to the final event reconstruction.

Inner detectors

The inner detector consists of the silicon pixel detector (SPD), semiconductor tracker
(SCT) and transition radiation tracker (TRT). The purpose of the inner detectors is to
detect and localise passing charged particles. This data is used to extrapolate the tracks
through the remainder of the detector. The three layers of the SPD contain 80 million
pixels, sized 50 × 400 µm. The SCT, which has 6 million readout channels, records the
positions of charged particles to an accuracy of 17 µm per silicon layer. The outer part
of the inner detector is the TRT, which utilises straw tubes of diameter 4 mm as a basic
detector element. This detector is capable of identifying charged particles that pass by.

12



The 2 T solenoidal field enables the inner detector to measure the momentum of charged
particles independently.

Calorimeters

Calorimeters measure the energy of incoming particles. In order to measure the energy
deposits, one needs a system that produces an output signal which has a (linear) dependence
on the input. ATLAS’s calorimetry is divided into electromagnetic (ECAL) and hadronic
(HCAL) calorimeters.

In ATLAS’s liquid argon (LAr) calorimeter, the electromagnetic calorimeter (ECAL),
liquid argon is used as active material as many e−Ar+ pairs are produced when electrons
and photons shower in the calorimeter material [21]. The freed charges are then collected
in the electrodes, thus forming a current in the readout electronics. The LAr detector is
especially sensitive to electromagnetic interactions, and may therefore be used to measure
the energies of electrons and photons. Lead is used as absorber material for the electro-
magnetic showers that occur during proton-proton collisions. The barrel part extends to
|η| < 1.5 and the two endcaps range 1.4 < |η| < 3.2. A high energy electromagnetic
shower is well contained in 25X0 [22], as the average energy loss may be modelled by
Ē = E0 exp (−X/X0) [23]. The interaction length X0 is an important design parameter
for any (sampling) calorimeter.

The LAr calorimeter is able to distinguish photons from electrons, aided by the
inner detector and its three inner layers, which exhibit a finer granularity. Their energies
are reconstructed using a method in which the energies measured by the different layers in
the calorimeter are weighted and summed,
Ereco = A (B +WpresamplerEpresampler + E1 + E2 +W3E3). In the crack/gap region, a spe-
cial parametrisation is applied. Ereco,gap = A (B + Eb + Ee +WscintEscint). Here Epresampler

is the cluster energy in the presampler, Ei the energy in layer i, Eb the cluster energy in the
barrel calorimeter and Ee the cluster energy in the end-cap calorimeter. The fit parameters
A,B,Wpresampler and W3 are obtained by a χ2 minimisation of (Etrue − Ereco)2/σ(Etrue)

2.
The Tile Calorimeter is ATLAS’s hadronic calorimeter (HCAL). Its main purpose

is to measure the energies and directions of jets from hadronised quarks and hadronically
decaying particles. It consists of steel plates and scintillating tiles, hence its name. The
Tile Calorimeter is further described in chapter 3, as this thesis is concerned with the
calibration of this detector specifically, using muons from W decay.

Muon spectrometer

The muon spectrometer serves two main purposes, namely triggering on muon signals
and reconstructing muon tracks. The muon chambers are situated within the layer of
toroidal magnets. The magnetic field is necessary for the momentum measurement of

13



charged particles, as they are bent by the Lorentz force9 without introducing an acceleration
component in the direction of flight.

In a combined event reconstruction, the muon track is extrapolated10 from the
inner detector to the muon spectrometers, combining the standalone measurements11

of either system. The extrapolation must take into account the detector geometry, as well
as multiple scattering and energy loss in the calorimeters, and is only successful if the
inward and outward extrapolated tracks can be matched, using a quantity χ2 = (TMS −
TID)T(CID + CMS)−1(TMS − TID), where TMS and TID are five-dimensional vectors that
parametrise the extrapolated tracks and CMS and CID are the corresponding covariance
matrices. Ref. [19].

Figure 4: This artist’s impression of ATLAS decorates the ATLAS Control Room building
at point 1. The cylindrical shape of the detector can be appreciated at a distance, as the
mural tricks the admirer into thinking that the image is 3D. Thousands of tourists take
pictures of this painting every week.

In the literature one often finds the pseudorapidity η, defined only by the polar angle
θ with respect to the beam pipe: η = − ln tan θ

2 .

9p = qBR is also known as the cyclotron formula. The force exerted on the particle q by field B does
no work, but leads it to move, locally, in a circular orbit with radius R.

10The algorithms used for this procedure are called Muonboy (inward) and Moore (outward), Ref. [20].
11These measurements consist of connected line segments.
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2 Calorimetry

In this section, we briefly discuss the basic principles of calorimetry, for reference.

2.1 Passage of particles through matter

Whenever a particle passes through matter, it may loose a fraction f of its energy through
various different physics processes, like ionisation and scatterings. The fraction f is depen-
dent on the particle’s initial energy E, the path length ∆x and the particle type, which
determines the rate of energy loss. The interaction length is the path over which a
particle looses 1

e of its energy. See Ref. [17].

f ≈ ∆xdEdx /E (3)

For heavy charged particles, the energy loss is dominated by ionisation. This be-
haviour modelled by the Bethe-Bloch formula.

−dE
dx

= Kz2Z

A

1

β2

(
1

2
ln

2mc2β2γ2Tmax

I2
− β2 − δ

2

)
(4)

Here, K = 4πNAr
2
emec

2 is constant, Z = q
e the charge of the particle, Z the atomic

number of the absorbing matter, A the atomic mass of the absorber in gmol−1, β = v
c

and γ = 1/
√

1− β2 the relativistic kinematic variables, m the mass of the particle, T the
kinetic energy, I the mean excitation energy in eV and δ the density effect correction to
ionisation energy loss.

Electrons show a different behavior, as the ionisation effect becomes negligible in
comparison to the emission of Brehmsstrahlung12. This effect is quantified independent of
the particle’s mass13.

−dE
dx

= 4αN0
Z2

A
r2
eE ln

183
3
√
Z
≈ E

Z0
(5)

For photons, the interactions with matter are dominated by the photoelectric effect
(γ + N → N+e−), Rayleigh scattering (γN → γN), Compton scattering (γe− → γ′e′−)
and pair production (γ → e+e−). One models the energy attenuation by evoking the
Beer-Lambert-Bouguer law.

I = I0 exp (−κx) (6)

12In the literature, one often finds e → eγ. However, this interaction is prohibited by conservation of
four-momentum, unless Eγ = 0. The radiation of Brehmsstrahlung only occurs in the presence of some
other massive particle N , like eN → eN ′γ. Here, N could be an atomic nucleus that is slowing the electron
down by interacting with it. Bremsen is the German word for slowing down.

13The fine structure constant is defined as α = e2/4πε0h̄c.
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This formula can be used to retrieve the interaction length of a single photon in a
medium with attenuation coefficient κ, namely Xγ = κ.

2.2 Energy resolution in ATLAS

To do physics, we need a list of energy-momentum four-vectors (E,p) for all physics
objects under study. One might wonder what the precision of the energy and momentum
measurement is for particles crossing ATLAS. Let E be the measured energy, given in GeV.
Equation 7 is expected to describe the energy resolution for (low-energetic) jets. See
Ref. [19].

σE
E

=
50%√
E
⊕ 3% (7)

For photons and electrons, we have a much better resolution.

σE
E

=
10%√
E
⊕ 0.5% (8)

The basic idea is that one can determine the energy by measuring the track path
through the detector ∆x and the deposited energy ∆E in the detector active material. If
the stopping power of the detector is great enough, one may find E ≈ ∆E

f (f 6= 1 for a
sampling calorimeter). This may happen to electrons showering in the electromagnetic
part of the detector.

Muons have a relatively high probability of passing the detector with a lower energy
loss, which makes it tedious to measure their energies: ∆E and E do not correlate very
well for muons. Below 100 GeV, the muon’s energy loss is dominated by ionisation. Ra-
diative effects play a role for high energetic muons and their resolutions strongly depend
on the resolution of the muon system. The total energy loss is described by the following
phenomenological expression.

Eloss = a0 + a1 ln pµ + a2pµ (9)
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3 Muon detection and momentum resolution

In the interest of this study, muons from pp collisions were used to study TileCal’s calibration.
This chapter elaborates on the various strategies in ATLAS to identify and reconstruct
muons.

3.1 Experimental configuration

The ATLAS muon spectrometer has been measured to have a mean resolution on the muon
momentum measurement of 4% around 30− 60 GeV. The technology used here is that of
drift tubes filled with a pressurised CO2/Ar gas mixture, in which ionisations occur when
charged particles pass. The so-called Monitored Drift Tube (MDT) detectors provide muon
tracking at a resolution of ∆pT

pT
< 12% for pT < 1 TeV. Ref. [28]. In principle, a MDT

measures the time tD for a ionisation charge to arrive at the wire in a drift tube, which
results in a track resolution determination of 80 µm. To do the momentum measurement,
one compares information of typically three MDT chambers. [29]

The combined SPD, SCT and TRT inner detectors of ATLAS measure tracks up to
|η| < 2.5. In fact, the transition radiation tracker covers |η| < 2.0, which means that
the standalone momentum measurement in the region 2.0 < |η| < 2.5 is done by the
silicon pixel detector, closest to the interaction point, and the silicon strip detector that
surrounds it. The interpolated hits from which tracks are formed can be traced back to
the interaction point with a precision of 15 µm in the (x, y) plane. A large effort goes into
understanding and monitoring the positions of the detector components, as this affects the
reconstruction efficiency. The achieved momentum resolution, using silicon chips, straw
tubes and intelligent track software, equals ∆pT

pT
= 0.04%⊕ 2%. Ref. [30].

At the level of the calorimeters, muons are mainly distinguished from other particles
by their energy signature and track range. A muon deposits O(1) GeV/m in the ATLAS
calorimeters. This corresponds roughly to the minimum value for the ionisation as de-
scribed by the Bethe-Bloch formula in equation 4. Collision muons behave like minimum
ionising particles. Ref. [17].

3.2 Track extrapolation algorithms

Standalone muons are reconstructed using only the hits in the muon spectrometer, which
are connected to form a segmented track and then extrapolated back to the beamline. Two
algorithms, called Muonboy (Staco family), see Ref. [31], and Moore (Muid family), see
Ref. [32], are employed, both taking into account energy losses and multiple scatterings in
the calorimeters. Muons produced in the calorimeters through particle decay cannot be
distinguished from the collision muons when a standalone reconstruction is used.

Combined muons are obtained by refitting the tracks obtained with standalone meth-
ods combined with an additional outward extrapolation from the inner tracker to the muon
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system. Due to the size of the inner tracker, the η coverage is limited to |η| < 2.5. The pu-
rity of the sample of hard scattering14 muons increases, as muons created in the calorimeter
cannot be matched to a track seen by the inner detector and therefore vanish.

Example. Muons from J/Ψ→ µµ are detected by Muonboy with an efficiency of 76.4%
and a fake rate of 51 µfake per 1000 events above 3 GeV. In a combined measurement,
using the same Staco family algorithms, the efficiency of good reconstructed muons from
J/Ψ decay rises to 87.3%. The fake rate is significantly reduced to 0.9 µfake per 1000 events
above 3 GeV.

Muon tracks that are inside jets or in the vicinity of other tracks are less likely to be
reconstructed properly by the inner tracker. This means only the standalone information
provided by the outer muon system can be taken into account in the computation, which
produces a less accurate energy measurement. Also in the regions 2.5 < |η| < 2.7, one
abandons the requirement that a track in the muon spectrometer can be matched to a
track in the inner detector. Some momentum resolution is sacrificed, but one takes this
change in resolution into account by introducing a systematic error, and some information
on the muon momentum is gained. Ref. [33].

14Hard scattering muons that originate approximately from the interaction point and can be seen as
direct products of the proton-proton collisions.

18



4 ATLAS Tile Calorimeter

The ATLAS Tile Calorimeter [15, 39] is the hadronic sampling calorimeter in ATLAS
that extends from an inner radius of 2280 mm to a outer radius of 4250 mm. It utilises
scintillator material and steel plates as active and passive materials, respectively. The
tiles are placed in the radial direction.

In this section, we will first describe these scintillators and the overall structure, after
which we proceed to a discussion about the readout electronics. As the Tile Calorimeter
is part of the trigger system, we describe the three trigger levels in ATLAS. Finally, we
discuss TileCal’s datataking performance.

4.1 Scintillating tiles

A scintillator has luminescent properties when excited by charged particles, basically con-
verting a fraction of the particle’s energy into a flash of light. The PTP material used in
the tiles absorbs light induced by the ionising particles at the wavelength range of 240 to
300 nm and emits light in the range of 320 to 400 nm. This will then again be absorbed
by a second material in the scintillating mixture, called POPOP, which emits light within
the visible range (410 nm, ultra violet). The light is then transported15 and shifted to an
even longer wavelength through wavelength shifting (WLS) fibres. Photo multiplier tubes
(PMTs) finally detect the light, converting it into an electronic signal. The cathode of the
PMT produces electrons, which are then accelerated towards the dynodes. On direct im-
pact, these dynodes emit secondary electrons, which are further accelerated in the electrode
chain. Finally, the electrons reach the anode, where the current has become sizeable. The
gain of a PMT is defined by G ≡ Ianode/Icathode. See Ref. [41]. Approximately 460.000
scintillating tiles were used, as well as 1120 kilometes of WLS fibre.

4.2 Overall structure

The metal structure that supports the detector components, commonly referred to as the
girder, also houses the readout electronics for each module. TileCal is highly periodical.
There is a long barrel (LB) and two extended barrels (EBA/EBC), each divided up into
64 independent modules along the azimuthal direction. A module contains 48 channels,
corresponding to less than 24 cells. The 45 PMTs belonging to each long barrel module
are connected to 22 (A-side) and 23 (C-side) cells. The central D0 cell extends into both
sides, connected to two PMTs of either drawer. For the extended barrels, the 45 PMTs
are used to readout 18 cells on both sides. In total, there are 22 + 23 + 18 + 12 = 81 cells
in each segment in φ. In figure 5, an individual TileCal module is depicted.

15There is no optical leakage if the light propagates with a surface angle less than the critical angle
θc = arcsin nair

ntile
. See Ref. [40].
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Figure 5: One of the 64 TileCal modules and its optics. A scintillating tile is readout by
two separate PMTs to provide redundancy that may later be needed. There exists a total
of 9852 PMTs. [42].

For technical and practical reasons, a 600 mm gap is left between the barrels and
the extended barrels. Cables from the inner detectors and LAr calorimeter run though
here, as well as some electronics and other services. Nevertheless, TileCal fully covers the
pseudorapidity range of |η| < 1.7, with the barrel covering the region |η| < 1.0 and the
extended barrel 0.8 < |η| < 1.7.

Any gap in the detector material may decrease the probability that some physics process
will be reconstructed properly, as a hadronic shower may not be fully contained within
the detector space. Less detector material will contribute to the systematic error of the
measurement. In an effort to minimise this error, additional ladder shaped cells were
installed at the edge of the extended barrel: C10, D4, gap scintillators E1/E2 and crack
scintillators E3/E4. Figure 6 represents a mapping of PMTs to cells.

The minimum absorption length 5X0 occurs at |η| ≈ 0.8, which is increased to 7X0

by the installation of the ITC (Intermediate TileCal) plug. The hadronic showers are
maximally absorbed at |η| ≈ 1.2, where the absorption length equals approximately 14X0.
The girder contributes an overall 2X0, virtually independent of η.
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Figure 6: TileCal cell map. Each module consists of 81 cells each of which may correspond
to one or more readout PMTs.

4.3 Read-out electronics

Electronics is needed to convert the scintillation light from the tiles into a measurable
electronic signal. The purpose of this subsection is to give a brief overview of the read-out
electronics.

TileCal’s front-end electronics is assembled into a device called the PMT block.
See Ref. [43]. The WLS fibres interface with the PMT by means of a light mixer. This
light guide mixes light in a uniform, diffuse manner. As the PMT response may not be
uniform over its photosensitive surface, mixing the light helps reducing the influence of fibre
location at the photocathode. Naturally it needs to be shielded from other light sources,
most notably Čerenkov light from incoming particles. The analogue PMT signal is then
transported to a high gain (HG)/low gain (LG) splitter and a 3-in-1 card. The
entire structure that supplies a high voltage to the PMT gain dividers and a low voltage to
the 3-in-1 card is often indicated by the term superdrawer. During data-taking, the main
purpose of the 3-in-1 card is to shape and amplify the PMT pulses to accommodate the
needs of the electronics further down the read-out chain. For calibration and monitoring
purposes, charge injection calibration and slow (typical timescale is ms) integration of the
PMT current output are added to the card’s functionalities. See Ref. [44].

The entire PMT block is shielded from ATLAS’s strong magnetic fields by a cylindrical
soft iron and mu-metal casing. A 3 mm thick soft iron end-cap closes the PMT block.

Up to 48 PMT blocks are grouped by the superdrawers, which also house the electronic
mother boards needed for triggering. There are two drawers for each barrel module and
one for each extended barrel module. The front-end electronics and the low voltage power
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supplies (LVPS) are both located on the calorimeter, withstanding a severe exposure to
radiation and magnetic fields. Ref. [21].

The LG and HG signals are retrieved from the circuit boards at a frequency of 40 MHz,
which corresponds to the LHC bunch crossing time of 25 ns = 1/(40MHz). A 10-bit analog-
to-digital converter (ADC), located in the Data Management Unit (DMU) chip, digitises
the PMT pulse peaks, which are then sent via optical fibres to the back-end electronics.

Subsequently, the timing of the pulse is determined on the digital signal processor
(DSP) and in the offline reconstruction. The pulse peak timing resolution should be 1 ns
for a good energy reconstruction. In figure 7, the cell time distribution is shown.

Figure 7: Tile Calorimeter cell time distribu-
tion, using jet events with pT > 20 GeV and
cells with Ecell > 20 GeV. Ref. [48].

Figure 8: (η, φ) overview of the integrated
number of masked cells in a calorimeter tower,
indicated by the colors.

4.4 Trigger system

Which events do we store? This is the basic question that one tries to answer in the
practice and application of trigger systems. Clearly, the particle physics community has
matured since the era of the cloud and bubble chambers, which started barely a century ago.
New technologies are at the disposal of the experimentalist. The microscopic bubble tracks
left by charged particles in a superheated fluid have been replaced by three-dimensional
electronic tracks. The photographic read-out has been replaced by vast amounts of digitised
data. Even though the latter form of information has many advantages over the numerous
photographs that one needed to accumulate for the physics analysis in the past, some new
technological challenges arose. There are approximately 109 collisions in ATLAS every
second, equivalent to a data rate of 1 PB/s. With current technology, one can only store
300 MB/s. Only a fraction of 10−5% of the events should be allowed to be stored.

In general, a trigger system is designed to rapidly decide whether an event in a
particle detector meets a set of predefined requirements. ATLAS has been designed to
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have a powerful trigger, that takes logical decisions at three levels.
The first level (L1) trigger is completely hardware based and looks for signatures of

high pT muons, electrons, photons, jets and other signs of interesting physics at a rate of
75 − 100 kHz. This implies the system mainly cuts on the multiplicity of these physics
objects in the detector and the value of ET − Emiss

T . The data rate is reduced to about
160 GB/s. The status of Region of Interest (RoI) is consequently assigned to any small
detector region in pseudorapity and angle that complies to the L1 trigger requirements. A
2η×2φ RoI may be centered around a LAr tower cluster that has a local ET maximum. The
L1 muon trigger decision is made based upon input from the resistive plate chambers
(RPC) for |η| < 1.05 and the thin gap chambers (TGC) in the endcaps. The information
of all ATLAS’s channels is stored during 2.5 µs, which is the time the system needs to take
a trigger decision, the latency. In figures 9 and 10, the L1 muon trigger efficiencies are
shown.

Figure 9: Efficiency of the L1 muon trig-
ger system in the barrel region |η| < 1.05
as a function of transverse momentum pT
from offline spectrometer-only reconstructed
muons, extrapolated to the interaction re-
gion. The efficiency is calculated with respect
to offline reconstructed combined muons, us-
ing spectrometer and the inner detector.

Figure 10: Efficiency of the L1 muon trig-
ger system in the endcap region |η| > 1.05
as a function of transverse momentum pT
from offline spectrometer-only reconstructed
muons, extrapolated to the interaction re-
gion. The efficiency is calculated with respect
to offline reconstructed combined muons, us-
ing spectrometer and the inner detector.

In case of a L1 accept, the output data is read-out by Read-Out Drivers (RODs) and
stored in Read-Out Buffers (ROBs). The RoIs are sent to the second level (L2) trigger,
which uses the L1 output as input. The L2 trigger is software based, using 500 processors
in an effort to reduce the data rate to 5 GB/s. Only volumes in the RoIs are used. The
latency is 10 ms. A fast pattern recognition algorithm is at work at this stage to determine
whether a muon track is visible in the L1 RoI. Data from the MDTs described in section
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3 is added to the L1 information.
After a L2 accept, the full event is finally transferred entirely to the Event Builder

(EB), after which the Event Filter (EF) selects events based on the complete event data.
The full detector granularity, calibration, alignment and conditions of the magnetic field
are incorporated in the decision making. The EF consists of algorithms, running on a farm
of 1800 processors, each of which handle one event every 1−4 seconds. The data that pass
all these final cuts are stored in different output streams at a rate of 300 MB/s. We are
mainly concerned with the EF mu20 stream to select muon events in which more than 20
MeV was deposited.

Output stream Requirements

e10, e20 one electron, pT > 10, 20 GeV
mu10, mu20 one muon, pT > 10, 20 GeV
2e5 two electrons, pT > 5 GeV
2mu4 two muons, pT > 4 GeV

e22i one isolated electron, pT > 22 GeV
mu20 one isolated muon, pT > 20 GeV
2e12i two isolated electrons, pT > 12 GeV
2mu10 two isolated muons, pT > 10 GeV

Table 3: Main trigger streams for the selection of W and Z boson final states. The first
four are mainly relevant at an LHC beam luminosity of L ∝ 1031 cm−2s−1. The last four
streams become more useful at high luminosities (L ∝ 1033 cm−2s−1), as overlapping
events (pileup) oblige us to make more stringent isolation cuts.

The L2 trigger and EF together form the High Level Trigger (HLT). To ensure the
system is able to cope with higher luminosities, one may increase the pT thresholds or
apply for example stronger isolation cuts.

4.5 Data taking performance

For various reasons, not all of the 5182 Tile Calorimeter cells can be used for data taking.
Some cells are masked after displaying fatal problems or data quality problems. Masking
a cell means that it is excluded from offline reconstruction and that it is not considered at
the HLT. In figure 11, the number of masked cells is shown as a function of time.

During the technical stop in winter 2010, many read-out channels were restored. Con-
servatively, cells are only masked until the reason for their malfunction has been investi-
gated and the necessary intervention has been completed.

It is the task of the TileCal Detector Control System (DCS) to ensure the detector
is safely and coherently operated. The DCS enables several crucial detector systems to
be monitored, most notably the low and high voltage systems and the cooling for the
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Figure 11: Evolution of cell masking in TileCal. This plot shows the percentage of all cells
in the detector that are masked as a function of time, starting from April 2009. The sharp
increase in the masked fraction corresponds to losses of entire half of modules. 3.37% of
the cells are masked (3% are off) for physics. Ref. [45].

electronics. Although the systems to monitor the TileCal calibration are independent,
some information is exchanged with DCS, such that the displayed detector conditions
approach the actual status. Moreover, through DCS one has control over the cooling. A
more detailed description of the DCS implementation is given in Ref. [46]. The detector
conditions are stored in a COOL database that is accessed by ATHENA16 when running
a physics analysis.

The performance is often expressed in terms of the overall data taking efficiency, defined
by Lrecorded

Lexpected
. See figures 12 and 13.

4.6 Fake transverse energy Efake
T

The Tile Calorimeter is not a perfect calorimeter. Limited detector coverage, finite detector
resolution, noise and the presence of dead regions have to be considered to ensure that
fake transverse energy Efake

T → ε is small. In Ref. [24] we find a description of how the

16In general, ATHENA is a software framework used in ATLAS, within one can do a physics analysis.
For completeness, a reference can be found in Ref. [47].
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Figure 12: Data taking performance for all ATLAS subdetectors during 2010. Detector
regions that were masked or not participating are not taken into account.

Figure 13: Data taking performance for all ATLAS subdetectors during 2011. Detector
regions that were masked or not participating are not taken into account.

impact of noise is minimised by building topological cell clusters out of the ∆φ×∆η =
0.1× 0.1 TileCal cells. These so-called TopoClusters are objects in the (η, φ) plane of the
calorimeter that are defined by their local hadronic calibration. Ref. [19]. At the level of
the entire ATLAS calorimeter, these regions are called calorimeter towers. In general,
the granularity of the calorimeter is much finer than the trigger tower size. Please refer
to Ref. [25] for the cell dimensions in TileCal. For the D-cells, the calorimeter towers are
defined as ∆φ×∆η = 0.2×0.1. These clusters have no fixed size, as their shape is the result
of running an optimisation algorithm that takes into account cells and their neighbours, see
Ref. [26]. Finally we obtain the following total missing energy for electrons and photons,
as measured by the calorimeter.

Ee,γ,miss
x,y = ECalo,miss

x,y = −
∑

TopoCells

Ex,y (10)

In the muon channel, a similar expression can be written down, using the track momenta
measured by other ATLAS detectors.

Eµ,miss
x,y = −

 ∑
isolated

px,y +
∑

non−isolated

px,y

+ ECalo,miss
x,y (11)

This type of calculation can be done for all physics objects separately. In Ref. [27], it
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Figure 14: Physics objects measured by the calorimeter are handled as clusters of cells in
which energy is deposited. These form three dimensional objects over which all energies
are summed to get a handle on the energy, calibrated up to the electromagnetic scale.

is described that topological clusters are formed around cells with |Edeposit| > 4σnoise and
Eneighbour cells > 2σnoise, greatly reducing the influence of noise in the energy measurement.
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5 Calibration

In this chapter, TileCal’s calibration systems are described: the cesium system, the charge
injection system and the laser system. These systems are required to convert the amplitude
of a pulse, as described in section 5.1, to an energy measurement. The conversion formula
is given in section 5.2, the calibration systems are described in section 5.3. Dedicated
software to monitor the calibration status quo, which was partly developed in the course
of this study, is explained in section 5.4.

The term calibration signifies the comparison of a measured signal Sdata with some
known signal S0 with the objective of correcting for the deviation Sdata−S0

S0
. As described

in Ref. [49], we discern low-level calibration and high-level calibration, which include
converting the ADC counts from the front-end electronics into a physics quantity and
applying software corrections in the reconstruction phase, respectively.

5.1 Optimal filtering

Pulses are reconstructed by a so-called optimal filtering algorithm, described in Ref. [50].
The algorithm extracts the pulse amplitude A, phase τ and baseline p, which is more often
referred to as the pedestal. Let S(t) represent the digital signal determined by the shape
form function g(t). Then we can sample the distribution by getting N values at different
times ti.

Si = p+Ag(ti) ≡ p+Agi (12)

Let’s incorporate the imperfections due to real electronics and perform a Taylor’s ex-
pansion, as was done in Ref. [51].

Si ≈ p+Agi −Aτg′i + ni (13)

One can now calculate the sought quantities.

A =
N∑
i

aiSi (14)

A · τ =
N∑
i

biSi (15)

p =
N∑
i

ciSi (16)

Here, ai, bi and ci are optimal filtering coefficients. A quality factor QF is defined
to indicate how well the phase and amplitude, or the time and energy respectively, were
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reconstructed. In case of pileup or saturation, these quality factors may be influenced and
can therefore be used to clean the data sample. Although the factor is not actively used
in this study, it is defined by equation 17 for completion.

QF =
n∑
i=1

[
Si −Agi +Aτg′i + p

]
(17)

A and p are measured in ADC counts, τ in nanoseconds.

5.2 Calibration of the ATLAS TileCal detector

TileCal makes use of different calibration systems with which one determines the correction
factors f needed to obtain the actual measured energy Ei from the signal amplitude Ai.
In this section, we describe how this signal reconstruction and calibration is implemented
in TileCal.

Ei = AifADC→pCfpC→GeVfCs,iflaser (18)

Fixing fpC→GeV, fCs,i and flaser = 1, one finds that channels have a tendency to drift,
as shown in the plot [82]. In other words, we find a time-dependent systematic error σEi(t)
for every channel i. This error σ2

Ei
(t) ∝

∑
j σ

2
j is a convolution of the errors stemming

from different sources j. Sources one might consider are the possible changes in the optical
part that concerns the transport of scintillation light, the variations in the properties
of the PMTs and instabilities in the readout electronics over time. The total received
radiation dosage increases over time, introducing a time-dependent degradation of the
detector materials. The exposure to secondary particles from proton-proton collisions is
different for different parts of the detector, but it roughly affects all the TileCal modules in
a similar way as the conditions are symmetric in φ. There may be temperature fluctuations
that affect the material properties, the electrical conductivity of the wires and the PMT
gain. The PMT gain may vary due to temperature fluctuations and high voltage deviations.
These effects have been measured to be approximately 1% per 5◦ C. and 1%/V at 700 V,
respectively. Ref. [52, 53].

These sensitivities affect the systematic error on the global energy measurement if
not corrected and may even lead to a miscalibration of independent channels. However,
instabilities in the light propagation or in the read-out chain as described in section 4
may introduce non-uniformities in the signal response. The three calibration systems that
monitor TileCal are designed to find values of f such that σSi(t) is minimised and the
uniformity is preserved [49].

5.3 Calibration systems

The cesium calibration system is composed of a hydraulic system and a movable cesium-
137 source, which decays isomerically via 137Cs → 137Ba + β− + γ(61keV), as described
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in Ref. [54]. In figure 5, the holes through which the source tube can be transported are
pointed out explicitly. The interaction length of the photon is comparable to the thickness
of the scintillator tiles, enabling a calibration of the individual tiles. The evolution of the
optical response and PMT gains can be monitored over time and can be corrected for if nec-
essary, by fine-tuning the high voltage supplies. The cesium run readout chain is different
from the standard readout. A current divider redirects 1% of the PMT output current to a
set of slow electronic integrators printed on the 3-in-1 cards. These integrators in TileCal
are used to construct a voltage signal from a large number of low-energetic light pulses to
which the PMTs are exposed during cesium calibration runs. The cesium source radiates
off photons at 370 MBq. The integrator sums up the signals over a period of O(10) ms,
such that the pulse roughly corresponds to a MeV signal. The integrator system provides
0.5% accuracy in calibrating the response of a single cell [55]. The gain equalisation, that
is to say the determination of fCs,i for each channel i, is done approximately once every
month.

As an estimator for the response dE/dx for a module m, we will always use the (trun-
cated at highest 1%) mean value.

(
dE

dx

)
(m) =

1

N

N∑
i=1

[(
dE

dx

)
i
(m)

]
(19)

In figure 15, the results are displayed after applying the equalisation procedure with
cesium.

Figure 15: Response equalisation by applying cesium corrections to cell D4 in the ITC
region. dE/dx is measured for muons W → µνµ from collisions over the periods 2010
(B-I) and 2011 (B-I). The standard deviation σ is significantly reduced.
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The laser monitoring system will be used to monitor the short term deviations in the
PMT response with respect to the reference value set by the cesium calibration. The 532 nm
green light is delivered in pulses with a width of approximately 10 ns and nominal energy
of order TeV. However, after passing through an adjustable filter, one lowers the energy
by one order of magnitude to 200 GeV to facilitate the low gain channels. The high gain
filter even reduces the energy to the GeV range. The light pulses are sent simultaneously
to all 9852 PMTs, which allows for a measurement of the response linearity and relative
gain variations over their full sensitive ranges by scanning them with different filters. For
each PMT, the factor flaser = L

L0
is measured, where L is the measured response and L0

the reference value. One requires the laser system to be uniform in the sense that the
laser light is distributed to all channels equally. This is done by using diffusers that scatter
the light such that it looses its spatial coherence. Moreover, the light intensity should be
extraordinarily stable. A system of intercalibrated photodiodes is in place to monitor the
laser stability. These photodiodes are exposed to a 241Am alpha source approximately once
a week. The diode stability is measured to be less than 0.20%. The ratio Ri,j =

Schannel,i

Sdiode,j

for the signal Schannel,i from channel i and the signal Sdiode,j from diode j is required to
show deviations less than 1%. The relative gain variation for some channel i monitored
by diode j at time t away from the reference run is defined by ∆i,j = Ri,j(t)/Ri,j(0) − 1.
The correction factors that need to be applied at the level of the channels is obtained by
evaluating flaser,i = 1

1+∆i,j
. See Ref. [49] for an elaborate description of the laser system

performance. The experimental setup of the laser system is described in Ref. [56]. In the
current predicament, however, there have been unresolved difficulties in using the laser
system to correct for any deviations. Optical crosstalk between adjacent photodiodes and
electronic crosstalk between photodiodes refute the validity of the laser method. During
the long shutdown in 2013, a new laser will be installed to replace the current one.

Finally, a miscalibration of the readout electronics may introduce additional systematic
uncertainty into TileCal’s energy measurements. The charge injection system (CIS)
is responsible for reducing this uncertainty by calibrating the readout electronics, which
include 10-bit analog to digital converters (ADC) to digitise the analog signals, rendering
the data processable further up the chain. To this end, a well-known charge is injected to
simulate a physics signal. The initial design can be found in Ref. [57] and its performance
is elaborated upon in Ref. [58]. The factor fADC→pC is measured for each ADC in units of
pC.

It seems natural to mention here that the detector-wide factor fpC→GeV = 1.05 has
been measured in the test beam setup, using a clean sample of electrons with a well-known
momentum in the first radial layer. The factor is globally applied, corrected for any radial
dependencies. Moreover, the cesium factors are defined with respect to fCs,i ≡ 1 at the
moment fpC→GeV was measured in June 2009. The cesium calibration system compensates
for changes that occurred since that time. See Ref. [59] for an industrious article on the
first TileCal results using test beam data.
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Figure 16: Gain variation of TileCal PMTs
over a period of 50 days with respect to a
run recorded in september 2010. PMTs are
flagged bad when their gain variation exceeds
the 1% limit. In this period, 0.14% of the to-
tal number of PMTs included in this analysis
was considered bad.

Figure 17: Charge injection stability over a
period of three months between March and
June 2011. Each entry corresponds to an in-
dividual ADC channel. Correction factors are
applied for channels with a variation larger
than 1%. Both high-gain and low-gain read-
out signals are shown here. This concerns a
fraction of 0.1% of the ADC channels.

Naturally, some degree of cross calibration is needed in order to check for any effects
that may be further down the readout chain. A PMT that shows some large gain variation
∆G should provoke some correction by the laser system and the Cs system consequentially.
The gain G as a function of the applied voltage V is given by G(V ) = αV β. The time
stability of the parameters α and β have been monitored and studied during use and even
before installing the PMTs. One influences the gain by choosing a different voltage, as
∆G
G ≈ β

∆V
V .

Currently, the cesium and charge injection systems are used for calibration and moni-
toring purposes.

5.4 TUCS

A Python framework called TileCal Unified Calibration Software (TUCS) has been
developed to enable sharing functionalities that are useful in the studies of all calibration
systems, like plotting calibration constants and reading from and writing to databases. The
TUCS framework provides us with a human readable script to analyse the calibration data.
Moreover, one would like to have the possibility to make comparisons between the data
from different calibration systems. In the scripting language Python, one creates modules
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that call upon worker classes to do some specific task.
The information handled by TUCS is stored in different parts of the detector tree,

defined by the region class. This class makes use of the structure that we find in the
TileCal detector. There are two tree representations, one tree related to the readout
electronics chain, with 4(barrels)×64(modules)×48(channels)×2(gains) = 12288 tree leafs,
and one tree associated to the physical geometry that is organised in cells and towers, with
the latter two branches replaced by 5(cell layers) × Ntowers in layer. The software handles
the specifics of each event by storing them into lists of event data members. Each region
object carries an event list.

To this end, a rudimentary event class is defined that contains the run type17, run
number18 of the run to which this event belongs, the time at which the event was recorded
and the event data. For practical purposes, basic functionality is added to convert a time
string into Unix time19.

A generic worker class then defines the layout of user-generated workers. This layout
consists of a part called ProcessStart, where the values of data members are set that are
not region dependent. In a second part called ProcessRegion, one explicitly defines what
actions should be taken on the level of each region. Generally, one accesses the data and
specifies in what way the event lists are handled and in which possible data members
information is altered or stored. At the end, ProcessStop is the place to store the data
in the final format. However, it should be pointed out that programming a TUCS worker
can be done in many different ways, depending on the functionalities of the worker. It is
common practice to try to follow a structure that is the most efficient in terms of memory
usage and that contains the least number of necessary nested loops.

With an instance of the Go class, one loops over the workers list that needs to be
processed.

A core worker is the Use class, which is responsible for retrieving all the calibration
run numbers within a user-specified time interval. In the course of this study, additional
functionality was added that now includes the possibility to specify the start and end dates.
More importantly, in the light of a comparative analysis, one is now able to obtain lists of
run numbers for different run types in parallel. Some indispensable workers are in place to
read the ROOT20 Ntuples that contain the calibration data, like ReadLaser, ReadCIS
and ReadCsFile. These calibration ROOT Ntuples are stored in a common tilecali AFS
account, together with relevant SQL databases, macros and shell scripts.

Figures 18 and 19 how the time stability of the laser and charge injection systems, re-
spectively. These plots were generated using the TUCS workers Use, ReadLaser/ReadCIS

17Type here being the type of calibration run: Cs, laser or CIS.
18Sub-detector cesiumcalibration runs are numbered differently than the ATLAS-wide physics runs.
19Unix time is a scalar time defined in seconds. The standards are fixed by so-called POSIX conven-

tions to convert the human clock-value YYYY-MM-DD hh:mm:ss.sss to a mere number. See Ref. [60].
20Throughout this study, knowledge of ROOT has been essential as it is used as the framework for almost

all physics analyses. Extensive resources are available online, as in Ref. [61].
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and ReadDB consequentially to retrieve measured constants. Some additional workers
compute the variations at fiber level and the globally corrected PMT shifts. An analysis
worker performs the analysis and stores the plots on file. Dedicated TUCS analysis work-
ers have been developed for each calibration system. do summary plot and do pmts plot
are often used to monitor the laser system. In the course of this study, another worker
called calibration overview tool has been developed to retrieve the Ntuple information from
different calibration systems and combine them in a single plot.

Figure 18: Gain variation of TileCal PMTs
over a period of 50 days with respect to a
run recorded in september 2010. PMTs are
flagged bad when their gain variation exceeds
the 1% limit. In this period, 0.14% of the to-
tal number of PMTs included in this analysis
was considered bad.

Figure 19: Charge injection stability over a
period of three months between March and
June 2011. Each entry corresponds to an in-
dividual ADC channel. Correction factors are
applied for channels with a variation larger
than 1%. Both high-gain and low-gain read-
out signals are shown here. This concerns a
fraction of 0.1% of the ADC channels.

Some additional work done in the course of this study to understand the calibration
systems is summarised in appendix D.
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6 TileCal response using isolated muons from collisions

This chapter describes the method that we have used to determine which TileCal modules
were miscalibrated. From this method, we may calculate the proper calibration constant
to correct for any miscalibration.

Let us define the response of a particular cell as the amount of energy deposited per
unit length, ∆E/∆x. In a cylindrical detector, this quantity may to first order be expected
to be uniform in φ for every cell type. Provided the cesium scans are applied correctly
to equalise the cell responses, described in section 5, we should observe this rotational
symmetry by construction.

The cell response for muons depends only logarithmically on E and can therefore be
considered an intrinsic property of the material. This allows us to compare cells of different
types and draw conclusions about the intercalibration of these cells.

6.1 Calibration of the Intermediate Tile Calorimeter in context

The TileCal project dates back to 1992, when it was decided to start the first research
and development (R&D) program to support the design and construction of the ATLAS
hadronic calorimeter. In 1996, the final design of the modules was proposed. The first
electromagnetic (EM) scale Ebeam

EpC
was set with the studies performed with data from the

(electron) test beams. Between 1999 and 2004, numerous data-taking periods took place
with the primary goal to set the EM scale. At the same time, the high voltages were tuned
to achieve a cell-by-cell equalisation. The calibration systems, following the description
given in section 5, were then used to correct the high voltages. See the article (and its
references) in Ref. [62] for a more elaborate historic perspective.

In recent years, cosmic muons were used to study and validate the early calibrations,
as they serve as a background for the proton-proton events. [20, 40, 63] This background
is not uniform in (η, φ), as the presence of a huge physical body, the Earth, affects the
measurement asymmetrically. Dedicated studies have been performed to understand this
effect. Ref. [16]. As the tiles are placed vertically, these muons were only considered well-
constructed if their angles with respect to vertical were θ > 0.13. Moreover, only cells
downstream with respect to the inner tracker were used in these analyses, to obtain a
better momentum resolution. We will use the cosmics results and previous studies with
collision muons to validate our method using collision.

The Intermediate Tile Calorimeter increases the particle reconstruction efficiency in
the gap/crack region and optimises the response uniformity to hadrons and jets that cross
the gap. Particles that loose a substantial amount of energy in the gap may not be re-
constructed properly and can be vetoed based on the gap/crack scintillator responses. See
Ref. [64]. An issue here is that the scintillators are read-out by only one PMT, whereas the
other TileCal cells always have a double read-out. The response of tiles with only a single
read-out is not uniform. Therefore, additional noisy contributors to the signal due to PMT,
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optics or other uniformities cannot independently be corrected for by the cesium system.
It is crucial for rare events, like high pT jets, that these cells are optimally calibrated.

6.2 Event selection W → µνµ

In this thesis, muons from W decay are used. The history of W and Z bosons now extends
over a period of almost thirty years since these gauge bosons were discovered in the days
of the SPS, in 1983. The experiments that discovered them were called UA1 and UA2. [34]
Since then, the intrinsic properties have been measured extensively.

The production rate of the electroweak W± and Z bosons in ATLAS has been studied
for various theoretical and experimental reasons. One would like to use the measured
cross sections σW and σZ as a first check that the results from QCD measurements agree
with what has been calculated21 for the new energy range opened up by the LHC. Indeed,
W → lµl and Z → ll will also function as dominating background in other analyses. 22

From a instrumentalist point of view, the W → µνµ signal is a very clean signal that
can be used to increase and optimize the understanding of our detectors, as there exist
quantitative cuts to eliminate the influence of background muons as much as possible.

The massless neutrinos are not detected and cause transverse energy to seep out silently.
One may try to measure this Emiss

T by evoking the law of energy conservation, taking into
account that there are other effects that may contribute to the missing energy. A large
value may be a sign of neutrinos or a beyond the Standard Model physics event.

One has to take into account the existence of background processes that may also
contribute to any selected sample ofW decay muons. A large sample of low-energetic muons
may originate from pion decay. Experimentally these effects are taken into consideration
by carefully selecting the events from the muon sample. One usually specifies some set of
cuts to clean the muon sample, tabulated in table 4.

A W → µνµ candidate was recorded on 16 May 2010, with pµ
−

T = 22 GeV, ηµ
−

= 2.0,
Emiss
T = 51 GeV, MT = 61 GeV. By inspecting the event display in figure 21, we clearly

21In QCD, physical quantities are often expanded in orders of αS , the strong coupling constant. Pertur-
batively, a cross section may be expressed as follows.

σ =
∑
i

Aiα
i
s (20)

Here, the constants Ai are found by calculating the Feynman diagrams belonging to all the processes
that may occur in order i. Resummation techniques are often considered to solve the many divergences
that show up in calculating the quantum field theory path integrals. These techniques should be studied
and validated for any new experimental energy range.

22The Standard Model (e.g. qq → WW ) background is in fact huge compared to new physics signals
(e.g. H →WW ), as can be concluded from their relative cross sections. A ”five sigma” discovery requires
an excellent understanding of all backgrounds present. See Ref. [35] for a more detailed description on
the statistical methods used in ATLAS. In a nutshell, one may think of using the frequentist and the
Bayesian approaches to test the background Hb and ”signal plus background” Hs+b hypotheses. Both
methods should be made to agree, or the disagreement should be understood.
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see three jets that we distinguish using the R = 0.4 anti-kT algorithm. All three jets have
ET > 40 GeV.

Finally we introduce a cut F in the dE/dx distributions. F is the level of truncation
that we use to cut out the tails of the dE/dx distributions, expressed as a percentage of
the total integral

∫
d(dE/dx). We cut all events with a response higher than (dE/dx)cut.∫ (dE/dx)cut

0 d(dE/dx)∫∞
0 d(dE/dx)

= F (21)

This cut is applied to select only signals from ionisation.

Figure 20: Landau distributed response dE/dx with a noise peak at zero is cut, using E for
noise reduction and F to counter higher order ionisation effects that are not well-described
in the Monte Carlo, which only occur in the tail of the distribution.

requirement W → eνe W → µνµ Z → ee Z → µµ

reconstructed lepton pT > 20 GeV, |η| < 2.5
isolation Econe

T /ET < 0.2 N/A Econe
T /ET < 0.2 N/A

missing energy Emiss
T > 20 GeV N/A Emiss

T > 20 GeV N/A
crack region remove 1.3 < |η| < 1.6 N/A remove 1.3 < |η| < 1.6 N/A

recoil momentum pT < 50 GeV

Table 4: Selection criteria for the W and Z decays as given in the note in Ref. [19].
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Figure 21: A candidate for W → µνµ decay, collected on 16 May 2010. Ref. [36].

In this analysis, we select events on the basis of the high level trigger decision. We
introduce a dominant cut in the trigger stream, by requiring that event filter mu20 is
passed. See table 3 in section 4.4 for the context of this cut. To suppress the presence of
background events, we introduce a missing energy cut Emiss

T > 25 GeV and use the isolation
cuts mentioned in table 4, see figure 22. In addition, one may further clean the sample by
imposing that the measured transverse mass of the µ-Emiss

T system must be greater than
some parameter M cut

T , see figure 23. The mass is defined by equation 22.

MW
T ≡

√
2plT p

νl
T

(
1− cosφl − φνl

)
(22)

Cells are selected based on the energy deposited Edeposit > 30 MeV and to further
remove the noise we require pµ > 40 GeV.

It should be mentioned here that any cut may introduce systematic uncertainties into
the results of the analysis. Errors are fully correlated if they come from the same source.
See Ref. [38]. However, this discussion will appear less obvious here, as our main effort goes
into quantifying the calibration using ratio data

simulation quantities. The systematics introduced
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Figure 22: Emiss
T versus track isolation param-

eter.
Figure 23: Emiss

T versus transverse mass mT

of the µ-Emiss
T system. Ref. [37].

by the event selections cancel out, provided we apply the same cuts on data and Monte
Carlo and only if our final sample still contains a large enough number of entries.

This type of reasoning is justified if one uses a Monte Carlo that is generated to specifi-
cally describe the data. As we are using isolated muons from collisions, this is requirement
is fulfilled.

6.3 Collision muons data and Monte Carlo samples

The data is divided into different periods. The periods used in this analysis are tabulated
in table 5.

Monte Carlo simulations are used to generate distributions that can also be ob-
tained from the data, in such a way that a comparison between data and simulated events
is possible. The experimental conditions, detector geometries and possible physics interac-
tions are modelled correctly if any observable has data

Monte Carlo ≈ 1. These simulations are
fine-tuned and validated to secure that the detector is understood.

After applying the cuts, we reweight the Monte Carlo to the level of pile-up, which
is equivalent to the number of proton-proton collisions taking place in the same bunch

crossing. This reweighting is done by assigning to every event a weight w =
g(Nvertices,data=n)
g(Nvertices,MC=n) ,

where n is the number of interaction vertices in the event, and g(Ntype) is the normalised
probability density function for the number of vertices Ntype of a certain type (data or
Monte Carlo). Simple as it sounds, it requires one to run over the same Monte Carlo
sample twice, making it technically convoluted.
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period first run last run integrated luminosity recorded by ATLAS (fb−1)

2010 152166 167844 45.0 · 10−3

2011-D 179710 180481 17.7 · 10−2

2011-E 180614 180776 49.6 · 10−3

2011-F 182013 182519 15.0 · 10−2

2011-G 182726 183462 55.5 · 10−2

2011-H 183544 184169 27.5 · 10−2

2011-I 185353 186493 40.0 · 10−2

2011-J 186516 186755 23.3 · 10−2

2011-K 186873 187815 66.1 · 10−2

2011-L 188902 190236 13.3 · 10−1

Table 5: Data taking periods used in this analysis.

In the course of this study, we used the following Pythia generated Monte Carlo W →
µνµ samples for 2010 and 2011.

mc10 7TeV.106044.PythiaWmunu no filter.merge.AOD.e574 s933 s946 r2302 r2300

mc11 7TeV.106044.PythiaWmunu no filter.merge.AOD.e815 s1272 s1274 r2730 r2700

Data and Monte Carlo are both converted from the Event Summary Data (ESD) format
into Ntuples using an ATHENA package, called Tile Muon Dumper, resulting in files
with the same variable structure.

6.4 Path length reconstruction ∆x

In order to quantify the response, we need the deposited energy E and the path length
∆x of a track t through a particular cell c.

Muon tracks are extrapolated using the ATLAS extrapolator, which is coded to per-
form the extrapolation procedure discussed in section 3. [65]. There are several ways to
parametrise the extrapolated track parameters. One natural discretisation for collision
muon tracks through TileCal is to use the radial cell layers l. In this terminology, the
LB-A cells belong to layer l = 12, LB-BC cells to l = 13 and LB-D to l = 14, in the
ITC/gap region we find the layers l = 15 for C10, l = 16 for D4 and l = 17 for the
scintillators. The extended barrel layers are 18, 19 and 20.

Depending on the success of matching the track in the inner detector with the one in the
muon spectrometer, the ATLAS extrapolator tool may provide a number N > 1 of track
parameters for each layer. Let xln denote the nth track parameter in layer l. We can use
this information to calculate the track length through a cell c, provided the cell’s position
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Figure 24: (left) Momentum distributions of W → µνµ muons from collisions, data and
Monte Carlo. (right) The response of the Intermediate Tile Calorimeter as a function of
η, a radiography.

Figure 25: Extrapolated track t over different layers l through cell c. In this schematic
overview, ∆x 6= 0. The number of extrapolated parameters that can be obtained per cell
layer depends strongly on the success of the track extrapolation. As depicted, there may
be

(rc, φc, zc) and dimensions (∆rc,∆φc,∆zc) are known. The exact path computation is
described in appendix A.

6.5 Double ratio dEdata/dx
dEMonte Carlo/dx

Given a cell type c in a certain data taking period p, we can express the agreement between
data and Monte Carlo by defining the double ratio Rc,p,E,F to quantify the agreement
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between data and Monte Carlo. E is the lower energy cut in MeV that we use to take
out low-energetic noise, as this is not well-described by the simulation. F is the level of
truncation, as described in section 6.2.

R =
dEdata/dx

dEMonte Carlo/dx
(23)

The path lengths are constructed at a second level as described in section 6.4, using a
ROOT macro. The cuts described in section 6.2 are applied on a third level. E and F cuts
are taken to be 60 MeV and 1%, respectively.

Figure 26: Double ratio R with a constant line fitted through it.

6.6 Constant fit method

This section describes how one may fit a constant line through the double ratio R, as can
be seen in figure 26. We will argue that this method is not suitable for our calibration
purposes.
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The division of two finite, non-zero constants is another constant. For reasons of sym-
metry, one might assume that the response dE/dx is the same for each module m in
either data and Monte Carlo. Under this assumption, the ratio between the two responses,
measured and simulated, would therefore also be a constant with respect to the module
number.

To test the hypothesisH0 that the response double ratioRc,p(m) =
dEdata,c,p

dx /
dEMonte Carlo,c,p

dx
is constant over all cells c of the same type, in a particular period p, one could naively
perform a constant fit.

This is a model in which the expectation value of Rc,p,E,F (m) is a constant λ±σλ/
√
N ,

where σλ denotes the unbiased sample standard deviation and N the sample size. Here, E
is the cut in energy in MeV, and F is the level of truncation in the highest values of dE/dx,
in percentage. These cuts are applied to reduce the effect of the bad noise description in
the Monte Carlo at low energies and to select signals from ionisation only, respectively.
To test this hypothesis for a value of µc,p,E,F , we compute the χ2

c,p,E,F probability of the

constant fits23.

Rc,p,E,F (m) ≡
([

dE
dx

]
c,p,E,F

)
data

/

([
dE
dx

]
c,p,E,F

)
Monte Carlo

= λc,p,E,F (24)

The fit takes into account the module dependent statistical error on the ratio. Let
X,Y be two stochastic variables with standard deviations σX , σY and let Z = X/Y be the
ratio variable. From error propagation, we know that σ2

z = (dz/dx)2σ2
x + (dz/dy)2σ2

y =

σ2
x/y

2 +x2/y4σ2
y . This expression can be simplified to σz/z =

√
σ2
x/x

2 + σ2
y/y

2, after some

algebra.

σ2
R =

(
σ2

data

(dE/dx)2
data

+
σ2

MC

(dE/dx)2
MC

)
R2 (25)

At this stage, λc,p,E,F is the fit parameter and its standard deviation σλc,p,E,F is calcu-
lated after performing the fit. Nc,p,E,F denotes the number of sampled events in module
m.

Why the constant fit method does not work

Even though dE/dx is Landau distributed, we are using the direct mean values in an
effort to simplify the analysis. Large unphysical fluctuations generated by the Monte Carlo
are not taken into account, as the distributions are truncated at the highest F = 1% values.
The mean can no longer diverge.

23The method of least squares (LSQ) fitting dictates here that if y = a is a (constant) line that describes

the data y1, . . . , yN , we obtain the best fit parameter a by minimising the sum of the squares
∑N

i=1
(yi−a)2.

In this simple case, one quickly finds a = 1
N

∑N

i=1
yi and σ2

a = 1
N

∑N

i=1
y2
i − 1

N2

(∑N

i=1
yi
)2

. a is just the
sample mean. See [81].
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(
dE

dx

)
(m) =

1

N

N∑
i=1

[(
dE

dx

)
i
(m)

]
(F = 1%) (26)

Using the constant fit method with these estimations, one finds the ratios 1.01± 0.01√
128

for C10, 1.00± 0.01√
128

for D4, 0.93± 0.09√
128

for E1, 0.94± 0.06√
128

for E2, 1.07± 0.06√
128

for E3 and

0.94± 0.08√
128

for E4, respectively. The factor 1/
√

128 comes in by taking the data from the

two sides (2× 64 modules) of the detector together. This simplifies the analysis.
Before interpreting these results, one should ask whether they have any meaning at all.

One needs a measure to establish the goodness of fit. The quantity P (n, χ2
c,p,E,F ) denotes

the probability that the observed χ2
observed,c,p,E,F exceeds the value χ2

c,p,E,F by chance, given
a number of degrees of freedom n, even for a correct model. In short, a higher value of P
means a better description of the observable by the model.

When performing the fits in ROOT, one can exploit the built-in hypothesis testing
functionality to calculate the χ2 probabilities. In the case of a constant fit, one merely has
one degree of freedom: the parameter that determines the value of the constant. Choosing
E = 60 MeV and F = 1%, we find that P (n, χ2

c,p,60,1) vanishes, even if we vary E by ±30
MeV or F by ±1%. That is, the χ2 probabilities turn out to be smaller than 0.001.

We find that this model does not describe the double ratio well. The module-by-
module fluctuations are larger than the statistical errors. This implies that we cannot
properly interpret the meaning of the fit parameter. For the purposes of a calibration study,
another estimator for the double ratio is needed. One can then define some significance level
that is used to distinguish statistical fluctuations in the double ratio from real deviations.
Modules that deviate too much are called miscalibrated. By excluding these modules from
the analysis, one is able to check the intercalibrations between cells of different types c.
Also, one can monitor the evolution over time p.

In short, we need some other model that does not use the constant fit described here.

6.7 Gaussian fit method for cell calibration

Let us now develop a method to study the uniformity, calibration and intercalibration of
the cells in the gap/crack region. We compute the double ratio Rc,p,E,F for each module m
separately. In section 6.6, it is shown that a simple constant fit through the (Rc,p,E,F ,m)
histogram has no meaning. One suspects some unaccounted systematic effect needs to be
taken into consideration. The truncated means of the module-by-module dE/dx responses
seem to be Gaussian distributed, as can be seen in figure 27.

If we assume that the (truncated mean) energy depositions in data and Monte Carlo
are both Gaussian distributed, the ratio distribution becomes very complicated. Let us
pause here to understand the concept of a ratio distribution.

44



Figure 27: Double ratio R with a Gaussian fitted through it. The distribution mean µ and
three-standard deviations σ are shown.

Intermezzo: ratio distribution of two Gaussian distributed variables

Let X and Y be independent stochastic variables and let R = X/Y denote the ratio of the
two. In general, the ratio distribution PR(R = r) can be computed as follows.

PR(r) =

∫ ∞
−∞
|y|PX,Y (ry, y)dy (27)

Here, PX,Y (x, y) denotes the joint probability density function of X and Y . In prin-
ciple, we can do the integral if we know how X and Y are distributed. Let X and Y be
independent Gaussian distributed stochastic variables with mean values µx and µy and
standard deviations σx and σy.
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PR(r) =
b(r)c(r)

a3(r)

1√
2πσxσy

(
2Φ

b(r)

a(r)
− 1

)
+

1

a2(r)πσxσy
exp

[
−1

2

(
µ2
x
σ2
x

+
µ2
y

σ2
y

)]
(28)

We define the following auxiliary functions.

a(r) =

√
r2

σ2
x

+ 1
σ2
y

(29)

b(r) = µx
σ2
x
r +

µy
σ2
y

(30)

c(r) = exp

[
b2(r)

2a2(r)
− 1

2

(
µ2
x
σ2
x

+
µ2
y

σ2
y

)]
(31)

Φ =

∫ r

−∞
1√
2π

exp
(
−1

2u
2
)
du (32)

One can argue that the ratio distribution of equation 28 will itself be approximately
Gaussian if the standard deviation in the numerator variable X is much larger than the
standard deviation of the denominator quantity Y , whilst maintaining approximately the
same central values for both X and Y .

Double ratio distribution approached by a Gaussian

In our case, these requirements can be cast in the following mathematical form.

µdE/dx,data ≈ µdE/dx,MC (33)

The first requirement is fulfilled. The mean values of the response are quite the same,
as the ratios are approximately 1.

σdE/dx,data > σdE/dx,MC (34)

The second requirement may be fulfilled, but it cannot be said with certainty. The
Monte Carlo generator used a simulation of the Tile Calorimeter that is symmetric in φ. As
the real detector is less symmetric, for example due to the presence of more (or less) detector
material at some places, we may find that the response dE/dx is not uniformly distributed
over φ. This would result in a response distribution for the data with a larger width than
the Monte Carlo distribution, fulfilling the second requirement. Another effect is that the
size of our Monte Carlo sample is much bigger than the size of the data sample, resulting
in bigger statistical errors for the numerator of the double ratio, as defined in equation 24.
However, this is of less importance as we know from the constant fit considerations that
the standard deviation of the ratio distribution is dominated by the systematic deviations,
σ ≈ σsyst. > σstat..
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Nevertheless, we have grounds to assume the double ratio distribution behaves
like a Gaussian. We allow for small deviations by modelling the double ratio by a
Gaussian distribution with a central value µc,p,E,F and a standard deviation σc,p,E,F . We
will test whether the double ratio distribution really behaves like a Gaussian, using once
again the χ2 as our test statistic.

H0 : P (Rc,p,E,F (m)) ∝ exp

−1

2

(
Rc,p,E,F (m)− µc,p,E,F

σc,p,E,F

)2
 (35)

The estimator for the double ratio is obtained as the central value of the Gaussian fit.
Provided all cells of the same type c are calibrated correctly, which is not at all clear at
this stage, and provided they are well-described by the Monte Carlo, one expects to see
µc,p,E,F ≈ 1. In this study, the energy cut E is taken to be 60 MeV and the truncation
level F is set at 1% in an effort to improve the agreement between data and Monte Carlo.

Miscalibration and calibration factor

The standard deviation is the fit parameter in which we absorb the statistical and system-
atic deviations, σ = σstat. ⊕ σsyst., as there is no apparent way to disentangle these errors
at this level. The cesium calibration system handles the cell equalisation. One should find
σc,p,E,F ≈ 0 if this is done properly. At the level of individual modules, we call a module m
miscalibrated if |Rc,p,E,F (m)− µc,p,E,F | < 3σc,p,E,F is not satisfied. At this significance
level, the probability to commit the type II error, to identify a miscalibrated module that
is actually calibrated properly, is 0.27%. In figure 28, the double ratios are shown for all
cells E2-A. The distribution is Gaussian.

Figure 28: Double ratio distribution for all the cells E2, A-side. The mean value µR (green)
and the 3σR level (red) are displayed to visualise how miscalibrations are found.

The calibration constant CalFactor(m) for an individual module then becomes the
following ratio.
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CalFactor(m) =
µ

R(m)
⊕∆CalFactor(statistical)⊕∆CalFactor(E)⊕∆CalFactor(F ) (36)

We will consider the gap/crack cells, summarised in appendix B, table 12, as different
types of cells.

6.8 Intercalibration for cells of different type

Intercalibration is the effort to equalise the response of cells of different types. The logic
is as follows. One takes out the miscalibrated modules based on the criterium stated by
the Gaussian fit method. After, one reapplies the method to calculate the central values.

Checking the intercalibration is a check of the success of the cesium calibration. As-
suming the cesium constants have been applied correctly, one can use the intercalibration
between layers to check if the method is consistent with earlier results.

6.9 Method validation by layer intercalibration

Unless the experimental conditions changed dramatically, the results obtained by the
method described here should not be too different from the results obtained in earlier
studies. The response dE/dx can largely be considered as a material property. Therefore,
even though the analysis done with cosmic muons involved cuts that we do not (or cannot)
use here, namely Ntracks = 1, ∆x > 200 mm and a different momentum range, we should
still see resemblance with the results from collisions.

Let us apply the Gaussian fit method to cells c ∈ l that belong to some layer l. The
results are tabulated in table 6.

cell µc,p,E,F σc,p,E,F /
√
N σ(E) σ(F )

LB-A 0.99202 ±0.00014 +0.00441
−0.00783

−0.00261
+0.00199

LB-BC 1.00031 ±0.00013 +0.00306
+0.00003

−0.00141
+0.00323

LB-D 1.01397 ±0.00017 +0.00118
−0.00143

+0.00188
−0.01463

EB-A 0.99971 ±0.00282 +0.00405
−0.00891

−0.00177
−0.00167

EB-BC 0.99128 ±0.00009 +0.00143
−0.00038

−0.00156
−0.00167

EB-D 1.00026 ±0.00011 +0.00139
−0.00032

−0.00191
+0.00067

Table 6: Intercalibration of TileCal layers. Central values µc,p,E,F were obtained using the
Gaussian fit method on the double ratio Rc,p,E,F (m) distributions. The statistical error is
denoted by σc,p,60,1/

√
N and the systematic errors introduced by truncating and cutting

in energy are given by +∆E=90
−∆E=30

(E)+∆F=2
+∆F=0

(F ). Miscalibrated cells have been taken out.

Please note the statistical and systematic errors are quite small and the central values
are approximately 1. The bulk of the events lies within the parameter space that is well
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described by the Monte Carlo, after reweighting has been applied. Moreover, the number
of events considered is quite large, O(106).

As discussed in Ref. [63], similar results can be obtained using cosmics. They are
tabulated in 7.

layer Rl (2008) Rl (2009) Rl (2010)

LB-A 0.966± 0.012 0.972± 0.015 0.971± 0.011
LB-BC 0.976± 0.015 0.981± 0.019 0.981± 0.015
LB-D 1.005± 0.014 1.013± 0.014 1.010± 0.013
EB-A 0.964± 0.043 0.965± 0.032 0.996± 0.037
EB-BC 0.977± 0.018 0.966± 0.016 0.988± 0.014
EB-D 0.986± 0.012 0.975± 0.012 0.982± 0.014

Table 7: Results from cosmics. The double ratios data/MC are displayed with their sta-
tistical errors for the different periods that were taken into account. This table was taken
from Ref. [63].

In another study, see Ref. [66], a table was produced for collision muons, using a constant
line fit, different cuts and not taking into account the Intermediate Tile Calorimeter. The
results are tabulated in 8.

cell 2010 2011-D 2011-E 2011-F 2011-G 2011-H

LB-A 0.960± 0.003 0.966± 0.002 0.952± 0.003 0.962± 0.002 0.959± 0.001 0.959± 0.002
LB-BC 0.975± 0.002 0.975± 0.001 0.977± 0.002 0.975± 0.002 0.975± 0.001 0.973± 0.001
LB-D 1.010± 0.003 1.005± 0.002 1.001± 0.003 1.003± 0.002 1.006± 0.001 1.004± 0.002
EB-A 0.958± 0.004 0.969± 0.002 0.967± 0.004 0.965± 0.003 0.967± 0.001 0.970± 0.002
EB-BC 0.976± 0.003 0.973± 0.002 0.966± 0.003 0.972± 0.002 0.973± 0.001 0.966± 0.002
EB-D 0.976± 0.003 0.976± 0.002 0.986± 0.004 0.977± 0.002 0.978± 0.001 0.975± 0.002

Table 8: Results from collisions, not taking into account the Intermediate Tile Calorimeter.
The double ratios data/MC are displayed with their statistical errors for the different
periods that were taken into account. This table was taken from Ref. [66].

The results are comparable within a margin of 4%. The argument here is that the
double ratios should correspond to 1 in either method, in case of an overall well calibrated
detector. Small differences are to be expected, as different cuts are used, but a clear
deviation of the double ratios from 1 should be made visible by both methods, provided
some global shift has not been corrected for. We see that the different studies agree.

6.10 Maximum likelihood method

It is interesting to approach the topic of intercalibration with a method that takes the
module-by-module fluctuations as an extra parameter. We first apply the Gaussian fit
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method to take out miscalibrated modules. Then we extend the notion that the double
ratios are Gaussian distributed, by introducing a smearing s that quantifies the module
dependent systematics. The following two-parameter likelihood function L is fitted to
the data using an instance of the ROOT TMinuit class. Let T = h(X1, X2, · · · , Xn) be a
random variable. From Ref. [67], we know that the maximum likelihood estimator of θ is
the value t = h(x1, x2, · · · , xn) that maximises the likelihood function L(θ). T is called the
maximum likelihood estimator of θ.

L =
2×64∏
m=1

1√
2π(σ2

m + s2)
exp

(
−1

2

[
Rm − µ
σ2
m − s2

])
(37)

One finally obtains some quantifiable handle on the systematics. The central values
should not be different from the ones found by the Gaussian fit method. An example of
how the smearing s is determined using a likelihood surface is displayed in figure 29.

Figure 29: Likelihood surface to determine the smearing s, which quantifies our ”ignorance”
of the real double ratio distribution, in the sense that it measures how well the Gaussian
fit may be performed.

6.11 Chapter summary

Summarising, we will use the double ratio data
MC to determine which of TileCal’s gap/crack

cells are miscalibrated. The term ”double ratio” refers to the fact that the responses dE/dx
in data and Monte Carlo are already ratios, which are then compared by division. As the
double ratio is approximately Gaussian distributed, we will use the Gaussian fit method
as described in this chapter. Any cell that deviates more than 3σ from the mean µ will
be flagged miscalibrated, and for these we recalculate its calibration factor. This way we
equalise the cell responses for cells of the same type.

Cells of different types may be intercalibrated, by applying an overall calibration con-
stant.
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7 Effects of miscalibration on jet physics

This chapter provides a motivation for calibrating the Tile Calorimeter. As described in
section 2.2, the ATLAS Tile Calorimeter is a hadronic calorimeter, that is optimised to
have the best energy resolution for jets. What is the effect of miscalibrated cells to the
measured energy of jets?

In section 7.1, jets are discussed in general. Section 7.2 discusses dijet events at the
LHC. To study jets, one needs jet algorithms that sum up the energy and momenta at the
level of the hadronic calorimeter, as discussed in sections , and . A qualitative conclusion
is drawn about jets in section .

7.1 Jets

At detector level, a jet is a group of hadrons detected within a certain narrow cone. In
event displays, one often considers tracks that seem to travel from the interaction point
towards similar directions. Obviously, jets are not fundamental objects of nature, as they
are composite systems of particles. However, they do obey the laws of conservation of
energy and momentum and one can attempt to describe them in terms of their constituents.

Given a jet j consisting of particles p1, · · · , pN , one may try to reconstruct which process
must have resulted in this particular jet. Here, we see the first indication that there will
not be a unique way to associate the final jet state with a particular initial state. After all,
the hard scattering process24, at the interaction point involved quarks and gluons which,
governed by the strong force, exchange color charge when they interact, whereas jets are
color neutral. See Ref. [68].

Therefore, the collection of jets in a single event may in some ways be thought of as
an indirect representation of the event itself. See Ref. [69]. This ambiguity opens up the
possibility to develop different methods, often called jet algorithms, to reconstruct jets
from physics events.

However, at first glance this does not seem to be logical. One event may contain a
high degree of particles, all carrying energy and momentum (Ei, pi) over a certain track
(ti, xi). Combining these four-vectors into one jet four-vector seems a decrease the amount
of available information. It must be pointed out that a jet finder is an experimentalists
tool, which in effect projects the lower energetic particles onto higher energetic objects,
obtained by combining separate high energetic particles and summing their momenta. In
the simplified picture, a higher energy E comes along with a smaller de Broglie wave-
length λde Broglie. Jets are sometimes referred to as parton-like, as they provide a better
resolution for studying the (higher energetic) hard scattering process. One can use this
narrow stream of momentum to probe the characteristics of the hard scattered matter. By
clustering the hadronic final states, one may be able to determine the underlying parton
structure. See Ref. [70] for an example of such a clustering method.

24qq → qq, qg → qg, etcetera.
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7.2 Two jet production at the LHC

Using proton-proton collisions, an event with jets j in the final state will look like pp→ Nj,
N > 1. The latter is dictated by conservation laws. The majority of jet events will consist
of two approximately back-to-back jets, as dijet events simply have a higher cross section
than events with N > 2 jets. See Ref. [77]. Various phenomenological models aim to
describe jet production in collider experiments. These models are the backbone of Monte
Carlo simulations.

One such a model is the Lund model, linking the concept of quark confinement to the
presence of string shaped color fields. In nature, one often finds baryons of the meson type
qq̄, which in the context of this model is seen as two end-points of a gluonic string, the
quarks, yoyo-ing back and forth under an exerted color force that is considered to be linearly
proportional to the distance between the quarks. In the process of simulating jet formation
using phenomenological models like the Lund model, one distinguishes several phases in
which the matter behaves differently. Close to the interaction point, quark pair production
take place governed by the strong force. This process is referred to as fragmentation.
After the hadronisation step, we are left with jets of hadrons.

In a two-body scattering (1) + (2)→ (3) + (4), one generally finds the following expres-
sion for the cross section σ in the center-of-mass frame.

dσ

dΩ
∝ |M |2

(E1 + E2)2
(38)

Here, Ω is the solid angle with dΩ = sin θdθdφ, Ei is the energy of particle i and M is
the matrix element that describes the amplitude of going from the initial to the final state.
See Ref. [78].

In figure 30, the Feynman diagrams are drawn for the lowest order processes that
contribute to the production of dijet events.

These processes contribute to the matrix elements squared |Mqq|2, |Mqq′ |2 and |Mq′′q′′′ |2,
where the subscript denotes the final state. Let us first write down the first two matrix
elements.

|Mqq|2 =

(
4π

2 · 3

)2

[Tgg + TZZ + Tγγ + TgZ + Tgγ + TZγ ] (39)

∣∣Mqq′
∣∣2 =

(
4π

2 · 3

)2 [
T ′gg + T ′WW + T ′ZZ + T ′γγ + T ′gW + T ′WZ + T ′Wγ + T ′Zγ

]
(40)

The bar denotes initial state spin and colour averaging. Tij is the sum of the interference
between two particles i and j. The contributions are taken from Ref. [79].
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Figure 30: Feynman diagrams for the lowest order processes that contribute to the produc-
tion of hadronic jets in a proton-proton collider; (a) scattering of two identically flavoured
quarks with the same charge, (b) scattering of two different flavoured quarks with the
same charge, (c) scattering of two identically flavoured quarks with different charges, (d)
scattering of two different flavoured quarks with different charges and (e) scattering of two
different flavoured quarks that result in yet another pair two different flavoured quarks.
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7.3 Jet algorithms

A jet defnition is a full set of rules for merging the information from all the separate particles
to obtain just a few parton-like jets. One may ask which particles should be put together
into a common jet, but also how one should combine their momenta. Sofar, we have not
defined yet what a jet is. In fact, each method to reconstruct jets distinguishes itself from
other jet algorithms by the jet definition it corresponds to. Different jet definitions result
in different types of jets with different properties. However, physical results should not
depend on the definition.

This remark translates into the stringent requirement that one would like to have a
jet definition that is insensitive to the emission of soft gluons (E → 0) or collinear gluons
(θ → 0), where the probability for a quark to radiate of a gluon is proportional to the
following expression. ∫

αS
dE

E

dθ

θ
� 1 (41)

Here αS is the strong coupling constant25, E the energy of the quark and θ the emission
angle.

Defining a jet is tricky. The process of parton fragmentation is what causes the high
multiplicity of particles to form in the first place and there are many examples of physical
quantities that are affected by this process. The multiplicity of gluons is obviously variant
under each soft or collinear splitting that takes place. This is an example of an infrared
and collinear unsafe quantity. The energy of the hardest particle is a second example.
See Ref. [71].

As jet algorithms may be iterative in nature, calculating jet axes and energies may scale
with the number of involved particles N. Jet finding may be computationally cumbersome
and in recent years, much effort has gone into inventing intelligent ways to cope with this.

7.4 Sequential Clustering Algorithms

Naively, one could try to specify a certain radius R upon which one decides whether the
particle still belongs to the current jet. More specifically, one could calculate the distances
∆Rij between every two particles i and j in (η,φ) space and require them to be smaller
than R.

∆R2
ij = (ηi − ηj)2 + (φi − φj)2 < R2 (42)

There are several variants of these sequential clustering algorithms that are itera-
tive in nature. An important concept here is the particle26 around which one starts forming
such a protojet, called a seed. The kT algorithm distinguishes so-called protojets based

25At low energy scales, this αS approaches 1.
26In hadronic calorimetry, we consider the calorimetric towers that reflect upon the detector’s granularity.
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on a distance proportional to transverse momentum kT , the anti-kT algorithm utilises the
reciprocal 1

kT
and the Cambridge/Aachen (C/A) algorithm does not take into account the

momenta and just considers cones in the spacial plane.
The step by step approach is as follows.

1. Find the smallest value for dij = min
(
p2n
ti , p

2n
tj

)
∆R2

ij/R
2 and diB = p2n

ti .

2. If dij < diB, recombine them using p2
protojet = p2

ti + p2
tj .

3. If dij > diB, protojet i is considered a jet and will not be considered anymore.

4. Iterate until only jets are left.

n determines the algorithm variant. It is worth noticing that the anti-kT algorithm
will start forming jets around hard seeds, as higher momenta lead to smaller distances dij ,
whereas the kT algorithm will first start recombining the soft particles. This is interesting
in terms of infrared and collinear safety.

n algorithm IR safe collinear safe clustering time

−1 anti-kT safe safe N3

0 C/A safe safe N3

1 kT safe safe N3

Several extensions or variants of these methods exist, such as the usage of flavour de-
pendent distances, or variable parameters R that are given as a function of the transverse
momentum, fine-tuned for the studied event type. One distinguishes exclusive jet algo-
rithms, which just measure distances between protojets without any parameter R, and
inclusive algorithms that take into account the cone distance. One may verify the jet
reconstruction with smaller angles Rredo < R, a procedure called trimming [80].

Moreover, it has to be pointed out that the jet clustering time of N3 is applicable to
the brute force method. Many attempts have been made to reduce this time. In [72], the
clustering time has been brought down to N logN . The main improvement here lies in the
way the protojets are ordered. [73].

7.5 Cone algorithms

Cone algorithms search for stable cones with a certain radius, by checking that the cone
axis, which is the line between the cone center and the interaction point, is pointing in the
same direction as the total momentum of the particles within the cone.∑

i pti
|
∑
i pti|

− rcone

|rcone|
≈ 0 (43)
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Cone algorithms work purely geometrical, making the algorithms less dependent on the
quality of the particle’s energy reconstruction.

In general this may result in multiple overlapping cones, which then have to be resolved
using splitting and merging procedures. This approach is inspired on the occurrence split-
ting and merging in particle detectors, as two particles might end up being detected by
the same calorimeter cell. Moreover, when a particle showers, it may distribute its energy
over multiple calorimeter towers. As collinear splitting and the presence of soft particles
have the potential to shift the jet energy scale or even the final jet states, one often seeks
a way to make cone algorithm IRC safe. In other words, one does not want the properties
of the detector to effect the physics results.

Historically, cone algorithms have been the most successful algorithms in hadron col-
liders and there exist many varieties. Ref. [74,75]. An often employed trick to ensure IRC
safety is to scan the entire event hitmap for all stable cones, rendering the jet definition
seedless. SISCone is one of the more recent examples of such a seedless, IRC safe, cone
algorithm.

In ATLAS, the anti-kT algorithm with radii 0.4 and 0.6 as well as seeded cone algorithms
with radii 0.4 and 0.7 are often used.

7.6 Jets and calibration

Setting the jet energy scale (JES) is the action of applying a correction to the measured
energy Ecalo that depends on the coordinates in (pjet, η) space.

First, the background due to pileup is corrected for, taking out the background formed
by particles from other vertices. Secondly, the jet position is corrected in such a way
that the axis points back to the interaction point. Then a correction is applied based
on a comparison with a Monte Carlo simulation of the calorimeters to obtain values that
approach the simulated jet energies Etruth more realistically. These corrections are needed
to take into account that the sampling fraction f 6= 1 and that the calorimeter may
have holes or dead regions through which potential energy contributions have leaked away.
Moreover, the jet reconstruction may have resulted in signal loss. These issues are often
referred to as the JES uncertainties. See Ref. [76] for a more detailed description on
how these corrections are applied.

After some considerations stated in Ref. [76], we parametrise the correction as follows.

Fcalib,k(E
EM
calo) =

Nmax∑
i=0

ai(lnE
EM
calo)i (44)

EEM,JES
calo =

EEM
calo

Fcalib,k(E
EM
calo)

(45)

Here, Nmax ≤ 6. The measurement of high momentum jets is aided by the Tile
Calorimeter, which sets its electromagnetic energy scale by calibration methods. The
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absolute value of the uncorrected energy EEM
calo influences the corrected energy EEM,JES

calo .
The correction function is implicitly dependent on the η bin that is to be corrected.

Qualitatively, it is clear that any miscalibration ε will linearly affect the measured
energy by the calorimeter by (1 + ε)EEM

calo. This means EEM,JES
calo will be ε-dependent. A

typical jet may have a jet uncertainty of 2% and transverse momentum pT = 100 GeV.
The energy measurement of such a jet should match the Monte Carlo within a few GeV,
such that no additional systematic error introduced by any miscalibration.
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8 Results

The purpose of this thesis is to study the calibration of TileCal’s gap/crack cells. These
are the cells as described in section 4.2, namely C10, D4 and the scintillator tiles E1, E2,
E3 and E4. A cell map is shown in figure 6. They were introduced into the gap/crack
region between the long barrel and the endcap to reduce the systematic error on the energy
measurement. Some of these cells have deviating dimensions to provide space for electric
wires and cooling. These results for these special gap/crack cells are also shown here.

In this chapter, we will show which calorimeter cells in the gap/crack region are mis-
calibrated, obtained using the method described in section 6.7. Calibration constants will
be tabulated to correct for the miscalibrations.

8.1 Energy depositions

The energy deposited in the cells is approximately linearly dependent on the track length,
as can be seen in the scatterplots 31, 32 and 33.

Figure 31: Deposited energy E versus the path length ∆x of muons traversing the D4
cells. The D4 cell is a cuboid like all other D-cells. The slope of the straight black line is
approximately 1 MeV/mm and represents the additional deposited energy per extra unit
path length through D4.
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Figure 32: Deposited energy E versus the path length ∆x of muons traversing the C10
cells. The normal C10 cell is a cuboid, but the special C10 cells are scintillators with a very
limited thickness and can thus be associated to a limited path length of a track through
the cell. The two different type of cells occupy very distinctive regions in the plot, around
130 mm and 16 mm respectively.
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8.2 φ-uniformity

The φ-uniformity of response in the Monte Carlo is in dispute, as the response in the
Monte Carlo cannot be described by a constant line. Module-by-module fluctuations are
bigger than the statistical errors and the χ2 probabilities associated to the constant fits
vanish. A similar effect is observed in the data. These fluctuations are not taken out by
computing the double ratios, as is depicted in figures 34 to 45 for all cells that interest us
here. Therefore, a constant fit does not suffice for our study and a Gaussian fit method
was introduced.

8.3 Calibration tables

With this method, we found a layer intercalibration that is comparable to previous studies,
within a discrepancy of 4%, using all 2010 and 2011 data up to period 2011-H. There-
fore, the method can be applied to study the specific cells in the Intermediate TileCal
region. Miscalibrated cells are cells that deviate more than 3σ from the central value. The
calibration factors for each of the miscalibrated cells are tabulated in table 9. Systematic
errors introduced by the E and F cuts are included.

After taking out the miscalibrated cells, we compute the central values of the double

Figure 33: Deposited energy E versus the path length ∆x of muons traversing the gap/crack
scintillators E1, E2, E3 and E4. The scintillating tiles have a very limited thickness. This
makes it unlikely to find large values for ∆x, and also ∆x = 0 is quite improbable.
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Figure 34: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in C10, A-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.

Figure 35: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in C10, C-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.
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Figure 36: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in D4, A-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.

Figure 37: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in D4, C-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.
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Figure 38: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in E1, A-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.

Figure 39: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in E1, C-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.
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Figure 40: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in E2, A-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.

Figure 41: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in E2, C-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.
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Figure 42: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in E3, A-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.

Figure 43: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in E3, C-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.
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Figure 44: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in E4, A-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.

Figure 45: Energy deposited by muons from W → µν (left) and the cell response dE/dx
(right) as a function of module m in E4, C-side. The cuts used here are E = 60 MeV,
F = 1%. The data/Monte Carlo ratios are shown.
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cell module CalFactor(m)

C10
45-C 1.4621+0.01216

−0.01222

52-C 0.8008+0.07878
−0.07878

special C10

D4

2-A 1.2153+0.02041
−0.00237

3-A 0.8743+0.04000
−0.01980

5-A 1.1545+0.00175
−0.04265

10-A 0.9843+0.00196
−0.00981

13-A 1.1193+0.05074
−0.04148

29-A 1.0241+0.03602
−0.11255

30-A 1.1506+0.01938
−0.01410

31-A 1.0326+0.00547
−0.01131

36-A 0.9020+0.00824
−0.00775

38-A 1.0674+0.00386
−0.01268

50-A 1.0260+0.07485
−0.00376

51-A 1.0108+0.08641
−0.02322

52-A 0.8016+0.05055
−0.23198

54-A 0.8535+0.01874
−0.06202

64-A 0.9238+0.00484
−0.00524

special D4

E1 12-C 0.6764+0.02810
−0.03200

E2

26-A 0.4070+0.00855
−0.01203

36-A 1.5240+0.04140
−0.01722

41-A 0.5848+0.58495
−0.77402

48-A 1.6092+0.18460
−0.62358

50-A 0.3129+0.01765
−0.04201

61-A 1.3076+0.00484
−0.03653

12-C 0.6764+0.35738
−0.32854

36-C 1.3289+0.00135
−0.00176

37-C 1.3716+0.13584
−0.09258

53-C 0.2341+0.03767
−0.05364

61-C 1.3616+0.00918
−0.02509

E3

2-A 0.7156+0.00454
−0.03324

15-A 0.6800+0.00993
−0.00364

54-A 0.6198+0.00777
−0.04624

11-C 0.5634+0.00746
−0.12823

E4 15-A 0.7647+0.01284
−0.00409

Table 9: Miscalibrated cells in the Tile Calorimeter gap/crack region. Calibration constants
CalFactor(m) are calculated based upon data from 2010 (all) and 2011 (B-I).
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ratios using 2010 and 2011 data, up to data taking period 2011-H, listed in table 10.

cell µc,p,60,1 ± σc,p,60,1√
N

(stat.)+δE=90
−δE=30

(E)+δF=2
+δF=0

(F )

C10-A 0.9628± 0.01466+0.01808
−0.00622

C10-C 0.9848± 0.01584+0.01229
−0.01234

special C10-A 0.9741± 0.03554+1.44176
+0.08258

special C10-C 0.9171± 0.03145+0.03245
−0.01556

D4-A 0.9977± 0.01111−0.00790
−0.00825

D4-C 0.9691± 0.07007−0.00335
+0.00163

special D4-A 0.9297± 0.09568+0.00539
−0.03010

special D4-C 0.95978± 0.12656−0.03549
−0.02366

E1-A 1.02190± 0.01276+0.01466
−0.02375

E1-C 1.04762± 0.00949+0.01508
−0.01294

E2-A 1.03886± 0.00762−0.00953
−0.00287

E2-C 1.04615± 0.00789+0.00757
−0.00659

E3-A 0.83024± 0.02073−0.01669
−0.01239

E3-C 0.89662± 0.01502+0.00133
−0.03550

E4-A 0.95590± 0.01153+0.00479
−0.04572

E4-C 0.97000± 0.01417−0.02563
−0.02206

Table 10: Central values µc,p,E,F obtained by using the Gaussian fit method on the double
ratio Rc,p,E,F (m) distributions from 2010-2011 data. The statistical error is denoted by
σc,p,60,1/

√
N and the systematic errors introduced by truncating and cutting in energy are

given by +δE=90
−δE=30

(E)+δF=2
+δF=0

(F ). Miscalibrated cells have been taken out.

The maximum likelihood method described in section 6.10 can also be used to quantify
the intercalibration, taking into account a second parameter s that measures the smearing.
The results produced with this method, after applying the usual cuts and Monte Carlo
reweighting, are tabulated in table 11. Systematic errors are included in the analysis for
either the double ratios and smearing parameters.
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cell µc,p,60,1 ± σc,p,60,1√
N

(stat.)+δE=90
−δE=30

(E)+δF=2
+δF=0

(F ) s± σs√
N

(stat.)+δE=90
−δE=30

(E)+δF=2
+δF=0

(F )

C10 1.012± 0.005+0.022
−0.010

+0.026
−0.019 0.000± 0.230+0.068

+0.066
+0.068
+0.054

D4 1.010± 0.007−0.001
−0.002

+0.007
−0.023 0.055± 0.006−0.004

−0.006
−0.003
+0.005

E1 0.952± 0.009+0.007
−0.012

+0.003
+0.005 0.082± 0.008−0.002

−0.001
+0.001
−0.002

E2 0.952± 0.013+0.014
−0.009

+0.000
−0.000 0.135± 0.009−0.028

+0.007
−0.001
+0.001

E3 1.120± 0.018−0.001
−0.053

+0.007
−0.006 0.178± 0.013−0.037

+0.017
+0.004
−0.008

E4 0.961± 0.011−0.042
−0.006

+0.003
+0.003 0.106± 0.008−0.035

+0.021
+0.002
−0.008

Table 11: Quantifying the intercalibration of TileCal gap/crack cells using a maximum
likelihood method. An additional smearing factor s is introduced to model fluctuations of
the double ratio with respect to the central value.

9 Conclusions and outlook

One can use a 3� significance level to reject the hypothesis that a module is calibrated,
using a gaussian fit to obtain the central value and the standard deviation of the double
ratio R = data/MC.

In this study, we checked the response of the TileCal cells in the gap/crack region to
W → µνµ collision muons and found that 3 C10 cells are miscalibrated. Amongst the scin-
tillators, 2 E1 cells, 7 E2 cells and 1 E4 cell were found to be miscalibrated. The calibration
constants provided in table 9 should be applied to correct for these miscalibrations.

The intercalibrations found by the Gaussian fit method, tabulated in table 10, do not
quite agree with cosmics results that were obtained earlier this year. See Ref. [64]. Values
of the central values using the Gaussian fit overestimate the values obtained using cosmics
by 3-15% with respect to the previous study. This discrepancy is not understood and
requires further attention. It must be pointed out however, that the momentum range
chosen in the cosmics study, pµ > 10 GeV, does not agree with the selection to obtain a
clean muon track sample used in this collision study, namely pµ > 40 GeV. Moreover, for
the scintillators E3 and E4 that cannot be calibrated by the cesium system, no energy cut
E was used in the cosmics study.

Overall, different cell types are intercalibrated between ranges of -11% and +4%.
Using a maximum likelihood method, we find that the intercalibration is between -

5% and +1%. The smearing s quantifies some unknown systematic that may explain the
non-uniformities found in the data. The smearing is found to take on values between the
minimum of 0% for C10 and the maximum of 18% for the E3 scintillator.

We have found that calibrating the Tile Calorimeter is important in setting the jet
energy scale.

This year and next year, more collision data will be recorded that can be used to monitor
the calibration of our hadronic calorimeter, before the planned technical stop commences
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in 2013. This calibration campaign needs continuous attention of the experimentalists
working in the TileCal collaboration, as an optimal calibration is the key to a just en-
ergy measurement. If we can convince ourselves that the Intermediate Tile Calorimeter is
properly calibrated and well understood by simulations, we may fully utilise its potential
experimental value, increasing the overall achieved energy resolution. A better energy res-
olution means that less data is necessary to study interesting physics channels, taking us
one step closer to discovery.
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Notes

1Einstein postulated that the speed of light c is invariant under Lorentz transformation. A light pulse
moving back and forth a distance d between two mirrors takes t = 2d

c
per turn. An observer in a moving

train, however, measures t = γ 2d
c

per turn, due to this postulate. The γ factor takes into account that the
travelled distance has increased, but the speed remained the same value, and follows from direct calculation.

2εs = 4πσtσδE/E0
E0, where σt is the bunch duration in seconds, σ∆E/E0

the relative energy spread and
E0 the beam energy.

71



Appendices

A. Path reconstruction in TileCal

Consider a muon track t, extrapolated to all detector layers using the ATLAS Track-
Extrapolator functionality in ATHENA. What is the path of this track t through
cell c? The track extrapolator parametrises the track in three dimensions. One obtains
the layer l dependent coordinates (rn(l), φn(l), ηn(l)) or (xn(l), yn(l), zn(l)) for each track.
Here, n counts the number of track parameters per layer. This may be more than one,
depending on the quality of the extrapolation. Continuing in Cartesian coordinates as
defined in section 1.4, we enclose a cell by the two adjacent layers that are also crossed by
the track.

Now, let (x0, y0, z0) be the point where the extrapolated track intersects the adjacent
layer that is further away from the interaction point than the cell itself. Similarly, we define
(x1, y1, z1) on the layer that is closer to the interaction point. In other words, z1 < zc < z0

for cells with η > 0 and z0 < zc < zl for cells with η < 0. The first step is to calculate the
coordinates of the points where the track intersects the inner and outer radial planes of
the cell. In the ROOT analysis, the two cylinders at R−′ = rc −′ ∆rc

2 and R+′ = rc +′ ∆rc
2

are considered. Some algebra reveals that the coordinates are given by (x±, y±, z±).

x± = −b±
√
b2−4ac

2a

y± = y0 + y1−y0

x1−x0

(
−b±
√
b2−4ac

2a − x0

)
z± = z0 + z1−z0

x1−x0

(
−b±
√
b2−4ac

2a − x0

)
(46)

One computes a, b and c as follows.

a = 1 +
(
y1−y0

x1−x0

)2

b = 2 y1−y0

x1−x0

(
y0 − y1−y0

x1−x0
x0

)
c = y2

0 +R2
±′ +

(
y1−y0

x1−x0

)2
x2

0 − 2x0y0
y1−y0

x1−x0
(47)

(48)

The index ± is based on whether plus or minus results in the lowest value for (x± −
x0)2 + (y±− y0)2 + (z±− z0)2. After this calculation has been performed for both R±′ , one
checks whether the track has intersected or missed the cell with these values. To do this,

one first looks at the (φ, z) coordinates. If both requirements z± ∈
[
zc − ∆zc

2 , zc + ∆zc
2

]
and φ± ∈

[
φc − ∆φc

2 , φc + ∆φc
2

]
hold, one intersection of the track with the cell has been

found. In fact, if both requirements hold for either the inner and outer radial surfaces, the
path length of the track through the cell is readily computed.

72



∆x =

√
(x±,inner − x±,outer)

2 + (y±,inner − y±,outer)
2 + (z±,inner − z±,outer)

2 (49)

However, the three-dimensional cell has six sides. If only one intersection point is found
using the above described method, it is quite likely that the other intersection point can
be found on the remaining four sides. These four sides can be characterised in words by
the plane at zc,min, the plane at zc,max, the plane at φc,min and the plane at φc,max. Let us
calculate the Cartesian coordinates of the extrapolated tracks in these planes, respectively.

xplane = x1 + x0−x1
z0−z1

(
zc,min/max − z1

)
yplane = y1 + y0−y1

z0−z1

(
zc,min/max − z1

)
zplane = zc,min/max (50)

(51)

xplane =
x1 − x0−x1

y0−y1
y1

1− x0−x1
y0−y1

tanφc,min/max

yplane = xintersection tanφc,min/max

zplane = z1 + z0−z1
x0−x1

(xintersection − x1) (52)

(53)

These coordinates are intersections if all following requirements are fulfilled.

R± ∈ [Rc,min, Rc,max]

φ± ∈ [φc,min, φc,max]

z± ∈ [zc,min, zc,max] (54)

When two intersection points are found, one applies equation 49 to get the path length
∆x.
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B. Cells in the Intermediate TileCal region

The dimensions of the relevant cells are shown here. Table 12 lists the module numbers and
(R, z) dimensions for all the special cells in the ITC region. Special cells are necessary to
provide space for cables and electronics and are always smaller than the normal specimens
in the same layer.

partition module cell R dR |z| dz remarks

EBA 42/55 C10 3215 450 3511 12 scintillator
EBA 39/40/41/56/57/58 C10 3215 450 3511 12 scintillator
EBC 42/55 C10 3215 450 3501 12 scintillator
EBC 39/40/41/56/57/58 C10 3215 450 3501 12 scintillator
EBA 14/18/19 D4 3630 380 3405 95 reduced size
EBC 14/15/19 D4 3630 380 3395 95 reduced size
EBA 15 D4 3630 380 3405 308.3 merged with D5
EBC 18 D4 3630 380 3395 308.3 merged with D5

Table 12: Dimensions of the TileCal special cells in the ITC region, in mm.

Table 13 lists the η positions and (R, z) dimensions for all the normal cells in the ITC
region.

cell |η| R dR |z| dz remarks

C10 0.96 3215 450 3511 95 A-side
C10 0.96 3215 450 3501 95 C-side
D4 0.86 3630 380 3405 309 A-side
D4 0.86 3630 380 3395 309 C-side
E1 1.06 2803 313 3552 12 gap scintillator, A-side
E1 1.06 2803 313 3542 12 gap scintillator, C-side
E2 1.16 2476 341 3552 12 gap scintillator, A-side
E2 1.16 2476 341 3542 12 gap scintillator, C-side
E3 1.31 2066 478 3536 6 crack scintillator, A-side
E3 1.31 2066 478 3526 6 crack scintillator, C-side
E4 1.51 1646 362 3536 6 crack scintillator, A-side
E4 1.51 1646 362 3526 6 crack scintillator, C-side

Table 13: Dimensions of the normal TileCal cells in the ITC region, in mm.

There exists a one-to-one and onto mapping between the φ coordinate and module
number m, tabulated in 14.
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module φ (rad) module φ (rad) module φ (rad) module φ (rad)

1 0.0491 17 1.6199 33 -3.0925 49 -1.5217
2 0.1473 18 1.7181 34 -2.9943 50 -1.4235
3 0.2454 19 1.8162 35 -2.8962 51 -1.3254
4 0.3436 20 1.9144 36 -2.7980 52 -1.2272
5 0.4418 21 2.0126 37 -2.6998 53 -1.1290
6 0.5400 22 2.1108 38 -2.6016 54 -1.0308
7 0.6381 23 2.2089 39 -2.5035 55 -0.9327
8 0.7363 24 2.3071 40 -2.4053 56 -0.8345
9 0.8345 25 2.4053 41 -2.3071 57 -0.7363
10 0.9327 26 2.5035 42 -2.2089 58 -0.6381
11 1.0308 27 2.6016 43 -2.1108 59 -0.5400
12 1.1290 28 2.6998 44 -2.0126 60 -0.4418
13 1.2272 29 2.7980 45 -1.9144 61 -0.3436
14 1.3254 30 2.8962 46 -1.8162 62 -0.2454
15 1.4235 31 2.9943 47 -1.7181 63 -0.1473
16 1.5217 32 3.0925 48 -1.6199 64 -0.0491

Table 14: φ coordinates for all 64 TileCal modules m. The module numbers can be mapped
bijectively to the φ interval (−π, π). Please note |∆φ| = 0.0982 for |∆m| = 1. The module
numbers are defined in such a way that m(φ) is discontinuous at φ = 0.
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D. Cross calibration

Especially useful in diagnosing problems or monitoring the time stability is to check the
correspondence between the different calibration systems. It would serve as a validation of
the calibration systems when a PMT gain variation (for example) that is spotted by the
laser system is also detected in the next cesium run.

In the context of this study, a macro has been created concerning the cross calibration.
One could perform a Kolmogorov-Smirnov test to check or consistency amongst the calibration
systems. A Kolmogorov-Smirnov test uses the accumulative distributions to enable one to
compare two samples of measured values. One expects the different calibration stems to
respond to changes in a similar way. In particular, the laser system should complement the
cesium system. The (module,channel,p) histogram is in particular interest here, where p
is the Kolmogoriv-Smirnov probability. It measures the degree of correspondence between
two systems.

Moreover, a graphical user interface was developed to display the output of the SaveTree
worker. This worker retrieves the calibration constants of the different systems and stores
them into a single Ntuple, organised by detector region.

Figure 46: Relative Kolmogorov-Smirnov
probability densities for the TileCal LBC
partition obtained by comparing the devi-
ations in laser system and charge injection
system. The values are not normalised. The
white lines reveal that for some modules and
cells, the Ntuples used over this period (May
2010 - March 2011) did not contain data.

Figure 47: A graphical user interface was de-
veloped that handles the output of the Save-
Tree worker. It has not been actively used
sofar. The structure of the detector in terms
of partitions, modules and channels is dis-
played in the options menu on the left. On
the right, we can see the deviations in the
laser constant plotted for the extended bar-
rel (A-side), module 12.
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E. Momentum cut and period dependencies

In tables 15 and 16, we list the central values from the Gaussian fit method for the different
layers and each period, cutting the energy at 30 MeV and 90 MeV respectively.

layer 2010 2011-D 2011-E 2011-F 2011-G 2011-H

LB-A 0.9508± 0.0041 0.9702± 0.0039 0.8806± 0.0067 0.9582± 0.0047 0.9693± 0.0058 0.9589± 0.0032
LB-BC 0.9768± 0.0038 0.9838± 0.0033 0.9285± 0.0063 0.9862± 0.0043 1.0024± 0.0027 0.9798± 0.0030
LB-D 0.9751± 0.0043 0.9443± 0.0054 0.9462± 0.0106 0.9678± 0.0050 1.0049± 0.0033 0.9918± 0.0035
EB-A 0.9706± 0.0034 0.9874± 0.0031 0.9316± 0.0059 0.9709± 0.0037 0.9962± 0.0023 0.9922± 0.0026

EB-BC 0.9617± 0.0025 0.9753± 0.0024 0.9377± 0.0044 0.9598± 0.0027 0.9675± 0.0017 0.9746± 0.0020
EB-D 0.9525± 0.0031 0.9627± 0.0031 0.9058± 0.0060 0.9601± 0.0038 0.9754± 0.0024 0.9768± 0.0028

Table 15: Central values µc,p,E,F obtained by using the Gaussian fit method on the double
ratio Rc,p,E,F (m) distributions. The energy cut E is taken to be 30 MeV, the truncation
level F is 1%. The errors shown are the statistical errors.

layer 2010 2011-D 2011-E 2011-F 2011-G 2011-H

LB-A 0.9599± 0.0040 0.9716± 0.0038 0.8936± 0.0064 1.0000± 0.0000 1.0000± 0.0000 0.9657± 0.0031
LB-BC 0.9776± 0.0037 0.9880± 0.0034 0.9323± 0.0062 1.0000± 0.0000 1.0000± 0.0000 0.9820± 0.0029
LB-D 0.9756± 0.0043 0.9811± 0.0040 0.9479± 0.0105 1.0000± 0.0000 1.0000± 0.0000 0.9915± 0.0035
EB-A 0.9880± 0.0034 0.9956± 0.0031 0.9386± 0.0058 1.0000± 0.0000 1.0000± 0.0000 0.9992± 0.0027

EB-BC 0.9655± 0.0035 0.9761± 0.0024 0.9376± 0.0045 1.0000± 0.0000 1.0000± 0.0000 0.9751± 0.0031
EB-D 0.9539± 0.0031 0.9589± 0.0031 0.9057± 0.0060 1.0000± 0.0000 1.0000± 0.0000 0.9819± 0.0029

Table 16: Central values µc,p,E,F obtained by using the Gaussian fit method on the double
ratio Rc,p,E,F (m) distributions. The energy cut E is taken to be 90 MeV, the truncation
level F is 1%. The errors shown are the statistical errors.

Interestingly, the response is found to drift over time. In the gap/crack region, we find
an upward drift as displayed in figure 48.
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Figure 48: Time evolution of the response double ratio (dE/dx)data/(dE/dx)MC. The
data points correct to periods 2010, 2011-D, 2011-F, 2011-G and 2011-H. An up-drift of
approximately 6% is visible. From left top to right bottom are displayed C10, D4, E1,
E2, E3 and E4. The black line is generated using E = 60 MeV, F = 1%, the blue line
by varying the energy cut by ±30 MeV with respect to the black line, and the red line by
varying the truncation level by ±1% with respect to the black line.
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