
SLAC-PUB-1315 
(T/E) 
October 1973 

SPECULATIONS ON THE BREAKDOWN OF SCALING AT lo-I5 CM* 

Michael S. Chanowitz and Sidney D. Drell 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

Abstract .-- 

We discuss the hypothesis that scaling in deep inelastic electron-nucleon 

scattering is a “preasymptotic” phenomenon, which will be broken at energies 

large enough to probe the structure of the constituents of the nucleon. In par- 

ticular, we consider a model in which the constituents are light (i.e., M 5 Mp) 

and are bound by a very heavy gluon (MG 7: Mp), which induces a small “size” 

in the constituents of order MGIO The experimental implications of this hypothesis 

are discussed, primarily for the region of momentum transfers M2 << Q2 << M2 
G’ , 

In a bound state model, using the Bethe-Salpeter equation in ladder approxima- 

tion, we show that the deviations from simple scaling behavior in space-like 

scattering and time-like annihilation processes are correlated and measure the 

“size” of the constituent. Finally, we show that the hypothesis that the constit- 

uent has structure is not inconsistent with local current algebra and, in particu- 

lar, the Adler sum rule for neutrino-nucleon scattering. 
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I. INTRODUCTION 

The observed scaling behavior of the structure functions for deep inelastic 

electron scattering has led to major new concepts and techniques in the study of 

the hadron and its interactions. The proton has been analyzed as an assemblage 

of incoherently scattering point-like “partons” ;I as a relativistic bound state of 

point-like constituents;2 and in terms of the singularities of products of local 

current operators near the light cone. 3 

In these analyses it is typically assumed that scaling reflects the fact that 

one is probing, with high resolution, the asymptotic, short-distance structure 

of the internal constituents of the nucleon. Here we wish to propose an alternative 

framework. We shall also assume that scaling is connected with the existence of 

constituents inside the nucleon, but the fundamental difference in our point of view 

is this: We assume that scaling reflects not the asymptotic but rather the pre- 

1 asymptotic-structure of the nucleon’s constituents. 4 Our hypothesis is that in the 

‘range of Q2 and u probed until now, previous electroproduction experiments have 

been too coarse to resolve the structure of the constituents. Thus it is the blunt- 

ness of the probe which is responsible for the observation of simple scaling, and 

there is no reason to expect that the constituents are themselves simple objects. 

Scaling does not represent the fact that we have probed inside the structure cloud 

of the constituent, but, to the contrary, it represents the fact that we have not yet 

even begun to probe its structure cloud. 

In this paper we shall illustrate these ideas with a simple model in which the 

nucleon is a weakly bound system of light constituents and the binding force is sup- 

plied by the exchange of a massive gluon. That such a model is a consistent dynam- 

ical proposition is a conjecture on our part which may or may not be supported by 

further investigation. 5 However, independent of the particular model we have 
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chosen to display in this paper, we wish to emphasize that the predicted scale- 

breaking effects in the deep inelastic and lepton annihilation experiments depend 

pivotally on our view that scaling is a preasymptotic phenomenon and that scaling 

may be observed under limited kinematic conditions between non-scaling regions. 

The prediction of primary experimental importance is that there are “hints” in the 

present data suggesting that we are on the verge of seeing the next scale of length 

at which simple scaling will fail. 

We have already briefly described these ideas in a recent letter, 6 and here 

we wish to present a more complete discussion. The plan of the paper is as 

follows: 

In Section II, we discuss heuristically a model of the nucleon as a bound state 

of light constituents (quarks ?) bound together by very massive (M, >> 1 GeV) gluons. 

In Section III, we discuss the experimental hints (or “prejudices”) which lead us to 

conjecture that the length at which scaling fails is - 10 -15 cm. Of especial im- 

portance is our prediction of the correlation between the deviations from scaling 

laws for space-like and time-like momentum transfers. In Section IV, we return 

to the model of Section II, presenting a formal analysis using the Bethe-Salpeter 

equation in the ladder approximation. In Section V, we discuss the consequences 

for current algebra (and, in particular, for the Adler sum rule) of the hypothesis 

that the nucleon constituents are not point-like. We explore the use of smeared 

“almost-equal-time” commutators to derive current algebra sum rules which are 

truncated at finite energies. Finally, in Section VI, we make some concluding 

remarks, discussing in particular the possibility that the nucleon’s constituents 

are very heavy. 
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II. A BOUND STATE MODEL OF THE PROTON 

In a relativistic bound state model of the proton as a composite structure2 

the notion of point-like constituents bound by a gluon sea is introduced. From 

this point of view an exact scaling behavior would be a revolutionary departure 

from all that has been learned on the atomic and nuclear scales. Indeed, in the 

nuclear case, the pseudoscalar and vector mesons that bind the nucleons together 

into a nucleus give rise via their radiative self-effects to nucleon structure and 

consequently to deviations from scaling behavior. If we (unimaginatively) pursue 

the atomic and nuclear analogies to higher energies and momentum transfers, we 

are led to expect similarly that the gluons give rise to structure for the constit- 

uents of the nucleon so that, at best, we will observe approximate scaling laws 

that are valid over limited intervals of Q2 and v. Deviations from scaling will 

be observed in the kinematic regions when the Q2 are large enough so that the 

electromagnetic currents are probing within the structure of the individual con- 

stituents or when the v are large enough so that we are above the threshold to 

produce gluons in the final state 0 In between such non-scaling regions there may 

be individual scaling plateaus. 

On the atomic scale, the scaling law is obeyed up to momenta and energies 

( M 10’s of MeV) when the nucleus can no longer be treated as point-like. A trans- 

ition region with no scaling, which sets in while we start probing nuclear structure, 

persists until at Q2 z (400 MeV/c)2, as in Fig. 1, the nucleus responds as an 

assemblage of incoherently scattering individual nucleons. 7 However, in this 

case the “would-be” scaling is violated before it begins by the production of pions 

and by the nucleon form factors which vary with Q20 This is because the electro- 

magnetic current is already probing well within the structure clouds of the indi- 

vidual nucleons by the time Q2 is large enough for them to be scattering incoher- 

ently. At still larger v and Q2 we emerge once again onto a scaling plateau when 
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the composite nucleon structure scatters as an assemblage of independent point- 

like constituents. In contrast to the nuclear case, we actually do see scaling 

occur in this case (Bjorken scaling) which means that the constituents of the 

nucleon, if not actually point-like, must be much smaller than the nucleons them- 

selves. The fact that the onset of scaling occurs at such small values of Q2 sug- 

gests that the constituents of the nucleon may be relatively light and weakly bound 

( E few hundreds of MeV). 

The notion of weak binding of light quarks (MQ - 300 MeV) to form the nu- 

cleon is in accord with analyses of baryon spectra and transition amplitudes which 

are generally computed with considerable success on the basis of a non-relativistic 

quark model. 8 The basic problem of why we don’t ” see” free, individual quarks 

or partons of the nucleon persists in this approach and we have nothing to add to 

the resolution of this problem. Among the “excuses” for non-observation of quarks, 

Johnson’s’ proposal of a dynamical mechanism for creating a confining self- 

consistent potential is closest to our view and might be adopted. We must also 

keep in mind, in adopting this point of view, that the three SU(6) quarks which con- 

stitute the nucleon are related by a non-trivial transformation to the quark fields 

which determine the leading singularities of products of hadronic currents. 10 How- 

ever, even if relativistic effects as contained in such a transformation are important 

in the nucleon, we would still expect the constituents to have such structure due to 

their gluon clouds. 11 

Once again, as we further increase Q2 and v the electromagnetic current 

probes for internal structure of these constituents. There is the possibility that 

none will be found and the Bjorken scaling behavior is exact. In this case we 

will have reached the ultimate constituents or the innermost layer of particle struc- 

ture in nature and there will be no higher mass scale separating us from the light 
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cone. Alternatively, pursuing the atomic, nuclear, and nucleon analogies one 

more round, the constituents of the nucleon may themselves have structure, 12 

and deviations from scaling will be observed when Q2 and v grow to values that 

excite their internal dynamics and probe their gluon cloud structure. However 

the very fact that we have found scaling to occur to a good ( NN f 15%) approxima- 

tion in the region 1.5 < Q2 < 10 GeV2 and 2 < v c 20 GeV means that we have 

evidently not yet seen the form factor of the constituent, nor have the gluons that 

bind them and give them structure been produced. These facts can be accounted 

for by asserting that the gluons are very heavy, and their mass defines a scale of 

new physics. 

In light-cone language, this picture corresponds to successive hierarchies of 

masses separating us from the light cone (see in particular K. Wilson’s Photon 

Symposium talk, ref. 4). Approximate scaling laws will be valid whenever there 

is an interval between adjacent mass or binding energy scales Ei and Ei+l such that 

Ei << Q2, & << Ei+l 

In contrast, in the field theory and parton models with superconvergent be- 

havior , scaling behavior 13 emerges from the formalism because there are no 

masses larger than the nucleon’s, M 
P 

NN 1 GeV. In the deep inelastic Bjorken 

region the electromagnetic current has already seen through the structure cloud 

“dressing” the constituents and is scattering from the point-like bare constituents 

themselves. In these models the constituent form factor is a constant in the 

scaling region. Corrections to the scaling behavior and to the constancy of Fc(Q2) 

are proportional to M Mi/Q2 and are negligible in the Bjorken limit. 

Very simply then, the question is whether the presently observed scaling 

represents the asymptotic point-like core of the nucleon constituent or whether 

it represents a preasymptotic behavior in which one has not yet begun to see the 
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structure of the constituent. We are here advocating the latter alternative as 

the more conservative explanation of the origin of scaling. 

A striking and unexpected property of the observed Bjorken scaling is its 

“precocity, ” i. e. , the fact that the scaling is realized for surprisingly small 

values of Q2 and V. “Precocity” has a natural explanation in our model of the 

proton as a weakly bound system, since we expect the impulse approximation 

to apply and scaling to occur when Q2 > > mEB, where m is the constituent mass 

and EB is the binding energy. The smaller EB the more precocious the scaling. 

However it is also a consequence of such a weak binding model that we would 

then expect to see a quasi-elastic peak, which does occur in the nuclear case, 

Fig. 1, but is not evident in the proton structure functions. Now the shape of 

the nucleon’s structure functions is also assumed to reflect the fact that the 

nucleon is not composed of a fixed number of constituents but in fact the nucleon 

wave function is a sum of amplitudes involving different numbers of constituents. 

For small w the virtual photon probes the part of the wave function dominated 

by small numbers of constituents with relatively weak binding and we expect 

precocious scaling. For very large w on the other hand the amplitudes for 

large numbers of constituents, each bearing a small momentum fraction x = l/w, 

are important. In this case their binding must be stronger, and we do not expect 

as precocious an approach to scaling. Of course we do not expect the nuclear 

analogy to be a reliable guide in the nucleon case for very large values of W. 

However if one looks at the neutron-proton difference one finds what looks like 

a quasi-elastic peak centered near w -3. This suggests that the multi-constituent 

amplitudes which dominate at large w are largely isoscalar, so that the n-p 

difference is dominated by the parts of the amplitude containing few constituents 

(i.e. , the “valence quarks”) for which the nuclear analogy should be a more 

reliable guide. 
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If these ideas are correct, then as we increase w from small to moderate 

values, we would expect the approach to scaling for the proton to become less 

precocious. The best scaling data now available is from the small w region, 

w 5 4, and it will be interesting to study the approach to scaling as accurate data 

is accumulated at larger w. 

To summarize, imitative thinking by analogy has led to a simple qualitative 

model of the proton: a weakly bound system of light constituents (perhaps quarks) 

with their strong interaction carried by massive gluons. We cannot, however, 

advocate this picture as a complete theoretical basis for understanding nucleon 

structure because: 

(1) We have no dynamical theory relating the constituent and gluon 

masses and the interaction strength to the nucleon radius and mass, 

and so we have no assurance that such a model can be realized in 

a consistent dynamical system; and 

(2) We have no explanation for the non-appearance of the constituents. 

Our interest in the model is primarily that it affords a simple example of 

how scaling might be realized as a preasymptotic phenomenon. In the next sec- 

tion we shall utilize this picture to discuss the breakdown of scaling. We con- 

jecture that the picture of the breakdown of scaling which we abstract from the 

“preasymptotic nature” of the model may be correct even if it turns out that 

this particular model does not provide a tenable description of nucleon structure. 

III. CONSEQUENCES OF CONSTITUENT STRUCTURE 
AND EXPERIMENTAL HINTS 

In models such as discussed in Section II perturbation theory leads us to 

expect that the charge structure of the nucleon’s constituent will be of the form 

Fc (q2) !2n M;/(-q2) + c (3.1) 

where M2 2 q2 I I << M2 G, MG is the gluon mass, M is the (light) constituent mass, 

f is the dimensionless gluon-constituent coupling constant, and c is a model- 

dependent constant. 
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In the remainder of this section we assume f m 1, and the dependence on f 

is suppressed. 14 However, it is worth noticing that our principal speculations 

really apply to the ratio f/MG, so that a light, weakly coupled gluon is also a 

possibility. I5 We also ignore the logarithmic variation in approximating (3. I) 

for Q2 << Mt 

Fc (s2) - 1 - Q2/M; (3.2) 

where henceforth MG is an “effective” gluon mass and Q2 = -q2 > 0 for scat- 

tering processes. 

For Q2 << ME, so that the approximations (3.1) and (3,2) to the constituent’s 

charge form factor are valid, one might expect intuitively that parton model 

results (and other results obtained assuming point-like constituents) would be 

modified by replacing point-like vertices by form factors Fc(Q2); viz 

vW2(~, Q2) s g2(w) (3.3) 

for M2 sQ2 << Mi, where o s 2 Mp v/Q2 and the factor 2 enters with the square 

of (3.2), In Section IV we shall justify Eq. (3.3) in a Bethe-Salpeter model of 

the nucleon. Here we discuss the experimental consequences. 

At this time there is no definite evidence of the failure of scaling of the 

form (3.3) but we can ask what limits can be put on possible values of MG, or 

the parton size. As we discuss below, present experimental limits leave open 

the possibility that MG 2 10 GeVD An unambiguous interpretation of the data 

using Eq. (3.3) is not now possible because in the kinematical regions that have 

been experimentally studied corrections due to the approach to scaling mMg/Q2 

are likely to be of the same order of magnitude as the possible scaling violations 
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-Q2/( 10 GeV2). To resolve the ambiguity, accurate data at large Q2 are needed. 

But one can use the available data to get a rough idea of the possible magnitude of 

scale-breaking effects. Bloom” has analyzed the moment integrals of the scaling 

functions as derived from the Wilson operator expansions 

J 
aI 

Bn = dw’ 

1 + M2/Q2 (w’) 
2n+2 C ’ w2(w’ ’ Q2)] 

in terms of the scaling variable 0’ E w + &Q2* With the presently available 

data and a constant fit to the ratio of longitudinal to transverse cross sections 
CT 

that is consistent with the data R E s = D 
OT 

168 he found no evidence for parton 

size up to masses MG~ 12 GeV. 

On the other hand looking at the vW2 directly as extracted from a mesh of 

existing data points in the two variables v and w, Riordan in his thesis 17 made 

a scaling study in terms of w which shows a slight fall-off of u W2 with increasing 

Q2 that can be fit with a parton size in the range MG +- 8 GeV in (3.3). In terms 

of the Bloom-Gilman variable o’, 18 on the other hand fits can be achieved without 

requiring any scale-breaking effects. The difference between 0 and w’ is only 

important during the approach to scaling, so this is a particular instance of our 

remark that present data does not allow an unambiguous separation of corrections 

due to the approach to scaling from scale violating effects. Since d g2/dw > 0 

for w ~4 the Bloom-Gilman proposal also accounts qualitatively for the “observed” 

decrease of vW2(m ~2, Q2) as Q2 increases. To decide between their interpreta- 

tion and ours it will be sufficient to have accurate W1 - vW2 separated data for 

o > 4 (where d g2/dw -0, so that according to Bloom and Gilman the effect should 

disappear) and/or for larger Q2 values (where according to Bloom and Gilman the 

effect diminishes while according to our hypothesis , it becomes more pronounced). 

Hopefully the crucial data for larger w and Q2 values will be available before long 

from experiments now in progress. 
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We turn next to the behavior of the elastic electromagnetic form factor of the 

proton at high Q2 for a hint of the scale of “new physics.” Here there is presently 

more data to refer to in search of such hints 19 but any interpretation in terms of 

possible consitutent structure relies on specific theoretical models. The experi- 

mental facts are summarized in Fig. 2 which contains all data for the magnetic form 

factor of the proton GM(Q2) plotted relative to a dipole form (l+ Q2/0.71 GeV2)-2. 

A scaling relation is assumed to hold between the electric and magnetic form 

factors in Fig. 2, i.e., GM(Q2) = 2,79 GE(Q2), but the large Q2 data are very 

insensitive to this assumption as the electric scattering is relatively very small. 

The dipole form has per se no fundamental theoretical significance. Furthermore 

the exact nature of the fall-off and the quantitative behavior of GM for large Q2 

cannot be specified accurately or uniquely due to the limited data for Q2 2 10 GeV2. 

Fits to this data over the entire experimental range can be achieved by introducing 

complicated analytic forms (see the resume in Ref. 19); however, if we use simple 

pole models, a large mass parameter, -5-10 GeV, has to be introduced. As em- 

phasized by Massam and Zichichi 20 a fit based on the vector dominance model, in- 

cluding the effects of the p, W, and + propagators, as well as their vector-dominated 

nucleon form factors, must be modified by introducing a heavy vector meson of mass 

Mv=7. 7* 1.1 GeV to give the overall electromagnetic form factor a more rapid fall- 

off with increasing Q2. Alternatively, a modification of the dipole formula in Fig. 3 

by a multiplicative factor 
( 
1 - Q’/Mi 

1 
fits the data for Q2 > 5 GeV2 for MG - 10 GeV. 

Finally, if one makes a 3-parameter fit to GM with the trial form 

it is possible to find a good X 2 over the entire range 21 of measured Q2 in terms 

of two masses, M 1’ M2 - 1 f 0.3 GeV and with one large mass M3 2 5 GeV. 
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Independent of a specific theoretical interpretation the appearance of a 

large mass MG m 10 GeV suggests the possibility of a new scale of large masses 

or short distances on which qualitatively new behavior may occur. In particular 

a relativistic bound state of two point-like constituents satisfying a Bethe-Salpeter 

equation in the ladder model and bound by a Yukawa-type potential, so that the 

Wave function is not singular at the origin, leads to a form factor GE (Q2) with a 

(1/Q2)2 fall-off at large Q2. A result of the form 

GM(Q2) 2 GD,(Q’) (3-J) 

for Q2 << Mi would arise if the constituents were not point-like but had them- 

selves a structure, as in Eq. (3.2). Typically GG ( Q2) reaches its asymptotic 

form when Q2 is large compared to the binding energy which, as in Section II, 

we take to be no larger than N 1 GeV. In this case, to fit Eq. (3.4) to the data, 

we are forced to choose M G > 5 GeV. In Section IV, we will give a theoretical 

discussion of Eq. (3.4). 

If the spin l/2 constituents of the nucleon develop an electromagnetic struc- 

ture from their gluon interaction as we have proposed, then in general they will 

also acquire an anomalous magnetic moment. We may ask how big this Pauli 

moment will be and how this will affect the deep inelastic cross section. For 

instance if we assume a fermion constituent with a constant Pauli moment form 

factor Q2 << Mi, then not vW2 but rather W2 should scale which might pose 

a disastrous disastrous disagreement with the observed scaling behavior. 

However, estimating F;(O) from the vertex correction, Fig. 3 , we find FE(O) 

- & M2/M;. For massive gluons with MG/M N 10, this is far below the ex- 

perimental upper bound 0 22 

In addition to deviations from scaling as in Eq. (3.3)) the most striking ex- 

perimental consequence of these speculations is for the behavior of the total cross 
section for electron-positron annihilation into hadrons in the single photon approx- 

imation. As we discussed already in our previous letter, we predict for M2<<s~~M~ 
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(in the annihilation channel s f q2 > 0) 
1 

Oe+e- -y--x 
(s) Qc g 

( ) 
1+2 5 

MG 
(3.5) 

To leading order in s/M: the rise in (3.5) above the point-like behavior has the 

same slope as the decrease below scaling behavior in the scattering region. 

Physically the correction due to the constituents’ form factor is introduced, as 

discussed in Ref. 6, because the production time of the constituents,- i , J- is not 

short compared with their interval of free particle propagation before they re- 
1 scatter to form the final hadrons, i.e., N - 

MG 
<< J- i. Also as noted earlier, if 

the gluons have the same quantum numbers as the photon, i.e., vector gluons 

with unitary octet indices (perhaps due to SU3 breaking), then the correction in 

(3.5) may grow to a resonance form - l/j1 - dA2 )f Thus a sizable increase 

in the annihilation cross sections would be observed as s -A2 while at the same 

time the corrections to scaling for the scattering experiments remain much 

smaller. The actual position of the resonance is however unknown since M G’ as 

already commented at the outset of this section, is an “effective” mass in terms of 

coupling strengths and particle masses; therefore we cannot identifyA with 1 

defined by the effective range expansion in (3.2). 

The same correction factor in (3.5) also modifies the scaling behavior pre- 

dieted for one-body inclusive cross sections e + e -. h + X, as well as the mas- 

sive lepton pair production p + p(n) - pF+ X (or ee + X) for finite ratio Q2/s, 

where Q2 is the invariant squared mass of the lepton pair and s the total reaction 

(energy)2. We also recall from Ref. 6 the implications for a non-scaling increase 

in deep inelastic electron and neutrino cross sections when we are at energies v 

above the gluon production threshold. 

These predictions are the main experimental implications of our suggestion 

that a larger mass scale remains between the energies at which present data have 

been obtained and the light cone. Concerning the production of gluons in purely 
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hadronic processes, we have already conjectured 6,23 on the possible implications 

for recent ISR data. 

To summarize this section, we have suggested that existing data on electro- 

magnetic form factors and deep inelastic structure functions of the proton “hint” 

at a possible appearance of a new large mass scale, M G -10 GeV, and of new 

physics at energies -MG. It would hardly be surprising to encounter one (or 

more) such large mass scales between our present electromagnetic probes with 

Q2 - (few GeV)2 and the light cone. Fortunately the reality of the existing “hints” 

can be experimentally tested in the near future. 

IV. FACTORIZATION OF THE FORM FACTOR 

In an impulse approximation analysis the form factors and structure functions 

of the nucleon factor into a product of two terms. The first term is just what we 

would expect if the constituents were themselves point-like; the second term de- 

scribes the structure of a free constituent. Physically this approximation corre- 

sponds to ignoring the effects of the binding of the constituents to one another within 

the nucleon on their electromagnetic interactions. 

The analogous result is familiar in the analysis of nuclear scattering. For ex- 

ample, the interpretation of neutron structure from electron-deuteron scattering 

is based on the similar factorization of nuclear and nucleon form factors. 24 

In this section we use a relativistic bound state model of the nucleon to derive 

this factorization property, which was introduced in Section III, in the kinematic 

region under consideration, i.e., for M2 << Q2 << M 2 
G where M and M G are, re- 

spectively, the light constituent and heavy gluon masses. We also restrict ourselves 

to the region below the threshold for producing these massive gluons. For Q2 << Mi , 

this is also the Bjorken deep inelastic region of Q2/2Mpu finite, since the gluon pro- 

duction threshold occurs at 2Mpv z Mg >> Q2. In this model we assume that the 

physical proton, p, is composed of a spin l/2 particle P and a neutral scalar meson 

X, forming a bound state given by the solution of a Bethe-Salpeter equation in the 
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ladder approximation. The binding potential is generated by the exchange of a 

neutral gluon of mass MG which couples to the spin l/2 and 0 constituents with 

strength f. The important property of the bound state that we shall make use of 

in this model is this: The Bethe-Salpeter wave function remains finite for van- 

ishing space-time interval between the constituents. This property is derived 

for scalar gluon exchange and can also be assured for exchange of vector gluons 

with conserved vector couplings if the gluon propagator is modified by subtraction 

of its most singular term. 25 

We shall discuss the deep inelastic structure functions; an analogous treat- 

ment can be given for the elastic form factors. In this model factorization is 

equivalent to the statement that the inelastic scattering amplitude is dominated by 

the diagram of Fig. 4a, in which the shaded blob represents the fully dressed 

P-P-photon irreducible vertex. Figure 4a will factorize into two terms as dis- 

cussed above, provided that the off-shell corrections to the virtual intermediate 

spinor line are negligible. Figure 4b, in which a gluon is exchanged between the 

scalar meson and the P-P-photon irreducible vertex, is a diagram which violates 

the impulse approximation. So do rescattering graphs of the type shown in Fig. 4 c. 

The complete sum of all possible photon insertions as shown in Fig. 4, including 

the self-energy parts, must be included in order to protect the Ward Identity and 

hence current conservation. Our task is to show that except for Fig. 4a, which 

contributes to the structure of a free constituent, all other contributions of Fig. 4 

are negligible when M2 << Q2 << Mi ; and furthermore that the off-shell correc- 

tions to the constituent form factor in Fig. 4a are negligible. 

The general power counting analysis of Ref. 2 can be repeated to verify that 

graphs such as Fig. 4b and 4c can be neglected in an order-by-order perturbation 

analysis, We find that the wave functions at the bound state vertex provide the 
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needed powers of momenta that, up to logarithmic factors, converge the added 

integration loop for momenta exceeding m M, where for simplicity in describing 

this model we assume that the constituent masses and the binding energy are all 

comparable, - M. Hence the additional massive gluon propagator introduces 

factors x Mi in the denominators and these contributions are typically smaller 26 by 

‘y f2 M2/M; << 1. 

In order to illustrate that Fig. 4 a gives a factorized structure function we 

calculate the lowest order perturbation contribution in the case in which the cur- 

rent interaction with the spin l/2 constituent P includes the single vector gluon 

vertex correction illustrated in Fig. 3. For M2 << Q2 << Mi this diagram gives 

the constituent P a charge form factor 

f2 Fc (q2) = 1 - - Q2 ML TJ!n-- 
24 1r2 MG Q2 

(4-l) 

provided that both P legs are on the mass shell. Now in calculating the correction 

to the structure functions, we must consider an off-shell constituent, and to the same 

approximation we represent Fig. 4a by the lowest order correction, Fig. 5. To this 

must be added all possibly orderings of the current insertion to protect the Ward 

Identity at the electromagnetic vertex. However, building on the preceding 

paragraph and Ref. 2, it is sufficient for us to write the amplitude 

1; = Upg(u) P-;-M - // f2 d4 k 1 

(27r)4 k2 - M; ‘@ P-d&-M ” P+;-M (4.2) 

and recognize that we are interestedonly in the correction to the electromagnetic 

vertex yr-L that is proportional to q2. In (4.2) the factor g(u) is the bound state wave 

function and u G (P - q)2; for large u (compared to the binding energy - M),g(u)cc u-l. 

Adding (4.2) to the lowest order point electromagnetic vertex, I!, gives the factorized 
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form to leading order in f2 and Q2/Mi c 1, Q2/M2 >> 1 for the coefficient of y * 
I-L’ 

=” 1; Fc(q2) 

The corrections to the electromagnetic vertex arising due to the fact that 

the virtual spinor line is off-shell are reduced relative to (4.3) by additional 

powers of (M/MG) . These additional powers express the fact, as analyzed in 

Ref. 2, that the bound state wave function g(u) which falls as l/u for u >> M2 
I I 

(49 3) 

restricts the intermediate fermion line to virtual masses Iui 2 l’8; in contrast, 

the corrections to the on-shell behavior of the electromagnetic vertex in Fig. 5 

are measured on the scale of masses Mt >> M2. This same statement is expressed 

in space-time language by observing that the lifetime of the intermediate state at 

the electromagnetic vertex of the spinor is T N 
Y 

l/MG which is much shorter than 

the lifetime of the intermediate spinor state 7s N l/M. Therefore, the correc- 

tions 7 /7 N 
Y s 

M/MG << 1 can be neglected and the intermediate spinor treated as 

if on its mass shell in calculating its electromagnetic structure. The same power 

counting arguments in l/MG apply for higher order perturbative contributions to 

the blob in Fig. 4a. 

In considering the processes illustrated in Fig. 4, we have gone beyond the 

framework of the ladder model since gluons are emitted and absorbed by the same 

constituent in dressing the electromagnetic vertex. The question naturally arises 

as to what happens to the bound state structure itself if we go beyond the ladder 

model and dress the strong interaction vertices also in the ladders in Fig. 4. Here 

we only know how to answer in terms of a perturbation analysis of the corrections 

to the bound state g(u) D Again resorting to power counting methods, we find that 

aside from renormalizing the coupling constants, the corrections are of order 

M2/Mi since the wave functions converge the added integration loops for momenta 
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exceeding N M, whereas the additional gluon propagators introduce factors - MC 

in the denominators. In the space-time language, the constituent propagators 

have virtual lifetimes 7c - l/M which are very long compared to the lifetimes of 

the gluons in the radiative corrections, 7G - l/MGO Therefore, the individual 

strong vertices can be approximated “on shell” and the gluons renormalize their 

coupling constants. 

In this context-namely, bound state models of the proton based on a ladder 

approximation to the Bethe-Salpeter equation with wave functions that remain 

finite for vanishing interparticle separation-it is seen that the form factors 

factorize as claimed to leading order in Q’/Mi << 1; M2/Q2 << 1. 

V, CURRENT COMMUTATORS AND THE ADLER SUM RULE 

In this section, we will discuss the implications for local current algebra of 

our speculations concerning the structure of nucleon constituents. In particular, 

we consider the Adler sum rule for neutrino-nucleon scattering, 27 with the mo- 

mentum carried by the currents restricted to M2 << Q2 << M2 G” Specifically, we 

ask whether or not the ideas of constituent structure developed earlier may be 

compatible with the validity of the Adler sum rule. We discuss separately the 

energy domains below and above the threshold for the production of the heavy 

gluon. The discussion of the preceding section, and in particular our conjecture 

about scale breaking in deep-inelastic scattering, 

v W2(v, Q2) ‘F2(x) , (5.1) 

is restricted to the “preasymptotic” kinematic region below the gluon threshold, 

v << M;/2M 
P’ 

and to M2 << Q2 << Mi where we are probing only the mean square 

radius parameter of the constituents. These considerations are independent of 
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dynamical details of specific models. However, to discuss current algebra sum 

rules, we are compelled in this section to give some consideration to the region 

above the heavy gluon threshold, which means speculating in more detail into the 

heavy gluon dynamics. 

First we consider v < Mt/2 M . 
P 

Here Eq. (5.1) may be formulated in con- 

figuration space as a current commutator 28 

J’(x), J?(O) 1 L 
x2 << M2 

(ape (x0) 6(x2)) 

x s(x) Q2yp p ’ 0 
[ Y Y rcl< ) -~tC9Q2~v~p~pWG]~ (5.2) 

where $ is the triplet of quark fields and Q the quark charge matrix. The nota- 

tion g is intended to emphasize that (5.2) is not an operator statement but is 

only assumed valid when evaluated between single particle states and with photon 

momenta satisfying M2 c Q2 << Mi and v < M;/2M . 
P 

The right-hand side is 

the usual light cone commutator except for the factor -2 O/M: which gives the 

effect of the quark form factor in the radius approximation. Equation (5.2) is not 

scale invariant in Wilson’s sense, 29 but that is no surprise since the presence 

of a large mass means we are not in the asymptotic region where scale invariance 

is conjectured to be valid. Taking (5.2) between nucleon states and calculating the 

Fourier transform we recover (5.1) D 

In generalizing (5.2) to the full SU2 or SU3 current densities we shall assume 

that the constituent’s charge radius is SU3x SU3 invariant-i. e., the same factor 

(1 - 20/M:) prefaces all light cone commutators as in (5.2); viz. for the SU2 currents 

[JEW, J”_ (‘))I s 
x2 << M2 

(ap E (x0) 6 (x2)) 

(5.3) 
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where J;(x) = g(x) y’ 2 e(x), Jl = Jy&iJE, and tipand tiNarethe 

fields of the proton and neutron quark. 

We now wish to apply current algebra techniques to study the implications 

of (5.3). We immediately encounter a difficulty since the usual current algebra 

techniques involve predictions about physics at arbitrarily large energies whereas 

(5.3) is only expected to apply when v < Mi/2M . 
P 

In fact this difficulty is more 

than just a technical problem which faces us because of the limitations of our par- 

ticular model: It is also a conceptual problem inherent in all the usual applications 

of local current algebra. The equal-time current algebra only implies statements about 

an undefined asymptopia; it does not itself tell us at what energies sum rules should be 

satisfied (or even if they converge). Since experiments are limited to finite energies 

the predictions of local current algebra are physically ambiguous, though they may 

be well defined mathematically. Even if a sum rule appears to be satisfied experi- 

mentally there is never a guarantee that future measurements at still higher energies 

will not reveal the earlier agreement to have been fortuitous. 

In this sense an hypothesis about the structure of a local equal-time commutator 

is a mathematical idealization. Physically it is more precise to consider “almost- 

equal-time” commutators smeared over an interval At - l/E where E is the largest 

available energy. In this way we can construct sum rules involving finite energy 

domains as we show below. For us this technique is essential since we are here 

discussing current algebra in a theory in which there are two important lengths, M 

and MG >> M, and we wish to exhibit separately the contributions from energies 

below the gluon production threshold and those from above the threshold which may 

not yet have been experimentally probed. 

Before discussing sum rules obtained from almost-equal-time commutators, 

we very briefly review the P -+co technique for deriving fixed q2 sum rules from 
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‘I 

. 
“?, 

2. 

local, equal-time current algebra. 3o One evaluates the quantity 

lim d3x eTiq* Y-p- 
iJaW O), J;(O)1 1 P> 

F---co 
(5.4) 

by inserting a complete set of states and commuting the limit % co with the 

sum over the intermediate states. The expression (5.4) may then be written as 

v A”,; tp , S) 1 q2 fixed (5.5) 

where Mv 3 P 0 q, the direction of ;;*is chosen so that Fm T= 0, the value of q2 

is determined by the choice of y in (5.4)) namely q2 = 
-2 -q in the infinite momentum 

Mv frame, P”-+~ , when (qo)2 = 0 
‘2 

i 1 
<< Q2, 

P 
and A:; is the absorptive part of the 

forward current -hadron scattering amplitude. 31 Decomposing A”af: into Lorentz 

invariant amplitudes and introducing assumptions about their high energy behavior, 

(5.5) yields a family of sum rules, among them the Adler sum rule for neutrino- 

nucleon scattering. 

Now consider a modified version of this procedure. The equal-time 

commutator in (5.4) is replaced by a smeared almost-equal-time commutator: 

p lzMfl i {< P 11’:: dte-A2t2/d3x e-‘;” ’ lJt(z t), J;(O)] 1P>\ 

0 (5.6) 

where N E 
1 

00 
dt e-A2t2 

al 
is a normalization factor. Proceeding as before, we 

find in place of (5.5) an integral over a finite range (32) of v: 

. 

1 
Ti- / 

dv A;; (P, q) I 
q2 fixed 

(5-V 

Iv I< I Vmaxl 

where v E QA max 
V2 

and fi is chosen large enough that a2 >> 9, 
-2 

so thatq2z -q 0 It is the 
Q 

integral in (5.7), not that in (5.5), which is experimentally measurable; and 
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therefore it is the smeared almost-equal-time commutator in (5.6), not the 

equal-time commutator in (5.4), which is actually the object of physical 

investigation. 

Notice that for fixed vmax, as 0 -co we have A - 0, so that larger and 

larger values of t become important in (5,6). Thus in the P-cc frame we are 

not probing small times at all, which corresponds to the fact that go vanishes in the 

P- c& frame. Performing a Lorentz transformation to the laboratory we find 

that the important times are 

1 

(qYnaX),, 

as indeed they must be according to the uncertainty principle. 

It is necessary in the discussion which follows to replace the idealization 

P 0 = Ma - co by the condition 

M2- << a2 = 
V2 

max 
Q2 

i<Q2. (5.8) 

V2 

The lower bound, G2>> max , 
Q2 

is imposed, as remarked above, to guarantee 

the conditions Q2/Pi << 1 and Q2 Z T2 (we always choose qa F = 0), which are 

necessary to derive the sum rule in its covariant form. The upper bound, 

Ma << vmax, is imposed, in contrast to the usual choice Ma = PO - co , so that 

the important times being probed in (5.6) are restricted by t 7 AS1 << M -I0 This 

restriction, together with causality, insures that we are only making use of the 

unequal-time commutator in the region within M -2 of the light cone where we 

are prepared to conjecture about its structure. 

We may now derive the sum rule for the region below the gluon threshold, 

We proceed by substituting (5.2) into (5.6) 0 Inserting a complete set of states 

and choosing PO = Ma as in (5.8)) we find with the analogue of the usual 
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assumptions about the Lorentz invariant amplitudes, that the left-hand side of 

the sum rule becomes 

(5.9) 

where W2v denotes the vector-current part of the structure function and we have 

chosen v max < M$2M and M2 << Q2 << M;. 

The remaining task is to evaluate the right-hand side of (5.2) when sub- 

stituted into (5.6). The D’Alembertain is evaluated by an integration by parts: 

the Laplacian gives rise to terms proportional to z2/dG, which become Q2/Mi 

because of (5.8); while the time derivatives give rise to terms of order A2/Mi, 

which according to (5.8) may be neglected. The result of a straight-forward 

2) 

-I- 

yields 33 

-Q2 

/ 

.2Mvmax 

-1 

da! A(a) 

I 

(5.10) 

where A(a) is the Fourier transform of the matrix element of the bilocal operator 

appearing in (5.2) O That is, 

A(@) = & d(Po x) e -icw(P 0 x, X(Pox) 

where 

<’ @~tx)~~P~~to) - N ;i; t”)Yp+j+x) I ‘> 

(5.11) 

(5,12) 

f PP Ah(Pox)O 
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In (5.12) we have also neglected a possible contribution to the bilocal of the form 

xp B(Po x). With the same assumptions on the small 01 behavior of B(U) which 

are necessary in the usual equal-time P - oo derivation of the sum rule, we 

find, using (5,8), that the contribution of B” is negligible compared to the 

contribution of AZ. 

As a check on the calculation, we observe that in the limit MG - 00 and 

V max - CCI , which corresponds to the conventional equal-time derivation of the 

sum rule, (5.10) becomes 

s 

1 
PO da! A(cY) = P” 

-1 

where we use the property, deduced from (5,2) in the limit x -0, that 

40) = J-; da! A(a) = 1. Thus we recover the usual sum rule, 

,** dv (W$( v, Q2) - W;‘dv, Q2)) = 1. (5 0 14) 

(5.13) 

With MG and vmax finite, additional dynamical information is required to 

evaluate (5 0 10) 0 In the simplest model we treat the nucleon as an elementary 

particle and include its interaction with massive gluons in second order pertur- 

bation theory. In this case in (5.10) we have A(cY) = 6 (1 - a) so that the sum 

rule becomes 35 

v max < M@M 

Q2/2M 

b (5.15) 

Due to the simplicity of the model, (5.15) is saturated by the elastic contribution 

and ‘max is free to vary between Q2/2M and Mi/2M. 

In a bound state model as discussed in Section IV, in which the nucleon is a 

bound state of light constituents interacting via massive gluons and the structure 
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of the constituents is treated in second order perturbation theory, the contribution 

to (5.10) and (5.15) comes from the quasi-elastic peak. However the value of 

the integral in (5.10) depends on vmax through the limits of integration. In the 

particular model developed in Ref D 2, A(a), which is simply A(a) = W,(a) = v W2/2a!Mp, 

is constant for small 01 -0 and therefore the brackets in (5.10) differ from unity 

by terms of order (Q2/2Mpvmax) L Q2/Mi0 36 

We turn finally to the kinematic region above the gluon threshold. Our 

purpose is to investigate whether our speculations on constituent structure 

contradict the Adler sum rule which is derived on the basis of local equal-time 

algebra plus generally accepted assumptions on the high energy limiting behavior 

of the forward virtual compton amplitude. In particular it is assumed in deriving 

the Adler sum rule that no subtractions are required for the odd amplitude under 

crossing, in accord with standard Regge asymptotic arguments. In this investiga- 

tion we must resort to specific dynamical models, for describing gluon production. 

This means going beyond the general notion of a constituent size that appears as 

a correcting factor in (5.15). We must compute in specific models whether the 

contribution to the sum rule for v > Mi/2Mp when added to that from v < 4/2Mp 

exactly adds to 2, as we found in the MG, vmax -co limiting case (5.14). 

First as a simple illustrative example we consider in second order 

perturbation theory an elementary spin zero nucleon which exists as an SU(2) doublet, 

(p, n), and interacts with a scalar gluon that is an isoscalar. We then find that the 

elastic contribution to the sum rule, from Fig. (3), is given by (5,15), where 

now Q2/Mi is a mnemonic for 

for M2p<<Q2e Mg 

(5.16) 
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In (5.16), G is the gluon-nucleon coupling constant and has the dimensions of 

a mass, To this we must add the contribution of the gluon-radiation diagrams, 

Fig. (6), which we denote by 6 (VW,). The contribution to the Adler sum rule 

is calculated directly to be (for M2 << Q2 << Mi) 

VP NW2 tvs Q2)) - W;ptv, Q2)) 1 
(5.17) 

where Q2/Mi is the identical mnemonic as in (5,16) O Combining (5,15) and 

(5.17), we recover the exact Adler sum rule 37 

J ccl 
VP dv W2 (v, Q2) - Wlp(v, Q2)) =2, for M2 <<Q2 <<ML 

I/t (5.18) 

This same result can also be verified in the familiar scaling region M2, M;<< Q20 

Returning to the bound state model discussed in Section 4 we again confirm 

the Adler sum rule. As in the earlier analysis, we work to leading order in 

Q2/Mi and compute in second order perturbation theory the massive gluon 

radiation as well as its contribution to the constituent structure. This suffices 

to show how the Adler sum rule may remain valid even though the structure 

functions themselves do not scale, as a consequence of modifications (5.1) and 

(5.2). Since this is the point we want to illustrate -- and not the validity of the 

particular model being used -- we do not carry the calculations (which become 

very tedious) beyond this lowest approximation. We shall “embed” the above 

perturbative calculation within the bound state, and to this end we summarize 
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(5.15) to (5.18) in the useful form 

W,(Q2, v’) = 2 J 3 
NId S~(P - q -(p-x)~) IF, l2 + 

/ 

3 3 

EP 
y $$64(F+K-q-(p-X)~(q,P,K) 

K 
rca 

J W2(Q2, v’) dv’ = 2 
0 

where the kinematics correspond to Fig. (7); v’ z (p - qso q/Mp, E 

F1(Q2) is the charge form factor and &(q, P, K) denotes 

additional factors in the inelastic gluon production amplitude which depend on the 

spin of the particle. (p - vs denotes the 4-vector of an on-shell nucleon with 

momentum p-x, and 5.19 is just the statement of (5.18) and footnote (37), 

Turning to the bound state we recall the normalization condition derived in 

Ref. 2 for point like constituents. With the kinematics in Fig. (8) we have the 

B.S. explicit expression for W2 

Md3P d3X -- I E 2wX 
84tp+x -P -4) lg(u) I2 f(p - X, q) “W,BS*(Q2, v) (5.20) 

P 

which satisfies the Adler sum rule, 

/ 

00 

0 
d v W;’ ‘.(Q2, v) = 2 (5.21) 

where E = 
P- 

Jm, wx = m, v = pe q/Mp, u 5 (p - X)2, g(u) is 

B.S. the bound state vertex and f contains the remaining factors for projecting out W2 . 

Substituting (5.20) into (5.21) gives 

2= + 
P J z& lg(u)12 f(u) $ , 

X 
(5.22) 
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In obtaining (5.22) we use the fact that the bound state wave function keeps 

u/M2 - O(1) so that in an infinite momentum frame we may write p - X = xp, 

where x is the fraction of longitudinal momentum carried by the charged 

constituent in an infinite momentum frame. (In our verification of the sum rule, 

the use of the infinite momentum frame is convenient but not necessary.) 

We now observe that if the charged constituent in the bound state model 

emits virtual and real gluons, as in Fig. (9), that instead of (5.20) we have 

WB. S. 
2 tQ2, v) = (5.23) 

where W2 is calculated in second order perturbation as in (5.19)) but now for 

target of mass M carrying momentum p - X = xp. Using the validity of the 

a 

Adler sum rule in perturbation theory, (5.19), together with the normalization 

condition (5.22)) we deduce the validity of the sum rule in the bound state model, 

(5.24) 

Note that the quasi-elastic peak contributes 2 I Fl(Q2) I2 to the sum rule and the 

remaining portion comes from real gluon production. This completes our 

example and shows explicitly that the ideas discussed here are not incompatible 

with local current algebra and the Adler sum rule. 

VI. CONCLUDING REMARKS 

In this paper we have developed our view that scaling is a preasymptotic -- 

phenomenon in terms of a simple model of the nucleon as a weakly bound system 

of light constituents bound to one-another by massive gluons. However, we have 

not offered a consistent dynamical basis for this theoretical picture, It is our 
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conjecture that we can abstract a correct description of how scaling fails even 

if it turns out that the particular model we have utilized fails. 

In the very near future there should be considerably more evidence bearing 

on the question of scaling, both for space-like and time-like values of q2. One 

qualitative feature is suggested by the data available at this moment: deviations 

from scaling in the space-like scattering region of -q2< 10 Ge 3, indeed if 

present, (16) seem significantly less pronounced than the apparent enhancements 

above point-like for the time-like annihilation region (38) of +q2 520 Ge VT If this 

feature is verified by future experiments, to accommodate it within the context of 

our model we would have to assume that there is a resonant enhancement modifying 

(3.5) by 1 + 
( 

as described below (3.5) with d-8 GeV. 

Additional data should indicate whether or not such an explanation is tenable. 

If the hypothesis which we have discussed in this paper is correct, we would 

still be faced with a deepening mystery: where are the light constituents, why 

are they not observed? In this connection, it is interesting to consider the 

alternative hypothesis that the constituents (and the gluons) are very massive, 

In this case one might not expect to see s -1 
say >>lO GeV, scaling behavior 

in e+e- annihilation until s >> 4Mzonstituent, and the range of time-like momenta 

presently under experimental investigation might be too small to reveal any 

easily understood scaling behavior 0 In contrast, the effective mass of the 

constituent inside the nucleon could be small as a result of the strong binding 

forces. A proton bound state of low density would then allow the early onset 

of incoherence and “preasymptotic” scaling behavior as discussed in this paper. 

Turning once again to nuclear matter for a guide we find from the results of 

Stanfield(7) and the analysis of Moniz (3% that the nuclear forces cause a qualitative 

shift in the effective nucleon mass by as much as 300/c, even for values of Q2 
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limited within the region where incoherent scattering is observed. Due to the 

considerably stronger forces binding such massive constituents within the nucleon 

there could well be an even greater difference between effective bound constituent 

masses and free masses. In this way we might hope to accommodate “preasymptotic” 

scaling for inelastic scattering measurements at precociously small values of 

space-like q2, without at the same time having simple point-like behavior for the 

annihilation cross section at comparably small values of time-like q2. 
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5. 
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9. Contributions to the Adler sum rule for a bound state with constituent 

FIGURES 

Inelastic scattering of electrons from Carbon, taken from Ref. (7): the 

differential cross section plotted against the energy of the final electron 

(initial electron energy is indicated as E i). The invariant momentum trans- 

fer at the peak, in MeV/c, is as follows: Fig la) -150, Fig lb) -210, 

Fig lc) -320, Fig Id) h 450. 

The proton magnetic form factor as a function of Q2 taken from Ref: (18). 

The contribution to the constituent form factor due to the second order 

vertex correction. 

effects of constituent structure. 

Inelastic scattering from the bound state, with the constituent form factor 

treated in second order perturbation theory. 

Gluon radiation in second order perturbation theory. 

Contributions to the Adler sum rule in second order perturbation theory. 

Contribution to the Adler sum rule for a bound state with a point-like 

constituent, 

structure treated in second order perturbation theory. 
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